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The problem to be studied in the present paper was

previously investigated by A, Eliassen, E. Hoiland, and

E, Riis [1]. We find that in general both a discrete and

a continuous spectrum of eigenvalues contribute to the

solutlon. When, as in [1], the method of normal modes is

applied care must be taken not to omlt the continuous

spectrum. Here we use the method of Laplace transform to

solve the problem, and demonstrate how we can find the asymp

totic behavior for large values of t (time) of that part

of the solution which is due to the continuous sprectrum.

This work has been supported by the Royal Norwegian Council

for Scientific and Industrial Research.
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Introductlon.

The problem to be studled in this paper Is the one

Investigated by A. Eliassen, E. Høiland, and E. Rlls [1]. In

[1] the method of normal modes is applied to solve the problem.
-J

For r > (r = Richardson number) an infinlte set of eigen

values is found which in [1] is assumed to form a complete set.

We wlll show that this assumption is not valid.

We use the Laplace transform to solve the problem. In

general both a discrete and a continuous spectrum of elgen

values will contribute to the solution. The contribution

from the continuous spectrum is studied for large values of
1 1

t in the two cases r > and 0 < r < However the method

used to study the asymptotlc behavlor of the contribution

from the continuous spectrum may be applied to the cases

If the method of normal modes is applied, we must take care

not to omit the continuous spectrum of eigenvalues. If both

the continuous and the discrete spectrum (when it exists) are

taken into account, we find that the solution obtained by the

method of normal modes is equlvalent to the one found by uslng

the Laplace transform. This equivalence wlll be demonstrated

in a paper to appear later.

ir = and r < 0 as well.
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I. Formulation of the problem.

The system to be considered is the one studled in [1],

vlz: a horizontal flow wlth constant shear a of a stratlfied,

incompresslble and invlscld fluid conflned between two rigid

horizontal planes, situated at z =±1 (see fig. 1). The

velocity fleld and the denslty fleld in our basic motion are

assumed to be given by:

where a, (3 and p Q are constants

Fig. 1 The equations governing this

system,, are the hydrodynamlc equations for an incompresslble,

invlscld fluid, vlz:

(1.2)

where k is the unit-vector in the z-dlrectlon, and g is the

acceleratlon due to gravlty. We assume the motion to be two

dimensional, and that it takes place in the xz-plane. Due to

the second equatlon of (1.2), the pertubatlon velocity can be

expressed by means of a stream function.

(1.5)

where is the unlt vector in the y-dlrection.

In order to find the equatlon for i(x,z,t), the eqs. (1.2)
*)

are llnearlzed, and p 1 and are ellmlnated between the first
— 1

and the third of eqs. (1.2). Taklng a as unlt time, we

= az (x-coraponent 'of the velo

-pz clty)
= På® »

P (JL + v • V)v = - Vp - kpg

V*v - 0

+ v- Vp — 0 s

v 1 = v X Y(x,z,t)j_ ,

*) p,| and p 1 are first order quantltles.
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obtaln:

(1.4)

where r = is the dlmensionless Rlchardson numher. We see
a

that r > 0 when (3 > 0, which corresponds to a statloally

stable stratlficatlon. As mentioned earller, the rigid planes

are situated at z = ±1. The boundary conditions are therefore:

(1.5)

Let the field of vortlclty and the fleld of rate of change of

vortlclty be asslgned at t = 0* vlz:

We then have to solve a mlxed boundary and initial value problem

This is no restrlctlon, since it is supposed that ?(x,z,t)

has a Fourier transform with respect to x, and then \j/(z,t)

represents the k^*1 Fourier component.

Introduclng eq. (1.7) into eqs. (1.4), (1.5) and (1.6),

we obtaln:

(1.8)

(1.9)

2
/c) , c) \ 2r-,2vr , ,T , „

+ V Y + 0 '

dy

 å - 0 at z = ±1

V2'Ft=0 = F(x,z)
(1.6) <

+ z^^ v2'i't=o = G ( x ' z )
V

Let us assume that ¥(x,z,t) depends on x as:

(1.7) ¥(x,z,t) = \\!{z,t)e ±kx

+ ikz) (--- 2 - - k^r\j/ = 0

\|/(z,t)=0 at z = ± 1
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(~2 ~ k2 ) = Fk ( z )oz

where and are the Fourler transforms of

F(x,z) and G(x,z).

II. Solutlon to the problem.rrrr^rrrr  "—  1  in n.nii—imiuU m\ siv *rc^

Multiplying the dlfferentlal eq. (l.8) and the boundary

condltions eq. (1.9) by the kernel e of the Laplace

transform, integrating wlth respect to t between 0_, and

using eqs. (1 .1 0) _, we obtain:

(2.2)

From eq. (2. 1) we obtain:

(2.3)

(2.4)

Eq. (2.3) together wlth the boundary condltions is easily

solved. We find :
+ 1

where:

(1.10) 2

dz~

2

(2.1) (p + ikz) 2 (-—- - -rk =(p + + Gk (z) ,

vj/ = 0 at z = ±1

00

where \J/(z,p) = ty(z,t)e
0

- k2 >|/ + = l(z,0 ,
(z-O

whe-re \j/' = ,, and £ = l|-

w _ Vz > Mz )
(z,?) Ik(z-C) ' k2 ( z _ ? ) 2

(2.5) 'i/iz.O = j l(u,C)G(u - ti, Z - 0<aU ,
-1
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cp 1 (u - 0 CP 2 ( Z “ C) u < z

cp 2 (u - 0 CP 1 ( z - O U> z ,

f (v) = (ikv)^J_ v (ikv) , g(v) = (ikv ) 2J y (ikv) .

J and J are the Bessel functlons of order v andv -v

(2.8)

- v.

(2.9)

cp 1 (z - C), cp 2 (z - c), f(z -C) and g(z -C) are Solutions of

the homogenous equatlon., corresponding to eq. (2.3).

W(cp 1 ,cp 2 ) is the Wronskian determinant of (z -£) and

cp Q (z - £). It is easy to show that

(2.10)

where:

w(f,g) = f(z - Os'(z - o - f 1 (z - C)g(z - O is the Wronskian

of f(z - Oand g(z - ?)• Since in eq. (2.3)

there is no flrst order derlvatlve, W(f,g) = W is a oonstant

[2].

When is found, \|/(z,t) is easlly obtained by

inverslon .

r

(2.6) 0(u - ?,z - C) = w (cp^Y--p<

cp 1 (z - O = g(-i - C)f(z - c) - f(-i - c)g(z - c) ,

(2-7) | cp 2 (z -O = g(l - C)f(z -O - f(l - Og(z -?) •
1 1

v = sl 1/4 - r .

w(cp-j*cp 2 ) = r)(c)w(f,g) ,

(2.11) d(c) = g(i - C)f(-i - f(i - OsH -
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I

.. ir -H*>
7+100 s o

h z V) = j ?( z ,l|)etpdp =J- f(z,0e“ =
7-lo° i o ~°°

in the complex p-plane 7 must be greater than the real parts

of all the slngularitles of \|/(z, i~), or equlvalent: for k > 0

must be greater than the imaginary parts of all the singu

laritles of vj/(z,C). In order to evaluate the Integral In eq.

(2.12) we perform an Integratlon

around the closed contour c

shown in fig. 2. ?(z,C) is a

Fig. 2

choose the cuts as shown In fig. 2. We obtaln

where:

1? z

( 2 - l2 ) = 2i’ /e lk(’ t røffr |v2^ z "C) f 1 (u, O?., (u - £)du +
_ “]S 0 1

1

+ - C)jl(u.0cp2 (u -c)du| .
Z J

many-valued functlon with branch

polnts at £ = 1, z s -1

[z e [-1,1]} , so we have to make

cuts In the complex ¥e

1C 0 +R

(2.13) J Oe" lktt de= J ++ f + ,
R ABCD "Va 7,'b, s 2

s 2 and s3 are the small clrcles around £= 1 s z , -1,

1-ip1 1-iS

f = J + f - We have analogous expressions for / and f
71 1 -1S 1-ip 1 72
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j

p. Is the radius of (i = 1, 2, 3)*

Since vj/(z,£) Is a many-valued function, the integrals

f , f and f will in general not vanish
7i 72 7.72

From Cauchy'8 resldue theorem we have that

ZttIZR

ZR is the sum of the resldues of the integrand at its poles

wlthin c. The poles of \J/(z,£) are the zeros of D(£)*

III. The solution of the frequency equation.

Since the poles of \|/(z,£) are the zeros of d(Oj it is

of interest to know the solution of the frequency equation

Thls equation is dlscussed in [1], and we will here only give

the results for the cases of Interest to us.

r > T

In this case the order v of the Bessel function involved

9). There is an inflnlte set

satlsfies eq. (3.1). Moreover

-> ± 00 . There exist infinltely

is purely imaglnary, see eq. (2

of real eigenvalues_, , whlch

many eigenvalues withln the regions [-1 -6*0] and [1 +e_,0]

(e > 0)_, regardless of how small s may be.

j> *Kz,Oe-lk?t dC
c

From eq. (2.13>)we can flnd \|r(z,t), by letting R,S -> <»,

and p. 0 .'i

(3. 1 ) D (?) = 0

r > 1 and f -> ± 1 when ns n 1 s n
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The order v is real. There are no elgenvalues.

'IIV. The case r >

As polnted out earlier, we can obtaln \J/(z,t) from eq

order that / and / shall exlst, we must choose the radii

(4.1) f

7, 72 7-j

where ER is a sum with infinltely many terms.

This is the solution found in [1].

Proof:

0<r < ±

(2. 13) by lettlng R,S -> « and p.. -* 0, (l =1 9 2, J>), But In

s 1 s 3

and in such a way that the clrcles do not pass through

any of the zeros of D(£)• If and 0 in thls way.

then f and f -* 0. Also f-> 0 when p Q 0. It is also
s 1 s 2

easy to show that / -> 0 when R,S co, Therefore
ABCD

v|/(z,t) = - SttISR - J

n=-h» .- * +-p -ik£ t
Th 1, - 2tt1ZR = ) an<p p (z - £ n )e , where an (n =(= 0) is

n=-oo

P ? N +1 Vo 2 (u -C)
given by; a [W" - cp ? (-1 - f )]= -2a r / — — —r du =

n 2 n n-1 (u - C\ s n /

t 1f Fk (u) , G lJu) 1 , ,
= (i +T7 - U du

-1 s n ik(u - C n ) J

a o = 0

-1
We wlll first show that the resldue of .at t = fn
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Is given by:

(4.2)

¥e assume that D(C) has only zeros of flrst order.

From eqs. (2.7) we find that D(C) = cp 2 (- 1- £) =-cp 1 (1 - £)•

Let us write:

(4.4)

into eq. (4.6) and substract.

We then obtaln:

Introduclng eq. (4.4) into eq. (4.7), we find

T 2 (z - £ n ) are linearly dependent Solutions, slnce the Wronskian

W(cp r cp 2 ) = D(^ n )W -0. Then we also have:

Differentlåting eq. (4.9) wlth respect to x and z and putting

p  1 1 Vg ( 1 C n )

w 2 - <p 2 (-1 - cn )7 7 n

(4.3) d(c) = 2 (- i- o - <p 1 (i -o]

From eq. (4.5) we obtaln:

SD 1(-d(p 2 (-i-c) dp^i-e)-]
5? = 2[—S? 5c— _

From eqs. (2.7) we flnd;

(4.5) = - cp/ (z - O + f( z .£) - M7r_ilg( z . ? ),

(4.6) = - cp 2 ' (z -O+ 3gl1 a ~ .0 f(z -O - Ml^Jlg ( z .

dcp. (z -£ )
where cp|(z - £) = as before, (i = 1, 2). We put

z = 1 into eq. (4.5) and z = -1

3cp 2 (-1 -?) Scp (1 -£)

i ) — - ?) - <Pg (-1 ~ O +g^

(4*8) = " £ ) " 1 ~ O

When £= C n is an eigenvalue., then cp 1 (z -£ ) and

(4.9) <P r(x - C n )cp 2 (z - ? n ) = - Cn )cp 2 ( x - Cn )
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(4. 1 i)

Introduclng eqs. (4.11) into eq. (4.10), we obtain

(4.12)

where it is supposed that cp p (-1 -£ ) 0 * which means that

cpg(z - £ ) has a simple zero at z = -1.

Comhining eqs. (4.8) and (4.12), we obtain

which is equlvalent to eq. (4.2).

Differentiating eq, (4,9) wlth respect to z and putting

z » -1 , we obtain:

Uslng eqs. (4.2) and (4.13)* we find that

It remains to prove that

x = -1 and z = 1 we obtaln;

(4.10) <p’(-1 - e n )tP2(l - C n ) = <p!|(1 - - ? n )

But
f

«Pi(-1 - O = g(-i - - O - f(-i - C)g'(-1 - 0= - w(f,g)

K ,
<P 2 ( 1 -O = g(1 - -O - f(i - Og’(i -O = - w(f,g)

V

- C n ) = r ,1 "

,SD, " 2 - *2 2 <-' -

37 w ‘ 4<-' - t„) ’

(4.13) tp 1 (x - ? n )q>2(- 1 - C n ) = - ? n )'P 2 (x - C n ) =»

=* - c n ) r-—— 9 2^ x  
<P 2 (-1 - ? n )

n=+oo p , 2
- 2rri2R = E a ~ wlth a nJ W ' “ 1 "n~-oo

_ lk(u - C)
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+1 2 / fe, \

("~ y a„ .
-,J (” - r

(4.14)

in order to show that QttISR Is the solutlon found in [1],

We have that

We multlply eq. (4.15) wlth cp 2 (z - £ n ) and integrate

between -1 and +1. We obtaln:

where we have used the boundary conditlons (1 - t ) =2 v s n 1

CP2^“ : “ =Oo Eq * is equlvalent to eq. (4.14), and

so The 1 is proved.

is uniform

convergent with respect to z, and can be dlfferentiated an

Proof:

Let us first flnd an upper and a lower bound to £ The

elgenvalues satlsfy following relation, see [1 ] :

[W 2 - 922(-1 - ? n )]

/ v " , o rcp 0 (z - C )
(4.15) cp 2 (z - ? n ) - k 2 cp 2 ( z -C) + -1 «1 = 0

(z - ? )

+ 1 ' ,
r Cp 2 Cp 2 dZ

VJ (z - C =-1 v sn y
(4« |c>) 2 “ £ n ) ” 1 “ C n )

+ 1 2
f C,°2r / =r dz

-i ( z - en )3

n=+oo -lk£ t
Tho 2. The serles T, a roJz - f h nnv 2 v srrn=-oo

time wlthln every closed region Qc=

1 0 M-ln (|‘ _1 ) + arg J. (k2 (£ + 1)") - arg J. (k2 (£ - i) 2 )L * M-'

= n7T j>

where \i = lv = (SJr-~-T has been used.

is an analytic functlon of the argument, see [1]
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(4

Therefore the expression wlthln the _.b racket to finite

limits when n-> ±oo, l.e. t -> ±1, and for all values of n

we may put

Introducing eq. (4.18) Into eq. (4.1?), we obtain:

Let > 0 be chosen so large that an - > 0,

an - p 2 > 0 for n > When eq. (4.19) is solved, we

obtain:

(4.20)

If N 2 > 0 is chosen so large that an - <0, an - p 2 < 0

for all n< - N2 , we find that

Let us examine a . Assume that and the 1 •order

derlvatlve of are bounded for z e [-1,1]. We have

22)

*) It is not necessary to assume that has a 1. order

derlvatlve for z e [-1,1], see Appendix.

(4.18) Vip, < [arg J llx (lc2 (? + 1) 2 ) - arg J.-^k - i) 2 )] < m-P 2

5

(4.19) an - P 2 < ln(-^-n-  —-[) <an - (3 1 , where a= -

an-p 2

5SH^±1 <«n<^i±1 (n> Nl )
e -1 e -1

an-p 2 ctn-p 1

( 4 - < < ean-f?7 1 ~ N2>
e -1 e -1

+r1 F, (u) G, (u) +r1 F, (u)
7 [ 1u-TT + 7“v?)ip 2^u "^n )du = g(l ' en )/[F^r:Jr(u‘ ?n ) +j7 v sn' _ 1 n

+ ( U-Sn ) + k2Gk (u)f(u-?n )]]du -

Jlrél— e(u-Cn ) + (Gk (u)g (u-Cn ) +
-1 11

+ k2Gk (u)g(u-g}]du - T-F[G1C (1)W - Gk (-l)<P2(-1-«n )] ,
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where we have used that

We observe that the last two integrals In eq. (4.22) exlst when

n-* ±coj i.e. C n -» ±1. Let us flrst conslder the case:

Taking Into account eq. (4.22), we flnd that

 
n ikr W

Therefore we have:

(4.23)

Using eq. (4,20), we flnd:

That means

(4.25)

aq, *
2

»» , o rcp 0 (z - t )
<P2 (z -C n ) - k <P 2 (z -? ) + 5- = 0

2 n ( z - ?n ) 2

n -> oo, i. e . C 1.2. =41

an | M for all n > 0.

If Gk (l) =0, lt follows from eq. (4.22) that |a | 0
- n

as (C - 1) 2 when n-> oo .

We also have:

(4.24) |cp 2 (z-^n ) | 4 (Cn -1) 2 M Q for every z e [-1,1] and all n>0

ff* _ 1 \ £; __ 1 / ,
n an-pp an~(3p ' -an+(3 Q (n > N,j )

e -1 e 1 - e

-an+(3 p
But 1 - e > i for n> N,

_ an

(?n - 1P < Se”2"

Taking into account eqs. (4.23), (4.24) and (4.25), we flnd that

!f1 -ikf’ t f, 00 _an
12. anMz “U e nI " |an l MQ e 2 =

n==p n=P P p 2
T"

= 2MM O
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It remalns to show that the series in eq. (4.26) can be dif

ferontlated term by term for every z e Q a From the

theory of series we know that we can differentiate a convergent

series term by term if the resulting series also is uniform
92 ( z - Cn)

convergent. For every z e Q and all £ , r—
(cn - 0 2

within the closed region [z eQ, 1) in th£ x£-olane
9o( 2 " O

But x can be differentlated wlth respect to z any
(c - 1) 2VS n '

time within this region, and the derlvatlye is agaln an analytic

functlon. Therefore:

This relation is equlvalent to eq. (4.24), and the proof of

uniform convergence for the series which is obtalned by diffe

rentiatlng eq. (4.26) term by term, proceed as above.

In conclusion we can therefore say that the series in eq,

(4.26) can be dlfferentlated any time with respect to z e Q.

From eq. (4,22) we obtaln:

where p = ,,

That means:

oo -iki£ t
(4.26) Sancp 2 (z-^n )e n is uniform convergent for z e [-1,1]

\v2 ( z - ?n )l
is an analytic functlon. Therefore —i å jyi , where

(? n - i) ? i

M q can be taken to be the maximum of / z ~ £n )l/(Cn "1 ) 2

q> ? (m) (z - ? n )l * (C_ - for z€ Qjd n n m and all n > 0.

Next let us consider the case:

n->-oo i. e. t -1 .1 sn——.—
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Also:

Taking into account eqs. (4.21), (4.2?) and (4.28), we
1 -Ikf t

find that the series 2 a n cp 2 (z -Me and all itsn=-oo

derivatlves are uniform convergent wlthln every closed region

c= This is proved as above. And so Th. 2 is proved.

It is to be noted that the series in Th. 2 cannot be

differentlated term by term for all z in the region [-1,1]

This is shown by a simple example:

Let us dlfferentlate the series in Th. 2 wlth respect to

z s and let us put z = 1. ¥e then observe that the series in

eq. (4.26) is divergert, since cp 2 (l -£ ) = -W.

Proof:

4 • 7 1 1-i0O 11 — loo

/. Into this Integral we introduce q , given by £ = 1 - iq1
as a new variable. We obtaln:

G k (-1)
a n = — , sinoe |tp p (-1 -C)\ -» ~ when f -*-1.

lkr<p 2 (-1-e n ) in n
Therefore:

(4.27) |a n | < M(-1 - n ) 2 for all n< 0

(4.28) |cp 2 (z - £ n )| sM o for all z e [-1,1] and all n< 0

Th 7. The contributlon to \j/(Zjt) from the Integrals along

7 >| and Is damped out at least as fast as when

t —> 00 .

1 1 -ioo
We have that / = / + / Let us examlne the integral





16

(4

00 z-1 +irj

-g/.-iw-w ,2 ( 2 -trtn) J

29)

where

(4.30)

(rj) is a regular functlon of rj except at rj =0, and it

has no zero for r\ € [0,°o], We have that

(4,31)

Let us put P (z,t)
0 6 6 oo

P (z,t)(4.J2)
< +

0 6

Using eq. (4.31) we obtaln

6 6
dh]

m(6 ) (ku) 2|(kp+ ik) 2 1 l'w
s UF,/ e

kTjt(4.33)
0 0

z-1+lrj iq

(. . . )dv

Moreover

(4.34)

Let us flnd the asymptotlc hehavlor of the integral in eq.

(4.33) for large values of t.

We assume that Fk (z) and Gk (z) are analytic functions

x cp 1 (v)dv + cp 1 (z-1+lii) J X (v+1-in, 1-in'92^ v^dv J
z-1 +iri

re
1 1

D(1 -Itj)== g(iT])f(iri-2)-f(iTi)g(iri-2) - (kr^)^(kr]+2ik) 2D 1 (*n)

< cp (z- 1 +±t\ )~ g(lrj-2)f (z —1+lri) - f (irj-2)g(z-1+l ,n)

cp 2 (z-1+iT] )= g(ir|)f (z-1+iri) - f (ir]) g (z-1+lr^) .

D 1 (n) I - m (6) > 0 for r\ e [0,6] (6 >0)

(5 00

p(z,t) = J + y . We then have:

X 1 cp 2 J(. . . )dv + cp 1 J (
-2+1 r\ z - 1 +lr|

/! - .(.-**6
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z-1 -fin
f l(v + 1 - ip, 1 - i , n)cp 1 (v)dv is an analytlc function of p.

- 2+lp

Moreover in the vlcinlty of p = 0 we have:

lp oo 1 oo

f I (v+1-ip, 1-lp)cp 2 (v)dv=g(lp) V a n (z)p n +p 2 Yb n p n

(4.35)

wherø a n ( z ) and c (z) depend

thelr derlvatives at z, and b9 n
and their derlvatives at

Taking into account eqs. (4 70) and (4.35), and using

Watson's lemma [3], we find that the integral in eq, (4.33)

— 1 /2
d Q in eq. (4.35) that contrlbute to the term of order t x .

It is also easy to see that the contributions to the

veloolty fleld and the vorticlty field from the integral along

The calculations are carried through only for the Integral

along But the same result is obtained for the Integral

along In this case we introduce p., given by £ = 1 + lp,

as a new variable., and proceed as above.

*) This is of course no necessary conditlon in order to prove
Th 3 -Th 6. But with this assumption we can obtain the asymp

\
totlc serles for f in the case r > , and for / 9 f and /

7 2 1 7 2in the case 0 < r < .

**) We say that a function is analytic in a region if lt can be
expanded in a power serles.

of z e [-1,1]. J ' Then the Integral

z-1 +ir] n=0 n=0

00 1 CO

f (in) n ( z )n n + n n n n >
~n-0 n=0

on and and

and d n depend on and

z = 1 .

-1 /2is of order t ' when t -> co . It is the terms wlth b ando

-1 /2
are damped out at least as fast as t
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(4.38)

V

_z/2
Th 4. The Integral along Is of order t when t -» qq

The contrlbutlon to the veloclty fleld from thls Integral Is
-1 /2of order t 7

Proof:
z z-ioo

We have f - / + f , where z is assumed to he an
7 2 z —ico z

Z-loo

interior polnt of [-1,1], Let us conslder the Integral f
z

We introduce rj, given hy £= z - irj, as a new variable Into

thls Integral and obtaln;

(4.36)

where

(4.37)

1 /2
The contrlbutlon to thø vortlclty field Is of order t

oo Irj

0 -1-z+lrj

1 -z+lrj

x cp 1 (v)dv + (irj) Jl (v+z-irj, z-lrj)cp 2 (v)dvj- .
iT]

D(z-irj) = g(1-z+irj)f(-1-z+ir]) - f(1 -z+iT])g(-1-z+iri)

cp 1 (iri) = g(-1-z+ir])f(ir)) - f(-1-z+irj)g(lT])

cp 2 ( ir l) = g(l-z+iT])f(iri) - f(l-z+lr))g(lT])

In the vlcinity of rj = 0 we have that

IT] oo oo

Jl(v+z-lr\,z~±T])cp ] (v)dv=g(-1 -z-KLrj) a 1n ri n +rf^~ V
~ 1 ~ z+1'Q n=0 n=0

00 00

f (-1 -z+lri) Vo 1n T) n +r|" 5+v Yd 1n ri n
’n=0 n=0

1 -z+irj oo oo

Jl O+z-ir} ,z-iri)cp 2 (v)dv=:g(l-z+l'n) V
irj n=0 n=0

00 oo

f(1 -z+in) [ 2n n n +n‘ i+v Vd 2n ri n ] ,
n=0 n=0
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where

a 10 Pf

(4.39)

c 20 ~ Pf

where Pf. In front of the integral slgn indicates the flnlte

part of the Integral, (see [4]).

Moreover

Taking into account eqs. (4.40), we find that

(4.41),

is an analytic function of r\ in the vlcinlty of r\ = 0.

Therefore this term in the integral in eq. will not

contrlbute to the asymptotic series for / , and is of no
•Vp

interest. The term that contributes to the asymptotic series

for f , is the following one:
7 2 '

(4.42)

rV(v+z) G k (v+z)
j { -Tk? f^dv *-1 -z

r 0 P, (v+z) G, (v+z)
c io = pf - J(— iw )g( v)dv *. K! V- 1-z

r Z F, (v+z) G, (V+Z )

a 20 = Pf - V72 ,
0 K

1 ~r“F. (v+z) G, (v+z)

/l-TE ,
o K v

(4.40) b 1n - b 2n , d 1n - d 2n (n 0, 1, ...)

00 00

tP 2 (ln)|g(- 1 - z +i T l) l l’' 1? " V Yb-in 1 ! 11 - f (-1-z+lfi)n= +v 1n n n | +
0 0

S 00 co

f?! (lTl)|g(l-z+in)n'^" V yb 2 n r > n  f (l-z+lT))rf 2+V /J 5 2n T i ri }
‘o J 0

00 00

9 2 ( iT l)|g(- 1 -z+i'n) 2_j a 1n^ n " f (- 1 “ z+iT ]) 1n Ti n } +
a>° oo 0

cp 1 (lrj)|g(l-z4-ir]) 2n ri n -f (1 -Z4iq) *
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We introduce the expresslon (4.42) into the integral In eq.

(4.36) and flnd the asymptotic behavior for large values of

uslng Watson's lemma. The flrst term in the asymptotic

series is found to he:

(4.43)

where F(x) is the Gamma function.

Expression (4.43) is only a part of the first term in the
z

asymptotic series for f . The Integral f contributes with
z-i 007 2

an analogous term. This term is

remember that f(irj) and g(lrj)

Th 4 follows from expression (4

purely imaginary in this case.

43); remembering that v is

In sectlon III lt is pointed out that there is no elgenvalue

in this case. The stream function is therefore given by:

(5.1) -

t -> <». The contrlbutlons to the velocity field and vorticlty

field from these integrals are also of order t v .

. -ikzt r

- HwdTzT lim o |[g(-1-z)a 10 -f(-1-z)c 10 ]

x[g(l - z) r(|-v)t-5/ 2+v -f(i-z)_£|i3J- r(|+v)f 5/2 - v ]

- f( - 1 ~ z) (k ffik; r(|+v)t-5 /2 - v ]j ,

easlly foundj but we must

have branch-point at r\ = 0,

V. The case 0< r < 9 i.e. 0 < v< — 

7 1 7 2 7-5

Th 5. The integrals / and f are of onder v when
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Proof:

We examine the Integral in eq. (4.29). E)(1 - th) is an

analytlc function of q except at q= 0. But D(1 - iq)/f(lq)

tends to a flnite value =)= 0 when q ->0. Taking into account

eqs. (4.30) and (4.35), we flnd that the flrst term in the
1 -ico

asymptotic series for f is given hy:

The integral f contrihutes with an analogous term to tho
1 -ioo

asymptotic series for / . A correspondlng result is ohtained
'Yl

for f , and so Th 5is proved.

7 3
If -- 0 then b Q = d Q = 0, and the leading term in

the asymptotic series will be of hlgher crder in t.

The contribution to the veloclty field from this integral is of

order t~^^ +v s and the contribution to the vortlclty field of

order

Proof:

The results follow from expresslon (4.43), remembering that

v is real and positive in this case.

Concluslon.

In additlon to a discrete spectrum of elgenvalues there

exists a contlnuous spectrum as well, which has to be taken into
1 1

account. This is true also for the case r > . (For 0 < r< T

there is no discrete spectrum of elgenvalues, )

For r > 0 we have found that the part of the veloclty

1

( .o) l.e- lkt V 2 " 0 r(^+v) ..J b lim d V-1/2-V
(5 } 2^W iF2T -2T72+vl o n _^ 0 f(lTl)n 2v oj

1

Th 6. The integral / Is of order t when t-> <».
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field which is due to the continuous spectrum, tends to zero

Therefore the energi associated with the perturbation is
A

either flnite (for r> j) or will tend to zero

For r < 0 preliminary investigations have shown that

this part of the velocity is of order t , and will

therefore become infinite with t.

Concerning the vortlcity we have

y

The vorticlty becomes infinite with t for all values

of r.
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(for 0< r <  £ ) when t oo.

for r> -- V^i)/ = 0(t when t oo ,

for r= —• = t)
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that

Let us

[-1,1]

± 1

that lt Is not necessary to assume

onder derlvatlve to obtaln :

G k (-1)
when n - oo

lkrcp 2 ' (-1-? n )

The followlng proof is suggested by Dr. J.N. Tjøtta.

We have:

(A2) a.

Let us write:

where |cp 21 (z - C n )l < M for z g [-1,1] and all n

assume that and are bounded for z g

Moreover is assumed to be continuous at z =

Due to eq. (Ap) we have that

M is a constant independent of e and n.

G k 0) >,
a n - IkFvr when n 00 *

+ 1 Fi, (u) G k (u)
f + 7 -j}<p 2 (u-? )du

-1 Lj n' ik(u-£ ) n„ v '
'n 772 '2 / , ~7 ~

W - cp s (-1 - e n )

(A3) cp 2 (z - £ n ) = (C n - l) 1//^(C n ~ z) 1//2 tp 21 (z - £ n ) ,

Let s (0 <e < 1 ) be given., and let us write

+J n ( u ) -1+81-8 1

(A4) / ')"2 + (U - + )dU =/ + /+ /
-1 1 + ' -1 -1+e 1-e

V e G (u) M 1 I C -1 I 1//2
(A5) | J 2 - - U du ' -~1 72 for a11 ne
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±1 ,

Then

(A 6)

Let <5 be given. Slnce G k (z) is continuous at + z

we can choose e(6) so that

(AT)

(A8)

Also

Moreover

where we have that

(Al 1 )

i i 2
¥e can flnd N(s) > 0 so that |£ n “ 1| < e

n > N (e).

1 “8

| < M^ 1^2 for n> N (e).
i+e

G k (z) - G k (l)|< 6 for (z - 1 | < e(6)

We choose e<6 2 . The relation (A?) is still valid. From

eq. (A6) we obtain:

1-e

j (...)!< M 6 for n >
-1 +e

r G i,( u ) , rVp(u-C)
(A9) 1 / -cp (u - C )du-G k (l) /-£ -5-du < M 2 6

1- J e ( u -e n ) iV^r/

r Q ) /| r II Q

(Al 0 ) J — §- du =- - Jcp 2 (u - e n ) - k cp 2 (u - C n )}du
1-8 1-8

t 2 r
- ~{w - - - s)3 +“T j 9 2 ( U - C n )du ,

1-8

1

I J cp 2 ( u - £ n ) du l < M 3 5 >
< 1 “ £

lcp 2 ( 1 -C n - e)|< M 4 6 for n > N^å).
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Also

(A 1 2)

and

(A 1 3 )

Taking into account eqs. (A4)

that

when n oo.

In order to investlgate an when n -<», we study the

expresslon

(A15) when n -oo.

The proof is analogous to that above.

~\+e G, (u)
/ o 9p(u - C n )du| < M,-6 ,

J (u -e ) 2 2 n-1 v sn'

y f, (u)
I J Ju~7~r~y ‘ n )^u l < M 6 5 for n > N 1^ 6 ) *
-f " n

to account eqs. (A4) - (A13), we obtain from eq. (A2)

_
an ikrW

(A14) |Cn+l| 1/2 /-jL——2 V 2 (u-Cn )du = I ?n+1 il/2( / + ,/ + i )
-1 -1 -1+8 1-e

¥e find that

M- 1 )

n lkrq>2 (-1 -?n )
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