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ON A MODEL FOR CONTINUOUS SEDIMENTATION IN VESSELS WITH
DISCONTINUOUSLY VARYING CROSS-SECTIONAL AREA

R. BURGER. K. H. KARLSEN. N. H. RISEBRO. AND J. D. TOWERS

1. MATHEMATICAL MODEL

In this paper. we study a clarifier-thickener configuration similar to that of our previous studies
[4, 5. 6]. However, we now consider that the cross-sectional area of the settling vessel is not
constant in both the clarification and the thickening zones.

We start by deriving in some detail the governing equation for continuous sedimentation in a
vessel with varying cross section. In the formulation of the final initial value problem we add the
feed source to the model for constant cross-sectional area formulated in [4, 5, 6].

We consider a segment of a vertical settling vessel with a variable cross-sectional area S(x).
where — 1 < x < 1 is the dimensionless height variable. We let. x increase downwards, and assume
that x = —1 is the overfiow ievel, x = 0 corresponds to the feed level and x = 1 is the discharge
level. We assume that the unknown volumetric solids concentration u depends on height only, i.e...
u = u(x. t). Then the conservation of mass equation for the solids and the fluid is given by

respectively, where t is time and vs and V[ are the solids and the fluid phase velocities. The mixture
fiux, that is the volume average flow velocity weighted with 5(x), is given by

The sum of (1) and (2) produces the continuity equation of the mixture, Qx = 0for—l<x<0
and 0 < x < 1 and t > 0, which implies that Q(-,t) is constant as a function of x. Since Q only
suffers a jump across the feed source level x = 0, we get for t > 0

(4)

where < 0 and QB.(t) > 0 are the signed volumetric suspension overfiow and discharge rates,
respectively, prescribed by the control of the suspension volume flows at x = — 1 and x = 1. Note
that we here identify a dowmwards flow with a flow to the right.

Equation (4) is equivalent to one of the mass balance equations. We let (4) replace (2) and
rewrite (1) in terms of the flow rate Q(x,t) and the solid-fluid relative velocity or slip velocity
vT := vs — V{ , for which a constitutive equation will be formulated. Observing that

and assuming for a moment that no solids enter the vessel at x = 0, we obtain from (1)

The well-known kinematic sedimentation theory [7, 12] is based on the assumption that vT is a
function of the local solids concentration u only, vT = vT (u). We here express vr in terms of the
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S(x)ut + {S{x)uvs ) x =0, (1)

-S(x)ut + (S(x)(l-u)vf ) x =0. (2)

Q(x. t) := S{x) {uvs + (1 - u)vf ) . (3)

n , ,* JQ(-l.t) = Q L (t) for-l<x<0,QixJ.) = <
\Q(l,t) = Q R (t) forO<z<l,

uvs = (uvs +(1 - u)v{)u + u(l - u){vs - Vf) = '' . h u(l - u)vT ,

S(x)ut + (Q(x, t)u + S(x)u(l - u)vT ) x =0. (5)
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so-called Kyncli batch fiux density function has vT (u) = h{u)j{u{\ - w)), such that (5) takes the
form

The function h is assumed to be piecewise differentiable with h(u) - 0 for u < 0 or u > umax ,
where umax is the maximum solids concentration. h(u) > 0 for 0< u < umax , h'(0) > 0 and
'' '(wmax) <0. For simplicity we assume that (possibly after rescaling the problem) that umax =1.
A very frequently used function is due to Richardson and Zaki [13]:

where Uk > 0 is the appropriately scaled settling velocity of a single particle in an unbounded
pure fluid. For the analysis in this paper we will assume that h G C'2 [(). 1], and that his genuinely
nonlinear in the sense that \h"\ > 0 except for finitely many inflection points.

Several authors have studied one-dimensional sedimentation in non-cylindrical vessels [1, 3. 8,
9. 15], using basically variants of (6). under the assumption that 5 is a smooth function of x. We
are here interested in the analysis of (6) when S is only piecewise continuous, which means that
the diameter jumps. In this case the available mathematical and numerical theory breaks down.
The model studied here is very similar to problems of traffk flow with abruptly changing road
conditions and of two-phase flow in porous media with jumps in permeability. We will assume
that the cross section satisfies Smill < S(x) < Smax for xG E and \S\ BV < co, and that the initial
data u0 satisfies u0 GL ] (R) f| BV(K), 0 < u0 (x) < 1 for x£ R.

To simplify the problem further, we assume Qi(t) =QL = Const and Qr(é) =Qr = Const.
As in the clarifier-thickener setup studied in [4, 5], we assume that at x = 1, the composite solids
flux Qru + S(x)h(u) is changed to the discharge transport flux Qru, and that at x = 0, a feed
source is located. To model this feed source, we recall that a clarifier-thickener unit with constant
cross-sectional area So can be modeled by the equation ut + g(u,x) x = 0 with the composite flux

where = Ql/So < 0 and <7r = Qr/So > 0 are the prescribed volume overflow and discharge
rates, respectively, divided by the cross-sectional area, and wf £ [0,umax ] is the concentration
of the suspension fed into the unit through the singular source at x = 0 at the volumetric rate
Qf =Qr ~ Ql- Subtracting the constant term - from the flux g{u,x) we obtain the
equivalent conservation law S(x)uf + g(u,x) x =0. where

-/ v f Ql'u+ (Ql - Qr)uf forx<-l, Qru + S0 h(u) for 0<x < 1,
(J{U.X) - I + + (Ql _ fof _ 1<X qrU fol. x>1

Finally, it is easy to see that we can state our problem of interest as the conservation law

(8)

n(ll „\ _r, 7/ , / forx<-l, Q L (u-uF ) + S{x)h{u) for -1< x< 0
gyu,x) WFt| fe(u _ )jF) forx>l, QR{u-uF )+S{x)h(u) for 0<x < 1,

together with the initial condition

(10)

A particular subcase included here is batch settling in a closed column. This occurs if we set
Qr — Qf = 0 and hence Ql = 0. In this situation, we obtain the initial-value problem

Independently of the smoothness of the flux g{u,-) and the initial function u0 , solutions of
(8)-(10) generally develop discontinuities, and so weak solutions must be sought. A weak solution

S{x)u, + (Q(x.t)u + S(x)h(u)) x =0. (6)

h{u) = Vocu{l - u) n . Væ >0.n > 1. (7)

-w \— I QlU or x < -1 - QrU + u) + (?R ~ 9l) uf for 0<x < 1,
' \ 9l« + /*(u) for -1 <x< 0, øru + (øl - 9r)uf for x> 1,

S(x)ut +g{u,x) x =Q, x e R, t > 0,

u(x,0) = Uq(x), x6 1; uQ (x) € [0,umax] Vx

r,/ n / n r< m, , / x I 0 for x< 0 and x> 1, . .
S{x)ut +gB {u,x)x =0, xeR, *> 0, gB (u,x) = > 11

[S(x)h(u) for 0<x < 1.
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of the initial valne problem (8)-(10) is a bounded function u(x,t) satisfying. for all test functions
ø e V(R x (O.T)) with (f)\t=T - 0,

Our main result, whose proof appears in the next section, is stated in the following theorem:

Theorem 1. There exists a weak solution to (8)-(10). and this wenk solution can be constructed
as a limit of a sequence of approximate solutions constructed by a finite difference scheme.

2. Proof of Theorem 1

In order to facilitate the notation and analysis we now introduce the composite flux function
fOy(x),u) = g(u,x). Here *y(x) = (71 (x),72(x)) is the vector of flux parameters given by

In this notation, the composite flux function is /(7,'u) = 73(1/ - up) + 7i/i(tx) + Thus the
initial value problem for the conservation law (8) reads

(12)

We now define a numerical method for (12). We choose a discretization Ax, set Xj — jAx, and
discretize the coefficient vector 7, the initial data, and the cross sectional area by setting

For n > 0 we define the approximations according to the explicit marching formula

(13)

where Xj — At/(5,-Ax), Å-Vj =V3 - Vj_i, and /EO is the Engquist-Osher flux defined by

(14)

Let tn = nAt and let xn denote the characteristic function of [£n ,in+i) and Xj the characteristic
function of [xj~i,Xj+i). We then define

The following lemma is easily established by a slight modification of arguments found in [6].

Lemma 1. Let /+(«;) = max(fu (w),0), fu (w) = min(/u (iy),0). // the ratio Ax/Ai is chosen so
that the following CFL condition is satisfied

(15)

t/ien i/ie computed solutions remain in the interval [0,1], #ie CFL condition (15) Zio/ds /or eac/i
succeeding time step, and the scheme (13) és monotone. In addition, there exists a constant C,
independent of A, such that

/ / (S(x)uøt + g{u, x)(px ) dx dt+ S{x)u0 {x)<p{x, 0) dx =0.

f \ c/ \ f \ ( \ i®L for x< 0l
7i(3-) = S(x)X[-i,i){x), 72 =< n , .\Qr for .r >0.

S(x)ut -f f(/y(x),u) x =0 : u(.x,0) = u0 (x).

Sj+1 %j+l/2 X ]+l/2

jrn+1 _ jjn _ \ A fEO ( jrn rrn)

/EO (7 ,<;,u)= i f/(7,«) + /(%«)-£ l/«(7,w)l *«) •

n>o j i

A, \fi(lj+h ,U?) - /-(7M,tf?)| <1, Vi GZ,

J2\ ujl+l - u?\ sj Ax < J2\ uj ~ uj\ sj Ax^CAt
j 3
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Iii what follows. we will use the Kruzkov entropy-entropy iiux pair indexed by c:

where sign (w;) = w/\w\ if wj / 0 and sign (0) = 0. We use the notation O (A7-) to denote
terms which sum (over j) to O (ItI^v- )- Furthermore. we use the notation A" and A" for spatial
difference operators with respect to it only. keeping 7 fixed. e.g.,

Similarly Aj and A_ denote spatial difference operators with respect to 7 only with u kept fixed.
We now let \'r (w:c) denote the characteristic function for the interval [c,+00), x~(w - c ) the

characteristic function for (—oc,c]. We will also use the notation a+ — max(a,0). a_ = min(a,0).
A proof of the following lemma can be found in [G].

Lemma 2. For any constant c G R and for all j G Z the following inequalities hold

(1C)

The following singular mapping will be used to transform the numerical approximations v A
into a sequence rA for which compactness can be proved (see also [6] and the references therein):

(17)

Lemma 3. For almost all x G E. i/ie mapping ty(~f(x),u) is strictly increasing as a function of
u, and w) w Lipschitz continuous with respect to u and 7.

Proo/. From the definition of /, we see that /„.(7(.r),u) = 72(x) + 71 (z)/i„(u). For |x| >1,
fu{l{x), u ) — which is nonzero because <2l < 0 and Qr >0. For x G (0,1), any zeros of
/«(7(x),w) are isolated (in w), since 71 (x) > 0 and h is genuinely nonlinear. This is also true for
x G ( — 1,0). That ty{~f(x),u) is strictly increasing is now immediate. For the Lipschitz continuity
assertion. the following relationships are easily verified for u G [0.1]:

Our goal at this point is to construct a certain decomposition of \[>. Let Are (0) denote an open
disk of radius e centered at the origin in the 71-72 plane, and define the set

Lemma 4. There are finitely many functions w £.(7) such that

and |/u (-,7)| > 0 within each of the intervals (uJ!(7),Ujk+1 (7))- In addition, each u*k depends
Lipschitz continuously on the parameter vector 7 in the sense that for any e > 0 there is a
Lipschitz constant MeÅ" such that if

the line segment joining (71,72) to (71,72) Hes cntirely within the set r e , (18)

then

Finally, for the discretized version 0/7, each adjacent pair of values 7j_i and 7J+ i satisfies
condition (18) with any value of e for which f < min( — Qh,QRiSmin)  

V(u) =\u -c\. F(7,w) = sign (ti -r) (fh.u)-f(~y.c)). c€ R,

= fhr i rU i )-fh = Mf(j3 .u-+i ).

± ( /'" ' (7j+j,«) du +|J ;\ ± (h:c)/+ (7,-4.1") dtx J

<^(Uf-U^~ 1 ) ± + 0(Alj ).

*(7,w) = / |/u(7»w)l dw -Jo

|*(7,u) - *(7»**)| < Il/ull |w-ti|,

*(7i,72.w) - *(7ii72,u)| < ||/tu|||7i — TiU |*(7i,72,w) - *(7i,72,u)| < I72 - T21•
D

re := ([0,5max]x[QL ,gR])\iVe (0).

0 = u5(7) <iil(7) <•••<<-] <<(7) =1,

K(7i,72)-'"2.(71.72)1 <M*(|7i -7i| + l72 -72I). (19)
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Proof. We start by observing that for fixed 7 the critical points of 7(7. •) satisfy the equation
72 + l\hu {u) = 0. We ignore for the moment the possibility that 71 = 0, which allows us to
rewrite this as -hu (u) = 72/71- This makes it clear that for 7] 0. the critical points of /(7,u)
(the solutions of /„(-/. v) - 0) are located in the u-z plane at the intersection of the graph of
- = — hu (u) with the horizontal line z = 72/71- For any single horizontal line of this type. there
are only finitely many such intersections: this is a consequence of genuine nonlinearity.

In the u-z plane, we now construct a finite number of curves Co, •  • >Cm as follows (the reader
is urged to consult Figure 1 at this point): The curve C0 is just the vertical line u — 0. The
definition of C\ starts with the portion of z — -hu (u) between v = 0 and the first turning point
of z — —hu . If the first turning point is a maximum (minimum), we continue the curve along
the vertical half line lying above (below) the graph of z = -hu . We also continue the curve Ci
along the vertical line u — 0. choosing the upper half line or lower half line in such a way that 2
is always increasing or decreasing along C\. We then define C-2 in a similar way. connecting the
first and second critical points of z — —hu , and then continuing the curve along vertical half lines
consistent with the monotonicity of z — -h„. Continuing this way. the final curve Cm will be the
vertical line u — 1. By construction. a horizontal line of height z intersects each curve Cu exactly
once. Let v*k{z) denote the (unique) intersection at the curve CV It is clear that each v*k (z) is a
Lipschitz continuous function of 2, that v*k < u£+J , and that each ujj is constant for \z\ sufficiently
large. More specifically, there are constants zk < and u£(—00), such that

(20)

and observe that ul is well-defined in the closed right half-plane {7I71 > 0}. except possibly at
the origin (due to differing radial limits). Moreover. if we exclude some neighborhood Are (0) of
the origin, inherits Lipschitz continuity from Vk{z). Indeed, given 7 and 7 such that the
line segment connecting them lies in T e , if we integrate the gradient of u*k along that line segment,
we get the Lipschitz estimate (19).

For each (relevant) value of 7, define the following intervals, whose endpoints depend on 7:

By construction, the union of these intervals equals [0,1], and each of these intervals has Lipschitz
continous length as long as the line segment joining the endpoints lies in T( . It is clear that by
construction, there are no zeros of fu in the interior of 2a (which may be empty), and so fu is
strictly monotone in the interior of 2/,- •

We have only to check that 7 ? _i and lJ+ i satisfy condition (18). Note first that we always
have (with the notation 7J+ i = (tj+£,i,7j+$,2)) Qh < lj-\:i <Qn and Q L < < Qr- If
the intervals 7; _i and Ij+ i. lie entirely within (—1,1), then Smin < 7j-i,i < Smax and Smni <
7j+i,i < 5max- Therefore. if e < Smin> condition (18) is satisfied. If the intervals Ij-i. and 2,+ i
lie entirely within ( — 00, 0), then condition (18) is satisfied if e < —Q\_. Similarly, if the intervals
Ij-i and Ij+l lie entirely within (0, 00), then condition (18) is satisfied as long as e < Qr. Since
any pair of intervals Ij-i, Ij+i satisfies one of these three conditions, the proof is complete. D

Letting x(w;2(7)) denote the characteristic function of the interval 2(7), we can now write
down the decomposition of $:

vk(z) = uj(-oo) for 2 < zk , v%(z) = Ufc(+oo) for z > zk .

Now recalling that z = 72/71, we define

{vl(-oo) for72 <zA-7i,

vi (72 ll\ ) for 2 A.7i <72 < Zkli ,

v£(+oo) for 72 > 1*71,

Z*(7) = tøk(7),«I+i(7)), fc=0,...,m-l,

ril "' ril Hl
*(7,«)= / \fu(-r,w)\dw = T X(w;^*(7))l/«(7,«;)|du;=:53**(7,tt).-70 A,=0 7 ° A=0
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FiGURE 1. The curves Ck defiiied in the proof of Lemma 4. Any horizontal line
z = constant intersects each Ca- exactly once.

Since fv is Lipschitz continuous in 7, and the endpoints of each Ja-(7) are Lipschitz continuous
if condition (18) is satisfied. we have

for some constant M depending only on /, and hence Sb k is Lipschitz continuous in 7as long as
condition (18) is satisfied.

For a fixed i € {0, • • • , m}, let P+ (N\) denote those integers k, 0 < i < k < m, such that
/n >0(<0) in the interval Ja-. Similarly, we let Pl (A7-!) denote those integers k, 0<k< i < m,
such that fu > 0 (< 0) on Ja-. With these definitions, we can state the following lemma:

Lemma 5. For each i € {0, •• • , M] the following pair of inequalities holds:

(23)

(24)

(25)

**(7,u)-¥*(7<u)| < / |x(wÆ(7))-X(t«;Iik(7))ll/«(7,ti;)|Jo
+ X(w;Z*(7))ll/u(7»«0| ~ l/«(7,HI diu < MI7-7I,

£ A»** (7,+ i ,C7) + E A-** (7i-i.C7) <X" ( LT - +1 ) + +0 ( , (21)

J2 A£** (7i+ J,ØT+ i) - E AH* fc ( 7i -i,L7) <-^(^-t/;+1 )_+0(A7,). (22)

Proof. Recalling that x+ ( u \ u * (7J+ i)) = 0 for u < u*(-yj+ i.) we find that

/ X+ («;<(7j+ i))/,7(7j+i,w) du= V / xi^Xkh du

= -£ A«**(7i+4 ,^n+i)-
k€Nl+

Similarly we find that

JuT-i fc€P*.

rJhl x-(«;ti?(7i+J ))/^(7j+i ,«)d« =- £ fc (7i+ i,^n+i),
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(2G)

To conclude the proof we must replace the Au difference operators by A operators. Recalling that
ty k' is Lipschitz continuous in 7. we can replace 7J+ i with 7,_"i where required, absorbing the
difference in the 0 (A7J term. Then we use (23) and (24) (with 7 y in (16) (with +) and
obtain (21). The inequality (22) is similarly obtained from (25). (26), and (16) (with -).  

Lemma 6. Fot each k = 0.... .ni. there exists a constant C k >0, independent of A and ?i. such
that

Proof. From the definition of ¥*, and that Uf € [0,1], it follows that |#*(7i+ i,l/j*)| < ||/u ||.
Thus. for each J > 0

(30)

Without loss of generality, we can assume that fu > 0 for u € io- By this assumption Ar° = 0
and P° = {0}, hence (22) with i = 0 reads

Since the right hand side of this equation is nonnegative, it follows that

Now we set i—2 in (22). and recall that P]_ = {0} and Ari = {1}, in this case we find

/ X (7.7+ i))/,t (7j+ i,w) du =]T A -'i’ k (7
' LT-i jtePi

52\*l9k {lj+ l,U?)\<Ck . (27)

J

j]T A+«* (T>+i < 2||/»||, (28)3=-J

j=-j ;'=-J j"=-J

=2 X; (Ai»*(7,+J.l7))+ - E W\tj+ i> U?) + E A7*l"(7,+i ,C/JVi)
i=-J j=-J i=-J

j

<2 £ (AJ**(7i+J,I7)) + + 2||/u|| + C?(|7| Bv)- (29)

Letting J -> oe, we get

fc (7^,i7;)|<2^(A^M7i+ i,^)) + + 2||/w || + C?(|7lBv)
i j

Similarly, we find that

(*° (7,_i, U?) ~*° 1+1 )_ + 0(A7i )

£(Ai*° hi+i ,u»))_< Er + 0(l7lav)- iJ J
Now using (30) produces the estimate

£ |AJ*0 (7i+i ,U?)| < C° := 2£ frø - f?| + O (ItIbv)J J

Al* l h3+ ,M?)+&l*°(7J -±,U»_ 1 )<-y(U«-U?_ 1 )_+0(Alj ).åj
Rearranging this, we see that

Y, (A^ 1 (7j+ i,^))+ < E l A+*° (7i+J,^n ) I+ p - B-i). + © (A7i ).7 J J
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FiGURE 2. The function S(x) used in the numerical examples and the vertical
cross-section of a corresponding axisymmetric clarifier-thickener unit.

and thus by (29)

For i = m, we use (21) and proceed as in the case where i — 0 to find that

2A M)|bV

for all i > 0. Using this bound together with the obvious bounds,

for some constant C independent of A. The second inequality, follows from Lemma 1. and the
Lipschitz continuity of *. By standard arguments, see, e.g., [11], it is straightforward to show
that the sequence {wa }a>o is compact in Iq 0C (lR x E+ ). Let therefore z = limA->o zA and define
u(x,t) = 1 ( ,y(x), z(x.t)). Following [14], we can conclude that wis a weak solution of the initial
value problem (12), and hence Theorem 1 follows.

3. Numerical examples

The physical problem and the finite difference scheme from Section 2 are now illustrated by
some numerical examples. We assume that the function h is given by (7) with = 1 and n — h.
The results are also valid for any other value Vqq > 0 if the time variable is rescaled, and we

1 (lj+ i,U?)\ < 2C° + C° =: C\
3

Continuing inductively for i = 2,3,..., m — 1, we see that

l (7J+ i,L7)| <2(C° +Cl +--- + E 7 - 1 ) +E° =:E\
i

m {jH < C°=: C m .
j

Lettting now zA = \P(7A ,?/ A ), we have that
771

53|A«*(7i+i ,^n )| + |Aj*(7i_ ij t7)| <Y, Ck +j fe=o

zA (x,t)\ <m|x*(7,l), ||*A (-.*i)-*A (-.<2)|| L »(R) <^|ti-t2 |,
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FlGURE 3. Simulation of the operation of the continuous clarifier-thickener at
different operating conditions. Top left: Filling up the unit. Top right: Attaining
steady state. Bottom left: Filling up the vessel at closed discharge. Bottom right:
Hydraulic forcing with highly concentrated feed suspension.

mention that computations with this model function h (håving the exponent n — 5) have also
been presented in [2, 3].

Here, we let a clarifier-thickener unit be defined by the dimensionless function

A vessel håving this cross-sectional area function is sketched in Figure 2. The jumps of S(x) are
here caused by the shape of the vessel and by the space occupied by the interior feed mechanism.

In the numerical examples collected in Figure 3, we use Ax = 1/100 and A — 0.05. Note that
the computational grid is finer than the visual grid used to display the numerical results. The four
cases considered here correspond to different choices of the parameters Ql, Qr and up, which are
simply chosen as constants (with respect to time) and which lead to different modes of behaviour
of the clarifier-thickener unit. For detailed analytical predictions of the clarifier-thickener response
to operating conditions, we refer to [10] and the references cited in this paper.

The first case (top left plot) corresponds to Ql — —0.1, Qr = 0.1 and wf = 0.4. The simulation
shows that the solids initially settle exclusively into the thickening zone (x > 0), accumulate there
and form a rising sediment. This sediment layer breaks through the feed level (x = 0) at about
t = 20 and the particles entering the clarification zone (x < 0) start to produce an overflow of
clarified suspension at about t — 29. The shape of the concentration surface in the clarification zone
reflects the vessel geometry, and that there the solution becomes stationary. Furthermore we see

r 0.5-1.5625(x + 0.6) 2 for x e (-1, -0.6], 1 for x € (0,0.5],
S(x) = l 0.25 for x € (-0.6, -0.4], 1 - 3.2(x - 0.5) 2 for x € (0.5,1).

[ 0.5 forzG (-0.4,0],
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that the concentration leaving the unit increases at x = 1 and decreases at x — — 1 discontinuously.
The system converges to a steady state of simultaneous clarification and thickening.

The second case (top right plot) is produced by the choice Ql = —0.1, Qr = 0.4 and up = 0.4.
This choice again leads to a stationary mode of operation, with the essential exception to the first
case that the solids immediately start at / = 0 to enter the clarification zone.

The third case (bottom left plot) corresponds to Qi = -0.2. Qr = 0.0 and again up = 0.4. i.e.
the vessel is kept closed at its bottom. We observe that the thickening zone is slowly filled up.
Moreover, as in the second example, particles start immediately to enter the clarification zone.
However, an additional solids flux into the clarification zone is produced when the sediment rising
in the thickening zone reaches the feed level. This leads to an increase of the concentrations in
the clarification zone. which in contrast to the first and second case does not remain stationary.

The first three examples have in common that the solution at large times reflects the vessel
geometry. This is not valid in the fourth case. where we apply an extreme feed flux by letting
CJl = —0.2. Qr = 0.2 and up = 0.8. In this situation. sometimes also called 'hydraulic forcing', the
feed slurry immediately breaks into the clarification zone. which it leaves at its initial concentration.
The thickening zone is first, filled up successively. with a dilution of the feed suspension and
sediment forming, but then is also filled up with the feed slurry at its feed concentration.
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