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PREFACE

Flow of single-phase 0il through porous media is generally accepted to
be described by a 1linear diffusion equation, and in well-test
analysis, which is a special case of the inverse problem, a number of
methods have been developed based on solutions of this equation. Gas
flow and two-phase flow is, however, much more complicated, and even
though several methods have been proposed to analyse gas and two-phase

well tests, the mathematical verification is often limited.

This report is a major part of my work for the degree Dr.Scient., and
the background for the project was research on two-phase flow
performed at Rogaland Research Institute in Stavanger. The object has
been a study of the non-linear equations governing two-phase flow of
oil and gas through porous media with emphasis on obtaining analytical
solutions applicable to well-test analysis. However, since the
problems occuring in two-phase pressure-test analysis are very similar
to those encountered when analysing gas-well tests, and several
questions in connection with gas flow was unanswered, a natural
approach to the problem was to start with the nonlinear equation
describing real gas flow. The different nonlinear effects in two-
phase flow could then be identified. For that reason my research has
been concentrated on two different problems which is discussed in Part
2 and Part 3 of this report, respectively. Part 2 describes single-
phase gas flow, and in Part 3, two-phase flow is considered with
emphasis on investigating whether the theory for gas flow can be
applied also to that case. To present a basis for part 2 and 3, the
general model equations are presented in Part 1. In addition, I also
felt it useful to review some of the basic theory for single-phase

flow of slightly compressible liquids.

For practical reasons, a separate list of references is placed at the
end of each part. The same is done with the list of symbols. However,
as far as possible the use of symbols is consistent throughout the
report. Unless otherwise stated, all equations are written in

absolute units.
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GENERAL THEORY
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Reliable information about in-situ reservoir conditions - rock, fluid,
and well properties - is important in many phases of petroleum
engineering. Pressure transient testing techniques, which includes
generating and measuring pressure variations with time in wells, are
an important tool for obtaining such information. 0f the practical
information obtainable from transient testing is wellbore volume,
damage, and improvement; average reservoir pressure; permeability;

porosity; reserves; and reservoir and fluid discontinuities.

0f the several hundred publications considering the subject of
pressure tests in oil and gas wells, all but a handful assume that the
reservoir fluids obey the linear diffusivity equation; an assumption
which is strictly valid only for slightly compressible fluids. Most
of the testing techniques are thus based on the constant terminal rate
solution of this equation, together with the principle of super-
position. Detailed description of these solutions and the different

techniques may be found in Refs.[1,2,3,4].

For gas reservoirs and reservoirs where multiphase-flow effects are
prevailing, the assumption of a slightly compressible fluid will not
be valid, and the main object of this report is to study the nonlinear
effects that arrise in these cases. The validity of and connections
between previous theories are discussed, and some new solutions and
methods are presented. Part 1 states the basic model equations
describing the fluid flow in the reservoir, and some general
considerations are discussed. In Part 2, single-phase gas flow is
studied, and Part 3 is concerned with the special problems occuring

when both o0il and gas are flowing simultaneously in the reservoir.
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In the general compositional model describing fluid flow in porous
media, three distict phases; gas, o0il, and water, each satisfying
Darcy's law, 1is assumed to exist in the reservoir. The reservoir
fluid is assumed to consist of n chemical components; n-1 hydrocarbon
components and water. In principle, a finite amount of each chemical
component can be in the gas phase and the two liquid phases. However,
the water phase will consist mainly of the chemical component water,
and usually mass transfer between the water phase and the two

hydrocarbon phases is neglected.

The model 1is described for instance by Peaceman [5], and will be

presented only briefly here.

The system is assumed to be described by 3n+24 unknown variables

(Large letter subscripts will be used for the phases, and small letter

subscripts for the chemical components. Vector functions 1in R3 are

underlined):
- The filtration velocities of the three phases, u , u , u (9)
G 0 W

- Mass fractions of the individual components of the total mass of
gas, 0il, and water phase, respectively, ¢ , C , C (3n)
iG i0 iW

- Pressures, pG, p . p (3)

- Phase densities, QG, e ., o (3)
- Viscosities, uG, b, u (3)

- Saturations, S, S , S (3)

G 0 W

- Relative permeabilities, k , k , k (3)
rG ro rW
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The corresponding equations are:

Continuity equations for each component:

V-1 Cigogug * Ci000up * €50y !
(1.2.1)

0
* 5;{ ®l 6956 * €i0%S0 * CiwlwSw

Darcy's law for each phase:

K-{ VpG - 069 }

ll

(1.2.2) Yy = - — K-{ Vpy - 004 }

- —= K-{ Yoy - e,a }

=
£
n

Elementary relations:

(1.2.3) S. + S

n
-

n
(1.2.4) I

LU g P
(]
0"
-

Equations of state:

fl(gG'pG'CIG""‘CnG) =0
(1.2.5) fz(go,po,c10,...,cno) =0
= 0

faley Py Coyr- - Cry)
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fk("G'pG'c1G""'an) =0
(1.2.6) fS(“O'pO'CIO""'cnO) =0
fs(uw.pw,c1w.....cnw) = 0

Relative permeabilities:

krG = f7(SG.SO,Sw)

(1.2.7) k

ro fe(SG.So.Sw)

k

o fg(SG.So.S”)

Capillary pressures:

P - Po = Pcgo!SgSorSw!
(1.2.8)

Phase equilibrium:

‘ie | | (T C C ..C C )
.. - ieo PGP b6 Cn6 100 - Cpo
io
(1.2.9)
Cie . | (T c C ..C Coy)
c.  liewW PPt Cng Cawe - Gy
iW

The temperature T is assumed to be constant. The tensor K gives the

absolute permeability of the formation.

The fractions K and K in Eq.(1.2.9) are called K-values,
iGo iGW
equilibrium ratios, or equilibrium constants, even if the quantities
are definitely not constants; and in this model it is assumed that the
mass transfer 1in the reservoir is rapid relative to the fluid
movement. A  thorough discussion of state equations and relative
compositions of petroleum fluids may be found in Ref.[6]. Relative
permeabilities and capillary effects are described in Ref.[7] or [8],
e.g., and Standing presents correlations for relative permeabilities

in his notes from 1974 [9].
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Numerical methods to simulate these equations have been presented, and
much effort is made to improve the efficiency of compositional
simulators. However, to date most work - numerically, and some
analytically - has been on a simplified three-component system. Three
chemical components, gas, oil, and water, are then defined as the
parts of the reservoir fluid being in the respective phases at
standard conditions, p = p and T =T <1>
sc sc

Assume that the gas component <consists of the chemical components
1,2,...,3, the oil component of the components j+1,...,n-1, and that
component n is the water component. 9 new mass fractions may then be

defined as:

J J ]
C = I C. C = I C C = NG
gG iz 16 g0 i=1 10 gWw i iW
n-1 n-1 n-1
Jicat Cog = . L Ci¢ €0 L Cig Cow = . L Ciy
1=3+1 1=3+1 1=3+1
ch ) CnG CwO : Cn0 cww : an
Eqs.(1.2.2), (1.2.3), (1.2.7), and (1.2.8) are valid also for this
simplified system. Eq.(1.2.1) reduces directly to three new

continuity equations for the new components by summation, and
Eq.(1.2.4) simplifies to sums of three terms. However, it 1is not
generally possible to generate new state equations and phase
equilibrium equations from the old ones, and these have to be
determined independently for the new system assuming that they can be

written as functions only of the new reduced number of mass fractions.

0 o
<1> Usually, p and T are taken to be 1 atm and 520 R (=16 C).
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The new gas/oil phase equilibrium equations become:

()

g6 .
E—— = Kg(p'ch'CQO'CoG‘COO'T)
g0

(1.2.11)
€06 L K (p.C 1 Co i CoiCoiT)
E‘“ = Roilb. gG'~g0’' oG’ ~00’
o0

The so-called "B-model” may now be obtained by introducing the

formation volume factors for gas and oil, B and B and the solubility

G 0
factors R and r , where R is the solubility of gas in oil phase,
S0 sg so
and r is the volatility of oil:
sg
Qgs 1 Qos 1
¢ Cg6 % Coo
2080 0,° Cg0
(1.2.12) Rgo s C =
go S ¢
o-B 0] SNE
r - G- G C . -9 oG
sg s ~06G S ¢
Qo L) g6
s s
e and p are densities at standard conditions.
g o

In the following, gravity, capillary effects, and mass transfer
between the water phase and the two hydrocarbon phases will be
neglected. In addition, the water phase is assumed to be
incompressible with a constant saturation S . However, all these

iw
effects can easily be included in the B-model.



PART 1 9

The following equations are then obtained:

veg 2, de_g ) SRR Sl deJl )} = 0 gas component
BG B0 ot BG BO
u u s
ve{ 20, r, = e r, £ )} =0 oil component
B 9 ot B 98
0 G 0 G
(1.2.13)
krG
ug = - KeVp gas phase
He
k
y = - r0 K+Vp 0il phase
Ho
SG 5 SO = 1 - Slw
or
K K 5 S S gas
Vu{ _1:9 2 RSO—r—O)K‘Vp } = ——{ w( _9—'* Rsoi )} compo t
- T ™ : B ponen
W6 0°0 6 0
R S oil
. ro TGy, - 0 <R
Vel — + T -—E)K Vp } = { ot * rsgB /1 component
Uo 0 uG G 0 G

(1.2.14)

If the phase densities, viscosities, and K-values are independent of

composition, B B R , and rsg will be functions of pressure and

G' "0' “so
the parameter T only. Eq.(1.2.14) is then a system of three equations

in the three unknowns SG. S and p.

0"
For solution gas drive reservoirs, this simplified model is generally
accepted as a good description of the reservoir processes. rsg is
then set equal to zero, i.e., no o0il component (also called stock tank
0il) is assumed to exist in gas phase. The model is then usually
called a "black-0il" model, or also a B-model. According to Muskat
[10] p.302, these equations were stated by Muskat and Meres as early

as in 1936.
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Other important examples of reservoirs exhibiting two-phase flow 1is
gas condensate and volatile o0il reservoirs where both hydrocarbon
components can exist in both gas and o0il phase. Generally, these
systems are much more complicated than black-oil reservoirs, but for
some reservoir processes the equilibrium ratios may be assumed to be
independent of composition also in these cases. In 1973, Cook et al.
[11] presented a generalized black o0il model very similar to
Egs.(1.2.14) which accounted for compositional effects in volatile oil
and gas condensate reservoirs. The fluid properties were then assumed
to depend both on pressure and a compositional parameter. Spivak and
Dixon [12] suggested that gas condensate reservoirs could be
represented by a model which included a volatility-factor rsg' but
with Rso = 0; and Fussell [13] presented a study showing that the K-
values and phase densities could be considered unique functions of
pressure for many single-well performance predictions for gas

condensate reservoirs.

The boundary conditions imposed on the flow equations at wells
produced with a surface volume rate of for instance gas component,

qg(t), is found to be:

K k
(1.2.15) f{(ES + r_ IO )Keyp }en dS = -q.(t)
B S0, g g
S HeEG 0%0
or
k k g.(t)
(1.2.15) { (22 o p L% )kevpn} = -2
HeBg HoBo S 2nryh

n is unit normal into the well,

S 1s the perforated part of the well,

rw is the well radius, and h the perforated height. The boundary
conditions at the rest of the reservoir boundary can be a specified
pressure or flux, or a combination of both. Usually in well test
analysis only one well is considered, and the perforated interval is

assumed to be equal to the reservoir height, which in turn is assumed
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to be constant. The flow is assumed to be purely radial and K and ¢

to be independent of the radial distance from the well.

If only one single phase 1is flowing in the reservoir, the flow

equations reduce to:

19 kbp}aw

(2. 1) 5— ra = 5— —}
ror uij r t Bj
or
10  ko; Odp 0
(1.2.18) -—{ —dr—1} = —{e 0!
ror (e or ot
where j = 6 or O, and k is the component of K in the direction of

flow.



112 PART 1

M UALITAT RAT

Before studying the nonlinear flow equations in detail, it may be
useful to take a look at some of the well-known solutions of the
linear diffusion equation. The term "liquid solution” will be wused
for these solutions, since they apply to flow of slightly compressible

fluids, including oil.

If the permeability k and the porosity ¢ are constants, Eq.(1.2.18)

may be written, with the subscripts omitted:

1 dp 1 dyu 9dp 2 ) op puc Op

1
(1.3.1) et e e R
o dp u dp Or r or or k Ot

r— ) = — —

For 1liquid flow, the first term in this equation is usually neglected

based on the following assumptions (Dake [31):

- The viscosity p is practically independent of pressure and may be

regarded as constant.

- The pressure gradient O0p/dr is small and therefore, terms of order

(aplar)2 can be neglected.

However, this simple linearization must be treated with caution, and
Dake refers to a paper by Drauchuk and Quon (Ref. 2 p.39 in Ref [31])
who show that a necessary condition for 1linearization 1is that the
product of pressure change and compressibility is small. It is here
important to realize that it is the factor multiplying (aplar)2 that

makes the total term negligible, and not a small pressure gradient.

As will be seen, the relative magnitude of the pressure gradient
compared to the time derivative or Laplacian, will change considerably

with time and space and depend on the type of flow considered.
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To examplify this, we assume that Eq.(1.3.1) may be linearized and
that pc = constant. Assume further that the reservoir is circular
with a closed outer boundary, that a single well at r = 0 is produced
with constant rate q, and that the initial pressure is constant. This

imply the following initial and boundary conditions:

(1.3.2) pl(r,t=0) = Pi
. dp  aBu
(1.3.3) lim r— =

S or 2rkh

op
(1.3.4) lim — = 0
L= rear

For early times, the reservoir may be assumed to be infinite in

extent, and Eq.(1.3.4) is replaced by:

(MFR375)) lim P =pj
I — oo

As long as the reservoir is infinite-acting, the pressure is varying

only over a single scale in r and t, respectively. Radius and time

may then for instance both be scaled with the radius of the well, r

w
as a basis. ODimensionless variables may be defined as:

: r k t
(1.3.6 rn = — th, = —mm5
D G D 2
b Yucr,,

The pressure drop depends on the production rate q, and a

dimensionless pressure drop is therefore defined as:

2nkh

(1.3.7) Pp = (pi - p)

qQBu
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In the infinite-acting period, the well may be approximated by a line
source, an approximation which gives a uniformly valid solution except

for very small r and t.

The solution of the linearized form of Eq.(1.3.1) with the proper
initial and boundary conditions, is then the well-known line-source

solution, also named the Theis solution [14]:

(1.3.8)

1
x - ;( lny + v ) y << 1

where E1 is the first order exponential integral function [15], and ¥

is Euler's constant.

apo apo 10 dp
Compute now —, —, and - — (rn—):
BrD ato roaro aro
op 1 r. 2
(1.3.9) 5—2 = - —expi{- 0
o TH i)
2
dp 1 T
(1.3.10) 5—9 =  —expl- D }
tD tD tD
2
10 0 1 X
(1.3.11) — (roﬂ) = axp i~ =0}
roarD aro tp bt

At least in a region near the well, the gradient is not small compared
to the other quantities. On the contrary, it is much larger except

for very small times.
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Now consider the effects of an outer boundary. In this case, there

will be two scales for r; namely r and re, and correspondingly two
w

scales for t. We may define r and t by:

DA DA
(1.3.12) r t ki kt
«J. r § ' = =
DA re DA PUCA wucwre2

If r <K r , the difference between the two scales will be large, and
w e

if the small quantity ¢ = rw/re is introduced, we get:

2

€
(1.3.13) T = er,. , t = —t
w

DA D DA 0

The end of the infinite-acting period occurs approximately at
tDA = 0.1. Hence, we may say that we already are on the second time
scale when the boundaries are felt.

The pseudosteady state (PSS) solution, which is obtained by assuming a

constant pressure decline at every point in the reservoir, is [3]:

reD rD2 3
(1.3.14) pD(ro,tDA) = 2ntDA + 1nr + ;;——2 = :
D eD

Note that Eq.(1.3.14) is an exact solution of the 1linearized flow
equation. The boundary conditions are almost exactly satisfied if
TR CGCRT
w e
If now the derivatives are computed as in the infinite-acting case, it
will be seen that the gradient near the well is still much larger than

both the time derivative and the Laplacian.

As shown on Fig.1.1, the r-t plane may be divided into & different
flow regions. Region 1 corresponds to the part of the infinite-acting
period where y << 1, and Region 2 to the part where this assumption is
invalid. Note that Region 1 corresponds to the region where the

logarithmic approximation to E1(y) is valid. Somewhat loosely it may
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be said that both in Region 1 and 2, r and t are on the rw-scale. In
region 3, rw defines the r-scale and re the t-scale, and in Region &,

re defines both the r- and t-scales.

The linearized flow equation may then be written in Region 3 and 4,

respectively:
2

10 apD € apD .
(R 7E3731151) —_— | rp— ) = — — Region 3

roarD aro n atOA

190 apD bpo .
(1.3.16) —— | oA ) = — Region 4
TpadTpa drpp Otpa

In Region 4 the terms in the equation are of the same order, but in
Region 3 the right hand side is multiplied by ez, which usually is a
very small quantity. The expansion term on the right hand side of
Eq.(1.3.15) may therefore be neglected in this region. Together with
the inner boundary condition this then yields an inner solution given

by:

{{1.3.17) = - 1lnr, + f(tDA)

PplTpitpa! D

f 1is a function of time that has to be determined by matching with an
outer solution valid in Region 4. Note that neglecting the term on
the right hand side of Eq.(1.3.15) is not the same as assuming steady

state flow, since the function f may have a general time dependence.

In principle, an estimate of the size of Region 3 could be found by
introducing a characteristic radius R and defining another
dimensionless radius rDR = r/R. If this is inserted in Eq.(1.3.15),
neglection of the right hand side requires R2 << wrez. Numerical
results indicate that a reasonable estimate of R is about re/3. On a
logarithmic scale, this corresponds to Region 3 occupying a

significant part of the reservoir, confer Fig.1.1.



PART 1 17

The same may be done with the gas flow equation, Eqg.(2.2.1), implying

the condition:

(=)
(1.3.18) R? <« mr? 1
pc

Hence, 1if the reservoir is not too small, Region 3 will still exist,
but the size is decreased because pc » (uc)i. Since uc is varying
over the reservoir, it is difficult to estimate R from EqEREIFE31isi)n

but it is useful as an illustration of the process.

Note that for steady state flow, Region 4 will not exist, and the

solution profile will be logarithmic for all r.

Now turn to the case of buildup where the well is shut in, and assume
that the reservoir is infinite with a logarithmic pressure profile for
all r at At = 0 (this is just a theoretical case that never will
occur in practice). That is, we have the following problem for the

dimensionless pressure rise during buildup st:

(1.3.19) { L ( 9 ) 9 } 0
. 3. - — (rp— ) - — Pne =
roarD DarD ato Ds

qu
(1.3.20) Pn(rn,Atn=0) = {p(r,t_) - p (t )} = 1nr
Ds'"D D 2wkh P w' p D
op
(1.3.21) lim s .

It is assumed that the presence of the well may be neglected. An

exact solution of Eqs.(1.3.19) - (1.3.21) is:

r 2

1
(M3 ni2:2)) pDS(rD,AtD) = ; e + 1n rp
D
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and 1f the derivatives are calculated, it follows that in this case
the pressure gradient, except for very small At or large r, will be
smaller than the time derivative and the Laplacian, the difference

. : : . 2
increasing with decreasing values of r /At.

Except for very small At, Eq.(1.3.22) for r = T is equal to the

Miller-Dyes-Hutchinson (MDH) solution [16]:

1

(At) = — { 1lnAt

PwDs > p * Iné -y }

(S1PPI 2030}
This shows that the logarithmic time dependence for the buildup
solution only depends on the drawdown solution profile in Region 3.
The deviation from the MDH straight line for large At is due to the
deviation from the logarithmic profile of the drawdown solution in
Region 4 in addition to the reservoir boundaries. That is, we may say
that the domain of dependence for the buildup solution for At < AteMDH
(end MDH half-log straight line) is included in the part of the
drawdown solution at shut-in which lies in Region 3. This 1is
illustrated in Fig 1.1 where the curve between the points A and B is
drawn arbitrarily. Note that since the propagation speed is infinite
for a parabolic equation, this is rather a numerical and not a

strictly mathematical concept.

A consequence of this is that if we are mainly interested in obtaining
a buildup solution in the semilog straight line region, we do not have
to consider the drawdown solution in Region &.

This discussion may be summarized as follows:

i) It is misleading to say that the flow equation for 1liquid flow

may be linearized because the pressure gradient is small. As

demonstrated, the relative magnitude of the different terms in
the flow equation will change considerably from point to point,
and with the type of flow considered. The reason for the
successful linearization 1is solely the factor multiplying the

term involving (aplar)2 in Eq.(1.3.1).
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ii) For drawdown the r-t plane may be divided into two regions, each
with two sub-regions: The first consisting of Region 1 and 3
where the expansion terms in the flow equation may be neglected,
and the second which consists of Region 2 and 4 where all terms

in the flow equation are of the same order.

iii) For buildup too, the r-t plane may be divided into two regions:
One which is influenced only by the drawdown profile in Region 3
(or Region 1 if the well is closed in before the boundary is
felt) and a second which is influenced both by the drawdown
solution profile in Region 4 and the reservolr boundaries (or
Region 2). The part of the line r = rw included in the first of
these regions corresponds approximately to the time interval

where the MDH-approximation is valid.

In this section only liquid flow has been considered. However, it is
temptating to assume that the statements i) - 1ii) are generally valid
also for gas flow and cases where o0il and gas are flowing
simultaneously, at least if the coefficients in the equations behave
relatively “nice". In fact, it will be demonstrated in Part 2 and 3
that several of the commonly used methods for analysing gas well tests
and two-phase tests are essentially based on these assumptions and the

additional assumption that:

iv) Quadratic gradient terms may be neclected during buildup.
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NOMENCLATURE
A Drainage area
BG. Bo Formation volume factors for gas and oil
Cix Mass fraction of component i of the total mass
of phase X
1 de
cC = —— Compressibility
e dp

o0 e—t

E1(z) = [ —dt Exponential integral function of order 1 [15]
- t

g Gravity vector
h Reservoir height
K, k Absolute permeabilities
er Relative permeability of phase X
KiGO‘ KiOW' Kg. Ko Phase equilibrium ratios (see Egs.(1.2.9,11))
n Unit outer normal to reservoir boundary
P, Py Pressure, pressure of phase X
pi Initial pressure
Pw Wellbore pressure
Pp = E¥ikh (p; - p(r,t)) Dimensionless pressure fall

qBu =
Pps * 2nkh (plr,t_+At) - p(r. .t )) Dimensionless pressure

qBy P W R rise during buildup

Pec6o’ Pcow Capillary pressure functions (see Eq.(1.2.8))
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Production

PART

rate, production rate of component i

Characteristic radius of Region 3

Radius

Radius of well

Radius of outer boundary

Dimensionless radius based on r

w

Dimensionless radius based on r

Solubility

Volatility

Surface of

Saturation

e

of gas component in oil phase

of oil component

perforated part of well

of phase X

Irreducible water saturation

Temperature

Time

Production

time

Shut-in time

Dimensionless time based on r

Dimensionless time based on drainage area

Filtration

velocity of phase X

Boltzmann variable
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=
n

€ =r /r

Subscripts

Euler's constant

Porosity

Viscosity of phase X

Density of phase X

Density of component i at standard conditions

Dimensionless

External

G6as, 0il, or water component

Chemical component; in B-model i = g, o, or w
Gas, o0il, or water phase

G, 0, or W

Standard conditions

Well
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Fig. 1.1 Different flow regions for a drawdown/buildup process.
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In contrast to flow of a slightly compressible 1liquid, the equation
describing isothermal flow of real gases through porous media, is not
easily linearized. Several approaches have been used to generate
solutions of the nonlinear gas flow equation from the known liquid
solution. The work of Aronofsky and Jenkins[1] in 1954 1lead to the
use of p2 as the variable for analysing gas flow. Al-Hussainy et al.

[2] introduced in 1966 a Kirchhoff integral transformation of

pressure:
P p dp
(2.1.1) mip) = 2 [ —0m087
p uiplZip)
0

Applying the equation of state for a real gas:

(2.1.2) =
el(plZ(p) (- Tsc

it is easily recognized that Eq.(1.2.18) together with Eq.(2.1.1)
transformes to an equation similar to the flow equation for a slightly

compressible fluid:

(2.1.3) Vms=z — — m = m(p)

The new function m(p) was called "the real gas pseudopressure”. In
Eq.(2.1.3) k and ¢ are assumed constant, but a variation in these
quantities with pressure can be accounted for in the definition of m

[31.
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Since uc is not constant in Eq.(2.1.3), the equation is still not
linearized. However, equally important may be that it linearizes the
inner boundary condition when this is given as the surface production
rate. We get the following boundary condition for m(p) corresponding

to Eq.(1.3.3):

om 2Tp qlt)
(2.1.4) lim ( r — ) = —3&
By or Tec 2wkh

Al-Hussainy et al. [2] assumed uc to be constant, pc = (uc)i, which

gives an equation for m that is identical to the linear equation for
liquid flow. A non-Darcy component is also often taken into account
as a skin factor proportional to flow rate when analysing gas well
tests (see Ref.[18] or [25], e.g.), but this effect will not be
discussed here. However, the variations in pc with pressure, which
are substantial for 1low pressures, may lead to serious errors and
misinterpretation if the theory for liquid flow is wused uncritically

[4,5,6].

Agarwall[4] introduced in 1979 a transformation called “real gas
pseudotime” to account for the variations in the pc-product when
analysing buildup tests in massive hydraulic fractured (MHF) wells.
However, this transformation still do not linearize the flow equation
exact. Lee and Holditch [6] formulated in 1982 the correction terms
that appear in the flow equation when pseudotime is used, but made no
attempt to estimate their relative magnitude. In a recent paper,
Finjord [7] gives an analytic study of the pseudo-time transformation,
and shows that for drawdown in an infinite reservoir the correction
terms will not be small. Hence, the transformation will not linearize
the equation effectively in this case. The validity of pseudotime for
buildup is not affected by this result, and pseudotime has been used
to analyse buildup tests with good results [4,6,8,9]. However, a
theoretical verification of pseudotime for the various cases is still

missing.

Kale and Mattar [10] obtained in 1980 a solution of Eg.(2.1.3) that

takes into account the wvariations in uc by using a regular
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perturbation method. Only the case of drawdown in an infinite
reservoir was studied, and the solution was given as an integral
expression for the difference between the solution of the nonlinear
equation and the 1liquid solution. They also showed that this

correction term rapidly approaches a small constant value.

In Sec. 2.2 a similar solution is obtained by expanding pc in a Taylor
series in the pseudopressure. We then get a correction term as an
infinite sum involving the derivatives of uc with respect to pressure.
This term approaches a slightly different value than the one obtained
by Kale and Mattar [10] for large times. This is because they neglect
a second order gradient term, which is not necessarily small (see
Appendix 2.1). However, for the case of gas flow, the correction
term, which can be seen as a constant negative skin, will wusually be

small and negligible.

The same procedure is used to find solutions for buildup, and it is
shown that under certain conditions the wellbore pseudopressure will
follow a straight line on a half-log plot with a slightly larger slope
than the liquid solution. Hence, the superposition principle is not
strictly wvalid. Analytic expressions are given for the slope if the

Mc-product can be approximated by a linear function of m.

The perturbation solution obtained for drawdown and buildup is in Sec.
2.3 compared with solutions based on Agarwal’'s pseudotime solution
[4]. It is shown analytically that when the perturbation solution is
valid, the pseudotime solution, to the leading order, is consistent
with the perturbation solution for buildup, but not for drawdown. Thus

the results of Finjord [7] for drawdown is verified.

The validity of the perturbation solution is studied in Sec. 2.4.
Several functional dependences of uc(m) was considered with good
results. Problems arise, however, for buildup when the perturbation
solution is applied to real gas flow. This is due to the extreme form

of pyc(m) for low pressures.

In Secs. 2.5 and 2.6 a reservoir with finite size is considered. It

is shown that an exact material balance equation may be used to
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generate a solution valid in the whole reservoir after the boundaries
are felt. A new method to estimate reservoir size and shape 1is
proposed, and problems in connection with the estimation of average
reservoir pressure in a gas reservoir are considered. Several methods
have been proposed to account for the variation in pc when average
pressure is estimated from a buildup test [5,11,12]. These methods
are rather complicated, but it is shown in Sec. 2.6 that the standard
methods for liquid flow may be used if shut-in time is replaced with

pseudotime in the buildup plots.

The presented results are supported with several numerical simulations
of drawdown/buildup in a gas reservoir. The simulations are, however,
limited to the case of a single well producing from the center of a
circular, homogeneous reservoir. Data for the simulations are given

in Appendix 2.3.
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Assume that the initial pressure is constant and that one well in the
center of an infinite reservoir is produced with a constant surface
volum rate q for a time tp before it is shut in. In terms of the
dimensionless quantities defined in the nomenclature, the following

system is then obtained:

1 9 BmD uc amD
(2.2.1) — ———(rD —) = — —= rp > 0
ry aro Ty (ue); atoi
(2.2.2) mD(rD,O) =0 r, > 0
(2.2.3) 1im my(r,,t.) = 0 th > 0
e ™ot D
D
amD -1 0 < tD < tpD
(2.2.4) lim (r5—— ) =
a1 r
D D 0 tD > tpD

The basic assumption is now that the nonlinear terms in pc are small.
Solutions are then obtained by expanding pc in Taylor series about the
initial and shut-in values respectively and assuming that all terms
except for the constant term is of order ¢ in magnitude, where € is a
small parameter. At shut-in, the buildup solution is matched with the

drawdown solution to every order in €.

A solution of the dimensionless form of Eqs.(2.2.1) - (2.2.4) is then

searched as an asymptotic series in ¢:

(2.2.5) m =m + Em +

For t < tP (drawdown) exact solutions may be obtained for mo‘O) and
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m if we assume the well to be a line source. uc is then expanded

about the initial value:

uc ] : 1 dlgc) ; 1 : 1 dz(uc) . 2
— B + _ m +—»—ﬁ— m +
(uc) uc de 170 2 uc de 170
(2.2.6)
s n
=1+ ¢l a m
n=t "D
a , n=12... are similarity coefficients of order 1. ¢ may for

instance be chosen equal to the first order derivative term implying

Substituting Eqs.(2.2.5) and (2.2.6) into Eq.(2.2.1), and identifying

terms of the same order in €, the result becomes for nb(U) and m (o
(See Appendix 2.1):
(0) !
(2.2.7) mp (y) = —-E,(y)
2
(2.2.80 myMy) = - 0 =28 e T oEMyiay ¢ E™ T (ydy )
2
n=1 0 y
where vy = r02/4tn. Note that the zeroth order solution is the usual

line source solution or Theis solution [14), and that the limit of
(1)

D

solution at the well for large times:

as vy approaches 0 gives the correction term to the line source

limoemo(1)(y) So LUR Ty )
= n=1 0 ;
(2.2.9)
® 1 1 d"(pc)  °
= - L = [— —1; [ . yray }
n=1 2 HERNEN, 0

It can be shown that these integrals converge, and they are easily

calculated numerically. We assume that the derivatives ai behave
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nicely enough for the infinite series to converge uniformly and
absolute. If that is not the case, the nonlinear terms will not be

small, and the perturbation solution will not be valid anyway.

Numerical calculations show that at the wellbore, mn‘1) approaches the
asymptotic value given by Eq.(2.2.9) relatively quickly. The 1line
source solution approaches a logaritmic dependence of time for large
times. We have thus confirmed the well known fact that the wellbore
pseudopressure follows the same straight line on a half-log plot as
the solution of the linearized equation, only with a slight shift
along the logt axis. This is also the conclusion of Kale and Mattar

[(101.

The fact that the first order correction term, mn(1) quickly reaches

a constant value implies that only the variations in Uc near the
initial value will affect the solution of Eq.i(2.2.1). If the
variations in pc with pseudopressure may be assumed to be linear in
this region, we get a very simple expression for the perturbation

solution at the well for large times:

(0)

- (1)
me(tDi) = Mup + €m

wD

(2.2.10)
1 a
;-{ In tp; + 1lné - y} - ;—lnz

where Yy is Euler's constant, and a = ea1

Van Everdingen [19] introduced in 1953 the concept of a constant skin
factor to describe the additional pressure drop due to formation
damage around the well. In Eq.(2.2.10), 5"5(1) may be considered as
an additional skin factor and may also be written in terms of the

derivative of pc with respect to pressure:
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1 d(puc) 1
S=- e ]1‘_.1"2
MC de 2
q 2Tpsc 1 d(pc) 1
(2.2.11) = [— ]i' — 1n 2
2wkh Tsc uc  dm 2

q [ d(pc) 1
= [ ]1' —ln 2
2wkh 0;¢; dp 2

Note that S for a given initial pressure is proportional to production

rate.

For buildup it is not evident what value pc should be expanded about.
At the instant of shut-in pc varies from the initial value (at
infinity) to the shut-in value at the well, (uc)s. As could be
expected, expansion about the shut-in value gives the best result
shortly after shut-in, and expansion about the initial value the best
result at late times when the pressure approaches the initial value.
Which value that gives the best result will also depend on the form of
Mc, and generally the best point to choose would probably be a point
between (uc)i and (uc)’. However, since it is difficult to find such
an optimal point, and since we intend to use asymptotic solutions for

small At/tp, the shut-in value is chosen (see also Sec. 2.4).
Another possibility would be to approximate pc with a straight line
between (uc)i and (uc)‘. and still use an expansion about the shut-in

value.

Define dimensionless pseudopressure rise during buildup as [23]:

2wkh T

s§C
m T — 2> { m(r,t_+At) - m(r ,At=0) }
Ds q ZTpsc p w

(2.2.12)
= mD(rw,At=0) - mo(r,tp+At)
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The procedure for solving the equations for buildup is the same as for
drawdown, and the buildup solution is matched with the drawdown
solution to each order in €. However, the wuse of the Boltzmann
transformation is no longer valid, and the equations become much more
complicated. The detailed calculations are shown in Appendix 2.1. The
zeroth order solution becomes the usual liquid solution, and the first
order solution can be shown to be a linear combination of the
functions Uk,l and vk,l defined in Appendix 2.2. This full solution
is very complicated. However, as shown in Appendix 2.1, the solution
can be simplified if pc can be approximated with a straight line. If

in addition Atn‘ satisfies the condition:

t

{F2r12i13))

<< 1 <L AtDs
pDi

the wellbore solution will be given by the analytic expression:

- (0)
mwos(tDs) ® Mubs * EMyps

(2.2.14)

(1)

1 b Y
— {(1 + —)1n At + (1n4 - y) + b(2 1n2 - — - 1)}
2 2 Ds 2

where b is the derivative of uc/(uc)s with respect to m at shut-in.
Note that the condition, Eq.(2.2.13), is similar to the condition for
the MDH-solution [15,20] to be valid in the o0il reservoir case. Since
Mc 1is decreasing with increasing pressure, b will be positive. Hence,
the wellbore solution will follow a straight line on a half-log plot,
but with a slightly 1larger slope than the liquid soution, and the
superposition prinsiple is not strictly valid. However, the deviation
will not be very large for gas flow, and as will be demonstrated in
the following sections, Eq.(2.2.14) will over-estimate the change in

slope for low shut-in pressures.

If s is the slope of the m's—curve on a MDH or Horner plot,

Eq.(2.2.14) gives for the permeability-thickness product:
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pschB/uTsc
kh = Absolute units
1 -4 1 - 4Bs/1Ini0’
(2.2.15)
1422qTB
= Field units
1-J 1 - 1.737Bs’
where
Tsc 2wkh 1 d(uc) 1 dp d(uc)
(2.2.16) B = - b = [— - e = == .
2Tp q gyc dm gyc dm dp
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Application of the pseudotime transformation introduced by Agarwal in
1979 (4] is based on the assumption that the solution of the nonlinear
equation, when plotted against pseudotime, is identical to the
solution of the linear equation. To investigate the validity of this
assumption, the perturbation solution obtained in the previous section

was compared with a solution based on this pseudotime approximation.

Agarwal defined the pseudotime transformation by the equation:

t gt
(2.3.1) t, = | ——————
¢ Help(r,t))

0

Since pc is a function of both r and t through pressure, this is not a
pure time transformation. The transformed equation will consequently
get additional terms containing the derivative of ta with respect to
r, as noted by Lee and Holditch [6]. The usefulness of the pseudotime
transformation will then depend on the relative magnitude of these
terms. Finjord [7] found that these terms are not small for drawdown,
hence the pseudotime transformation will not linearize the equation in

that case.

In practice the wellbore values of pc is used when t' is calculated.
The correspondence between 1:‘n and tIJ may then be obtained to first
order in ¢ retaining only two terms in the Taylor expansions for pc.

The result is for drawdown:
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t

Di drt
T =
ad 0 1 + ea1mw0(t)
Tt
D1
= [ 01 - ea1mwo(°)(r)]dr + 0(e?)
0
((29302])
toi 1 .
= tp; - ea, I - E,(1/4t)1dTt  + 0(e")
2
0
=t B, (174t ) (19htp) - En(1/6tn: )} + O(€2)
T toi TR pi'''"**%pi 0 DIt U

If terms of order ez are neglected, and Eq.(2.3.2) is expanded for

large times, we get:

1 y+1
ab = tDi{ 1 - ea1(; lntpy; + 1n2 - —;—) }

{2.3.3) t

Assume now tha h seudotime transformation linearizes the equation,
i.e., the «correct solution of the nonlinear equation is found by
replacing tU with taU in the liquid solution. This implies that the

solution of the nonlinear equation is (to first order in e€) of the

form:

1

myplt) = ; {Int_p + 1né - v}
1 1 +1
2 2 2
2
+ 1n4 - Yy} + 0(€" )

(2.3.4)

1 1 Y+ 1 2
= — {l"toi + 1né - v - ea,;[— 1nt + 1n2 - —1} + 0(e")
2 2 Di 2

- (0) (1)
= My (toi) tem,, (toi)

w w

where terms of 0(82) are neglected. It follows that the application

of pseudotime for drawdown implies a correction term which increases
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with time for large times. This result is in sharp contrast to the
constant asymptotic correction term predicted by the perturbation
method, an effect which also is verified by all numerical
calculations. The conclusion must then be that the pseudotime
solution is not valid for drawdown, at least not for large times. This

is also in accordance with Finjord's result [7].

For buildup the definition of dimensionless pseudotime must be:

At

kAt k drt
Atap - z - 2
or,, or," g Hlpyug(T)lclpy(T))
AtDi dt
(2.3.5) = (uc). [
Yo mlpyglthiclp, (1))
At
dt
z (uc)s )

0 u(pws(t))c(pws(r))

which, wunder the condition given by Eq.(2.2.13), gives relations very

similar to Eqs.(2.3.3) and (2.3.4):

1 Y+ 1
(2.3.6) Atao = AtDs{ 1 + eb1(; lnAtDs + 1n2 - 2 )}
_ (0) (1)
mes(At) = Mups (Atos) * €M (AtDs)
1 1 +1
(2.3.7) = —-{lnAtD + 1nk - y + sb1(—-lnAt + 1ln2 - )}
2 s 2 Ds 2
1 b Y+ 1
= — {(1 + —)1InAt_, + 1ln4 - v + b( 1n2 - )}
2 2 0s 2
b = eb1 where b1 is defined in Eq.(A2.1.14). If EQ.(2.3.7) is

compared with the perturbation solution, Eq.(2.2.14), it is seen that
except for the small quantity b/2(1n2 - 1/2) the two methods give

identical results to first order for buildup. The time dependence of
(1)

em;n8 » which gives rise to the change in slope, is exactly equal.

From this we draw the conclusion that, at least for the cases where
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the perturbation solution is valid, pseudotime effectively linearizes

the pseudopressure equation for buildup.

The reason for the slight shift between the perturbation solution and
the pseudotime solution is not quite clear, but may be due to the use
of the line source solution as the zeroth order solution 1in the
calculation of the correction term, mns‘1) in Eq.(2.2.14) (see also

Sec.2.4).

The validity of the pseudotime solution is based on an assumption of
small gradients [6,7]. This assumption 1s independent of the
assumptions on the variations in pc, and it is reasonable to believe
that this 1is a characteristic feature of the buildup prosess itself.
The fact that pseudotime produces the correct correction term to the
liquid solution for small variations in pc, may therefore be taken as
an indication that pseudotime gives good solutions also for stronger
nonlinearity where the perturbation solution breaks down. This 1is

also verified by all our numerical calculations.

Pseudotime has mainly been wused to study problems concerning
storage/afterflow and fractured wells [4,6,8,9]. These phenomena are
not considered in this vreport, but generally the pseudotime
approximation will be less good the more flow there 1is in the

reservoir after shut in.

As stated by Finjord [7], not only the equation, but also the inner
boundary condition will be changed when pseudotime 1is applied.
However, the extra terms in the boundary condition will also involve
the factor atalar. Hence, 1if these terms can be neglected in the
differential equation, it is reasonable to believe that they are

negligible also in the boundary condition.

If the solution in terms of pseudotime is to follow the liquid
solution for buildup, it is equally important that the initial
condition for the buildup equation, i.e., the solution profile at the
instant of shut-in, is equal to the liquid solution profile. We have
shown that the correction term for drawdown in the well quickly

approaches a constant value. Since the solution is given in terms of
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the Boltzmann-variable, vy = rDZ/AtUi, this implies that the correction
term as a function of radius at shut in will also be constant, except
for large (on a logarithmic scale) distances from the well. The
initial condition for the pseudopressure rise during buildup will
therefore be almost identical to the initial condition for the liquid
solution. The discrepancy for large distances will only affect the
solution for large shut in times, and for gas flow this deviation will

usually be negligible.




46 PART 2

4 DISCUS

To investigate the validity of the perturbation solution, Egs.(2.2.1)
- (2.2.4) was solved numerically using a routine for solving parabolic
equations in the NAG 1library [17]. Several different functional
dependences of (uc)/(uc)i on "h was used. The numerical solutions
were then compared with the simplified perturbation solution; i.e.,
the solution obtained with only two terms retained in the Taylor
series for pc (second order derivative terms and higher neglected).

For buildup, expansion about shut-in value was compared with expansion

about initial value.

Even if the perturbation solution is based on the assumption that the
nonlinear terms are much 1less than unity, it was found that this

solution was quite good even with a = ea1 and b = eb1 as high as

about 0.5, provided the higher order derivatives were of the same

order or smaller.

Fig.2.1 shows the first order correction term for drawdown, mwu(1),

calculated from EQ.(2.2.8) with only one term retained in the series
and ea1 = 0.1. Also shown is the asymptotic correction term, and it
is seen that m tn

wD

about the same time as the liquid solution approaches the logarithmic

reaches this constant value relatively quick (at

time dependence). It is also seen that the asymptotic solution based
on the pseudotime approximation is incorrect. However, since this
"pseudotime correction term” is an asymptotic solution for large
times, the pseudotime approximation may for small times be valid also

for drawdown.

The correction term for buildup, mwns‘1). calculated from

Eq.(A2.1.45), is shown in Fig.2.2 as a function of dimensionless shut-

in time based on (pc) for different production times. This solution

are compared with m'n'71) from Eq.(2.2.14) and Eq.(2.3.7). In these

calculations the drawdown correction term, i.e., the initial condition
(1)

for mu' is set equal to zero, an approximation that only affects
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the solution for large times. By looking at Fig.2.2 a rough estimate

of the time interval where Eq.(2.2.14) is valid may be found to be:

At (uc)s
(2.4.1) S T Rt P R
tp 100(uc)i

Shown in Figs. 2.3 and 2.4 are the solutions for two different
functional forms of (uc)/(uc)i. 1+ O.SUh and exp{O.SnB}. The drawdown
solutions are compared with the solution obtained by Kale and
Mattar(10], and it is seen that Eq.(2.2.9), even with only one term
retained in the Taylor series, corresponds better to the numerical

solution than the solution of Kale and Mattar.

The plots also show the difference between the solutions based on a
Taylor expansion of pc about initial and shut-in value. For the linear
case (Fig.2.3) the straight 1line used is the same whether upc is
expanded about initial or shut in value, but the validity of the
solution based on an expansion about shut in value depends on the
factor b, which in that case is smaller than a. For the exponential
case (Fig.2.4), a = b = 0.5, and the two solutions are of about the
same overall quality, but an expansion about initial value gives best
result for large At, and an expansion about shut-in value best result

for small At.

Note also that the solution plotted against pseudotime almost
perfectly follows the liquid solution in both cases, the discrepancy
for large times being due to the drawdown correction term as mentioned
in the previous section. The constant deviation between the
perturbation solution and the pseudotime solution in Fig.2.2 seems to
be due to an inaccuracy in the perturbation solution. The reason for
this is not evident, but as mentioned in the previous section, one
explanation can be that the line source solution is used as the zeroth
(1)

order solution in the equation for mn
8
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Even if the simplified perturbation solution, EqQ.(2.2.14), seems to be
reasonably good for quite large values of a and b, restrictions are
imposed on the solution when applied to real gas flow because of the
extreme form of pc. As mentioned by Dake [18]1, for high pressures
M p and ¢ «< 1/p approximately. That is, the variations in uc are
small for high pressures, and the liquid solution will in most cases
be sufficiently accurate. When the pressure drops below about 1000
psia, however, pc increases very rapidly (see Fig.2.5). The higher
order derivatives will be large, and more terms will have to be
retained in the Taylor series if the perturbation solution is to be
used. It can be shown that the next term in the Taylor series for
buildup will give a negative correction term. The correct straight
line (on a half-log plot) will lie between the liquid solution and the
one predicted by the simplified perturbation solution. Hence,
Eq.(2.2.15) and linear theory will give upper and lower bounds on the

absolute permeability, respectively.

Note that the degree of nonlinearity is given by uc/(uc)i as a
function of dimensionless pseudopressure and will depend both on

initial pressure and production rate as shown in Fig. 2.6

Results from the simulated examples 1, 2, and 3 are shown in Figs.
2.7, 2.8, and 2.9. It is seen that the drawdown correction term is
negligible in all cases. Since B given in Eq.(2.2.16) is less than
zero, it follows that for buildup, absolute permeability estimated
from linear theory will be too small. In the examples, the error
varies from about 3 7 to about 7 Z. The perturbation solution gives
best result in example 1, but is worse than the liquid solution in the

other two examples.

A Horner[16] analysis of examples 1, 2, and 3 gave the following

results (exact k-value is 1.5 mD):

Measured k from linear k from

slope, s: theory: EqliF2lr2itisin:
(psiZ/cp—logn) (mD) (mD)
Example 1: 7.50-10 1.46 1.51
Example 2:  15.63°10" 1.40 1.94

Example 3: 2.06°10" 1.46 1.62
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In some cases a better estimate of permeability from Eq.(2.2.15) may
be obtained by approximating pc by a straight line from (pc)i to
(uc)., but the general conclusion is that for real gas flow the liquid
solution wusually is equally good or better than the perturbation
solution. In those cases where the perturbation solution gives better
results, the error in the liquid solution is so small that it may be

neglected in practice.

However, in all cases pseudotime will give the best result when
analysing a buildup test, and if k has been determined from a standard
procedure, the factor b in Eq.(2.2.14) may be calculated to check if

the nonlinearity is significant and pseudotime should be applied.

The calculated skin factor will also be affected by the variation in
HCc. The error will depend on the value of uc and the point on the
buildup curve wused in the calculations, but the error will rarely be

larger than about 1.
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2.5 PSEUDOSTEADY STATE. EXACT MATERIAL BALANCE EQUATIONS

The exact material balance equations for one-phase flow may be found
by integrating the flow equation, Eq.(1.2.18) over the reservoir and

applying the theorem of Gauss:

ko 0
(120N 57%17) ) Ve {— Vpldv = | —(go)dVv
v 1] vat
ko d
(2.5.2) ] —Vp:ndS = — [ ¢p dv
s M aiay

S is the reservoir boundary, V the reservoir volume, and n unit outer
normal to S. If k 1is constant, and the reservoir has a constant

thickness h, the surface integral on the left hand side may be written

as:
ke e OJp o Op
— Vp-ndS = -2wkh{[— r—1] o (5 e )
g H g or . g or »
(2.5.3) 2 €
- {gwqw * Qeqe}

q' is the flow rate into the reservoir through the well and qe is the

flow rate into the reservoir through the outer boundary. 1If the flow
in the well is assumed to be incompressible (storage neglected) we

get:

(12:35754 ) 0wy = “04.0

where Qsc is density at standard conditions, and q is production rate

at standard conditions.
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If ¢ is constant, the right hand side of Eq.(2.5.2) becomes the change
in volume-averaged density times the porosity. The result is then the

material balance equation:

(2.5.5) = . Zsct, Bele

(2.5.6) e; - elt) = —=—=——

Introduce now the pseudopressure corresponding to average density
mit) = miplp(t))). If we use the equation of state to express

pseudopressure in terms of density rather than pressure:

elp) do

2Tp
(2.5.7) mlg) = e

sC g(pu) He

it follows directly from Eq.(2.5.6) that

m.

-~ 2Tp gt i pc - (uc).
(2.5.8) m, - m(t) = S¢ - ] — 1 4m
Tsc OVlWel;  Feey  twey

Correspondingly for the volume averaged pseudopressure:

_ 2Tpg. at 1 L
(2.5.9) m; - m(t) = P
Tsc wV(uc)i v

i pc - (“C)i P
—= dm

I {
V  mir,t) (Hc)j

It is seen that if pc is constant these expressions reduce to the
usual 1linear material balance equations with decline of average
pseudopressure being constant. Similar expressions may also be
obtained for the pressure. Eqs.(2.5.8) and (2.5.9) may also be

expressed in dimensionless forms:
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m
D uc - (pc)
~ - _ X
(2.5.10) mpltpai) = 2Wtp,; I e dm,
1
and
( ) 2 1 I ?D ST dm,} dvV
(2.5.11) Maltn,:) = 2wty,. - — — L dm
0'“DAL DAL v o, p (we); 0

Al-Hussainy et al.[2] state without proof that the volume - averaged
pseudopressure, m, for all practical purposes will be approximately
equal to the pseudopressure corresponding to average pressure m(p).
Our numerical results indicate that this will be the case also with m
and m(g), although it is not evident how to show this analytically.
The advantage of m compared to m or m(p) is that m, as long as pc is
known as a function of m, can be calculated from Eq.(2.5.8) for all ¢t
without knowing the solution m(r,t) in the reservoir. Eq.(2.5.8) 1is

easily solved numerically if a table of uc(m) is given.

If yc is approximated by an average value pc = (uc) , the relation
avg

used by Al-Hussainy et al., with m(p) replaced by f, is obtained:

- 2Tp, at
(2.5.12) m. - m(t) =
i 1 wV(uc)avg
or
~ (uc)i
avg

The problem now is how to calculate (uc)avg. One way is to use the
average between the initial and wellbore value. Another possibility
is to use (pc)(m). These two methods yield the following expressions

for ﬁ%, respectively:
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2
~
(2.5.14) mo(tDAi) = ———(-L“:—)W-F ZutDAi
1 + —
(uc)i

and

~ (uc)i
(i2.9.15) mD(tOAi) = z“tDAi

(uc) (Fy)

Note that (uc)
wf

state flow, so these equations are still not linear. Fig. 2.10 shows

%D(tDA') for the simulated example 6. E% are calculated from
1

Egs.(2.5.14) and (2.5.15), respectively and compared with the solution

and (uc)(%n) will not be constant except for steady

of the exact equation, Eq.(2.5.10). The difference is significant for
long producing times, and for this example a difference in mn equal to

one corresponds to a pressure difference of about 250 psi.

A closed reservoir with a slightly compressible fluid (liquid oil)
that is produced at constant rate will eventually reach pseudosteady
state or PSS. This state is characterized by a constant pressure
decline at every point in the reservoir and will never be reached for
gas flow. As shown by Al-Hussainy et al. [2] the solution of
Eq.(2.2.1) for 1large times will deviate significantly from the
solution of the linear equation. However, a gas well will reach a
state that resembles PSS in the way that the pseudopressure profile
will be approximately independent of time. The reason for this can be
seen from the discussion in Sec. 1.3, and the form of the uc-curve:
The variations in pc mainly occurs for large "h' but the region where

mD is large is the region close to the well where the right hand side

of the flow equation, Eq.(2.2.1), may be neglected (called Region 3 in
Part 1). In Region 4, where the expansion terms must be taken into
account, pc is essentially constant. Thus, the total solution profile
becomes approximately equal to the solution profile of the linearized
equation which is constant in time. (For an infinite reservoir this
corresponds to Region 1 where the solution is parallel to the liquid

solution.)
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That 1is:
r2
(2.5.16) m (r_ ,t ) = f(t) + - 1ln—
D'°D'D 2
2re ry
which implies f(t) = FE(t) - 3/4 if we integrate over the reservoir
and neglect terms of 0((r'/re)2). The result is thén the well-known
inflow equation:
T 2rkh _
= {m(t) - m(r,t)} = m (r,,t,) - ma(t.)
D'"D'"D D'"D
2T pgc Q
(2.5.17) )
r 0 r 3
= - n— - —
2
2re re 4

Inserting €q.(2.5.17) on the 1left hand side of the flow equation
yields 0p/0t equal to dg/dt, which is constant. This is the usual way
of deriving Eq.(2.5.17); starting with . the assumption that
dp/dt = dp/dt at all points in the reservoir. It 1is, however,
important to realize that this is not correct, even if the result is
very good. In fact, there may be a large difference in dp/0t from
point to point. For instance, at t = t in example 6, dp/0t at r = r

is more than 10 times dg/dt. The good Zesult is solely due to th;

region of large variations in dp/dt being included in Region 3.

The right hand side of Eq.(2.5.17) may also be written in terms of the

liquid solution g
. pDLIN

where ﬁ%(tUAi) may be obtained by approximating Eu with ﬁ% given by
Eq.(2.5.10). Note that the value of MC wused in the definition of
dimensionless time in €qg.(2.5.18) is arbitrary as long as the same

value is used in all terms.




PART 2 bib

Eq.(2.5.18) has only been verified for a circular reservolr with the
well in its center, and its validity also for a general geometry

should be investigated.

mo(rn,tDAi) calculated from Eqs. (2.5.10) and (2.5.18) is plotted in
Fig.2.11 and compared with the simulated example 6. The analytical
solution is in perfect agreement with the simulated solution for all r
and t except for very low pressures. The pressure will then become
approximately constant because uc approaches infinity, and Eq.(2.5.18)
will predict a negative pseudopressure. However, in practice other
constraints on the pressure will probably imply a decrease in

production rate before the pressure has reached this limit.

When approximating m with m it follows from Egqs.(2.5.10) and (2.5.18)
that:

(a4

Mp ge - (uc)i
(UC)i
or
Tsc 2nkh(
S UM S M (LEF AR TR (L) ) =l (it )
ZTpsc q 1 w wDLIN' "DAiL
(F27:51.210))
2wt ! 1 ‘A
S i) . + — 1n
DAL Y 2
2 e CArw

where CA is the Dietz shape factor [21], and

m.
1 pc - (pc).
(2.5.21) 6 IR (SR SR
mgy (wely

That is, a plot of m'f - I wv.s. time will give a straight line with

slope s, given by:




56 PART 2

2Tp q
5 & SC Absolute units
Tsc w(uc)iAh
(2.5.22)
qT . .
= 2.356 ——— Field units
w(uc)iAh

Reservoir limit tests for an o0il reservoir is described in Refs.
[18,20]. Generally, the wusefulness of conducting such tests may be
questionable due to the ideal conditions that the theory relies on.
However, in some cases it may be possible to estimate drainage area
using Eq.(2.5.20) provided the equation is valid also for a general
geometry. Since the drainage area has to be known to calculate the
integral in Eq.(2.5.21), an iterative procedure has to be wused. A

possible algorithm for this is then:
1) Make an initial guess on the drainage area.

2) Calculate m(t) and I(t) from Eq.(2.5.8). Note that this requires

an estimate of initial pressure.
3) Plot m - I(t) v.s. time on a linear scale.
w

4) If this gives a straight line, control the result by calculating A
from the slope wusing Eq.(2.5.22). 1If not, start again from 1).
Note that if the plot curves upward, the guess was too large, and

if it curves downward, it was too small.

As for an o0il reservoir, CA can be found by extrapolating the straight

line to t = 0:




(mi - mo)

(m. - mo) + 0.81
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LA Tsc 2wkh
InC, = 1n -
A Y. 2
ST Tpsc q
(2.5.23)
2.9 0 A kh
= o og-‘-— -
2 i
T 711qT
where mu is the extrapolated value of mL =T

Fig. 2.12 shows plots of n;(t) - I(t)
simulated examples 6 and 7.
are used in the calculation of I.
used in the calculation of I has
correct value before the deviation from a

seen.

for example 6 this corresponds to several years of

constant rate.

Straight 1lines were drawn through all 3 curves of m -
w

together with m (t)
w
Unfortunately,

straight

Data for several time units measured with tD

for the

One correct and two incorrect values of A

the drainage area

to be quite different from the

line 1is clearly

is needed, and

Ai

production with

I for the two

examples, and A and lnCA calculated from Egs.{(2.5.22) and (2.5.23).
These estimates were then compared with the area used as input to
Eq.(2.5.8). Correct values are A = 21.9-106 sq.ft for example 6, and
1.37-108 sq.ft. for example 7. lnCA = 3.45 in both cases. The
results are:
Example 6 Example 7

Curve 1 2 3 1 2 3
Slope, s
(10 psi /cp-hr) 75.83 86.80 96.04 247.9 286.7 369.7

7 .
My (-10 p512/cp) 122 130 136 12.82 13.64 15.00
Area calculated
from _Eq.(2.5.22) 2550 21.8 19.7 1.58 179317 0.989
(10 sq.ft.)
1n CA 1.85 3.54 4.81 0.54 3.53 8.39
Area used in the
calcglation of I 26.4 21.8 19.6 1.77 13T 0.950

(-10 sqg.ft.)
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2.6 BUILDUP FROM PSEUDOSTEADY STATE. ESTIMATION OF AVERAGE RESERVOIR
RESSUR

For buildup the pressure behaviour is determined by the solution
profile at shut-in. In the previous section we showed that the
pseudopressure profile is approximately equal to the profile of the
. liquid solution in pseudosteady state. That is, the initial condition
for the buildup solution is equal to the 1linear case, and the
discrepancy between the pseudopressure rise and the corresponding
liquid solution is only due to the variations in pyc during buildup.v
Consequently, we may find a perturbation solution as for the infinite
reservoir case. The procedure will be identical, except that the
initial condition for "53(1, will be zero for all r. Thus both the
perturbation solution and the pseudotime solution will be as in Sec.
2.2 - 2.4. The only difference being that mU will approach the liquid

solution when At »+ «, and the difference between mus(Ata and

D)
pULIN(At) for large At will disappear.
Dimensionless pseudopressure rise for example 4, 5, and &6 simulating

buildup from PSS are shown in Fig. 2.13.

A standard MDH analysis [15,20] of pseudopressure for these examples
gave k equal to 1.42, 1.42, and 1.41 mD, and an analysis using
Eq.(2.2.15), 1.52, 1.69, and 2.99 mD, respectively. The perturbation
method gave the best result in example 4, but as the pressure
decreases, this solution becomes worse than the liquid solution, which
gave a result within 6 / in all cases. Note that the pseudotime
transformation gives excellent results in all cases (example 6 is also

analysed in more detail on p.62).

Several methods have been proposed to correct for the variations in uc
when average pressure is estimated from a buildup test in a gas well.
Kazemi[5] presented a plot (his Fig.1) showing a dimensionless

pseudopressure function, mUHBH' corresponding to the liquid Matthews-
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- k ti ) 221. On th lot, m t ) ¢ tarts
Brons-Hazebroek function pDHBH[ ] e plo DHBH( o star

deviating from anBH approximately at t = tpss. Based on this, Kazemi
presented an iterative algorithm to estimate average pressure by using
t instead of production time in the Horner plot. Ziauddin [11] and
Tz;set al. [12] used the perturbation solution of Kale and Mattar [10]
to correct mDHBH for variations in pc. This is done by first obtaining
corrected dimensionless pseudopressure solutions for finite

reservoirs.

In Sec 2.2, we showed that the pseudopressure profile very closely
follows the solution profile of the liquid solution in the infinite-
acting period. In Sec 2.5, it was demonstrated that this is the case
also in pseudosteady state. A circular reservoir with the well in its
center has a very short transition period between infinite-acting and
PSS, and it is reasonable to assume that Eq.(2.5.18) is valid for all
times (in the infinite-acting period ﬁ% X ertnAi x 0). If this is the
case also for a general geometry, EQ.(2.5.18) has the important
implication that the error in estimated average pressure is only due
to the inaccurate buildup solution and is independent of the foregoing
drawdown. This may be the reason that the numerical results in Refs.

(111, and [12] seems to be correct despite several questionable

assumptions.

Note also that the validity of Eq.(2.5.18) for all times is equivalent
to the validity of the drainage-radius concept introduced by Aronofsky

and Jenkins [1] with pressure replaced by pseudopressure.
Eq.(2.5.18) may be written:

Tsc 2wkh

2Tpse 9

M- moest = pupLin(tpai) - 27tp,;
(2.6.1)

1 A
= E{lntDAi + 1n ;—7 + 1In4k - vy - PomeH (tpaill
w

Replace now At by Ata in the liquid solution for buildup, and wutilize

the normal Horner approximation:
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T 2wkh 1 At
—sc———(mws - M) = {in —20 , Inty; + 1lné - ¥}
2Tpsc q 2 tDi*AtaD
(2.6.2)
1 At
= ;'{ln T a + Inty, + 1né - vy}
(uc)i+Ata

* . .
m 1s defined as the limit of an when Atan + o in Eq.(2.6.2), i.e.:

T 2wkh 1
—SC it - ) = — {1nt,; + 1lné& - ¥y}
Myts Di
2Tpsc q 2
(2.6.3)
1{ —A 1 }
= — {1nt_.. . + 1n + 1né - v
2 DA; r 2

w

It now follows directly from Eqs.(2.6.1) and (2.6.3) that:

Tsc 2nkh( % ) 1 . :
(2.6.4) ——=—(m  -"m) = —'p :
ZTpsc q 2 DMBH " "DAL

Note that this result is independent of the difference between nuofs

and puDLINfs' Hence, if the drainage area is known, and the correct
MBH-function can be chosen, the standard MBH method [22] can be used
to estimate average pseudopressure. No iteration procedure 1is then
necessary. The only assmptions made in the derivation of Eq.(2.6.4) is
that Eq.(2.5.18) is generally wvalid, and that the pseudotime
transformation linearizes the flow equation for buildup. Similar
arguments may also be used to show that other standard methods to
estimate average pressure can be used as for an 01l reservoir with At

replaced by At .
a

All our simulation runs indicate that even when the perturbation
solution is not wvalid, the buildup pseudopressure in a certain time

interval will be of the form:
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TSC 2wkh 1 _ .
{mws - mwfs} = —{ (1+b )lnAtDS + 1nk -y + a' }
2TPgc Q 2
! . . (uclg
(2.6.5) = —{ (1+b')1nAtDi ¢+ 1nk -y + a' - (1+b')1ln
2 (uc)i

"

1
-{(1+b')lnAtD. + 1néd - y + a''}
2 1

As seen from Fig. 2.13 , b’ will, for low pressures be less than, and

a' larger than the values predicted by the perturbation solution.

The same procedure that lead to Eq.(2.6.4) now gives:

Tsc anh( x ) 1
m -m) = —m
= DMBH
2Tpsc q 2
(2.6.6)
! (t ) !
==0p T
2 DMBH "DAi 2
*
where m’ is the extrapolated value from a plot of n&s Vi S
At/(tp+At), and L S is the quantity shown in Kazemi's Fig.1 [5]. a''

will generally be a complicated function of initial pressure,
production rate and production time, but will be approximately equal

to zero before the boundaries are felt.

Note that what one obtains from an analysis of a buildup test is the
average pseudopressure. All our numerical results indicate that the
three quantities W, m(p), and M = m(P) will be approximately equal.
However, it still remains to show this analytically. An interesting
implication if m # m(P) # m(g) when the well is shut-in, is that m and
p will change during buildup. This is seen from the fact that @ has
to be constant during buildup in a closed reservoir, and that in the
limit when At + «, @ = m(p) = m(g) since all three values, m, p, and

@, then will be constant in space.
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As mentioned in Sec 2.5 the validity of Eq.(2.5.18) has not been
proven for a general geometry. It is also important to realize that
the method proposed here will not be valid for very low pressures
where Eq.(2.5.18) predicts a negative wellbore pressure. This may be
checked by computing m"f from Eqs.(2.5.18) and (2.5.8). However, it is

doubtful that any of the other proposed methods will cover this case

either.

Fig. 2.14 shows Horner plots for the simulated examples 6 and 7.
Example 6 is similar to the example used in Refs. [5,11,12]1, but the
production rate is constant in the production period. The
results from an analysis of the Horner plots (exact values are

given in parenthesis):

1. Standard procedure:

Example 6 Example 7
12 7 7
s (psi /cp-log+) 10.66-10 0.618-10
.2 7 7
mws(At=1hr) (psi /cp) 45.21-10 £.217-10
*
m (psi’/cp) 91.09-10" 5.921-10"
==)
k (mD) 1.41 (1.50) .6 (100)
S -0.85 (0.00) -0.42 (0.00)
tOAi 3.36 .67

m (psi’/cp)

69.2'107 (74.0-107)

.56-10 (4.74-107)
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2. Pseudotime procedure:

2
s (psi /cp-log-)

x 2
m (psi /cp)

m (psizlcp)

63

Example 6 Example 7
7 7
10.00-10 0.5966°10
7 7
93.95-10 6.0227°10
1.51 (1.50) 101 (100)
-0.02 (0.00) 0.04 (0.00)
3.60 4.84
73.11-107 (74.0-107) 4.70'107 (4.74-107)

The error in average pseudopressure calculated with standard procedure

corresponds to

Relative errors about § 7 and 3 7, respectively.

about 112 psi for example 6 and 12 psi for example 7.

corresponds to the results of Kazemi [5].

For example 6

this

The following expressions were used in the calculations (field units):

1637 qT
(2.6.7) K 2 —
hs
m (1hr)-m k
(2.6.8) S = 1.151{-Ws wis _ log—— + 3.23}
s w(uc)irw
(2.6.9) S = 1.151{ m - m 1 ——Jﬁ&L—?- }
.6. = 1. ———wfs .4 v 3.23
S w(uc)irw
0.0002637 kt
(2.6.10)  tp,. =

m(uc)iA

Standard
procedure

Pseudotime
procedure
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% S

(2.6.11) @ =m - p (t
2.303 DMBH

)

DAL

Values for pnnau‘tnAi) were taken from Ref.[20].
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2.7 CONCLUSIONS

1)

2)

3)

4)

5)

Solutions of the nonlinear gas flow equation that takes into
account the variations of the viscosity-compressibility product
are obtained by using a regular perturbation method and expanding
MCc in Taylor series about the initial and shut in values,

respectively.

If the wvariations in pc are relatively "nice”, all but the two
first terms in the Taylor series may be neglected. In this case,
simple asymptotic expressions are found for the first order

correction terms to the liquid solution.

For drawdown in an infinite reservoir, it is shown that the
correction term relatively quickly approaches a constant value.
That is, the solution of the nonlinear equation becomes parallel

to the liquid solution.

If the production time is sufficiently large, the solution of the
nonlinear equation for buildup is a linear function of log(At) in
a certain time interval (conf. EqQ.(2.4.1)). This interval is
included in the time interval where the Miller-Dyes-Hutchinson
(MDH) [15,20] solution is valid for an oil reservoir. However,
this semi-log straight line will have a slightly larger slope than
the 1liquid solution implying that the absolute permeability
obtained from standard analysis of the buildup pseudopressure

curve will be too low.

The solutions are applied to flow of real gases, and it is shown
that for drawdown the nonlinear terms normally are negligible. Due
to large wvariations in pupc for low pressures, the simplified
perturbation solution for buildup will estimate too large slope
for the pseudopressure if the shut-in pressure 1is low. However,

the slopes of the linear solution and the simplified perturbation
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6)

1)

8)

9)

PART 2

solution will give lower and upper bounds on the correct slope,

and hence the permeability-thickness product.

For buildup it is shown analytically that when the perturbation
solution is wvalid, it is equivalent to a solution based on
Agarwal's pseudotime transformation [4] in the semilog straight
line interval, except for a very small constant term. This is not
the case for drawdown where the pseudotime approximation implies a
first order correction term that increases logarithmically with
time for large times. The conclusion that pseudotime is not valid
for drawdown, which is also the conclusion of Finjord [7], is
reasonable since the validity of this approximation relies on an
assumption of small gradients (Lee and Holditch [6]). Even if the
pseudotime transformation effectively linearizes the flow equation
for buildup, a necessary condition for the pseudopressure solution
to follow the liquid solution is that the initial condition for
buildup is the same as for liquid flow. We hawe shown that the
pseudopressure profile is approximately equal to the profile of

the liquid solution both for an infinite and finite reservoir.

The well-known result that the pseudopressure profile 1in
pseudosteady state is independent of time and approximately equal
to the 1liquid solution profile, may be explained by introducing

different flow regions.

For a circular reservoir with the well in its center, the
transition 'befween the infinite - acting period and PSS is very
short. That is, the.pseudopressure profile is approximately equal
to the profile of:thg liquid solution for all t. This, in turn,
implies thatvan.application of Aronofsky and Jenkins' drainage

radius correlation [1] to pseudopressure is valid.

Exact material balance equations can be used to find the time
variation of the solution in pseudosteady state. The possibility
of wusing this to estimate drainage area from a reservoir limit
test is investigated, aqd:it is demonstrated that a reasonable
estimate of draiﬁage area may be obtained under ideal conditions.

However, this requirésfa té%t interval, with fhe production rate
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being constant, of several time units measured with tDAi

10) It is shown that the Matthews-Brons-Hazebroek (MBH) functions [221}
may be used to estimate the average pseudopressure from a buildup
test exactly as for an oil reservoir if pseudotime is used in the

Horner plot. No iteration procedure is then needed.
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NOMENCLATURE
A Drainage area
a = [ a ﬁ(”C)]. Dimensionless derivative of pc with respect
uc de = to pseudopressure initially
a Similarity coefficients (see Eq.(2.2.6))
B Defined by Eq.(2.2.16)
b= [ _l d‘HC)] Dimensionless derivative of puc with respect
uc de e to pseudopressure for r = r' at shut in
bn Similarity coefficients (see Eq.(A2.1.14))
CA Dietz shape factor [21]
c Compressibility
et
Eo(z) = — Exponential integral function of zeroth order [13]
2z
o e—t
E,(z) = [ —dt Exponential integral function of order 1 [13]
z t
E(r.tlro,tu) Green's function for an infinite region
defined by Eq.(A2.2.10)
05t < to
H(t-to) = Heaviside unit step function
Nt tn
I Material balance correction term defined by Eq.(2.5.21)
In. Kn Modified Bessel functions [13]
k Absolute permeability
h Reservoir height
m Pseudopressure (see Eq.(2))
Tsc 2wkh Dimensionless pseudo-
My = 2T p,. a (my - mlr,t)) pressure fall
Tsc 2wkh Dimensionless pseudo-
Mps = 2T p s (m(r, to+At) - mir,.ty)) pressure rise during
e buildup
m Volume averaged pseudopressure

m = m(g) Pseudopressure corresponding to average density
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b 4 %
m, m' Extrapolated values on Horner plots (pp.60-61)
m0 Extrapolated value on linear plot (p. 57)
e N'th term in asymptotic expansion (see Eq.(2.2.5))
n Unit outer normal to reservoir boundary
o] Pressure
pDLIN Dimensionless solution of the linear heat
equation (liquid solution)
[} Volume averaged pressure
q Surface production rate
T Radius
r' Radius of well
r. Outer radius of reservoir
rn = r/r' Dimensionless radius
S ~ Skin factor (except in Egs.(2.5.2) and (2.5.3))
S Slope
T Temperature
t Time
tp Production time
At = t - tp Shut-in time
kt
th; = —m8m8m— Dimensionless time based on initial value of pc
Di 2
(p(uc)irw
k(t-t ) ) ]
AtDs = —————2——5 Dimensionless shut-in time based on pc at shut-in
«p(pc)srw
t, Pseudotime, defined by Eq.(2.3.1)
kta
t = Dimensionless pseudotime
aD 2
er.,
At., At.U Shut-in pseudotime, dimensionless shut-in pseudotime

(see Eq.(2.3.5)
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Dimensionless time based on drainage area

Functions defined in Appendix 2.2

Reservoir volume

Boltzmann variable

Gas law deviation factor

Euler's constant

Small parameter (see Eqs.(2.2.5) and (2.2.6))
Porosity

Viscosity

Density

Volume averaged density

Initial value of uc

Wellbore value of pc at the instant of shut-in

Dimensionless
External

Flowing

Initial

Shut-in

Standard conditions
Well

Wellbore value at shut-in
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APPENDIX 2.1 SOLUTION OF A NONLINEAR FLOW EQUATION BY REGULAR
PERTURBATION

The non-linear problem given by Eqs.(2.2.1) - (2.2.4) is studied. In
this appendix all variables will be dimensionless. The subscript D is

therefore omitted for simplicity.

1. Orawdown, t < t
[}

Assume now that pc can be expanded in a Taylor series about the
initial value as shown in Eq.(2.2.6), and that the well may be
approximated by a line source. If we in addition assume that the
solution 1is a function only of the Boltzmann variable y = r2/£ti, the
problem is transformed to a boundary value problem for an ordinary

differential equation:

1d dm P n dm
y dy dy n=1 dy
(A2.1.2) lim m = 0
y-an
dm 1
(A2.1.3) lim y — = - —
y +0 dy 2

Insert now in Eq.(A2.1.2) a trial solution written as an asymptotic
series in ¢, Eq.(2.2.5), and identify terms to each power in €. The

result is then to the two lowest orders:

(A2.1.4) [dz (e )y 0 g g
1 + +=)—1lm = 0(e )

dy? y dy

and

2 o (0)

d 1d dm

(A2.1.5) — + (1+-)—1 w1 = a, (mf0))n ole')
dy y dy 1 dy
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The standard procedure is to let the zeroth order solution satisfy the
boundary conditions if possible, thus getting homogeneous boundary
conditions to higher orders. Eq.(A2.1.5) together with the boundary

conditions Eqs.(A2.1.3) and (A2.1.4) have the well-known solution:
(0) 1
(A2.1.6) m (y) = ;-E1(y) =

If the second derivative of m“’ is neglected in Eq.(A2.1.5), as done
by Kale and Mattar [10], Eq.(A2.1.5) may now be directly integrated to
give their Eq.(9):

(A2.1.7) €Em

where a = (uc-(uc)i)/(uc)i.

However, a general solution of Eq.(A2.1.5) may be found by the method

of variation of parameters. The result is then:

o3 a ©0 oo
(a2.1.8) V= AE (y) + B 4 I Sret (Eq () L E"yray - T g™ N(yiay
n=1 y Y

A and B8 are arbitrary constants, which may be determined from the

boundary conditions:

(A2.1.9) 0= 1im m{M(y) = 8
y “+ oo
am'1) ® a o
(A2.1.10) 0 = 1im0 y;— = -A - [ 2,,—[,‘1 I E,“(y)dy
y + y

n=1 0

Here it is assumed that the series converges uniformly and absolute

and hence may be derived term by term. This gives for m“’:
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©0 y 00
a
(a2.1.11) mMy) = - 1 —m L Eg) g E,"(y)dy + [ E,"T(y)dy }
n=1 y

B8y wusing properties of the exponential-integral functions, it can be

shown that the integrals in Eq.(A2.1.11) exists for all vy € [0,=).

. (1)
Note that in the variables r and t. the equation for m becomes:
1

19 9 ® am(0)
[-—(r —) - —] m1). I a, (mf0))n
r dr Or ot; n=1 ot
(A2.1.12)
a -y
_ n n
= I ST ===k tyihE
n=1 1
It follows that in terms of the functions Uk 1 and Vk 1 defined in

Appendix 2.2, the drawdown correction term may be written as:

(A2.1.13) m W ir,t) = 1 —fa" v (r,t.)
. . ) 1 - 1 Zn_ n'O ) l
ns=

It may be shown that the limit of am(1,/8r when r + 0 is zero with
m"’ given by Eq.(A2.1.11), even if dm“'/dy approaches infinity when
y + 0. Thus, the boundary condition, Eq.(A2.2.5), used in the
definition of U and V is consistent with the solution obtained

k,1 k,L
with the Boltzmann transformation.

2. Buildup, t > t :

p

The procedure for buildup is quite similar irrespectively of the
chosen value for expansion of HC 1s expanded about. The presentation
will consequently be restricted to the case where the shut in value is

chosen (p and ¢ is here dimensional variables):
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uc

(A2.1.14) =

where m. =

defined

coefficients.

In terms of m , the
8

1 om

——(r—°) =

r or Or
(A2.1.15)

uc[m(i.tp)]{ 1 +

(uc)s{ 1 + ¢ [1
n=

by Raghavan[23],

flow equation,

(uc)

(uc)i

APPEND?QRI.?

pelm(1,¢0)1 + Grlue) Im(1,t ) Hmir,t) - m(1,t,)} +

d
aﬁ(uc)[m(1,tp)]
uc[m(l.tp)]

{m(r,t) - m(1,tp)} + ...}

(-1)"bn ms"}

(m(1.tp) - m{r,t)) is pseudopressure rise during buildup as

and b, similarity

n=1,2,..., are

Eq.(2.2.1) then becomes:

with initial and boundary conditions:

(A2.1.16) ms(r,At=0)
(A2.1.17) lim m
I = oo
om

(A2.1.18) lim —3

r + 0 Or
At. = [(uc)i/(uc).]Ati
value of uc at r =
Eq.(A2.1.18) corresponds
and expresses the assumption that the
shut-in.
As for drawdown a

tried:

r
w

is

oo om
{1t + eI (-1)"bnms"} 9
n=1 a(At;)
o , om
{1 +eL (-1 m "} —2= r>0, At >0
n=1 o(Aty)
1, - , t >0
m( tp) m(r p) r
m(1,t ) At > 0
p
At > 0
dimensionless shut-in time based on the
and t =t Thé boundary condition,
to the line source condition for drawdown,

well may be neglected after

solution written as an asymptotic series in € is
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(A2.1.19)
= {m(O)(l.tp) - m(O)(r,t)} + e{m(I)(1,tp) - m“’(r.t)} + ...

This gives to O(eo):

13 9 0 (0)
(A2.1.20) [——(r—) - 1 mg
r Oor Or B(At)s

(0) - _ (0) _ (0)
mg (r,At=0) =m (1,tp) m (r,tp)

(A2.1.21)
1 1 2
(0)
om

(A2.1.22) lim m (00 = ml0)(q ¢ ), lim —S_ =g

r + e P r - 0 or
with solution:

(0) : . J

(A2.1.23) mg =-; E1(yp) - 5-51(y) +-; E1(Ay)

2
y = 1/4t = constant, y = r /4(t +At ), and Ay = rZ/LAt .
P P P s s

To the next order:

13 9 d = om_ ‘0!
(=St - 1m "= p o) (m (00 s
r or Or a(at) n=1 a(At) g
oo ‘Ay -y
b n e e
= L (-1)" =D {E,(y,) - Eqly) + E{(Ay)} { - —}
e S TERTY Y
(A2.1.24)
o0 n i
. . b . . - .
= I L 0™ ydy e iy g 30y Jay)
n=1 i=0 j=0 2" 1 P 1

. e Ay eV
At blt +At )
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(1) - - (1) _ (1)
mg (r,At=0) = m (1.tp) m (r.tp)

(A2.1.25)
“ a
. n 3
am(1)
(A2.1.26) vim m e M ey, lim =0
r + o P r + 0 0dr

A particular solution of Eq.(A2.1.24) that satisfies homogeneous

initial and boundary conditions 1is:

o n i
. . b . .
(. _qyn*i-j _“n_(n, i n-i
m =L L [ (-1) A1 4050 BTy

sp
n=1 1=0 j=0

(A2.1.27)

‘{ Vj'i_j(r.Ats) - Ui_j'j(r.Ats) }
Define now f(r.At.) by:

o a

= —_n_ -

(A2.1.28) f(r,Ats) = n£1 2n_1 { Vn,0(1,tp) Vn,O(r'tp+Ats) }

It is seen that f(r.At.) satisfies the 1initial and boundary

conditions, Egs.(A2.1.25) and (A2.1.26), and that:

(A2.1.29) [16( a) 10 f(r,Aty) .z. 20y olrat) 1 =0
T o L r, s r, =
r or Or B(Ats) s et on-1°n,0 s

Hence, a solution of the homogeneous equation corresponding to

Eq.(A2.1.24) satisfying the initial and boundary conditions is:

(1) _ § _%n _
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The complete solution of Eqs.(A2.1.24) - (A2.1.26) then becomes:

(1) (1) (1)

S sp
= I ; n‘0(1,tp) - Vn'o(r,tp+Ats) + Un,o(r'Ats)}
(A2.1.31) o _

n l . . . .

n+i-j ,n,,i n-i
+ bn‘[ L (-1) (i)(j) E1 (yp)

i=0 j=0

VTt - (At ) ) )

One disadvantage with EQ.(A2.1.31) is that the production time is
given implicitly through the functions Uk,l and vk,l' However, if the
shut-in time 1is much shorter than the production time, the solution
may be simplified considerably. For simplicity, the calculations will
be performed with only one term retained in the Taylor series.

Eq.(A2.1.24) then becomes:

(0)
T Y U T IO T TR
rdr dr  d(At), ° ts a(At)s
(A2.1.32)
o4y o Y
= -b { — HE (y ) - E(y) + E_(4y) }
1 LAt 1 7p 1 1

. 4(tp+Ats)

(1]
(e}

Assume now that Ats << tp. For small values of At. the disturbance
caused by the closing of the well will not have reached far out in the

reservoir. We may therefore also assume max{1/4t . r /4t } << 1, and
the right hand side of Eq.(A2.1.32) may be approx1mated by

e by
{A2.1.33) 9 = - b, { E;(Ay) + 2 1nr }
4At

2
When Ats << tp and r << ktp we may assume that only the constant part
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(1) 5
of the drawdown correction term, m , Wwill affect the solution.
Hence, we assume both the initial and boundary conditions for

Eq.(A2.1.32) to be homogeneous.

The first term in Eq.(A2.1.33) is identical to the first term in the
drawdown equation, Eq.(A2.1.12) with ti and a1 replaced by At’ and
-b1 , respectively. The solution of Eq.(A2.1.33) will then be equal to
b1{u - V1} where u(r,At.) is the solution of:

10 d ) exp{-r2/4At }
(A2.1.34) (-—(r—) - ——1 u = -1lnr S
r or Or a(At)s ZAts

with homogenous initial and boundary conditions.

For the Laplace-transformed of u, U(r:s), we get the following

problem:
1d du
(A2.1.35) ——(r —) - sU = -1nrK (r/s) , r>a0
r dr dr 0
(A2.1.36) lim U(r;s) = 0
T + oo
(A2.1.37) © lim U'(r;s) = 0O
r-+0

The general solution of Eq.(A2.1.35) is:

1 * T
Ulris) = AIg(z) + BKa(z) + — I (z) [ tln— Ka2(T) dT
0 0 so . I—S-U
'k (2) ; In—K (tV)I.(1) d
== 74 Tin — T T T
s 0, s
(A2.1.38) = AIg + 8K,
2
z 4 1
- — Igl (In— - 1)(K,2 - K,2) - — K.K. }
2s 0 s 0 L > O
. ff-x {(ln— 1) (K T, ¢ KoT.) + 2y
n— - + + —(K,I, - K, I
2% 0 I olo 114 25 Kol 11g) }




PABINB1x 2.1 | 2

Here Ko, Iu' K1, and I1 are modified Bessels functions of zeroth and
first order, all with argument z = r/s. The integrals are found from
formulas given by Luke [24] together with partial integration. The

boundary conditions imply A = 0 and B = 1/4s, and the complete

solution of Egs.(A2.1.35) - (A2.1.37) becomes:
1
U(r;s) = ——Ko(r/§7
bs
r2
(A2.1.39) + E—{lnr - 1}{K0(rf§)K1(r/?)I1(rf?) + K12(rf§)10(rf§)}

r
+ Tl—:ngoz(r/?)Iﬂrf's') + Ko(r/s)Kq(r/3)Ig(r/3)}

From asymptotic properties of the Laplace transformation found in
Ref.[26], e.g., it follows that a solution valid for large t and small
r may be obtained by expanding Eq.(A2.1.39) for small r/s before it is

inverted. The result is:

1 1
(A2.1.40) Ulr;s) = = —{ —1ns - 1n2 + vy + 1} rfs << 1
2s 2
i.e.
1 1 Y
(A2.1.41) ulr,t) = — { — 1nAt_ + 1n2 - —- 1 } At >> 1
2 s 2

From Eqs.(A2.1.11) and (A2.1.13) it follows that:

1 1 At
(A2.1.42) Vi,olr:btg) = - —J £ 2(ay)any = - S 1n2 =5
0

A solution for ms(1) valid for small r and 1 << At’ << t _ is then:
pi



86

b 1 Y
(A2.1.43) m{" = g —1nat, + 2102 - = - 1)
2 2 2

Note that the solution is independent of r.

The convergence of the various integrals and limits used in developing
this solution may be shown using properties of Bessel functions found

in Ref. [13], e.g., and will not be presented here.

For reference, the solution corresponding to Eq.(A2.1.31) when uc 1is
expanded about the initial value, and only one term retained in the

Taylor series, is:

m = a1 { V1‘0(1,tp) - V1'0(r‘tp+Atl) = V1'0(I‘.At1)

(A2.1.44)

+ U ,1(r'Ati) + Vv

0 '1(r,Ati) }

0

When only one term is retained on the right hand side, Eq.(A2.1.31)

becomes:

m = a1 { V1'0(1,tp) - V1'0(r,tp*Ats) + U1.0(r,Ats) }

+ b1 { E1(yp){ UO,O(r'Ats) - VO,O(r'Ats) }

(A2.1.45)

+ {V (r,At ) - U
nl s

0 'O(r,Ats) }

1

-1 V1'0(I'.Ats) = U0,1(r'AtS’ }}
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APPENDIX 2.2 DEFINITIONS OF THE FUNCTIONS Uk 1 AND Vk 1

The functions Uk 1 and Vk 1 are defined as the solutions of the

following linear, nonhomogeneous problems:

(A2.2.1) [ Lo ( 3 ) g 1U, .(r,t) (r,t)
22 ——(r—) - — Kkl u r

rdr or at Kkl k.1 r>o

(A2.2.2) [ 1o ( 2 ) 0 1V, _(r,t) (r,t) €20
ol — = — - —_— r, =V r,

rdr dr a9t kil k.1
(A2.2.3) U p(r.0) = Vi 1(r.0) =0
(A2.2.4) lim U = lim V = 0

I = oo k'l I = oo k‘l
ou ov
(A2.2.5) lim Kl gim K1 .4
r+0 Or r + 0 Or
k,1 = 0,1,2,
where
exp[—r2/4(t +t)] K rz 1 rz

(A2.2.6) U q(r,t) = d R FEv ]

' 4t + t) 4t _+t) it

p p
expl- rzl‘t] K rz 1 rz

(A2.2.7) Vk l(r,t) s E1 {_}E1 {———

. 4t 4t 4(tp+t)

Solutions of these equations may be found on integral form in terms of
the Green's function for an infinite region corresponding to the

radial heat equation:

(ad

(A2.2.8) U1 = J [ amr Uk, 10Tt JE(r t]ry t ddr dt,

o
o



PART 2 88
APPENDIX 2.2

(A2.2.9) Vk'1 =

O &

g 2wry vy g (rg g JE(r tr .ty )dr dty

where E(r.t[ro,to) is defined by:

2
H(t—tU)Io(rrOIZ(t—tu)) r +r

dw(t - to) 4(t-t0)

(A2.2.10) E(r.t]r0 ,to) g

H(t—tu) is the Unit step function.

Numerically, Ukl and vkl may be found either by solving the defining

equations directly, or from the integral forms given in Eqgs.(A2.2.8) -
(A2.2.10).
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P 3 EXAMP

To examplify the theory presented in this part, 7 examples of drawdown
and buildup in a gas reservoir were simulated. Except for example 7,

reservoir and fluid properties are as in the example of Ziauddin [11]

and are presented in Table 2.1 and 2.3. uc as a function of pressure

is shown in Fig. 2.5, and to illustrate the effect of different

initial pressures and rates, uc/(uc) v.s. mh is plotted in Fig. 2.6
1

for the simulated examples 1, 2, and 3.

The simulations were performed by transforming the problem to the
dimensionless form given by Eqs. (2.2.1). - (2.2.4). This system was
then solved numerically using a routine for solving parabolic partial
differential equations from the NAG-library [17].

Data for the different simulations is:

Example 1:

pi = 4000 psi, g = 4000 Mscf/d, tp = 27 hrs, p'f. = 2698 psi
(ue) = 4.47-10°° cp/psi, (we) = 6.72-107° cp/psi,

mi = 95.3'10; psiZ/cp. m'f. = 50.8'107 psizlcp,

tpni = 6.3-10 .

Example 2:

pi = 4000 psi, q = 8000 Mscf/d, tp = 27 hrs, p'f. = 876 psi
(ue), = 4.47-10"% cp/psi, (ue) = 1.72:10"° cp/psi,

mo= 95.3'10: psizlcp. LI 8.13'107 psiZ/cp,

tpﬂi = 6.3-10 .

Example 3:

pi = 1500 psi, q = 1100 Mscf/d, tp = 240 hrs, p'fa = 691 psi
(we), = 1.11-10"° cp/psi, (we) = 2.11°10"° cp/psi,

m.o = 17.3-107 psizlcp, m e ° 3.89-107 psizlcp,

t = 2.3°105,

pli
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Example &:
p. = 7000 psi, q = 5500 Mscf/d, t = 16000 hrs, p = 1943 psi
i -6 p -6 wfs
(uc)i = 2.29-10 cp/psi, (uc). = 8.94-10 cp/psi,
m = 203'107 psizlcp, m = 28.2-107 psizlcp,
i wfs
tpDAi = 2.52.

Example 5:

pi = 7000 psi, q = 5500 Mscf/d, tp = 20200 hrs, p'fs = 1127 psi
(we), = 2.29-10°% cp/psi, (we) = 1.39-10"° cp/psi,
rni = 203-107 psizlcp, m'f. = 10.0-107 psizlcp,
tpDAi = 3.19.
Example 6:
pi = 7000 psi, q = 5500 Mscf/d, tp = 22700 hrs, p = 202 psi

-6 -5 wfs
(uc)i = 2.29-10 cp/psi, (uc)' = 5.87+10 cp/psi,

mi z 203-107 psizlcp, m = 0.502'107 psizlcp,

wfs
tpDAi = 3/.58.

For example 1, 2, and 3, the reservoir may be considered infinite in
extent. Example 4, 5, and 6 demonstrate depletion of a closed

reservoir and buildup from PSS.

In addition an example with a small reservoir and high permeability
was run to simulate a reservoir limit test. The reservoir parameters
are shown in table 2.2. The fluid properties were as in the other

examples and are shown in Table 2.3.

Example 7:
pi = 1500 psi, q = 5500 Mscf/d, tp = 550 hrs, p'f' = 352 psi
(ue) = 1.11-10"° cp/psi, (uwc) = 4.10-107° cp/psi,
! 7 2 s 7 2
mi = 17.3:10 psi /cp, m'f. = 1.05°10 psi /cp,

tpDAi = 4.82.
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Well radius 0.276 ft
Radius of reservoir 2640 ft
Reservoir height 40 ft
Absolute permeability 1.5 mD
Porosity 0.05
Temperature 5700R
Table 2.1 Reservoir properties. Examples 1 - 6.
Well radius 0.276 ft
Radius of reservoir 660 ft
Reservoir height 10 ft
Absolute permeability 100 mD
Porosity 0.2
Temperature 8700R

Table 2.2 Reservoir properties. Example 7.
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plpsi) m(psizlcp) plcp) c(1/psi)
200 2312233ET .01265 .50944E-2
400 .12865E8 .01295 .25914E-2
600 .28808E8 <013313 .17539E-2
800 .50834ESB .01377 .13316E-2
1000 .7T8731E8 .01419 L10744E-2
1200 .11229E9 .0146¢4 .89907E-3
1400 .15118E9 .01514 .76988E-3
1600 .19507E9 .01565 .66927E-3
1800 .24361E9 .01618 .58766E-3
2000 .29635E9 .01677 .51954E-3
2200 .35174E9 01743 .46158E-3
2400 .41223E9 .01813 .41168E-3
2600 .4 T4&34LEY9 .01887 .36842E-3
2800 .53862E9 .01961 .33077€E-3
3000 .60477ES .02035 .29790E-3
3200 .67245E9 .02110 2691 TE=-3
3400 .T4140E9 .02185 .24400E-3
3600 .81134E9 .02260 .22191E-3
3800 .88206E9 .02336 .2024T7E-3
4000 .95336E9 .02412 .18533E-3
4200 .10251E10 .02485 .17017E-3
4400 .10972€E10 .02558 .15672E-3
4600 .11695E10 .02629 .14476E-3
4800 .12419E10 .02700 .13409E-3
5000 .13144E10 .02770 .12455E-3
5200 .13869E10 .02839 .11599E-3
5400 .14593E10 .02906 .10828E-3
5600 .15317€E10 .02970 .10134E-3
5800 .16040E10 .03033 .95050E-4
6000 .16762E10 .03095 .89351E-4%
6200 .17482E10 0311155 .841T0E-4
6400 .18201E10 .03214 .19449E-4
6600 .18918E10 032713 .75136E-4
6800 .19633E10 .03332 .7T1188E-4
7000 .20346E10 .03389 .67565E-4
7200 .21056E10 03447 .64234E-4

Table 2.3 Gas properties corresponding to a natural gas with
gravity y = 0.7 (from Ziauddin [111]).
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DRAWDOWN CORRECTION TERMS DRAWDOWN SOLUTIONS
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Fig. 2.3 Numerical and analytical solutions for r = r, of
5
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DRAWDOWN CORRECTION TERMS DRAWDOWN SOLUTIONS
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Fig. 2.4 Numerical and analytical solutions for r = r_ of
Egs.(2.2.1) - (2.2.4) with Lu:/(uc)i = exp{O.SmD}. In the
perturbation solutions only two terms are retained in the
Taylor expansion of pc/(pc);, i.e., €a; = eb) = 0.5,

— 5
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Fig. 2.6 uc/(pc); vs. dimensionless pseudopressure fall, example 1, 2,

and 3. The vertical lines corresponds to zero pressure for

the respective examples.
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Fig. 2.7 Example 1.

Perturbation solution and pseudotime solution, compared
with simulated pseudopressure and liquid solution

respectively. r = r_.
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Fig. 2.8 Example 2.

Perturbation solution and pseudotime solution, compared
with simulated pseudopressure and liquid solution

respectively. r = Toe
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Fig. 2.9 Example 3.

Perturbation solution and pseudotime solution, compared
with simulated pseudopressure and liquid solution

respectively. r = L.
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mp = 23.3 corresponds to zero pressure.



101

PART 2
EXAMPLE 6
"8\. E—.‘ T T
~ 3 = 2900 ft
ot if-
j% 5 = 2640 ft
~ 2 = 2500 ft =
S 3
T RS —-
o
EH ng —
é; NN
o o 9 00
o 3
b 3 .......
& 8- Mo f o
] —mye - I 1
£ =
- 3 2
$ 'llll’l"fl'rrll"!llrlIl"l’l’lllrr"fl'f'Tl"T'lf
C (00 200 300 400 SO0 600 <700 80C 900 {000
t (days)

(psi¥/cp)

-7

mwf or mwf—I °10
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TWO-PHASE FLOW
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Undoubtedly, one of the most important tools in well test analysis has
been solutions of the linear diffusion equation. This also apply to
two-phase pressure tests. Muskat [1] solves the model equations for
two-phase flow in a few special cases, but most of the work so far has
been concentrated on how these complicated equations can be
transformed to the familiar diffusion equation, and how the well-known
solutions of this equation can be used to analyse well tests where
both o0il and gas are flowing simultaneously in the reservoir. This

approach will form the basis also for this report.

Perrine [2] suggested in 1956 that the mobility term in the diffusion
equation should be replaced by adding the mobilities of the individual
phases, and the total system compressibility by weighting the
individual compressibilities by the average saturation of that phase.
Martin [3] gave Perrine's empirical approach a theoretical basis by
showing that these modifications could be justified if quadratic terms
in Vp were negligible. Later Perrine's approach was studied
numerically by Weller [4] and Earlougher et al. [5] who demonstrated
its validity for small gas saturations. However, Weller showed that

the analysis becomes less accurate with increasing gas saturation.

In 1961, Levine and Prats [6] made numerical studies of the
performance of solution-gas-drive reservoirs and compared the
numerical solutions with a semisteady-state solution. This
approximate solution was based on the assumption that the decline rate
of the oil component (stock tank oil in place) at a given time is the
same at every point in the reservoir. The saturation profile was
calculated from the gas-o0il ratio (GOR), which was assumed to be
constant for all r and correspond to the pressure and saturation at

the outer boundary.
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The concept of pseudopressure was introduced to two-phase flow by
Fetkovich in 1973 [7], and Raghavan [8] presented in 1976 methods to
obtain the pressure-saturation relation needed in the calculation of
the pseudopressure function for drawdown and buildup. For drawdown
the producing GOR as a function of time was used, and for buildup the
producing GOR at the instant of shut-in. The method was also applied

to fractured wells [9]. In Ref.[10], Raghavan's method was used
together with Agarwal's [12] pseudotime transformation.

In 1981, another approach to pseudopressure was presented by
Boe et al.[11]. An analytical expression relating pressure and
saturation was developed, assuming that saturation is a wuniquely
defined function of pressure. This relation, which is valid for
infinite reservoirs, was used to calculate the pseudopressure
function. The wellbore S(p) relation was used both for drawdown and
buildup. B8¢e et al. claime that when pseudopressure is calculated
with their method a good adaption to the liquid model is achieved both
for drawdown and buildup. However, later results show that the
buildup solution is highly rate sensitive and not as good as may be
inferred from the results in Ref.[11] (Skjaveland[13] and Whitson[14]

p.123). This is also confirmed by our simulation runs.

As noted by Whitson [14], most of the contributions involving a
pseudopressure function are closely related to an approach suggested
by Evinger and Muskat as early as 1942 [15)(or Ref.[1] p.336 ff.)
based on steady state flow. Whitson concludes that most of the work
done after 1942 could have been saved if the work of Evinger and
Muskat had been considered more seriously, and that it is questionable
trying to solve the fully diffusion equations given the uncertainties
associated with the definition of realistic relative permeabilities.
However, even if it turns out that the Evinger/Muskat method is
satisfactory from an engineering point of view, one has to start with
the exact equations to explain why a method based on steady state flow
seems to work also for semisteady and transient flow included buildup.
Hopefully, the validity and connections between the different theories

are made more clear through this report.
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In Sec. 3.2 the model equations are discussed and presented on forms
suitable for studying. Then the special cases of drawdown and buildup
in solution gas drive reservoirs - both infinite and finite - are
studied in Sec.3.3 and 3.4. For buildup the applicability of the

pseudotime transformation is considered.

One of the main problems concerning two-phase flow is the relative
permeability curves. Models exist for relative permeability based on
the characterization of the porous media and the flowing fluids, and
in Ref.[16], Standing has developed correlations both for drainage and
imbibition processes. Very often, however, the relative permeability
relationships in the reservoir is not well known. Based on the
pressure-saturation relation developed in Ref.[11], attempts have been
made to estimate relative permeabilities from drawdown tests with
varying success [17]. To investigate the possibility of estimating
the parameters used in Standing's correlations, one of the simulated
examples was analysed using several incorrect relative permeability
relations to see the effect on the drawdown and buildup pseudopressure

curves. The results are presented in Sec. 3.6.

The theory is examplified by several simulated drawdown and buildup
tests, and seven simulation runs are presented. Example 1-6 simulate
a solution gas drive reservoir, and one simulation of a gas condensate
reservoir is presented to demonstrate the general applicability of the
theory. The results from this simulation are presented in Sec. 3.5.
Reservoir and fluid properties are the same for all solution gas drive
examples, only initial pressure, production rate, and production time
are varying. Initial bubble point pressure is assumed to be 4000 psi,
and 1initial pressure is equal to initial bubble point pressure except
for example 1, which demonstrate the case where bubble point pressure
is passed during production. Example 2, 3, and & show the effect of
different production rate in an infinite-acting reservoir (q° = 50,
100, and 200 stb/d, respectively), while example 5 and 6 demonstrate
effects of a closed boundary and buildup from pseudosteady state.
Production rate is 100 stb/d for example 5 and 200 stb/d for example
6.
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All simulation runs were performed with a 2-dimensional, 3-phase
reservoir simulator capable of handling both variable bubble point and
variable dew point pressure[18]. The data for all simulation runs are

presented in Appendix 3.1.
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We assume that the fluid flow can be described by the B-model
described in Sec. 1.2. The flow is then given by Eq.(1.2.14), which

in the notation of Boe et al. [11] may be written:

¢ 0
(3.2.1) v-{ a(p,S)Vp } = — —blp,S) gas component
k Ot
¢ 0 .
(3.2.2) Ve{ alp,S)Vp } = I BEB(D'S) 0il component
(t31527131) S = S° = 1 - Siw - Sg

where a, b, a, and B are functions of pressure and saturation defined

by:

(3.2.4) a =19 . Rgy ——
u.B u.B
g9 g 0 0
(3.2.5) =2 4, r _Tg
u.B 59 u,B
o°o g g
S, e 5
(3.2.6) b = 5 + Rso];-
g o
S S
(13125275 70) B =9 + rsg__g_
B, By

One main question now is whether it is possible to reduce the system
of equations, Eqs.(3.2.1) and (3.2.2) to one single diffusion equation
of the same form as the real gas equation, Eq.(2.1.3);: and eventually,
how should it be done? Further, will the results from Part 2 be

applicable to account for the nonlinearities in this equation?
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Based on the results in Refs.[7-11], a pressure transformation seems
to be a reasonable approach to the problem. However, since different
methods of calculating this transformation have been presented, a

general integral transformation of pressure is considered:

p
(3.2.8) m(p) = J f(p')dp’
P

f is a function of pressure not yet defined. The choise of reference

pressure 1is arbitrary, and p is chosen for practical computational
1

reasons. Note that this choise results in a negative pseudopressure

when applied to a drawdown/buildup process.

For constant rate drawdown, pressure will be a strictly monotone
function of radius and time. This will not be the case for buildup
since the pressure, except for points close to the well, will continue
to drop for some time after shut-in. This pressure drop will be very
small, however, and it should be a reasonable approximation to assume
that pressure will be a strictly monotone function of r and t both for
drawdown and buildup separately. Saturation may then be written as a

function of pressure and time or pressure and radius, respectively:

S = S(r,t)
(3.2.9) = S(r,t(p,r)) = S(p,r)
= S(r(p,t),r) = S(p,t)

Note that this relation may be different for drawdown and buildup.
Note also that for a general rate history this approximation will not

be valid, and each case then has to be considered separately.

Using Eq.(3.2.9), Eq.(3.2.8) inserted in Eqs.(3.2.1) and (3.2.2) then

vields the following equations:
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[gg{gg} +%%Jam .

L)
(3.2.10) vem = — r — - —V3)-m
k a ot a
9
2 ® [ g'g{g%}r + 3’%] am f o
(3.2.11) m = — — - — V% -Vm
k o ot o

or by introducing the generalized compressibility-mobility ratios

(c/A)* (defined in Ref.[11]) and (c/A)*‘

2 ® ¢ Om f a
{(3.2.12) Vm=—(-) — - — 9¥(=)-Um
k A 0ot a f
b 4
2 ® ¢ Om f _ «a
(3.2.13) Vm=—(=) — - — V(=)-Vm
k A ot o f

{BS/ap}r is defined as the derivative of S with respect to pressure
when written as a function of pressure and radius, i.e., along a line

parallel to the time axis in the r-t plane for radial flow.

As pointed out in Part 2, one of the most important objects of the
pseudopressure transformation is to linearize the inner boundary
condition, which in this case may be a specified surface oil or gas
production rate or a specified linear combination of both. If the well

is located at r = 0, we get, respectively:

dp q
(3.2.14) lim {ar— } = —9-
S or 2wkh
or
op q
(3.2.15) lim {a r— } = —9

RS or 2wkh
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Hence, if an o0il production different from zero is given, f must be

chosen so that:

(3.2.16) flp,(t)) = a(pw(t).sw(t))

This 1is possible as long as pressure is a strictly monotone function

of time at r = r'.

The boundary condition for m then becomes:

om q
(3.2.17) lim {r—} = —2
r-+r, or 2wkh

Note that if the well is closed in and both q° and qg are equal to

zero, the boundary condition is linearized irrespectively of f.

In the rest of this report, except for Sec 3.5, it will be assumed
that the reservoir is an oil reservoir with a given oil production
rate, but as noted by Boe et al. [11] any linear combinationvof a and
o corresponding to a given linear combination of q° and qg can be used

in Eq. (3.2.16).

Equations similar to EQs.(3.2.10) and (3.2.11) may also be obtained
for pressure, and if quadratic gradient terms can be neglected both
equations reduce* to the eg:ation (12) of Martin [3] with ct/At
replaced by (c/A) and (c/A) , respectively. In this case the

quantities are identical and reduce to:

(3.2.18)
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where
c S dR dB S dr ds k k
(3.2.19) -tz (-9 B0 ._09, —S(p,—22 - —9) }/{ Lo, I3,
At Bo gdp dp B9 dp dp Ho ug

*
Note that (c/A) simplifies to ct/A‘ if R

Zero.

Since o too may be written as a function of
pressure and time when Eq.(3.2.9) is valid,

of defining the pseudopressure function is:

p
(3.2.20) me(p) = [ alp';r) dp’
Pi
or
p
(3.2.21) my(p) = I alp';t) dp'
Pj

That is, we may integrate over time at a o]
for a fixed time. A combination of these two
used, and one choise which linearizes the inn

all t is:

m(r,t) = mrw(pw(t)) + mt(p(r.
(3.2.22)
p,(t)
= Y a(p';rw) dp' +
Pi

Note that EQ.(3.2.22) combines both the pse
Fetkovich [7] for pseudosteady and stead

pseudopressure as calculated by Raghavan [8].

orr are identically
so sg

pressure and radius or

two natural possibilities

iven point or over radius
definitions may also be

er boundary condition for

t))

plixrith)
J  alp';t) dp'
pw(t)

udopressure as defined by

y state flow and the
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Since o generally will be a different function of pressure at
different times mt(r) will be a function of both r and t, and the

equation for m (when defined by Eq.(3.2.22)) becomes:

am v c * p(r,t)

2 $ c . .
(3.2.23) "m = — (=) — - —(-) 1) {—(p';t)} dp
k A 0ot k A
pw(t)

If saturation is uniquely defined by pressure, all these definitions
of pseudopressure are equivalent. In that case, a and a will also be
uniquely defined by pressure, and the last term in Eqs.(3.2.13) and
(3.2.23) dissappears by choosing f(p) = alp). If, in addition,
saturation and pressure are functions of the Bolzmann-variable
y = ¢r2/£kt. Eqs.(3.2.13) and (3.2.23) reduce to the single equation
presented by Bee et al. [11] (their (Eq.(10)). Following the
procedure of Bee et al., it is in this case easily shown that the

relation between pressure and saturation is:

( da da )(ap)z . ob 0B ) ® Op

3.2 20) as _ "3 ~ *3p ''ar %8 " “3p ' k Bt
o dp da da Op < 0B ob ¢ dp
(a—=-a— ) =) - ( am— - a— ) — —

9S oS  Or 0s 0S k Ot

€q.(3.2.24) reduces to the equation of Bee et al. (their Eq.(17)) if

the Bolzmann-variable is introduced.

Based on the fact that both the pseudopressure function presented by
Raghavan and by Boe et al. behave very similar to the real gas
pseudopressure function, one could be tempted to seek a perturbation
solution of Eq.(3.2.13) by neglecting the last term to zeroth order.
If the magnitude of Vm is of the same order as the time derivative and
the Laplacian, f then have to be equal to o to zeroth order. This 1in
turn requires that saturation to zeroth order 1is a function of
pressure only. It is possible to show that a perturbation procedure,
where p and S are expanded in asymptotic series with S = S(p) to

zeroth order, will produce a sequence of linear diffusion equations
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for pressure under certain conditions on the coefficients a, b, o, and
8. The saturation is then determined from conditions on the
coefficients in the corresponding pressure equation. To zeroth order,
the relation between pressure and saturation reduces to Eq.(3.2.24).
However, since the equations quickly become very complicated and the
application to well test analysis is not evident, this idea will not

be pursued here.

Due to the nonlinearities of the flow equations, it is not possible to
generate solutions corresponding to a general rate history directly
from the constant terminal rate solution for two-phase flow as for
flow of a slightly compressible liquid where the flow equation is
linear and the superposition principle is valid. Hence, if we want to

make use of the well-known liquid solution, it is necessary to study
each situation separately, and hopefully be able to utilize the

characteristics of flow in each case.

Based on Egs.(3.2.13) and (3.2.23), together with the assumptions
stated at the end of Sec. 1.3, the possibilities of reducing the flow
equations to the familiar diffusion equation for drawdown and buildup
will be investigated in the following sections. However, note that
even if the flow equations are reduced to an equation similar to
Eq.(2.1.3) with pc replaced by (c/A)*, we are still left with the
problem that (c/A)* is not wuniquely defined by pressure or

pseudopressure, but rather is a function of two independent variables:

* * *

C — —
{3.2.25) (XJ = (A, (p,S ) = (A) { x,t )

or if pressure is a strictly monotone function of time or space,

respectively:
* *
(3.2.26) (%) = (%) ( plr,t),r )
* *
C
(3.2.27) (X = ‘fT’ ( p(r,t),t )
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This additional problem, which was not present for gas flow, will be

discussed for each case separately.

When passing pubble point pressure or dew point pressure, the
derivatives of pressure and saturation may be discontinuous, thus
introducing further difficulties. One of the simulated examples has
initial pressure above the bubble point pressure, and for most of the
examples, parts of the reservoir become single-phased shortly after
shut-in. However, this does not seem to seriously affect the

calculated pseudopressure.

Most plots show dimensionless pseudopressure as a function of
dimensionless time. The dimensionless variables are defined similarly
to the corresponding quantities for gas flow, confer the list of

symbols on p.143.
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In this section production with constant surface o0il rate is studied.
Pressure and saturation are assumed to be wuniformly distributed
initially. First, the reservoir is assumed to be infinite in extent,

then the effect of a closed outer boundary is considered.

If saturation is wuniquely defined by pressure at all points, a and
(c/A)* will be functions only of pressure. As mentioned previously,
the undetermined function f(p) in Eq.(3.2.8) may then be chosen equal
to alp), and it follows that Eq.(3.2.13) becomes identical to
Eq.(2.1.3) with yc replaced by (clA)*. Hence, the results in Part 2

concerning the variations in pyc will be valid also for two-phase flow.

Boe et al.[11] argued that saturation is a unique function of pressure
in the infinite acting drawdown period because both saturation and
pressure are strictly monotone functions of the Boltzmann-variable
y = ¢r2/4kt. This statement would be correct if the flow equations
were linear, but for a system like Eqs.(3.2.1) - (3.2.2) one cannot be
sure that all solutions are found when one solution being a function
of y is found. However, it may also be argued from a physical point
of view that saturation is a unique function of pressure as long as
the resevoir is homogeneous and infinite, and both pressure and

saturation are uniformly distributed initially:

A given pressure drop in a saturated oil will result in a change in
saturation. Since the permeability of free gas is different from the
permeability of the o0il phase, this may also result in a change in

composition, but as long as there are no constraints on this process
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and the initial o0il saturation and composition are the same at all
points, there is no reason to believe that the process should be
different from point to point. However, if there 1is a no-flow
boundary present, the composition is forced to be constant along this
boundary. At r = r.. the saturation corresponding to a given pressure
will therefore be given by the pressure-saturation relation of the
initial fluid composition, and may be different from the saturation at

other points having the same pressure, but a different composition.

This is clearly demonstrated in Fig. 3.2 where saturation 1is plotted
as a function of pressure at different points, and in Fig. 3.3 where
lines of constant pressure and saturation are drawn for the simulated
example 5. Before the boundary is felt the pressure and saturation
lines coincide and are straight lines with slope 1/2 on a log-log
plot. This corresponds to both pressure and saturation being
functions of rzlt. After the boundary is felt, however, the curves

immediately start departing.

Based on this, we conclude that in the infinite acting period
saturation is a unique function of pressure, at least to a very good
approximation. As pointed out by Bee et al. [11], the pseudopressure
function can then be evaluated simply by using the correct pressure-
saturation relation at wellbore. This relation may be found from the
producing gas-oil ratio (GOR) as suggested by Raghavan [8], or from
the relation of Bee et al. (Eq.(3.2.24)).

GOR can be defined at any point in the reservoir by:

k R, k B
(3.3.1) GOR si:i&/”ﬂL* so¥ro / HoBo
@ kpo / MgBy * Tggkpg / MgBg
l1.e.
k B, GOR - R
(3.3.2) “rg . Yo% s0
kro  HoBg 1 - GOR ry
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Eq.(3.3.2) simplifies to the usual GOR-relation for a solution gas
drive reservoir if r.g 2 0. The producing GOR is given by a/a at
wellbore, and if krslkr° is a known function of saturation, Eq.(3.3.2)

can be used to calculate S(p).

Theoretically, both Raghavan's method and the method proposed by Boe
et al. will give the correct S(p). However, Raghavan's method is
simpler and also more stable numerically since the method of Bse et
al. implies solving a differential equation. Note, however, that when
S ¢S , GOR =R , and S cannot be determined from €Eq.(3.3.2).
9 gc 80 g

Saturation will then be given by the relative permeability of oil and

may be found from the relation of Bge et al.

Whitson [14] mentions as a problem that krglkro may become negative
for early times when calculated from Eq.(3.3.2). A negative
permeability is of course not possible physically, and if this
situation occurs in practice the explanation has to be either that the
measured GOR is different from a/a or the PVT data is incorrect.
Another possibility can be that the PB-model is invalid. In our
calculations of saturation using the gas-oil ratio, the gas saturation
is set equal to zero if the ratio krglkro becomes less than or equal
to zero, and any occurence of large negative values for the right hand
side of €q.(3.3.2) is not checked. 1In addition, this results in an
error in calculated saturation when Ss < Sgc, but for drawdown the
only effect on pseudopressure will be a constant difference for late

times as demonstrated in Fig.3.10.

The problem with krslkro < 0 may also occur for buildup, when
saturation is calculated from Raghavan's method. This case will be

discussed in Sec. 3.4&.

One important result of Beoe et al. is that GOR relatively quickly
stabilizes at a constant value. The region of stabilized GOR
corresponds to Region 1 on Fig. 1.1. and is also identical to the
"half-log straight line region” when no well effects are present. That
is, the constant GOR-method, refered to as the Evinger-Muskat method
by Whitson[14], will also give the correct wellbore pseudopressure for

late times, except for a constant term. Whitson analyses example 1 of
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Boe et al. wusing this method and GOR equal to the initial gas-
solubility, R . He obtains an estimate of absolute permeability
$§01

about 18 7 larger than the model input permeability. A better result
is obtained if the stabilized GOR is used.

x
The variations in (c/A) with m will, as shown in Part 2, result in a

slight shift in wellbore pseudopressure on a half-log plot. To
estimate the magnitude of this shift, (c/A)* may be calculated as a

function of pseudopressure when saturation and pseudopressure are
known as functions of pressure. However, (c/A)‘ has, for the solution
gas drive case, the characteristic form shown in Figs. 3.7 and 3.8,
and it would probably be better to assume a quadratic form initially
instead of a linear form as done in Part 2. Note also that the
variations in (c/A)* with rate in this case are much more complicated
than for gas flow. The irregularities in Figs. 3.7 - 3.9 corresponds
to the pressure points in the PVT table, and show how sensitive (c/A)*
and ct/At are to the calculated derivatives of b and B.

Another interesting feature with the (c/A)*-function is that it
becomes negative after some time. Since om/dt always is negative,
this implies that the pseudopressure profile must change from being
concave to convex. However, this always occurs in Region 1 where the

expansion terms are small, and the effect will usually be negligible.

Fig. 3.11 shows dimensionless pseudopressure and pressure compared
with the liquid solution for 5 of the simulated examples. Pseudo-
pressure is in all cases calculated from the simulated pressure-
saturation relation in block 1. Note especially that the
pseudopressure follows the liquid solution almost exactly in example 1
despite the discontinuity in compressibility when passing bubble
point. Note also that due to the different relative permeabilities
used, dimensionless pressure in example 3 and 4 is different from
example 5 and 6, respectively, but that the pseudopressure functions
are almost identical.
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Like a gas reservoir, a reservoir with simultaneous flow of both oil
and gas will not achieve a condition where the pressure drop is
proportional to flowing time. With “pseudosteady state” we will
understand a stabilized condition in a closed reservoir where the

effects of all boundaries have reached the well.

The most common pseudosteady state assumption is that the decline rate
of stock tank oil is the same for all r when the reservoir is produced
with constant surface oil rate, i.e., 0B/dt = dB/dt [6]. However, the
discussion in Sec. 2.5 concerning gas flow will apply also for this
case. That is, the assumption of constant 0B/dt will not be correct
near the well, but in that region (Region 3 on Fig.1.1) the expansion
terms will be negligible, and a solution may be found as for steady
state flow. In addition, most of the variations in pressure and
saturation occur in that region, and the effect of errors in the
calculated Region 4-solution will be limited. As for gas flow, the
final conclusion is that a good approximation to the solution in
pseudosteady state may be found by setting the right hand side of
Eq.(3.2.2) equal to dB/dt. dB/dt and db/dt are given by the material
balance equations for the oil and gas component, respectively, and may
be found by integrating the flow equations, Egs.(3.2.1) and (3.2.2)

over the reservoir:

db q
(3.3.3) e — 1
dt PAh
dp q
(3.3.4) —_= -0
dt ®Ah

Define now pseudopressure by EQ.(3.2.22) and approximate the right
hand side of Eq.(3.2.2) by Eq.(3.3.4). When terms of O(r'zlrez) are
neglected, the result is then the equations given by Fetkovich [71],
which 1is identical to the equations for real gas pseudopressure and

pressure in a slightly compressible fluid:
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2wkh r r2
(13743755)) {m(r,t) - mw(t)} = 1lpn— - 3

9% Tw 2re
and

2

2wkh _ T T 3
(3.3.6) {m(t) - m(r,t)} = 7 " ln — - —

q, 2re T 4

If these equations can be generalized to an arbitrary geometry and to

t <Ct<t » Eq.(3.3.6) may be written in a form corresponding to
eia pss
Eq.(2.5.18):
2wkh _
(3.3.7) {m(t) - m(r,t)} = pDLIN‘rD'tDi) - ZWtDAi

9

The saturation profile has to be known to calculate the pseudopressure
profile as defined by Eq.(3.2.22). However, in Region 3 the flow is
approximately steady state, and the expansion terms may be neglected.
It follows that:

(3-3.8) a X -l?
o r

and

Coilit])
(3.3.9) a = -2_§E
r or

where Ci(t) are arbitrary functions of time. That is:

Cylt)
C,(t)

a
(3.3.10) GOR = — =
a
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Consequently, in Region 3 the gas-oil ratio is independent of position
and hence equal to the producing GOR. This is also verified for the
simulated examples, and simulated drawdown GOR for example 5 is shown
in Fig. 3.5. Levine and Prats [6] assume that GOR is the same at all
points and corresponds to the pressure and saturation at the outer
boundary. However, an overall better saturation profile will probably

be obtained by using the wellbore value, i.e., the producing GOR.

Fig. 3.12 shows dimensionless pseudopressure profiles for example §
and 6 obtained by integrating the simulated pressure and saturation
over wellbore and over radius, respectively. Pseudopressure is also
calculated from the saturation profile obtained by assuming GOR equal
to the producing GOR for all r, and it is seen that this corresponds
very closely to the result when the simulated saturation profile 1is
used. In addition, both these curves are good approximations to the
liquid solution. At the beginning of pseudosteady state, also the
pseudopressure profile calculated from wellbore S(p) is approximately
equal to the liquid solution, as expected. For late times, however,

there is a significant difference.

Note that when the expansion terms on the right hand side of
Eqs.(3.2.1) and (3.2.2) are neglected, S{p;t) may be found from
Eq.(3.2.2%) neglecting terms involving 0p/dt. Eq.(3.2.24) then
reduces to the asymptotic relation for large t presented by Boe et al.
(their Eq.(21)). The connection between Eq.(3.2.24) and the constant
GOR method also appears on Fig.3.4 by comparing drawdown S(p)
calculated from Eq.(3.2.24) with buildup S{p) calculated with

Raghavan's method for example 5 and 6.

For gas flow, the material balance equation combined with the relation
between pseudopressure and density was used to calculate m(t). The
density now corresponds to B, but there is in this case no one to one
correspondence between m and 8. We have, with m defined by
Eql.i(i32rn22):
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om c ¥ plr.t) 54
) — - (=) I { —(p';t) } dp’

(3.3.11) — = -
P, (t) t

[«
ot A Ot A

Hence, if the last term in this equation can be neglected and
(c/A)*(m;r) approximated with a kind of average function of m,
(E7X3*(m), an equation corresponding to Eq.(2.5.8) may be used to
calculate the time variation. If (c/A)* from Fig. 3.8 is compared
with the corresponding plots of ct/At (Fig. 3.9), it is seen that
ct/At(p) seems to be relatively independent of position for drawdown,
and, in addition, this curve seems to be a reasonable average for
(c/A)*. With uc replaced by drawdown ct/At' m(t) and "L(t) was
calculated from €qs.(2.5.8) and (3.3.6) for example 5 and 6 with the
results shown in Fig 3.13. The calculated mL is much closer to the
simulated solution than the 1liquid solution is, but still a

significant difference makes it difficult to interpret a reservoir

limit test.

The results presented in this section are essentially well known
aspects of well performance. However, with pseudopressure defined by
Eq.(3.2.22), the different theories are combined in a compact form.
Using this definition, the pseudopressure profile will be
approximately constant in the pseudosteady state period, and the
continuous changes in well performance is taken care of by the time
variation in afp;t). It is shown that a good estimate of saturation,
and hence pseudopressure profile, may be obtained from an assumption
of constant GOR, and the connection to the Evinger-Muskat theory [15],
based on steady state flow, is thus established. We have tried to
show that these results follow from the exact model equations together

with basic assumptions about flow regions.

Application of these results to well testing is thoroughly described
for instance in Ref.[7] or Appendix A.8 of Ref.[14] and will not be
discussed here. In these papers good results is reported from
multirate testing of oil wells. However, the superposition principle
is a priori pot valid for the nonlinear equations describing two-phase

flow. If pseudosteady state has been reached between every change 1in
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rate, it 1is reasonable to believe that the pseudopressure profile is
given by equations corresponding to Eqs. (3.3.5) and (3.3.6), but care
should be taken to apply these results to multirate testing if this is

not the case.
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3.4.1 BUILDUP PSEUDOPRESSURE FUNCTION

As mentioned in Sec. 3.1, several methods have been proposed to
analyse two-phasg buildup tests. Perrine [2] suggested a simple
modification of the standard tests for liquid flow. Raghavan [8]
introduced the pseudopressure transformation, and to calculate the
pressure-saturation needed, the gas o0il ratio was assumed to be
constant during buildup. Bee et al. [11] used pseudopressure too, but
based on the fact that the pressure gradient during buildup is zero at
the well, wellbore saturation calculated from Martin's [3] pressure-
saturation relation was used to calculate buildup pseudopressure. For
all the simulated examples, this relation gives a good approximation
to the correct saturation at all points in the reservoir during
buildup. Saturation calculated from Raghavan's constant GOR
assumption, however, does not correspond to the simulated saturation
in this period (see Fig. 3.4). Despite this, buildup pseudopressure
calculated by the method of Bee et al. is highly rate dependent, and

this method seems to be inferior to the one proposed by Raghavan.

One of the fundamental assumptions stated in Sec 1.3 was that
quadratic gradient terms can be neglected during buildup. The
validity of the pseudotime transformation discussed in Sec.2.3 depends
on an assumption of small gradients, and as will be shown also the
applicability of Raghavan's method of calculating buildup
pseudopressure follows from this assumption. The reason for this can
be seen by looking at €Eq.(3.2.13). If the pressure gradient is small
enough and the coefficients in the flow equation behave reasonably
“nice”, it follows that the pseudopressure function will satisfy a
diffusion equation of the desired type almost independent of the
unction f hosen in Eg.(3.2.8). The inner and outer boundary
conditions are homogeneous and hence independent of f. The important

factor is therefore the initial condition, i.e., the solution profile
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at shut in. Since pseudopressure calculated from the saturation
profile at shut-in is a good approximation to the liquid solution
profile, and this saturation profile may be obtained from the
producing GOR, it follows that pseudopressure calculated from
Raghavan's method, approximately satisfies both the desired equation
as well as initial and boundary conditions; the only remaining problem
being the variations in (c/A)*. Note that pseudopressure as defined
by Bee et al. will satisfy the same diffusion equation approximately,
but not the desired initial condition. The difference in solution
profiles at shut in will increase with production rate and the stage
of depletion, and in turn affect the buildup solution. For infinite
reservoirs, Raghavan's method corresponds to using drawdown S(p)-
relation, and the method of Boe et al. corresponds to using buildup
S(p)-relation at wellbore. The difference is clearly demonstrated in
[Pl lodlo Vs It is, however, important to realize that the reason for
the validity of Raghavan's approach is not that the GOR is constant
during buildup. On the contrary, the GOR varies considerably during
the buildup period (see Fig. 3.6). From the plots of saturation wvs.

pressure, there is no evidence that pressure changes occur much faster
than changes in saturation either. In addition, f(p) as defined is
quite different from a for buildup. Hence, the determining factor is

the assumption of negligible quadratic gradient terms.

The accuracy of the constant-GOR method to calculate the saturation
profile will depend on the relative size of Region 1 or 3 compared
with Region 2 or 4, and the variations in GOR in the two latter
regions, but for all the simulated solution gas drive examples the
pseudopressure seems to be relatively insensitive to these variations.
Note also that the applicability of Raghavan's method for buildup is
increased by the fact that the buildup solution in the semilog
straight 1line period only depends on the solution profile in Region 3
(or 1), where GOR = constant is a very good approximation. Still, of
course, we are left with the problem that nonlinearity is decreasing
the size of Region 3 (or 1), and hence the length of the semilog
straight 1line, and it is possible that the straight 1line will
disappear completely, especially if well effects are present. However,
if the remaining part is sufficient for analysis, it may be concluded

that Raghavan's method gives the "correct"” pseudopressure function in
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this period.

The problem with negative k /kr when calculated from Eq.(3.3.2) may
in this case be due to GOR i;SReg;on 2 or 4 being 1larger than the
producing GOR. However, as mentioned by Whitson [14], this will only
happen at early stages of depletion, and the drawdown pressure-
saturation relation of Bee et al. may then be wused. Another
possibility is to extrapolate the S(p) or kro(p) relations.

Note that the procedure for calculating buildup m(p) outlined here is
equivalent to wuse the pseudopressure function defined by Eq.(3.2.22)
with t equal to the production time and p'(At) inserted as the upper

integration limit in the last term:

(3.4.1) mw(At) = mrw(pw(tp)) + mtp(pw(At))

However, in this case the equation for m will not be €Eq.(3.2.23), but
rather Eq.(3.2.13) with f(p) = alp;t ).
p

Provided that pressure can be assumed to be a strictly monotone
function of radius and time both for drawdown and buildup, we have
thus shown that the pseudopressure function can be uniquely defined

for all r and t by Eq.(3.2.22). For a given r and t < t ,
p

pseudopressure 1is then obtained by integrating first over time for
r = r' and then over radius for the given time. For a given buildup
pressure, the pseudopressure is equal to the pseudopressure
corresponding to the given pressure at the instant of shut-in. The

integration paths are shown on Fig.3.1.
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T _OF AT N o1

We have argued that buildup pseudopressure, when defined by
Eq.(2.2.22) and calculated as suggested by Raghavan [8], will

approximately satisfy an equation of the form:

2 c om
(3.4.2) Y'm= (=) —
A oAt

together with initial and boundary conditions as for 1liquid flow.
(c/A)* is defined by Eqs.(3.2.11) and (3.2.13), but will be given by
Eq.(3.2.18) when quadratic gradient terms can be neglected. For
solution gas drive reservoirs with rs9 =0, (c/A)* then reduces to
ct/At' When free gas is present, this is a rapidly changing factor
like for gas flow. In addition, it will not be a unique function of
pressure or pseudopressure, but rather a function of two independent

variables as indicated in Eqs.(3.2.25) - (3.2.27).

From Fig. 3.8 it is seen that there can be a significant difference
between the curves for different values of r. For example 4, 5, and
6, the gas saturation near the well quickly drops to zero, and (c/A)*
becomes approximately constant, given by the oil parameters. However,
farther out in the reservoir free gas is present during the whole

buildup period.

If the variations in (c/A)* could be accounted for by a kind of
average function of pressure, the results of Part 2 could possibly be
extended. The problem is to obtain such an average (ETX)*(p)-curve.
Verbeek reports excellent results when wusing an average of ct/At
between initial and wellbore values [10]. For the <case of buildup
from PSS, however, it is doubtful that this will be a good solution. A
possible method could then be to use an average between ct/At(i) and
ct/At(p'), but this requires that p and a corresponding saturation are

*
known. Refering to the plots of (c/A) and ct/At. a better solution
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seems to be to use the drawdown ct/At as a reasonable average also for

* .
the buildup (c/A) -curve. At‘ and At:'o are then defined by:

pws(At) d
(3.4.3) at, = f w3
Puts (cy/A¢) (dp,g/dt)
kAt
(3.4.4) At_, =
aD wrwz

The (ct/At)(p) function used is drawdown ct/)\t as a function of

wellbore flowing pressure.

Pseudotime was calculated by Eq.(3.4.3) for all the simulated
examples, and the results are shown in Fig. 3.15. 1In all cases, m'ns,
when plotted against pseudotime, very closely follows the liquid
reference curve as opposed to “Lou(AtOi) and an'(Ato.).

Note that since integration over radius is equivalent to integration
over time in the infinite acting period, drawdown (ct/At)(p) then will
be approximately equal to (ct/At)(p) for buildup if the pressure-

saturation relation calculated from Raghavan's method is used.

By examining the buildup (c/A)*—curves, it seems that a straight-1line
approximation to (c/A)*(m) should give better results than for gas
flow. The simplified perturbation solution, Eq.(2.2.14), was
therefore calculated from estimates of the derivative of (d/dm)(c/A)*
at shut-in, and, although not shown on the plots, this solution
corresponds very closely to the simulated solution except for example
g In example 1 the "S-shape” of m"(At) is very pronounced, and no

portion of the buildup curve can be said to follow a straight line.
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3.4.3 ESTIMATION OF AVERAGE RESERVOIR PRESSURE

According to the previous section, when pseudopressure is combined
with pseudotime, a good adaption to the liquid model is obtained for
buildup. As long as EQ.(3.3.7) is valid and the correct MBH-function
{191 can be chosen, average pseudopressure may therefore be estimated
from buildup tests in solution-gas-drive reservoirs using pseudotime,
Jjust as for gas reservoirs (confer Sec. 2.6). The importance of using

pseudotime is demonstrated in Fig. 3.15..

In Fig.3.17, the pseudopressure functions in Fig.3.15 are replotted
vs. inverse Horner pseudotime. Absolute permeability and skin factor
was calculated from these plots and average pseudopressure estimated
from m* using MBH-functions. p(m) was then calculated from the

buildup m(p) relation, which was extended to include the estimated m.

The results of the analysis are presented in Table 3.4 and compared
with the input model values and simulated average pressure. For the
simulated examples the estimated average pressures correspond very
closely to the simulated values, just as for a gas reservoir, but it

still remains to show the general validity of the assumption m = m(p).
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Spivak and Dixon [20] in 1973 suggested that gas condensate reservoirs
could be simulated analogous to black-oil reservoirs by assuming that
the transfer between the gas and liquid phases could be handled by a
r’g-term similar to Rso used in black-o0il simulation. In addition,
they assumed that R.o £ 0, i.e., the oil phase does not contain any

gas component.

At the same time, Fussell [21] presented a study showing that the K-
values and phase densities can be considered functions only of
pressure for many single-well performance predictions for gas
condensate reservoirs. Cook et al. [22] proposed that volatile oil
and gas condensate reservoirs could be simulated by a generalized -
model where the PVT variables were assumed to depend on a
compositional parameter in addition to pressure. Later, Whitson and
Torp [23] presented a method for calculating volume factors and
solubility factors as functions of pressure for volatile oil and
gas condensate reservoirs from a constant volume depletion experiment.
Both solubility of gas component in oil phase and volatility of the
0il component is then accounted for. However, in a recent work
concerning two-phase flow Whitson does not consider gas condensate
reservoirs "... because of the insufficient understanding of their PVT

properties.” [14].

The validity of the B-model for gas condensate reservoirs will not be
discussed here, but if such reservoirs can be described by a three-
component, three-phase model with only o0il and gas flowing, 1i.e.,
Eqs.(3.2.1) - (3.2.3), most of the results from the previous sections

should be directly applicable.
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To give an example of this, one simulation of a drawdown/buildup
process in a gas condensate reservoir was performed. PVT properties
were taken from Ref.[23] and are shown in Table 3.3. Reservoir
properties and relative permeabilities were the same as for the
solution gas drive cases. The reservoir was produced with a constant
surface gas rate, and pseudopressure was defined by Eq.(3.2.22) with a
replaced by a. Note that for single phase gas flow, this
pseudopressure function reduces to the real gas pseudopressure defined

in Part 2 except for the constant factor Tsc/2Tp.c

The results from the simulation are shown in Figs. 3.18 - 3.22 and are
very similar to the results from the solution gas drive simulations,

with some exceptions:

- The o0il saturation in block 1 continues to increase after shut-in,
and at the end of simulation the gas saturation near the well is
equal to zero. The mass production rate of gas component is in
this case higher than the mass production rate of oil component.
Hence, the continuing increase in o0il saturation may be due to the
fluid near the well being heavier during production, which in turn
makes the critical point shift to a temperature higher than the

reservoir temperature.

- The variations in (c/A)** are somewhat different from (c/A)*.
(c/A)** being positive for all pressures. For buildup,
(c/A)** ® ct/At. indicating that, at least for this example, the
correction term in Eq.(3.2.17) is negligible even if both R and
r's are different from zero. The irregularities in the (c/A) and
ct/At-curves correspond to the pressure points in the PVT table,

and again show the sensivity to the calculated derivatives of b and

B.

- For the simulated example, Raghavan's method for calculating
buildup pseudopressure [8] does not seem to be as good as for the
solution gas drive cases. For infinite reservoirs, the
pseudopressure based on the drawdown S(p)-relation should be
identical to the pseudopressure calculated with Raghavan's method

if the "constant GOR" approximation is valid at shut-in. However,
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in this case it seems that the size of Region 1 is significantly
decreased since the deviation occurs for relatively small At. The
point where the two pseudopressure curves start deviating from each
other corresponds to the point where saturation calculated with
Raghavan's method drops to =zero in Fig. 3.19. The calculated
pseudopressure thus seems to be more sensitive to inaccuracies in
the GOR used than is the case for solution gas drive reservoirs.
However, this may not be any problem with buildup from PSS. 1In the
last plot, buildup pseudopressure is calculated from the drawdown
m(p)-relation. Pseudotime is calculated from drawdown ct/Ae as in

the solution gas drive examples.



PART 3 137

3.6 EFFECT OF RELATIVE PERMEABILITIES

Application of the theory presented so far relies on the knowledge of
relative permeabilities as functions of saturation. However, even if
it is possible to define "average” relative permeability curves
capable of describing the flow of the two phases, these are difficult
to obtain. To investigate the effect of using incorrect relative
permeabilities, the simulated example 4 was analysed wusing other
relations than the ones used as input to the simulator. This was also
done to investigate the possibility of estimating relative

permeabilities from a two-phase pressure test.

The relative permeability curves were assumed to depend on two
parameters; the pore distribution factor A and the critical gas
saturation Sgc. The three-phase drainage relations of Standing [16]

were used. For S' = Si' = constant, these relations simplifies to:

o X, 2/A+3
(3.6.1) Kro ke So !

($37%67%2)) k

Y Xi2p - * . 2/A+1
rg = k20 sgM12 01 - (s ") }

* *
where So and S9 are effective saturations defined by:

S
(3.6.3) 5. —
iw
S. - 8
(3.6.4) s *=_"9 “gc
9 1 -8, -8
iw gc

kr° is the end-point relative permeability and is in all the

calculations set equal to 0.7.
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Simulator input for example 4 was A = 2.0 and S9 = 0.05 and
[

corresponds to the solid lines in Fig. 3.23. In addition to these

“correct” values, the example was analysed using 4 other combinations

of A and § :
gc

i) A= 2.0, S = 0.00

gc

ii) A=2.0, S = 0.10
gc

iii) A=1.0, S = 0.05
gc

iv) A =6.0, S = 0.05
gc

The corresponding relative permeability curves are shown by the dashed

and dotted curves respectively on the two plots in Fig. 3.23.

The resulting dimensionless pseudopressures for drawdown and buildup
are plotted in Figs. 3.24 and 3.25, where in all cases the solid lines
are calculated from the correct values. Drawdown pseudopressure is
calculated with S(p) calculated from Eq.(3.2.24) (method of Boe et al.
[11]), and buildup pseudopressure using Raghavan's method [8]. For
buildup, pseudopressure is plotted v.s. dimensionless shut-in time
based on (c/A)*i; pseudotime is not used. The calculated ct/At' and

hence the relation between At and At‘, will also change with the

relative permeability relations used, but this effect is not studied.
The plots exhibit several interesting features:

i) Even if the variations in A has a larger effect on the relative
permeability curves for the present saturations than the
variations in S <’ the latter gives a more significant change in
calculated pseudipressure. The reason for this is that the
effect of the wvariations in kro and krg to a certain degree

cancel each other when A is changed.

ii) Qualitatively the calculated pseudopressure curves are very
similar, and it 1is probably impossible to deduce from a test

whether the relative permeabilities applied are correct. Hence,
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it will be difficult to obtain good estimates of A and S . from
a test. On the other hand, if absolute permeabiliiy is
calculated from the incorrect curves, the error in the result can
be significant; the small changes in relative permeabilities used

here causing as much as 20 - 25 7 error.

iii) However, if absolute permeability is known, information about the
expected slope will increase the possibilities of estimating A
and Sgc significantly.

The object of this section has only been to present some examples of

using incorrect relative permeability relations when analysing a two-

phase test and is not ment to be a detailed study. The results
presented here, however, show that this is a field where further

investigation is needed.
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1)

2)

3)

4)

PART 3

If the fluid flow can be described by the B-model given by
Eqs.(3.2.1) - (3.2.7), multiphase-flow effects for a constant rate
drawdown followed by a pressure buildup can, to a very good
approximation, be adapted by the liquid model solutions. This is
done by introducing an integral transformation of pressure also
called a pseudopressure function. For buildup, a similar

transformation - pseudotime - is applied to the shut-in time.

Provided that pressure can be assumed to be a strictly monotone
function of radius and time for drawdown and buildup, separately,
the pseudopressure function can be uniquely defined for all r and
t by Eq.(3.2.22). For a given r and t ¢ t , pseudopressure is
then obtained by integrating first over time er r = r' and then
over radius for the given time. The pseudopressure for a given
buildup pressure is given by the corresponding pressure at the

instant of shut-in.

If relative permeabilities are known as functions of saturation,
the pressure-saturation relation needed in the integration along

r =r may be found from the producing GOR as suggested by
w

Raghavan in Ref.[8], or, in the infinite-acting period, also from
the relation of Bee et al.[11]. In the infinite-acting period,
the pressure-saturation relation in addition is approximately
independent of position, and the integration over radius is not

necessary.

All the simulated examples for a solution gas drive reservoir
indicate that a good approximation to the saturation profile for
all times may be obtained by assuming GOR to be independent of
radius and equal to the producing GOR. This method is very
similar to the Evinger/Muskat method (151, and for buildup it
corresponds to applying the method proposed by Raghavan [8].
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5)

6)

7)

For drawdown in an infinite reservoir, the dimensionless pseudo-
pressure function is equal to the liquid solution except for a
small constant term. An estimate of this term may be obtained by
the perturbation method presented in Part 2 for single-phase gas

flow.

In pseudosteady state, the dimensionless pseudopressure profile
very closely resembles the liquid solution profile, but the time
variation is different. Drawdown ct/)\t may be calculated from
flowing wellbore pressure and an estimate of the time variation in
pseudopressure may be obtained by replacing pc with ct/)\t in the

equations developed in Part 2.

157 the producing time is sufficiently 1long, the buildup
pseudopressure function will follow a straight line on a MDH plot,
but with a larger slope than the 1liquid solution. An
approximation to this slope may be obtained from the perturbation
solution presented in Part 2 if the derivative of ct/)\t with

respect to pseudopressure at shut-in can be estimated.

8) Drawdown ct/At may also be used to calculate the pseudotime

9)

10)

transformation, and dimensionless buildup pseudopressure plotted
against dimensionless shut-in pseudotime very closely follows the
liquid solution also in cases where the compressibility is

discontinuous.

Several buildup tests in a solution-gas-drive reservoir was
simulated, and in all cases accurate estimates of initial or
average pressure was obtained by applying the MBH-method to

pseudopressure plotted v.s. pseudotime in a Horner plot.

One drawdown/buildup in an infinite acting gas condensate
reservoir was simulated with the same conclusions as for solution-
gas-drive reservoirs; the only exception being that buildup
pseudopressure calculated from the constant GOR approximation was

not as accurate as for the latter case.



142

11)

PART 3

Relatively small inaccuracies in the relative permeability
relations used in the analysis can result in significant changes
in the calculated formation permeability even if the
pseudopressure curves are very similar. With relative

permeability relations given by the relations of Standing [16],

the pseudopressure curves are more sensitive to variations in

critical gas saturation than pore distribution factor.
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NOMENCLATURE
A Drainage area
a, b, a, B Defined by Eqs.(3.2.4) - (3.2.7)
Bg, B° Volume factors for gas and oil
C‘(t), Cz(t) Arbitrary functions of time (see Eqs.(3.3.8-9)
ct Total compressibility of reservoir fluids,
defined by Eq.(3.2.19)
fip) Function of pressure used in the definition of
the pseudopressure function (see Eq.(3.2.8))
GOR = a/a Gas/oil ratio
h Reservoir height
k Absolute permeability
k , k Relative permeabilities
rg ro
kr° Endpoint relative permeability
m Pseudopressure
2wkh Dimensionless pseudopressure
my, = (mi - m(r,t)) fall <1>
9
2wkh Dimensionless pseudopressure
m = - (m(r,t_+At) - m(r ,t )) . . .
Ds aQ p w p rise during buildup <1>
o
*
m Extrapolated value on Horner plot
p Pressure
z'kkroih
o ———— (pi - pl(r,t)) Dimensionless pressure fall <i>
A6BoikHoi
poLI“ Dimensionless solution of the linear heat

equation (liquid solution)

<1> For a gas condensate reservoir, subscript o is replaced by g.
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qs, qo Surface production rates
r Radius
T, *° r/r' Dimensionless radius
Rso Solubility of gas component in o0il phase
r‘9 Volatility of oil component
S = So 0il saturation
Sg, Ssc Gas saturation, critical gas saturation
Si' Irreducible water saturation
Sg*, So* Effective saturations, defined by Eqs.(3.6.3-4)
t Time
tp Production time
At = t - tp Shut-in time
kt .
tDi YN Dimensionless time based on [(c/A) ]i <1>

x
Atos = ————F— Dimensionless shut-in time based on [(c/A) ]' <1>

At , At Shut-in pseudotime, dimensionless shut-in
pseudotime (See EQqs.(3.4.3) and (3.4.4))

kt
thpas = Dimensionless time based on drainage area <1>
DAL c
ol(x) ]iA
¢r2
S Boltzmann variable
bkt
(1) Porosity
U, u Viscosities
9 ]

*
<1> For a gas condensate reservoir, (c/A) is replaced by (c/A)**
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Subscripts

iw

145

Pore distribution factor (see Eqs.(3.6.1-2))

Total mobility

Generalized compressibility-mobility ratios

defined by Eqgs.(3.2.10-13)

Volume averaged values

Dimensionless
External
Flowing

Gas

Initial

0il

Shut-in

Well

Irreducible water
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APPENDIX 3.1

PEN MULAT X

6 simulations of a constant rate drawdown followed by a pressure
buildup for a solution gas drive reservoir and one for a gas
condensate reservoir were performed to demonstrate the applicability
of the theory discussed. All simulations were performed with the two-
dimensional, three-phase reservoir simulator, "TODVARS" developed at
Rogaland Research Institute [18]. In all examples one well was

produced from the center of a circular, closed reservoir.

Reservoir parameters are identical in all examples and are shown in
Table 3.1. Relative permeabilities were generated from Standing's
drainage correlations [16], Eqs.(3.6.1) - (3.6.4), with pore
distribution factor A = 2.0. (ritical gas saturation, Sgc. is 0.0 for

for example 5 and 6 and 0.05 for all the other simulations. krg and

kro as functions of saturation are shown in Fig.3.23.
luti as dri eservoi

Except for the initial bubble point pressure equal to 4000 psi, the
PVT properties are identical to those used in Ref.[11] and are

presented in Table 3.2.

Example 1:
pi = 4300 psi, q = 100 stb/d, tp = At = 100 hrs,
6 .
tpni = 1.79-10 , tpDAi = 0.142, p'f' = 3509 psi
Example 2:
pi = 4001 psi, q = 50 stb/d, tp = At = 100 hrs,
S .
tpOi = 5.02-10", tpUAi = 0.04, p"s = 3651 psi
Example 3:
pi = 4001 psi, q = 100 stb/d, tP = At = 100 hrs,

5 :
tpni = 5.02-10", tpDAi = 0.04, Poss 3196 psi
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APPENDIX 3.1

Example &:

pi = 4001 psi, q = 200 stb/d, tp = At = 100 hrs,

5 _ .
tpni = 5.02-107, tpou = 0.04, p'f’ = 1886 psi
Example 5:
pi = 4001 psi, q = 100 stb/d, tp = 10600 hrs, At = 100 hrs,
1/ ;
tpoi = §5.32-10 , tpDAi = 4,23, p'f' = 261 psi
Example 6:
pi = 4001 psi, q = 200 stb/d, tp = 1800 hrs, At = 100 hrs,
6 .
tpoi = 9.04-10 , tpn‘i = 0.72, p'f. = 254 psi
0 s voir

The PVT properties, which is presented in table 3.3, were taken from
one of the examples in Ref. [23] (rich gas condensate, NS-1) with

initial dew point pressure 6000 psi.

P, = 5999 psi, qs = 4000 Mscf/d, tp At = 100 hrs,

t = 2.34-105, t . = 0.019, p
wfs

ol DA 2344 psi
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APPENDIX 3.2

PP 0 E H R A TION

Several programs were written to analyse the simulator output. Two
programs, based on the methods of Bee et al. [11] and Raghavan [8],
respectively, were used to calculate oil saturation and pseudopressure
from simulated wellbore pressure. A similar program used simulated
saturation in block 1 to calculate pseudopressure. (c/A)**, (c/A)*,
and ct/)\t were calculated from simulated pressure and saturation as

functions of time.

In all calculations, pseudopressure is defined by Eq.(3.2.22) and
calculated as shown in Fig. 3.1, making mi = 0 and m'f < 0. Note that
the pseudopressure for some r and t may be larger than mi since alp;t)

generally is different from u(p:r'). even if the pressure is the same.

Simple numerical methods were used: Linear interpolations; integrals
were calculated from the trapezoidal rule; and the ordinary
differential equation for saturation occuring in the method of Bee et
al. was solved with Euler's explicit method. For the solution gas
drive case, the inverse of EQq.(3.2.2) was used when calculating So
from Raghavan's method. If krs/kr° (or krolkrs) in €q.(3.3.2) becomes
less than or equal to zero, S9 (or So) is set eg:al to *zero. The
derivatives involved in the expressions for (c/A) , (c/A) , and ct,At
were calculated from a mid-point formula. Pseudotime was calculated
directly from the ct/At—curves. A smoothing of the curves was tried

without any significant difference in the resulting "Lns(AtaD"



154 PART 3



PART 3

Well radius

Radius of reservoir
Reservoir height
Absolute permeability
Porosity

Connate water saturation
Initial gas saturation

solution gas drive examples

Initial oil saturation

gas condensate example

Table 3.1 Reservoir properties.

0.33

660
585
10.0
0.30
0.30

0.00

£t
ft
ft
mD

155
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PVT properties saturated fluid (from Ref.[11]):

P Bo u0 Rso Bg ug sg
(psi) (RB/STB) (cp) (SCF/STB) (RCF/SCF) (cp) (STB/SCF)

193 1.058 1.350 44.286 .09479 .0113 .00
622 1.088 1.164 119.139 .02807 .0125 .00
1052 1.121 1.011 196.104 .01587 .0138 .00
1481 1.159 .881 278.240 .01083 .0152 .00
1911 1.202 .768 366.519 .008169 .0166 .00
2340 1.249 .671 461.531 .006581 .0181 .00
2769 1.302 .587 563.791 .005567 .0195 .00
3199 1.360 .515 673.783 .004888 .0210 .00
3700 1.434 . 446 812.575 .004350 .0228 .00
4201 1.516 .391 963.478 .003979 .0246 .00
4701 1.605 .348 1127.453 .003711 .0263 .00
5202 1.702 SNIMIT 1305.561 .003507 .0281 .00
5631 1.791 .300 1470.383 .003367 .0295 .00
5703 1.806 .298 1499.003 .003346 .0298 .00

Initial bubble point pressure: 4000 psi

Properties of oil above bubble point pressure:

d8 _ du )
—2 - _1.6.10"° RB/STB-psi —0 - 2. 1.107Y cp/psi
dp dp

Table 3.2 Fluid properties. Solution gas drive examples.
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PVT properties saturated fluid (from Ref.[231]1):

P
(psi)

800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3600
4000
4400
4800
5200
5600
6000
6400
6800

B

o
(RB/STB)

.200
.225
. 240
.280
.285
.310
.335
.360
.385
.410
.430
.460
.485
.550
.620
.675
.730
.790
.850
.915
.980
.045

N = cd ed ch b e b ch ed edh e eh e mh b edh b ed b ed b

Initial dew point pressure:

Gas properties above dew point pressure:

Jable 3.3 Fluid properties.

db

—9 : _1.0-10

dp

Gas condensate example.

uO Rso Bg ug
(cp) (SCF/STB) (RCF/SCF) (cp)

1.09 140 .0251 .0129

1.01 180 .0197 .0136
.96 220 .0165 L0143
.90 260 .0140 .0150
205 300 011219 .0157
17 350 .0108 .0164
.74 400 .00985 L0171
.70 450 .0086 L0177
.66 500 .0078 .018¢4
(503 550 .0073 .0191
.58 600 .0068 .0198
.54 650 .0064 .0205
oM 710 .0060 .0212
.45 840 .0055 .0225
.40 380 .0050 0239
.37 1130 .0047 .0253
=39 1310 .0045 .0267
.32 1500 .0043 .0280
.305 1700 .0041 .0294%
. 295 1910 .0040 .0308
285 2120 .0039 10321
o (AT 2330 .00385 .0335

6000 psi
S RB/STB-psi gﬂﬂ = 3.5-107° cp/psi
p

157

r

8g
(STB/SCF)

@ OO N WW NN NN NN NN NN NN

- e b b
-~ O W —-= W

.463E-5
22312E=5
.1T4E-5
G193 ESS
.222E-5
«283E-5
.370E-5
.463E-5
<O TE=5
.762E-5
.994E-5
.279E-5
.650E-5
.425E-5
.405E-5
.667E-5
.065E-5
.804E-5
.628E-5
.514E-5
.625E-5
.857E-5
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Model values
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Example 1 3 4 5 6
Slope, s
(psi/cp-log+) 97.68 108.70 210.06 104.15 198.84

x

m (psi/cp) -8.904 113.6 166.5 -814.9 -255.0
k (mD) 10.7 9.65 9.99 10.07 10.55
Skin factor, S 0.2 -0.06 0.03 -0.06 0.10
tDAL 0.152 0.038 0.039 4.259 0.758
m (psi/cp) = 113.6 166.5 - -~

1

p(mi) (psi) - 4001 4005 - -
m (psi/cp) -76.77 - - -1039 -533.86
p(m) (psi) 4203 - - 2750 3489
k (mD) 10.0 10.0 10.0 10.0 10.0
S 0.0 0.0 0.0 0.0 0.0
pi (psi) 4300 4001 4001 4001 4001
p (psi) 4230 3982 3965 2763 3478

Table 3.4 Results from an analysis of the Horner plots (Fig.3.17)

generated from the simulated examples of a solution gas

drive reservoir.
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t=0

Fig. 3.1

159

Ve

p(r3,tp+At) =py < m(r3,tP+At)

m(r,,t,) if ty < teya

m(r 3,t +At) = m(rz,tp)

P

+H

m(rw,tz) if tp 2 A

Integration paths followed when pseudopressure is

calculated.

> Ap(rl’tl) = pl <_> m(rl,tl)
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w
...... .++- block 19, r = 1orw
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P
h 7.7
— ” -
-
e
o 500 1000 1800 2000 2500 3000 3600 4000

Simulated oil saturation vs. pressure at different points

in the reservoir.

The plots show both drawdown and buildup

relations, and the positive time direction is indicated with

arrowse.
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6950 = s -
18d 0001 = d
~895°0 = %
18d gos1 = d
[85°0 = °S
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%09°0 = 'S
1sd 005z = d
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3.3 Levels o

f constant pressure and oil saturation.

Fi

Drawdown example 5.
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EXAMPLE |
- ——— Simulated
- es e e .. B¢e et al.
I Raghavan
:vv'v"vv"vv'r]"lr'vvaTrfvv'. T
BSO0 BS60C 500 S800 8908 4000 4100 4200 4800
p (psi)
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] | ] 1
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E—: ' B v’ tg_. 1 B
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2 ; 1 & AN
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93 . 4 g /i
x - CE |
] 2
a T N | T e q v T T LI i I I
3000 32850 8500 3TS0 4000 1S00 2000 2500 3000 3500 4000
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EXAMPLE S EXAMPLE &
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8] 1 . i ]
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8] i ® ) W
- E "
1 e /
d /7
w EE— S S T -] S - . e
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Fig. 3.4 Simulated oil saturation in block 1 compared with
saturation calculated from Eq.(3.2.24) (method of
Bge et al.) and producing GOR (Raghavans method).

Drawdown and buildup.
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Fig. 3.5 Simulated GOR vs. dimensionless radius.
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Fig. 3.6 Simulated GOR vs. dimensionless radius.
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1 t = 1.04 hrs
2 t = 177 hrs
3 t = 1011 hrs
4 t = 5011 hrs

5 t = 7511 hrs

6 t = 10011 hrs
Drawdown.

1 At = 1.14 hrs

2 At = 10.6 hrs

3 At = 100 hrs

1 At = 0.75 hrs

2 At = 7.00 hrs

3 At = 100 hrs

Buildup.
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Fig. 3.7 (c/k)*/(c/k)*i vs. mp for example 2,3,and 4,
drawdown and buildup. Effect of rate.
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Fig. 3.8 (c/}\)* vs. pressure at different

T

Drawdown and buildup.
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Fig. 3.10 Dimensionless pseudopressure functions vs. dimensionless
producing time, tpi- Pseudopressure calculated from
the pressure-saturation relation of Bge et al. (Eq. (3.2.24)
and Raghavan (Eq.(3.3.2) compared with pseudopressure
calculated from simulated S(p) in block 1.
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Fig. 3.11 Dimensionless pressure and pseudopressure functions vs.
dimensionless producing time, tpi+ Pseudopressure

is calculated from simulated S(p) in block 1.
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PwDLIN
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(method of Bge et al.)
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Fig. 3.14 Dimensionless pseudopressure rise during buildup vs.

dimensionless shut-in time, AtDS, compared with

(drawdown) liquid solution.
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(c/A)*+10° (cp/psi)

Fig. 3.20 Gas condensate example.

ce/A*10° (cp/psi)

Fig. 3.21 Gas condensate example.
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