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ON A FREE BOUNDARY PROBLEM FOR A STRONGLY DEGENERATE

QUASILINEAR PARABOLIC EQUATION WITH AN APPLICATION TO A
MODEL OF PRESSURE FILTRATION

R. BURGERA -‘, H. FRID b , AND K.H. KARLSEN 0

Abstract. We consider a free boundary problem of a quasilinear strongly degenerate parabolic

equation arising from a modei of pressure filtration of flocculated suspensions. We provide defi

nitions of generalized Solutions of the free boundary problem in the framework of L 2 divergence
measure fields. The formulation of boundary conditions is based on a Gauss-Green theorem for

divergence-measure fields on bounded domains with Lipschitz deformable boundaries and avoids
referring to traces of the solution. This allows to consider generalized Solutions from a larger
dass than BV. Thus it is not necessary to derive the usual uniform estimates on spatial and
time derivatives of the Solutions of the corresponding regularized problem requires in the BV

approach. We first prove existence and uniqueness of the solution of the regularized parabolic
free boundary problem and then apply the vanishing viscosity method to prove existence of a
generalized solution to the degenerate free boundary problem.

1. INTRODUCTION

Conventional analyses of initial-boundary value problems of strongly degenerate parabolic equa
tions, which includes first-order conservation laws, are usually based on the concept of generalized
Solutions in BV{QT), where Qr := x [O,T], fl CR is the computational domain (for simplicity,
assumed to be cylindrical here) [2, 4, 5, 25, 26]. To prove that a generalized solution u of a con
servation law or of a strongly degenerate parabolic equation belongs to BV{Qt), it is necessary
to derive estimates on \\dx u£ \\ L i(QT ) and \\dt u£ \\ L i { QT ) which are uniform with respect to the reg
ularization parameter e, where u£ denotes the smooth solution of the corresponding regularized
initial-boundary value problem. These estimates (and a uniform L°° bound on u£ ) imply that
the family {u£ } £> o is compact in L l {Qt ), be. there exists a sequence e= £n with en -> 0 for
n—> oo such that {u£n } converges in L l {Qt) to a limit u € L°°{Qt) H BV{Qt)- It is usually
straightforward to verify that this limit is indeed a generalized solution.

The importance of the choice of the space BV (Qt ) Hes in the existence of traces of the limit
function u with respect to the lateral boundaries of Qt- This well-known property of BV functions
is stated e.g. in [ll, Sect. 5.32, Th. I]. As has become apparent in [4], traces are needed in the
proof of uniqueness of generalized Solutions.

For several reasons, the BV approach unfortunately imposes some severe limitations to the anal
ysis of initial-boundary value problems of hyperbolic and strongly degenerate parabolic equations.
The most obvious one is the apparent difficulty to actually derive the required uniform estimates
on Hsxu£ ij L i(gT ) and \\dtu£ \\ L i(QT ). This worked out e.g. for the spatially one-dimensional prob
lems analyzed in [4]. However, for only marginally more involved equations (but still in one space
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dimension), and in particular for different boundary conditions it seems no longer possible to
derive a uniform estimate on \\dtu£ \\ L i(QT ). An example of such an initial-boundary problem is
given in [24]. When passing to several space dimensions, i.e. to equations of the type

together with initial and boundary conditions and where the function A{u) is nonnegative, in
creasing and Lipschitz continuous, it seems virtually impossible to derive the required uniform
estimates, where the estimate on the spatial derivative has of course to be replaced by a uniform
estimate on

In the cases where only a uniform estimate on n°t on me derivative)
is feasible, one can utilize Kruzkov’s “interpolation lemma” [l4, Lemma 5] in order to conclude
that the sequence u£ converges to a limit function u belonging to the wider dass BVi A /2 {Qt) 3
BV{Qt)- This means that there exists a constant K such that

Jj |u(x + Ax,f) - u{x,t)\dxdt K\Ax\, JJ |u(x,f + At) - u(x,t)\dxdt K\At\ 1/2 .

Note that the B\\ y i/2 estimates on {u£ } are entirely sufficient to apply KolmogorofPs compactness
criterion in order to show existence of a limit function. The problem is with boundary conditions
and uniqueness, since it is not ensured that a function u G BVi^/2 {Qt) possesses traces at the
boundaries of Qt, such that boundary conditions need to be defined in a fashion that avoids these
traces; however, it is then not obvious how to prove uniqueness.

Another general limitation of the BV approach has become apparent in [4], and is due to the
restriction that the initial datum u 0 of that paper belongs to the dass

where A'£ {u) = a£ {u ) and a£ is an appropriately regularized, positive diffusion coefficient. The
condition uq G B is required to ensure that l|s*ue (-,f)||£,i(n) or remain uniformly
bounded. For a given, in general discontinuous function no membership in B is difficult to verify
due to the discontinuity of the diffusion coefficient o(u), so B denotes a possibly very narrow dass.

The mentioned difficulties associated with the BV approach make it desirable to consider
generalized Solutions from a wider dass. This wider dass is associated here with the notion of
divergence-measure fields, which is a dass of vector fields that was first considered by Anzellotti
[l]. This paper is based on the recent formulafion by Chen and Frid [9].

The main idea is to replace the requirement n G L°°{Q) fl BV{Q), where we consider Q C RN
and which cam be expressed as

IHIbv(Q) < o°, ||«||bv(Q) = sup{^ uV -tpdx :<p G [Ci{Q)) N , ||^||l~ (q) l|,

by the requirement that a vector field F G //(Q, associated with the sought solution u
satisfies

|divF|(Q) < 00, |divF((Q) := • Vcpdx :ip G Cq(Q;M), |M|I« (Q) < l|-
We define the dass of Lp divergence-measure vector fields over Q by

We see that if F G VMP {Q), then divF is a Radon measure over Q. If we assume that the
components of F are Lipschitz continuous functions of n, as in the application to conservation
laws (see below), then it becomes clear that u G L°°{Q) fl BV{Q) implies F G VM°°{Q).

Properties of divergence-measure fields for the case p = oo are derived by Chen and Frid in [9].
Most important, it is possible to prove a generalized Gauss-Green formula for divergence-measure
fields in bounded domains using the concept of domains with deformable Lipschitz boundaries,
which allows the definition of traces. For the case of scalar conservation laws, the importance of di
vergence-measure fields accrues from the fact that any convex entropy pair actually forms an L°° di
vergence-measure field over Q C M.N if we consider a bounded spatial domain fl C . Utilizing

dtu + Vx -f(u) = AA{u), (x,t)€Qr:=nx[o> r], nC Mn (1)

B:=|u G BV(Q) : u{x) GUOVx G TVn(dx A£ (u)) <M0 uniformly in ej,

VM”(Q) = {F £ L”(Q;K"): |divF|(Q) < 00}
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the Gauss-Green formula, Chen and Frid [9] provide an appropriate formulation for L°° (not BV)
Solutions of conservation laws with boundary conditions. They are able to derive a formulation
of an entropy boundary condition which was proposed previously by Otto [l7, 19, 20, 21] by
advancing the concept of entropy boundary fluxes.

Most properties of Lp , p= oo divergence-measure (div-meas) fields derived in [9] also hold for
1 p < 00, as is detailed in [lo]. The case p=2is of particular interest for the analysis of
degenerate parabolic equations, since in view of standard a priori estimates, it is possible to show
that the appropriately defined entropy pair of a strongly degenerate parabolic equation is an L 2
divergence measure field over QT C x [O,T]. (More general domains can be considered, but
we may limit here the discussion to cylindrical dornains.) This was first exploited in a recent paper
by Mascia, Forretta and Terracina [lB], who proved existence and uniqueness of L°° Solutions to
nonhomogeneous Dirichlet initial-boundary value problems of Equation (1), which in particular
includes entropy boundary conditions.

In [6] entropy boundary conditions for strongly parabolic equations in the context of an ap
plication to to sedimentation with compression are derived. However, the definition of traces of
the solution with respect to the lateral boundary of the computational domain is only possible if
the diffusion coefficient <i(vl) is, for example, Lipschitz continuous. This assumption does not hold
for the cases we are interested in here. Moreover, although Dirichlet boundary conditions in the
context of solid-liquid separation models lead to mathematically well-posed initial-boundary value
problems, their physical significance is questionable due to violation of a conservation principle.
Rather, kinematic ‘flux-type’ or ‘walk boundary conditions (such as that of Problem B of [4])
should be employed. In fact, it turned out that these boundary conditions are satisfied in an a.e.
pointwise sense on the lateral boundaries of QT , that is in a much stronger sense than are entropy
boundary conditions, although they also involve the concept of traces.

The above discussion motivates our interest in applying the recently developed div-meas theory
to initial-boundary value problems of strongly degenerate parabolic equations. We could now
treat again the initial-boundary value problems studied e.g. in [4] in an appropriate div-meas
framework, and obtain an existence and uniqueness result. However, since the BV calculus is
indeed applicable to those problems, the chief gain in using the more general div-meas concept
would merely consist in the relaxation of the condition u 0 €B. Instead, the theory of L 2 div-meas
fields is applied here to a free boundary problem which is a slight modification of a model of pressure
filtration presented in [3]. The problem is still one-dimensional, and its boundary conditions are
of ‘flux-type’ similar to those of [4]. However, there is reason to believe that the mentioned BV
estimate on dtuE can not be derived. This conjecture is based on the observation that in many
other analyses it was necessary to differentiate the corresponding regularized viscous equation with
respect to t, to multiply it with a suitable sign-type function, and to use integration by parts. The
problem with the filtration problem is the occurrence of the derivative (with respect to t) of the
free boundary as a coefficient in the equation, such that differentiating the entire equation with
respect to t would entail the necessity to estimate h"{t). Due to the coupling condition with the
solution evaluated at one of the boundaries, we have, however, no control over this quantity. This
seems to preclude the necessary uniform estimate on dtu.

The remainder of this chapter is organized as follows. In Section 2 we briefly recall the mathe
matical model of pressure filtration, State the free boundary problem, and provide a brief definition
of L 2 div-meas fields together with the properties relevant for the subsequent analysis. In Section 3
generalized Solutions of the free boundary problem are defined, where an equivalent problem trans
formed to fixed boundaries is also considered. In Section 4 we State the corresponding regularized
viscous free boundary problems and show that they have a unique solution for fixed values of the
regularization parameter. Finally we conclude in Section 5 by the viscosity method that there
exists a generalized solution to the free boundary problem in the sense of Section 3.

The analysis of the free boundary problem has not yet been completed, since a uniqueness
proof is still lacking. It is however not obvious, for instance, how the uniqueness proof of for a
comparable free boundary problem by Zhao and Li [27], which is based on establishing a fixed
boundary initial-boundary value problem for a suitably complemented generalized solution of the
free boundary problem, can be extended to the free boundary problem studied in this chapter.
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2. STATEMENT OF THE PROBLEM AND PRELIMINARIES

2.1. Pressure filtration of flocculated suspensions. To motivate the free boundary problem
studied in this paper, we briefly recall the one-dimensional mathematical model of pressure fil
tration formulated in [3]. We consider a filter column closed at height 2 = 0 by a filter medium,
which lets only the liquid pass, and at a variable height 2 = h{t) by a piston which moves down
wards due to an applied pressure &{t). The material behaviour of the suspension is described
by two model functions, the fiux density function or hindered settling factor / and the effective
solid stress function cre , both functions only of the local solids concentration u. Here /is a non
positive Lipschitz continuous function with compact support in [o,umax], where u max lis the
maximum concentration, and the function ae satisfies ae = 0 for u uc , where 0 uc umax
is a critical concentration value, and cre'(u) > 0 for u > uc . According to the phenomenological
sedimentation-consolidation theory [3, 7, B], the evolution of the concentration distribution is given
by the equation

where the parameter C < 0 expresses the solid-fiuid density difference. Observe that Eq. (2)
is hyperbolic for u uc and u Umax and parabolic for uc <u < Umax and thus of strongly
degenerate parabolic type since the degeneration to hyperbolic type takes place on an interval of
solution values of positive length.

Specifically for the filtration problem, we assume that the solids flux through the moving piston
and through the filter medium is zero. Since (2) is derived from the solids continuity equation,
this implies the kinematic boundary conditions

(f{u)-dz A{u)){h(t),t) =O, [h'{t)u + f{u)~dz A{u)){o,t)=o, t> 0. (4)

At time t = 0, the column is filled with a suspension of the local initial volumetric concentration
u(z, 0) = u0 (z) for 0 z h{o) := 1.

The salient mathematical difficulty of the pressure filtration model arises from the couphng
between the applied pressure a = a(t) and the trajectory of the piston expressed by the function
h(t). Resistance to the movement of the piston, i.e. to the flow rate of filtrate leaving tne filter,
is exerted by the filter medium and by the so-called filter cake forming above the medium. While
the resistance of the filter medium is constant, that of the filter cake depends on its thickness and
composition, that is, on the solution u. The growth of the filter cake during the initial stages of
the filtration process therefore slows down the downward movement of the piston if the applied
pressure is kept constant. Specifically, a vertical stress balance and an application of Darcy’s law
yield the following coupling equation between a(t) and h(t) [3, 16], which is written here as an
ordinary differential equation for h:

Here gis the acceleration of gravity, g{ the density of the fluid, its viscosity, the resistance of
the filter medium, and ttiq the initial suspension mass divided by the cross-sectional area of the
filter column.

The observation that 7 depends on ae (u{o,t)) and not on some arbitrary function of u(o,t) is
essential to make the problem amenable to mathematical analysis. In fact, both functions <re and
the integrated diffusion coefficient A vanish for u uc , strictly increase for uc <u <C urnax > and
are constant for u umax . Thus we can express ae (u) as a function of A{u), and the function 7
takes the form

7 {t, u(0, t)) = 7(t) + a(A(u(0, f))), (7)

where o. is a monotonous function on [uc,Umax] håving an inverse cx

dtu + dAh'(t)u + f(u))=d2z A{u), o<t $ T; (2)

A{u) := [ a{s) ds, a{u) := Cu 1 (3)Jo

h'{t) + =o,o <t<:T; (5)

o{t) := —, :=—[g(mo -g{)+a{t)-ae (u(o,t))]. (6)
/ifit
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For numerical examples of the pressure filtration model and applications to experimental data
we refer to [3, 12].

2.2. Statement of the free boundary problem. A natural property of any solution u of the
free boundary problem in the context of the pressure filtration model should be 0 u 1,
i.e. solution values should be physically relevant as concentration values. However, due to the
presence of the linear transport term h'{t)u in combination with the kinematic boundary condition
prescribed at z = 0 we cannot exclude that boundary layers involving unphysical solution values
form. It turns out that this can be avoided if we consider that from a physical point of view,
since the motion of the piston stops immediately as soon as the filter is ‘clogged’, i.e. when the
solid particles at z = 0 form a dense packing. We consider this effect by replacing the coupling
condition (5) by the condition

Finally, it is convenient to introduce a new space coordinate x = h{t) —z. Then x = 0
corresponds to the piston and x = h{t ) to the filter medium, which is identified with the free
boundary. Observing that dt {u{x,t)) = dtu{z,t) + h'{t)dz u and replacing /(u) by —/(u), we get
the following free boundary value problem:

H0) -1, (9f)

where Q(h,T) := {(æ, t) G (0,1) x (0, T] :0< x < h{t)}. Also, after the change of variables above,
the relation (7) becomes

Since we are interested here exclusively in Solutions that take values in the interval [o,l] of
admissible concentrations, we may assume that a{u) 0 for u uc and u Umax, such that
A{u) = A(umax) for u umax and A{u) = 0 for u Uc . In particular, we have 0 - a(0)
a{A{u{o,t))) a(A(umax)) = : Ka for all times. Since moreover, 7is a control function given a
priori, we may assume that there exist positive constants and Ky with fcy 7 (t) Ky for all
t € [O ,T] and thus that there exist fc7 ,AT7 > 0 with /c7 7 AT7 for all t 6 [O,T]. Similarly,
we may assume that there exist kp,Kp > 0 with k@ (3{t) Kp for all t G [O,T]. Finally, to
estabiish well-posedness of the free boundary problem, we assume that T < 1 /Kl .

2.3. Divergence-measure fields. Here we briefly recall the basic facts of the theory of divergence
measure fields as developed in [9, 10]. Since we will be only interested in the L 2 divergence-measure
fields, we will focus our discussion on that case.

Let Q C M.N be an open bounded subset. We denote by VM 2 {£l) the space of all L2 ( CI) vector
fields whose divergence is a bounded Radon rneasure on fh

-.= jf 6 (i2 (fi)) N :3C>O:VV € Co°°(n), Vtpdx C|Mloo|, (11)

where, as usual, Co°(n) denotes the space of the infinitely differentiable functions with compact
support contained in Cl. Analogously, one may define VMp {Cl), 1 < p < 00, replacing L 2 by Lp ,
and VMext {Cl) replacing L2 {Cl) N by A4(f2) N , the space of vector-valued Radon measures over Ct
with N components.

Definition 1. We say that dCI is a deformable Lipschitz boundary provided that:

h'{t) + c{A{u{o,t)))[p{t)h[t) -0,0 <t<:T, (8)

where c(p) = 1 for p € (0, A(umax )) and c{p) = 0 otherwise.

dt u + dx f{u) = d2x A{u), (x,t) e Q{h,T), (9a)
u{x,o) = uq(x), 0 x 1, (9b)

(f(u)-dx A(u))(o,t) = 0, (9c)
{/(u) dx A{u)) t) = h'{t)u(h{t), t), o<t^.T) (9d)

h'{t) + fs{t)h{t) + =O, 0< t T, (9e)

7 (t,u{h{t),t)) = j{t) + a(A{u{h{t),t))), (10)
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(a) For all x G dCI there exists a number r> 0 and a Lipschitz map h: RN 1 E such that,
after rotating and relaheling coordinates if necessary,

(b) There exists a mapping ty : dCI x [o,l] -> fl such that sis a homeomorphism bi-Lipschitz
over its image and 4/(o;,0) = ui for all uj G dCI. The map ty is called a Lipschitz defor
mation of the boundary dCI. We denote ty a (co) = and dCl s = 4/ s (<9r2). We also
denote by Cl s the bounded open set whose boundary is dCl s  

The following theorem is a particular case of a general result proved in [lo], following the guide
lines in [9]; we refer to [lo] for the proof. If C is a closed set, we denote Lip(C) the space of
Lipschitz functions defined on C, equipped with the norm [|/||Lip = 11/1100 + Lip(/).

Theorem 1. Let F G VM 2 (Cl), Cl a bounded open set with Lipschitz deformable boundary. Then
there exists a continuous linear functional F  u\qq over Lip(ch7), such that, for any (p € Lip(RAr ),

Moreover, let v : ty(dCl x [o,l]) -> be so that v(x) is the outer unit normal to dCl s at x £ dCls ,
defined for a.e. x € x [o,l]). Then, for any ip G Lip(<9S7),

(13)

where S(ip) denotes any Lipschitz extension of xp to all RN and Fi N lis the (N 1 )-dimensional
Hausdorff measure.

As an example, below we will consider a domain Cl of the form

where h is a nonincreasing Lipschitz function satisfying h(t) > ho > 0, for some positive con
stant ho. Clearly, in this case Cl satisfies (a) of Definition 1. We may also easily define a Lipschitz
deformation for dCI. Indeed, since f 2 is convex, given any point (x,, f*) in its interior, we may define
the map t), s) =(x + ss(x, x), t + sS(tm t)), from dCI x [o,l] to Cl, which, for 5> 0 suffi
ciently small, certainly gives a Lipschitz deformation. But we will prefer to use deformations which,
given 6 > 0 sufficiently small, on {(x, t) : x = 0, 6 <t <T —6} are given by t), s) = (ås,t),
and on {(x,£) : x = h(t), S < t < T 6} are given by tys((h(t),t), s) = (h(t) ås,t). Clearly,

may be extended to all dCI x [o,l] in order to provide Lipschitz deformations for dCI. By the
above theorem, if F G VM 2 (Cl) and (p G Lip(E2 ) is such that suppø H dCI C{x = o}, then, for
5 > 0 sufficiently small,

(14)

On the other hand, if (p G Lip(E2 ) is such that supp <p fl dCI C {(h(£),£),o <t < T}, then, for
6 > 0 sufficiently small,

In the sequel let if be a sufficiently large constant, e.g. K = 2umax . As above, for fields
F(x, t) = (Fi (x, t), F2 (x, t)) defined over domains of E 2, which are distributions on these domains,
the operator div is defined as div F = dx F\ + dtF2, in the sense of distributions.

Definition 2. A pair of functions (u,h) with h G C[o,T] and u G L°°(Q(h,T)) is called a
generalized solution of the free boundary problem (9) if the following conditions are satisfied:

ftnQ(x,r) ={ye Rn : h{y1} ..., yN-i) <yN } nQ(i,r),

where Q{x,r) ={ye Rn : \xi yi\ <r, ij= 1,..., N}.

{F-Han.W-Idn)) = [ ØdivF+ [VØ-F. (12)JnJn

{F  v\an,il>) = esslim - [ ( [ £{xp)F  udHN ds,
s-f0 sJo \JdQ. J

n = 6E2 : 0< x < h{t), o<t < T }

{F • v\dn,4>) ess lun J (j>{Ss,t)Fi{6s,t) ds

{F  v\dn, <f>) = ess lim -J j (f>{h{t) Ss,t){Fi h! (£)F2 )(/i(£) Ss,t) dtj ds. (15)

3. DEFINITION OF GENERALIZED SOLUTIONS
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(a) The function h{-) is nonincreasing and Lipschitz continuous on (O,T) with h{o) =l, and
there exists a positive constant ho such that h{t) > ho-

(b) The following regularity properties hold:

A{u)eL2 {o,T-,HI {o,h{-))), ( 16 )

(c) The boundary conditions are satisfied in the following sense: For (Fi,F2 ) = {f{u) -
dx A{u),u), 6 > 0 sufficiently small, and every test function p e Co (Ut), with UT =
E x (0, T), we have

(18)

(19)

(d) Let 7x ->h(t)A{u) denote the trace (in the sense of traces in L2 (O, T; H h{-))) of A{u)
for x —y h{t). Then Eq. (9e) is satisfied a.e. in (O ,T), where in c{A{u{h{t),t))) and in
 y{t,u{h{t),t)), given by (10), we must replace A{u{h{t),t)) by 7x->h{t)A{u) .

(e) The initial condition is valid in the sense that

(20)

(f) The following entropy inequality is satisfied for all nonnegative test functions
p € Co°{Q{h,T)) and all k G E;

ff l\u - k\dt p 4- sgn(u - k)[f{u) - f{k) - dx A{u)\dx p\dtdx (p 0. (21)
JjQ{h,T) 1 J

It is convenient to transform the free boundary value problem (9) to an equivalent initial
boundary value problem with fixed boundaries by introducing a new space coordinate £ x/h{t).
Wherever notationally convenient, the argument t in h{t) is omitted, and we denote by h~ l the
function 1 fh{t) etc. Then we can rewrite (9) as the following initial-boundary value problem with
fixed boundaries for u(£,£) := u{h{t)£,t), where Qt ' = (0,1) x (0,T):

while the relation (10) becomes

(23)

In the sequel we use h' := h’{t), h~ l := 1 /h{t), h~2 := l/{h{t)) 2 and similar notations for the
function he (t) to be defined below. Moreover, we set g{v,£,t) := -h~ 1 + h l f{v).

The appropriate definition of entropy solution in terms of v reads:

Definition 3. A pair of functions {v,h) with h G and v G L°°{Qt ) 15 called a generalized
solution of the transformed free boundary problem (22) if the following conditions are satisfied:

(a) The function h(-) is nonincreasing and Lipschitz continuous on (O,T) with h{ o) - 1, and
there exists a positive constant ho such that h{t) > hO .

V/c €I : (sgn(w - k)[f{u) - f{k)) - dx \A{u) A{k) j, |u € VM2 [Q{h,T)). (17)

ess lim - [ ( [ ip{Ss,t)Fi{Ss,t) dt\ ds —O,
s->o sJO yj o J

ess lim - f ( f Ss,t){F\ h'{t)F2){h{t) Ss,t) cføj ds = 0
s-+o sJo yjo /

fh{t\ 1
lim / u(x, t) uq{x)\dx =O.
t~>° Jo

+ h- l h'(-dtitv) +v)+ = h-2 d%A{v), (£,*) € Qt, (22a)

7 (t,v{l,t)) = 7(t) +a(A(v(l,t))).

t>(£,0) = u0 (O, (22b)

(/(v) - /»“ x a€ A(v)) (o, t) = o, t e (o,r], (22c)

(/(v) - /i- 1 a€ A(v))(i,t) = t e (0, T], (22d)

h'(t) + c(A{v{l,t)))[ø(t)h(t) + -y(t, «(1,t))] =0. o < i < r,
(22e)

0) = 1, (22f)
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(b) The following regularity properties hold:

. h~ 2A{v)EL2 {f),T-,H\<d,l)), (24)

VfceE: (sgn {v - k){g{v,£,t) - g{k,£,t))
N (25)

- h 2 - A(A:)|, (v - k\j E VM 2 {Qt)-

(c) The boundary conditions are satisfied in the following sense: For {F\ , F2) = {g{v,£,t)
h~ 2 6> 0 sufficiently small, and every test function ip E Cq(Ut), with nT =
E x (0, T), we have

(26)

(27)

(d) denote the trace of A{v) for £ -> 1 in the sense of traces in L2 (O,T; H 1 (0,1)).
Then Eq. (22e) is satisfied a.e. in (O,T), where in c{A{v(l, t))) and in -y{t,v{l,t)), given
by (23), we must replace A{v{l,t)) by 7l_+ i A{v).

(e) The initial condition is valid in the sense that

lim [ |v(£,t) - u0 (0| = 0 (28)

(f) The following inequality holds for all nonnegative test functions p E and all
k E R:

4. Regularized free boundary problem

As in [4] we prove existence of entropy Solutions by the vanishing viscosity method. To this

end, we consider the regularized strictly parabolic free boundary problem

The regularized functions and initial and boundary data are assumed to satisfy first order com
patibility conditions. Problem (30) is equivalent to the following initial-boundary value problem
with fixed boundaries for v£ (£,t) := u£ (he (t)£,t) with (£,t) EQt  = (0,1) x (0,T):

ess lim - f ( f <fi{Ss,t)Fi{Ss,t) dt\ ds —O,
s-t-o sJo yjo J

ess lim - [ (f ds 0
s->-o sJo yjo j

jf ||t) - k\dt f>+ [sgn(u - k)[g{v,£,t)-g(k,£,t)) - - A(fc) []Ss <^j- 1 JO.
QT (29)

dt u£ + dxf£ {u£ ) = dlA£ {u£ ), {x,t) e Q{h£ ,T), (30a)

ue (rc,o) = Uq{x), 0 x 1, (30b)

(/e (ue ) - dx Ae (ue ))(0,t) =O, 0< t T, (30c)

[f£ {u£ ) - dx A£ (u£ ))(he (t),t) = h'£ (t)ue (h£ (t),t), 0< t T, (30d)

h'£ {t) + ce (^As {u£ {h£ /3£ {t)hE {t) + 7£ (t,ue (h£ =O, o<t T, (30e)
M0) = 1. (30f)

dt v£ +h£ I h ,e (t)[-d^ve ) + v£ ] +h£ l di }£ {v£ ) =h£ 2 d%A£ {v£ ), {£,t) 6 QT , (31a)

Ue(vt)-h- I9= 0, (3lc)

(SÅvl)-h-'atAc (vc ))(^ t) = o<t<T, (31d)

hi(o+e*(X(t..(M)))[&Mo + 7.(‘.».(1.*))] =O, 0 <isrT, (Sle)
MO) = 1. (31f)
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We choose the regularization c£ such that c£ is smooth, nonnegative, ce {p) = 1 for £ p
-e, and ce {p) =O, for p £ (0, A{umax )). We assume that the regularization f£ ois

also compactly supported, that ae {u) >£, and that a£ {u) is also compactly supported. We
assume supp/£ U suppc£ CU [o,iimax] and supp(a£ —e)C U. Moreover, we define g£ {u,£,t)
-h~ l h'e £u + h- 1 f£ {u) and assume that there exist constants u£ , L£ and L such that

Lemma 1. Any solution u£ of the regularized free houndary problem (30) satisfies ue {x,t) G U
for all (x,t) G Q{he ,T). Equivalently, any solution v£ of (31) satisfies

In particular, there exists a constant Mo independent of £ such that for all sufficiently small £ > 0,

Proof. Consider the regularized problem (30), perturbed by adding to the right-hand member the
term AN{ue ), where A > 0 and N{u) = um&x /2 -u. We may assume he to be a given smooth
function, so the problem is in fact given by the first four equations of (30), with the first one
perturbed. If we prove the result for the perturbed problem, then by the well known stabihty
for quasilinear strictly parabolic scalar equations, with respect to coefficients, the desired result
will follow sending A —y 0. Now, if the result is not true for the perturbed problem, there is
a time to at which the solution v£ leaves U for the first time, that is, to inf{t : v£ {x,t)
Z7for some x G [O,/i(£)]}. In this case, there exists x 0 G [O,/i(to)] such that u£ {xo,to) € {o,umax},
say, u£ {x0 ,to) = «max- If x 0 G (0, h{to)), as usual, we get a contradiction using that dx u£ =O,
dt u£ 0, d2x u£ <: 0, a£ {u) >O, and iV(umax ) <O. On the other hand, if x 0 G {o ,h{to )}, usmg
(30c)-(30e), we again conclude that dx u£ =O. Hence, we must have again dtu£ PO, dfu£ -f 0 and
so we get a contradiction in the same way.

Lemma 2. Suppose that T < and that the coefficients of the regularized problem (30)
satisfy compatibility conditions. Then this problem has a unique solution ( u £ ,h£ ) such that u£ G
C2+a^+a/ 2 (^{hE ,T)) and e Cl+a/2 [O, T]. Precisely, the function h£ satisfies the following
estimates uniformly in £:

Proof of Lemma 2. Suppose that {u£ ,h£ ) with u£ G C2,l {Q\h£ ,T)) and he G C*(O,T) is a solution
of problem (30), or equivalently that v£ satisfies the initial-boundary value problem with fixed
boundaries (31). In addition, consider for a fixed function h£ G Cl [o,T] the initial-boundary value
problem (31') consisting of equation (Sla) and the initial and boundary conditions (31b)-(31d).

The proof of the following lemma is standard and can be found e.g. in [l5, Ch. V]:
Lemma 3. Under the assumptions of Lemma 2, the solution w£ of the IBVP (31') satisfies the
following estimates, where the constant K\ is independent of £:

To prove the existence of a solution of problem (31), we follow Zhao and Li [27] and use the
Schauder fixed point theorem. To this end, define the set

where the constant Mh is defined in (35). Note that H is a compact convex set in the Banach
space C°[o,T]. Moreover, let fi£ {t,u) := c£ {A£ {u))fiE [t) and "y£ {t,u) := c£ {u)j£ {t,u).

\ge {u,t,t)-g£ {v,t,t)\^Le \u-v\ fovu,veK (32)u V

ve {x,t) e U for all {x,t) € Qt- (33)

\\ uA\L°°{Q{he ,T)) MO . (34)

0< ho he {t) 1, . \\K\\l~{o,t) Mh  = Kp + Ki- ( 35 )

0 W£ Kl, llu>ellc/»(QT ) K2, ||^«;ell c i.i/a(Q T ) K 2, 1WI W^(QT ) K<l '

H = {he C\o,r) : 11/i'Hoo Mh, h{o) =l,h is nonincreasing},

Lemma 4. Let the operator T : H -> C°[o,T] be defined by

(T7i)(t) := exp^§e (t; we (l, •))) 1~ j exp(-5ff (r;u;e (l,-)))7e(^^e( 1 » r)) dr »

Be {t;w) := - f P£ (t,w{t)) dr,Jo
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where we is the solution of the IBVP (31') corresponding to h. Then Th 6H, i.e. the operator T
maps H into itself.

Proof of Lemma f. In order to make the main ideas of the proof apparent, and since the statement
of Lemma 4 refers to a fixed valne of the regularization parameter £, we simplify notation in this
proof by omitting e wherever possible.

Obviously, we have {Th){o) =l. Since the functions ) and 7(-, u>(l, •)) are smooth, as
stated in Lemma 3, we see that Th € Furthermore we have

('Th)'{t) = - p(t,w{l,t)) exp(B(t,w{l,t))]x

r r 1 , ~ \ i (36)

x 1-J exp[-B[T;w{l,-))p[T,w{l,T)) dr -j(t,w{l,t)).

Since y(f, ic(l, f)) K-y for £> 0 sufficiently small, the expression in the square brackets in (36)
is nonnegative, and thus Th is nonincreasing, if the condition T < 1 fKI is satisfied. Moreover,
this assumption implies that \{Th)'{t)\ Kg + K-y. We conclude that indeed Th €H.  

To apply the Schauder fixed point theorem, and thus to show existence of the solution, we have
to prove the following lemma:

Lemma 5. Suppose that {fin }n€n C H and ||/im hn \\co[o,T] oas m,n —y 00. Then || Thm
T/i„Hc-o[o,t] 0 asm,n-> 00.

Proof of Lemma 5. Assume that hn -> h uniformly in [O,T]. Since M/i, we can conclude
that h' € L°°[o, T] and h'n h' weakly in L 1 [O, T]. Let wn and w denote the Solutions of the IBVP
(31') associated with the functions hn and fi, respectively. From Lemma 3it follows that there
exist subsequences and {dx wnj }j € N of {icn }„eN and respectively, converging
uniformly on Qt- Let w and w x denote the limit functions. Multiplying equation (Sla), with v
replaced by wnj , by a test function ip € Cq{Qt), integrating over Qt, and using integration by
paxts, we obtain

jjr [wnydtif + hnjh'n .wnj {<p + &&) + {hnff{wnj ) - hnfd^A{wnj =O.

Letting j —y 00, we get

Since Solutions of the IBVP (31') are unique, we obtain w w, hence the sequences {wn} nen and
{sx icn } n€ N converge uniformly on Qt- Lemma 5 is then an immediate consequence of

We continue with the proof of Lemma 2. By Lemma 5, T is a continuous operator on H. We
are now in a position to conclude from the Schauder fixed point theorem that T has a fixed point
h G H\ in particular h € Cl+a/2 [o,T]. This also proves the estimates (35).

Substituting the fixed point h into the IBVP (31') produces a solution w € C2+a,l+a^2 {QT)
with the property that the pair (w, h) also satisfies the fixed point equation Th = h, which is
equivalent to equation (9f). Consequently, (v = w,h) is a solution of the IBVP (31), and setting
it(x, t) = v{x/h{t),t) produces a solution (u, h) of the regularized free boundary problem (30) with
u € C2+a,l+a/2 {Q{h, T)). Thus the existence part of Lemma 2 is proved.

We now turn to the uniqueness part. From boundary condition (30d) we get

JJ |iudt<f + h I h'w{ip + £d((p) -f (h I f{w)—h 2 =O.

{Thn Thm){t) =exp(i?(t,w(l, -)))x

x J exp(-Js(r,w(l,-))) [7(r,tym(l,r)) - 7(r, «;„(!, r)) dr.  

2 {t) = j h{s)h'{s) ds +- = J iu) - dx A{u)){h{s),s)ds + 1-.
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We now choose a test function u € C2 (E) satisfying u{x) = 0 for x hO /2 and u{x) - 1 for
x 3ho/4. We then get

Defining

Using integration by parts and the boundary condition, we get

+ I Å(u(h[s),s))ds- ff {(U + W)(/IW-/2 M)+(2"'+ IW
' 7o •/•/Q(fc.t) 1

Now let (u 1 , h 1) and (u2 ,h2 ) be two Solutions of the regularized free boundary problem (30). Let

We now show that h = T. To this end, we first suppose that t\ < T. Without loss of generahty,
we suppose that t\ =O. Moreover, define h (f) := min{h (t),h (t)}, h (*) max { ()> ( )/’

r Mfl (/(u) _ A(w)) (h{s), s) ds= jf dx ( X - dx A{u)) ] dxds
Jo u JjQ{h,t) \ U J

=// { M») + iu'(i)) /(u) (-/(u) ~ }

= ff +
JJQ(h,t) U

+ff xu{x)(f{u)-d*A{u))dJ-)dxds +ff
JJQ{h,t) U JJQ{h,t)

=: I\ + I 2 + I 3 •

Å(u):= r°Mdr< fHu) , = rmdr, f {u):= fMdr,Jo r Jo r Juo '

with u 0 > 0, we see that

I2 = ff xu>(x)dj— dxds-[f
JjQ{h,t) V U / JjQ{h,t)

f frfg) f IM— ds -[[ (w(x) + xu\x)) (—fe{u) + f2 {u) - dx Ae {u)) dxds
Jo V u ) JJQ{h,t)

+ [f dB udxds.
JjQ{h,t) u

/2 = /"*/»(«){-/'{«(/>(«),»)) + f[u{h(s),s))-a.lfuW»). »))}<*»

-[[ [{2u‘(x) + xu"{x))Å(u) + (u(x) + xu'(x))(f 1 (^)-f(u))} dxds

JJ Q{h,t) 1

+ [f B udxds+ [ Åe(u{h{s),s))ds.

JjQ{h,t) U Jo

Consequently,

-h2 (*)=- +[f (o; + xuj') J- U ' ~ ®2 2 J J Q{h,t) u

+ j h{s)^-f I [u{h{s),s))+f2 {u{h{s),s))-dx Å[u{h{s),s))^ds

t\ = max{i € [O ,T] : /i 1 (r) h2 {r) for r € [O, t]}.
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j{t) := lif hl {t) > h2 {t), j{t) := 2if h}{t) h2 {t ) and i(t) := 3 Then we obtain

i( (.Yw - t) <-+-) _ /^A^jdids

Kh 1 ) - (h2 )2 {t)\ = | h\t) + h2 {t)\6{t) > Mrfit), Mi := 2hmin .

We now estimate the integrals I 4 to lg. In view of

\Å(u\h~{s),s)) - Å{u2 {h 1 HaJlool^1 (/j- [s),s)-u2 {h (s),s)

it is easy to see that there exist constants C 2 and C 3 such that

f(u*’\x,s)) -9xAe (u*’\x,s))

= |/(u’W(z,s)) -}(u^(h+ {s),s))-dx A,[uM (x,s)) + 3IAe {t^,) (ft+ (s),s))| (38)

$ (11/'llool|8.«(-.s)ll=o + IKIlool|e.«(-,»)lloo + - h+ (s) |,

we obtain that there exists a constant C 3 satisfying \h\ C4<5 2 (t). Observe that

- A(u2 (h2 {s),s))

\Å(uj{a\h+ {s),s)) - A(u + \Å{uj{s\h-{s),s)) -Å{ui{B \h-{s),s))
£- I ||a|lool|9In(-, a)llootf(t) + ((M*), s)) - (h~{s), a) |.

_ r\u+x^i^i^
Jo Jh-{s) uJ (S>

+ /'{ ft 1 (s) [-/' K(ft 1 («),s)) + f2 («‘(fc1 (»), *)) - dxA{u' ( h1 (s).«))'

-h2 (s) -/ l (u2 (h2 (s),s)) + /2 (ti2 (h2 (s),s)) -aj:A(u2 (/i2 (s),s)) jds

+ J |A^ih - A{u2 {h2 (s),s))} ds

+[[ |(o; + xa; , )(-/ 1 (w1 ) + /2 (u 1 ) + / 1 (u 2 )-/2 (u2 ))

- (2cj' + xcj")(A(u1 ) - Å{u2 ))^dsdt

_ j^M {(u(x) +xu'{x))(-/‘(uiW)+ /VW )) -(2
—: Ia + • • • + lg  

We now set S{t) := | h}{t) - h2 {t) |. First note that

h=Jj {u + xu')(J^— - (s), s)) - Å(u\h (s),s))}ds

+[f (2u'+ u")(Å{ul ) - Å{u2 )) dxds

and the inequality

rt rt r h ( t )
\h\^C2 |u1 (/i“(s),s) - u2 {h~{s),s)\ds +C3 / / |ux (x, s) - u2 {x, s)| dxds. (37)Jo Jo Jo

Next, noting that in view of boundary condition (30c)
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this inequality and similar ones for the functions dx Å, f 1 and f 2 we obtain that there exist
constants C 5 and Ce such that

(39)

By similar arguments it follows that there exist constants Cy and Cg satisfying

(40)

Finally, since the integrand of lg is bounded, there exists a constant Cg such that

(41)

(42)

witth suitable new constants Ci 0 to C\ 2 . To estimate the right-hand part of (42), let z{x,s ) :=
— u 2 {x,s). This function satisfies in Q{h~,t) the linear equation

where the coefficients a to c are given by (the argument (x, s) is omitted wherever appropriate)

The function z satisfies the initial condition z{x, 0) = 0 for 0 x 1. From boundary condition
(30c) and estimate (38) we obtain

Similarly, boundary condition (30d) implies

Smce the functions dto c are bounded and since there exist constants C\3 to Cl 5 such that
\d{x, s)| Cl3 S(t), |^(S )| Ci4 S(s) and |V> 2 (s)| Cis S(s), we obtain from the maximum
principle that there exists a constant Cie independent of t with

\z{x,t)\ Cie max £(s), (44)

hence inequality (42) reduces to

(45)

Since <5(0) = 0 and 6'{s) is uniformly bounded, we can choose a time to E (O,T] such that
C4 S(t) for all t € (o,fo]- Thus

(46)

+ [ S{T)dT +C6 f \u x [h (s),s)-u2 [h (s),s)|dsJo Jo

rt rt rh (s)
|/g| Ci / 6{r)dr +Cs / / |u 1 (x, s) u 2 {x, s)| dxds.Jo Jo Jo

Ig\ 9 j 6{t) drJo

Summarizing the estimates on J 4 to /9 , we obtain

6{t) 2 (t) + Cio [ |w* (h~{s ), s) —u2 [h~ (s), s) |dsJo
rt rt rh~ (s)

+Cn / s(s)ds + Ci 2 / / |u 1 (x, s) u 2 (x, s)| dxtisjo jo jo

dt z ~ ad\z 4- bdx z +cz= 0, (43)

a = a(w 1 ), b = a'{dx u l + dx u2 ) + /'(w 1 ), c = dlu2 a' + [dx u2 ) 2 a" + dx u2 f"

where ,
r

g{x,s):= j g(Xv}{x,s) +(1 - A)u 2 (x, s))dA, g € {a', a", d2j,

((/' - dx u2 a')z - a[u I )dx z){o, s) = ip1 {s)

(/' + [3^(s,rt 1 )/i 1 (s) + 7(5,u 1 )] + d2 ph2 {s)u2

+d2 ju2 + a'{dx u ) 2 2 a{v})dx z sj (h~{s ), s ) = xp 2 {s ),

'tp2 (s) := P[s, u 1 (h (s),s)) (/i 1 (s) h2 {s))u2 [h (s),s).

S(t) C±52 it) + Cl 7 [ max 6(r)ds
Jo O^r^s

1 r 1
S(t) max S(r) +Cn / max 6(t) ds for 0 t to

2 Jq
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Consequently, there exists a constant Cig such that

(47)

This shows that S{t) =O, i.e. hx {t) = h2 {t ) =: h{t) for 0 t tO . The maximum principle then
implies ul {x, t) = u2 {x, t ) for (x, t) G Q{h, t 0), which contradicts the definition of t x . Consequently,
we obtain u 1 (x, t) = u2 (x, t) in Q{h, T). This concludes the proof of Lemma 2.  

5. EXISTENCE OF GENERALIZED SOLUTIONS

To prove the existence of a generalized solution, we have to establish uniform estimates (with
respect to the regularization parameter e) on the Solutions u£ of the regularized free boundary
problem (30). It is convenient to formulate these estimates in terms of the Solutions {v£ } £>o of
the problem (31) with fixed boundaxies.

Lemma 6. Let {v£ ,h£ ) be a solution of the regularized boundary problem (31). Then the following
uniform estimates are valid, where the constant M 2 is independent of e:

sup \\dx v£ {;t)\\LHo,D<M2 . (48)
te[o,T]

Proof. The proof closely follows that of Lemma 11 in [4]. Define approxirnations and | - of
the sign and modulus functions by

Setting y£ := dsv£ , we obtain by differentiating equation (Sla) with respect to £, multiplying it
by sgnrf{y£ ), integrating over QTo , where 0< T 0 T, and using integration by parts:

(49)

We now estimate the integrals I* to I*. Using equation (Sla), we see that

The boundary conditions (31c) and (31d) imply that

In view of Lemma 1, we see from (50) that c^ue (o, t) = 0 implies that v£ (o, t) assumes the constant
value v£min := inf U£ or v£måx := sup W. Letting £0 := {t G [O,T] : v£ {o,t) = v£min or v£ (o,t) =
Dfmax}i we see that dt v£ (o ,t) = 0 a.e. in £O . We therefore conclude that

Applying a similar argument to the boundary condition (31d), we obtain

Saks’ lemma [2, 22] we infer that 72 -*• 0 for r/ j. 0. In view of I 2 0 and

6(t) Cis f max 6{t) ds for 0 t tO
- O^r^s

sgn,M:=| Sg;M W,:= > 0.[r/T] if \r\ T), Jo

To £~ 1

[[ Sgnv {y£ )dt ys d£dt = f Sgnv {y£ ){-d^g£ {v£ + h~ 2 dlA£ {v£ )) dt
jJQto •'O £=o

+ Jfø sgn!ri {ye)di ye^-hjI h, + hj 1 f'e {v£ ) - hj 2 a'£ {v£ )y£ }y£ d£dt

-fl sgn,Jl {y£ )a£ {vE ){d^y£ ) 2 -Jj sgn71 {y£ )h~ 1 h'E y£ I2 + +l^JJQtq J J Qtq

til - j {sgn„(a€ ue (M))o4 ue (M) - sgn„((%v£ (0,i))dt i;£ (o,t)| dt.

/ n h£ f£ {v£ {o,t)) . . h£ [f£ {v£ {l,t)) h£ v£ {l,t)] . .d^v£ [o,t) = 7-7—7 0, d€ ve (l,t) = 7- n.u u - , v^ja£ (v£ (0, tjj a£ [v£ (1, t ))

rTo n f
- sgnv {y£ {o,t))dt v£ {o,t)dt —>- dt ve {o, t) dt = ve (o, 0) - v£ (o, T 0).

Jo Jo

7* «.(l.To) - «.(1.0) + ve (0,0) - ve (o,To ).

Kl K\v.\d(dt,
JJqto
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(51)

An application of GronwalFs lemma yields estimate (48).

For the present problem it is probably impossible to obtain a uniform L 1 {Qt) estimate on the
time derivative dt v£ , in contrast to several analyses of problems with fixed boundaries [4, s]. For
example, in [4] such an estimate was derived by differentiating the regularized parabolic equation
with respect to t, multiplying the resulting equation by sgn v {dx v£ ), integrating the result over the
computational domain, and using the boundary conditions and Gronwall s lemma. In the present
case, differentiating (Sla) with respect to t will produce an equation with a coefficient mvolvmg
h"{t). However, we can not bound this quantity, since differentiating the couphng equation (Slf)
with respect to t will lead to an equation for h"{t) in terms of dt v£ , and we can not control the
variation of v£ with respect to t along the boundary £ =O.

To apply the compactness criterion to the family of regularized Solutions {u£ } £ >o) we aPPIy the
following variant of Kruzkov’s [l4] interpolation lemma (see e.g. [l3] for a proof).

Lemma 7. Assume that there exist finite constants Ci and c 2 such that the function u : (0,1) x

[O,T] -> M satisfies lK*,t)HL~(o,i) Cl and TV(o,i)K - ’*)) c 2 for aU 1 e and that ulB
weakly Lipschitz continuous with respect to t in the sense that

for all (p e Cq{o, I), 0 t\ t 2 T. Then there exits a constant C, depending in particular on
ci and c 2, such that the following interpolation result is valid:

= £ [h' l h'e vM£) + + ~ K d£dt.

the proof of Lemma 4 it follows that there exists a constant Mh such that the estimate
I|l/Ji?I1l~(o.t) + holds uniformiy in e. Using the estimate (48), we get

(54)

Lemma 8. Let {v£ ,h£ ) be a solution of the regularized boundary problem (31). Then the following
uniform estimates are valid, where the constant M 3 is independent of e:

In view of estimates (34), (48) and (55) on ve, a standard application ot Kolmogoroff’s compact
ness criterion [23] yields that the family {u£ ) is compact in Ll {Qt)- Thus there exists a sequence
£n o such that {u£n } converges in Ll {Qt) to a function v € £U1)1/2 (Qt)- Moreover, smce the

we get from (49)

||3x V£ (-,T0 )|| l1(0- 1) / 11l 1 (0,1) _ Vei l ’®) + ~ V£ {o,Tq)

+ r>£ (0 5 0)+ f (*’ 11 z, l (0,1)Jo

1 n

f (lt(x ; t 2) - u{x,ti))ip{x) dx o{t2 - tj) y: H^(i) ||l°°(o,l)>
i=o

|lu(-,(2)-u(-,*i)|| il(oa) <C((2 -«i) 1/(n+1) , (52)

We calculate here that

[ {v£ {t,t2 ) - ve {£,ti))<p{£)d£Jo

= j E l h'£ {t;d£Ve - v£ ) - h£ I dtf£ (v£ ) + h£ 2 d%A£ {v£ d&t (53)

[ (ve {£,t2 )-ve {£,ti))<p{£)d£
Jo

<: (t2 -ti)Mh + (11/elloo + KUOOM2 +M0 )11<p'I1l-(0,i)J-

Thus we have proved
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estimates on h£ in (35) are uniform in e, there exists a subsequence {h£n } of {h£ } and a function
h such that | h{t2 ) - h{t i)| Mh {t2 -h) for 0 h t 2 T, h{o) = 1 and his nonincreasing.

We now have to prove that the limit pair {v, h) is indeed a generalized solution of the initial
boundary value problem (22). Obviously, the function h satisfies part (a) of Definition 3.

Lemma 9. The limit function v of Solutions v£ of the regularized problem (31) has the regularity
properties stated in part (b) of Definition 3.

Proof. Multiplying Eq. (Sla) by v£ and integrating the result over Qt, we get

and thus

The stated regularity of A[u) follows by letting e -> 0 and observing that M| is uniformly bounded
for e sufficiently small. To show the stated VM 2 property, we rewrite the regularized equation
(Sla) as follows, where \k\ K and it' is a suitable large constant:

Multiply (56) by sgnIJ {A£ {v£ ) - Ac {k))(p, where k e R and ip € CffiQr) is an arbitrary test
function. Integration by parts over Qt then yields

We now consider the limit of the right-hand side of (57) for r] —f 0. Using the properties of
Lebesgue’s theorem, = 0 and the fact that due the monotonicity of A£ {-), sgn(u£ - k) =
sgn (A£ {v£ ) - A£ {k)), we get

(58)

(59)

1 T

[[ hJ 2 a£ {ve ){d^vE ) 2 = fv2d£ - f hj l h'£ {t)v2£ d£dt
JJqt zJ o o JQt

+ [f ge{Ve,£,t)d(:V£ d£dt
J J Qj-

dx A£ (v£ )\\ L2^ Ha£ ||oo{Mo + TM/I (2Mq + M2 ||/el|oo)} —: M|.

dt {v£ -k) + dt{gc {ve ,t,t) -ge {k,£,t))+ h£ I h,e (ve -k)= he 2 d%{A£ {v£ ) - Ae {k)). (56)

[[ h£ 2 [d^(A£ {v£ ) - A£ {k))] 2 - Ae {k))<pd£dtJ JQt

-- f[ hJ 2 d^{A£ {v£ ) - A£ {k)) sgnv {A£ {v£ ) - A£ {k))d^d£dt
j Jqt

+ [f (g£ {v£ ,£,t) ~ ~ A£ {k))d^d^dtJ J qt

+ [I (g£ {v£ ,£,t) ~ 9e{k,£,t))ssn'v {A£ {v£ ) - A£ (k))d(:{A£ {v£ ) - A£ {k))ipd£dt (57)JJQt

- [[ h~ l ti£ v£ sgnv (A£ {v£ ) - A£ {k))(fd£dtJJ Qt

- [f {v£ ~k)sgn'v {A£ {v£ ) - A£ {k))dt {A£ {v£ ) - A£ {k))(pd£dt
JJqt

-ff {v£ - k)sgnTl {A£ {v£ ) - A£ {k))dtVd£dt =: J* + h/®.JJQt

/* -ff - (Vd(dt,
J JQt

Uq Sgn{v£ - k)(ge {ve ,t,t) - ge {k,£,t)) d^d^dt.
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Using that usgn'v {u) X{u: recalling from assumption (32) that the inverse function
A~ 1 is for fixed e Lipschitz continuous with constant l/pe , we get that

(60)

Observe that measZ(£,77) —> 0 as ry —> 0, since this measure converges to that of the empty set.
Thus 7® -> 0 as ry -A 0. Next, we see that

with (7j( TA7/l Moi|^lUoo ( QT) . The integrand of 7® satisfies

Using an argument similar to that employed for 7® we see that 7® oas77-> 0. Finally, we
obtain

|„.- («i)

Collecting all these estimates yields that all terms of the right-hand part of Eq. (57) possess a
limit as 77 -> 0 and are in particular uniformly bounded with respect to 77. Consequently, we see
that there exists a constant C\, depending possibly on e (but not on 77) such that

is therefore bounded in L l {Qt) with respect to 77 and therefore also in M{Qt)- By weak com
pactness we deduce that, up to subsequences, the sequence {E£^]n converges weakly towards an
element Ee € M{Qt)- Thus for any tp G we can pass to the limit 77 -A oin (57) to obtain

On the other hand, due to the properties of the function sgn,,, we have Ee , v 0 for every e, 77 >O.
Therefore we get

ff h£ 2 [d^{AE {v£ ) A£ {k))] sgn'v [A£ {vE ) AE {k))d^dt.
Tj — O JJQt

| (&(*>£,£,*) - 9s{k,t,t)) Sgn'v {Ae {v£ ) - Ae {k))dt(Ae {ve ) - A£ {k))

—\dt(Ae {ve ) ~ AE {k)) |xz(e,n),Ve

I(e,v)  = {«.<): o $ - Ae (fc)| 7)}.

Consequently,

[[ |<% (A£ (i;£ ) Ae {k))\d£dt.Ve JJx{e,V)

Il Il := -jj h£ l h'£ {t)v£ sgn(Aff (ve ) - A£ {k))ip d£dt

(v£ - k) sgn'v {A£ {v£ ) - Ae {k))dt {AE {ve ) - A£ {k))ip

= \{ve -k) Sgn'v {v£ - k)dt [A£ {u£ ) - AE {k))ip

\dt [A£ {vE ) - A£ {k))\x{{t,t)

[[ hJ 2 [d^{A£ {v£ ) - As {k))] 2 - A£ {k)) d£dt Ci{e). (62)J JQt
The sequence

{££ ,„}„> o := {{h£ {t))~2 [di [AE {v£ ) - A£ {k))] 2 sgn'v (A£ {v£ ) - A£ {k))} (63)

{Ee ,<p) =- [f he 1 h,e {t)ve ssa{Ae {ve ) -AeJ JQt

+jj |sgn(uff - k){g£ {v£ ,£,t) - g£ {k,£,t)) - hJ2d^\A£ {v£ ) - Ae {k)\}dt<pd£dt (64)

- [f \v£ - k\dt <pd£dt.JJQt

\{Ee ,v)\ = lim I[[ hJ 2 [dt (A£ {v£ ) - A£ {k))] 2 -A£
i~*°\JJqt
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Thus we get from (64) with \p\ 1

(65)

Using the estimate (34) we deduce that there exists a constant C 2, which does not depend on e,
such that

Consequently, Ee is bounded in M{Qt), and up to a subsequence Ee converges weakly to a
functional E G M(Qt), i-e. a Radon measure. We now pass to the limit e —) 0 in Eq. (64).
We have, |ue - k\ converges strongly to \v - k\ in (7(0,T;17(0, 1)), ge {ve ,£,t) converges strongly
to g{v,£,t) in L q {Qr) for every q < oo and dx \A£ {v£ ) - A£ {k) | converges weakly in L2 {QT ) to
dt\A{v) - A{k)\. We thus may pass to the limit e —> 0 in (64) to conclude that

—jf \v-k\dtvdidtJJ Qrp

for every p 6 Cq°{Qt)- Since g , - A{k)) and <%|.4(i>) A{k)\ are all functions in L l {Qt)
and since E is a Radon measure, we obtain from (66) that for all p € C£°{Qt)

This in particular implies the stated VM 2 property (25).

Lemma 10. The limit function v of Solutions v£ of the regularized initial-houndary value problem
satisfies the boundary conditions (18) and (19) stated in Definition 2.

Proof. First of all we have from Lemma 2, passing to a subsequence if necessary, that h£ converges
uniformly to a certain Lipschitz function h, which satisfies h{o) =l, h{t) ho >O. Multiplying
(30a) by p G Co(IIt), integrating over Q{he ,T), using integration by parts and the boundary
conditions (30c), (30d), and then letting e —> 0, we get

(68)

(68) there follow two conclusions about the VM 2 field F = (F\,F2) (/(u) dx A(u),u):
div F = 0 (this is the obvious one), and (E -u\dQ(h, T),p) = 0, as a consequence of the generalized
Gauss-Green formula (12). Hence, using (14) and (15) we deduce (18) and (19).  

Lemma 11. The limit function (u,h) of Solutions {u£ ,h£ ) of the regularized problem (30) satisfies
(30f) in the sense stated in (d) of Definition 2.

Proof. First, we observe that A£ {u£ {x,t)) converges to A{u{x,t)) in L\oC {Q{h,T)). This follows
by the convergence of A£ {v£ {£,t)) to A{v{£,t)) in Ll {Q{T)), the uniform convergence of h£ to h
and the uniform boundedness of d^A£ {v£ in L2 {Q{T)). More specifically, for any compact

\{Ee [[ h£ l ti£ {t)ve sgn[Ae {ve ) - Ae {k)) d£dt.JJQt

-\{Ee,v)\ C 2 for all £ >O-

{E,(p)= ff h£ I h'v£ sgn[A{v) A{k))ifd^dt
JJ Qrp

+jj {sgn(v - k)(g{v,£,t) - g{k,£,t)) - h 2 (%|A(u) - A{k)\} d£dt (66)

\v-k\dt(p+ (sga{v~k)(g{v,t,t) -g{k,£,t)) -h 2dt\A{v) - d£ dt

C\\v\\l°°{Qt)-

ff udt + {f{u) - dx A{u))dx (pdxdt = 0
JjQ{h,T)
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where K' denotes the image of Kby the transformation (x, i) (£.*)• Now > we P rove that
Ac (ut (he (t).t)) -7 7^h(i)A(u(-,t))in Ll (o,T)as £-f 0, after passing to a suitable subsequence
if necessary. Given any <5 >0 we have h{t)-S < ht (t) < h(t)+S, o<t < T, for e sufficiently small,
due to the uniform convergence h£ —> h. We may aiso assume that A£ {u £ {h{t) —6, t))toA{u{h[t)
å t)) in L l (i].T] due to the convergence of --hfm-lx, t)j to A{u{x,t)) in Lloc {Q{h,T)]. Then,
setting Bs (x,t) = At (ut (x,t)) and B(x,t) = A(u(x,t)), xs (t) = h(t)-S, we have

T
f \Be (xs(t),t) ~ B(xs{t),t)\ dt + CVS.Jo

Since S > 0 may be taken arbitrarily small, the assertion follows. Finally, by passing to a further
subsequence of £’s if necessary, we see that, except for h'e {t), all other terms in (30e) converge a.e.
in (O,T) to the corresponding terms in (9e), replacing A{u(h{t), t)) by i))' / Therefo^e ’
h'E {t) also converge a.e. in (0, T), and since it clearly converges weakly to h'{t), we have h'£ {t) -> h[t)
ak in (O,T), and the lemma is proved. D

It is standard to conclude from Lemma 7 that the limit function v satisfies the initial condition
(28), and to prove that the entropy inequality (29) is satisfied by multiplying Eq. (Sla) with
sgn.W - k)<p, keE, ip e C£°(Qt), <P 0, and letting r} o and £-t 0. Thus we have shown
Theorem 2. The initial-boundary value problem (22) admits an entropy solution (v,h).

Since h{t) > 0 and ti is bounded, we conclude

Corollary 1. The free boundary problem (9) admits an entropy solution (u,h)
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