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ABSTRACT

Nonlinear propagation and interaction of collinear sound beams are investigated
within the scheme of the Khokhlov-Zabolotskaya-Kutznetsov (KZK) equation. The
solution of the KZK equation is written in form of a Fourier series, and equations are
obtained for the Fourier coefficients. The infinite Fourier series has to be truncated,
and an algorithm is presented which selects harrnonic components retained. A test
problem, which is a simplification of solving the KZK equation, is analysed and the
analysis leads to an efficient method for solving the KZK equation numerically. The
propagation of both focused and unfocused sound beams are considered. Propagation
curves and beampatterns for various components of the acoustic held (harmonics and
combination frequencies) are presented. The analysis extends to ranges beyond the
shock formation distance. Various source levels, absorption lengths, downshift ratios
and focusing gains are considered. The results are compared with that obtained for
sources operating at moderate intensity (quasilinear theory).
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Chapter 1

Introduction

Acoustics is mainly concerned with small amplitude disturbances for which linear the

ory is sufficient. There are several important instances, however, when the nonlinear

terms in the fluid-dynamic equations cannot be neglected. Perhaps the most famous

nonlinear phenomenon in acoustics is the steepening and development of shock in a

plane travelling wave.

Nonlinear acoustics has several applications. Supersonic aircrafts generate shock

waves which propagate to long ranges. The parametric array 1 is capable of pro

ducing a low frequency beam of high directivity from a source with relatively small

dimensions. A parametric receiving array has also been constructed and is used to

determine the parameters of a signal. It is based on the nonlinear interaction be

tween the signal and a strong acoustic purnp wave of higher frequency. Acoustic

microscopes operating at nonlinear power levels achieve resolution beyond the lin

ear diffraction limit 2 . Lithotripters 3 which transmit focused sound at very high

amplitudes are used to disintegrate kidneystones.

m order to stuoy practical applications of nonlinear effects in beams it is often

necessary to consider the combined effects of nonlinearity, diffraction and absorp

tion. Ihe propagation of a narrow beam is effectively described by the so-called
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Khokhlov-Zabolotskaya-Kutznetsov (KZK) equation 4 ’ 5 . This equation has to be

solved numerically since no general analytic solution is known.

Chapter 2 presents the KZK equation and gives a brief description of how it can

be derived. The solution of the KZK equation is written in form of a Fourier series,

and equations are obtained for the Fourier coefhcients 6 . Some properties of the

power of a sound beam and its harmonic components are given.

Chapter 3 deals with the numerical solution of the KZK equation. Since the

Fourier series expansion of the solution of the KZK equation contains infinitely many

components, it has to be truncated. An algorithm is presented which selects harmonic

components retained in the Fourier series. Section 3.2.2, ”Analysis of two numerical

techniques on a test problem” is based on a technical report 7 written with Jarle

Berntsen as coauthor. A test problem, which is a simplification of the KZK equation,

is introduced. Two finite difference methods are applied to the test problem and

analyzed. The analysis leads to a more efhcient way to solve the KZK equation

than the method developed and used previously by Aanonsen et al. 6,8 . Further,

in Sec. 3.2.2 additional improvements of the numerical method are discussed. By

introducing different regions of integration for different harmonic components the

computation time is reduced approximately by a factor of four. A stabilization

procedure is given in order to prevent a possible instability caused by the truncation

of the infinite Fourier series expansion.

In Chapter 4 the KZK equation is used to study different applications of nonlinear

acoustics. Section 4.1 is devoted to parametric transmitting arrays. The numerical

results are compared to low amplitude theoretical results and experimental measure

ments reported in the literature, in order to test the computer code. Effects of varying

the different characteristic parameters are shown, and comparison is made with low
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amplitude theory in order to see the effect of nonlinearity. Results are presented both

in frequency and time domain. The possibility of matching the solution of the KZK

equation with that of the spherical Burgers’ equation in the farheld is also analyzed.

Section 4.2 considers focused sound beams and their interaction. A coordinate

transform9,10,11,12 is introduced which follows the geometry of the focused sound beam

and enhances the computational efficiency. Nonlinear effects in focused soundbeams

are shown and energy exchange between harmonic wave components are studied. The

difference frequency wave component generated by interaction between two focused

sound beams is computed and compared to results from the literature. Also, the sum

frequency wave generated by interaction between two focused sound beams is studied.

The effect of varying the characteristic parameters is shown, and comparison are made

with low amplitude theory. Interaction between focused sound beams with different

focal distances are also considered. Fmally, apphcations are made to the parametric

leceiving array. Donskoi et al. 13 have suggested that the pump transducer should be

focused in order to generate difference and sum frequency waves more efhciently. We

have compared the results obtained using unfocused pumps to results obtained using

pumps with different focal distances.
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Chapter 2

Governing equation

2.1. The KZK equation

The Khokhlov-Zabolotskaya-Kutznetsov (KZK) wave equation which accounts

for the combined effects of absorption, diffraction and nonlinearity can be written in

the following nondimensional form

(2.1)

where cr = z/vq is a dimensionless range in terms of the axial coordinate 2 and the

Rayleigh distance r0 = ka 2 /2, k = lo/c0 is the wave number, cj/2tt is the source

frequency, c0 is the sound speed and a is the source radius. Further, r = io[t — zjCq)

is a dimensionless retarded time, p = p/P0 is a dimensionless pressure in terms of

the acoustic pressure p and the on-source pressure amplitude Poy a = Dm2 /2cq is the

termoviscous attenuation coefficient, where D is the sound diffusivity. Ijj = l/[/3ek)

is the plane wave shock formation distance, where /3 is the coefficient of nonlinearity

and t — Vq/cq is the Mach number, where Vq is the on-source fluid velocity component

in the z-direction. The two dimensional Laplace operator is applied with respect

to the dimensionless vector ( = x/a , where x = (.Ti, x 2 ) is the transverse coordinate

vector. For an axisymmetric sound held we rnay write = d2 /d£2 + (1 /£)d/d£,

d2 p d3p l^2 - , r0 d2 {p) 2
fod~r ~0r + i VlV +
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FIG. 2.1. The geometry and dimensional spatial variables of the problem

where f = \(\. In Fig. 2.1 the dimensional coordinate system for the problem is

shown. The first term on the right hand side of Eq. 2.1 represents absorption, the

second diffraction and the third nonlinearity. In the derivation of the KZK equation

it is assumed that the soundbeam is well collimated {i.e.ka

In the case of abscence of absorption the equation was derived by Zabolotskaya

and Khokhlov4 . They derived the equation from the equations of hydrodynamics

on the assumption that the shape of the wave varied slowly both along the beam

and transversely to it. These variations were ascribed different scales. Kutznetsov5

included absorption and thereby added one term to the equation derived by Zabolot

skaya and Khokhlov. He linearized terms in the hydrodynamical equations due to

absorption, and ascribed the same scales of variations of the shape of the wave both

along axis and transversely to it as did Zabolotskaya and Khokhlov.

Naze Tjøtta and Tjøtta14 derived the KZK equation in a different way. They used

the method of multiple scales and required that the effects of absorption, diffraction

and nonlinearity all were accounted for to the same order of magnitude. From their
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derivation it followed that the scales of variation along axis and across axis assumed

in the previous derivations, were the only possible when the effects of absorption,

diffraction and nonlinearity were taken into account to the same order of approxima

tion.

The KZK equation is a parabolic equation, and contains only first derivative with

respect to cr since regressive waves are neglected. Sommerfeld’s radiation condition

is not needed. The KZK equation can also be written in the particle velocity 14 by

using the linear plane wave impedance relation p = poC0v z , where p0 is the ambient

density and vz is the velocity component in the z-direction. This substitution is valid

because ka 1 and local effects are not accounted for in the KZK equation. Local

effects are effects which are significant only on the order of one wavelength. It is

consistent 6 , within the approximations used when deriving the KZK equation, to

linearize the boundary condition.

There are two nondimensional parameters in Eq. 2.1

ar0 = Rayleigh distance relative to absorption length.

r0 Hd — Rayleigh distance relative to shock formation distance.

The parameter qt0 increases with increasing importance of absorption, and the pa

rameter r0 /Id increases with increasing importance of nonlinear effects.

2.2. Fourier decomposition and power considerations

If we assume that the boundary condition is periodic with period 2ttu; 1 , we can

seek a solution of Eq. 2.1 in the form of a Fourier series

(2.2)p= Y (cn cos nT +dn sin nr) =Y Pm
n— 1 n=l
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where cn and dn are functions of spatial variables. This approach was used by Aanon

sen et al. 6,8 . Substituting Eq. 2.2 in Eq. 2.1, we obtain

(2.3)

The spectral form of Eqs. 2.3 permits generalization to fluids with arbitrary absorp

tion and dispersion. Such effects can be taken into account by replacing the first

term on the right hand side of Eqs. 2.3 by a more general expression of the form

a(n)cn -f P{n)dn , where a(n) and f)(n) are given functions of n. See Ref. 15 for a

discussion in the case of plane waves.

(2.4)

This leads to the following boundary conditions for cn and dn

The Eqs. 2.3 together with the boundary conditions, Eqs. 2.5, form a complete math

ematical model.

The overall power of a wave is found by integrating the intensity across the entire

held. Within the parabolic approximation the linear plane wave impedance relation

dcn 9 1 9 .
— = -ar0n 2 cn - —V2± dn +oct 4n

r r? h1 00
5Z(cn_ t (^Ct _ n - Ct (ft _n)
t=l t=n+l

-p- = -ar0n 2 dn -f j-V^cn +da in
r n 1 n_1 00
—- - n-idi - cn _ t ct ) - ( C{ c,_ n + d,d,_n )

|_ 2 i=l i=n+l
n = 1,2,

We specify a boundary condition in the plane a = 0

P = d{£, T )-

1 f*
cn (£,r) = — g cos nr dr,7r J —7r

1 [ n
d„(£,r) = - / g sin nr dr. (2.5)7T J— 7T
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is valid 14 , and the nondimensional power of a wave is given by

(2.6)

The nondimensional power of an individual harmonic component is given by

(2.7)

In the case of no absorption the total power is constant 16 :

(2.8)

Substituting Eq. 2.2 in Eq. 2.8 we obtain

(2.9)

The total power of a wave is equal to the sum of the power of all the individual

harmonic components, which is again constant. The power of individual harmonic

components is generally not constant in the nondissipative case, because of energy

transfer between different components. For linear nondissipative propagation the

power is constant also for individual harmonic components.

1 r2-K roo

=7r / p2 {i^i T )i di dr -Z7T JO Jo

1 f 2tt roo
/PaV}n{a) = — / pl(£,<T,T)£d£dT.Z7T JO JO

Vav {cr) = const.

Vav (cr) = Yl 'Pav ,n(v) = COUSt.
n — 1
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Chapter 3

Numerical work

3.1. Selection of harmonic components in computatlons

In the following we will study the interaction between two monofrequency sound

beams, called primaries, of different frequencies. Let us denote the highest primary

frequency by and the lowest primary frequency by f2 . For the resulting signal to

be periodic the frequencies fi and f2 must be commensurable. This means that there

exist integers Ni and N2 and a basic frequency / such that

(3.1)

for i—1,2. Let furthermore f denote the largest frequency which satisfies Eq. 3.1.

The requirement of commensurability is purely theoretical since no frequency can be

measured exactly.

When the boundary condition is periodic, we can seek a Fourier series solution

as shown in the previous section, and we obtain an infinite set of coupled partial

dilferential equations for the different harmonic components. To perform the com

putations we have to select a finite number of harmonic components. In the case of

a single frequency on the source the selection procedure is easy. Computations are

done with all the harmonic components up to a specific number.

/. = NJ,
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The KZK equation can be written in the following form

(3.2)

where L is a linear differential operator and e is the Mach number. The boundary

condition in the case of two frequencies on the source can be written

(3.3)

where pi, /q,p2 and h 2 are functions of £. To solve Eq. 3.2 together with the boundary

condition, Eq. 3.3, we seek a solution in the form

(3-4)

where c*.,• and d*.t- are functions of spatial variables. We want to determine M*,

(k=0,l,...) and TV*,-, (k=0,l,...; i=l,...Mfc). The boundary condition implies M0 = 2

,fV0i =Ni and N02 — N2 . We substitute Eq. 3.4 in Eq. 3.2 and require that the equa

tion is satisfied to every order in the parameter e. This gives us a recursive procedure

to calculate (k=0,l,...; i=l,...,Mfc) . First we use 7V0j , (i=0,l,...,Mo ) to deter

mine Nu, (i=0,l,...Mi), and then we use N0i , (i=0,l,...,Mo ) and Nu, (i=0,l,...,Mi)

to determine 7V2n (i=0,l,...,M2 ). We want to have an algorithm for finding all ZVjt,-,

(k=0,1; i=0,l,...,Mfc). For each order in t we have the following equation

(3.5)

where qk % and r^. t are functions of spatial variables. The operator L has the property

(3.6)

where q and q' are functions of spatial variables and C is a constant. With this

property we construct the complete solution of Eq. 3.5 by superposition, and we have

ip = £^’

p{t,<7 = 0) = ffl e'WlT + h ie- jN+ + h 2 e~iN' T ,

oo Mk

P = E t^ickie3^ + dk.e-lNt ‘ T ) ,
k=0 [ t=l

Mk h

ek : L £(c*.-e>' A'“ T + dkie-lN*- T )= £(fc +
i=l i= 1

L(qelCr ) = q'elC\
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lk — Mk - Furthermore we can choose Nk i = Kkx , and Kkt, (k=0,l,...;

are calculated from (l=0,l,...,k-l), (i=0,l,...,Af/). The recursive procedure to

determine Mk-, (k=0,1,...) and Nki, (k=0,l,...; i=0,l,...,M]t), gives

(3.7)

We note that all harmonic components of order en can be written |a; +yN2 1, where

\ x \ + \y\ =n + 1 and x, y are members of Z. This gives us the desired algorithm for

associating an order to each harmonic.

The Fourier series representation of the solution of the KZK equation contains

inhnitely many harmonic components. If we retain only harmonic components up to

a certain order, then the Fourier series is truncated consistently. Let M denote the

total number of harmonic components retained in the Fourier series and K the highest

order of all harmonics retained. When the Fourier series is truncated consistently,

we have two upper limits for M

(3.8)

The first upper limit is the typical number of harmonic components retained in the

Fourier series in the case of Ad, Ad > K, and the lower limit is the typical number

of harmonic components retained if Ad < K

e° :Mo— 2, = A/i, A02 — A^2 ,

e 1 :Mi— 4, TVn = 2Nx, A/j 2 = A/j -f N2 , A^13 = 2A^2 , A/14 =Nx — A/”2 ,

e 2 :M2— 6, A^21 = 3A/"x, A/22 -- 2A/i -f A/2 , A^23 = A/j -f 2A/ 2 ,

A^2 4 = 3Ar2 , A^25 = 2Ni — A/2 , N2q — 2N2 — A^.

M < (K +l)(K+2),

M < (K + l)N,.
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3.2. Numerical method

3.2.1. Previous work

After the KZK equation was derived a large number of articles appeared in the

Soviet literature devoted to results from numerical Solutions of the equation. In

these articles the numerical method used was not described in detail. Zhileikin16

later described and analyzed the method used. The acoustic pressure was expanded

in a Fourier series, and equations were obtained for the Fourier coefhcients. The

infinite system of equations were truncated and solved by a finite difference method.

They used a conservative finite difference scheme, the Crank-Nicholson method. The

resulting difference equations were solved by the method of difference matrix pivotal

condensation.

Aanonsen et al. 6,8 also solved the KZK equation by a finite difference method.

Their work was independent of the work in the Soviet Union. They did not apply

the same method as Zhileikin et ah, but used a fully implicit method instead. The

resulting algebraic equations were solved by iterations, thus putting severe restric

tions on the choice of step sizes in order to ensure the convergence in the iteration

process. Furthermore, the computations were restricted to the nearfield, because of

the enormous computation times required at larger ranges. Aanonsen et al. 6,8 studied

the sound held from uniform sources as opposed to the study of Gaussian, polynomial

and exponential shaped sources carried out in the Soviet Union. Aanonsen et al. 9 and

Hamilton et al. 10 continued the work of Aanonsen et al. in Refs. 6,8 and introduced

a coordinate transform which facilitated computations beyond the nearfield. In the

same article a seven point difference formula was used to approximate the Laplace

operator in order to speed up the computations.
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3.2.2. Improvement of numerical method

Analysis of two numerical techniques on a test problem

This subsection is based on a report written with Jarle Berntsen as coauthor,

Ref. 7.

As we have mentioned earlier, different methods have been used to solve Eq. 2.3.

To simplify the analysis of the different numerical methods, we consider the case of

no absorption and no nonlinearity. In Ref. 18 and Ref. 19 the solution of the system

of partial differential equations

subject to initial conditions v(a — 0,£) — Uo(£), iv[a = 0,£) = wo{0-> an d boundary

conditions u(<r,£ = 0) = /o(<r), v(a,£ = 1) = w(<7,£ = 0) = g0 {a), =

1) = is studied. A numerical method for the solution of Eqs. 2.3 must be able

to solve Eqs. 3.9 since these equations are a special case. We will describe a solution

technique due to Richtmeyer19 .

We introduce some notation used by Fairweather and Gourlay 20 :

(3.10)

(3.11)

Equation 3.9 may then be written

A rectangular network of points with mesh sizes k and h in the a and £ directions

respectively, where Nh=l, is superimposed on the region ct>0,0<£<1. The

dv d2 w
~d~a =
dw d 2 v
ih = ae' (3 - 9)

n=\ vw

A= f 0 - 1 '
[10  

dd A a2 n
da ~ (3 ’ 12 )
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values of the functions v{cr, £), w {a, £) and Q[cr,£) at the mesh points £ = ih, a —

nk, [n — 0,1, ...;i = 0,1, ...,7V) are given by nn)t , wUit and fl n>t respectively.

When we apply Crank-Nicholson’8 method 21 to Eq. 3.12, we obtain the algorithm

used by Richtmeyer in the form

(3.13)

where r = k/h2 and i = 1, ...,N -1. I is the 2x2 unit matrix, and 62 is the Central

difference operator in the {-direction.

For each a step we have to solve a system of (N — 1) linear equations for the

{N — 1) unknowns

which can be written in the form

(3.15)

where Wm — [n m ,ij ••••> m = n,n +1, and cis a constant arising from the

boundary conditions. Ai and are given by

(3.16)

(3.17)

matrix given by

(3.18)

(/ - -rASl)Sln+l , =(/ + 5^£2R.„

Qn’'~ (3 - 14)

— B\Wn + C,

/!,=/ + -rT,

B’ = 7 - rr>

where I is the identity matrix, and T is a block tridiagonal

/ 2A -A \
-A 2 A -A

T= • • •

-A 2 A -A
\ -a 2A ;
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The block tridiagonal system Eq. 3.15 may be solved by the well known algorithm

described in Ref.19 where also the stability properties of the algorithm are proved to

be very satisfactory.

If we integrate the nonlinear terms in Eqs. 2.3 by an explicit difference formula,

the described method for solving Eqs. 3.9 may also be applied to Eqs. 2.3 . If we

compare this method with the method described and used by Aanonsen et al. 6,8 , we

find that the two methods differ in two ways:

1. RichtmeyeEs method uses an implicit second order approximation in the a

direction, whereas the method of Aanonsen et al.6 ’ 8 uses a fully implicit first order

approximation.

2. The numbering of the linear equations is different. If we use the notation of

Eqs. 3.10 and 3.11, we transform the wide band matrix into a narrow band matrix

which can be solved by a direct method. In Ref. 6,8 an iterative solution is used for

solving the linear system of equations appearing in each step in the cr-direction. In

oider to make the iterations converge, we have to impose constraints on the stepsize

in the a-direction (r < 1/2). When we apply RichtmeyerT method, we have no such

constraints on the stepsize, and moreover, the solution of Eq. 3.15 is very stable.

Tests show that we obtain IT/v+i f° almost full machine precision.

We have tried to use RichtmeyeEs method to solve Eqs. 2.3. In Ref. 20 Eqs. 3.9

is used as a test problem together with the initial and boundary conditions;

(3.19)

Where a > 0 and 0 < f < 1. This problem has a simple analytical solution, see

Ref-20. The numerical solution compared very well to the analytical solution. For

fl(a = 0,£) = j ,

n(<r,f = i) = n(<7,f = i)= (jV
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a uniform piston, the initial conditions are discontinuous and the solution is highly

oscillatory. If we replace Eqs. 3.19 with

(3.20)

(3.21)

(3.22)

when a > 0, and solve this problem using Richtmeyer’s method, artificial numerical

oscillations appear in the solution. We replaced the second order method with the

fully implicit method and solved the same problem with the result that the oscil

lations disappeared. In Fig. 3.1 we have plotted the numerical approximations to

v(a = 0.2, £) given by the two methods, with h=0.05 and k=0.00125. The plots for

w{cr = 0.2, f) are similar. The explanation of this phenomenon must lie in the sta

bility properties of the two methods. In Ref. 19 Richtmeyer applies von Neumanms

technique for studying stability properties of his second order method. He defines

(3.23)

The amplification matrix is then given by

(3.24)

The eigenvalues of Hi lie on the unit circle, and the numerical solution is always

stable.

n(* = o,o=

when 0 < £ < 0.1 and 0.9 < f < 1.0 and with

fl(<7 = 0,£)= fjV

when 0.1 < f < 0.9 and with

ft(cr,£ =0) = =1) = j ,

uj = 4r[sin(/9/z/2)] 2 .

_ 1 ( 1 - “V4 “> \
1 -t- u; 2 /4y —w 1 4 y
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We have used the same technique to study the stability properties of the fully

implicit method applied to Eqs. 3.9, and the amplification matrix is

(3.25)

The eigenvalues of this matrix are

(3.26)

and consequently, for f3h dose to odd multiplies of tt, we should have a dramatic (and

unphysical) numerical damping when we apply the fully implicit method.

When we apply the fully implicit method to Eqs. 3.9 with the initial and boundary

conditions given by Eqs. 3.20, 3.21, and 3.22, the damping effect is almost negligible

compared to what could be expected from Eq. 3.26. We have therefore applied the

matrix method, see Ref. 21, in order to study in more detail the stability properties

of the two methods. The eigenvectors of the matrices Ax and Bx are the same as the

eigenvectors of the matrix T. Using the theory in Ref. 21 we find the eigenvalues of

cfl O
'x n1~ “T 1 ' iCO
> 10. Fully implicit method

;; njn ;

0  2nd order \
method

LO .
o“

1 ;

," r ""r '-i -1 1 ' i~r~ ir '' I
P-O 0.2 0.4 O.S 0.8 1.0

£-axis

FIG. 3.1. Numerical approximations to v{a = 0.2, £) versus (.

"  rM-lT)-
x _1± juA i 9 — ,

’ 1 + u;2 ’
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T to be

(3.27)

and the corresponding

(3.28)

We observe that the eigenvectors

The eigenvalues of (Ai)~ l B\ will

of a discrete Fourier series.

(3.29)

which lie on the unit circle

When we apply the fully implicit method to Eqs. 3.9, the corresponding system

of linear equations may be written

(3.30)

where A2 —I+ rT and B2 —I• The eigenvectors of [A2 ) 1 B2 are given by Eq. 3.28,

and the corresponding eigenvalues are

(3.31)

which all lie inside the unit circle. This means that we get the damping predicted

from Eq. 3.26, but the damping will depend on s. We shall take a closer look at what

this means.

\± s = ±4jsin2 (57r/2A/’), 5 = l,2...fV — 1,

5 eigenvectors to be

/ j s\n{s7r/N) \
± sin(57r/iV)
j sin(257r /N)
± sin(257r /N)

v±s =

j sin((iV — 2)stt/N)
±sin((7V — 2)s7r/iV)
j s'm((N — 1)stt/N)

\ ± s'm({N — 1 )stt/N) )

igenvectors appear like components of a

i)" 1 #! will then be

±4jsin

eigenvectors

j s\n{s7r/N )
± sin(s7r/iV)
j sin(257r /N)
± sin(2s7r /N)

=

j sin((iV — 2)stt/N )

±sin((jV — 2)stt/N)
j s'm{(N — 1)stt/N)

±sin((7V — l)sn/N)

appear like components

then be

1 qp 2rjsm2 {s7r/2N)
±s 1 ± 2rjs\n2 {s7r/2N) ’

A-lWn+l — B2Wn + C,

1 =p4rjsin2 (57r/2Ar )

±s 1 + 16r2 sin4 (57r/27V) 1
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If fo((j) = fi(cr) = go(cr) — 9iia ) — 0 then c, the constant arising from the

boundary condition in Eq. 3.15 and Eq. 3.30 will be zero. In this case the solution

of the discrete version of the problem is found by propagating the vector H from the

boundary by multiplication of a matrix. When the second order method is used,

this matrix is and when the fully implicit method is used, this matrix

is (A2 )~ 1 B2 . Looking at the eigenvalues for [A2 )~ 1 B2 , we see that the eigenvalues

corresponding to higher harmonic eigenvectors (higher values of s) is lower in modulus

than the eigenvalues corresponding to lower harmonic eigenvectors. This property

implies that the fully implicit method acts like a hiter on the solution i.e., the rapid

oscillations are damped. For the second order method there is no damping of any

component and therefore no hltering.

We can express the initial value of f) as a linear combination of the eigenvectors

Eq. 3.28. If the boundary condition is slowly varying then fl is represented well

by the lower harmonic eigenvectors (small values of s) which means that there are

no problems associated with ripples. When a discontinuous boundary condition is

used, all of the harmonic eigenvectors are present. Attempting to represent a rapid

varying function by a Fourier series with too few terms gives rise to Gibbs oscillations.

The ripples are representing higher harmonic eigenvectors, and this explains why

the fully implicit method works better than the second order method on problems

with discontinuous boundary conditions. The ripples are filtered out because of the

artificial damping inherent in the fully implicit method.

Another aspect of the analysis is that when using the fully implicit method, care

must be taken when choosing step sizes in order to avoid unacceptable numerical

damping.
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Finite difference approximation across the beam

In both Ref. 16 and Ref. 8 the Laplace operatør was approximated by a three

point formula. Later in Refs. 9,10 the three point formula was replaced by a seven

point formula. It was argued that using a seven point method instead of a three

point method made the computations more efficient. In their case where an iterative

technique was used, the increase from a three point formula to a seven point formula

was inexpensive in terms of computation time.

In Ref. 17 three subroutines were given which attempted to solve a generalized

KZK equation. The subroutines differed in the way the Laplacian was approximated.

The Laplace operator was approximated by the usual three point formula, a five point

formula and a seven point formula. An analysis of the algorithms involved showed

that the time required increased rapidly with number of points used to approximate

the Laplacian. To compare the different subroutines, they were applied to a test

problem. The conclusion of the limited experiments was that the three point method

was the one to prefer, at least when a small number of harmonics were retained in

the calculations.

Numerical tests were also performed in Ref. 7, in order to study the damping

effect of the fully implicit method for various step sizes along and across axis of

propagation. The tests showed that the step size along axis could be increased by a

factor of 10 compared to the method of Refs.6,8.

Adjustments to make the second order method applicable

In Ref. 22 Berntsen used the insight gained in Ref. 7 to make the Crank-Nicholson

procedure applicable for discontinuous boundary conditions. He argued in the follow

ing way: The first order implicit method gives accurate results for small step sizes,
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and it acts like a filter on the solution. Berntsen’s idea was to use a filter similar

to the effect of taking some steps with the fully implicit method on the boundary

condition and then use the second order method. He used the Fast Fourier Transform

to filter the boundary condition. Berntsen23 later suggested a better way to make the

second order method applicable. The original boundary conditions were used, and

for the first few steps the fully implicit method was applied. After these initial fully

implicit steps, the second order method is used all the way, except for an implicit

step at regular intervals to ensure that no ripples occur. The advantage is that the

FFF routine is not needed, and that the creation of ripples is constantly checked.

Different integration widths for different harmpnic components

In the program described in Ref. 8 which solves the KZK equation, the same inte

gration region was used for all harmonic components. The fact that higher harmonic

components are much more directive than lower harmonic components, and conse

quently do not require as wide integration regions as lower harmonic components,

was not utilized to make the computations more efficient. The code was modified to

use dynamic variables which allows the user to specify different integration widths for

different harmonic components. When several harmonic components are included,

this technique reduce the computation time by a factor of four.

Stabilization procedure

Truncating the infinite number of harmonic components in the Fourier series ex

pansion of the solution of the KZK equation can cause problems. Trivett and Van

Buren24 who studied plane, cylindrical and spherical waves, found that a simple trun

cation of the Fourier series was insufficient when attempts were made to examine the
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propagation of sound beams beyond the shock formation distance. The flow of en

ergy from lower to higher harmonic components terminates with the last harmonic

component retained in the series. The calculated valne of the last harmonic com

ponent may become abnormally large relative to the lowest harmonic components.

Trivett and Van Buren circumvented this problem by requiring that the amplitude

of a higher harmonic component never exceeded the amplitude of a lower harmonic

component. In Ref. 8 Aanonsen compared results of computations made with and

without this requirement. He considered the case of plane wave propagation. His

conclusion was that the simple truncation of the series did not lead to any significant

error in the lowest harmonic components as long as the value of F is not too large. If

F took a larger value, greater than 100-150, an instability could occur if the integra

tion exceeded the shock formation distance. Aanonsen did not apply any amplitude

modification is his programs for computing the held of a sound beam.

We want to avoid the risk of instability when computing the held of sound beams.

The nonlinear effects are strongest along the axis of propagation, so that is where

we suspect an eventual instability to occur. Because of the rapid oscillations in the

nearfield, we cannot impose an amplitude requirement there. The requirement should

be imposed from a point in the transition region (the region between the nearfield

and the farfield) and beyond. We have implemented this modification, and tests

shows that this requirement prevents instability.

We are also interested in computing the soundfield from a bifrequency source.

How do we generalize the amplitude requirement in this case? Instead of compar

ing amplitudes of individual harmonic components, we can compare the energy of

families of harmonic components. We could define the n’th order family as all the

harmonic components of n’th order, where the ordering of the harmonic components
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is as described in Sec. 3.1, and require that the energy in a higher order family is

lower than the energy in a lower order family. This requirement imposes for instance

the difference frequency component to have less energy than the primary compo

nents, which is an unproper requirement for long range propagation in media with

high absorption. If we redefine the families to include only the harmonic components

which are higher in frequency than those in the previous family, we have a better

requirement. This requirement was first used to study plane parametric radiation.

Without this requirement the amplitude of the difference frequency wave was over

estimated, and the modification was indeed needed to avoid a numerical instability

beyond the shock formation distance.

For the case of parametrically generated beams, we have to impose the require

ment beyond some point in the transition zone of both primaries.
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Chapter 4

Applications

4.1. Interaction between two beams

4.1.1. Introduction

One of the best known applications of nonlinear acoustics is the parametric array,

which was first suggested by Westervelt 1 . The principle is that two high frequency

sound beams, called primaries, interact nonlinearly to produce a sound beam of

frequency equal to the difference between the primary frequendes. The paramet

ric array creates a difference frequency wave with high directivity, and practically

no sidelobes. Because the difference frequency is much lower than the primary fre

quencies, the difference frequency wave is much less affected by absorption than the

primaries, and can therefore be the only survivor at several absorption lengths from

the source. Another advantage is that large relative changes in the difference fre

quency can be achieved by small relative changes in the primary frequencies. The

low efficiency of the parametric array is the weak part of it. When the parametric

array is operated at high amplitude, the effect of nonlinear damping must be taken

into account. For the case of low amplitudes, a quasilinear analysis can be applied.

Quasilinear analysis means that the linear Solutions for the primary sound fields are
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inserted into the nonlinear sourceterms of the governing equations. The equations

for the ditference frequency, sum frequency and second harmonic sound fields then

becomes linear, which simplifies the analysis considerably.

Westervelt s analysis 1 was quasilinear, and he assumed that the interaction was

absorption limited to the nearfield. He furthermore assumed that the primary com

ponents could be modeled by perfectly plane collimated beams in the nearfield and

ignored the finite width of the beam. Westervelt also assumed that the observa

ti°n of the ditference frequency wave took place outside the interaction region. Naze

Tjøtta and Tjøtta25 later modified Westervelt’s model to account for finite width of

the beam and included phase vanations across the beams. This lead to an aperture

factor correction. Westervelfs theoretical findings-were later verified experimentally

by Bellin and Beyer26 .

Studies of the parametric array, both experimental and theoretical, were initiated

in several countries following the article by Westervelt.

Lauvstad, Naze and Tjøtta27 studied the nonlinear interaction of two spheri

cally spreading waves. Berktay28 ’ 29 modified Westervelfs model to cases where the

primary waves were spreading cylindrically or spherically. Applications of acoustic

nonlinearities to sonar systems were discussed and evaluated.

Muir and Willette obtained numencal Solutions of Westervelfs inhomogeneous

wave equation to descriebe the ditference frequency wave and the sum frequency

wave in the farfield of a circular uniform source. Experimental results supported the

numerical Solutions.

The nearfield of the parametric array was considered by Hobæk31 and by Hobæk

and Vestrheim32,33 . A model of plane collimated primary waves was applied. The

effect of nonlinear damping of the primary waves was included in the model. Exper-
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iments compared favourably with their model.

Bartram34 introduced a model for nonlinear damped parametric arrays. His model

is closely related to Westervelts. The modification he made was to replace the sim

ple linear damping by the damping for a shocked sound wave. Merklinger35 studied

finite amplitude effects in plane waves. He found that the nonlinear damping could

be described by a simple taper function. Later Merklinger et al. 36 used the same

approach to study finite amplitude losses in spherical waves. Mellen and Moffett37

also developed a model for the difference frequency wave generated by a parametric

source. The primary waves were assumed to be radiated by a piston source, but

modeled as plane waves out to the Rayleigh distance and spherically spreading be

yond that range. Taper functions were used to account for nonlinear damping. The

theoretical results were found to be in fair agreement with experimental results. In

Ref. 38 Mellen and Moffett devoted their attention to the nearfield of parametric

sources. Their previously developed model was compared with experimental data

from several sources.

Recently a textbook devoted to parametric arrays written by Novikov et al. 39 was

translated to English. The textbook includes results from theoretical and experimen

tal investigations of the parametric array, and a description of parametric apparatus.

A series of papers have used the KZK equation as a basis. In Ref. 40 Novikov et

al. studied the parametric array in the quasilinear approximation and neglected

diffraction of the primary waves. Later in Ref. 41 the constraint of nondiffracting

primary waves was removed, but the primary waves were assumed to have a Gaussian

distribution at the source. An integral solution was found which compared well to

experimental results.

A textbook written by Bakhvalov et al. 42 has also recently been translated to En-
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glish. This textbook reviews results from numerical solution of the KZK equation.

The monochromatic case was studied by Bakhvalov et al. in Refs. 43,44,45,46,47.

All articles were concerned with Gaussian or polynomial boundary conditions except

for Ref. 47 which was concerned with an exponential boundary condition. The com

putations were restricted to the nearfield. Waveforms and amplitude distributions

for different harmonic components along and across axis, zones of existence of shock

waves, distribution of initial phases and intensity were calculated. In Ref. 48,49

the same methods were used to analyze the parametric array. Again only Gaussian

and polynomial boundary conditions were used. The difference frequency wave was

computed for various levels of nonlinearity, absorption and downshift ratio, /m //_,

(fm = {fi + /2 )/2 and f_=f1 — /2 ). Amplitude fnodulated signals were studied in

Ref. 48, while bifrequency signals were studied in Ref. 49. In Ref. 49 results are only

shown for ranges less than a couple of Rayleigh distances.

Severai articles on nonlinear acoustics have been written by Naze Tjøtta and

Tjøtta and coworkers the last decade. In Ref. 50 the linear nearfield of a uniform

source was investigated. The validity of the parabolic equation was studied, and some

properties of the solution were derived. Naze Tjøtta and Tjøtta 14 derived the KZK

equation in a new way, and applications were made to parametric arrays. A series of

papers 51 - 52 > 53 - 54 were devoted to the nearfield of a large acoustic transducer. Linear

radiation, second harmonic generation and parametric generation were considered.

Quasilinear parabolic models were developed and compared to experirnental results.

Asymptotic formulas were also derived. A computer program was developed to solve

the nonlinear KZK equation8 , and used to study the nearfield of a monocromatic

finite amplitude sound beam 6 .

The computations were later extended to the farfield 9,1 °. A transformation was
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introduced which made the analysis of the farfield possible. The numerical results

were successfully compared to experimental results. The transition from the nearheld

solution to the spherical solution was studied.

Baker et al. 55 measured the nearheld pressure of a monofrequency circular piston

operating at high amplitude. The measurements were compared to numerical results

obtained from the computer program introduced in Refs. 6,8. Comparison were made

for the fundamental, second and third harmonic components, and good agreement

was shown.

Kamakura et al. 56 also measured the nearheld pressure of a circular piston oper

ating at high amplitude. Both monofrequency and bifrequency excitation were used.

The measurements compared weil to results from computations using the computer

program of Refs.6,8. A disadvantage of applying Aanonsen’s program8 directly to the

bifrequency case is that a large number of harmonic components have to be retained

when high downshift ratios are considered. This is caused by the fact that all the

successive harmonic components up to a certain limit are retained. If the method of

Refs. 6,8 was modihed to include our selection procedure (See Sec. 3.1), and different

integration regions for different harmonic components were used, the computation

time would still be about a factor of 10fm f /_ times the computation time of our

method.

In order to study the interaction between two soundbeams we will use a transform

similar to the one used by Aanonsen et al. 9 and Hamilton et al. 10 :

&bb % / V-m ,

Tbb — T /[nmi&bb + 1)] ,

uu = i/{crbb + i), (4.1)

Tbb — (<766 -f- l)p ,
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G

FIG. 4.1. The numerical integration region for the transformed equation shown in
the cartesian coordinate system

where rm — km a 2 / 2 is the Rayleigh distance for the mean primary frequency, km =

{ki + k2 )/2, ki = 2tt/1 /co, k2 = 27r/2 /co and nm = -f N2 )/2. The retarded time

Ub is dose to the retarded time for a plane wave in the nearfield and dose to the

retarded time for a spherical spreading wave in the farfield. By introducing Tbb the

effect of spherical spreading is factored out. The same transform can be used for

focusing with converging geometry before focus and diverging geometry after focus.

We will consider focusing in Sec. 4.2.2.

The new variables are more appropriate than the old ones for two reasons. First,

the region of integration is changed from a rectangular one to a region which extends

in £ direction as a increases, see Fig. 4.1. This change of integration region has

for effect to remove the problems of reflections from the artifical boundary which is

introduced in order to terminate the discretization in the £ - direction. Second, the

introduction of the new retarded time makes the transformed pressure Tbb change
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more slowly across axis both in the nearfield and the farfield.

Substitution of Eqs. 4.1 in Eq. 2.1 yields

(4.2)

where V? = d2 / du2bb +{l /Ubb)d/ dubb and um = \Utb\- This equation has the same— 66

form as the ordinary KZK equation except for the appearance of (<7bb +1) and n m in

the coefficient in the front of the diffraction term and the appearance of (crbb +1) in

the coefficient in front of the nonlinear term.

If we assume that the boundary condition is periodic with period 27ra; 1 , we can

seek a solution of Eq. 4.2 in the form of a Fourier series

(4.3)

where c^,n and are functions of spatial variables. Substituting Eq. 4.3 in Eq. 4.2,

we obtain

(4.4)

For an axisymmetric source that oscillates bisinusoidally with uniform amplitude

distribution, the boundary condition is

(4.5)

d2 Tbb _ æTbb nmv72 rm
dabb8rbb °rmflrå + 4(<rw + l)2 “ + 2/d (<tw, +1) flrå

Tbb — y^Å Cbb,n cos nrbb + dbb>n sin ?irbb ),
n—1

n 2 m j ,
TI 0)6,n T 7 ' 7TT 'u.. dbb,n 4"

d(T66 4n(<J66 + l) 2 b

rm n [n-1 00
777-7-— —7T ( C^.n- 1 <^66,t ) + H —n ' — 71) 5

/!/D ((J66 4r ij [,- =1 t = n+l

9dbbn 2 J . nm t—,2
~o dbb n4““J 7 j, 2
0(Jbb 4n((766 + l) 2 b

Tm TL 1 r]~~) '

TTi / !77 7 \dbb n -. l d 06,n —«06,») (06,i06,i—n 4“ 1^66,t —n)
-‘Dl cr66 +1) 4 }=1 t=n + l

n = 1,2,...

p(a = 0, £, r) = U(\l\) sin NiT + /7(|£|) sin N2 t,
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which gives the following boundary conditions for ru „ and dMn :

TV,
cbb,NI i crbb = 0,utt ) = f/(i;M ) sin—u,k

m

Wj =0, U66 ) = U{ubb ) COS U 2bb

= 0, Wtø) = f/(u 6{) )sin —

2 (<?66 =0, 1%) = V(u66 ) COS —U?.
nm

with cbb}n [crbb = 0,ubb ) = 0 and dbb^n [abb = 0 ,ubb ) = 0 for n. Ah, V2

(4.6)

(4.7)

(4.8)

(4.9)

4.1.2. Numerical investigation of the parametric array

We have three nondimensional parameters to consider when we study the para

metric array. These parameters are

r — Rayleigh distance relative to shock formation distance,

fm/f- = Ratio between mean primary frequency and difference frequency

The parameters <a m rm and rm /l]j rn refer to the mean primary frequency fm . Since

nondimensional variables are used, one may consider that the radius a and the mean

primary frequency fm are given, so that the Rayleigh distance rm for the mean pri

mary frequency is hxed but not specified. Varying the absorption coefhcient and the

on-source peak amplitude then corresponds to varying am rm and rm //Dm , respec

tively. Varying the primary frequencies with the constraint of keeping their mean

value hxed corresponds to varying the ratio fm /f_.

Garrett et al. 52 and Berntsen et al. 54 obtained an integral representation for the

difference frequency wave within the quasilinear approximation. The integral was

evaluated by numerical methods. In Fig. 4.2 comparisons have been made between

®-m 7rn Rayleigh distance relative to absorption length,
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2

FIG. 4.2. On-axis pressure amplitude of the difference frequency wave versus range
for various values of the difference frequency. From Fig. 3of Ref. 52( —), and
computed using Eq. 4.4( — — ).

results for the difference frequency waves shown in Fig. 3 of Ref. 52 and results for

the difference frequency waves computed using Eqs. 4.4. The parameters used are Cq

= 1494.7 m/s and a = 0.87 m, for difference frequencies 1, 2 and 3kHz and = 0.87

m, «2 — 0.83 m for 4 and 5 kHz, where a\ is the source radius for the primary with

frequency fi and a 2 is the source radius for the primary with frequency /2 . Table

I in Ref. 52 shows the primary frequencies corresponding to the various difference

frequencies. We observe that the results for the difference frequency wave computed

using Eqs. 4.4 compares well to the results obtained in Ref. 52.

Moffett and Mellen37 have measured the difference frequency wave for source

levels sufhciently high to make nonlinear damping important. The amplitude of the

difference frequency wave was measured at a fixed distance of 84.5 m from the source

for various downshift ratios and various source levels. The mean primary frequency

was 245 kHz, the radius of the source was 12.7 cm, the downshift ratios were 4.9, 9.8,

19.6 and 49.0, cq = 1500 m/s, rm = 8.276 m, am rm = 0.076 and [3 = 3.5. The source

a.a

£
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240 250 260 270 280 290 300
L 0 *(dB//1 /xPa-m-kHzl

FIG. 4.3. On-axis parametric gains G_ at cr = 10.21 as a function of primary source
level for different downshift ratios, measured by Moffett and Mellen ( 0 o ), and
computed using Eqs. 4.4( ).

level was varied so that 0.09 < rm /lDm < 1.5. The results are shown in Fig. 4.3.

The on axis pressure amplitude of the difference frequency wave is given in terms of

parametric gain GL defined by

where p_ = P-/Pq and p_ is the difference frequency component of the acoustic

pressure. The primary source level is given in terms of L*Q defined by

F°r fm/ S- — 19.6 there is very good agreement between measurements and compu

tations. The computed curve is below the measurements for fm/f- — 4.9, 9.8 and

above the measurements for fm /f- = 49. The systematic measurement errors were

estimated to be less than i2 dB. Moffett and Mellen compared their experimental

results to theory they developed. We will later in this section return to their theory

and how it compared to the experimental results.

G- =20 log10 (p_ ((766,0)) cr66 , (4.10)

Ll(dB/IfiPa - m- kHz) = 20 log l0 {P0rm /V2) + 20 log l0 fm {kHz). (4.11)
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In order to study the effects of the different parameters involved, we have calcu

lated the sound pressure held for several cases. Figures 4.4 and 4.5 show propagation

curves for the primary, sum frequency and difference frequency waves for various

values of the parameters <am rm , rm //£)m and /m //_. The values used are

(4.12)

(4.13)

(4.14)

The results of the computations have been compared with linear theory for the pri

mary waves, and quasilinear theory for the sum and difference frequency waves. For

low amplitudes 51 - 52 - 53 - 54 results obtained using linear and quasilinear theory compare

very well with experiments. The solid lines represent fully nonlinear theory, and

dashed lines represent linear theory for the primariy waves and quasilinear theory for

the sum and difference frequency waves. The discrepancy between the fully nonlinear

and the linear/quasilinear theory is caused by nonlinear damping. A general trend

is that the linear/quasilinear theory compares better with fully nonlinear theory for

higher absorption. Computations have also been made for ce m rm = 1.0. In this

case the agreement between fully nonlinear theory and linear/quasilinear theory is

perfect for rm /lDm = 0.25,0.5 and nearly perfect for rm //om = 1.0. When the ab

sorption is high, the amplitudes decay quickly and the nonlinear effects become less

important. The nonlinear damping occurs because higher harmonic components are

generated. Absorption affects the higher harmonic components more than the lower

harmonic components, because of frequency dependence of the absorption. This also

suggests that fully nonlinear theory compares better with linear/quasilinear theory

for higher absorption. As expected, fully nonlinear theory compares better with

0.01,0.1,

Tm/lDm = 0.25, 0.5, 1.0,

fm/f- = 4.5,19.5.
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FIG. 4.4, On-axis amplitude of the primary, sum frequency and difference frequency
waves, with fm //_ = 4.5. Fully nonlinear theory ( ———), and linear/quasilinear
theory ( — — ).
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FIG. 4.5. On-axis amplitude of the primary, sum frequency and difference frequency
waves, with fm/f- — 19.5. Fully nonlinear theory ( ), and linear/quasilinear
theory ( ).
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linear/quasilinear theory for lower amplitudes. The agreement between results ob

tained using linear/quasilinear theory and fully nonlinear theory does not seem to

be affected significantly by the downshift ratio. Varying the downshift ratio affects

the high frequency field very little. The amplitude of the difference frequency wave

decreases with increasing downshift ratio, which is a well known fact. The amplitude

of the difference frequency wave varies more slowly, both along and across axis with

increasing downshift ratio.

From the curves we see that quasilinear theory agrees with nonlinear theory to

longer ranges for the difference frequency wave than for the sum frequency wave.

This phenomenon is particularly pronounced for am rm = 0.01, rm /l]j rn = 0.25 and

fm /f- = 4.5. In this case the quasilinear theory and the fully nonlinear theory is

found to predict the same numerical results up to ranges, which for the case of the

difference frequency wave is 10 times that of the sum frequency wave.

In order to study why the difference frequency wave obeys the quasilinear theory

to longer ranges than the sum frequency wave a simulation was done, where the

nonlinear term in the equations for the difference frequency wave was simplified to

include the primary components only. For all harmonic components except for the

difference frequency we use the following equations;

(4.15)

9cbb,n 2 \~r2 ; .
~o ~arm n Cb b,n ~ 7 j 7TT«{,6,7i4~
d(7bb 4n(cr66 + l) 2 ~*b

rm n n_1 00
777 7 i7T / y (^66,n — jdbb,i ) 4" / j —71 i
2lD {m + 1) [ftt .=T7i

ddfr (, tn 2 j . ,n , /i
o ti 4" . 7 ji \o , C66,7i4“
d(Thb 4n(cr66 + l) 2 -*6

r 77 I n_1 00
777 7 i7T o ti — ti— ) —n 4* 1^66,i —n )
-‘D( (766 +1) -i= l 1=71+1
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and for the difference frequency component we use the following equations;

C66,n 2 r-72 j .
~o — ~Q.Tm TL Cbbn ~ j rTT V Ct n T
oabb 4n(<j66 -f l) 2 -b6

r., 7 m—" 7T [^fcb,ATi c66,N2 ~ c66,Ni^66,N2 ] 5
+ 1)

Odbbfn 2 j | y—,2
“7J ~ dbb,n 4" . , ,i \9
ocrbb in(abb + l) 2 -bb

(4.16)

The implication of the simplified nonlinear terms in the equations for the difference

frequency wave is that the difference frequency wave only is generated from interac

tion between the primary waves. The equation for the difference frequency wave is the

same as in the quasilinear approximation, except for the fact that the primary waves

are calculated with fully nonlinear theory and not linear theory. The resuits are shown

in Fig. 4.6. The dash-dotted line is the result obtained using Eqs. 4.15 and 4.16. The

solid line is fully nonlinear theory without any simplification obtained using Eqs. 4.4,

and the dashed line is quasilinear theory. The computations clearly show that if the

difference frequency wave is calculated on the basis of Eqs. 4.15 and 4.16, then the

difference frequency wave departs from quasilinear theory at much shorter ranges.

We are left to conclude that the difference frequency wave to a significant degree is

generated from higher order interactions, for instance between the second harmonic

and sum frequency wave components. This means that the decrease in difference

frequency wave generation from the interaction between the primary waves, due to

the fact that the primary waves are nonlinearly damped, to some extent is compen

sated by the generation of difference frequency wave from the interaction between

higher harmonic components. This also shows that earlier resuits based on nonlinear

tapering of the primary waves lead to wrong resuits.

[cbb ,jViC66,N2 + dbb,N! dbb,N2 ] 5

n = N.
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o

FIG. 4.6. On-axis amplitude ot the difference frequency wave, with Q = 0.001,
r = 0.25 and /m //_ = 19.5. Fully nonlinear theory ( — ), quasilinear
theory ( — —), and computed using Eqs. 4.15and 4.16( —).
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In Figs. 4.7 and 4.8 beampatterns are shown for the primary, sum frequency and

difference frequency waves. The simulations have been done with aTO rm = 0.01,

r = 0.5,1,0 and fm /f- = 4.5. Results from computations are compared with

linear theory for the primary waves and quasilinear theory for the sum and difference

frequency waves. In order to illustrate the nonlinear effects the amplitudes of the

primary (/i) have been normalized to on-axis value according to linear theory and

amplitudes of the sum and difference frequency waves have been normalized to on

axis value according to quasilinear theory. The overall effect of nonlinearity is seen

to be the suppression and broadening of the beam structure near the axis, the effect

of nonlinearity becoming more important with increasing range and source strength.

Further away from the axis, fully nonlinear theory agrees with quasilinear/linear the

ory. Results from computations of the lowest primary wave shows that the nonlinear

damping is strongest for the highest primary. This is because the absorption length

is large compared to the ranges where beam patterns are calculated, and that the

highest primary has longer Rayleigh distance and shorter shock formation distance

than the lower primary.

We see that the beam structure for the primary and sum frequency waves is

shifted outwards. This is not an effect that is caused by the fact that a bifrequency

source is used. We have observed the same effect in the monofrequency case. To

our knowledge this effect has not been reported before. We are not able to find an

explanation for this phenomenon. A careful analysis is difficult to perform because

of the presence of strong diffraction and nonlinearity.

In the beam pattern for the sum frequency wave we observe extra sidelobes called

fingers 54 . In the case of a monofrequency source it is known that the harmonic

component number n has n — 1 fingers between two consecutive sidelobes, and that
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FIG. 4.7. Beam patterns of the primary and sum frequency waves, with
= 0.01 and /m //_ = 4.5. Fully nonlinear theory and rm /lDm = 1.0 ( —),

fully nonlinear theory and rm /lDm = 0.5 ( ),and linear/quasilinear theory
( )• Amplitudes of the primary (/i)have been normalized to on-axis value ac
cording to linear theory. Amplitudes of the sum frequency wave have been normalized
to on-axis value according to quasilinear theory.
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o 00 0 50 1 00 1-50 2 00 2 50 3 00 0.00 0 30 ! 00 1 50 2 00 2,50 3. 00

FIG. 4.8. Beam patterns of the difference frequency waves, with am rm = 0.01
. Fully nonlinear theory and rm //om = 1.0 ( —), fully nonlinear theory and
rm //Dm — 9.5 ( ), and quasilinear theory ( ). Amplitudes of the differ
ence frequency wave have been normalized to on-axis value according to quasilinear
theory.
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FIG. 4.9. On-axis amplitude of the low frequency harmonic components /_( ),
2/-(— —-)> 3/_( ) and 4/_(- - -  ), with amrm = 0.01, rm /lDm =LO and
fm/f- - 19.5.

the fingers are more affected by absorption than are the sidelobes.

Studying the beam patterns for the difference frequency vvave vve clearly see that

increasing the source strength causes the beam pattern to broaden. We also see that

at some distance from the axis the tully nonlinear theory predicts a higher amplitude

than the quasilinear theory does. This can be viewed of as an outward shift of

the beam structure with increasing source strength, and is thus consistent with the

outward shift tound in the prirnary and sum frequency waves. When the downshift

ratio is increased the beam width is also increased.

In Fig. 4.9 propagation curves and in Fig. 4.10 beam patterns are shown for

the low frequency harmonic components. It is important to realize that the lower

frequency components are generated both as higher harmonic components of the

difference frequency wave and Irom interaction between the higher harmonic com

ponents of the prirnary waves. Interaction between 2f{ and 2 f2 generates 2/_. We

see that 2/_,3/_ and 4/_ are built up around the shock lormation distance. At
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FIG. 4.10. Beampatterns of the low frequency harmonic components/_( ),
2/-(— —•), 3/_( ) and 4/_( --- ), with amrm = 0.01, rm /lDm = 1.0 and
fm /f- — 19.5. The beampatterns are normalized to their maximas.

(Jbb = 100 the amplitude ol the fourth harmonic low frequency component is about

10 dB below the difference frequency component. The third and fourth harmonic

components experience a dip in the propagation curves. The dips on the a.xis cor

responds to dips in beam patterns at the same ranges. From the beam patterns vve

observe that the higher low frequency harmonic components are much more directive

than are the difference frequency wave.

Moffett and Mellen3 ' did an theoretical and experimental investigation of the

parametric arrays operating at high amplitudes. They compared their experimental

results to results from a theoretical model they developed, where the difference fre

quency wave was calculated on the basis of tapered primary waves. Two different

taper lunctions were used. 1he first taper function was derived by taking into account

the nonlinear interaction between the primaries, while the second taper function wa.s

derived without taking ]nto account this interaction. They found, quite surprisingly,

that the theoretical results obtained using the second taper function fitted better to

44
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the experimental results than did the results obtained using the first taper function.

In Fig. 4.11 we have compared the nonlinear damping in the case of one frequency on

the source with the nonlinear damping in the case of two frequencies on the source.

The solid line is the case of two frequencies on the source, the dash-dotted line is

the case of one frequency on the source, and the dashed line is linear theory. For the

simulation with two primary waves the amplitudes at the source were equal. The

nonlinear damping in the case of two frequencies on the source is higher than in the

case of one frequency on the source. In the case of one frequency on the source, only

one harmonic component is generated as a second-order effect. In the case of two

frequencies, four harmonic components are generated as a second-order effect. This

may explain why nonlinear damping is larger in the case of two frequencies on the

source.

In Fig. 4.12 the time waveforrn at different points along the axis is studied. The

parameters used are am rm = 0.1, rm /lDm = 1.0 and fm /f_ = 4.5. At abb = 0.5

shocks have already formed. We see ripples in the waveforrn, due to the fact that

we have a finite number of harmonic components in the computation. Increasing the

number of harmonic components in the computation has the effect of smoothing the

ripples. The symmetry of the waveforrn is destroyed by the prescence of diffraction.

The shock dose to 0 degrees is stronger than the two adjacent shocks and is therefore

more affected by dissipation. Consequently the shock dose to 0 degrees is damped

more from abb = 0.5 to abb = 1.0 than the adjacent shocks. At abb = 1.0 the shocks

look very similar both in shape and magnitude. Compare this waveforrn with Fig.

3.5 of Ref. 39 where the envelope becomes square shaped after the shock formation

distance. In Fig. 3.5 of Ref. 39 distortion of the waveforrn is shown for a plane wave.

At (jbb =10 = o^1 , the absorption length for a plane wave with frequency /m , the



\N>

\\ Vs \ N

2§
w o

CD 7’ O \ N
_ » \
W \a 8

2?
\ \

\

\ \
h

\
\\ \

o \ \

A \\ \ x
\ \å
\

\
\

or
to*

&bb

FIG. 4.11. On-axis amplitude of the primary wave (f\), with am rm = 0.01,
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the source ( —), linear theory with two frequencies on the source ( — —), and
fully nonlinear theory with one frequency at the source ( ).
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FIG. 4.12. Time waveforms normalized to P0 for am rm = 0.1, rm /lDm = 1.0
anci fm/f- = 4.5. Difference frequency component of the waveform at crbb = 100
( )• The abcissa indicates the relative phase, in retarded time frame (t —z/cq)
within one cycle of waveform.
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waveform looks very similar to the initial one, except for the fact that the sinusoiclal

envelope is replaced with a square shaped envelope. At abb =30 the primary waves

are damped, and at abb = 100 the waveform looks much like the difference frequency

component of the waveform. Berktay57 predicted the waveform in the farfield to be

the second derivative of the square of the envelope function of the initial waveform.

In our case the initial waveform is given by:

2 sin -~j-Tbb F{Tbb ), (4.18)

(4.19)

where N+ =Ah + N2y AL =Ah— Ah and F{rbb ) = cos —~rbb is the envelope function.

The second derivative of the envelope function F(rbb ) is given by:

which is the difference frequency wave component and this is in accordance with

our numerical results. In his derivation Berktay assumed low amplitudes (such that

the quasilinear approximation applied), and absorption limited generation in the

nearfield, so that the primary wavefield could be modeled as a plane wave. His

analysis applies to arbitrary waveforms, not only harmonic signals. For periodic ex

citation and several absorption lengths from the source, we expect the waveform to

be the harmonic component which is the lowest one generated during interactions. In

our case the lowest frequency component generated during interactions is the differ

ence frequency component. For the case of fl = 5 kHz and f2 = 3 kHz the difference

frequency component is 2 kHz, but the lowest frequency component generated dur

ing interactions is 1 kHz and we expect this frequency component to be the only

frequency component left when abb > oC 1 .

finb) = sin Nl Tbb + sin N2 Tbb (4.17)

d2 F2 (rbb ) Nl
7—2 = — cos (4.20)<Hb 2
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In Ref.10 Hamilton et al. considered the farfield of a monofrequency source. They

solved the KZK equation numerically, and looked at the possibility of matching the

solution of the KZK equatiuon with the solution of the spherical Burgers’ equation.

Their computations showed that if the matching was done at abb = 1.0, the compu

tations gave reasonably accurate results. We have tried to do the same in our case

with two frequencies on the source. The results from the computations are shown in

Fig. 4.13. The solid lines represent the solution when the KZK equation is used as

model equation in the entire region. The dashed line represents the solution when

matching with the spherical Burgers’ equation is done at a specific range. Two cases

are considered with fm /f- = 4.5 and fm/f- = 19.5, and matching is done at three

different distances abh = 1.0, 5.0 and 10.0. The'computations show that the pri

mary and sum frequency waves are modeled very well by using the spherical Burgers’

equation. The difference frequency wave, however, is not computed accurately by

matching with the spherical Burgers’ equation. The agreement is of course better

the further out the matching is done, and decreasing the downshift ratio fm / f- also

makes the agreement better. If we look into the equations governing the propagation,

we lind an explanation for this behaviour. In order to study matching with Burgers’

equation we introduce the following transform

(4.21)

Substitution of Eqs. 4.21 in Eq. 2.1 yields

(4.22)

= zl Tm

Ts = r - C/\nm (Js \,

ILs = £/crs

Ts = osp,

\ - , "rn , dHTs f
da,drs m + 4(j2 N + 2 ;0 (T 5 3r2
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FIG. 4.13. On-axis amplitude of the primary, sum frequency and difference frequency
waves, with oc m rm — 0.01, rm /lom = 0.25. Linear/quasilinear solution of the KZK
equation in the entire region ( ) and linear/quasilinear solution of spherical
Burgers’ equation from = <jm ( ).
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where = d2 /du] +(1 /u3 ]d/dus and u s = If we assume that the boundary

condition is periodic with period 2trcu \we can seek a solution of Eq. 4.22 in the

form of a Fourier series

where ca ,n and da>n are functions of spatial variables. Substituting Eq. 4.23 into

Eq. 4.22 we obtain

(4.24)

where nm = /m //. The use of the spherical Burgers’ equation is validated whenever

the Laplace term is negligible. When cra increases, the factor in front of the Laplace

operator decreases rapidly. We have to require

to neglect the Laplace term. For the primaries this requirement imphes <j: t2> 1 since

nm /Nu /N2 —1, but for the difference frequency wave it implies a 2 nm /N_ ,

which is a more severe restriction. This means that we can use the spherical Burgers’

equation for the description of the high frequency part of the held at shorter ranges,

than we can do for the low frequency part of the held. The requirement also indicates

that the ranges where we can start using the spherical Burgers’ equation for the

difference frequency wave increases with increasing value of /m //_.

Ts E (ca , n cos nrs + ds>n sin nrs ), (4.23)n= 1

&Cs,n 2 vt2 j
o T t v ds n ~|-
acr5 477 of -*

r n n_1 00

~ EiCs,n-ids ,i) + (^J,t c3,t-n ~ cs,tds ,i-n)
“ D s 1= 1 i= n+l

dds ,n _ 2 / , n m yy2 .
o Q7 m TL ds n “f~ u

4?7.(T5 5

rm n 1 | 00

9/ 9 ~ cs,n-i cs,i) ~ ( cs,t ca,i-n "f 5
“ f£)6(7s L“ t=1 i=n+l

n = 1,2, ....

nm
<1 - < 4 - 25 )
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4.2. Focused beams and interaction between focused beams

4.2.1. Introduction

Much interest has been devoted to nonlinear effects in focused sound beams re

cently. This is in part due to the development of acoustic microscopes 2,58 and

lithotripters 3 , which both are capable of transmitting focused sound at very high

amplitudes. The interaction between focused sound beams s9 - 68 - 69 . 71 - 72 has a}so been

investigated.

In 1949 0’Neil61 published a study of the sound held from a concave spherical

radiator. He used the linear wave equation and an approximate Greens function.

Explicit expressions were derived for the solution both along axis and in the focal

plane.

Levin et al.62 transformed the true boundary conditions on a spherical concave

surface to a plane surface. They found an explicit analytical solution of the Helrnholtz

equation along the acoustic axis.

NaugoPnykh et al. 63 considered converging and diverging spherical waves of finite

amplitude in a termoviscous medium. In an experimental investigation by Smith

and Beyer64 involving a spherical cap radiator, the experimental results compared

roughly to the theory of NaugoPnykh et al. 63 in the prefocal region. Because of the

strong diffraction effects near focus, the theory of NaugoPnykh et al. does not apply
there.

Ostrovskii and Sutin65 developed a model based on the assumption that the effects

of nonlinearity and diffraction could be separated. Nonlinear spherical wave theory

was used in the prefocal region, and linear diffraction theory was used near focus. The

neglecting of diffraction in the prefocal region is specially doubtful for radiators with
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sharp edges. Since the amplitudes are highest near focus the neglecting of nonlinear

effects in this region is also doubtful. See Figs. 4.16 and 4.17 for numerical results

obtained for the primary and second harmonic components radiated from a uniform

focused source.

Several authors have studied the finite amplitude effects in focused sound fields

by modeling the diffraction in the parabolic/Fresnel approximation. Hennion 59 used

Fourier decomposition to obtain an integral representation for the difference fre

quency wave generated by a bifrequency focused source. In Refs.60,67,68,69,70 linear

and quasilinear Solutions of the KZK equation were shown to compare well to exper

imental results. The primary wave was studied in Ref. 67, the difference frequency

wave in Refs. 68,69, and the second harmonic component in Refs. 60,70. The analysis

can often be simplified by assuming Gaussian boundary conditions. Rugar2 derived

an explicit quasilinear solution for the second harmonic to explain his experimental

results. Novikov et al. 39 used Gaussian boundary conditions and quasilinear analysis

to study the effect of focusing the primary waves in the parametric array.

The farfield of the difference frequency wave, generated by a focused parametric

array, was considered by Barannik et al. 71 . The width of the difference frequency

beam was estimated, and it was found that large angle scattering is possible. Baran

nik and Kadnikov72 studied the nonlinear interaction of convergent spherical waves.

It was found that the beam pattern of the sum frequency wave cannot be wider than

the beampattern of the primary waves, and that the beam pattern of the difference

frequency wave becomes wider as the difference frequency is decreased.

For sufficiently high amplitudes the quasilinear approximation is not valid. The

finite difference method developed by Bakhvalov et al. 42 to solve the KZK equation

was also applied to focused sound beams 42,73 . In their investigation they only consid
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ered cases where the boundary conditions were Gaussian or fourth order polynomial.

In addition only focusing gains less than 10 were studied. Hart and Hamilton 11,12

also solved the KZK equation numerically. They used the algorithm and program

developed by Aanonsen et al. 6,8 modified to account for focusing geometry. Sound

beams generated by sources with uniform amplitude distribution and focusing gains

of order 50 were computed.

4.2.2. Nonlinear effects In focused sound beams

Our analysis of finite amplitude effects in focused sound beams is based on nu

merical Solutions of the KZK equation. In order to enhance the efficiency of the

numerical method a coordinate transform introduced in Refs. 9,10, but modified to

account for focusing geometry is used

The minus sign is used before the focus and the plus sign is used after focus. If <5 = 0

the retarded time is dose to retarded time of a spherical converging wave before

focus, and dose to retarded time for a spherical diverging wave after focus, and \u\

represents an angle. These properties make this coordinate system well suited for

calculating the focused sound Held. The small positive quantity 8 governs the rate

at which the transformed geometry converges. Substitution of Eqs. 4.26 in Eq. 2.1

yields

(4.27)

aj = (z — d)/d ,

M/ = tL/((Tf±6),

Tf = T - Gi2 /(crf ± 6), (4.26)

T = {(Tf ± S)p.

J?Il. = + i v2 T/ + i
ddfdTf drj iG{crf ±6) 2 ~f / 2 lD {aj±S) drj
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where = d2 /du 2 +(1 /uj)d/duf and uj = \uf\. If we assume that the boimdary

condition is periodic with period 2?ru;~ 1 , we can seek a solution of Eq. 4.27 in the

form of a Fourier series

(4.28)

where c/,„ and d^n are functions of spatial variables. Substituting Eq. 4.28 into

Eq. 4.27 we obtain

(4.29)

For an axisymmetric focused source that oscillates sinusoidally with uniform ampli

tude distribution and focusing gain G, the boundary condition is

(4.30)

which gives the following boundary conditions for cf: „ and dI-n when use is made of

Eqs. 4.26 and 4.28:

with Cf%n [crj — — 0 and d^n [<7j ——1 ,Uf) — 0 ior n> 1. Hart and Hamil

ton used the program descnbed in Ref.8 to solve Eq. 4.29. Results were presented

Tf = (c/,rv COS riTj -f djtn sin nrf ),
n= 1

&Cf,n j 2 1 _9
—— = —Oidn Cf n V df n +

dcrj ’ 4:Gn{<jf ± S) 2 -f '

dn f ;

2lD {(7f ±S) {df,iCf,i-n ~ Cf,idf:i-n) i

ddffJl 2 J 1 a
— = —adn df r H V Cf„ 4- i

daj f ' n inG{aj ± S) 2 /,n + 1

dn 1 , j ,

2 l D {a f ±S) 2 ~ Cf,n-i Cf,i) -XJ ( C/,* C/,t-n + ,
V / ' t=l jr=n + l

n = 1,2,....

p(<r = 0,t,T) = U(£)sia(r + Gt 2 ),

c/.i(°7 ~ uj) — — (1 + S)U [uj (1 -f £)) sin (Gå (1 +6) u (4.31)

af ~ u/) — —(1 + S)U (uj (1 -f £)) cos (GS (1 -f 6) u (4.32)
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FIG. 4.14. Integration region for the transformed equation shown in cartesian coor
dinates

for sound beams infiuenced by the combined effects of nonlinearity, diffraction and

absorption. The beam patterns in the focal region were found to be less sensitive

to absorption and nonlinearity than were beam patterns in the farheld of unfocnsed

sources.

We have solved Eq. 4.29 with the algorithm descriebed in Chapter 3, which is an

order of magnitude faster than the algorithm of Aanonsen8 .

Shown in Fig. 4.15 is the normalized power of the second harmonic component

of a focused sound beam with G = 50 and no absorption. The second harmonic

component is computed quasilinearly. The power of the second harmonic component

'Pav,2{&) is dehned by Eq. 2.7. Since the absorption is zero, any change in power

with aj is caused by nonlinear effects. The power of the second harmonic component

increases until it reaches a maximum slightly after focus. In contrast the amplitude

of the second harmonic has a maximum before focus. Rugar 2 has studied the sim

pler case of a focused Gaussian beam. He also calculated the power of the second
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FIG. 4.15. Normalized power of second harmonic along axis, with ad = 0, G = 50.
Quasilinear theory.
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harmonic component in the parabolic, quasilinear approximation and obtained the

same qualitative result as we have.

If we seek a solution of the KZK equation in form of a complex Fourier series

where qn is a complex coefficient and q * its complex conjugate, we obtain

where Ln is a linear differential operator and eis the Mach number. The equations

for the fundamental, second harmonic and third harmonic components are given by

We seek a solution of Eqs. 4.35 in the following form:

Substituting Eqs. 4.36 in Eqs. 4.35 and identifying to any order of e, we obtain

— (4.39)

£i9i,2 — (4.40)

- 9l,o93,2, (4.41)

P= Ei<Ineinr + q'n e-lnT ), (4.33)
n=1

n—1 N

Ln<in ~e( XZ QmQn-m + - X] Cl'm Clm-n)i (4.34)
m=l m=n+l

L\q\ — 2e[q[q2 -f + ** )»

— e(<?i + 2ql q3 + •••), (4.35)

— 2e((/1 g2 + •••)•

<7i — <?i,o + eqii +e2 qX2 + e3 <?i,3 +

<?2 — e<?2,l + t2 9.2,2 + e3 <?2 ,3 +‘‘ ' 5 (4.36)

93 — + 3(?3,3 +

£i<h,o = 0, (4.37)

-£•292,1 = <h2,o. (4.38)
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where qh0 is the linear solution for the fundamental, q2tl is the quasilinear solution

for the second harmonic, g3)2 is the quasilinear solution of the third harmonic, qh2

is the first correction term to the primary and q2i3 is the first correction term to the

second harmonic. Since qhl = 0 and q2a =0, we have

(4.43)

Since absorption is absent, the total power is constant

Neglecting terms of order e 4 and higher, we obtain

(4.45)

To order e3 the sum of the powers of the primary and second harmonic components

is constant. Furthermore it is consistent within this approximation to calculate the

second harmonic component quasilinearly. Since the power of the second harmonic

component increases until it reaches a maximum slightly after focus, energy is trans

fered from the fundamental component to the second harmonic component in this

region. The power of the second harmonic component decreases after its maximum

slightly after focus and energy is therefore pumped back to the fundamental compo

nent in this region.

In Figs. 4.16 and 4.17 we have compared the primay and second harmonic com

ponents computed using fully nonlinear theory with linear/quasilinear theory for

the case ad = 1.0 ,d/lD = 1.0 and G — 50. Comparison between fully nonlinear

<7i = <?i,o + e -f • • •,

#2 = + e3(l2,3 +•' • ,

Qs = €3 <?3,3 + •  • •

r oo

)o (tøi,o + £ 2 9i,2 +   I 2 + N2.1 + • i 2 + |£ 2 93,2 +  -f +   -)idi = const. (4.44)

roo

JQ (tei,o + e2<3ri,2 1 2 + le^.i 1 2 )£d£ = const. + 0(e4 ).
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theory and linear/quasilinear theory illustrates the effect of nonlinearity, and the

accuracy of linear/quasilinear theory. Hart and Hamilton11,12 did not compare with

linear/quasilinear theory. Figure 4.16 shows on-axis amplitude for the primary (/x )

and second harmonic (2/i). The nonlinearity affects the second harmonic more than

primary component. We see that an effect of nonlinearity, for both the primary and

second harmonic components, is to move the maximum closer to the source. Hart 12

found that the peak values of the harmonic components move closer to the source

as d/lp increases. The nonlinear damping is increasing up to the focal region. It is

remarkable that even if the shock formation distance equals the focal distance, the

nonlinear damping of the primary wave is no more than 2.3 dB at focus.

We have studied the beam patterns in the vicinity of focus in Fig. 4.17. We

have chosen 2 G£ as abcissas of the plots, since the linear solution of the amplitude

distribution is 2Ji{2G£)/2G£ 67 . The complex structure of the beam patterns in the

vicinity of focus is similar to the beam patterns in Fig. 4.7 for an unfocused source.

The extra sidelobes found in the beam patterns for the second harmonic component

have been called fingers 54 . The discrepancy between fully nonlinear theory and

linear/quasilinear theory is largest dose to the axis.

We also observe that an effect of the nonlinearity is a shift of the beam structure

outwards. This is specially pronounced in the second harmonic component. This is

the same effect as found in Sec. 4.1.2 where unfocused sources were considered

4.2.3. Interaction between two focused sound beams

Interaction between two locused sound beams have been studied by Hennion 59 ,

Lucas et al. 68 , Naze Tjøtta and Tjøtta69 , Novikov et al. 39 and Barannik et al. 71 ’' 2 . In
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FIG. 4.16. On-axis amplitude normalized by P0 for the primary and second harmonic
cornponents, ad = i.O. d/lo = 1.0 and G = 50. Fully nonlinear theory ( )
and linear/quasilinear theory ( —- —).
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FIG. 4.17. Beampatterns for the primary and second harmonic in the focal region,
with ad = 1.0, djljj — 1.0 and G = 50. Fully nonlinear theory ( ) and
linear/quasilinear theory ( — ).
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order to study the interaction between focused sound beams we introduce a transform

Here dm = {di + d2 )/2 is the mean of the focal distances, where di is the focai distance

for the primary wave with frequency fx and d2 is the focal distance for the primary

wave with frequency f2 . The minus sign is used for (Tff <0, and the plus sign is used

for (Tff >0. Substitution of Eqs. 4.46 in Eq. 2.1 yields

d s - acj Tff . dm r~7 2 rp dm d 2 (TJf ) 2
derjfdr/f m drjf 4r0 (aff ±6)2 7/+ 2 lD (aff ±S) dr] f ’

where — d2 /du 2 j + (1 /u ff)d/duff and Uff = \u.ff\. If we assume that the

boundary condition is periodic with period 2 Tru; -1 , we can seek a solution of Eq. 4.47

in the form of a Fourier series

where c/_qn and dff >n are funetions of spatial variables. Substituting Eq. 4.48 in

Eq. 4.47, we obtain

(4.49)

S J (~

K// = HWl±S),

TU =T - ± S)dm/r0 ], (4.46)

TfS = iaff ±%•

Tff - J2(cff,n cosnTfI + df/,n sin nrjj ), (4.48)71 = 1

Cff,n _ j 2 j
<-) Ocdm TL Cjj n — -  —— V dft n +
<9(7// 4r0 n(<j// ± <5) 2 -// n 'n

d-m TI 00

2lD {<Jff ±6) H (dff,i CfJ,i-n—Cjf,idff t i-.n)

ddff,n _ , 2 / ,
o Q:a m 72 «// n -f* ~ T j r—r V Ct t n -\-
<9cr// 4nr0 ((7// ± <$) 2 -//

dm n 1 ,J 00

~lD {(Jff ±S) 2 “ C//,n-* C//,*) -Yl ( C//.* C//,*-n + dffjdffj-n)

n = 1,2, ....
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For an axisymmetric focused source that oscillates bisinusoidally with uniform ampli

tude distribution and focusing gain G x — rx /dx for the highest primary frequency and

focusing gain G2 = r2 ld2 for the lowest primary frequency, the boundary condition

is

which gives the following boundary conditions for cyy)U and dii)ix when use is made

of Eqs. 4.46 and Eq. 4.48:

with Cfftn (crff = —1,«//) = 0 and djf}Tl [(jj S = — l,u//) = 0 for n NX ,N2 . We

have compared results from computations using Eq. 4.49 to the results reported by

Naze Tjøtta and Tjøtta in Ref. 69. In Fig. 4.18 we have reproduced two curves from

Ref. 69. The computations agree well. We note that there are no oscillations in

the on-axis amplitude of the difference frequency component as is the case for the

primary and second harmonic components.

One might think that the efficiency of parametric generation of sound can be

increased by focusing the primary waves. Usually when we consider parametric arrays

we want the amplitude and directivity to be as high as possible in the farfield. We

have compared the difference frequency wave generated from interaction between two

primary waves with various focal distances and the results are shown in Fig. 4.19. We

have compared the difference frequency wave for the cases Gm = 50,10,1,0, where

Gm — 0 corresponds to the unfocused case. It is seen that the maximum on-axis

p(a = 0,£,r) = U(£) sin(A^1 r + G^2 ) + U{() sin(iV2 T + G2 £ 2 ), (4.50)

cSS^A (7SJ = = -(1 + f>)U (ujj (1 + £)) sin (GiS{\ -f £)uj/) (4.51)

dSl,Nx (<Tfj = Uff) = -(1 + S)U (w// (1 + 6)) cos (G x 8 (1 +S) (4.52)

cff,N2 { (Jff =-1 , uff) = -(1 + S)U ( Uff (1 + (5)) sin (02 S (1 +S) u2 (4.53)

dff,Ni(aff = “1, uff) = -(1 + 8)U (ujf (1 + 8)) cos [C2 8 (1 +8) u 2 (4.54)
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RANGE _m

FIG. 4.18. On-axis amplitude and slow phase for the difference frequency wave
Reproduced from Ref. 69( ), and computed using Eqs. 4.49( ).
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FIG. 4.19. On-axis normalized amplitude for the difference frequency vvave for various
values of focusing gain G'm , with no absorption and /m //_ = 4.5. Quasilinear theory.
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FIG. 4.20. On-axis normalized amplitude for the difference and sum frequency waves,
with no absorption in all cases. /m //_ = 4.5 and Gm =35 (• ), fm /f- = 4.5
and Gm =70 ( ), /m //_ = 19.5 and Gm =35 (- ), fm /f- = 19.5 and
Gm —70 (— —) . Quasilinear theory.

amplitude of the difference frequency wave is increasing with G'm , but very slowly.

W hen Gm = 50, the maximum on-axis amplitude of the difference frequency wave is

increased by a factor of less than 3 compared to that of the unfocused source, even

if the maximum on-axis amplitudes of the primary waves at focus are increased by a

factor of 50. This is not unexpected since an increase in locusing gain for the primary

waves is followed by a shortening of the interaction region.

In Figs. 4.20 and 4.21 the amplitude of the difference and the sum frequency waves

are shown both along axis and in the local plane. The effect oi increasing fm j /_

is, as expected, to lower the efficiency of the parametric generation of the difference

frequency wave. The amplitude of the difference frequency wave varies more slowly

both along the axis and across the axis, and the width ol the beam increases, when

fm/f- increases. For the sum frequency wave the change in fm /f- has nearly no

effect at all.
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FIG. 4.21. Beam pattern for the difference frequency wave ( ) and sum
frequency wave (- ), with no absorption and Gm = 35.

Comparing the amplitude of the sum and difference frequency waves along the

axis, we see that the difference frequency wave does not have the oscillations in ampli

tude as does the sum frequency wave. In the focal plane the difference frequency wave

is broader than the sum frequency wave and has no sidelobes. The sum frequency

wave has a fine structure consisting of sidelobes and fingers.

We have calculated the power of the difference frequency wave VaVtNr_{a), given

by Eq. 2.7, as a function of distance from the source in the case of no absorption, and

with Gm =50 and /m //_ = 4.5. The result is shown in Fig. 4.22. As for the second

harmonic component we see that the maximum power occurs a little after the focus.

As in See. 4.2.2, we now seek a solution of the KZK equation in form of a complex

Fourier series

where qn is a complex coefhcient and q * its complex conjugate, and, we obtain
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FiC. 4 .2-2 Normalized power of the difference frequency wave, with no absorption,
Jm/j- —4.5 and G m = 50. Quas ili near theory.
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where Ln is a iinear differential operator, and eis the Mach number. If we follow

the same procedure as in Sec. 4.2.2 to study the nonlinear interaction between two

primary waves we obtain

(4.57)

where qNlto, qN2 ,o are the Iinear Solutions for the highest and lowest primary waves re

spectively, qNx ,2-, qN2 ,2 are the first correction terms to the primary waves, q2Nuu <?27V2 1 Wtv

and qN+A are the quasilinear Solutions for the second harmonic, difference frequency

and sum frequency components respectively, and tf27v2 ,3, qN-,3 and qN+ )3 are the

first correction terms to the second order components. In abscence of absorption the

total power is constant. Neglecting terms of order e4 and higher we obtain

To order e3 the sum of the powers of the primary, second harmonic, difference fre

quency, and sum frequency components is constant. Further, it is consistent within

this approximation to calculate the soundfield in the quasilinear approximation. The

power of the sum frequency wave increases up to a maximum a little after focus in

the same way as the power of the difference frequency wave and the power of the

second harmonic waves do. This means that energy is pumped from the primary

70

<iNx = qNltO + C 2 qNlt 2 +'• •,

<lN2 — <?7V2 ,0 + QN2i 2 +•• •,

(hN1 = tq2Nx ,0 + t3q2Nx ,3 +•* * ,

?2iV2 ~ eq2N2 ,0 + e3q2N2 ,3 + ‘* * ,

qN- — e <7/v_,0 + e 3 + •  • ,

?JV+ = eqN+ ,0 + €3 qN+ , 3 +’• • ,

r oo

Jo ( I QNi ,0 + e2(lNu2 | 2 + \qn2 ,0 + e 2 <77V2)2 | 2 + |e<fcM,i| 2 + |^27V2 ,l| 2 + (4.58)

e9w_. iP + N;v+ ,i| 2 )£df = const. + 0(e4 ). (4.59)
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FIG. 4.23. On-axis amplitude normalized to P0 for the difference and sum frequency
waves, with am d = 1.0, d/lDm = 0.5, Gm =50 and fm /f_ = 9.5. Fully nonlinear
theory ( ) and quasilinear theory ( — —):

components to the second-order components before focus, and slightly after focus a

portion of this energy is transferred back to the primary components.

We also notice that a major portion of the difference frequency component is

generated in the focal area before focus. If we compare the power of the difference

frequency component to the power of the second harmonic component, we find that

the decreas in power of the difference frequency component after focus is less than

for the second harmonic component. Since the power of the difference frequency

component decreases only slightly after focus, it must be the geometrical spreading

which causes the amplitude of the difference frequency component to decrease so

quickly after focus when Gm is large.

In Figs. 4.23 and 4.24 we have considered the case am d = 1.0, d/ljjm = 0.5,

Gm =50 and /m //_ = 9.5, and have compared fully nonlinear theory to quasilinear

theory. For both the difference frequency wave and the sum frequency wave see that

the discrepancy between fully nonlinear theory and quasilinear theory is largest near
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FIG. 4.24. Beampatterns for the difference and sum frequency waves, with am d — 1.0,
d/lom = 0.5, Gm =50 and /m //_ = 9.5. Fully nonlinear theory ( ) and
quasilinear theory ( ).

focus. We find this to be reasonable, since the amplitudes are highest, and therefore

the nonlinear effects strongest, near focus. The discrepancy between nonlinear theory

and quasilinear theory is larger for the sum frequency wave than for the difference

frequency wave.

The beam patterns show a nonlinear damping of the difference frequency wave

which is very uniform. Note that the scales on the plots are different. Again we note

the outward shift of the beam structure as a nonlinear effect in the sum frequency

wave.

Interaction between two focused soundbeams with different focal distances

In Refs. 67,68 the focused sound fields were generated by using a biconcave lens

in front of a plane source. If the sound speed in the lens depends upon frequency,

the result will be that the primary waves will be focused at different ranges. In this

case we have two focal distances, d-[ and d2 . We have considered a rather extreme
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case. The parameters used are

Results are shown in Figs.4.25, 4.26 and 4.27. We see that the on-axis amplitude of

the difference frequency wave experiences two maxima of nearly the same magnitude.

The maximas are located at the focal distances of the primary waves (2 = d\ and

There is a dip in the beam pattern for the difference frequency wave at

z = dm . The sum frequency wave has a maximum at z= dm and two other maximas

of smaller amplitude at z= di and z = d2 . Figure 4.28 compares the computations

to the case when the focal distances are equal. For the difference frequency wave we

see that the amplitude is much lower when the focal distances are different. The sum

frequency wave has a lower maximum when the focal distances are different, but for

2 > d2 or 2 < d\ the amplitudes do not differ very much in magnitude.

4.2.4. Numerical investigation of the parametric receiving array

Nonlinear interaction between waves can also be used for detection of signals. The

parametric receiving array (PARRAY) consists of a pump transducer and a receiving

transducer, rigidly connected with one another. The high frequency pump transducer

(frequency /2 ) generates a high amplitude wave which interacts with the incoming

signal (frequency /2 ) and generates a difference frequency wave and a sum frequency

wave. The direction of the signal is found by rotating the PARRAY. The direction

— 0.0, (4.60)

~ (4.61)

Gm — 55, (4.62)

Smlf- = 9.5, (4.63)

dijd2 = 0.85. (4.64)
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FIG. 4.25. On axis amplitude normalized by P0 for the primary waves, with no
absorption, dm /lum — 0.1, /m //_ = 9.5, G m =55 and — 0.85. Linear theory.
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FIG. 4.26. On axis amplitude nonnalized to Pq for the difference frequency and sum
frequency wave, with no absorption, dm /lDm = 0.1, fm /f_ = 9.5, Gm =55 and
d\/d2 = 0.85. Quasiiinear theory.
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FIG. 4.27. Beam patterns in the local plane z— dm lor the difference frequency and
sum frequency wave, with no absorption, dm /lDm = 0.1, /m /jf_ = 9.5, Gm =55 and
d\/d2 = 0.85. Quasiiinear theory.
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which gives the highest amplitude for the difference and sum frequency waves is the

propagation direction of the signal. By further analyzing the difference and sum

frequency waves the amplitude of the signal is also found.

When analyzing the PARRAY it is often assumed that the signal is a low fre

quency plane wave. The pump has been modeled as a bounded linear plane wave,

nonlinear bounded plane wave and Gaussian beam.

It has been argued that the performance of the PARRAY can be improved by

using a focused pump. This was the theme of a recent article by Donskoi et al. 13 .

In our study we will be limited to collinear interaction and we will apply the

parbolic approximation.

The use of focused pump in PARRAY

In order to study the interaction between a high frequency unfocused pump wave

with frequency fx and a low frequency plane signal wave with frequency f2 we intro

duce the following transform:

where r\ — k\0?f2 is the Rayleigh distance for the pump wave, and k\ — 2tit/j/cq.

Substitution of Eqs. 4.65 in Eq. 2.1 yields

where — d2 /dulp -f- (1 /ubp )d/du bp and u bp = \uip \. If we assume that the

boundary condition is periodic with period 2toj~ 1 , we can seek a solution of Eq. 4.66

°bP = z/r A ,

TbP — T i2 /[N\{crblp + 1)] ,

UbP = i/{°bP + 1), (4.65)

Tbp {&bp i

dahdrbp drl + i(crbp +iy Pd^p ’ ( ' 66)
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in the form of a Fonner series

(4.67)

where cbpn and dbp>n are functions of spatial variables. Substituting Eq. 4.67 into

Eq. 4.66 we obtain

(4.68)

For an axisymmetric source that oscillates bisinusoidally with uniform amplitude

distribution for the highest primary frequency and a plane vvave for the lowest primary

frequency, the boundary condition is

(4.69)

where P02 is the amplitude of the signal at a= 0. This gives the following boundary

conditions for cbpiTl and dbpn \

(4.70)

(4.71)

(4.72)

(4.73)

Tfyp — COS TlTbp -f- dfop 'ti Sli! flTjip),
n=l

dCbp n 2 rj2 j

— - -arx n cbp ,n- + 1)2 \^.«+

rx n n_1 00

r~ r~n Z(c*p,n —z ) + {dbpjCbp,i — n —n) 1
+1) ,= 1 I=n+1

ddbpi7l 2 7  r-r2 I

" ar' n bp ’ n + 4n(abp + D* V^Ctp'n+

V TI 1 n— * 00

/ '7T " ( <-6p,i —n ”1“ —n) 1
+ij t= i t=n+l

n = 1,2,...

p{a = 0,£,r) = U (£) sin NiT + {P02/P0) sin W2 r,

cbp,Ni — Sin. Ufrpi

dbp,N\ —0) — U(^Ufyp ) COS Ufrp ,

iV2
C6Pl iv2 (o-6p = 0,u 6p ) = (P02/P0) sin —u2bp ,iVi

— O5 (^02/P0 ) COS
iVi

with cbP:Tl {abp = 0,u bp ) = 0 and dbptTl (crbp = 0 ,ubp ) = 0 for n NU N2 .
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In order to study the interaction between a high frequency focused pump wave

with frequency fi and a low frequency plane signal wave with frequency f2 we intro

duce the following transform:

(4.74)

Substitution of Eqs. 4.74 in Eq. 2.1 yields

(4.75)

where = $ 2 /^u /P +(1 /ufp ]d/dujp and u/p = \lij p \- If we assume that the

boundary condition is periodic with period 2ttuj~ 1 , we can seek a solution of Eq. 4.75

in the form of a Fourier series

(4.76)

where c/Pt„ and djp<n are functions of spatial variables. Substituting Eq. 4.76 into

Eq. 4.75 we obtain

(4.77)

afp =(z - d)/d,

Hfp = i/i°fp± s ),

tSp = T -£2 /[{ (Tfp±ti)d/ro],

Tfp = (cr/p ±%.

PTf, SPT,, d

døjpdrjp drjp4r0 (<T /p ±é) 2 ,p )

Tlp = H(C/p.n cos nrjp -f dfViTl sin nrjp ),
71 = 1

= -ctdn2 cfp^n - --- d- V* d/p>n +
5ct/p 4ron(cr/p ± (5) 2 -/*

dn n ~ l 00
o"/ 7T 1 C\ ( C/P-n ~»^/P. 1 ) 4“ (^/p,t c/p,»-n ~ cfp,idfp<l -n)
ZlD [a fp ±d) [ l=1 l=n+1

&dfpn , 2 1 d P

= “ Qdn + i^±^v^c^+

dn 1 ~

7Ti 7~ ic\ 7\ / c/p,n-i c/p,j) / , i CJp,i cfp,i-n “t“ fp,i —n)
Zl D [afp ±d) t=1 i=n+1

n = 1,2,..
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For an axisymmetric source that oscillates bisinusoidally with uniform amplitude

distribution and focusing gain Gi = ri/di for the highest primary frequency, and

with a uniform amplitude distribution and zero focusing gain a for the lowest primary

frequency, the boundary condition is

(4.78)

where P02 is the amplitude of the plane wave at the source. This gives the following

boundary conditions for cypn and n when use is made of Eqs. 4.74 and Eq. 4.76:

with Cfp^ n {(Tjp — 1 1 Ufp) — 0 and dypn ((7jp — l,uyp ) — 0 for n Ni^N2 - To see

the effect of focusing we have in Fig. 4.29 compared the difference frequency wave

generated using unfocused pump wave with the difference frequency wave generated

using three different focused pumps. The gain of these focused pumps are 50,10 and

1. We keep the source amplitude, frequency and radius ol the of the pump fixed,

and vary the focal distance. The amplitude of the signal P02 is set to 10~ 6 Po - For

simplicity we have neglected absorption and applied the quasilinear approximation.

The amplitudes are scaled to 6 x 10~ 7Po - We find only small variations in the

maximum on-axis amplitude of the difference frequency waves generated using the

various pump waves. When G\ = 50 the amplitude of the pump wave at focus is

50 times as high as in the case of G\ = 1, but when G\ = 50 the focal distance

is only 1/50 times the focal distance in the case of G\ = 1. Focusing closer to the

p{cr —0,£, r) — £/(£) -f Gi£ 2 ) -f sin(Ar2T),

cfp,Ni i&fp —~ 1? ufp ) — ~(1 + 6)U (ujp (1 -f 6)) sin (GiS {1+6) u2 (4.79)

a/P =~1 , u/p) = -(1 + S)U ( ufp (1 -f 5)) cos (G\8 (1 +6) u]p ) (4.80)

c/p,n2 (ct/p = -1, Ufp ) = -(1 +6) sin (g2 S (1 -f 6) u 2fpj (4.81)

dfp,N2 {vjP =-1 ,w/P ) = ~(1 + (5) cos (1 + f>)ufp ) (4.82)
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FIG. 4 29. On-axis amplitude nonnalized to 6 x 10~ 7 .Po for the difference frequency
"’ave for various focusing gains, vvith no absorption and /,//2 = 150. Quasilinear
theory.
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source increases the amplitude of the pump, but the distance the nonlinear effects can

accumulate decreases. These effects balance each other for the values of focusing gain

considered here. For G\ — 10, 50 the amplitude of the difference frequency wave falls

off very quickly after focus. Comparing the cases G i = 1 and G\ = 0 we see that the

on-axis amplitude of the difference frequency wave does not change very much, except

for the fact that the maxima are closer to the source in the case of G\ = 1. Beyond

two Rayleigh distances from the source, the difference frequency wave generated by

the unfocused pump wave has higher amplitude than the difference frequency wave

generated by the pump wave with G\ — 1. If we want the on-axis amplitude of the

difference frequency wave to be as high as possible and the directivity to be as sharp

as possible in the farfield, the unfocused pump should be used.

In Fig. 4.30 we have compared the on-axis amplitude of the difference frequency

wave with the on-axis amplitude of the pump wave for the cases G\ = 50 and G\ = 10.

The amplitudes have been normalized to their maxima. In the case of Gx = 50 the

curves are very similar. The zeros match up well. The difference between the on-axis

amplitude of the difference and pump waves is that the on-axis amplitude of the

difference frequency wave is lower in the prefocal region and higher in the postfocal

region. This is probably because the difference frequency wave is generated by an

accumulative effect. For G\ = 10 the curves are quite similar. The zeros before

focus match up well and the amplitude of the difference frequency wave is lower

before focus and higher after focus. We also notice that the on-axis amplitude of the

difference frequency wave has a maximum very dose to the focus, even if the pump

has a maximum more than 1/10 of the focal distance away from the focus. We have

seen this effect even more clearly for lower values of G\.

The beam patterns at focus are neariy identical for the difference frequency wave
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FIG. 4.30. On-axis amplitude to r the difference frequency vvave { — ) and the
pump \va,\e ( ), with no absorption and /1//2 — 150. Linear/quasilinear theorv.
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and the pump wave when G\ = 50 and G\ = 10.

Up to now we have considered only the case /1//2 = 150. For low values of fi/ f2

peculiar effects can occur. When /1//2 = 6, G\ = 75 and a = 0 it was observed that

the on-axis amplitude of both the difference frequency wave and the sum frequency

wave had two maximas of nearly same magnitude. The difference and sum frequency

waves are shown in Fig. 4.31. Both curves are normalized to their maxima. The

on-axis amplitude of the difference frequency wave has a maximum before focus and

one dose to focus. The amplitude of the sum frequency wave has a maximum after

focus and one dose to focus. The extra maximas are seen to be dose to

(4.83)

for the difference frequency wave and dose to

(4.84)

for the sum frequency wave. For this effect to occur the focusing gain must be high,

and the ratio /1//2 must be moderate. Decreasing the focusing gain has the effect of

broadening the maxima, and when the focusing gain is low enough the maxima will

melt together. Decreasing the ratio /1//2 has the effect of moving the extra maxima

further away from the focus which is obvious from the expressions 4.83 and 4.84.

In the case of a focused Gaussian beam interacting with a plane wave, the dif

ference and sum frequency waves are given by simple expressions. Analysis of these

expressions shows that if the focusing gain is high and the ratio fm /f- is not f00

large, then the difference and the sum frequency waves will have extra maxima lo

cated at the positions given by 4.83 and 4.84. When studying the PARRAY for

collinear interaction, we can in addition to diffraction also include absorption and

d'=^Z^ld

d" =
UJ2
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FIG. 4.31. On axis amplitude lot the difference frequency vvave ( ) and sum
frequency wave ( ), with no absorption, j\/f2 = 6 and G x = 75. Quasilinearthcorv.
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nonlinear effects. We have studied the case

(4.85)

(4.86)

(4.87)

(4.88)

to see the effect of nonlinear damping. Since the amplitude of the signal is low

the nonlinear damping of the pump wave is determined by the generation of higher

harmonic components of the pump wave. The on-axis amplitude of the difference

frequency wave is shown in Fig. 4.32. The nonlinearity affects the sum frequency

wave in the same way as it affects the difference frequency wave. We see that the

nonlinear damping is not very severe even at a^p = 10. The amplitude of the pump

wave is reduced by 6dB at cqp = 10. The nonlinear theory predicts a higher am

plitude near focus than does the quasilinear theory for both the difference and sum

frequency waves. The difference frequency wave is not only generated from the inter

action between the pump and signal waves, but also from the interaction between the

sum frequency wave and the second harmonic component of the pump wave. When

nonlinear effects start to become important, energy is transfered from the pump wave

to the second harmonic component. Because of the nonlinear damping of the pump

wave, less difference frequency wave is generated by the interaction between the pump

wave and the signal wave. This loss of generation is compensated by the interaction

between the second harmonic and sum frequency components. In the same way the

sum frequency wave is generated both by the interaction between the pump wave

and the signal wave, and the interaction between the second harmonic wave and the

difference frequency wave.

h/f2 = 150,

ari = 0.01,

rjloi = 1.0,

G 1 = 1.0
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o
o

1 IG. 4.32. On-axis amplitude lor the diiference frequency vvave. Fully nonlinear
theory ( ) and quasilinear theory ( — —), with = 0.01,r 1 //Dl =1 0
/1//2 = 150 and Gx = 1.0.
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Chapter 5

Summary and conclusions

Nonlinear effects in sound beams and interaction between sound beams have been

investigated. The nonlinear parabolic equation (The KZK equation) has been used

as a model equation. The solution of the KZK equation was written in form of a

Fourier series, and equations were obtained for the Fourier coefficients.

1. For numerical computations of time harmonic sound fields, the Fourier series

representation has to be truncated. A procedure has been developed for how

to select the harmonic components to be retained in the Fourier series.

2. A test problem, which is a simplification of solving the KZK equation, was

introduced. Two finite difference methods were applied to this test problem

and analyzed. The analysis gave a good understanding of the qualitative and

quantitative behaviour of the two methods.

3. The analysis of the test problem gave rise to an efficient algorithm for solving

the KZK equation.

4. A computer code was implemented. Different integration regions were used for

different harmonic components. When a high number of harmonic components

are retained in the computations, this technique reduces the computation time
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by about a factor of four. A stabilization procedure was given which facilitates

the computation of sound beams well beyond the shock formation distance.

Applications were made to the parametric array:

5. In order to test the computer code, numerical results were compared to exper

iments and earlier computations based on quasilinear theory. For low ampli

tudes, results for the difference frequency wave were compared to quasilinear

theory and good agreement was found. For high amplitudes, results for the

difference frequency wave were found to compar well with experiments.

6. The comparison between fully nonlinear and linear/quasilinear theory was

found to be more favourable for the case of high absorption. The high fre

quency part of the sound beam was not influenced much by the downshift

ratio.

7. The fully nonlinear and quasilinear theories were found to predict the same

numerical results up to ranges, which for the case of the difference frequency

wave was 10 times that of the sum frequency wave. This can be explained by the

fact that the difference frequency wave to some extent also is generated from the

interaction between higher harmonic and combination frequency components

of the primary waves.

8. Studying beampatterns for the primary, sum frequency and the difference fre

quency waves it was found that the effect of nonlinearity not only caused an

erosion of the mainlobes, but also lead to an outward shift of the beam struc

ture.
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9. Higher harmonic components of the difference frequency wave were computed,

and it wa.s found that they were built up around the shock formation distance.

A general trend was that the successive higher harmonic components had higher

directivity, and that dips occured in the beampatterns near the symmetry axis.

10. Monofrequency wave excitation was compared to bifrequency wave excitation.

We found that the primary wave was more influenced by nonlinear damping in

the bifrequency case.

11. Waveforms were computed. The process from initial waveforms, through the

developement of shocks, via strong shocks to stable waveforms, and finally to

a pure difference frequency wave was shown.

12. The possibility of matching the solution of the KZK equation with the solution

of the spherical Burgers 1 equation was studied in the case of low amplitudes.

It was found that the primary and sum frequency waves, but not the difference

frequency wave could be matched well at about a Rayleigh distance from the

source.

Focused sound beams, nonlinear effects in focused sound beams and interaction

between focused sound beams have also been investigated;

13. The power of the second harmonic component in the vicinity of focus was

computed, and it was found that the power had a maximum right after focus.

An analysis of the power of the different harmonic components shows that

energy is transferred from the second harmonic to the primary component in

the post focal region.
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14. Beam patteins loi the lundamental and second harmomc components were

studied in the vicinity of focus. As in the unfocused case it was found that the

effect of nonlinearity was an erosion of the mainlobes and an outward shift of

the beam structure.

15. Applications were made to interaction between focused sound beams. In order

to check the computer code, companson was made for the difference frequency

wave with quasilinear results for reported in the literature.

16. For given primary frequencies, source radius and source amplitude we found

that the maximum amplitude of the difference frequency wave increased only

slightly by increasing the focusing gain of the primaries. When going from

— 1 to Gm = 50 the amplitude of the difference frequency wave only

increased by a factor of less than 3.

17. The power of the difference frequency component generated by two focused

sound beams was computed, and we found that the difference frequency com

ponent attained a maximum a little after focus. The power of the second

harmonic and sum frequency components has the same qualitative behaviour

as the difference frequency wave. An analysis of the power of the harmonic

components gives that energy is transferred from the second-order components

to the primary components in the post focal region

18. Interaction between two focused beams with different focal distances has also

been studied. When the focal distances are not too dose to each other, and

foi focusing gains, the on-axis amplitude of the difference frequency wave

attains two maxima of nearly the same magnitude, one dose to each focal
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point. The on-axis amplitude of the sum frequency wave has a maximum near

the midpoint between the two focal points.

19. The maximum amplitudes of the difference and sum frequency waves are sub

stantially higher when the focal distances of the primaries are equal than when

they are different.

We have also studied the interaction between a plane wave and a focused or

unfocused beam:

20. For given primary frequency, signal frequency, source radius and source ampli

tude the maximum amplitudes of the difference frequency and sum frequency

waves are nearly invariant with respect to focusing gain of the pump.

21. For low values of focusing gain the on-axis amplitude of the difference and

sum frequency waves have maxima very dose to focus even though the on-axis

amplitude of the focused pump has a maximum significantly before focus.

22. For high focusing gains and pump frequencies much larger than the signal

frequency, the pressure amplitude distribution both along axis and in the focal

plane is similar for the difference frequency, sum frequency and pump waves.

23. When the pump frequency is only rnoderately larger than the signal frequency

and the pump is strongly focused, peculiar effects can occur. The on-axis

amplitude of the difference frequency wave attains one maximum before focus

and one at focus. The on-axis amplitude of the sum frequency wave also attains

two maxima with one maximum at focus and one after focus. These effects are
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also found analytically, when investigating the interaction between a Gaussian

beam and a plane wave.
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