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ABSTRACT

Nonlinear propagation and interaction of collinear sound beams are investigated
within the scheme of the Khokhlov-Zabolotskaya-Kutznetsov (KZK) equation. The
solution of the KZK equation is written in form of a Fourier series, and equations are
obtained for the Fourier coefficients. The infinite Fourier series has to be truncated,
and an algorithm is presented which selects harmonic components retained. A test
problem, which is a simplification of solving the KZK equation, is analysed and the
analysis leads to an efficient method for solving the KZK equation numerically. The
propagation of both focused and unfocused sound beams are considered. Propagation
curves and beampatterns for various components of the acoustic field (harmonics and
combination frequencies) are presented. The analysis extends to ranges beyond the
shock formation distance. Various source levels, absorption lengths, downshift ratios
and focusing gains are considered. The results are compared with that obtained for
sources operating at moderate intensity (quasilinear theory).
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Chapter 1

Introduction

Acoustics is mainly concerned with small amplitude disturbances for which linear the-
ory is sufficient. There are several important instances, however, when the nonlinear
terms in the fluid-dynamic equations cannot be neglected. Perhaps the most famous
nonlinear phenomenon in acoustics is the steepening and development of shock in a
plane travelling wave.

Nonlinear acoustics has several applications. Supersonic aircrafts generate shock
waves which propagate to long ranges. The parametric array ! is capable of pro-
ducing a low frequency beam of high directivity from a sourcé with relatively small
dimensions. A parametric receiving array has also been constructed and is used to
determine the parameters of a signal. It is based on the nonlinear interaction be-
tween the signal and a strong acoustic pump wave of higher frequency. Acoustic
microscopes operating at nonlinear power levels achieve resolution beyond the lin-
ear diffraction limit 2. Lithotripters ® which transmit focused sound at very high
amplitudes are used to disintegrate kidneystones.

In order to study practical applications of nonlinear effects in beams it is often
necessary to consider the combined effects of nonlinearity, diffraction and absorp-

tion. The propagation of a narrow beam is effectively described by the so-called



Khokhlov-Zabolotskaya-Kutznetsov (KZK) equation *°. This equation has to be
solved numerically since no general analytic solution is known.

Chapter 2 presents the KZK equation and gives a brief description of how it can
be derived. The solution of the KZK equation is written in form of a Fourier series,
and equations are obtained for the Fourier coefficients . Some properties of the
power of a sound beam and its harmonic components are given.

Chapter 3 deals with the numerical solution of the KZK equation. Since the
Fourier series expansion of the solution of the KZK equation contains infinitely many
components, it has to be truncated. An algorithm is presented which selects harmonic
components retained in the Fourier series. Section 3.2.2, ” Analysis of two numerical
techniques on a test problem” is based on a technical report 7 written with Jarle
Berntsen as coauthor. A test problem, which is a simplification of the KZK equation,
is introduced. Two finite difference methods are applied to the test problem and
analyzed. The analysis leads to a more efficient way to solve the KZK equation
than the method developed and used previously by Aanonsen et al.®8. Further,
in Sec. 3.2.2 additional improvements of the numerical method are discussed. By
introducing different regions of integration for different harmonic components the
computation time is reduced approximately by a factor of four. A stabilization
procedure is given in order to prevent a possible instability caused by the truncation
of the infinite Fourier series expansion.

In Chapter 4 the KZK equation is used to study different applications of nonlinear
acoustics. Section 4.1 is devoted to parametric transmitting arrays. The numerical
results are compared to low amplitude theoretical results and experimental measure-
ments reported in the literature, in order to test the computer code. Effects of varying

the different characteristic parameters are shown, and comparison is made with low



amplitude theory in order to see the effect of nonlinearity. Results are presented both
in frequency and time domain. The possibility of matching the solution of the KZK
equation with that of the spherical Burgers’ equation in the farfield is also analyzed.

Section 4.2 considers focused sound beams and their interaction. A coordinate

$10.1L12 i introduced which follows the geometry of the focused sound beam

transform
and enhances the computational efficiency. Nonlinear effects in focused soundbeams
are shown and energy exchange between harmonic wave components are studied. The
difference frequency wave component generated by interaction between two focused
sound beams is computed and compared to results from the literature. Also, the sum
frequency wave generated by interaction between two focused sound beams is studied.
The effect of varying the characteristic parametersis shown, and comparison are made
with low amplitude theory. Interaction between focused sound beams with different
focal distances are also considered. Finally, applications are made to the parametric
receiving array. Donskoi et al.’® have suggested that the pump transducer should be
focused in order to generate difference and sum frequency waves more efficiently. We

have compared the results obtained using unfocused pumps to results obtained using

pumps with different focal distances.



Chapter 2

Governing equation

2.1. The KZK equation

The Khokhlov-Zabolotskaya-Kutznetsov (KZK) wave equation which accounts
for the combined effects of absorption, diffraction and nonlinearity can be written in

the following nondimensional form

0’p gy 1
* = ek AT

£ ro 0*(p)?
0ot b or3

%87’2’

(2.1)

where 0 = z/rg is a dimensionless range in terms of the axial coordinate z and the
Rayleigh distance ro = ka?/2, k = w/cy is the wave number, w/27 is the source
frequency, ¢, is the sound speed and a is the source radius. Further, 7 = w(t — z/¢p)
is a dimensionless retarded time, = p/P, is a dimensionless pressure in terms of
the acoustic pressure p and the on-source pressure amplitude P,, @ = Dw?/2¢} is the
termoviscous attenuation coefficient, where D is the sound diffusivity. {p = 1/(Bek)
is the plane wave shock formation distance, where 3 is the coefficient of nonlinearity
and € = Vy/cg is the Mach number, where Vj is the on-source fluid velocity component
in the z-direction. The two dimensional Laplace operator V2 is applied with respect
to the dimensionless vector £ = z/a, where z = (1, z;) is the transverse coordinate

vector. For an axisymmetric sound field we may write V2 = 92/09¢? + (1/£)0/ ¢,
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FIG. 2.1. The geometry and dimensional spatial variables of the problem

where £ = |{|. In Fig. 2.1 the dimensional coo-rdinate system for the problem is
shown. The first term on the right hand side of Eq. 2.1 represents absorption, the
second diffraction and the third nonlinearity. In the derivation of the KZK equation
it 1s assumed that the soundbeam is well collimated (i.e.ka > 1).

In the case of abscence of absorption the equation was derived by Zabolotskaya
and Khokhlov?. They derived the equation from the equations of hydrodynamics
on the assumption that the shape of the wave varied slowly both along the beam
and transversely to it. These variations were ascribed different scales. Kutznetsov®
included absorption and thereby added one term to the equation derived by Zabolot-
skaya and Khokhlov. He linearized terms in the hydrodynamical equations due to
absorption, and ascribed the same scales of variations of the shape of the wave both
along axis and transversely to it as did Zabolotskaya and Khokhlov.

Naze Tjgtta and Tjgtta'* derived the KZK equation in a different way. They used
the method of multiple scales and required that the effects of absorption, diffraction

and nonlinearity all were accounted for to the same order of magnitude. From their



derivation it followed that the scales of variation along axis and across axis assumed
in the previous derivations, were the only possible when the effects of absorption,
diffraction and nonlinearity were taken into account to the same order of approxima-
tion.

The KZK equation is a parabolic equation, and contains only first derivative with
respect to o since regressive waves are neglected. Sommerfeld’s radiation condition
is not needed. The KZK equation can also be written in the particle velocity * by
using the linear plane wave impedance relation p = pgcov,, where pg is the ambient
density and v, is the velocity component in the z-direction. This substitution is valid
because ka > 1 and local effects are not accounted for in the KZK equation. Local
effects are effects which are significant only on the order of one wavelength. It is
consistent ®, within the approximations used when deriving the KZK equation, to
linearize the boundary condition.

There are two nondimensional parameters in Eq. 2.1

arg = Rayleigh distance relative to absorption length.

ro/lp = Rayleigh distance relative to shock formation distance.

The parameter arqy increases with increasing importance of absorption, and the pa-
rameter 7o/lp increases with increasing importance of nonlinear effects.
2.2. Fourier decomposition and power considerations

If we assume that the boundary condition is periodic with period 2rw™!, we can

seek a solution of Eq. 2.1 in the form of a Fourier series

bls
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where ¢, and d, are functions of spatial variables. This approach was used by Aanon-

sen et al.®®. Substituting Eq. 2.2 in Eq. 2.1, we obtain

Jcy, 1

el —orgn ¢ — ZEVidn +
i >
—— Z(cn_gdi) ot Z (dec: esicads o s
2ID 1=1 1=n+1

od, i

ke —aron®d, + Z—T-I:Vicn o (2.3)

1 n—1 o0
@— - Z(dn—idi = Cn_,'C,') T Z (Cici—n ar didi—n) )
2lD 2 i=1 t=n+1
=

The spectral form of Eqgs. 2.3 permits generalization to fluids with arbitrary absorp-
tion and dispersion. Such effects can be taken o accoudl by replacing the first
term on the right hand side of Eqs. 2.3 by a more general expression of the form
a(n)c, + B(n)d,, where a(n) and B(n) are given functions of n. See Ref. 15 for a
discussion in the case of plane waves.

We specify a boundary condition in the plane o = 0

p=g(T). (2.4)

This leads to the following boundary conditions for ¢, and d,

1 g
en(é,T) = —/ gcosnTdr,

T J-m
dn(€,7) = %/_:gsin T (2.5)

The Eqgs. 2.3 together with the boundary conditions, Egs. 2.5, form a complete math-

ematical model.
The overall power of a wave is found by integrating the intensity across the entire

field. Within the parabolic approximation the linear plane wave impedance relation

i



is valid '*, and the nondimensional power of a wave is given by
e il 2m  poo e
Pulo) =5 [ [ P 06 dedr.
mJo Jo
The nondimensional power of an individual harmonic component is given by

Ponlo) = 5= [ [ Fale,o,m)Ededr

In the case of no absorption the total power is constant !¢ :

Pav(o) = const.

Substituting Eq. 2.2 in Eq. 2.8 we obtain

i = (0

(2.6)

(2.7)

(2.8)

(2.9)

The total power of a wave is equal to the sum of the power of all the individual

harmonic components, which is again constant. The power of individual harmonic

components is generally not constant in the nondissipative case, because of energy

transfer between different components. For linear nondissipative propagation the

power is constant also for individual harmonic components.



Chapter 3

Numerical work

3.1. Selection of harmonic components in computations

In the following we will study the interaction between two monofrequency sound
beams, called primaries, of different frequencies. 'Let us denote the highest primary
frequency by f; and the lowest primary frequency by f,. For the resulting signal to
be periodic the frequencies f; and f, must be commensurable. This means that there

exist integers Ny and N, and a basic frequency f such that

fi="N;F, (3.1)

for i=1,2. Let furthermore f denote the largest frequency which satisfies Eq. 3.1.
The requirement of commensurability is purely theoretical since no frequency can be
measured exactly.

When the boundary condition is periodic, we can seek a Fourier series solution
as shown in the previous section, and we obtain an infinite set of coupled partial
differential equations for the different harmonic components. To perform the com-
putations we have to select a finite number of harmonic components. In the case of
a single frequency on the source the selection procedure is easy. Computations are

done with all the harmonic components up to a specific number.
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The KZK equation can be written in the following form

9°(p*)
or?’

Ly=¢ (3.2)

where L is a linear differential operator and € is the Mach number. The boundary

condition in the case of two frequencies on the source can be written
Z—)(é’a- - 0) = gleler s hle~leT +gzejN2’r n h2e—jN2‘r’ (33)

where g1, h1, g2 and h; are functions of {. To solve Eq. 3.2 together with the boundary
condition, Eq. 3.3, we seek a solution in the form
00 M
D= E ekZ(ckiejN"‘T + dpie7 VKT | | (3.4)
k=0 | i=1
where c; and dj; are functions of spatial variables. We want to determine M,
(k=0,1,...) and Ny, (k=0,1,...; i=1,...M}). The boundary condition implies My = 2
,No1 = Ny and Ny = N,. We substitute Eq. 3.4 in Eq. 3.2 and require that the equa-
tion is satisfied to every order in the parameter e. This gives us a recursive procedure
to calculate Ny, (k=0,1,...; i=1,...,My) . First we use Ny;, (i=0,1,...,Mp) to deter-
mine Ny;, (i=0,1,...M;), and then we use Ny;, (i=0,1,...,Ms) and Ny, (i=0,1,...,M;)
to determine Ny;, (i=0,1,...,M;). We want to have an algorithm for finding all N,

(k=0,1,...; i=0,1,...,M}). For each order in € we have the following equation

Mk . ’ Ik Ly .y
ol Z(CkieJN‘“T + dyie Ve | = E(Qkifi]h’“r £ g 7Ty (3.5)
1=l a=

where gx; and ry; are functions of spatial variables. The operator L has the property
Lfge’S7) =0/, (3.6)

where q and ¢’ are functions of spatial variables and C is a constant. With this

property we construct the complete solution of Eq. 3.5 by superposition, and we have
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Iy = M,. Furthermore we can choose Ni; = Ky, and Ky, (k=0,1,...; i=0,1,... M})
are calculated from Ny, (1=0,1,...;k-1), (i=0,1,...,M;). The recursive procedure to
determine My, (k=0,1,...) and Ny, (k=0,1,...; i=0,1,...,M}), gives

€ My = 2, No1 = Ny, Noz = N,
gk B, N s 2N B =l S VoD, =5 200 N s Ny N,,
62 5 MQ = 6,N21 = 3N1,N22 = 2N1 =F NQ,NQg = Nl 4 2N2, (37)

Nay = 3Ny, Nos = 2N, — Ny, Nyg = 2N; — N;.

We note that all harmonic components of order €* can be written |zN; + yN,|, where
|z| + Jy| = n + 1 and x, y are members of Z. This gives us the desired algorithm for
associating an order to each harmonic.

The Fourier series representation of the solution of the KZK equation contains
infinitely many harmonic components. If we retain only harmonic components up to
a certain order, then the Fourier series is truncated consistently. Let M denote the
total number of harmonic components retained in the Fourier series and K the highest
order of all harmonics retained. When the Fourier series is truncated consistently,

we have two upper limits for M

M < (K +1)(K +2),

M < (K +1)N,. (3.8)

The first upper limit is the typical number of harmonic components retained in the
Fourier series in the case of Ny, N; > K, and the lower limit is the typical number

of harmonic components retained if Ny < K
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3.2. Numerical method
3.2.1. Previous work

After the KZK equation was derived a large number of articles appeared in the
Soviet literature devoted to results from numerical solutions of the equation. In
these articles the numerical method used was not described in detail. Zhileikin'®
later described and analyzed the method used. The acoustic pressure was expanded
in a Fourier series, and equations were obtained for the Fourier coefficients. The
infinite system of equations were truncated and solved by a finite difference method.
They used a conservative finite difference scheme, the Crank-Nicholson method. The
resulting difference equations were solved by the method of difference matrix pivotal
condensation.

Aanonsen et al. ®® also solved the KZK equation by a finite difference method.
Their work was independent of the work in the Soviet Union. They did not apply
the same method as Zhileikin et al., but used a fully implicit method instead. The
resulting algebraic equations were solved by iterations, thus putting severe restric-
tions on the choice of step sizes in order to ensure the convergence in the iteration
process. Furthermore, the computations were restricted to the nearfield, because of
the enormous computation times required at larger ranges. Aanonsen et al.%® studied
the sound field from uniform sources as opposed to the study of Gaussian, polynomial
and exponential shaped sources carried out in the Soviet Union. Aanonsen et al.? and
Hamilton et al.!® continued the work of Aanonsen et al. in Refs. 6,8 and introduced
a coordinate transform which facilitated computations beyond the nearfield. In the
same article a seven point difference formula was used to approximate the Laplace

operator in order to speed up the computations.
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3.2.2. Improvement of numerical method
Analysis of two numerical techniques on a test problem

This subsection is based on a report written with Jarle Berntsen as coauthor,
Rel T

As we have mentioned earlier, different methods have been used to solve Eq. 2.3.
To simplify the analysis of the different numerical methods, we consider the case of
no absorption and no nonlinearity. In Ref. 18 and Ref. 19 the solution of the system

of partial differential equations

o _
oo T gge”

ow 0%

E; = _(?—52_’ (3-9)

subject to initial conditions v(o = 0,£) = vo(¢), w(o = 0,€) = we(¢), and boundary
conditions v(0,{ = 0) = fo(0), v(0,€ = 1) = fi(a), w(o,€ = 0) = go(0), w(o,£ =
1) = g,(0), is studied. A numerical method for the solution of Egs. 2.3 must be able
to solve Eqgs. 3.9 since these equations are a special case. We will describe a solution
technique due to Richtmeyer!®.

We introduce some notation used by Fairweather and Gourlay2°:

Q= [”} (3.10)

w
0 -1
A:[1 0}. (311
Equation 3.9 may then be written
oN 0*Q
Ci e e s %
Jo & (g L)

A rectangular network of points with mesh sizes k and h in the ¢ and ¢ directions

respectively, where Nh=1, is superimposed on the region ¢ > 0, 0 < ¢ < 1. The

13



values of the functions v(o,€), w(o,¢) and Q(o,€) at the mesh points £ = th, 0 =
nk,(n =0,1,..;¢ =0,1,..., N) are given by v,;, w,; and §,; respectively.
When we apply Crank-Nicholson’s method #! to Eq. 3.12, we obtain the algorithm

used by Richtmeyer in the form
1 2 1 2
(1 e 57’1456)9".*_1,,‘ = (I + —Q-TA(SE)Q,M', (313)

where r = k/h? and : = 1,..., N — 1. [ is the 2 x 2 unit matrix, and 552 is the central
difference operator in the £-direction.

For each o step we have to solve a system of (N — 1) linear equations for the

(N — 1) unknowns
0, = (”""") : (3.14)

which can be written in the form
A1Wn+1 = Blwn + (&, (315)

where W,, = [mel,...,Qm,N_l]T, m =n,n + 1, and c is a constant arising from the

boundary conditions. A, and B, are given by

1
Ay =1+ 51T, (3.16)
13 e g %rT, (3.17)

where [ is the identity matrix, and T is a block tridiagonal matrix given by

2A -A
—A 24 —-A

T = - S . (3.18)
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The block tridiagonal system Eq. 3.15 may be solved by the well known algorithm
described in Ref.19 where also the stability properties of the algorithm are proved to
be very satisfactory.

If we integrate the nonlinear terms in Eqs. 2.3 by an explicit difference formula,
the described method for solving Eqgs. 3.9 may also be applied to Egs. 2.3 . If we
compare this method with the method described and used by Aanonsen et al.®8, we
find that the two methods differ in two ways:

1. Richtmeyer’s method uses an implicit second order approximation in the o-
direction, whereas the method of Aanonsen et al.®® uses a fully implicit first order
approximation.

2. The numbering of the linear equations is different. If we use the notation of
Eqgs. 3.10 and 3.11, we transform the wide band matrix into a narrow band matrix
which can be solved by a direct method. In Ref. 6,8 an iterative solution is used for
solving the linear system of equations appearing in each step in the o-direction. In
order to make the iterations converge, we have to impose constraints on the stepsize
in the o-direction (r < 1/2). When we apply Richtmeyer’s method, we have no such
constraints on the stepsize, and moreover, the solution of Eq. 3.15 is very stable.
Tests show that we obtain Wiy, to almost full machine precision.

We have tried to use Richtmeyer’s method to solve Egs. 2.3. In Ref. 20 Egs. 3.9

is used as a test problem together with the initial and boundary conditions:

Q(0=0,€)=<§_0€2),

Dy, & =) —JEEE =1 (g) (3.19)

Where 0 > 0 and 0 < ¢ < 1. This problem has a simple analytical solution, see

Ref.20. The numerical solution compared very well to the analytical solution. For
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a uniform piston, the initial conditions are discontinuous and the solution is highly

oscillatory. If we replace Egs. 3.19 with

Qo =0,§) = (8) (3.20)
Mo =10, = (}) (3.21)

i e e (8) (3.22)

when ¢ > 0, and solve this problem using Richtmeyer’s method, artificial numerical
oscillations appear in the solution. We replaced the second order method with the
fully implicit method and solved the same problem with the result that the oscil-
lations disappeared. In Fig. 3.1 we have plotted the numerical approximations to
v(o = 0.2,€) given by the two methods, with h=0.05 and k=0.00125. The plots for
w(o = 0.2,£) are similar. The explanation of this phenomenon must lie in the sta-
bility properties of the two methods. In Ref. 19 Richtmeyer applies von Neumann’s

technique for studying stability properties of his second order method. He defines
w = 4r[sin(Bh/2)]. (3.23)

The amplification matrix is then given by

d 1 -w?/4 w
e (1 ) "

The eigenvalues of H; lie on the unit circle, and the numerical solution is always

stable.
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FIG. 3.1. Numerical approximations to v(o = 0.2, £) versus €.

We have used the same technique to study the stability properties of the fully

implicit method applied to Eqs. 3.9, and the amplification matrix is

1 [

The eigenvalues of this matrix are

Y =
TR TN

(3.26)

/\1,2

and consequently, for Sk close to odd multiplies of 7, we should have a dramatic (and
unphysical) numerical damping when we apply the fully implicit method.

When we apply the fully implicit method to Eqs. 3.9 with the initial and boundary
conditions given by Eqs. 3.20, 3.21, and 3.22, the damping effect is almost negligible
compared to what could be expected from Eq. 3.26. We have therefore applied the
matrix method, see Ref. 21, in order to study in more detail the stability properties
of the two methods. The eigenvectors of the matrices A; and B, are the same as the

eigenvectors of the matrix T. Using the theory in Ref. 21 we find the eigenvalues of
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T to be
Ais = 4jsin®(sw/2N),s = 1,2..N =1, (3.27)

and the corresponding eigenvectors to be

jsin(sm/N)

+sin(sm/N)
7 sin(2s7/N)
+sin(2s7/N)
i i . (3.28)
oI = 2 ()
+sin((N —2)sw/N)
gsin((N —1)sw/N)
+sin((N — 1)sw/N)

We observe that the eigenvectors appear like components of a discrete Fourier series.

The eigenvalues of (A;)™"' B; will then be

_ 1F 2rjsin®(s7/2N)
14 2rjsin®(st/2N)’

Ats (3.29)

which lie on the unit circle.
When we apply the fully implicit method to Egs. 3.9, the corresponding system

of linear equations may be written
A2Wn+1 = B2Wn + C, (330)

where A, = I + 7T and B, = I. The eigenvectors of (A;)™! B, are given by Eq. 3.28,

and the corresponding eigenvalues are

L &y gsind (s (2N)
"~ 1+ 16r2sin*(st/2N)’

£S (331)

which all lie inside the unit circle. This means that we get the damping predicted
from Eq. 3.26, but the damping will depend on s. We shall take a closer look at what

this means.
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If fo(e) = fi(o) = go(o) = g1(0) = 0 then ¢, the constant arising from the
boundary condition in Eq. 3.15 and Eq. 3.30 will be zero. In this case the solution
of the discrete version of the problem is found by propagating the vector ) from the
boundary by multiplication of a matrix. When the second order method is used,
this matrix is (A;)7'Bj, and when the fully implicit method is used, this matrix
is (Az)"'B;. Looking at the eigenvalues for (A;)™!B,, we see that the eigenvalues
corresponding to higher harmonic eigenvectors (higher values of s) is lower in modulus
than the eigenvalues corresponding to lower harmonic eigenvectors. This property
implies that the fully implicit method acts like a filter on the solution i.e., the rapid
oscillations are damped. For the second order method there is no damping of any
component and therefore no filtering.

We can express the initial value of ) as a linear combination of the eigenvectors
Eq. 3.28. If the boundary condition is slowly varying then §) is represented well
by the lower harmonic eigenvectors (small values of s) which means that there are
no problems associated with ripples. When a discontinuous boundary condition is
used, all of the harmonic eigenvectors are present. Attempting to represent a rapid
varying function by a Fourier series with too few terms gives rise to Gibbs oscillations.
The ripples are representing higher harmonic eigenvectors, and this explains why
the fully implicit method works better than the second order method on problems
with discontinuous boundary conditions. The ripples are filtered out because of the
artificial damping inherent in the fully implicit method.

Another aspect of the analysis is that when using the fully implicit method, care

must be taken when choosing step sizes in order to avoid unacceptable numerical

damping.
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Finite difference approximation across the beam

In both Ref. 16 and Ref. 8 the Laplace operator was approximated by a three
point formula. Later in Refs. 9,10 the three point formula was replaced by a seven
point formula. It was argued that using a seven point method instead of a three
point method made the computations more efficient. In their case where an iterative
technique was used, the increase from a three point formula to a seven point formula
was inexpensive in terms of computation time.

In Ref. 17 three subroutines were given which attempted to solve a generalized
KZK equation. The subroutines differed in the way the Laplacian was approximated.
The Laplace operator was approximated by the usual three point formula, a five point
formula and a seven point formula. An analysis of the algorithms involved showed
that the time required increased rapidly with number of points used to approximate
the Laplacian. To compare the different subroutines, they were applied to a test
problem. The conclusion of the limited experiments was that the three point method
was the one to prefer, at least when a small number of harmonics were retained in
the calculations.

Numerical tests were also performed in Ref. 7, in order to study the damping
effect of the fully implicit method for various step sizes along and across axis of
propagation. The tests showed that the step size along axis could be increased by a

factor of 10 compared to the method of Refs.6,8.

Adjustments to make the second order method applicable

In Ref. 22 Berntsen used the insight gained in Ref. 7 to make the Crank-Nicholson
procedure applicable for discontinuous boundary conditions. He argued in the follow-

ing way: The first order implicit method gives accurate results for small step sizes,

20



and it acts like a filter on the solution. Berntsen’s idea was to use a filter similar
to the effect of taking some steps with the fully implicit method on the boundary
condition and then use the second order method. He used the Fast Fourier Transform
to filter the boundary condition. Berntsen?® later suggested a better way to make the
second order method applicable. The original boundary conditions were used, and
for the first few steps the fully implicit method was applied. After these initial fully
implicit steps, the second order method is used all the way, except for an implicit
step at regular intervals to ensure that no ripples occur. The advantage is that the

FFT routine is not needed, and that the creation of ripples is constantly checked.

Different integration widths for different harmonic components

In the program described in Ref. 8 which solves the KZK equation, the same inte-
gration region was used for all harmonic components. The fact that higher harmonic
components are much more directive than lower harmonic components, and conse-
quently do not require as wide integration regions as lower harmonic components,
was not utilized to make the computations more efficient. The code was modified to
use dynamic variables which allows the user to specify different integration widths for
different harmonic components. When several harmonic components are included,

this technique reduce the computation time by a factor of four.

Stabilization procedure

Truncating the infinite number of harmonic components in the Fourier series ex-
pansion of the solution of the KZK equation can cause problems. Trivett and Van
Buren® who studied plane, cylindrical and spherical waves, found that a simple trun-

cation of the Fourier series was insufficient when attempts were made to examine the
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propagation of sound beams beyond the shock formation distance. The flow of en-
ergy from lower to higher harmonic components terminates with the last harmonic
component retained in the series. The calculated value of the last harmonic com-
ponent may become abnormally large relative to the lowest harmonic components.
Trivett and Van Buren circumvented this problem by requiring that the amplitude
of a higher harmonic component never exceeded the amplitude of a lower harmonic
component. In Ref. 8 Aanonsen compared results of computations made with and
without this requirement. He considered the case of plane wave propagation. His
conclusion was that the simple truncation of the series did not lead to any significant
error in the lowest harmonic components as long as the value of T is not too large. If
[' took a larger value, greater than 100-150, an instability could occur if the integra-
tion exceeded the shock formation distance. Aanonsen did not apply any amplitude
modification is his programs for computing the field of a sound beam.

We want to avoid the risk of instability when computing the field of sound beams.
The nonlinear effects are strongest along the axis of propagation, so that is where
we suspect an eventual instability to occur. Because of the rapid oscillations in the
nearfield, we cannot impose an amplitude requirement there. The requirement should
be imposed from a point in the transition region (the region between the nearfield
and the farfield) and beyond. We have implemented this modification, and tests
shows that this requirement prevents instability.

We are also interested in computing the soundfield from a bifrequency source.
How do we generalize the amplitude requirement in this case? Instead of compar-
ing amplitudes of individual harmonic components, we can compare the energy of
families of harmonic components. We could define the n’th order family as all the

harmonic components of n’th order, where the ordering of the harmonic components
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is as described in Sec. 3.1, and require that the energy in a higher order family is
lower than the energy in a lower order family. This requirement imposes for instance
the difference frequency component to have less energy than the primary compo-
nents, which is an unproper requirement for long range propagation in media with
high absorption. If we redefine the families to include only the harmonic components
which are higher in frequency than those in the previous family, we have a better
requirement. This requirement was first used to study plane parametric radiation.
Without this requirement the amplitude of the difference frequency wave was over-
estimated, and the modification was indeed needed to avoid a numerical instability
beyond the shock formation distance.

For the case of parametrically generated beams, we have to impose the require-

ment beyond some point in the transition zone of both primaries.
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Chapter 4

Applications

4.1. Interaction between two beams
4.1.1. Introduction

One of the best known applications of nonlinear acoustics is the parametric array,
which was first suggested by Westervelt'. The principle is that two high frequency
sound beams, called primaries, interact nonlinearly to produce a sound beam of
frequency equal to the difference between the primary frequencies. The paramet-
ric array creates a difference frequency wave with high directivity, and practically
no sidelobes. Because the difference frequency is much lower than the primary fre-
quencies, the difference frequency wave is much less affected by absorption than the
primaries, and can therefore be the only survivor at several absorption lengths from
the source. Another advantage is that large relative changes in the difference fre-
quency can be achieved by small relative changes in the primary frequencies. The
low efficiency of the parametric array is the weak part of it. When the parametric
array is operated at high amplitude, the effect of nonlinear damping must be taken
into account. For the case of low amplitudes, a quasilinear analysis can be applied.

Quasilinear analysis means that the linear solutions for the primary sound fields are
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inserted into the nonlinear sourceterms of the governing equations. The equations
for the difference frequency, sum frequency and second harmonic sound fields then
becomes linear, which simplifies the analysis considerably.

Westervelt’s analysis ! was quasilinear, and he assumed that the interaction was
absorption limited to the nearfield. He furthermore assumed that the primary com-
ponents could be modeled by perfectly plane collimated beams in the nearfield and
ignored the finite width of the beam. Westervelt also assumed that the observa-
tion of the difference frequency wave took place outside the interaction region. Naze
Tjgtta and Tjgtta®® later modified Westervelt’s model to account for finite width of
the beam and included phase variations across the beams. This lead to an aperture
factor correction. Westervelt’s theoretical findings were later verified experimentally
by Bellin and Beyer?®.

Studies of the parametric array, both experimental and theoretical, were initiated
in several countries following the article by Westervelt.

Lauvstad, Naze and Tjgtta?” studied the nonlinear interaction of two spheri-
cally spreading waves. Berktay?®?® modified Westervelt’s model to cases where the
primary waves were spreading cylindrically or spherically. Applications of acoustic
nonlinearities to sonar systems were discussed and evaluated.

Muir and Willette® obtained numerical solutions of Westervelt’s inhomogeneous
wave equation to descriebe the difference frequency wave and the sum frequency
wave in the farfield of a circular uniform source. Experimental results supported the
numerical solutions.

The nearfield of the parametric array was considered by Hobak® and by Hobak
and Vestrheim®*3*. A model of plane collimated primary waves was applied. The

effect of nonlinear damping of the primary waves was included in the model. Exper-
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iments compared favourably with their model.

Bartram® introduced a model for nonlinear damped parametric arrays. His model
is closely related to Westervelts. The modification he made was to replace the sim-
ple linear damping by the damping for a shocked sound wave. Merklinger®® studied
finite amplitude effects in plane waves. He found that the nonlinear damping could
be described by a simple taper function. Later Merklinger et al.*® used the same
approach to study finite amplitude losses in spherical waves. Mellen and Moffett3”
also developed a model for the difference frequency wave generated by a parametric
source. The primary waves were assumed to be radiated by a piston source, but
modeled as plane waves out to the Rayleigh distance and spherically spreading be-
yond that range. Taper functions were used to account for nonlinear damping. The
theoretical results were found to be in fair agreement with experimental results. In
Ref. 38 Mellen and Moffett devoted their attention to the nearfield of parametric
sources. Their previously developed model was compared with experimental data
from several sources.

Recently a textbook devoted to parametric arrays written by Novikov et al.3® was
translated to English. The textbook includes results from theoretical and experimen-
tal investigations of the parametric array, and a description of parametric apparatus.
A series of papers have used the KZK equation as a basis. In Ref. 40 Novikov et
al. studied the parametric array in the quasilinear approximation and neglected
diffraction of the primary waves. Later in Ref. 41 the constraint of nondiffracting
primary waves was removed, but the primary waves were assumed to have a Gaussian
distribution at the source. An integral solution was found which compared well to
experimental results.

A textbook written by Bakhvalov et al.*? has also recently been translated to En-
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glish. This textbook reviews results from numerical solution of the KZK equation.
The monochromatic case was studied by Bakhvalov et al. in Refs. 43,4445 46.47.
All articles were concerned with Gaussian or polynomial boundary conditions except
for Ref. 47 which was concerned with an exponential boundary condition. The com-
putations were restricted to the nearfield. Waveforms and amplitude distributions
for different harmonic components along and across axis, zones of existence of shock
waves, distribution of initial phases and intensity were calculated. In Ref. 4849
the same methods were used to analyze the parametric array. Again only Gaussian
and polynomial boundary conditions were used. The difference frequency wave was
computed for various levels of nonlinearity, absorption and downshift ratio, f,,/f-,
(fm =(fi+ f2)/2 and f_ = fi — f,). Amplitude modulated signals were studied in
Ref. 48, while bifrequency signals were studied in Ref. 49. In Ref. 49 results are only
shown for ranges less than a couple of Rayleigh distances.

Several articles on nonlinear acoustics have been written by Naze Tjgtta and
Tjgtta and coworkers the last decade. In Ref. 50 the linear nearfield of a uniform
source was investigated. The validity of the parabolic equation was studied, and some
properties of the solution were derived. Naze Tjgtta and Tjgtta 4 derived the KZK
equation in a new way, and applications were made to parametric arrays. A series of
papers °152535% were devoted to the nearfield of a large acoustic transducer. Linear
radiation, second harmonic generation and parametric generation were considered.
Quasilinear parabolic models were developed and compared to experimental results.
Asymptotic formulas were also derived. A computer program was developed to solve
the nonlinear KZK equation®, and used to study the nearfield of a monocromatic

finite amplitude sound beam °.

The computations were later extended to the farfield 1°. A transformation was
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introduced which made the analysis of the farfield possible. The numerical results
were successfully compared to experimental results. The transition from the nearfield
solution to the spherical solution was studied.

Baker et al.”> measured the nearfield pressure of a monofrequency circular piston
operating at high amplitude. The measurements were compared to numerical results
obtained from the computer program introduced in Refs. 6,8. Comparison were made
for the fundamental, second and third harmonic components, and good agreement
was shown.

Kamakura et al.%®

also measured the nearfield pressure of a circular piston oper-
ating at high amplitude. Both monofrequency and bifrequency excitation were used.
The measurements compared well to results from computations using the computer
program of Refs.6,8. A disadvantage of applying Aanonsen’s program® directly to the
bifrequency case is that a large number of harmonic components have to be retained
when high downshift ratios are considered. This is caused by the fact that all the
successive harmonic components up to a certain limit are retained. If the method of
Refs. 6,8 was modified to include our selection procedure (See Sec. 3.1), and different
integration regions for different harmonic components were used, the computation
time would still be about a factor of 10f,,/f_ times the computation time of our
method.

In order to study the interaction between two soundbeams we will use a transform
similar to the one used by Aanonsen et al. ® and Hamilton et al. 1°:
et ,
oo =T — & /[nm(ow +1)],
upp = €/ (0w + 1), (4.1)

Ty = (ow +1)7,
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FIG. 4.1. The numerical integration region for the transformed equation shown in
the cartesian coordinate system

where r,, = kna?/2 is the Rayleigh distance for the mean primary frequency, k,, =
(kv + k2)/2, ky =27 f1/co, ko = 27 fy /o and n,, = (N1 + N;)/2. The retarded time
Ty 18 close to the retarded time for a plane wave in the nearfield and close to the
retarded time for a spherical spreading wave in the farfield. By introducing T}, the
effect of spherical spreading is factored out. The same transform can be used for
focusing with converging geometry before focus and diverging geometry after focus.
We will consider focusing in Sec. 4.2.2.

The new variables are more appropriate than the old ones for two reasons. First,
the region of integration is changed from a rectangular one to a region which extends
in { - direction as o increases, see Fig. 4.1. This change of integration region has
for effect to remove the problems of reflections from the artifical boundary which is
introduced in order to terminate the discretization in the ¢ - direction. Second, the

introduction of the new retarded time makes the transformed pressure Tp, change
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more slowly across axis both in the nearfield and the farfield.
Substitution of Egs. 4.1 in Eq. 2.1 yields

0T BTy i i T 0% (T )?

et e Bt Vol +
0w 0Thh Ph o, +4(abb+l)2 0 2lp(ow +1) 074

(4.2)

where V2 = 0°/0ufy, + (1/us)0/Ousy and usy = |us|. This equation has the same
form as the ordinary KZK equation except for the appearance of (o4 + 1) and n,, in
the coefficient in the front of the diffraction term and the appearance of (o, + 1) in
the coefficient in front of the nonlinear term.
If we assume that the boundary condition is periodic with period 2rw™!, we can
seek a solution of Eq. 4.2 in the form of a Fourier series
T = i(cbb'n oS Ty + dpp n SIN N T4y ), (4.3)

=1

where ¢y, and dp, ,, are functions of spatial variables. Substituting Eq. 4.3 in Eq. 4.2,

we obtain
E?Zf,f iy W ﬁﬁvgdbb,ﬁ
ﬁ;(% E(Cbb,n—idbb’i) =+ i:il(dbb'mbb'i‘n i Cbb,idbb,i—n)} :
3;;2,: = —ar,n’dy, + W%ﬂfv;bcbb»"-k (4.4)
?‘ZTD—(%TT;%E_) %g(dbb,n—idbb,i + Cppi i Chbig P i:il(%b’i%b’i_n i dbb,idbb,i—n)} ,
R .

For an axisymmetric source that oscillates bisinusoidally with uniform amplitude

distribution, the boundary condition is

ﬁ(d-:(),é,T) = U(|€]) sin Ny7 + U(|€]) sin N, (4.5)
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which gives the following boundary conditions for Cobpn and @i

cob,Ny (055 = 0, upy) = U(uy) sin ;-luib (4.6)
Ny

dbb,Nl (Ubb e O, ubb) = U(Ubb) COSs n—ubb (47)
. N2 2

Cbb,Ng(Ubb = 0, ubb) = U(ubb) Sin n—’ubb (48)
s N2 2

dbb,N2 (abb = 0, ubb) = U(ubb) COS n—-—ubb (49)

m

with cyn (0w = 0,uss) = 0 and dyy n(0s = 0,ups) = 0 for n # Ny, N,

4.1.2. Numerical investigation of the parametric array

We have three nondimensional parameters to consider when we study the para-

metric array. These parameters are

amTm = Rayleigh distance relative to absorption length,
rm/lpm = Rayleigh distance relative to shock formation distance,

fm/f- = Ratio between mean primary frequency and difference frequency .

The parameters an,r,, and r,/lp,, refer to the mean primary frequency f,,. Since
nondimensional variables are used, one may consider that the radius ¢ and the mean
primary frequency f,, are given, so that the Rayleigh distance r,, for the mean pri-
mary frequency is fixed but not specified. Varying the absorption coefficient and the
on-source peak amplitude then corresponds to varying Q,r,, and r,/lp,., respec-
tively. Varying the primary frequencies with the constraint of keeping their mean
value fixed corresponds to varying the ratio dhtrl s

Garrett et al.** and Berntsen et al.5* obtained an integral representation for the
difference frequency wave within the quasilinear approximation. The integral was

evaluated by numerical methods. In Fig. 4.2 comparisons have been made between
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FIG. 4.2. On-axis pressure amplitude of the difference frequency wave versus range
for various values of the difference frequency. From Fig. 3 of Ref. 52( ), and
computed using Eq. 4.4( — — ).

results for the difference frequency waves shown in Fig. 3 of Ref. 52 and results for
the difference frequency waves computed using Eqs. 4.4. The parameters used are ¢
= 1494.7 m/s and a = 0.87 m, for difference frequencies 1, 2 and 3kHz and a; = 0.87
m, a; = 0.83 m for 4 and 5 kHz, where a; 1s the source radius for the primary with
frequency f; and a, is the source radius for the primary with frequency f,. Table
[ in Ref. 52 shows the primary frequencies corresponding to the various difference
frequencies. We observe that the results for the difference frequency wave computed
using Eqs. 4.4 compares well to the results obtained in Ref. 52.

Moffett and Mellen®” have measured the difference frequency wave for source
levels sufficiently high to make nonlinear damping important. The amplitude of the
difference frequency wave was measured at a fixed distance of 84.5 m from the source
for various downshift ratios and various source levels. The mean primary frequency
was 245 kHz, the radius of the source was 12.7 cm, the downshift ratios were 4.9, 9.8,

19.6 and 49.0, ¢o = 1500 m/s, r,, = 8.276 m, a,r = 0.076 and B = 3.5. The source
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level for different downshift ratios, measured by Moffett and Mellen ( 0 o ), and
computed using Eqgs. 4.4( b >

level was varied so that 0.09 < r.,/lp,, < 1.5. The results are shown in Pag: 4.3.
The on axis pressure amplitude of the difference frequency wave is given in terms of

parametric gain G_ defined by
a0 loglo ([_)__(O'bb, 0)) Tbb, (4.10)

where p_ = p_/F; and p_ is the difference frequency component of the acoustic

pressure. The primary source level is given in terms of L defined by
Li(dB/1pPa —m — kHz) = 20log,o( Porm/V2) + 20log,o fm(kHz).  (4.11)

For f,./f- = 19.6 there is very good agreement between measurements and compu-
tations. The computed curve is below the measurements for f,,/f- = 4.9,9.8 and
above the measurements for f,,/f_ = 49. The systematic measurement errors were
estimated to be less than £2 dB. Moffett and Mellen compared their experimental
results to theory they developed. We will later in this section return to their theory

and how it compared to the experimental results.
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In order to study the effects of the different parameters involved, we have calcu-
lated the sound pressure field for several cases. Figures 4.4 and 4.5 show propagation
curves for the primary, sum frequency and difference frequency waves for various

values of the parameters a,,7m,"m/Ipm and f,./f-. The values used are

O = 0.01,0.1, (4.12)
rm/lpm = 0.25,0.5,1.0, (4.13)
fumlf- = 4.5,19.5. (4.14)

The results of the computations have been compared with linear theory for the pri-
mary waves, and quasilinear theory for the sum and difference frequency waves. For

low amplitudes 51:5%:53,54

results obtained using linear and quasilinear theory compare
very well with experiments. The solid lines represent fully nonlinear theory, and
dashed lines represent linear theory for the primariy waves and quasilinear theory for
the sum and difference frequency waves. The discrepancy between the fully nonlinear
and the linear/quasilinear theory is caused by nonlinear damping. A general trend
is that the linear/quasilinear theory compares better with fully nonlinear theory for
higher absorption. Computations have also been made for a,,r,, = 1.0. In this
case the agreement between fully nonlinear theory and linear/quasilinear theory is
perfect for r,,/lp, = 0.25,0.5 and nearly perfect for r,,/lp,, = 1.0. When the ab-
sorption is high, the amplitudes decay quickly and the nonlinear effects become less
important. The nonlinear damping occurs because higher harmonic components are
generated. Absorption affects the higher harmonic components more than the lower
harmonic components, because of frequency dependence of the absorption. This also

suggests that fully nonlinear theory compares better with linear/quasilinear theory

for higher absorption. As expected, fully nonlinear theory compares better with
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linear/quasilinear theory for lower amplitudes. The agreement between results ob-
tained using linear/quasilinear theory and fully nonlinear theory does not seem to
be affected significantly by the downshift ratio. Varying the downshift ratio affects
the high frequency field very little. The amplitude of the difference frequency wave
decreases with increasing downshift ratio, which is a well known fact. The amplitude
of the difference frequency wave varies more slowly, both along and across axis with
increasing downshift ratio.

From the curves we see that quasilinear theory agrees with nonlinear theory to
longer ranges for the difference frequency wave than for the sum frequency wave.
This phenomenon is particularly pronounced for a,,r,, = 0.01, r,,/lp,, = 0.25 and
fm/f- = 4.5. In this case the quasilinear theory and the fully nonlinear theory is
found to predict the same numerical results up to ranges, which for the case of the
difference frequency wave is 10 times that of the sum frequency wave.

In order to study why the difference frequency wave obeys the quasilinear theory
to longer ranges than the sum frequency wave a simulation was done, where the
nonlinear term in the equations for the difference frequency wave was simplified to
include the primary components only. For all harmonic components except for the

difference frequency we use the following equations:

A ST IS Chy = il el a. N7a ] i
aabb i 4n(abb £ 1)2 Upp bb, I
ThaT ool o0
e n—id 1 d iChy = id ity
2lp(ow + 1) ;(Cbby ) +;-_§1( o Cb,ibbi-n) |
st m d n = _v2 n 415
Do TR Ly BT . G (4.15)
- ; i Ao n-id ) i ( R Ihg
5 BH it s o Chb e CRb CobiChbion + dopidipion)|
‘)ID(O’bb +1) (2 v "o
W= VT
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and for the difference frequency component we use the following equations:

aCbb,n Nm

4n(op +1)?

2 2
= —armn Ch,n — Vi, dobnt

0o
Tmn

QID(Ubb + 1)
Odbo,n
o

[db. Ny Cob Ny — Cob, Ny Dbb. N, |

Nm

2
gl dit i bilereoraliolats
ki o dn(ow + 1)?

Vibbc”bv"— (416)

T 1l
Bedydbols . a5 g ,
e E—— [cob, N, Cob, N, + dbb, N, dbb N, |

n=N_
The implication of the simplified nonlinear terms in the equations for the difference
frequency wave is that the difference frequency wave only is generated from interac-
tion between the primary waves. The equation for the difference frequency wave is the
same as in the quasilinear approximation, except for the fact that the primary waves
are calculated with fully nonlinear theory and not linear theory. The results are shown
in Fig. 4.6. The dash-dotted line is the result obtained using Eqs. 4.15 and 4.16. The
solid line is fully nonlinear theory without any simplification obtained using Eqs. 4.4,
and the dashed line is quasilinear theory. The computations clearly show that if the
difference frequency wave is calculated on the basis of Eqs. 4.15 and 4.16, then the
difference frequency wave departs from quasilinear theory at much shorter ranges.
We are left to conclude that the difference frequency wave to a significant degree is
generated from higher order interactions, for instance between the second harmonic
and sum frequency wave components. This means that the decrease in difference
frequency wave generation from the interaction between the primary waves, due to
the fact that the primary waves are nonlinearly damped, to some extent is compen-
sated by the generation of difference frequency wave from the interaction between
higher harmonic components. This also shows that earlier results based on nonlinear

tapering of the primary waves lead to wrong results.
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In Figs. 4.7 and 4.8 beampatterns are shown for the primary, sum frequency and
difference frequency waves. The simulations have been done with «,,r,, = 0.01,
Tm/lpm = 0.5,1.0 and f,,/f- = 4.5. Results from computations are compared with
linear theory for the primary waves and quasilinear theory for the sum and difference
frequency waves. In order to illustrate the nonlinear effects the amplitudes of the
primary (f1) have been normalized to on-axis value according to linear theory and
amplitudes of the sum and difference frequency waves have been normalized to on-
axis value according to quasilinear theory. The overall effect of nonlinearity is seen
to be the suppression and broadening of the beam structure near the axis, the effect
of nonlinearity becoming more important with increasing range and source strength.
Further away from the axis, fully nonlinear theory agrees with quasilinear/linear the-
ory. Results from computations of the lowest primary wave shows that the nonlinear
damping is strongest for the highest primary. This is because the absorption length
is large compared to the ranges where beam patterns are calculated, and that the
highest primary has longer Rayleigh distance and shorter shock formation distance
than the lower primary.

We see that the beam structure for the primary and sum frequency waves is
shifted outwards. This is not an effect that is caused by the fact that a bifrequency
source is used. We have observed the same effect in the monofrequency case. To
our knowledge this effect has not been reported before. We are not able to find an
explanation for this phenomenon. A careful analysis is difficult to perform because
of the presence of strong diffraction and nonlinearity.

In the beam pattern for the sum frequency wave we observe extra sidelobes called
54

fingers In the case of a monofrequency source it is known that the harmonic

component number n has n — 1 fingers between two consecutive sidelobes, and that
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FIG. 4.8. Beam patterns of the difference frequency waves, with a,r, = 0.01

Fully nonlinear theory and r,,/lp, = 1.0 (
Pm/lpm = 0.5 (—-—), and quasilinear theory (— —).

),

fully nonlinear theory and
Amplitudes of the differ-

ence frequency wave have been normalized to on-axis value according to quasilinear

theory.
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the fingers are more affected by absorption than are the sidelobes.

Studying the beam patterns for the difference frequency wave we clearly see that
increasing the source strength causes the beam pattern to broaden. We also see that
at some distance from the axis the fully nonlinear theory predicts a higher amplitude
than the quasilinear theory does. This can be viewed of as an outward shift of
the beam structure with increasing source strength, and is thus consistent with the
outward shift found in the primary and sum frequency waves. When the downshift
ratio is increased the beam width is also increased.

In Fig. 4.9 propagation curves and in Fig. 4.10 beam patterns are shown for
the low frequency harmonic components. It is important to realize that the lower
frequency components are generated both as higher harmonic components of the
difference frequency wave and from interaction between the higher harmonic com-
ponents of the primary waves. Interaction between 2f, and 2f, generates 2f_. We

see that 2f_ 3f_ and 4f_ are built up around the shock formation distance. At
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op = 100 the amplitude of the fourth harmonic low frequency component is about
10 dB below the difference frequency component. The third and fourth harmonic
components experience a dip in the propagation curves. The dips on the axis cor-
responds to dips in beam patterns at the same ranges. I'rom the beam patterns we
observe that the higher low frequency harmonic components are much more directive
than are the difference frequency wave.

Moffett and Mellen® did an theoretical and experimental investigation of the
parametric arrays operating at high amplitudes. They compared their experimental
results to results from a theoretical model they developed, where the difference fre-
quency wave was calculated on the basis of tapered primary waves. Two different
taper functions were used. The first taper function was derived by taking into account
the nonlinear interaction between the primaries, while the second taper function was
derived without taking into account this interaction. They found, quite surprisingly,

that the theoretical results obtained using the second taper function fitted better to
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the experimental results than did the results obtained using the first taper function.
In Fig. 4.11 we have compared the nonlinear damping in the case of one frequency on
the source with the nonlinear damping in the case of two frequencies on the source.
The solid line is the case of two frequencies on the source, the dash-dotted line is
the case of one frequency on the source, and the dashed line is linear theory. For the
simulation with two primary waves the amplitudes at the source were equal. The
nonlinear damping in the case of two frequencies on the source is higher than in the
case of one frequency on the source. In the case of one frequency on the source, only
one harmonic component is generated as a second-order effect. In the case of two
frequencies, four harmonic components are generated as a second-order effect. This
may explain why nonlinear damping is larger in the case of two frequencies on the
source.

In Fig. 4.12 the time waveform at different points along the axis is studied. The
parameters used are ¢,,r, = 0.1, r,.[ip,, = 1.0 and T o= 45RO o B 5
shocks have already formed. We see ripples in the waveform, due to the fact that
we have a finite number of harmonic components in the computation. Increasing the
number of harmonic components in the computation has the effect of smoothing the
ripples. The symmetry of the waveform is destroyed by the prescence of diffraction.
The shock close to 0 degrees is stronger than the two adjacent shocks and is therefore
more affected by dissipation. Consequently the shock close to 0 degrees is damped
more from oy, = 0.5 to o, = 1.0 than the adjacent shocks. At o = 1.0 the shocks
look very similar both in shape and magnitude. Compare this waveform with Fig.
3.5 of Ref. 39 where the envelope becomes square shaped after the shock formation
distance. In Fig. 3.5 of Ref. 39 distortion of the waveform is shown for a plane wave.

At oy, = 10 = o', the absorption length for a plane wave with frequency f,,, the
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waveform looks very similar to the initial one, except for the fact that the sinusoidal
envelope is replaced with a square shaped envelope. At o,, = 30 the primary waves
are damped, and at gy, = 100 the waveform looks much like the difference frequency
component of the waveform. Berktay®” predicted the waveform in the farfield to be
the second derivative of the square of the envelope function of the initial waveform.

In our case the initial waveform is given by:

f(me6) = sin Ny7p + sin No7yp (4.17)
N

= 2sin -9—+TbbF(Tbb), (4.18)

(4.19)

where N} = Ny + Ny, N_ = Ny — Ny and F(7) = cos %‘Tbb 1s the envelope function.
The second derivative of the envelope function F(7y) is given by:
2 2 2

i—% = —% cos N_Typ, (4.20)
which is the difference frequency wave component and this is in accordance with
our numerical results. In his derivation Berktay assumed low amplitudes (such that
the quasilinear approximation applied), and absorption limited generation in the
nearfield, so that the primary wavefield could be modeled as a plane wave. His
analysis applies to arbitrary waveforms, not only harmonic signals. For periodic ex-
citation and several absorption lengths from the source, we expect the waveform to
be the harmonic component which is the lowest one generated during interactions. In
our case the lowest frequency component generated during interactions is the differ-
ence frequency component. For the case of f; = 5 kHz and f, = 3 kHz the difference
frequency component is 2 kHz, but the lowest frequency component generated dur-

ing interactions is 1 kHz and we expect this frequency component to be the only

frequency component left when oy, > a~!.
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In Ref.10 Hamilton et al. considered the farfield of a monofrequency source. They
solved the KZK equation numerically, and looked at the possibility of matching the
solution of the KZK equatiuon with the solution of the spherical Burgers’ equation.
Their computations showed that if the matching was done at oy, = 1.0, the compu-
tations gave reasonably accurate results. We have tried to do the same in our case
with two frequencies on the source. The results from the computations are shown in
Fig. 4.13. The solid lines represent the solution when the KZK equation is used as
model equation in the entire region. The dashed line represents the solution when
matching with the spherical Burgers’ equation is done at a specific range. T'wo cases
are considered with f.,/f_ = 4.5 and f,,/f- = 19.5, and matching is done at three
different distances oy, = 1.0, 5.0 and 10.0. The computations show that the pri-
mary and sum frequency waves are modeled very well by using the spherical Burgers’
equation. The difference frequency wave, however, is not computed accurately by
matching with the spherical Burgers’ equation. The agreement is of course better
the further out the matching is done, and decreasing the downshift ratio o valse
makes the agreement better. If we look into the equations governing the propagation,
we find an explanation for this behaviour. In order to study matching with Burgers’

equation we introduce the following transform

Oy = 2[Th,

Ty = R i el

Uy =8/, (4.21)
Ts = op,

Substitution of Egs. 4.21 in Eq. 2.1 yields
@ T, i O (1)

V2 T
805075 ™ Ors S . 911)0 g

(4.22)
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where V2 = 9?/0uj 4 (1/u,)0/0u, and u, = |u,|. If we assume that the boundary

i

condition is periodic with period 2rw™", we can seek a solution of Eq. 4.22 in the

form of a Fourier series

o0

T, = Z(cs,n COS T, F dynsimnr,), (4.23)

n=1

where ¢,, and d,, are functions of spatial variables. Substituting Eq. 4.23 into

Eq. 4.22 we obtain

Bcs n Nm
) 2
- = —ar,n‘c,, — d, .+
o e i drige "= e
n—1 0
T 1) ,
2] Z(Cs,n——ids,i) o Z (ds,ics,i—n o Cs,ids,i——n) 5
DOs = i=n+1
oy n
) 2) m 2
= ssetenidy, = =V ok - (4.24)
do, 4no?
M o
s 1o | L
T 3 Z(ds,n—ids,i i Cs,n——ics,i) 5 Z (Cs,zcs,i—n aF ds,ids,i—n) )
LipSOg | & g ]
7,

where n,, = f,,/f. The use of the spherical Burgers’ equation is validated whenever
the Laplace term is negligible. When o, increases, the factor in front of the Laplace

operator decreases rapidly. We have to require

N

0.2

s

o (4.25)

to neglect the Laplace term. For the primaries this requirement implies o2 > 1 since
N /N1, /Ny ~ 1, but for the difference frequency wave it implies 0% > n,, /N_,
which is a more severe restriction. This means that we can use the spherical Burgers’
equation for the description of the high frequency part of the field at shorter ranges,
than we can do for the low frequency part of the field. The requirement also indicates

that the ranges where we can start using the spherical Burgers’ equation for the

difference frequency wave increases with increasing value of Gl
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4.2. Focused beams and interaction between focused beams
4.2.1. Introduction

Much interest has been devoted to nonlinear effects in focused sound beams re-
cently. This is in part due to the development of acoustic microscopes 28 and
lithotripters 2, which both are capable of transmitting focused sound at very high
amplitudes. The interaction between focused sound beams 59897172 has also been
investigated.

In 1949 O’Neil®® published a study of the sound field from a concave spherical
radiator. He used the linear wave equation and an approximate Greens function.
Explicit expressions were derived for the solution both along axis and in the focal
plane.

Levin et al.%® transformed the true boundary conditions on a spherical concave
surface to a plane surface. They found an explicit analytical solution of the Helmholtz
equation along the acoustic axis.

Naugol'nykh et al.®® considered converging and diverging spherical waves of finite
amplitude in a termoviscous medium. In an experimental investigation by Smith
and Beyer® involving a spherical cap radiator, the experimental results compared
roughly to the theory of Naugol'nykh et al.%® in the prefocal region. Because of the
strong diffraction effects near focus, the theory of Naugol'nykh et al. does not apply
there.

Ostrovskii and Sutin® developed a model based on the assumption that the effects
of nonlinearity and diffraction could be separated. Nonlinear spherical wave theory
was used in the prefocal region, and linear diffraction theory was used near focus. The

neglecting of diffraction in the prefocal region is specially doubtful for radiators with
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sharp edges. Since the amplitudes are highest near focus the neglecting of nonlinear
effects in this region is also doubtful. See Figs. 4.16 and 4.17 for numerical results
obtained for the primary and second harmonic components radiated from a uniform
focused source.

Several authors have studied the finite amplitude effects in focused sound fields
by modeling the diffraction in the parabolic/Fresnel approximation. Hennion 5° used
Fourier decomposition to obtain an integral representation for the difference fre-
quency wave generated by a bifrequency focused source. In Refs.60,67,68,69,70 linear
and quasilinear solutions of the KZK equation were shown to compare well to exper-
imental results. The primary wave was studied in Ref. 67, the difference frequency
wave in Refs. 68,69, and the second harmonic component in Refs. 60,70. The analysis
can often be simplified by assuming Gaussian boundary conditions. Rugar?® derived
an explicit quasilinear solution for the second harmonic to explain his experimental
results. Novikov et al.** used Gaussian boundary conditions and quasilinear analysis
to study the effect of focusing the primary waves in the parametric array.

The farfield of the difference frequency wave, generated by a focused parametric
array, was considered by Barannik et al.”. The width of the difference frequency
beam was estimated, and it was found that large angle scattering is possible. Baran-
nik and Kadnikov’ studied the nonlinear interaction of convergent spherical waves.
It was found that the beam pattern of the sum frequency wave cannot be wider than
the beampattern of the primary waves, and that the beam pattern of the difference
frequency wave becomes wider as the difference frequency is decreased.

For sufficiently high amplitudes the quasilinear approximation is not valid. The
finite difference method developed by Bakhvalov et al.*? to solve the KZK equation

was also applied to focused sound beams **™3. In their investigation they only consid-
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ered cases where the boundary conditions were Gaussian or fourth order polynomial.
In addition only focusing gains less than 10 were studied. Hart and Hamilton!!!?
also solved the KZK equation numerically. They used the algorithm and program
developed by Aanonsen et al.®® modified to account for focusing geometry. Sound
beams generated by sources with uniform amplitude distribution and focusing gains

of order 50 were computed.

4.2.2. Nonlinear effects in focused sound beams

Our analysis of finite amplitude effects in focused sound beams is based on nu-
merical solutions of the KZK equation. In order to enhance the efficiency of the
numerical method a coordinate transform introduced in Refs. 9,10, but modified to

account for focusing geometry is used
oy = (z - d)/d,
us = ¢/(oy £9),
Ty =1~ GE/(0; £ ), (4.26)
T &= (g F0)D.

The minus sign is used before the focus and the plus sign is used after focus. If § = 0
the retarded time is close to retarded time of a spherical converging wave before
focus, and close to retarded time for a spherical diverging wave after focus, and |u|
represents an angle. These properties make this coordinate system well suited for
calculating the focused sound field. The small positive quantity § governs the rate

at which the transformed geometry converges. Substitution of Egs. 4.26 in Eq. 2.1
yields

83T 1 2 2
b QID(O'f:i:(S) 07—}

G i
=«

dos0r,  ““or¢ VT 1G(o, £ 6) S
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where V;J = 0%/0u} + (1/us)0/0uys and uy = |u,|. If we assume that the boundary

condition is periodic with period 27w™!

, we can seek a solution of Eq. 4.27 in the
form of a Fourier series
o0
Ty= Z(cf,n cosnts + dg, sinnty), (4.28)
n=1

where cs, and dy, are functions of spatial variables. Substituting Eq. 4.28 into

Eq. 4.27 we obtain

Icfn

= —adn2cfyn —

1
— V2 d,
4Gn(o; £6)2 ’

n—1 o
Z(Cf,n—idf,i) aF Z (dgicfion — Cf,ldf,i—n)] ;

=1 1=n+1

1 5 )
mvgj0j1n+ (429)

doy
dn
2p(oy £ 8)
0dsn
Joy

= —adn2df,n A

il n—1

= Z(df,n—idf,i Sl asChi i Z (Gpaesicnit gl
2 =

=1 1=n+1

dn
21D(0'f S 5)
b lailal o

For an axisymmetric focused source that oscillates sinusoidally with uniform ampli-

tude distribution and focusing gain G, the boundary condition is
Plo = 0,6,7) = U(€)sin(r + GE2), (4.30)

which gives the following boundary conditions for ¢y, and d;, when use is made of

Eqgs. 4.26 and 4.28:
era(or = =Lug) = ~(1+8)U (uy (1 + 6)) sin (G6 (1 + 6) u?) (4.31)
dra(oy = =1,us) = —(1+ 6)U (uy (1+ 6)) cos (G5 (1 + 6) u?) (4.32)

with ¢s (05 = —1,up) = 0 and deq(op = ~1,us) =0 for'n = 1. Hart and Hamil

ton used the program described in Ref.8 to solve Eq. 4.29. Results were presented
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for sound beams influenced by the combined effects of nonlinearity, diffraction and
absorption. The beam patterns in the focal region were found to be less sensitive
to absorption and nonlinearity than were beam patterns in the farfield of unfocused
sources.

We have solved Eq. 4.29 with the algorithm descriebed in Chapter 3, which is an
order of magnitude faster than the algorithm of Aanonsen®.

Shown in Fig. 4.15 is the normalized power of the second harmonic component
of a focused sound beam with G = 50 and no absorption. The second harmonic
component 1s computed quasilinearly. The power of the second harmonic component
Puva(c) is defined by Eq. 2.7. Since the absorption is zero, any change in power
with o is caused by nonlinear effects. The power of the second harmonic component
increases until it reaches a maximum slightly after focus. In contrast the amplitude

of the second harmonic has a maximum before focus. Rugar? has studied the sim-

pler case of a focused Gaussian beam. He also calculated the power of the second
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harmonic component in the parabolic, quasilinear approximation and obtained the
same qualitative result as we have.

If we seek a solution of the KZK equation in form of a complex Fourier series

B Z(qnejm + q;e_jm), (4.33)
n=1
where ¢, is a complex coefficient and g, its complex conjugate, we obtain
n—1 N
Ln‘]n == 5( Z dmGn-m + 2 Z qmq;—n)a (4'34)
m=1 m=n+1

where L, is a linear differential operator and € is the Mach number. The equations
for the fundamental, second harmonic and third harmonic components are given by
Ligy = 2e(qiq2 + 4395 + - ),
Lagz = (g} +2¢5g5 + - ), (4.35)
L3ygs = 2€(q1q2 + - - ).
We seek a solution of Egs. 4.35 in the following form:
G = qroteqatEqat Eqst e,
0@ = €1+ Eqa+Elpa+ e, (4.36)
q3 = 62(13,2 A 63%,3 dF oo,

Substituting Eqs. 4.36 in Eqs. 4.35 and identifying to any order of €, we obtain

Ligio =0, (4.37)
Laqz1 = ¢, (4.38)
Lags,2 = 241,042,0, (4.39)
Liqi; = 241 092,15 (4.40)
Lyga3 = Q;,OQS,% (4.41)
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where ¢, o is the linear solution for the fundamental, g, ; is the quasilinear solution
for the second harmonic, g3, is the quasilinear solution of the third harmonic, ¢ ,
is the first correction term to the primary and ¢ 3 is the first correction term to the

second harmonic. Since ¢11 = 0 and g2, = 0, we have

Uil = G 62(]1,2 3 AP
Up) = Gipa - 63%,3 SF 900 (4.43)

QBZGSQB,3+"‘-

Since absorption is absent, the total power is constant :

2 2
_/(; (lg10 + 62421,2 +- P4 legar + - |° + ‘62%,2 ER ' + - -)édE = const. (4.44)

Neglecting terms of order ¢* and higher, we obtain

/0 (lg10 + 62q1,2|2 + |ega1|*)EdE = const. + O(e*). (4.45)

To order € the sum of the powers of the primary and second harmonic components
1s constant. Furthermore it is consistent within this approximation to calculate the
second harmonic component quasilinearly. Since the power of the second harmonic
component increases until it reaches a maximum slightly after focus, energy is trans-
fered from the fundamental component to the second harmonic component in this
region. The power of the second harmonic component decreases after its maximum
slightly after focus and energy is therefore pumped back to the fundamental compo-
nent in this region.

In Figs. 4.16 and 4.17 we have compared the primay and second harmonic com-
ponents computed using fully nonlinear theory with linear/quasilinear theory for

the case ad = 1.0,d/lp = 1.0 and G = 50. Comparison between fully nonlinear
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theory and linear/quasilinear theory illustrates the effect of nonlinearity, and the
accuracy of linear/quasilinear theory. Hart and Hamilton'!'? did not compare with
linear/quasilinear theory. Figure 4.16 shows on-axis amplitude for the primary (f;)
and second harmonic (2f;). The nonlinearity affects the second harmonic more than
primary component. We see that an effect of nonlinearity, for both the primary and
second harmonic components, is to move the maximum closer to the source. Hart!?
found that the peak values of the harmonic components move closer to the source
as d/lp increases. The nonlinear damping is increasing up to the focal region. It is
remarkable that even if the shock formation distance equals the focal distance, the
nonlinear damping of the primary wave is no more than 2.3 dB at focus.

We have studied the beam patterns in the vicinity of focus in Fig. 4.17. We
have chosen 2G¢ as abcissas of the plots, since the linear solution of the amplitude
distribution is 2J,(2G¢)/2G¢ °7. The complex structure of the beam patterns in the
vicinity of focus is similar to the beam patterns in Fig. 4.7 for an unfocused source.
The extra sidelobes found in the beam patterns for the second harmonic component
have been called fingers 5*. The discrepancy between fully nonlinear theory and
linear/quasilinear theory is largest close to the axis.

We also observe that an effect of the nonlinearity is a shift of the beam structure

outwards. This is specially pronounced in the second harmonic component. This is

the same effect as found in Sec. 4.1.2 where unfocused sources were considered

4.2.3. Interaction between two focused sound beams

Interaction between two focused sound beams have been studied by Hennion®®,

Lucas et al.?®, Naze Tjgtta and Tjgtta®, Novikov et al.3® and Barannik et al.”>72. In
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order to study the interaction between focused sound beams we introduce a transform

ofyr = (2 —dn)/dnm,
usp =¢/(oss £ 6),
iy =7 —E/[(0s5 £ 8)dpn/To), (4.46)

Tis = (o5 £ 6)p.

Here d,, = (d1+d;)/2 is the mean of the focal distances, where d; is the focal distance
for the primary wave with frequency f; and d, is the focal distance for the primary
wave with frequency f;. The minus sign is used for o; <0, and the plus sign is used
for os; > 0. Substitution of Eqs. 4.46 in Eq. 2.1 yields

2 3T d - 2 2
S ¥ DoeD o v, U W)
60’ff87‘ff aT?f 47‘0((7_” i(S)Z = QID(CT]] :E(S) aT_?f

ey

where Vi” = 0%/0ut; + (1/uss)0/Ouysy and uyp = luss|. If we assume that the
boundary condition is periodic with period 27w ™!, we can seek a solution of Eq. 4.47

in the form of a Fourier series

oo

Ti; = Y (cepmcosntyy +dyg,sinnry), (4.48)

n=1
where cgs, and dyg, are functions of spatial variables. Substituting Eq. 4.48 in

Eq. 4.47, we obtain

BCff d
0 RV dm 2 N m v2 d $
dogy e, dron(os; £+ 6)2 Ly Pt
i f dsyi) i )
m Cffn—1i iz F d SCE == (€ id SEELeT e
2lp(ogsp £ 6) izl( { gt ian( 111, 118915,
ad, ,
Jyn JAigll dm Zd 4 m vz 449
doyy Pl A o il il (4.49)
e R TR o
A n—i S CIfr n—IC e CrfiClfizon > oy g
95 (8208 By |3 ovel BaE U ovst bl 2 \egicss f1il1s
= I
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For an axisymmetric focused source that oscillates bisinusoidally with uniform ampli-
tude distribution and focusing gain GGy = r,/d, for the highest primary frequency and
focusing gain G, = r3/d, for the lowest primary frequency, the boundary condition
1s

P(o =0,£,7) = U(E) sin(Ny7 4+ G1€%) + U(€) sin(No7 + Go€?), (4.50)
which gives the following boundary conditions for ¢, and d;;, when use is made

of Egs. 4.46 and Eq. 4.48:

crrm(o5r = =Lougg) = —(1+ U (ugy (14 8))sin (Gi8 (1 + 6)ul,)  (4.51)
dfval(O’ff = _17uff) = ——(1 - 6)(] (’U,ff COS (Glé 1+5 u f) (452)
Cff'NQ(O'ff = —1,Uff) = —(]. == 6)U (’U,fj(]. AF 6))8111 (Ggé(l +6)U§f) (453)

dff,Nz(Ujf = —l,uff) = —(1 ot 5)U(qu (1 A 5)) COS (GQ(S(]. + 6) uﬁf) (454)

with ¢rrn(ory = —1,ugs) = 0 and dygn(osy = —1,uss) = 0 for n # Ny, N,. We
have compared results from computations using Eq. 4.49 to the results reported by
Naze Tjgtta and Tjgtta in Ref. 69. In Fig. 4.18 we have reproduced two curves from
Ref. 69. The computations agree well. We note that there are no oscillations in
the on-axis amplitude of the difference frequency component as is the case for the
primary and second harmonic components.

One might think that the efficiency of parametric generation of sound can be
increased by focusing the primary waves. Usually when we consider parametric arrays
we want the amplitude and directivity to be as high as possible in the farfield. We
have compared the difference frequency wave generated from interaction between two
primary waves with various focal distances and the results are shown in Fig. 4.19. We
have compared the difference frequency wave for the cases G,, = 50,10,1,0, where

Gm = 0 corresponds to the unfocused case. It is seen that the maximum on-axis
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FIG. 4.18. On-axis amplitude and slow phase for the difference frequency wave.
Reproduced from Ref. 69( ), and computed using Egs. 4.49( — — ).
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amplitude of the difference frequency wave is increasing with G, but very slowly.
When G, = 50, the maximum on-axis amplitude of the difference frequency wave is
increased by a factor of less than 3 compared to that of the unfocused source, even
if the maximum on-axis amplitudes of the primary waves at focus are increased by a
factor of 50. This is not unexpected since an increase in focusing gain for the primary
waves is followed by a shortening of the interaction region.

In Iigs. 4.20 and 4.21 the amplitude of the difference and the sum frequency waves
are shown both along axis and in the focal plane. The elfect of increasing f,,/ f-
is, as expected, to lower the efficiency of the parametric generation of the difference
frequency wave. The amplitude of the difference frequency wave varies more slowly
both along the axis and across the axis, and the width of the beam increases, when

fm/f- increases. For the sum frequency wave the change in f,,/f_ has nearly no

effect at all.
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) and sum

Comparing the amplitude of the sum and difference frequency waves along the
axis, we see that the difference frequency wave does not have the oscillations in ampli-
tude as does the sum frequency wave. In the focal plane the difference frequency wave
is broader than the sum frequency wave and has no sidelobes. The sum frequency
wave has a fine structure consisting of sidelobes and fingers.

We have calculated the power of the difference frequency wave fav,N_(a), given
by Eq. 2.7, as a function of distance from the source in the case of no absorption, and
with G, = 50 and f,,,/f- = 4.5. The result is shown in Fig. 4.22. As for the second
harmonic component we see that the maximum power occurs a little after the focus.

As in Sec. 4.2.2, we now seek a solution of the KZK equation in form of a complex

Fourier series

= (g.&™ +¢e™), (4.55)
n=1
where ¢, is a complex coefficient and ¢ its complex conjugate, and, we obtain
n—1 N
AT T S SIREE (4.56)
m=1 m=n+1
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where L, is a linear differential operator, and € is the Mach number. If we follow
the same procedure as in Sec. 4.2.2 to study the nonlinear interaction between two

primary waves we obtain

aN, = a0+ Eqny 2+ -,

dN, = 4N, 0 + 62(]N2,2 R

%N, = €@an, 0+ €Ny 3+,

B©N; = €Gan 0+ €qany s + o, (4.57)
IN_ = €qn_o+ E€qn_3+ -,

N, = €qn, 0+ €qn, 3+ -,

where gy, o, gn, o are the linear solutions for the highest and lowest primary waves re-
spectively, qn, 2, gn, 2 are the first correction terms to the primary waves, gy, 1, 9aN,,1, gN_ 1
and g, ; are the quasilinear solutions for the second harmonic, difference frequency
and sum frequency components respectively, and ¢y, 3, ¢2n; 3, gv_ 3 and qn, 3 are the
first correction terms to the second order components. In abscence of absorption the

total power is constant. Neglecting terms of order ¢! and higher we obtain

/O (lavio + €an 2+ law,0 + Eam, 2l? + leqany 12 + legan, 12 + (4.58)

legn_1]* + legn, 11?)Edé = const. + O(e*). (4.59)

To order € the sum of the powers of the primary, second harmonic, difference fre-
quency, and sum frequency components is constant. Further, it is consistent within
this approximation to calculate the soundfield in the quasilinear approximation. The
power of the sum frequency wave increases up to a maximum a little after focus in
the same way as the power of the difference frequency wave and the power of the

second harmonic waves do. This means that energy is pumped from the primary
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theory ( ) and quasilinear theory (— —):

components to the second-order components before focus, and slightly after focus a
portion of this energy is transferred back to the primary components.

We also notice that a major portion of the difference frequency component is
generated in the focal area before focus. If we compare the power of the difference
frequency component to the power of the second harmonic component, we find that
the decreas in power of the difference frequency component after focus is less than
for the second harmonic component. Since the power of the difference frequency
component decreases only slightly after focus, it must be the geometrical spreading
which causes the amplitude of the difference frequency component to decrease so
quickly after focus when G, is large.

In Figs. 4.23 and 4.24 we have considered the case a,,d = i D lnr.,  =a0.5,
G =50 and f,,/f_ = 9.5, and have compared fully nonlinear theory to quasilinear
theory. For both the difference frequency wave and the sum frequency wave see that

the discrepancy between fully nonlinear theory and quasilinear theory is largest near
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focus. We find this to be reasonable, since the amplitudes are highest, and therefore
the nonlinear effects strongest, near focus. The discrepancy between nonlinear theory
and quasilinear theory is larger for the sum frequency wave than for the difference
frequency wave.

The beam patterns show a nonlinear damping of the difference frequency wave
which is very uniform. Note that the scales on the plots are different. Again we note
the outward shift of the beam structure as a nonlinear effect in the sum frequency

wave.

Interaction between two focused soundbeams with different focal distances

In Refs. 67,68 the focused sound fields were generated by using a biconcave lens
in front of a plane source. If the sound speed in the lens depends upon frequency,
the result will be that the primary waves will be focused at different ranges. In this

case we have two focal distances, d; and d,. We have considered a rather extreme
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case. The parameters used are

pmdy, = 0.0, (4.60)
dolpg — 0 (4.61)
G = 55, (4.62)
fm)f- =95, (4.63)
dy/dy = 0.85. (4.64)

Results are shown in Figs.4.25, 4.26 and 4.27. We see that the on-axis amplitude of
the difference frequency wave experiences two maxima of nearly the same magnitude.
The maximas are located at the focal distances of the primary waves (2 = dy and
z = d3). There is a dip in the beam pattern for the difference frequency wave at
z = dp,. The sum frequency wave has a maximum at z = d,, and two other maximas
of smaller amplitude at z = d; and z = d,. Figure 4.28 compares the computations
to the case when the focal distances are equal. For the difference frequency wave we
see that the amplitude is much lower when the focal distances are different. The sum
frequency wave has a lower maximum when the focal distances are different, but for

z > dj or z < d; the amplitudes do not differ very much in magnitude.

4.2.4. Numerical investigation of the parametric receiving array

Nonlinear interaction between waves can also be used for detection of signals. The
parametric receiving array (PARRAY) consists of a pump transducer and a receiving
transducer, rigidly connected with one another. The high frequency pump transducer
(frequency f,) generates a high amplitude wave which interacts with the incoming
signal (frequency f,) and generates a difference frequency wave and a sum frequency

wave. The direction of the signal is found by rotating the PARRAY. The direction
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which gives the highest amplitude for the difference and sum frequency waves is the
propagation direction of the signal. By further analyzing the difference and sum
frequency waves the amplitude of the signal is also found.

When analyzing the PARRAY it is often assumed that the signal is a low fre-
quency plane wave. The pump has been modeled as a bounded linear plane wave,
nonlinear bounded plane wave and Gaussian beam.

It has been argued that the performance of the PARRAY can be improved by
using a focused pump. This was the theme of a recent article by Donskoi et al.!3,

In our study we will be limited to collinear interaction and we will apply the

parbolic approximation.

The use of focused pump in PARRAY

In order to study the interaction between a high frequency unfocused pump wave
with frequency f; and a low frequency plane signal wave with frequency f, we intro-
duce the following transform:

gl =21

Top = T = &/ [N1(on, + 1)),

wy = ¢/(op, +1), (4.65)
Top = (0w +1)P,

where 7, = kja®/2 is the Rayleigh distance for the pump wave, and k; = 27 f,/co.

Substitution of Eqgs. 4.65 in Eq. 2.1 yields

8T, TN N, 0 SR
pochim 1 o 8 e lp = 4.66
aabpapr i a”'-bap % 4(pr 8 1)2 top ™ 0P i 210(0171) W 1) aTb2p ( )

where V;P = 0°/0ui, + (1/up)0/Oup, and Upp = |w,|. If we assume that the

boundary condition is periodic with period 2nw™!, we can seek a solution of Eq. 4.66
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in the form of a Fourier series

(o)

pr = Z(Cbp,n COS NTpp o= dbp,n sin npr)a (467)

n=1

where ¢y, and dyp, are functions of spatial variables. Substituting Eq. 4.67 into
Eq. 4.66 we obtain

M

acbp,n
4n(opp + 1)2

7 vz
= S QI Chpiy dbp,n+
60,,,, Lop

o0

n—1
N
- l:Z(cbp,n—idbb,i) = Z Qdpgienin 2o Cbp,idbp,i—n)] 3

dplow + 1 i=n+1
gd.' s

M
v e 4.68
60'[)1, pcbp' it ( )

dn(opp + 1)2 %

1 n—1 (e
5 Z(dbp,n—idbp,i ™ Cbp,n—icbp,i) e Z (Cbp,icbp,i—n i dbp,idbp,i—n)] )

2
= —arin dy . +

™
21D(pr+ 1)
mis= 200

t=1 1=n+1

For an axisymmetric source that oscillates bisinusoidally with uniform amplitude
distribution for the highest primary frequency and a plane wave for the lowest primary

frequency, the boundary condition is
(o =0,€,7) = U(€) sin Ny7 + (Poa/ Po) sin Ny, (4.69)

where Fy, is the amplitude of the signal at o = 0. This gives the following boundary

conditions for ¢y, , and dy, ,:

Cops (T = 0, upp) = U (upy) sin (4.70)
dia i, (obp == 0yl = L uppJicos uzp, (4.71)
Cro 2k Ty =20,55,). = (Lo [ Po) sin %ufp, (4.72)
dip,N, (0bp = 0, upp) = (Poz/ Po) cos —g—j—ufp, (4.73)

WHE Copnl @op = U, Ubyp) = U B0 di o @y = 0, Ug,) = 0 101 1 3£ Ny, Ns.
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In order to study the interaction between a high frequency focused pump wave
with frequency f; and a low frequency plane signal wave with frequency f, we intro-

duce the following transform:

opp = (2 —d)/d,
up, =§/(05p £ 6),
Trp =1 — & /[(0, £ 6)d/r), (4.74)

Tip = (05, £ 6)P.

Substitution of Egs. 4.74 in Eq. 2.1 yields

AT d 5 d @ (T..)°

Ty,
= ad I
: SR P

= \Y
00,074, Ot B duglles o dir | i

(4.75)

where V;fp = 3%/ou}, + (1/uy,)0/Ouy, and uy, = |ug,|- If we assume that the
boundary condition is periodic with period 27rw™!, we can seek a solution of Eq. 4.75

in the form of a Fourier series

(o]
Tfp b Z(Cfp,n COSNTfp + dfp,n sin n'rfp), (4.76)
=l

where cf,, and dy,, are functions of spatial variables. Substituting Eq. 4.76 into

Eq. 4.75 we obtain

degp d
L d 2 o v2 d
Joyg, i digniog 42012 g fpn T
d'l’l n—1 0o
2lD(a'fp i 5) E(Cfp,n—idfp'i) e Z (dfp’icfpvi‘” B Cfpyidfp,i—n)} )
t= i=n+1
ddyp d
Wiy L . 4.77
g T e (4.77)
dn i it oo
e g g |7 2= den-idipi = Cpn-iCrpi) = (Ctralramita Sl psdiman )|
2lD(O'J‘p o 2 ; 4 fr fr fr ) i:%—l piCfp fpiGfp
rue=eils 2 i

RO



For an axisymmetric source that oscillates bisinusoidally with uniform amplitude
distribution and focusing gain G; = ry/d; for the highest primary frequency, and
with a uniform amplitude distribution and zero focusing gain a for the lowest primary

frequency, the boundary condition is
P(o =0,€,7) = U(€) sin(Ni7 + G1€?) + (Poz/ Po) sin(N,7), (4.78)

where Py, is the amplitude of the plane wave at the source. This gives the following

boundary conditions for ¢y, , and dy,, when use is made of Eqs. 4.74 and Eq. 4.76:

crpma (05 = =Lyug) = —(1 + 8)U (ugy (14 8))sin (G16(1+ 6)u?)  (4.79)
dppi(0gp = =Lugp) = =(1+ 6)U (ugy (14 6)) cos (Gh8 (1 + 6)ul,)  (4.80)
croma(07p = =L,up) = —(1+ 6)sin (Ga6 (1 + 6)u3,)  (4.81)

dipNy(0pp = —=1,upp) = —(1 + ) cos (G‘25 (1+9) uip (4.82)

with cppn(0fp = —1,upp) = 0 and dgpn(os, = —1,upp) = 0 for n # Ny, N,. To see
the effect of focusing we have in Fig. 4.29 compared the difference frequency wave
generated using unfocused pump wave with the difference frequency wave generated
using three different focused pumps. The gain of these focused pumps are 50, 10 and
1. We keep the source amplitude, frequency and radius of the of the pump fixed,
and vary the focal distance. The amplitude of the signal Py, is set to 107®P,. For
simplicity we have neglected absorption and applied the quasilinear approximation.
The amplitudes are scaled to 6 x 1077F,. We find only small variations in the
maximum on-axis amplitude of the difference frequency waves generated using the
various pump waves. When (;; = 50 the amplitude of the pump wave at focus is
50 times as high as in the case of G; = 1, but when G; = 50 the focal distance

is only 1/50 times the focal distance in the case of G = 1. Focusing closer to the
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source increases the amplitude of the pump, but the distance the nonlinear effects can
accumulate decreases. These effects balance each other for the values of focusing gain
considered here. For G; = 10,50 the amplitude of the difference frequency wave falls
off very quickly after focus. Comparing the cases G; = 1 and G; = 0 we see that the
on-axis amplitude of the difference frequency wave does not change very much, except
for the fact that the maxima are closer to the source in the case of G; = 1. Beyond
two Rayleigh distances from the source, the difference frequency wave generated by
the unfocused pump wave has higher amplitude than the difference frequency wave
generated by the pump wave with G; = 1. If we want the on-axis amplitude of the
difference frequency wave to be as high as possible and the directivity to be as sharp
as possible in the farfield, the unfocused pump should be used.

In Fig. 4.30 we have compared the on-axis amplitude of the difference frequency
wave with the on-axis amplitude of the pump wave for the cases G; = 50 and G; = 10.
The amplitudes have been normalized to their maxima. In the case of G; = 50 the
curves are very similar. The zeros match up well. The difference between the on-axis
amplitude of the difference and pump waves is that the on-axis amplitude of the
difference frequency wave is lower in the prefocal region and higher in the postfocal
region. This is probably because the difference frequency wave is generated by an
accumulative effect. For G; = 10 the curves are quite similar. The zeros before
focus match up well and the amplitude of the difference frequency wave is lower
before focus and higher after focus. We also notice that the on-axis amplitude of the
difference frequency wave has a maximum very close to the focus, even if the pump
has a maximum more than 1/10 of the focal distance away from the focus. We have
seen this effect even more clearly for lower values of G.

The beam patterns at focus are nearly identical for the difference frequency wave

82



(o]0}

1,

(0)57/5]

0.50

il

NORMALIZED AMPLITUDE
0.25

0.00

1.00

0.75
f

0.50

0.25

NORMAL IZED AMPLITUDE
22

00

FIG. 4.30. On-axis amplitude for the difference frequency wave ( ) and the

pump wave (— —), with no absorption and fi/f2 = 150. Linear/quasilinear the-
ory.

83



and the pump wave when Gy = 50 and G; = 10.

Up to now we have considered only the case f;/f, = 150. For low values of f,/ f,
peculiar effects can occur. When f1/f; = 6, G; = 75 and a = 0 it was observed that
the on-axis amplitude of both the difference frequency wave and the sum frequency
wave had two maximas of nearly same magnitude. The difference and sum frequency
waves are shown in Fig. 4.31. Both curves are normalized to their maxima. The
on-axis amplitude of the difference frequency wave has a maximum before focus and
one close to focus. The amplitude of the sum frequency wave has a maximum after

focus and one close to focus. The extra maximas are seen to be close to

w1 — Wy

= d (4.83)

w1
for the difference frequency wave and close to

wy + wo

e d (4.84)

wa

for the sum frequency wave. For this effect to occur the focusing gain must be high,
and the ratio f;/f, must be moderate. Decreasing the focusing gain has the effect of
broadening the maxima, and when the focusing gain 1s low enough the maxima will
melt together. Decreasing the ratio f;/f; has the effect of moving the extra maxima
further away from the focus which is obvious from the expressions 4.83 and 4.84.
In the case of a focused Gaussian beam interacting with a plane wave, the dif-
ference and sum frequency waves are given by simple expressions. Analysis of these
expressions shows that if the focusing gain is high and the ratio f,./f_ is not too
large, then the difference and the sum frequency waves will have extra maxima lo-
cated at the positions given by 4.83 and 4.84. When studying the PARRAY for

collinear interaction, we can in addition to diffraction also include absorption and
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nonlinear effects. We have studied the case

fil f2 = 150, (4.85)
ary = 0.01, (4.86)
r/lpr = 1.0, (4.87)
Gyre=s140; (4.88)

to see the effect of nonlinear damping. Since the amplitude of the signal is low
the nonlinear damping of the pump wave is determined by the generation of higher
harmonic components of the pump wave. The on-axis amplitude of the difference
frequency wave is shown in Fig. 4.32. The nonlinearity affects the sum frequency
wave in the same way as it affects the difference frequency wave. We see that the
nonlinear damping is not very severe even at g, = 10. The amplitude of the pump
wave is reduced by 6dB at o,, = 10. The nonlinear theory predicts a higher am-
plitude near focus than does the quasilinear theory for both the difference and sum
frequency waves. The difference frequency wave is not only generated from the inter-
action between the pump and signal waves, but also from the interaction between the
sum frequency wave and the second harmonic component of the pump wave. When
nonlinear effects start to become important, energy is transfered from the pump wave
to the second harmonic component. Because of the nonlinear damping of the pump
wave, less difference frequency wave is generated by the interaction between the pump
wave and the signal wave. This loss of generation is compensated by the interaction
between the second harmonic and sum frequency components. In the same way the
sum frequency wave is generated both by the interaction between the pump wave

and the signal wave, and the interaction between the second harmonic wave and the

difference frequency wave.
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Chapter 5

Summary and conclusions

Nonlinear effects in sound beams and interaction between sound beams have been
investigated. The nonlinear parabolic equation (The KZK equation) has been used
as a model equation. The solution of the KZK equation was written in form of a

Fourier series, and equations were obtained for the Fourier coefficients.

1. For numerical computations of time harmonic sound fields, the Fourier series
representation has to be truncated. A procedure has been developed for how

to select the harmonic components to be retained in the Fourier series.

2. A test problem, which is a simplification of solving the KZK equation, was
introduced. Two finite difference methods were applied to this test problem
and analyzed. The analysis gave a good understanding of the qualitative and

quantitative behaviour of the two methods.

3. The analysis of the test problem gave rise to an efficient algorithm for solving

the KZK equation.

4. A computer code was implemented. Different integration regions were used for
different harmonic components. When a high number of harmonic components

are retained in the computations, this technique reduces the computation time
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by about a factor of four. A stabilization procedure was given which facilitates

the computation of sound beams well beyond the shock formation distance.

Applications were made to the parametric array:

. In order to test the computer code, numerical results were compared to exper-

iments and earlier computations based on quasilinear theory. For low ampli-
tudes, results for the difference frequency wave were compared to quasilinear
theory and good agreement was found. For high amplitudes, results for the

difference frequency wave were found to compar well with experiments.

. The comparison between fully nonlinear and linear/quasilinear theory was

found to be more favourable for the case of high absorption. The high fre-
quency part of the sound beam was not influenced much by the downshift

TR

. The fully nonlinear and quasilinear theories were found to predict the same

numerical results up to ranges, which for the case of the difference frequency
wave was 10 times that of the sum frequency wave. This can be explained by the
fact that the difference frequency wave to some extent also is generated from the

interaction between higher harmonic and combination frequency components

of the primary waves.

Studying beampatterns for the primary, sum frequency and the difference fre-
quency waves 1t was found that the effect of nonlinearity not only caused an

erosion of the mainlobes, but also lead to an outward shift of the beam struc-

ture.
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. Higher harmonic components of the difference frequency wave were computed,

and it was found that they were built up around the shock formation distance.
A general trend was that the successive higher harmonic components had higher

directivity, and that dips occured in the beampatterns near the symmetry axis.

Monofrequency wave excitation was compared to bifrequency wave excitation.
We found that the primary wave was more influenced by nonlinear damping in

the bifrequency case.

Waveforms were computed. The process from initial waveforms, through the
developement of shocks, via strong shocks to stable waveforms, and finally to

a pure difference frequency wave was shown.

The possibility of matching the solution of the KZK equation with the solution
of the spherical Burgers’ equation was studied in the case of low amplitudes.
It was found that the primary and sum frequency waves, but not the difference

frequency wave could be matched well at about a Rayleigh distance from the

source.

Focused sound beams, nonlinear effects in focused sound beams and interaction

between focused sound beams have also been investigated:

The power of the second harmonic component in the vicinity of focus was
computed, and it was found that the power had a maximum right after focus.
An analysis of the power of the different harmonic components shows that
energy is transferred from the second harmonic to the primary component in

the post focal region.
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Beam patterns for the fundamental and second harmonic components were
studied in the vicinity of focus. As in the unfocused case it was found that the
effect of nonlinearity was an erosion of the mainlobes and an outward shift of

the beam structure.

Applications were made to interaction between focused sound beams. In order
to check the computer code, comparison was made for the difference frequency

wave with quasilinear results for reported in the literature.

For given primary frequencies, source radius and source amplitude we found
that the maximum amplitude of the difference frequency wave increased only
slightly by increasing the focusing gain of the primaries. When going from
G, &= 1 to G = 5 thesasmplitidel of the. differonce frequency wave only

increased by a factor of less than 3.

The power of the difference frequency component generated by two focused
sound beams was computed, and we found that the difference frequency com-
ponent attained a maximum a little after focus. The power of the second
harmonic and sum frequency components has the same qualitative behaviour
as the difference frequency wave. An analysis of the power of the harmonic
components gives that energy is transferred from the second-order components

to the primary components in the post focal region

Interaction between two focused beams with different focal distances has also
been studied. When the focal distances are not too close to each other, and
for high focusing gains, the on-axis amplitude of the difference frequency wave

attains two maxima of nearly the same magnitude, one close to each focal
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point. The on-axis amplitude of the sum frequency wave has a maximum near

the midpoint between the two focal points.

The maximum amplitudes of the difference and sum frequency waves are sub-
stantially higher when the focal distances of the primaries are equal than when

they are different.

We have also studied the interaction between a plane wave and a focused or

unfocused beam:

For given primary frequency, signal frequency, source radius and source ampli-
tude the maximum amplitudes of the difference frequency and sum frequency

waves are nearly invariant with respect to focusing gain of the pump.

For low values of focusing gain the on-axis amplitude of the difference and
sum frequency waves have maxima very close to focus even though the on-axis

amplitude of the focused pump has a maximum significantly before focus.

For high focusing gains and pump frequencies much larger than the signal
frequency, the pressure amplitude distribution both along axis and in the focal

plane is similar for the difference frequency, sum frequency and pump waves.

When the pump frequency is only moderately larger than the signal frequency
and the pump is strongly focused, peculiar effects can occur. The on-axis
amplitude of the difference frequency wave attains one maximum before focus
and one at focus. The on-axis amplitude of the sum frequency wave also attains

two maxima with one maximum at focus and one after focus. These effects are
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also found analytically, when investigating the interaction between a Gaussian

beam and a plane wave.
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