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NUMERICAL SOLUTION OF THE POLYMER SYSTEM
BY FRONT TRACKING

V. HAUGSE, K. H. KARLSEN, K.-A. LIE, AND J. R. NATVIG

Abstract. The paper describes the application of front tracking to the polymer system,
an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant
approximations based on approximate Riemann Solutions and exact tracking of waves. R
is well-known that the front tracking method may introduce a blowup of the initial total
variation for initial data along the curve where the two eigenvalues of the hyperbolic system
are identical. R is demonstrated by numerical examples that the method converges to the
correct solution after a finite time that decreases with the discretization parameter.

For multidimensional problems, front tracking is combined with dimensional splitting
and numerical experiments indicate that large splitting steps can be used without loss of
accuracy. Typical CFL numbers are in the range 10 to 20, and comparisons with Riemann
free, high-resolution methods confirm that the high efficiency of front tracking.

The polymer system, coupled with an elliptic pressure equation, models two-phase,
three-component polymer flooding in an oil reservoir. Two examples are presented, where
this model is solved by a sequential time stepping procedure. Because of the approximate
Riemann solver, the method is non-conservative and cfl numbers must be chosen only
moderately larger than unity to avoid substantial material balance errors generated in
near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional
splitting may introduce severe grid orientation effects for unstable displacements that are
accentuated for decreasing discretization parameters.

1. Introduction

Front tracking has proved to be a very efficient numerical method for one-dimensional
hyperbolic conservation laws, both for scalar problems [s] and for systems [l7, 18]. By
front tracking we mean an algorithm that is based on tracking waves from a series of
initial Riemann problems and solving new Riemann problems when waves interact, unlike
GlimnFs [3] method that samples the solution before waves interact. The front tracking
method is extended to multidimensions by dimensional splitting and gives a very efficient
numerical method. This has been documented for scalar problems [l5, 14], gas dynamics
[6], and shallow water equations [4].

For nonstrictly hyperbolic systems, serious doubt [24] has been east on the use of front
tracking and other numerical methods based on piecewise constant approximations and
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is a nonstrictly hyperbolic where the two eigenvalues of the system are identical along a
transition curve s = s T (c) in state space. For this system, blowup of the initial total
variation was demonstrated for continuous initial data on the transition curve. These

observations suggest that such piecewise constant approximations may be inappropriate
from a mathematical point of view, e.g., when trying to prove existence along the lines of
GlimnTs existence proof.

In this paper, we discuss this special case from a numerical point of view, i.e., with a
limited range of decreasing discretization parameters, and demonstrate that despite the
large initial total variation, the approximate Solutions converge to the same solution as the
upwind method as time increases. In particular, the influence of the initial blowup in total
variation decreases more rapidly in time with decreasing discretization parameters.

Risebro and Tveito [l9] demonstrated that front tracking is more efficient than the
upwind method and the random choice scheme for one-dimensional Cauchy problems. We
have performed numerical experiments that confirm the high efficiency, except for the
case with initial data on the transition curve, where the method is CPU intensive. These
observations motivate the main objective of the paper: the extension of front tracking
to multidimensions by dimensional splitting for the polymer system, as an example of a
nonstrictly hyperbolic system.

The one-dimensional polymer system has been analysed by many authors. Isaacson [B]
solved the Riemann problem for the case with no adsorption (a(c) = 0) and Johansen and
Winther [l2] generalized the results by including adsorption. Temple [22] and Isaacson and
Temple [9] proved the existence of a weak solution of the Cauchy problem with initial data
of bounded variation in the case of no adsorption. The existence of a unique and stable
solution of the same system was proved by Tveito and Winther [23] for initial data that
are constant outside an interval and with c sufhciently smooth and by Klingenberg and
Risebro [l3] with no smoothness assumptions.

The polymer system arises as part of the fractional flow formulation of two-phase, three
component model of polymer flooding in an oil reservoir. Polymer flooding is an enhanced
oil recovery process, where polymer is added to some of the injection water. Polymer
increases the viscosity of the water, thereby reducing the mobility ratio between water
and oil. Due to the additional cost, polymer is typically injected in slugs. The simplihed
mathematical model of polymer flooding is given by

(2)

where (s,c) denotes water saturation and polymer concentration in the water, f{s,c) is
the fractional flow function of water, a[c) is the adsorption function, and q is a source/sink

Riemann Solutions. The polymer system [l2]

s t + /(-s, c)x = 0

{sc + a{c)) t + (cf{s,c)) x = 0,

St + U  V/(s,c) = f{s,c)q,
(sc + a(c)) t -f U • V(c/(s, c)) = cf (5, c)q,

V • (/cA(5,c)Vp) = g,





NUMERICAL SOLUTION OF THE POLYMER SYSTEM BY FRONT TRACKING 3

term. The total velocity U is given by U = —k\{s , c) Vp, where k is permeability, A(s, c) is
total mobility, and p is pressure. For injection wells, (5,6) denotes the injected saturation
and concentration, whereas (s,c) is the saturation and concentration at the well for a
production well. Note that the net production, f q(x,y) dxdy, must vanish as both fluids
and the rock are assumed to be incompressible.

A common strategy to solve (2) is to use a sequential stepping procedure, where one
assumes that the total velocity is slowly varying in time compared with the variation of
the saturation and concentration. One time step in the algorithm consists of first solving
the elliptic pressure equation with the total mobility given by the latest saturation and
concentration. The hyperbolic system is then solved by assuming that the total velocity is
constant during the time step. For increased efficiency, the hyperbolic equations may be
solved several times before the pressure solution is updated.

It has earlier been documented that conventional upstream-weighted finite-difference
schemes may be unsuited for the hyperbolic part of (2) due to large amounts of numerical
diffusion, and in some cases, substantial grid orientation effects. Holing et al. [7] developed
a second-order Godunov-type method for the polymer system. Their scheme reduces the
smearing of fronts and grid orientation effects compared with standard upwind schemes.
Front tracking combined with dimensional splitting is known to compute Solutions with
very little numerical diffusion. The second objective of our paper is therefore to investigate
the performance of the method as part of a sequential stepping approach for the polymer
flooding model (2). To this end, we present two numerical examples that assess numerical
diffusion, grid orientation effects and other numerical characteristics of the scheme.

The outline of the paper is as follows. Front tracking, dimensional splitting, and the
sequential stepping method for (2) are presented in Section 2. Section 3 contains four nu
merical examples. The first example is a one-dimensional Cauchy problem with initial data
on the transition curve. The second is a Riemann problem for the two-dimensional version
of (1), where front tracking is compared with the upwind method and a second-order, non
oscillatory, central-difference scheme. The two last examples are of the full polymer model
(2) and describe injection of water followed by polymer and miscible displacement with
adverse mobility ratio. Both processes are examined on a hve-spot well pattern. Finally,
conclusions based on our numerical experiments are given in Section 4.

2. The Front Tracking Method

In this section we review the front tracking algorithm in one spatial dimension and
present its extension to two dimensions by dimensional splitting. We also present a se
quential stepping method for (2) using dimensional splitting for the hyperbolic system and
finite differences for the pressure equation.

2.1. Front Tracking in One Dimension. Front tracking is an algorithm for computing
piecewise constant approximations to a conservation law. The method is free of an under
lying grid, is unconditionally stable, and has no intrinsic time step. The method was first
introduced by Dafermos [2] to study scalar equations and later used as a computational
tool by several authors. Holden, Holden and Høegh-Krohn [s] proved that the method is
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well-defined for an arbitrary flux function and suggested to use it as a reliable numerical
method. Risebro [l7] generalized the method to systems of hyperbolic conservation laws
and Risebro and Tveito [l9] applied the method to the one-dimensional polymer system.

The basic building block in the front tracking method is the solution of Riemann prob
lems, i.e. initial valne problems with data of the form

The Riemann solution is a similarity solution, i.e. a function of £ = x/t only. The Riemann
problem for the polymer system is discussed in detail by Johansen and Winther [l2]. The
solution consists of a set of constant states connected by s-waves and c-waves. A s-wave
may be composed of a shock and a rarefaction wave, while a c-wave is either a shock or
a rarefaction wave. The concentration is constant in 5-waves, and the hyperbolic part
of the polymer system is reduced to a scalar conservation law. Both the saturation and
concentration are varying in c-waves, and an ordinary differential equation must be solved
to compute c-rarefaction waves. The complexity of the Riemann solution depends on
where the left and right states are located in state space. The solution may consist of up
to five constant states connected by 5-waves and c-waves.

We seek piecewise constant Solutions and must therefore approximate each Riemann
solution by a step function in £. Shocks from the analytical solution are kept unchanged,
while rarefaction waves are approximated by a series of small shocks. A rarefaction wave
with left and right velocities and will be approximated with N shocks, where N =
R6? ~ &)/*!• (The parameter 5 is user-dehned.) This way, each Riemann problem is
approximated by a sequence of jump discontinuities that travel with a hnite wave speed.
Each jump discontinuity is called a front and a Riemann solution is represented by a list
of fronts sorted by increasing waves speed.

For piecewise constant initial data, the global solution of the Cauchy problem is con
structed by connecting the solution of the individual Riemann problems. The solution
consists of constant states separated by space-time rays. There will be a hrst time when
two or more space-time rays intersect. This dehnes a new Riemann problem that can be
approximated as outlined above. Thus, the front tracking method solves the Cauchy prob
lem by keeping track of ali fronts and by solving the Riemann problems that arise. The
method is well-defined as long as the number of waves is hnite and is very efhcient due to
the highly accurate resolution of discontinuities. However, the approximation of rarefaction
waves may introduce small material balance errors. If higher accuracy is needed in rar
efaction regions, one can track rarefaction regions instead, as introduced by Wendroff [26]
for chromatography. Notice also that the algorithm does not need a hxed grid, except for
possibly specifying the piecewise constant initial data.

For general initial data, we project the initial function by a quadrature method onto the
uniform grid with nodes {iAx} to dehne the piecewise constant initial data.

We refer to Risebro and Tveito [l9] for further details on the implementation of front
tracking for the polymer system.

//nw n u j («L, cl) for x< 0,

[[sr,cr ) lor x > 0.
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2.2. Front Tracking in Two Dimensions. The two-dimensional version of (1) reads,

where u = (s,sc + a{c)) is the conserved variable and g = (/(s, c), cf{s, c)) is the corre
sponding flux. The Godunov form of dimensional splitting is

where Sx and S y are the front tracking Solutions of (1) in x and y direction, respectively.
The operator tt is the usual grid block averaging operator. The underlying (hxed) grid is
introduced to simplify the process of obtaining piecewise constant initial data for the y
step from the Solutions computed in the x step and vice versa.

2.3. A Sequential Stepping Method. Our numerical method for (2) uses an IMPES
approach (Implicit Pressure, Explicit Saturation). To advance the solution to the next time
step, the elliptic pressure equation is solved hrst with total mobility from the previous time
step. Subsequently, the total velocity held from the pressure solution is used to solve the
hyperbolic equations for saturation and concentration.

Let (pn ,5 n ,cn ) denote the solution at time tn and let At n be the next time step. The
numerical solution at time t n + Atn is then given by the following steps.

2.3.1. Pressure Update. The total mobility at time tn is given by An (r, y) = A(s n , cn ), and
the pressure equation is then

This equation is discretized by a finite-difference method on a block-centred grid. The
transmissibilities in our pressure solver is based on the nine-point scheme of Yanosik and
McCracken [2s]. Upstream weighting was used in both the elliptic and hyperbolic equations
by Yanosik and McCracken, while Potempa [l6] developed a hybrid finite difference, finite
element method with upstream weighting only in the hyperbolic equation. We follow
PotempaT approach, and use a harmonic average on the mobility. A simple well model is
implemented, where each well is connected to the grid in only one grid block. All wells are
controlled by specihed injection/production rates.

The linear solver is based on the conjugate gradient method, preconditioned by a V
cycle multigrid method. Due to the preconditioner, our numerical results are performed
on grids with + 1 blocks in each direction. A conservative flux consideration is used to
find velocities at the centre of the grid block boundaries.

2.3.2. Saturation and Concentration Update. The saturation and concentration are ad
vanced to the next time level using the constant velocities determined in the pressure
update. The front tracking and dimensional splitting approach introduced above can be
extended to equations with variable coefficients, see [l4]. Based on the velocities at the
grid block boundaries, we reconstruct a velocity held (f/n , Vn ){x, y), where Un ( Vn ) is
piecewise linear in x (y) and piecewise constant in y (x). The flow in areas with no pro
duction/injection is now given by

Ut + g(u) x + g{u)y =O,

u"+1 =7r Sy (Atn)7r u”,

V • ( k(x : y)An {x,y)Vp ) = q.

u t + Un [x, y)g(u) x + Vn ( x , y)g{u) y =O,
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and the Godunov form of dimensional splitting is

where S x n and S un are the front tracking Solutions of the equation

with velocities Vn and £/n , respectively. The total production (from wells) is found by
exact integration in time of water and polymer hux over the grid boundaries of each well.

2.3.3. Time Step Estimation. The front tracking method is unconditionally stable, but too
large time steps may produce inaccurate Solutions due to splitting and material balance
errors in the hyperbolic equations and decoupling of the elliptic and hyperbolic equa
tions during each time step. Note that the velocity held changes slowly in cases where
the variation in total mobility is small. The user-dehned time step for the sequential
stepping may therefore be chosen larger than the dimensional splitting step for the satu
ration/concentration equations. The latter time step is estimated from a user-dehned CFL
target. During the update of the hyperbolic equations, maximum speed of information in
each direction is computed. The maximum speed in z-direction is given by

where is maximum velocity and £Z|J is maximum wave speed in rc-direction for grid block
(z, j). In particular, £ is a by-product of the Riemann solution process. The maximum speed
is updated when determining possible wave interactions in the front tracking algorithm. A
corresponding estimate is used in the y-direction. The length of the next time step is then
given by

where CFL is the user-dehned target.

3. Numerical Results

The front tracking algorithm has been tested on a variety of examples. Here we present
four examples, starting with a one-dimensional Cauchy problem with initial data on the
transition curve. This problem is a “worst case” for front tracking, since the total variation
after the initial solution of Riemann problems approaches inhnity as the number of constant
states increases. Front tracking results are compared with results computed by the upwind
scheme. The second example is two-dimensional with constant velocities, where a non
trivial Riemann problem is examined. The last two examples are two-dimensional with
coupling between the elliptic and hyperbolic equations.

un+l =7r Svn {Atn ) 7r Su"(At n ) un ,

Ut + v{x)g{u) x =O,

flx = max(^6',j)hJ

Atn+l = CFL • min (Ai//:" Ay/y") ,2-, y
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FIGURE 1. Initial saturation and concentration for the Cauchy problem with
initial data on the transition curve (left). Numerical solution computed by the
upwind method at t = 1 with Ax = 0.001 and CFL = 0.95 (right)

3.1. Data on the Transition Curve. Tveito and Winther [24] argue that numerical
methods based on a Riemann solver may have problems with initial data on the transition
curve. The total variation of the numerical solution at time 0+ will approach infinity as the
number of constant states in the approximation of the initial data increases. We present
numerical examples based on front tracking and an upwind finite-difference method, and
show that the front tracking Solutions converge to the same solution as the finite-difference
solution.

Consider the following Cauchy problem;

with initial data

(0 for x< 0,

x for o<x < 1, s 0 (æ) = s T (c0 (x)).
1 for 1< x,

We use a finite-difference approximation as a reference solution of the Cauchy problem.
Godunov’s method, which is identical to the upwind method for the polymer system, was
chosen as numerical method. The discretization of the polymer system with this method
is given by Johansen et al. [ll]. Figure 1 shows initial data and solution at t = 1 computed
by the upwind method on a fine grid.

Consider now the numerical solution computed by front tracking. The solution of each of
the initial Riemann problems consists of one s-shock and one c-rarefaction. The strength
of the hrst 5-shock is related to the difference in concentrations for the Riemann problem:
| As| = o{\cl cr[ 1//2 ) = o{\Ax\ 1 ! 2 ), while the number of Riemann problems is o{\ Ar) -1 ).
Front tracking Solutions for Ax = 0.1 and 0.01 are shown in Figures 2 and 3, respectively.
The Solutions before waves from neighbouring Riemann problem have collided contain

~ \ 52 , x 0.2 c
/(•7 C) = 2T n \2n 1 v a ( c) = 77“’S z + (1 5)71 + C) 1 + c
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FIGURE 2. Front tracking solution for the Cauchy problem with initial data
on the transition curve are shown after time 0.1 (left) and 1 (right) with initial
discretization parameter Ax = 0.1.

FIGURE 3. Front tracking solution for the Cauchy problem with initial data
on the transition curve are shown after time 0.1 (left) and 1 (right) with initial
discretization parameter Ax = 0.01.

oscillations and has large variation. However, after a few wave interactions, the total
variation is dramatically reduced. In Figure 2, the total variation is reduced from time 0.1
to 1, but the saturation prohle still contains oscillations at time 1. On the other hand, no
oscillations are seen in the saturation prohle at time 1 in Figure 3, and the front tracking
solution is dose to the fmite-difference solution in Figure 1. Decreasing Ax further we
observe the same tendency: the initial variation increases but disappears faster. These
results seem to be little inhuenced by the parameter 8 (determining the approximation of
each c-rarefaction). Similar observations have been made for different orientation of the
initial data along the transition curve. Moreover, if the front tracking algorithm is combined
with repeated projections onto a grid, the numerical solution leaves the transition curve
as a combined effect of interactions between fronts and projections.
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FIGURE 4. Solution at time t = 0.5 for the two-dimensional Riemann problem;
water saturation (left) and polymer concentration (right).

3.2. A Two-Dimensional Riemann Problem. In this example we study the two
dimensional equation ut -f g(u)x -f g(u) y = 0 on the unit square in the hrst quadrant
with fractional flow and adsorption functions as in the previous example. The initial data
is the Riemann problem

The physical setting consists of two quadratic water plugs, where the leading plug contains
polymer with a concentration of 0.1. Since pure water flows more easily than water con
taining polymer, the pure water will overtake the polymer slug and overrun it along the
sides, giving rise to a complicated wave pattern.

We compare the front tracking method with two finite-difference methods; the hrst
order upwind method and the second-order, non-oscillatory, Central difference scheme of
Jiang and Tadmor [lo]. Since neither of these schemes use Riemann solvers, they should
be rather fast and represent a fair match for the front tracking method.

Figure 4 shows the solution at time t = 0.5 computed by the Jiang-Tadmor scheme on
a 256 x 256 grid. Notice that the water finger extending backwards from the polymer plug
becomes very narrow as it approaches the stationary pure water plug and is therefore not
represented completely on this grid.

To measure efficiency we plot the observed error versus runtime for a sequence of grids;
2" x2n for n = 5,..., 8. Figure 5 gives such a comparison for front tracking (with various
CFL numbers), the upwind method, and the Central difference scheme with MMj and UNO
limiters (see [10]). For the finite-difference schemes we use CFL number 0.475. Errors are
measured relative to a reference solution computed on a 2 10 x 2 10 grid by the Jiang-Tadmor
scheme.

We see from the plot that both runtime and error for the front tracking method decreases
as the CFL number is increased above unity. This is in correspondence with observation

f (1.0, 0.0) x < 0.3, y < 0.3,

u0 (x) = (s, c)(x) = < (LO, 0.1) x > 0.3, y > 0.3,

[(0.0, 0.0) otherwise.

I consists of two quadratic water plugs, where the L
icentration of 0.1. Since pure water flows more ea



*
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Runtime

made by Lie et al. [ls] for scalar problems and by Lie [l4] for scalar equations with a velocity
Held without sources/sinks; increasing the CFL number gives less mimerical diffusion and
lower runtime without a counterbalancing increase in splitting errors. In fact, extensive
numerical experiments show that optimal CFL numbers in the range 10-20 are common
when comparing numerical error versus runtime.

For CFL numbers of 2 and larger, the front tracking scheme is more efficient than the
second-order Central scheme for this problem. For CFL number 1, front tracking and the
upwind scheme performs almost similarly. Both front tracking and the upwind scheme are
hrst order, but very different in nature. The upwind scheme is very simple and consists
of a double loop with one function evaluation at each grid point. The front tracking
scheme, on the other hand, uses a complicated Riemann solver which involves solution of
nonlinear equations and ordinary differential equations. It thus gives a strong indication
of the computational efhciency of front tracking that its worst performance is equal to the
upwind method.

3.3. Water Injection Followed by Polymer Injection. The next example is closer
to a real-life application. Pure water is injected until an accumulated amount of 0.5 pore
volumes is reached, followed by injection of water containing a unity polymer concentration.
The reservoir is homogeneous with a repeated hve-spot well pattern. Positions of the
producers and injectors are shown in Figure 6. Reported productions and material balance
errors for parallel grids are always divided by two to be consistent with the diagonal grid.
The flow functions

model displacement of an oil with unit viscosity by water with viscosity equal 0.5 for pure
water and 2.5 for maximum polymer concentration. All numerical results for this example

10~ 1 r—i . , r - , , T

o——e ft: Cfl=i
. o- A A ft: cfl=2

" - * * ft: cfl=4
" «   ft: cfl=l6

x, " * x jt: mml
* * jt: uno
0 0 upwind

to-L—*—......i—*——- i—*— —-* - * i—*— —J
10" 1 10° to1 10z to3

FIGURE 5. L 1 error in physical quantities (s,c) versus runtime.

/( "’ c) ~,2 + (1 _ s"2 (1 A ( s > c) - 2sV(l + 4c) +(1 - a)’



.
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FIGURE 6. Diagonal (left) and parallel grid (right) of a five-spot repeated well
pattern. The production and injection wells are denoted by P and I, respectively.

FIGURE 7. Saturation (left) and concentration (right) are plotted after injection
of 0.8 pore volumes of water. Injection of 0.5 pore volumes of pure water was
followed by injection of water containing polymer. This solution was calculated
using a CFL number of 2 on a diagonal grid.

are computed on a 129 x 129 grid with a time step of 0.02 between the each update of the
velocity held and a rarefaction approximation parameter 6 = 0.01.

Water saturation and polymer concentration after injection of 0.8 pore volumes are shown
in Figure 7. Note that an oil bank develops in front of the injected polymer. The water
cut of the producers are reduced when the oil bank reaches the wells, and the recovery is
accelerated.

The previous example indicated that large CFL numbers can be used without loss of
accuracy for the polymer system with constant velocity helds. A natural question is there
fore whether this also is valid for the full model (2). Since an accurate reference solution is
hard to compute, we will use the material balance error and the amount of oil remaining
in the reservoir as a quality measure for the approximate Solutions.

We ran three simulations with CFL numbers 1, 2, and 4 on the diagonal and on the
parallel grid. Table 1 shows material balance errors and remaining amount of oil measured
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TABLE 1. Water and polymer material balance and oil remaining in the reservoir
after injection of two pore volumes for different CFL numbers and grid orientations.

after two pore volumes injected. The water material balance error is here defined as the
difference in the net injection of water and net increase of water remaining in the reservoir,
and a corresponding definition is used for polymer. Note that the material balance error
is always positive for diagonal grids when large CFL numbers are used, while the opposite
trend is observed for parallel grids. This may be explained by the development of the
producing water fractional flow function in the wells after water breakthrough. Consider
front tracking on one row (or column) of the grid near the boundary. When large time
steps are used on a diagonal grid, the oil bank trapped dose to the boundary (see Figure 7)
will give rise to a flow of oil into the grid block that is connected to the well. Therefore
the water fractional flow will decrease during the step and the water production is under
estimated. A similar argument yields that the calculated water production is too high for
parallel grids.

The material balance error in Table 1 varies significantly with CFL, while the oil re
maining in the reservoir is almost insensitive to CFL. This indicates that our method for
calculating production is not accurate for large time steps. One problem is that saturations
and concentrations between tn and tn+l are used to find flux functions in the producers,
while the dimensional splitting method only defines saturations and concentrations at dis
crete time steps. We tested another method based on numerical fiuxes into well blocks
weighted with flux functions at the discrete time levels without success. A potential solu
tion could be to include grid refinement around the producers, as indicated by Bratvedt et
al. [l] for the commercial FRONTSIM simulator.

Oil production and water material balance for both types of grids are compared in
Figure 8 for CFL = 2. Observe that the oil production is somewhat larger for the diagonal
grid. A more detailed analysis shows that about 3/4 of the grid sensitivity is due to the
material balance errors, the rest is due to the difference in oil remaining in the reservoir.
The material balance error is negligible before water breakthrough (which occurs after
about 0.55 pore volumes injected). This means that large CFL numbers may be used
before breakthrough. However, the majority of the CPU time for the current problem is
spend on the post breakthrough period.

3.4. Miscible Flooding with Adverse Mobility Ratio. Our last example is related
to injection of pure water after injection of a polymer slug. The problem is simplified by

Grid CFL Water material error Polymer material error Remaining oil
Diagonal 4.0 0.01519 0.01079 0.06449
Diagonal 2.0 0.00534 0.00280 0.06440
Diagonal 1.0 -0.00103 0.00032 0.06440
Parallel 4.0 -0.01602 -0.00510 0.06826
Parallel 2.0 -0.00540 -0.00044 0.06809
Parallel 1.0 -0.00031 0.00041 0.06809
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FIGURE 8. Oil production (left) and water material balance (right) for the di
agonal and parallel grid are plotted versus the number of pore volumes injected.
Both Solutions were calculated by a CFL number of 2.

considering injection of pure water into a reservoir that is filled initially with water with
a constant polymer concentration. The numerical difficulties created by this example are
qualitatively similar to following the injection of polymer in the previous example by pure
water.

The conservation equation of water is trivial in this case since the water saturation is
unity for all times. A displacement with an adverse mobility ratio M > 1 is considered.
The mobility ratio is dehned as the ratio between the viscosity of the displaced fluid to the
viscosity of the injected fluid. When the mobility ratio is larger than one, the displacement
is unstable and the injected water tends to “finger” through the polymer. The mobility
ratio is set to 10, the initial polymer concentration is unity, and the adsorption is neglected
in this example. The total mobility is then A(c) = 1/(1 + 9c). Note that the conservation
equation for polymer is linear for a miscible displacement processes. Front tracking has its
worst performance for linear flux functions, for which there are no self-sharpening effects
to counteract the numerical diffusion introduced by the projection operator; see [l4].

Figure 9 shows the front tracking Solutions for a diagonal and a parallel grid. In all
numerical results for the five-spot, we interpolate results from the parallel grid onto a
diagonal grid for plotting. Note that the two numerical Solutions are totally diflerent.
The concentration calculated by the parallel grid shows an unstable finger of pure water
from the injector towards the producer. The solution on the diagonal grid contains fingers
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TABLE 2. The discrete L 1 norms between the numerical Solutions on a diagonal
and parallel grid after 0.4 pore volumes injected for different spatial discretizations.
All simulations used cfl = 1 and velocity update at each time step.

of water flowing towards the injectors in addition to the finger towards the producer.
The unphysical behaviour on the diagonal grid was not eliminated by using a finer grid.
Table 2 shows that the discrete L 1 difference between the numerical Solutions on a diagonal
and parallel grid after 0.4 pore volumes injected increases when the spatial discretization
parameters decrease. The increase in L 1 difference is caused by earlier breakthrough on the
parallel grid and larger unphysical hngers on the diagonal grid as the grid is refined. Also,
different discretizations of the pressure equation gave qualitatively the same displacement
mechanisms. The numerical methods for the pressure equations that have been tested
include different mobility evaluations in the Yanosik and McCracken scheme and the Shubin
and Bell [2l] scheme.

Two finite-difference methods have been applied to the same problem. Assuming a
one-dimensional numbering of the grid blocks, the discretization of the pressure equation
reads

where the transmissibilities  depend on permeability, total mobility, and the spatial
discretization parameters. For symmetric discretizations of the pressure equation, t7 - =
we have updated the hyperbolic equations by

The fractional flow of water is given by an upwind method

and a corresponding definition is used for the polymer flux.
An upwind scheme based on the standard five-point approximation of the Laplacian

was used to calculate the concentration contours in Figure 10. Note that the qualita
tive behaviour of the five-point approximations is similar to the front tracking solution.
However, the finite-difference Solutions are more smeared than the corresponding front

E±n ( n n \ n
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FIGURE 9. Concentration contours for the front tracking method after 0.4 pore
volumes injected on diagonal (left) and parallel (right) grids with Nx = Ny = 65
and CFL = 1. The velocity held was updated at each time step.

tracking solution. Also, water breakthrough on the parallel grid is earlier for the five
point finite-difference scheme than for front tracking. The difference between the times to
breakthrough is partiy due to the smaller time steps in the finite-difference scheme.

An upwind method based on the nine-point approximation of the pressure equation was
also applied to the same problem, and concentration contours for diagonal and parallel
grids are shown in Figure 11. As expected, grid orientation effects are now small compared
with the front tracking method and the hve-point finite-difference method.

The grid sensitivity of the front tracking method is due to the dimensional splitting. For
the diagonal grid, the fluid must first move in the x- or ?/-direction, i.e., in a direction
making an angle of 45 degrees with the main flow direction. This initial movement of
the injected fluid triggers unphysical hngers on the diagonal grid. Shubin and Bell [2l]
studied the effect of the numerical diffusion for finite-difference schemes applied to miscible
displacement. They concluded that numerical methods with anisotropy in the numerical
diffusion are plagued by grid sensitivity. Our results for the front tracking method based
on dimensional splitting is consistent with this observation. The numerical diffusion for
this method is introduced by the projection step after the one-dimensional Solutions, and
the diffusion is along the directions introduced by the dimensional splitting.

The FRONTSIM method by Bratvedt et al. [l] is quite similar to the front tracking method
described in Section 2 in the case of miscible displacement. FRONTSIM uses a piecewise
constant velocity field and a local grid refinement dose to the wells. Our results indicate
that this method is highly grid sensitive for adverse mobility flooding. The random choice
method developed by Sethian et al. [2o] is also likely to be sensitive to the orientation of
the grid for these displacement processes.
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FIGURE 10. Concentration contours after 0.4 pore volumes injected for the up
wind scheme based on a five-point discretization on diagonal (left) and parallel

The velocity held was updated

FIGURE 11. Concentration contours after 0.4 pore volumes injected for the up
wind scheme based on a nine-point discretization on diagonal (left) and parallel
(right) grids with Nx = Ny = 65 and cfl = 0.5. The velocity held was updated
at each time step.

(right) grids with Nx = Ny = 65 and CFL = 0.5
at each time step.
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4. CONCLUDING REMARKS

The front tracking method presented in this paper is computationally a very efficient
method to solve the polymer system, especially in one spatial dimension and for multidi
mensional examples with non-singular velocities. Numerical experiments in one dimension
show that the large initial total variation for the front tracking method, as pointed out
by Tveito and Winther [24], does not cause convergence problems for this method. The
smearing of sharp fronts by the front tracking method is signihcantly reduced compared
with standard fmite-difference schemes.

In the dimensional splitting method for multidimensional problems there are two sources
of errors - splitting errors and numerical diffusion caused by projections. At CFL mimbers
around unity, the latter is dominant. Increasing the CFL number to well above unity
reduces the diffusion but does not increase the splitting errors signihcantly. Typically, we
observed feasible CFL numbers in the range 10-20. The method is therefore very efficient
compared to fmite-difference methods. The performance is similar to the performance
observed earlier for scalar equations [l5, 14] and better than for the Euler and the shallow
water equations [6, 4].

Unfortunately, the above situation changes when sources/sinks are included in the veloc
ity held, as is the case in reservoir simulation. Numerical examples show that the method
propagates water fronts very accurately before water breakthrough for fairly large CFL
numbers. After breakthrough in a well, substantial material balance errors are introduced
if too large time steps are used, at least when measured by our current method for cal
culating production in wells. Acceptable material balance errors are obtained by using a
CFL number that is only moderately larger than unity. The CPU efficiency of the method
for reservoir simulation applications is reduced by this constraint. Another drawback of
the method is the grid sensitivity for unstable displacements. Anisotropy introduced by
the dimensional splitting may lead to unphysical hngers in miscible displacements with
unfavourable mobility ratios. Numerical experiments show that the grid sensitivity is ac
centuated as the grid is rehned.
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