
- * r- .„ XmwKlfnvu-A*-» “'“'u< nm*4* x»
. J

Department
of
APPLIED MATHEMATICS

L/NHAN NA/ES AND STABILITY IN IDEAL

HAGNETOHYDRODYNAHICS

by

Knut S.Eckhoff

Report No 84

UNIVERSITY OF BERGEN

Bergen, Norway





Department of Mathematics

University of Bergen
5007 Bergen, Norway

ISSN-0084-778X

LINEAR HAVES AND STABILITY IN IDEAL

MAGNETOHYDRODYNAMICS

by

Knut S.Eckhoff

Report No 84 May 1987



2

Abstract. Linear waves superimposed on an arbitrary basic State in

ideal magnetohydrodynami.es are studied by an asymptotic expansion

valid for short wavelengths. It has not been necessary to introduce

any assumption beyond the usual regularity assumptions on the

arbitrarily given solution which represents our basic State, it may

even be time dependent. The theory also allows for a gravitational

potential; it may therefore be applied both in astrophysics and in

problems related to thermonuclear fusion. The linearized equations for

the perturbations of the basic State are found in the form of a

symmetric hyperbolic system. This symraetric hyperbolic system is

shown to possess characteristics of nonuniform multiplicity, which

implies that waves of different types may interact. In particular it

is shown that the mass waves, the Alfvén waves, and the slow

magnetoacoustic waves will persistently interact in the exceptional

case where the local wave number vector is perpendicular to the

magnetic fieid. The equations describing this interaction are found

in the form of a weakly coupled hyperbolic system. This weakly

coupled hyperbolic system is studied in a number of special cases, and

detailed analytic results are obtained for some such cases. The

results show that the interaction of the waves may be one of the major

causes of instability of the basic State. It seems beyond doubt that

the interacting waves contain the physically relevant parts of the

waves, which often are referred to as ballooning modes, ineluding

Suydam modes and Mercier modes.
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I. INTRODUCTION

In a very wide spectrum of applications the problems of linear

wave propagation and stability play a Central role. There is a vast

literature available in these fields, but still the problems are

solved only in special cases. The conventional approaches to these

problems are the normal mode method and the energy principle. These

methods are not without difficulties and limitations, this author has
1 2

therefore looked for other methods ' , which have been shown to be

useful in fluid mechanics 3 ' 4 . At a conference in 1984 in Trieste,

Italy Dr.E. Hameiri and the author realized that there were certain

sirailarities between the latters approach in fluid raechanics and the
5 6

approach Hameiri had applied in magnetohydrodynamics (MHD) ' . Since

the methods applied were clear.ly different, it was decided that it

might be worthwhile to try to apply the author*s approach in MHD and

Hameiri's approach in fluid mechanics in order to see if it is

possible to iraprove upon the results obtained earlier. The first part

of a contribution to the problems of linear wave propagation and

stability in MHD will be outlined in this paper.

We shal] work ent i rely wit.hin the framework of idea l MHD where

we shall be concerned with linear waves superimposed on a given basic

State. The given basic State may be m given solution of the funda

mental MHD equations, it may be with or without flow, and it may be

stationary or time dependent. The linearized equations for the pertur

bations of this given basic State are found in Sec.ll in the form of a

symmetric hyperbolic system. In this paper we limit our study of So

lutions of this hyperbolic system to asymptotic expressions valid for

short wavelengths and/or high frequencies. The approach applied is

the generalized progressing wave expansion method involving the cha
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racteristic equation and transport equations along the characteris

tics. The method is briefly outlined in Sec.III and follows the ap

proach given by Eckhoff 1 . In contrast to fluid mechanics, the equa

tions governing ideal MHD do not have characteristics with constant

multiplicity. In order to study all the relevant modes it is there

fore necessary to extend the approach described by Eckhoff' to cases

where the multiplicity assumptions are not satisfied. In fact, after

håving looked at the different modes in the nonsingular cases in

Secs.V~VII without detecting any instabilites, we turn to the singular

cases in Secs.VIII and IX. In Sec.lX we show that the singular case

where the local wavenumber vector k is perpendicular to the magnetic

field, Bq , always constitutes a persistent property along the rays. As

a consequence of this, the mass waves, the Alfvén waves, and the slow

magnetoacoustic waves may persistently interact along the rays in this

case. The transport, equations describing this interaction are derived

in Sec. IX and are seen to constitute a weakly coupled hyperbolic

system.

The system of transport, equations derived in Sec.lX may serve as

a starting point for extensive studies of linear waves with short

wave]engths in ideal MHD. In particular, Suydam-modes, Mercier-modes

and ballooning modes must be properly described by this system of

transport equations 7 10 , as well as analogous waves in more general

geometries than have previously been studied. Such waves may contain

important information about the stability of the given basic State,

giving both the growth rates and the structure of the unstable modes.

In this paper we restrict. our study of the system of transport equa

tions to some special cases which are especially attractive analyti

cally in Secs.X-XII. In particular we are able to obtain detailed ana
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lytic results for slabs and screw pinches with constant pitch. It is

not. yet known to what extent it is possible to derive analytic results

for more general cases, but it is clear that the system of transport

equations obtained is very attractive for numerical methods. Thus at

least by numerical methods it may be possible to obtain necessary

condi is for stability of far more qeneral basic states by our

approach than by conventional approaches.
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11. THE BASIC EQUATIONS

The fundamental ideal magnetohydrodynamic equations are

(1)

where y denotes the velocity, q the density, p the pressure, i the

magnetic field, V a given potential for the external forces acting on

the plasma, and y is a constant. The initial conditions associated

with (1) always include the equation

(2)

but otherwise it is not necessary to specify any initial or boundary

conditions at this stage.

We shall consider an arbitrarily given basic flow for the plasma,

(3)

satisfying the fundamental equations (1) and (2). We want to study the

linear waves which can be superimposed on this basic flow (3). We

therefore perturb it by introducing into (1) the following expressions

9v .-i _i
+ v« vv = -g yp + q (vx B)x b + yv,

9t

9B
+ vVB - B-Vv + BV-v = 0,

9t

9g
+ v»Vp + qV*v = 0,

9t.

g
+ v* V(pg"^) = 0,

3t

V* B = 0

v = YQ (x,t), o = e 0 (£»t), P - P Q (X/t),

B = (xf t) ,
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v=v + po *0 e = eo +V* p(f (n + O,M,

(4)

X

Here ('YPQ/Qg) denotes the local sound speed and the eightdimen

sional vector

(5)

represents the perturbations superimposed on the basic flow (3). The

transformation (4) is analogous to transformations considered earlier

in fluid raechanics 3 .

By substituting (4) into (1), the linearized equations for the

perturbations are found to be

(6)

(7)

(8)

I£ we use Cartesian space-coordinates (x,y,z), say, we may write the

P = p 0 + c 0 e E =i0 + b

W = {u,b,n,?}

~t +V + Po ' ± E[|x(vxb) + co Vi + u-vvj

+ I “»•». ' »„'*<** V* fc + - (c0 c0 )-' vpo?

+ (c0 bo )- , [(vxbo )^bo - 7 P() ]<n +?) =o,

bt 1 sio -vb + Q o '^(SO V’U - Sa -vu)

+ co - i ®o' i ‘n-»e0 >Bo

1 s

+2 eo " (Eo' Peo )u + - b =2'

"t + V*"1 +co 1 (co v °o  co ' Vpo ),u + l v ‘V =°-

? t. 4 +Vu + «o" 1 (co ' 7po - \ co 7eo )-u + =°- (9)
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system of equations (6)- (9) on matricial form

Lw
3w ,

= — 4 A
St

Sw

Sx

 > Sw
+ A —

Sy
4 A 3

Sw

Sz
+ Dw = Q. (10)

The 8x8 matrices A 1 , A2 , A3 in (10) obtained from (6)- (9) are

 

V x 0 0 0 B 2 p-»B0 3 0

 >

c a

0 v i 0 0 -Po“ B x 0 0 0

0 0 V 1 0 0 -p”*B I 0 0

A 1 = <
0 0 0 v i

0 0 0 0

» (11)

p^BH 0 2 A B x 0 0 V x 0 0 0

p BK 0 3 0  pA 0 0 V 1 0 0

0 0 0 0 0 0 V I 0

v* C o 0 0 0 0 0 0 V 1 J

r
V 2 0 0 A B 2 0 0 0 0

0 V 2 0 pA 0 p‘^BK 0 3 0 C o

0 0 V 2 0 0 -p"^B0 2 0 0

A 2 = <
“Pq B 2 pr B i 0 v 2 0 0 0 0

(12)

0 0 0 0 v 2 0 0 0

0 P 0 B 3 -P^B 2 0 0 V 2 0 0

0 0 0 0 0 0 V 2 0

0 c 0 0 0 0 0 0 V 2JJ
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A 3

Frum (11)-(13) we see that A l , A 2, A 3 are symmetric, hence the basic

systera of equations for uur study of linear waves and stability

(6)--(9) is a symmetric hyperbolic system.

r

v 3 0 0 00 00

0 V 3 0 0 " P o^ B 3 0 00

0 0 v 3 P^ B i P^B 2 0 o c 0

J " p o^ B 3 0 p;*B x v 3 o o 00

0 ~Po B 3 P o^ B 2 0 V 3 0 0 0

0 0 00 Q v 3 0 0

0000 0 0 v 03

. ° 0 c . 0 0 o 0 v 3 J



10

111. THE METHOD OF STUDY

The conventional approaches to the problems of linear wave

propagation and stability are the normal mode method and the energy

principle. These methods are only applicable for special basic flows

(3), and they are not without difficulties and limitations. Since the

basic system of equations (6)-(9) is a symraetric hyperbolic system,

however, there are also other methods available. One such method is

the generalized progressing wave expansion method where families of

Solutions of the following type are studied

(14)

In (14) the phase function <p and the amplitude aQ are determined such

that the remainder

(15)

If we compare (14) with a conventional plane normal mode, we see that

iimp is analogous to i(k-x - gt). Thus we see that wVtp is analogous to

the wavenumber vector k and -u«p t is analogous to the angular frequency

q. With this background wis called a frequency in (14),

and is in view of (15) seen to be an asymptotic expression

for the family of Solutions valid for short wavelengths and/or

high frequencies.

Rewriting (10) in the following way

(16)

we obtain by substituting (14)

w (x,t) = a (x, t)expUujip(x, t)} + R(x,t;w).Q) 0

1
R(x, t;u)) = O(-) when u

01

3 v
Lw = w, + r A w + DW = 0,

t v=l A v
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(23)0, - k-v

(17)

Letting w -» «, (17) implies in view of (15)

(18)

Since we assume that aQ *O, (18) can only be satisfied when the

phase function ip satisfies the characteristic equation

3 v
det (<p l + X tp A ) = 0,

t v - •) x v
(19)

Introducing the notations

(20)

(19) shows that A must be an eigenvalue of the symrnetric matrix E. If

(21)

is an eigenvalue of E, we see that (19) is satisfied when

(22)

The eigenvalues of the matrix E are called the characteristic roots

associated with the symrnetric hyperbolic system (16). To the different

characteristic roots there correspond different families of phase

functions, which again correspond to different families of Solutions

of the form (14),

Xn our case where the matrices A l ,A2 ,A 3 are given by (11) - (13),

the characteristic roots are found to be given by , ... , Q where

3 v
Lw = {xui(Cp.l + r ip A )a + La }exp(iui(p)+ LR = Q.

tU V, yr: j Xy 0 0

3 V
(» I+ r v Av )a =Q.

v = I A V u

3
A = -q». , K=Ul, £ 2 , ) = Vtp, E= T. E.V,T' v=l

A = Q(x,t,j()

<Pa. + Q(X( t , V(p) = 0.
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(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

From (23)-(31) we see that (10) does not have characteristics with

constant multiplicity. In fact, in order that the multiplicity assump

tions in Eckhoff (Ref.l, Sec.s) will be satisfied for all the charac

teristic roots (23) - (29), it is necessary to assume that

(32)

When (32) is satisfied, we see that £? 1 is a double root while all the

other roots Q ,are simple roots in the characteristic equation

(19). The characteristic root Q corresponds to the mass waves (inter

nal gravity waves), Q 2 and Q 3 correspond to the Alfvén waves, and

correspond to the fast magnetoacoustic waves, and Q g and

correspond to the slow magnetoacoustic waves.

Now let Q be one of the seven characteristic roots (23)-(29) and

let <p(s,t) be a real-valued solution of (22) which is such that

* 0. Suppose that Q(x»t,ytp) for this solution m is an eigenvalue

Q = k-v + o Sj k*B n ,2 - ”0 0 0

_ /
q =k-v - d Pj k*B,3 o 0 0

Q. = k-v + k(P+Q)~,4 u

Q 5 = k-yo - k(p+Q)%

oc = ic-sl + k(p-or6 U

o, = k-Vj - k(P-Q

P  -V’ Bo 2 + co 2 >'

Q= (P 2 - eo -’(k-B0 ) 2 c0 2 k- 2 ) S .

k x B q * 0 & k- B q * 0.
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of fixed multiplicity p, say, in the considered domain. Equation (18)

then shows that

(33)

where are orthonormal eigenvectors associated with the

eigenvalue Q and o lf ... f o are scalar functions to be determined.

In order to do that, we write the remainder in the following way

(34)

In view of (18), (17) then becomes

(35)

which is satisfied if

(36)

(37)

Equation (36) may be considered as a system of algebraic equations for

ål  When ip has the assumed properties, (36) therefore has a solution

if and only if

(38)

Substituting (33) into (38) yields

(39)

which is a symmetric hyperbolic system for o = (a ). Proper
i p

ties of this system (39) are studied in Eckhoff 1 . In particular it is

shown that when o is determined by (39), such that a Q exp(iwip) is

a0 \l V.'

1
E= T~ [ å (x, t)exp{iwtp(x, t)} + u(x,t;u)].1U) 1

3 v 1 1
{Lån + ((p l + T (p A )a + La }exp(iu»<p) + Lu = Q,

u z v=l xv 1 iui 1 iu>

3 v
Lån + (v.I + E (p A )a =O,u v— 1 A v '

Lu + (La i )exp{ ioup) = 0.

£*Lao =0 (t=1,... ,p)

(o ). + c (i • A v r )(o ) + (£ •Lr ) o =O,
i t v= “j m=l L ro Xy m = 1 t ni m

(1 =l, ...,p) ,
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smooth, then (15) holds. As a consequence of this Eckhoff 1 also shows

that in order for the trivial solution w = 0 of (10) to be stable it

is necessary for the trivial solution g = 0 of (39) to be stable.

By studying the svste ransport e (39) corresponding

to the possible phase functions tp we may therefore be able to obtain

asymptotic wave Solutions and get information about the stability

properties of the basic flow (3). This is the purpose of the present

paper, and we start in the next section by calculating the eigenvec

tors corresponding to the different characteristic roots.
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IV. THE EIGENVECTORS

In order to be able to calculate the amplitude (33) in the asymp

totic solution and the associated transport equations (39), we have to

calculate the eigenvectors corresponding to the different charac

teristic roots (23 )-(29), In this calculation we have to distinguish

between the nonsingular case where (32) is satisfied and the singular

When (32) is satisfied, we may choose the eigenvectors associated

with the double root fi i to be

(40)

The eigenvectors associated with the roots and may be chosen to

be, respectively,

(41)

(42)

The eigenvectors associated with the roots Q , k - 4,5,6,7 may be

chosen to be, respectively,

(43)

where

(44)

(45)

cases where either k x B =0 or k*B = 0“0 “0

r,, = (0,0,1,01, r ) 2 = k‘ 1 (0,k,0,0).

l 2 = 2 |k>fBq f 1 (kxBQ , -kxB0 , 0, o},

r 3 = 2' ; |k*B0 f ' <k>-B 0 , k^B0 , 0, OK

r = e {a , d , 0, e },K K ~K K K

e = - k" 1 V c {(V 2 - P) (V 2- o ' I B 2 )T s,
K 2 k 0 K K o 0 '

a = k -V ~ 2 q ’ l (k»E )i ,K K 0 ~ 0 0
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(46)

(47)

Here we have introduced the notation

(48)

where p = 0 when k = 4,5 and p - 1 when k - 6,7

In the singular case where we see that

(49)

hence all the above eigenvectors except r g , r y are well defined when

B tO. Furthermore we see that Q and Q are simple roots, while“0

(50)

in this case. Thus the fast magnetoacoustic waves are the only waves

that can be studied by the theory in Eckhoff (Ref.l, Secs.s-7) in the

singular case k-B 0 =O. A modification of the theory is needed in

order to study the other waves which in view of (50) may all be

coupled in this case. In this raodified study we shall replace the

eigenvectors r, r by the followingb (

(51)

(52)

d = V ‘ 1 - k' 1 (k-BJk),“K K 0 0 0

e = c V " 1 (k - V~ 2 d ' 1 k' 1 (k-E„) 2 )-KOK K 0 0

V = M) k {P + M) m Q)~ ; K = 4,5,6,7,K

Q = P,

8 , =° 2 =°3 = =°T =

£6j_ = 2- i B0 -'(B0 , -C O (2P)- 4 80,B0 , 0, (2P8,)"4 - Bd 2 ),

r7i = 2'V‘V co (2priEo' °- - (2Pe o rißo 2 ’
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(53)

From (23)--(30) we therefore see that in this case we have to distin

guish between the following three cases:

and the corresponding eigenvectors r,r, r , r are not well2 3 4 f)

defined. In this case the waves corresponding to the roots Q,Q , Q1 G 7

may be studied by the theory in Eckhoff (Ref.l, Secs.s-7), while a

modification is needed for the waves corresponding to the roots (55).

In this modified study we may replace the eigenvectors r.r. r , r~~2 ~3 i ~5

by the following:

(56)

(57)

(58)

(59)

where a,d are arbitrary vectors satisfymg

(60)

In the singular case where kxBQ = Q we obtain

Q = - | g ' 1 B 2 - c 2 | .
2 0 0 0

r? |( - {a, -a, 0, o},

£3|| = fa, a, 0, o},

II = <d, -d, 0, 0),

= <d, d, 0, o},

a* d = a- B n = d- B =O,_ _ —o - ~o

2 ,2 1a = d =
2
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In case b) we have

(61)

and the corresponding eigenvectors r,r, r , r are not well de-2 3 6 7

fined. In this case the waves corresponding to the roots

may be studied by the theory in Eckhoff (Ref.l, Secs.s-7) when

* Qi while a modification is needed for the waves corresponding to

the roots (61). In this modified study we may replace the eigenvec

tors l, r by (56), (57) and the eigenvectors r, r byc J —s 7

(62)

(63)

where a,d are still arbitrary vectors satisfying (60).

In case c) we have

(64)

and the corresponding eigenvectors r , r , r , r , r , r are not well2 3 4 5 6 7

defined. In this case only the waves corresponding to the charac

teristic root Q can be studied by the theory in Eckhoff (Ref.l,

f. err.. 5 7), while a modification is needed for all the other waves. In

this modified study we may replace the eigenvectors r , , r , by

(56), (57), (58), (59) and the eigenvectors r , r by6 7

(66)

Q =Qr & Q =Q ,2 6 3 7

b

lg,! = -d, 0, o},

b

Lj n = <d, d, 0, o},

=°6 & °3 = °5 =

r6ll = VX' 2 ' °' Bo>' (65)

r7li =ri V' <E«' 2'
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V, THE MASS WAVES

In tlus section we shall use the procedure developed by Eckhoff 1

to study the linear waves superiraposed on the basic flow (3) that are

associated with the characteristic root . The multiplicity

assumptions in Eckhoff (Ref.l, Sec.s) are satisfied if and oniy if

i-Eo * °' we shall therefore Hmit our discussion to that case here.

The singular case k-Bo = 0 will be studied in Sec.lX,

riie bi characteristic equations associated with the characteristic
root « arei

dx dk
(67)

The transport equations are found to be along the rays

(68)

(69)

Along the rays governed by (67) we have in view of (1) the relation

(70)

The equations (68) and (69) may therefore be wrrtten in the following
way:

(71)

(72)

These equations are directly integrable giving

(73)

dt

do -y
it = " i (v 'VV

da
~*:z 2 {k k’ (Vy )• k  v* v }o .at o ~o ?

-1 dgl
V• V - d 1 —JL

0 0 dt

-i do i y . j do
o —l =- p 1 _~n

1 dt 2 dt

-1 do ? -i 1 _ 2 d ,
-S k

y

°1 =c i e o 2 '°2 = C2 k"' V
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where c , are arbitrary constants along the rays.

The stability equations are found to be

(74)

(75)

These equations are directly integrable in a completely analogous way

to the transport equations above, giving

(76)

where c, c 2 are again arbitrary constants along the rays.

From the expressions obtained above we first notice that to

leading order we do not get any local freqency for the MHD-mass waves

resembling the Brunt-Våisålå frequency in fluid mechanics 3 '*. Second,

we see that the amplitude only depends on and k along the rays

which from (67) are seen to coincide with the path lines for the

plasma particles in the basic flow (3). On physical grounds q q must at

least for a steady basic flow be a bounded function. Hence the only

necessary condition for stability that we obtain from the theory in

Eckhoff 1 for the mass waves is that k must not tend to zero along

the rays. This condition is trivially seen to be satisfied in the

static case v =0 and also in the more general case, where v is~Q 3 ' “0

independent of x, since k then is seen from (67) to be conserved

along the rays. In the case of a sheared basic flow of the plasma, k

is no longer conserved and we have to look more carefully at the bi

characteristic equations (67) in order to settle the stability problem

for the mass waves. We shall confine our study to two special cases,

namely slabs and screw pinches.

d 1-7
s = (V-v )S ,

dt 1 2 “0 1

d_2 1
s = {k k* (vv )• k - - 7*vJS, .

dt 2 o - 2 2

ri

S 1 =ciCo 2 's2= c 2 k_l V'
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Siabs are possible basic flows for a plasma if the potential for

the external forces takes the form

(77)

in a Cartesian space-coordinate system (x,y,z). With (77) a slab is a

basic flow for a plasma of the following type:

(78)

Here v i , , e Q , B 1 ,B2 may be arbitrarily given and pQ is then

determined to within an arbitrary additive constant by

(79)

where a prime denot.es differentiation with respect to z. With (78) the

Solutions of the bicharacteristic equations (67) are readily found to

be

where the subscript 0 refers to the initial values of the bicharacte

ristics at t =O, From (80) we see that k is conserved along the

bicharacteristics satis fying

(81)

while on all other bicharacteristics

(82)

V = V (z)

~g = <v ( (z), v2 (z), 0), eo = Pu < z),

P„ = P0 (Z), B 0 = <B 1 (z), B? (z), OK

(P0 + 2 )' =C0 V

* = *0 + W*' y = y 0 + W*' * = V (80)

t' -V0 «* = tj, =EJ - Ujv/V 4 E OV(V»t,

V , ' ( V + E 0 = °-

k ~ & k > US.J) 2 -f (^) 2
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Thus for a slab S ,S are clearly seen from (76) to be bounded along

each ray.

Screw pinches are possible basic flows for a plasma if the

potential for the external forces takes the form

(83)

in a cylindricial space-coordinate system (r,ø,z). With (83) a screw

pinch is a basic flow for a plasma of the following type

(84)

Here v , v , o ,B Q ,B may be arbitranly given and p is then deterrainedOZO ø z

to within an arbitrary additive constant by

(85)

where a prime denotes differentiation with respect to r. With (84)

the Solutions of the bicharactenstic equations (67) are readily found

to be 3

(86)

where again the subscnpt 0 refers to the initial values of the bicha

racteristics at t =O. From (86) we see that k is conserved along

the bicharacteristics satisfying

V = V(r)

v 0 = V 0 (r)0 + vz (r)£, e 0 = o 0 (r),

P 0 = p o (r) ' So ° V r) S + B z (r)^'

1 1 Q
(p + - B2n ) ' +- B 2 = J V 2 + q V ,v*o 2° r 8r ø o

r = r O . 0= 0„ +V’ V 0 (r0 )t - 2= Z G + VZ (rO ,t '

t’ - EJ + * ro' 1 W “ V (ro )] - E3V (ro ,,t '

-> t 1 A - 1 2 A 3 A
= Eg, E 3 - Ej, k = EI + r E£ + Ei,



23

(87)

while on all other bicharacteristics

Thus are also seen to be bounded along each ray for a screw

pinch.

In view of the above discussion it seems natural to conjecture

that to leading order the mass waves never give rise to any

instabilities in MHD, at least not in the case of stationary basic

flows (3). For the slab and the screw pinch we see that the density

perturbation part of the mass wave, i.e., is carried unaltered

along each streamline, while the perturbation of the raagnetic field,

°2 -i 2 ' dies out alon 9 most bicharacteristics. Only along the spe

cral bicharacteristics satisfying (81) and (87), respectively, i.e.,

for special choices of the phase function, is the perturbation of the

magnetic field conserved along each streamline for the mass waves to

leading order in the nonsingular case where k*B * 0_ ._0

V' - V ( V ] - EoV<V =°-

k - » & k > ((r0 ' 1 ?2)?+ (88)
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VI. THE ALFVEN WAVES

In this section we shall use the same procedure as in the

preceding section to study the linear waves superimposed on the basic

flow (3) which are associated with the two characteristic roots

and fi , respectively. The multiplicity assumptions in Eckhoff (Ref.l,

Sec.s) are satisfied if and only if (32) is satisfied. We shall there

fore limit our discussion to that case here. The singular cases where

(32) is not satisfied will be studied in Secs.VIII and IX.

The bicharacteristic equations associated with the characteristic

root Q are2

(89)

(90)

By a direct calculation of r 2• Lr 2 , the transport equation is found to

be along the rays

(91)

Using (2) and vector identities including the following one, which is

valid whenever }c w B Q #O,

(92)

it is possible to show that (91) reduces to

dx _ j.
—=v + e B
dt 0 "f

ft = -(Vvo ).k - \ e O ' ?U-E0 )^0

do 1 £ i -1
—-{- g |k -^Bn | [(k )*B] • v * ( \K* B | kxß )

20uu u u u

+ e„'s |k^Bo r 2 (lt .rE0 )-(7B0 )-(kxE0 )

1 .* 3
+ -d "B • Vq - - V . V }o.

4 0 ~0 0 4 o

v - B o 5 B 0 + B„ Mk* E 0)

+ B 0 B 0 ) • < (fe X B 0 ) « E„>,
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dOI _ j 3
(93)

The stabil.i ty equation takes the form

(94)

In a completely analogous way we find that the bicharacteristic

equations associated with the characteristic root Q are3

(95)

(96)

and that the transport equation and the stabil ity equation take the

followinq forms, respectively, along the rays;

(97)

d 1
s - - - y•v s.

dt 4 ~°
s (98)

From the above expressions we note that it is not necessary to

take into account the equations for k, t.e., (90) and (96), respec

tively, in order to solve the transport equations and the stability

equations. For the slab and the screw pinch we immediately see that

both a and S are conserved along the rays, and S is in fact con

served whenever the basic flow is incompressible. Hence there seerns

to be no reason to believe that the Alfvén waves ever can give rise to

any instabilities in MHD to leading order in the nonsingular case

where (32) is satisfied, at least not in the case of stationary basic

flows (3) .

= {- Q ' B •Vo - - V• v }o.
dt 0

d 1
S = - - v.v S.

dt 4

dx _ J
= v - o B ,

dt 0 u

dk / 1 2

dt = -«%) * +P O * (*V' k ‘ 2 e » " ( -' E o )7e o'

do 1,3. 3
- -{- e„ ' B •Vo + - v• v }o,dt 4 0 "0 0 4
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VII. THE MAGNETOACOUSTIC WAVES

In this section we shall use the same procedure as in the

preceding sections to indicate how the linear waves superimposed on

the basic flow (3) and associated with the characteristic roots Q ,K

k = 4,5,6,7, may be studied. The multiplicity assumptions in Eckhoff

(Ref.l, Sec.s) are satisfied for all these waves if (32) holds. If

k * B fl =O, the multiplicity assumptions will only be satisfied for the

fast waves, i.e., for the waves associated with Q and Q . If4 5

k x =O, the multiplicity assumptions will be violated for all the

magnetoacoustic waves in the case (54c), while they will hold for the

fast waves only in case (54b) and for the slow waves only in case

(54a). Here we shall limit our discussion to the cases where the

multiplicity assumptions hold; the other cases will be studied in

Secs.VIII and IX.

Consistent with the notations introduced in Secs.lll and IV, we

may write (for k = 4,5,6,7)

where p= 0 when k 4,5 and p= 1 when k = 6,7. The bicharac

teristic eguations associated with the characteristic roots 0 ,

K = 4,5,6,7 are then easily found to be

(100)

(101)

Q = Jfv +kV , V = (-1) K {P + M) M (99)K 0 K K

dx .1 u 1 -1 ~ i ,
 — - v 4 k v k - (-1) M - k Q [) C k-L d
j t ~(i k “ 2 00 Ok

dk u 1 _i
- - (7v )-k - M) m -kQ V VP

dt 0 " 2

m )M k-V’v;V 2 (k-B0 ) 2 (cg »b 0 - »p 0)

+ (-1)" - 1q" 1 VR ‘ 1 q 0 c0 2 (k-fi0 ) (^E0 )• i
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After some manipulations the transport equation along the bicharacte

ristics determined by (100) and (101) is found to be

(102)

e Q n A (d * B )7 •(e a ) - e ca • V(e e )K 0 kOkk k 0 k kk

Vo’* - E 2K eo ' £ a.(Vi0 ).d K

+ p 2 d *(Vv )»d - e 2 a * (7v )• aK K ~0 ~K K“K “0 K

(103)

and F is the focusing coefficient which is given byK

(104)

Since the characteristic roots Q , k = 4,5,6,7 are nonlinear with

respect to k, the focusing coefficient (104) will in general be a com

plicated nonvanishing expression involving the unknown guantities

*x x • These guantities may also be determined by transport eguations
j v

along the rays, but in order to dose the system of eguations (100),

(101), and (102), we then have to introduce six additional complicated

eguations in general. We shall not pursue that approach here.

As discussed in Eckhoff 1 , the difficulty connected with closing

the system of transport eguations does not exist if we look at the

stability eguation instead. That eguation takes the form

do
= <D + F }o,

dt K K

where D =ee-' ** B • {7(e a)} • d -e e c V*(e a )K K n 0 K~K ~K K K 0 K~K

1 y
p 2 (_ a 2 + (j 2 4. e 2 )V« V
k2K K 2 K

1 2 1
+ r ? g n A(d • B )k'7g + ~ e 2 p 1 c e a •Vo

2 K 0 K 0 2 * 0 0 K~K

f 2 -1 -1- o c e a • Vp ,
2 k o n k~k o

1 3 3 a 2 Q
F - - - E E tp r——K Of 4 XX > r l trV2 3=l v=l 3 v d£ J 6E
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where still is given by (103) and the compression coefficient is

given by

To avoid confusion we note that with the notations used above, the

variable k is not affected by the V

(103).

Since the stability equation

system (100) and (101) do constitute

they can in principle be solved.

operator either in (106), or in

(105) and the bicharacteristic

a closed system of equations,

In general the rays will hit the

boundaries of the plasma; thus an investigation of how the wave is

reflected/transmitted there is required in order to carry the study

further. Whether such a study can reveal anything of mterest for the

stability problem, is an open questjon which we shall not take up

here. We should like to remark, however, that it seems possible to

carry out such a study for special cases by numerical methods, while

analytic results presumably are hard to obtain even in special cases

such as slabs or screw pinches where the complicated expressions

occurring in (100), (101), and (105) can be shown to reduce

substantially.

d
S = ID + K } S, (105)

dt K K

13 8 2 Q
_ £ K_

K 2 p=l dx 3E PP

11 1
-V * v + - k" 1 k.vv -(-1) M ~ k' 2 v* {Q~ 1 g ~" c 2 ( k •B )d ) (106)
2 ~o 2 _ k 0 G Ok
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As already seen in Sec.lV, the characteristic root Q 2 coincides

with and/or Q g and the characteristic root Q coincides with Q5

and/or if ic*BQ -0. In this case, therefore, the multiplicity as

sumptions in Eckhoff (Ref.l, Sec.s) are neither satisfied for the

Alfvén waves nor for at least one set of the magnetoacoustic waves.

Those waves cannot therefore be studied by the approach in Eckhoff 1 in

a straightforward fashion in that singular case.

In order to get hold of the nature of the singular case kX =O,

we calculate along the rays associated with the Alfvén waves

- V )x' k V p o '- (107)

where the upper signs hold for the characteristic root Q and the2

lower signs hold for a . In the case of a homogeneous basic State (3),

the right-hand side in (107) obviously vanishes. The quantity kXBQ

is therefore conserved along the rays in that case, the Alfvén waves

and the magnetoacoustic waves may therefore internet through the sy

stem of transport equations (39) in the singular case where kxß = 0- o

Each of the cases (54) has to be considered separately; the relevant

eigenvectors are given in Sec.lV. Since the case of a homogeneous

basic State is better treated by other methods, we shall not pursue

that approach here.

When the basic State (3) is inhomogeneous , kXB = 0 is usuallvo 1

VIII. THE SINGULAR CASE WHERE kxß = 0
_ —Q

d dk 6B dx
(kx'£n ) = —XB 4k* 4- k*( vb )

dt o dt o at “ dt ”0

= B o x (Vvo )-k ± 0(1 “- E 0 * (VB0 )-k

1 . 9B

>- e„ ' (k-Bo )Eo x vC(t + kx-^L



30

not a persistent property along the rays. This can easily be seen,

for example, in the slab geometry (78) where we for simplicity con

sider the special case

(108)

Here is the unit vector along the x-axis. Assuming that at a cer-

tain instant, k/B =O, we have k= ke and ( 107), (108) implies0 X

that at this instant

(109)

where e y is the unit. vector along the y-axis. Since q q and B Q are ar

bitrarily given functions, (109) shows that kx = 0 usually holds

only at isolated points along the rays, if at any point at all. We

therefore norraally do not expect the singular points where kxBQ = 0

to be of vital importance either for the problem of linear wave propa

gation or for the problem of stability. Hence we shall not study that

singular case further here.

v 0 =Q, p o =e0 (z), P 0 =po (z), Bo =Bo (z)£x ,

“ (kxi0 ) = fA- b„"' B0 2 e 0 1 -e0 B 0B o 'lkfiy .
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As already seen in Sec. IV, all the characteristic roots except

Q and Q coincide if k*B =o. In this case, therefore, the mul-4 5 “0

tiplicity assumption in Eckhoff (Ref. 1, Sec.s) are only satisfied for

the fast magnetoacoustic waves. Those waves may be studied by the

approach indicated in Sec.VII, while a modification is needed in order

to study all the other waves in this singular case.

In order to get hold of the nature of the singular case = 0,

we calculate

along the rays associated with the various waves. For the mass waves

we obtain from (1), (67), and (110)

(111)

Similarly, we get for the Alfvén waves

(112)

where + holds for the characteristic root Q and holds for Q . The?. 3

bicharacteristic equation (101) is seen to be singular for the slow

magnetoacoustic waves, i.e., for k = 6,7, in the singular case 0

and so is (110). It is therefore not equally revealing to look at

(110) for the slow magnetoacoustic waves as it is for the mass waves

and for the Alfvén waves; hence we shall omit it here.

If we look at slabs (78) and screw pinches (84), we see from

(111) and (112) that the quantity k * SQ is always conserved along

the rays. For more general basic states (3), the quantity }c • is

not necessarily conserved, but it easily follows from the uniqueness

IX. THE SINGULAR CASE WHERE k» B = 0
- “0

d dk 3B dx
(k * B ) = —• B + k » ——+ • (VB )• k (110)

dt 0 dt ' 0 at dt 0

åd-t (k’V = -<**V v, V

<** V = <k ' V(± l co"V 7p o - 7> V'
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theorem for the initial value problem for ordinary differential

equations that k*B Q must vanish everywhere along a ray if it vanishes

at a point on that ray. Hence for any basic State (3), the singular

case = 0 is either totally avoided or a persistent property

along the rays.

With this background we may conclude that the singular case

= 0 seems to be the "worst" possible case in a stability research,

since in this case all waves except the fast magnetoacoustic waves may

persistently interact along the rays, thus increasing substantially

the possibility that an instability may occur. In order to treat this

case we have to proceed from the transport equations (39) since the

multiplicity assumptions in Eckhoff (Ref.l, Sec.s) are not satisfied.

Recapitulating, the characteristic root

has multiplicity 6 in the singular case k*B Q -0, and when i 0 * Q

the associated eigenvectors may be chosen to be

r = r = (0,0,1,0), R = r = k" 1 (0,k,0,0),
1 11 1 1

r = r = 2*L k" 1 B’ 1 (kxß , -k*B ,0, 0),
~3 ~2 0 U u

r = r = 2"' k’ 1 B' 1 (kXB , kXB ,0, 0)-4-3 0 u u

= r6j_ = 2' f B o '' (B 0 , -c o (2P)‘ e 80,B 0 , 0, (2Pp o )‘ s b/),

E, = - 2'* 80-’(|B0 -’(|l0 , c O (2P)^Bd , 0, - (2Pe 0 )‘ *• B„ 2 1 .

(114)

With these notations, the amplitude in the leading term of a

generalized progressing wave solution of the equations (6), (7), (8),

and (9) takes the following form:

(115)

Q = k • vQ (113)

6
a = E o R ,
-o l= i i i
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where the scalar functions ~..,ag have to be determined by the

symmetric hyperbolic system (39) with p = 6 and where we substitute

(116)

Furthermore, k - Viji is determined such that k • Bfl = 0 by the

characteristic equation

(J). + V * Vin = 0.t ~0 (117)

By a direct calculation of the quantities R A V we find that

the system (39) takes the form

6
(a ), tV• Vo + f(R 'LR )a -0,

1 t o i m -i ~1 ~m m (118)

(119)

(120)

(121)

(122)

(123)

Thus we see that the transport equations in this case constitute a

weakly coupled hyperbolic system. Even though the number of unknowns

in (118)-(123) is only reduced by two compared to the original hyper

bolic system (6)-(9), the fact that (118)-(123) is weakly coupled

makes it substantially more tractable both by analytic and numerical

methods. Since the number of dependent variables is only reduced by

2, it may be expected that essential information about the stability

properties of the basic flow (3) is carned over to (118)-(123).

=s i (I = 1 6)

6
(o, ). +Y. Va + r (R,•LR )o = 0,i t (i i ~i ~m m '

(C,A 4% ' 'V f", IJ, =« 

. . . ,i. 6
<°J t 4 (-V - P. ' B )* Va 1 T {R •LR )n - 0,

4 1 fl o n 4 m-1 4 ~m m

6
(o ) t -f iv + ( 2Pq )' " c B }• 7o + E (R-I.R )a =O,J 1 11 0 00 5 J,-1 5 n' | '

(o ) ) (V  (2Pe )'- cj Mn + r (R-LR ) o -0.
T 0 0 o n r m -| 6 “m m
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In the case where = 0, we note that the spatial differen

tiations in (118)—(123) are all along the same direction, namely along

the magnetic fieldlines. This means that the number of independent

variables involved in integrating (118)-(123) essentially reduces to

only 2, namely the arclength along the magnetic fieldlines and the

time t. The other two independent space variables will only appear as

parameters during the integration of (118)-(123) when vx* B = 0xo -o " M

The integration of (118)-(123) is more complicated in the gene

ral case where yQ x jB Q t 0, since the spatial differentiations are

then no longer in the same direction. In the case where the basic

State (3) has magnetic surfaces such that is everywhere tangent to

these surfaces, however, the integration of (118)-(123) may be carried

out on each of these magnetic surfaces separately. The space variable

which is perpendicular to these surfaces will only appear as a para

meter during the integration; hence the number of independent vari

ables is in this case essentially reduced to 3.

For a stationary basic State (3) the streamlines never hit the

boundary if they start within the plasma. In the cases most frequently

studied in the literature, the magnetic fieldlines do not hit the

boundary if they start within the plasma either. For these cases the

boundary conditions do not cause any trouble, since we can let the

initial values associated with (118)-(123) vanish in the neighborhood

of the boundaries. By the properties of (118)-(123) discussed above,

we then see that the Solutions of (118)-(123) will vanish in the

neighborhood of the boundaries also. Hence the boundary conditions

will obviously be satisfied in these cases. If, on the other hand,

the magnetic fieldlines do hit the boundaries, we may have to

investigate how the waves are reflected/transmitted there in order to
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carry the study further. We shall not, however, consider such cases in

this paper.

In order to study the system (118)-(123) and thus the coupling

of the waves further, the quantities have to be calculated.

These quantities are given in the appendix for the general non

stat.ion a.ry case, and are seen to consist of relatively complicated

expressions involving of course the basic flow (3). We note that with

tlie expressions in the appendix, (118)-(123) as well as (117) are all

given in a coordmate-free representation; the Cartesian coordinates

were only used during parts of the derivation of these equations. Fur

thermoie we note that the expressions given in the appendix show that

for any basic flow (3), Eq. (119) takes the form

(119* )

Thus Eq. (119) can be soJved independently of the rest of the system

(118)-(123). In particular we see that

(124)

is always a solution. In the following sections we shall show that

unless we take the solution (124), we normally get linearly growing

perturbations resembling what Grad has called anholonomic instabi

-lities (see also Ref.l2).

In the special cases of primary interest, namely slabs, screw

pinches, general static plasma configurations, and also some other sta

tionary plasma configurations with flow, the expressions for R *LR~i ~m

given in the appendix are seen to simplify considerably. We shall

in the following sections look more closely at some such specia! cases

where the siraplifications are substantial.

<V t + V Va ? + -0.

°2 °
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X. THE SLAB GEOMETRY

In this section we shall look more closely at the system of tran

sport equatlons (118)-(123) when the basic flow is given by (78) and

(79). The phase function ip(x,y,z,t) is in this case determined by the

following two equations:

(125)

(126)

The general solution of (125) and (126) is found by the method of cha

racteristics to be

(127)

where 4>[g,h] is an arbitrary function of the two variables g,h. From

(127) we obtam

(128)

Thus in the general slab case k and hence the coefficients R^• may

depend on all the variables x, y, z, t.

In order to make the system (118)-(123) more tractable by analy

tic methods, we shall in this paper restrict our attention to some

special cases. In the first case we shall not put any restnctions on

the basic flow (78) and (79), but we shall consider the following spe

cial choice of the function 4* in (127) and (128):

B 1 (z)ipx + B 2 (z)(p = 0,

ip x +v(z)ip +v„(z)ip =O.
t. i x 2 y

ip = U*[B (z)x - B (z)y + {B i (z)v2 (z) -B2 (z)v 1 (z) z],

84» 9i|)
* = =B2 £x' B , £y + <tV*- V*

64* 9*l*
+ (B v - B. v ) ' t]— + }e

12 21 9 g 9 h z
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ip - 6z, k - 6e ,”Z (129)

where 6 is an arbitrary constant at our disposal. With (129) the ex

pressions given in the appendix reduce for the slab to the following:

R • LR
1-5 ~~2

r * lr~6 "2

while all the other expressions LR vanish. Clearly, the expres-

sions R• LR depend only on the variable z in this special case,i ’-m

and we rnay therefore look for Solutions of (118)-(123) of the follow

ing type:

(134)

Substitution of (134) into (118)-(123) then shows that (134) is a

solution if q = q(z) and k ~ , k , 0) - k(z) satisfy the following

dispersion relation for each z:

and g is of the form

(136)

where e is the appropnate eigenvector corresponding to the chosen

solution qof (135) and x(x) is an arbitrary function. The relation

(135) clearly shows that neither does any interaction between the mass

R3 -LR 2 - - ,0 -'B2 ') - B2 (v( ' - eo^Bt •)), (130)

V - 2 '' V' (B i ( V 4 P U '' B/) n2 < v,  4 eo ' i B1 1 )l, (131)

2 ' “ + B2 V ) »' < l32 >

r ']7| Vj V + V 2prV 1(B,V + B2 V»* < l33 >

g=• g f) (z)exp 1(k x + K ? y - qt) .

(q - H-v/lq - k.(V0 + - -QQ B Q ) (

xlq -£• [y.0 + (2Pe o )' i co EI| ]Mq - K-[y0 - (2Pe o c O En ]) -0, (135)

CLf) = x(z ) e (7.) ,
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waves, the Alfvén waves, and the magnetoacoustic waves occur, nor does

any instability show up in the modes (134) in this special case.

In this special case, however, we may also consider another type

of Solutions than (134). In fact, we see that when <p is given by

(129),

(137)

is a solution of (118)-(123) if and only if g satisfies the following

system of ordinary differential equations for each z:

dg

dt
(138)Eg,

where E - {-R •LR ). The 6*6-matrix E is seen to be constant for~ i ~m

each z and A = 0 is the only eigenvalue of E. Thus it follows

from the standard theory of stability for ordinary differential equ

ations (138) 13 that g - 0 cannot be stable unless all the coeffici

ents in E vanish. We have therefore shown that the trivial solution

of (118)-(123) will be unstable unless the four expressions (130)-

(133) all vanish. If one or more of the expressions (130M133) do not

vanish, it is easily seen that there will be Solutions (137) growing

linearlv with respect to t. These algebraic instabilities are then due

to the weak coupling between the raass waves on the one hand, and the

Alfvén waves and the magnetoacoustic waves on the other in the system

of transport equations (118)-(123). Clearly these instabilities

resemble the so-called anholonomic instabilities (see Ref.ll and 12).

In order that the slab shall be stable with respect to algebra

ically growing perturbations, it is therefore seen from (130)-(133)

that (78) has to satisfy the following equations:

O = o(z,t)
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(139)

(140)

(141)

(142)

Since we assume that Bq * 0, it clearly follows from (139)-(142) that

(143)

Thus an inhomogeneous magnetic field Bq and/or a flow with shear

always imply that the slab (78) Is unstable. From (130)-(133) and

(138) we see that this instabi.lity is triggered when t 0. By

(115) this is equivalent to giving the perturbation of the magnetic

field a nonvanishing z-component. While (138) shows that this z-com

ponent of the magnetic field and also the quantity ri in (4) will be

conserved for the Solutions (137), usually both the other components

of the magnetic field and also the quantity l and the x- and y-com

ponents of the velocity field will grow linearly with respect to t

when (143) is not satisfied.

In the second special case we are going to consider, we shall

restrict our study to slabs (78) such that

In this special case (127) is seen to be equivalent to

(144)

Vv,' - ‘> -VV - "«'V* =o.

VV + - VV + ’ = °-

co (2Pr i (B 1 v1  + B 2v2 ') - ' + B 2B 2 ') =O,

c q (2P) i (B i v i ' + B 2 + e o ’^(B 1 B i * + B 2B 2 ') =O.

V=V=V = V = °-

v 2 { z) =B2 (z) =O.
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(145)

where x (V.z) is an arbitrary function of the two variables y, z. For

our purpose there is no essential loss of generality if we restrict

our choice of phase function (145) to the following:

(146)

where a, 6 are arbitrary constants at our disposal. With (146) we

get

(147)

With (144) and (147) the expressions given in the appendix reduce to

the following for the slab:

(148)

c [) (2P)’ s v i
(149)

(150)

(152)

(153)

ip = x(y f z)»

ip = ay + 6z,

k = Vip - aøy + se^

E - LR, = R,-LR, = 2' : k' l aß 0 ‘ I B l co V ,

E,-1.52 = - 2-"k- , 6B0 - , B 1 (e 0 ' ? B 1

R. LE = - 2'-k'’6B ' I B I (P 0 *B,  + c O (2P)b c

E,-LR3 =E,-LE, = 2'*k‘ 1 aB0 - , B 1 c0 (e o ' , c0 ' 2 P0 ' - 1 ' (151)

= - ~ k-’a([l - c o (2P)" i ](vl  + e o 'S')

* * e o c o ' * 2Ppo >'* B 1 Po ' l '

R •LR = - - k'’a([l + C (2P)'S](v 1 + ')
“6 ~3 2 U

( So cn r ,(2 p eo r- B ,po 'i.
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(154)

(155)

(156)

while al] the other expressions

expressions R* depend only on the variable z. Since the spatial

differentiations in (118)-(123) are all along the x-axis, we may

therefore in this special case look for Solutions of (118)-(123) of

the following type:

(157)

Substitution of (157) into (118)-(123) then shows that (157) is a

solution if q - q(y,z) and k = K(y,z) satisfy a certain dispersion

relation for each z and gQ is of the form

where e is the appropriate eigenvector corresponding to the chosen

solution of the dispersion relation and 4>(y,z) is an arbitrary

function. For arbitrary k the dispersion relation corresponding to

(157) is relatively complicated. We shall therefore limit our dis

cussion here to the case where k =O. In that case the dispersion

relation becomes

(158)

= - - k 1a {[ 1 + c 0 (2P)(v] ' - ')

+ <o0 co r 1 < 2peo J' iß,P0  >.

E6 -I,Rt - - k 1 a([ 1 - co (2P)‘ i-](vi ' - e 0 ‘ iB 1 ')

(e0 C0 )' 1 ( 2PpO )'^ B 1 P 0 '1 '

R • LRr = R• LR = - R • LRr = - R, • LR_3 “5 5 “3 “6 “4 “6

-- k- , acn - , (2P eo )-iB1 V ,

a = a Q (y,z)exp I(kx - qt).

o Q = 4)(y, z)e(z),
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(159)

(160)

From (157), (159), and (160) we clearly get the following necessary

condition for stability of the special slabs (78), (79), and (144):

(161)

This is the interchange stability criterion found earlier by

Tserkovnikov in the special case where

(162)

When (161) is satisfied we see that there are modes oscillating with

the local frequency M given by (160). By (147) and (160) it is seen

that M has its maximum value when 6=o, and that M resembles the

Brunt-Våisålå frequency in fluid mechanics.

q* (q2 - M 2 ) = 0,

M 2 = V LW LE* - V L£* + V ls3

- E - I'E3 ) - 2 (R t - LR 3 )(R3 - LR, )

2

=-T V'{p "V ' - (2P) ~ 1 V'}.0 0

V{p '1 Q ' -- (2 P)' IV' } > 0.0

V' = g = constant.
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XI. THE SCREW FINCH

In this section we shal] look more closely at the system of

transport equations (118)-(123) when the basic flow is given by (84)

and (85). The phase function q>(r,ø,z,t) is in this case determined by

the following two equations:

(163)

(164)

The general solution of (163) and (164) is found by the method of

characteristics to be

(165)

where <|> [g r hj is an arbitrary function of the two variables g,h. From

(165) we get

(166)

Thus for the general screw pinch k and hence the coefficients R •LRl ~m

may depend on all the variables r,ø,z,t.

In order to make the system (118)-(123) more tractable by

analytic methods, we shall in this paper restrict our attention to

some special cases. In the first case we shall not put any restric

tions on the basic flow (84) and (85), but we shall consider the

following special choice of the function iji in (165) and (166):

•A
ar,m ar, k - (167)

~ Be (r)ip ø + Vr) *z = o.

1
+ ~ ve M *e + V r),p z ‘ °-

«P = 4*[r, rß z (r)ø - B 0 (r)z + {B 0 (r)vz (r) - B z (r)v (r) }t],

Al Al
X - ?<p = U(B +rß')o - B 'z +(B v Bv ) 1 t'|— + -Ar

7 2 ø ø 2 z ø ai-, a g -

3 i|j a a»|) -a
+B—o- B n z

z 3h 0 9h ~
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where a is an arbitrary constant at our disposal. This case is

analogous to the first special case considered for the slab geometry

where the phase function was given by (129). With (167) the expres

sions given in the appendix reduce for the screw pinch to the follow

ing:

(168)

(169)

(170)

(171)

while all the other expressions R • vanish. Clearly, the expres

sions R• LR depend only on the variable r in this special case, wei “in

may therefore look for Solutions of (118)-(123) of the following type:

(172)

V Lfi2 = 2' ißo' l(Bo (v z' -

W - 7vø - eo‘ i(V + 7 V ]l -

E4 -LE2 - B0 -’ <B z [ve ' -- v 0 + + - Bg) ]

- VV +  .'V»'

V LE2 = - + V + BzV'

+ 2 ' i ,^ l Bo' ,co (2P) ' £(B ø (vø' -7 V + Vz' 1 '

V LE2 =- 2 B o ' e o <B o <B ø' + B o> + Vz''

/ "I
2 _i - B ' l c (2P)'^{B (v 1--v ) + B v '},

|q,|o o øø r® zz

o=o (r)exp i(k ø+k z - qt)—o 1 2
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Substitution of (172) into (118)-(123) then shows that (172) is a

solution if is any given integer and if q = q(r) and - K ? (r)

satisfy the following dispersion relation for each r:

and o is of the form“0

(174)

where e is the appropriate eigenvector corresponding to the chosen

solution gof (173) and xx(t) is an arbitrary function. The dispersion

relation (173), which is analogous to (135), clearly shows that no

interaction between the mass waves, the Alfvén waves, and the magneto

acoustic waves occurs, nor does any instability show up in the modes

(172) in this spec.ial case.

Analogous to (137) we may in this special case also consider

Solutions of (118)-(123) of the following type:

(175)

In fact, when ip is given by (167), we see that (175) is a solution of

(118)-(123) if and only if for each r it satisfies the system of

ordinary differential equations (138) with the expressions for p •LRi ~m

found above substituted. As in the case of slab geometry, we may

therefore conclude that unless the expressions (168)-(171) all vanish

1 1 /

(q K iVø - K 2 V z ) ? (q - - K t (ve + B 0 ' e B 0 ) -- K 2 (vz + eO -'-Bz ))

* ,c> -~ K i (v e - c'o"XV “ k 2 (v z “

X)q - -K.| [vo + (2Pg 0 )-'"co B0 ] - k 2 [vz + (2Pp 0 )^co B z ]1

xq - - KjVa - (2P eo )->co B 0 ] - k 2 [vz - (2Peo )^co B z ]l =O, (173)

fl0 = x(r)e(r),

a = a(r,t).
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indentically, there will be perturbations of the basic screw pinch

(84) and (85) growing linearly with respect to t. In order that the

screw pinch shall be stable with respect to algebraically growing

perturbations, it is therefore seen from (168) - (171) that (84) has

to satisfy the following equations:

0. (176)

The basic flow (84) and (85) withwhere are constants.

(177) may be realizable for a tubular pinch, while a columnar screw

pinch is always subject to algebraic instabilities if we let o 2 t 0.

In the second special case we want to let the function 4»[ g, h]

chosen in (165) also depend on h. In order that the phase function ip

shall be independent of the variable t, we then see from (165) that we

have to restrict our study to screw pinches (84) such that

(178)

Equation (178) simply means that

the discussion in Sec.lX that in

dent variables involved in integrating (118)-{123) essentially reduceb

to only 2, namely the arclength along the magnetic fieldlines and the

time t. Since (178) implies that k is independent of t, the coeffici

ents in (118)-(123) are also seen to be independent of t in this spe

cial case. Since k normally will depend on the arclength along the

magnetic fieldlines, however, the coefficients will normally

not all be constants along the magnetic fieldlines. Hence the inte

gration of (118)-(123) is usually not trivial, but at least there

exist very efficient numerical codes for integrating this system of

V-; vø =V = B ø' +" B ø =Bz

Clearly, equations (176) can only be satisfied when

V 0 = V' V z = V B 0 = f - BZ=V <177)

B 0 ( 1 ) v z (r) " B z ( r)vø (r) = 0<

vx B =O, we therefore know from-o ~t) _

this case the number of indepen-
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equations along each magnetic fieldline15 .

The integration of (118)-(123) will he further consrderably sim

plified in the special cases where the coefficients R ( > LR are con

stants along each magnetic fieldline. It is easily verified that this

will be true for the screw pinch if and only if i-k, ø . Jj, and z-k

are constants along the fieldlines. Clearly along each magnetic

fieldline r and riyrja - B 0 (r)z are both constant; hence we see

from (165) and (166) that with the assumption (174) the coefficients

"i* LEra will be constants along the fieldlines if and only if

(B z (r) t rßz ' (r) 10 D o '(r)z is constant along each fieldline when 4,

is assu"ed t 0 de Pend o" h- This condition is easily seen to be eguiva
lent to

1
(B trß ')- B - B n 1 B6Zr 0 0 z (179)

whrch is the constant pitch case where the magnetic field is given by

(180)

Heie C,D are arbitrarily given constants and H(r) is an arbrtranly
given function.

In the special case where (84) satisfies (178) and (180), it is

easily seen that (165) ia equivalent to

- x(r, Dø - Cz) , (181)

where x(g,h) is an arbitrary function of the two variables g,h. For

our purposes there is no essential loss of generality if we restrict

°ur choice of phase function (181) to the following:

(182)

1 , rB
- v<—zr =O,r 0 B e

B 0 = CrH(r), B z - DH(r).

«P = ar + 6 (Dø - Cz)
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where a,6 are arbitrary constants at our disposal. With (182) we get

(183)

In this case it is seen from the expressions given in the appendix

that the coefficients in (118)-(123) depend only on the variable r.

Since the spatial differentiations in (118)-(123) are all along the

magnetic fieldlines, we may therefore in this special case look for

Solutions of (118)-(123) ot the fellowing type:

(184)

where s is the arclength along the magnetic fieldlines and i is the co

ordinate perpendicular to r,s. Substitution of (184) into (118)-(123)

then shows that (184) is a solution if g - g(r,x) and k - K(r,x)

satrsfy a certain dispersion relation for each r, and gQ is of the

form

(185)

where e is the appropriate eigenvector corresponding to the chosen

solution of the dispersion relation and 4i(r,i) is an arbitrary

funetion. Unless additional assumptions are introduced, the dispersion

relation corresponding to (184) is relatively complicated. To avoid

excessive algebra we shall therefore limit our discussion of that dis

persion relation in this paper to the static case where the external

forces are assumed to be negligible. However, we shall in the next

section flrst show that some general simplifications are then valid

for the system of transport equations (118)-(123).

a Da a
k = Vtp - ar + 6 ø - 5Cz.

r

g = g (r,t )exp i (ks - qt) ,

a o =4»(r , x ) e (r) ,
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XII. THE STATIC CASE WITH NO EXTERNAL FORCES

If we assume that the external forces are negligible, we may take

V= 0 in (1). m this section we shall, in addition, restrict our

attention to static basic states (3), i.e.,

(186)

With the assumption V= 0, this basic State (186) is seen to satisfy

the fundamental eguations (1) if and only if

(187)

From eguation (187) it follows that

(188)

(189)

(190)

In view of (188) and the above assumptions it follows from the expres

sions given in the appendix that

6 (191)

Eguations (191) imply that in the system of transport eguations (118)-

(123) the eguations (119)-(123) can be solved independently of (118)

f° r °2 »°3 »•••» °G • Eguation (118) can then afterward be solved for o i '

In order to avoid ajgebraic instabilities we take the trivial solution

(124) for 02,o 2 , We are therefore left with an mdependent system of four

transport eguations (120)-(123) for 03,c(,05,0(,.o 3 ,c ( ,os , 0(,. clearly this system

will describe the interaction between the Alfvén waves and the slow

magnetoacoustic waves in the singular case where = o when the

x 5 e- e 0 (x), P = pq (x), B = bq (x)

7po = (Vy V* Eo 8 - ?(- B0 2 )

iO -Vpo = 0,

(k* V*po = B 0S' k-(vxBo ),

7(po +^ Bo ?) = V (7V-

R ( . LR i = 0; i = 1, 2
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wavelengths are short. The coefficients in this system are found from

the expressions given in the appendix to be

(192)R * LR3 3

(193)

(196)

(197)

(198)
V LES

The expressions (194)~(196) can be written in different ways by

applying (189) and (190), and we see that for the static case with no

external forces the simplifications are substantial in the system of

transport equations (118) -(123).

In this paper we shal.l limit our further discussion to the static

screw pinch. When external forces are neglected, it follows from the

above expressions that for a static screw pinch we have

V LE* =- 7 B.‘*V vV

V LE3 = - V LE* = J »o'V VBO
+ k" ? e 0 B 0 (k x'B [) ) • (7Bo ) •(k x E 0),

1 _1
R • LR. = - R• LR = - - k q -k* (V x' B )
T ~3 6 4 2 0 0

+ -Veo co )- , (2pCo )^(kXB0 ) .(Vpo -%V [V( iB o 2) + V 7V' (194)co

V I*3 = - Ej' LE4 - - - k' 1 e o ‘“k'(vx-B(] )

Hke0 c0 )' 1 (2Pe o )‘ i (kXEn )-<»P|, - t7^ 2 ) 4 V 7V*' < 195)0

1V LBS =-V  - “  V LB6

= k- 1 8 0 - 2 c o (2P Co )-i(kxB0 )-v(Po + - E„ 2 ),

V LB, = - V L£6 = \ V 7(co (2£V' i| ’

R• LR = - q ’*c B ' 2 B 2} .
*5 6 2 0 0 0 '° 0
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The rest of the expressions (192)-(198) will usually be nonvanishing.

The system of transport equations (120)-(123) may therefore in this

case be written

(200)

(201)

(202)

(203)

where s is the arclength along the magnetic fieldlines and where we

have introduced the notation

(204, 205)

(206)

(207)

(208)

V L*s • (209)

Unless either i|> in (165) is independent of h or we have the constant

pitch case (180), we saw in the preceding section that the coeffici

ents M,E,F,G will depend on s. This author does not yet know of any

straightforward analytic method by which one can handle the stability

problem for (200)-(203) when the coefficients depend on s. Hence we

shall limit our further discussion in this paper to the constant pitch

case.

V LB3 = V LE4 = V LRj = 0,

v«,  v«*  V l*. =°- (199)

(o ) + A(o ) - Pto +Ga - Ga =O,JtJ5 4 5 6

( Vt ' A(oJ S + M°3 + G °s - Ga g =O,

(°5 ) t +vA + Eo 3 - =o,

(CT 6 ’t ' + F°3 ‘ E °4 =°'

A = e(,‘"V v = co (2pri ’

M = S4 * LR3 = - S3 -LR 4 ,

E = E,* LE3  - V LV

F = R • LR = - R ‘LR ,
~6 “3 “5 “4

G = V Lfi5 = R, • LjL = - R. * LR = - R •
4 1 -4
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In the constant pitch case (180), we assume that <p f k are given

by (182) and (183), respectively. A direct calculation in (193) shows

that in this case M = 0, and the dispersion relation associated with a

solution of the type (184) of the system of equations (200)-(203) is

easily found to be

(210)

A necessary and sufficient condition for exponential stability of the

trivial solution of (200M203) in this case is seen from (210) to be

that q 2 is real and nonnegative for all values of k. For k = 0 (210)

therefore gives the following necessary condition for stability of the

static screw pinch with constant pitch

(211)

By introducing (85), (180), and (183) into (194), (195). (196), (207),

(208), and (209) we obtain

(212)

2

F-E = -6 (kp c )' 1 (2Pp ) (- D 2 + rc2 )(P ' D~fl— H' )H. (213)
oo u r u n

Thus we see that (211) is the well-known interchange stability cnte

rion which usually is written in the following way when B 0 * 0:

For k arbitrary (210) implies

(214)

q* - {2G(F - E) + A 2 (1 + v 2 )k 2 }q2

+ 2G (F + E)A2 vk 2 + aVk4 =O.

G(F - E) > 0.

G = - - c (2Pe n )" i C2 H,k 0 0

dp  yp dB_lfl- .. __jl —-l > o.

dr B z dr
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1 1

q L = G(F -E) + - A 2 (l + v 2) K 2 + {T(k)}^

(216)

Clearly q 2 is real for all values of « if and only if

(217)

for all values of k. Hence (217) is also a necessary condition for

stabil ity of the pinch. From (216) it is clear that (217) is always

satisfied when |k( is sufficientiy large. If

(218)

(216) shows that (217) is satisfied for all values of K and F(k) has

its minimum value at k= 0. If on the other hand

(219)

T(k) is found to have its minimum value at

(220)

T,,US Whcn (2in) J::; (217) holds for all values of K i f and

only i f

f(k ) > o.
m (221)

By suhstituting (220) into (216), (221) is seen to be equivalent to

In vrew of (211) we have therefore established the following necessary

condition for stability when (219) is satisfied:

(222)

r ( k ) = g 2 (f - e) 2 + - a 4 (i - v 2 )V4
+ G[F{ 1 - v) 2 - E(1 + v) 2 ]S 2 k 2

r( k ) » o

G[F(l - v) 2 - E(1 + v) 2 ] > 0

G[F(l v) 2 E(1 + v) 2 ] <O,

X

/2G[E( 1 + v) 2 -Fc 1 - v) 2 ir

Km 1 7~r j '

g 2 ( F -e, 2 » + v)?
(1 - v 2 ) 2
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(223)

In view of (211) we also see that (223) is a necessary condition for

stability when (219) is not satisfied. By simple manipulations (223)

can be rewritten in the following way:

(224)

Analogous to (213) we find that

6 1 dp
(225)

k rp£ H dr

From (205), (212), (213), and (225) it follows that when (224)

is equivalent to

(226)

We have not seen this necessary condition (226) for stability of a

screw pinch with constant pitch in the literature before. Since (226)

is markedly different from the interchange stability criterion (215)

especially for high beta plasmas, we presume (226) is a remnant from

the so-called ballooning modes which are modes with short wavelengths

and which therefore can be expected to be present in our system of

transport equations. As will be seen below, however, the Suydam cri

terion is more restrictive than (226). This is probably the reason

why (226) does not appear in the conventional approaches to the stabi

lity problem for the screw pinch with constant pitch.

G(F - E, > - F(1 -

1 - v 2

G(F -E) > vG(F + E).

F + E = - k' , Qo^k*(7Xßo )

dpn ~YP n dP ? tp dpn
dr B dr B 5 drz o
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From the above calculations it is clear that the necessary condi

tions for stahility (211) and (224) imply that (217) is satisfied and

2 2
therefore that q is real. In order that q shall also be nonnega

tive, it follows from (210) that we have to require

(227)

for al] values of k. Obviously this is true if and only if

(228)

We may therefore conclude that the trivial solution of (200)-(203) is

exponentially stable for the constant pitch case if and only if (224)

and (228) are satisfied. From (212) and (225) it follows that (228) is

equi valent (when t 0) to

(229 )

which is the Suydam criterion for the constant pitch case /

0f the above necessary conditions for exponential stability of

the static screw pinch with constant pitch, the Suydam criterion (229)

is certainly the most restrictive one. In fact, it casily follows

from (85) and (180) that

(230)

Hence (226) and (214) will be satisfied if (229) is satisfied.

Equality in the different criteria (214), (226), and (229) are, how

ever, the critical values where the character of the local frequency q

given by (215) and (216) changes; they all therefore have signi

ficance for the modes involved. Clearly the Suydam criterion (229)

cannot be satisfied for a cylindrical plasma surrounded by vacuum, and

hence magnetic shear is definitely necessary in order to stabilize

2G (F + E)A 2 vk 2 + A 4v 2 k 4 > 0

G(F + E) > 0.

dp
> 0,

dr

1 1 dp

B dr B T drz o
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such screw pinches. There has been some discussion earlier in the

literature about the necessity of the criterion (229) for a screw

pinch with constant pitch; any doubt about this question has hopefully

now been removed.
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XIII. DISCUSSION

In this work we have been studying asymptotic expansions of

linear wave Solutions valid for short wavelengths. The waves are

superimposed on an arbitrarily given solution of the ideal magneto

hydrodynamic equations. Since we are concerned with waves with short

wavelengths, it would have been desirable to include resistivity and

possibly also other effects, but it is not clear how the asymptotic

rnethod we apply can be modified to include such effects. Thus we have

been working entirely within the framework of ideal magnetohydrodyna

mics.

Within this framework the rnethod applied has been shown to be

powerful. The equations describing the propagation of the waves have

been derived in a form which is entirely independent of the coordinate

system, thus we do not have to deal with the special difficulties

associated with, for instance, Hamada coordinates. It has not been

necessary to introduce any assumption beyond the usual regularity

assumptions on the arbitrarily given solution that represent our basic

state, it may even be time dependent. Since our theory allows a gra

vitational potential as well as a flow in the basic state, it may be

applied both in astrophysics and in problems related to thermonu

clear fusion.

Plasma flow is clearly present in a rotating star. Large flows

have also been observed in fusion devices after heat ing plasmas by

neutral bearas. The amount of theoretical work on waves and stabil ity

done on plasmas with flow is quite limited in comparison with static

Systems. This is mainly due to the increasing complexity of the pro
-1 6

blem. The energy principle of Bernstein et al. , which is the domi

nating approach to the stability problem, is, for instance, usually
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not applicable to problems with flow. The methods which have been

applied to waves and stability problems for plasmas with flow are usu

ally not satisfactory in one way or another, our method therefore

seems very promising for such problems. In the examples discussed in

this paper the effect of a basic flow has barely been touched, but we

hope to take up such applications of our theory in the near future.

The prospects seem very good since the method has been shown to give

useful results for problems with flow in ordinary fluid dynamics by

Eckhoff & Storesletten 3 ' 4 .

Our discussion of slabs and screw pinches shows that it is

possible in special cases to obtain detailed analytic results for the

wave Solutions. It is not yet known to what extent it is possible to

derive analytic results for more general cases; only future research

can decide that. However, the equations we have derived for the propa

gation of waves seem extremely attractive for numerical methods. Since

traditional numerical codes do not comprise waves with short wave

lengths, a numerical code for our transport equations will therefore

amend this deficiency of the traditional codes. It seems reasonable

to believe that our approach will make it possible to get information

about the continous spectrum (the essential spectrum) associated with

the traditional normal mode approach (see Ref.s). However, since our

approach is clearly different from the traditional approaches, the

difficulties in applying the traditional approaches are not present

for our method. Only future research can reveal the amount of diffi

culties involved in our approach.

Even though our method of approach does not depend on symmetries

in the basic State, it must be eraphasized that it is a hard task to

obtain a solution of the basic ideal magnetohydrodynamic equations
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that is not symmetric. In fact, at least if external forces are

11
neglected, Grad claims that nonsymmetric static Solutions are virtu

ally nonexistent. However, even when the basic State is only known

numerically, our method seems well suited to describe superimposed

linear waves numerically. The superimposed linear waves may contain

important information about the stability of the basic State, giving

both the growth rates and the structure of the unstable modes. Thus it

may be possible to get information about the prospects for observing

the calculated solution in an actual experiment.

Due to the complicated equations involved in describing the

propagation of the magnetoacoustic waves, we have not been able to

decide to what extent those waves may describe possible instabilities

when they do not interact with the other wave types. The mass waves

and the Alfvén waves, on the other hand, have been shown to represent

stable perturbations of the basic State as long as they do not

interact. The exceptional case, where instabilities have been detec

ted, is the case where the local wavenumber vector k is perpendicular

to the magnetic fieldlines. In this case we have shown that the mass

waves, the Alfvén waves, and the slow magnetoacoustic waves will

persistently interact, and that this interaction may give rise to in

stabilities. In view of the asymptotic expansion we have applied,

this means that waves which have short wavelengths perpendicular to

the magnetic field but long wavelengths parallel to it, appear in our

approach to be the most critical ones in a stability research. These

results are consistent with results found earlier by other methods

(see Refs. 5 and 10).

In the exceptional case where k• B o = 0 we find that the inter

acting mass waves, Alfvén waves, and slow magnetoacoustic waves are
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described by a weakly coupled hyperbolic system. When the basic State

possesses common magnetic flow-flux surfaces, the structure of that

hyperbolic system shows that there will exist modes which essentially

are localized to these surfaces. This is consistent with the results

found by Hameiri 17 . Similarly, the structure of the hyperbolic system

shows that for static basic states there will be interacting modes

essentially localized to magnetic fieldlines. This is consistent with

results discussed extensively in the literature5 ' 7 l0 ' ,8 i

The weakly coupled hyperbolic system found is called the system

of transport equations for the interacting waves, since it is derived

in essentially the same way as we derive the transport equations for

the non-interacting waves in the nonsingular cases. Our calculations

for this system of transport equations show that for almost all

possible basic states it is possible to find perturbations which are

growing linearly with respect to time. These algebraic instabilities

resemble the anholonomic instabilities detected earlier by Lortz &

Rebhan' 3 and Grad 11 . They are excluded from the energy principle by

Bernstein et al. 18 since the perturbations are restricted there by the

chosen Lagrange-displacement representation. We can avoid these insta

bilities if we restrict the set of perturbations considered to the

case where a=o. We do not claim, however, that algebraic insta

bilities cannot appear when =O. In fact, it is very likely that

algebraic instabilities can appear in marginal cases analogous to the

cases discussed in ordinary fluid mechanics by Eckhoff & Store

sletten 3 ' 4 even when we have =O. In this paper we have not looked

for such instabilities, however; we have restricted our study to expo

nentially growing modes when -0. We would like to remark that it

is an open question what physical significance the detected algebraic
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instabilities have, since it seems possible that they may be dominated

by effects we have neglected (nonlinearities, resistivity, etc.).

It is not surprising that the transport equations simplify consi

derably when we restrict our study to waves superimposed on a static

basic State, compared to more general cases with flow. As mentioned

above, the transport equations will then in the case =0 describe

waves which essentially are localized to magnetic fieldlines. By (117)

k = Vtp is in this case seen to be independent of t, and hence k may be

determined by the method of characteristics applied to k• B Q =O. Thus

kis determined by ordinary differential equations along the magnetic

fieldlines, and these may be solved in conjunction with the transport

equations. As discussed in Sec.XII, the transport equations will be

further substantially simplified if we, in addition, neglect external

forces. If we then take the Fourier transform of the transport equ

ations with respect to time, we will get a system of equations which

has a structure similar to the ballooning mode equations 5 ' 10 . It must

be stressed here, however, that it is not yet clear exactly how our

transport equations are related to the ballooning mode equations. Our

transport equations are derived directly from the fundamental magne

tohydrodynamic equations (1) by a method which is a generalization of

the WKB method, while the ballooning mode equations are obtained by a

method of WKB type for the variational problem for the potential ener

gy 6W 10 . It thus seems reasonable to conjecture that our system of

transport equations does describe the propagation of the ballooning

modes properly, and hence that our method gives the generalization of

these waves superimposed on arbitrary basic states. In particular it

seems beyond doubt that the Suydam 7 and the Mercier 8 ' 9 criteria for

stability must be deducible from our transport equations; we hope to
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be able to do that sometirae in the future.

The traditional ballooning representation and the associated

Fourier transform technique 10 involve as yet unresolved issues related

to the convergence of the series present in such representations and

their connection with the physical eigenfunctions. These difficulties

are not present in our inethod of approach since we derive our

transport equations directly from the dynamic equations governing the

plasma. Furthermore, we avoid the problems associated with the

spectrum since we consider the initial value problem for the transport

equations along the magnetic fieldlines. Since we are studying linear

waves, this does not cause any problems in toroidal geometry even

though k usually will be multivalued there. We simply have to add up

the waves which have the same toroidal angle modulo 2ir. However, if we

take the Fourier transform of the transport equations with respect to

time, we will get a nonstandard eigenvalue problem for a system of

ordinary differential equations along the magnetic fieldlines

involving nonattractive difficulties. Neither from a numerical nor

from an analytical point of view does this eigenvalue problem seem to

have any advantages compared to the initial value problem as far as we

can see, but only future research can clarify these points.

Even though gravit.y hardly is avoidable in earthbound experi

ments, it is customary to neglect external forces in studies related

to thermonuclear fusion. Since the timescales involved in most fusion

devices are very short, this may seem a reasonable approximation from

a physical point of view, especially since this approximation leads to

substantial simplifications in the model. some evidence is available,

however, which may call into question the validity of this approxi

mation. First of course, this approximation affects the problem of
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determining basic states (preferably static ones). Second, it is

inown from fluid mechanics that even an arbitrarily smal], external

force may change the stability criteria substantially4 . in this

connec.tion it is natural to call attention to the interchange instabi

lities detected for the slab and the screw pinch in Secs.X and XII,

respectively. At f.irst glance these instabilities may seem completely

analogous, but a closer look reveals that the structure of the un

stable modes is different. The mass wave associated with plays a

fundamental role in the interchange instability for the slab where the

external force is the driving force, while the fundamental role is

played only by the Alfvén waves and the slow magnetoacoustic waves for

the screw pinch where the magnetic field represents the driving force.

Only ful ure research can settle the question of how good the appro

ximation is when we neglect external forces in the model. The approach

we have described in this paper is applicable also without this sim-

P 1 ify i ng assump t i o n.

As a conclus ion we may say that the asymptotic expansion applied

in this paper has provided us with equations describing the propaga

tion of linear waves superimposed on an arbitrary basic State where no

supertluous assumptions are made. For a static basic State we have

seen that the mass waves, the Alfvén waves, and the slow raagnetoacous

tic waves may be localized and interacting along the magnetic field-

Unes. Also for genera] basic states we have seen that those waves may

interact, but they are then usually not localized to magnetic field-

Irnes but to magnetic flow-flux surfaces if such surfaces exist for

the basic State. The roles played by the asymptotic expansion applied

and the obtained transport equations are completely understood, and

since they describe special perturbations (short wavelength), they may
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be used to obtain necessary conditions for stability. It seems likely

that the obtained transport equations describe the propagation of

ballooning modes without suffering from the difficulties involved in

the traditional description of those waves. Whether the necessary con

ditions obtained by our approach are also sufficient to insure stabi

lity of a given basic State, is a problem which can only be solved by

comparing the obtained necessary conditions with sufficient conditions

obtained by other methods. Such results do exist for problems in ordi

nary fluid mechanics 3 , and Hameiri' 7 ' 1 9 has discussed that problem in

magnetohydrodynamics.
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APPENDIX: THE WAVECOUPLING COEFFICIENTS

In the singular case, where i. n = 0, the expressions r-lru i m'

1 ' m= 1 ' 6 ' my be calculated directly from (114) and (6)-(9).

After a considerable amount af algebra for the general basic flow (3),
we find

2 ' i( »G ßo co rVvVfi5 • LR,

+ 2'*k'\’ lco {2Pr*k* (7V‘V

E, • LE, = - v- V

E 2 • I.E, = o,

E 3 ’ LE I = 2  l(kBo Co ) ' (i£XEo ) ' (^ot + V V~O ‘ 7V) '

R, • LR - R- * LR ,4 1 “3 —i '

h • LB-, = B, • LB, ,

E, • LE2 = 0,

7* -0 "K 2 k * ( VvQ )* k ,

V Lfi2 = 2WV ( **V + 2-V 2 Bo -'(kx fi|] ). ( vvo ).k

+ 2_ik ' 2B0 ' 1 k *( vYo )*(kX£o ),

V LE2 = 2’VW (7 *V ' 2 'ik ' 2 Bo ''(ixB0 ).(7yo ).)(
2 k ' 2 Bo" 1

* LE2 = " 2 ' ak' 1 eo'*V 1 SQ )' )

+ 2'^' bq - 1c Q (2P)-^e0 - (vyo )-k
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(A.13)

lr3 - 0, (A.14)

(A.15)

(A,16)

(A. 17)

(Å.18)

2 ' 5 0 ' s Bq ' 1 (k xBg ) • ( yx1 bq )

2 ** X 1c o (2P^r B o *(Vvo )']£

2'^k _1 Bo ' I co (2P)‘^k*(vvo )'k

E, * LR3 = 2--(ke0 B o )- | (ix'ao ).(c(| v eo - c/Wpj.

3 1 a
fL • i<R = - v» v q a b •Vp ,

3 3 4 o 4t o -o y o '

* LR 3 = k' 2 Bo ’ ? (k^Bo ) »(Vvo )• (k * )

+ k'V< v2(i*v ,(7v* (k *v
1 -S 1

+- g. B *Vg n -- Vv ,
0 fc o 4 “o '

*1

Er, • r-S3 =-k- B 0 ’ 2 (1 - co (2Pr i’l(k^B0 )*(Vv(] )-B0

2 k 1bg 2{l + co . (VvQ )• (k *Bq )

4 - (k Po co )- | (2P c, o )-i(kxBo ).(7po
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V - 2 *'V 2 n +

1 k‘' Bo‘ 2{l  cc (2prå) V (7V (k*V

2 (kVV'' (2EV'i(k*V ,,7po

- °0 C0 2 V 2 tV?BO + V( |b0 2 )])

- ~ B o 'ék-(v*h0 ),
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k ' 2 B o 'i B[| ' 2 (Ex E 0) • mQ ) •(k x Eo )

E 2 • LEg = 0, (A.26)

E 1 * LR4 =RI • ,

E 2 • = 0,

a,* - )f' 2 B0 ' 2 (!ixB0 )-(vv0 )-(kxE0 )

1 1
g Æ B •Vd —V• Vn ,

4*o ~o *0 4 -o '

3 1 .5
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S h 4 ~o 4L o -fl yo'

1 I
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1
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2 < kV„> ' (2P6 o r"(* XV ,7po

-|
e c ? b ' 2 [B •VE + v( -B 2 )]}

n g L ~o Lo 2 0

1 .1
+~ k e fJ k• (v >< É 0),

V “ 2'VW (co t»g - co'' Vpo>'



68

V LfiS “ ‘‘W^V^V

(A.27)

(A.28)

(A,29)

(A.30)

(A.31)

(A.32)

(A.33)

(A,34)
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(A,35)

(A.36)

In the manipulations necessary in order to obtain the above expres

sions, we have applled the assumption that k*B q - 0 and that (3)

satisfies (1). Furthermore, we have used that k = 7«f» sati.sf.ies the

equation

(A.37)

which follows from (117) in view of the fact that Vk is a symmetric

tensor.

V = - BQ ' 2 {1 + V (2P) ''V^V^o

1 1 2 "Y -12 -1
+{ - - (- c +- o 1 8/)(2P) }V-v4 2° 4 o o o

+ d - -)<vo r I(2PBar*1 (2P Ba r*V vpo

i *o' icoV ? V 7((2prV>'

V =2 B 0 ?(1  c: 0 2 (2r)- 1 IE0 .( % ).B0

1 1 2 Y - 1 2 - 1
t {- 4 (- c/ +- p b/ ) (2p) }v-vn

420 4 0 0

\ V v,co (2Pe o ri '-

+ vQ * Vk + (tfv Q )• k - 0,
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