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Abstract.

Startlng from a basic set of equations descrlbing

irreversible flow in magnet ohydrodynamics,, general equations

governing the generatlon and transport of vorticlty are
obtained. These equations are solved by applying the method
of successive approximatlons. Diffusion effects are accounted

for in a first linearized approximation. To a second

approximation it is then shown that the oscillatory motion

within the boundary layers near a vibrating plate will generate
steady circulations in the fluid. It is also shown that the

absorption of magneto-acoustlc wavebeam of flnite amplitude
leads to formation of a steady vortex motion.

*) To be presented at the 11th International Congress of
Applied Mechanics, Munich 1964.





I. Introduction.

The many non-llnear effects In hydrodynaraics, arlslng

from the non-linearlty of the governing equations of motion,

wlll also appear in magneto-hydrodynamics. However, they

may be more or less modlfled by the electromagnetic flelds,

and in addltion some new, purely hydromagnetic effects may

occur.

In thls work we shall study a non-llnear effect, which

in a non-conducting fluid is known as acoustic streaming.

In acoustics there are two klnds of such streaming. One

occurs near solid boundaries oscillating in a vlscous fluid or

near a boundary with which a standing sound wave is allowed to

internet; the other kind of streaming is produced by the

interaction of a free progresslng soundbeam with the surrounding

fluid. In the latter case, the linearlzed motion wlll be

irrotational, whereas the flrst case is characterlzed by håving

a rotatlonal flrst order solutlon in the motion of the viscous

fluid near the solid boundaries. The acoustic streaming cannot

be explained from the linearlzed equations of motion, as the

oscillatory Solutions of these are equal to zero when averaged

in time. The explanatlons are found in the hlgher apprcximatlons

of these equations.

The present work is a theoretical study of a simllar

effect in magneto-hydrodynamics. First we derlve generell

equations governing the generation and transport of vortlclty,

and glve a short discussion of these equations in general.

Thereafter two examples are worked out in detall: (l) the fluid

motion near a flexible membrane vlbrating, with finlte amplitude

in a uniform, external magnetlc field, (il) the flow generated
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by the absorption of a magneto-acoustic wave of flnite

amplitude propagating perpendlcularly to a uniform, external

magnetic fleld. In the last case the linearized motion is

irrotational while in the first case the linearized motion

is rotatlonal near the membrane. For more general cases in

magneto-hydrodynamics the situation is more complicated as the

propagation of V x v and V* v in the linearized approximation

are coupled to each other.

II» Basic equations.

The starting point wlll be the following set of equations,

descrlbing irreversible flow in magnetohydrodynamics:

(3)

(4)

Here v denotes the fluid veloclty, p the density, p

the pressure, E and B the electric and magnetic fleld

respectlvely, and the current density. Purther, q and

K are the coefflclents of shear and bulk viscosity

respectlvely, and a is the electrical conductlvity. The

magnetic permeabllity is taken to be that pertalning to free

space, l.e. \x = p, Q =4. 10 . The ratlonalized MKS

unlts are used in all equations.

This set of equations is, of course, not complete before

we have speci fied the heat-exchange equation, an equatlon of

State, and the coefflclents q and o , but for the moment

(1) §+ P V-v = 0 ,

Dv
( 2 ) = ~V(p-/c div v--T] dlv v-vVr]) +|j,v v+Vx (vxVp,) B

dB

® = s VXE = - , V*B = 0 ,

= a(E + v x B)
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these equations are not needed.

where Bq denotes a uniform,, tlme-independent external fleld

By aPPlylng well known vector identltles, we can now

readily derive dlfferential equations governlng the fluid

vorticity and the magnetic vorticlty.

From Eqs. (2) and (3) we obtaln:

(6)

+ ~[V2vxVri-v;xV2Vri+V2 (vxVri)-VV.(v;XVri)+V2ri Vxv]

From Eqs. (3) and (4) we obtaln:

(7)

Some conclutions can already be drawn from these

equations. All terms on the right hand side of the equations

(6) and (7) are of second or higher order in v. Vp, Vrj and

Va. Let us neglect these terms and take r\/p and o to be

constants on the left-hand side of the equations, and assuming

for a moment that all magnetic fleld is produced by the motion

of the fluid, i.e., we put Bq =0. Then we obtaln llnearized

dlffuslon equations, and the well known result that the

propagation of llnearized vorticity in v and b, for the

( p v2‘Je-)Vx!+ = 1Tx

1 P ri
+—o‘ V7xI+5ox7V'- = VxVx (bxv) +

+ irXM + x [-5o' ?v+(V.v)30 ]+ ]
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"oase -of no - ext-emal field,--depends-- onTy orv- the-kinematdo

shear vlscosity and the electric conductivlty, respectively.

Further, no generatlon of linearlzed vortlclty can take place

in an unhounded space where there is no external magnetic field

However, the non-linear equatlons (6) and (?) show that

higher order vorticity can be produced in an unhounded space,

and an external magnetic field will nearly always lead to

generation of linearlzed vorticity. For an incompresslble,

electric conductlng fluid, however, the vorticity in both

v and b will, even with BQ = 0, remaln equal to zero in the

linearlzed approximation, if both were zero at a certaln time.

In the following we shall see examples of non-linear

vorticity generation. The method of successive approximation

will be applied in solving one basic set of non-linear

equatlons and the derlved vorticity equatlons. We set

where the subscrlpt indlcates the orders of magnitude, the

flrst order being the linearlzed solutlon. This we insert

into our equation and study the Solutions to second order.

For all first order varlables we

dependence with frequency go.

equatlons will then generally be

2go, as well as terms independent

will modlfy the maln osclllatlon

assume a harmonic time-

The square terms in the

terms with double frequency

of time. The former ones

with frequency w, while the

latter ones generate steady vortex motion. We obtaln general

vorticity equatlons govemlng this steady second order motion

V = 0 + V,j + Vr) 4*

(8) P = P 0 + P 1 + P 2 +

B= B +b, +b0 +— —o — 1 —d
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by substltuting Eqs. (8) In Eqs. (6) and (7) and taklng the

time-average. Furthermore, we note that

and from the equation of continuity we find

0°) V’<v0> =- — V<p, v A

where < > indlcates that the average in time is taken. When

adjusted so as to satisfy appropriate boundary condltions, the

solution of our time-averaged equatlons completely specifies

the steady second order velocity, CvVjX iftterest

to note that this steady velocity fleld is not, in general,

divergence-free when as here specifled in Eulerian coordinates.

In a Lagranglan description, however, it turns out that the

generated steady velocity of second order will always be

divergence-free. (See Westervelt 1953 -) 1 Therefore, we obtain

a more convenient set of equatlons by using the latter

description. In experlments the steady velocity field is

observed by traclng small particles following the flow, and

the velocity observed will therefore be the Lagranglan one.

transformation to a Lagranglan reference system before we compare

our result with experlments. The transformation is given by

( 11 ) <X2>L = <v2> + <(/v 1 dt) • W,j> .

In fluid mechanlcs a transformatlon of this kind has shown to

bring the theory into good agreement with experlments,

1) Westervelt, P.J.: J. Acoust.Soc.Am. 25,60 (1933).
2) Skavlem, S., and S. Tjøtta: J. Acoust.Soc.Am. 27,26 (1955).
3) Raney, W.P., J.C. Corelll and P.J. Westervelt: J. Acoust.Soc.

Am. 26,6(1954).

(9) V•<bg) = 0 ,

V '<12> = *~~ V-<p, V > ,'O

If we have computed <v 2> we must therefore make a
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IV. Two dimenslonal streamin

We now proceed to discuss in more detall the two dimenslonal

streamlng generated near an insulating plate vibrating with

flnite amplitude in an incrompesslble MHD fluid. The motion

is assumed to take place in the (x,y) plane, and for the

magnetlc field we put

where is the unlt vector in the y-direction. The functions

'F = ¥(x,y) and cp = cp(x,y) are introduced by

(13)

and thus

e3V2? ,
V x v

(14)

The vortlcity equations (6) and (7) now take the forms

de) v2 - 2q, +Bo V2f =[V x V x(v Xb)] e3 ,

where we also have assumed all dlffusion coefflcients to be

constants. Furthermore, we also need the following relatlon

between v and b obtained from Eqs. (3) and (4):

(12) B= B„ e, + b ,— o —2 — 3

v=V x {¥ e5 ) ,

b = V X (cp ,

V x b = - _e^V^cp

(15) ( p V2 - + = *

( l6b ) (ps v2 - +B0 v=-Vx (v x b)





7

Eq. (16) is obtained by taking the curl of this equation.

1. First approxlmation.

As a first approxlmation, we take the solutlon of the

linearlzed equations, whlch we obtain by neglecting the right

hand side of Eqs. (15) and (16). Purthermore, we assume for

the first order Solutions,

(17)

are Solutions of the following

08)

Here

(19)

k = wavenumber and co * frequency with which the plate

vibrates.

(20)

Boundary conditions for the first approxlmation.

The boundary conditions for this first approxlmation

are taken to be

-q.y+ioyfc
*= 2 Ci cos kx e J ,

J J

-q y+lcot
cp 1 =2 K. cos kx e J ,

J J

where q .{j =1, 2, ... ,5)

characterlstic equation in Q

{7/ - q2 )(722 - Q2 ) * 7j 2q 2 (q 2 - k2 ) = 0 ,

2 i 2 Ico /.2,2 ico / „ 2 aco n i
7 1 "k + ’ = k' + /v* > =r-, v = 3,v*= 1

a- — ,(3 = —1~ ,e = ,e* « lå^L
PM. v co iiav co a)

The coefficiønts Kj are related to Cj by Eq. (16b)

v _ o J „ • 1 /_ 2 ,2\
KJ “ * aJ "x“ -03 («j - k )

(21) v 1x =0 , v 1y 4* v Q sin kx e la)t for y= 0 ,



*  ;

j ‘ o
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vo beln6 the velocity amplitude of the plate,, and further

that all effects from the boundary shall vanish for y -» oo.

For the electromagnetic fleld we would in general have the

conditlons that E and — should both have contlnuous

tangential components at the boundary, and in addltion that the

normal component of B also should be continuous. We shall,

however, here assume p = in the plate as well, a

consequence of which is that B must be continuous at the

boundary. Extension to other cases can readily be made. For
y - 0 we then have

Not all Solutions in q are relevant, as we require the

effect from the boundary to vanish for y-> oo. From Eq. (18)

we can besldes the root = k only use the two roots, say

q 1 and q2 > håving a positive real part.

The boundary conditlons thus impose the following

relations between the constants C. and K
3 J J

Assumlng vQ , Bo and k flxed, Eqs. (20) and (23) determlne

b Q , C 1 and K..J o

Before we proceed to dlscuss some llmltlng cases, we note

the following expresslons for the fluid and magnetlc vortlclty
of first order

(22) B = + b Q e 1 oos kx eky+icot + sin kx eky+ltot ,

whlch satlsfles V-B = 0 and Vx B = 0, and gives b. -> 0

for y - oo.

j5i qj c j - 0
V

. zc. = -
(23) J k

2 q K. = b
J J o

b
2K. = -

J k



~ ,Am h r
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f(24) Vct|/ 1 = C 2 (q2 2 - k2 )e (^(q^ 2 - k2 )e cos kx e iCOfc

Far outside the boundary layers with thlcknesses 1
A

and (Re(q2 )) we have

and therefore no coupllng between the fluid motion and the

electromagnetic field. Near the boundary,, however, the

motion is greatly changed due to vlscosity, and here the

motion will also be affected by magnetlc field. Requirements

which must be satisfied in order to have typical boundary

layer effects are that Re(q 1 ) » k and Re(q2 ) »k.

Since the boundary layers play a dominant role in the

dlscussion of acoustlc streamlng, we shall dlscuss the roots

q1 * 0.2 versus k for different limiting cases of the

parmeters a, {3 and e . Other limiting cases have already

been discussed by Kildal in a previous For cases

with k = 0, Hide and Robert have given a throughout

dlscussion.

We commence our dlscussion with the case

1) P »1, a « (3 , e* « 1.

4) Kildal, A.: Z. Physik 1?2, 49 (1965).

5) Hide, R. and P. H. Roberts: Rev. Mod. Phys. J>2, 799 (1960),

(25) V2cp 1 = [K2 (q22- k2 )e'qiy+ K 2 (q3 2- kx e ,

Vx v 1 = 0 ,

vX b 1 = 0 ,

Llmlting cases.
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This is a case with low conductivlty and weak magnetic

field. Two waves are generated near the plate, one with the

well known penetration depth 6 in hydrodynamics and

one with the analogue magnetic penetration depth = 5 >T(3

Both skin depths are small compared to the wavelength. It is

only inside these non-steady boundary layers that the first

order fluid motion is influenced by vlscous and magnetic

forces.

2, (3 «h’1, a « 1, s(B « 1.

This case of high conductivlty and weak magnetic field leads to

results in quantitative agreement with 1,

This is a case with a strong magnetic field. One Alfven wave

is generated at the plate. The penetration depth is

q 2 ~ 1 + 1 + 1 -i)(e + p)

% ~\f 1+ 1 + “i) ( £ * -p)

q 1 ~\l '2V* +1 + terms of hlgher orders) ,

q 2 = ( 1 +1 + " " " ) .

3. (3 » 1, - » 1 . ejB « 1

fco ct / „ . 6 \
. , q 1 -\/ v F ( + 1 ’

(26)

q 2 = (i + ? Pe + 2

(?) ,/2 <»•+i r'
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To calculate the second approxlmatlon in thls case we need

to know and q2 to a rather high approximatlon in e,

a and (3 . Numerical results show one circulation for the

secondary flow.

2. approxlmation.

We now pass to the second approximation and find that

the steady flow field is governed hy the following set

equations:

(27)

where now all variahles refer to the time-averaged second order

quantlties, and P and Q are the time-average of the square

terms in first order quantltles, heing determlned when \j/ 1 and

of Eq. (17) are known. Thus P and Q are the force

terms that drive the streamlng. By tlmeaveraglng of the

vortlcity equations (15) and (16) we find that the source

terms in steady vorticity equations are given hy Vx P

and V x Q, whlch vanish outside the two non-steady boundary

layers. The source terms are proportlonal to sin 2k x.

Håving assumed v'Cv 2> =0, we therefore ohtaln as the result of

the second approximation, a steady motion consistlng of a

series of vortices periodic with respect to x wlth perlod

7r/k. We have also computed the transform given in Eq. (11).

Near the plate the difference hetween the Lagrangian velocity

2^>L and the Eulerlan one is conslderahle.

In the numerical calculations the velocity is made non-

Vp =P + I(v x <b 2>)x B0 +T) V2<v 2> ,

0=Q + Bo <v2> + V2 <b 2> ,

V'<v2> = 0 ,

V-<b 2> = 0 ,
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dlmenslonal by divlsion by -g—j /— and the x-dependence is

supressed. The physlcal dlstance y Is made non-dlmensional

by dlvision by the non-steady boundary layer thickness

S AC = \fs • ,

for dlfferent values of a deflned in Eq. (19).

We see from the curves that the steady boundary layer

thickness defined as the value y where c^an S es

directlon varies wlth a. To see the varlation In detail.

We also give (in Fig. 3) a set of curves showing V y
vs. z for dlfferent values of e from which we learn that

been given. For cyllnders oscillatlng in a non-magnetic
<5 pc

fluid, universal curves showing vs * c yl^ n^er radius
«. 2, 3. 7,8))are well known. ’

If V does not change direction, only one clrculation

is formed. This always takes place when e or a /(B becomes

sufflclently large.

Other cases are discussed in a paper by one of the

authors (Klldal^).

In the case of a vibrating plate, we find that the non

steady boundary layers decrease in thickness with increaslng
1

frequency as ocT 2 . Furthermore, to a second approxlmatlon we

7) Holtsmark, J., I. Johnsen, T. Sikkeland and S. Skavlem:
J. Acoust. Soc. Am. 26,26 (1954)

8) Olsen, T.: J. Acoust. Soc. Am. 28, L (1956;
9) Kildal, A.: Årbok for Universitetet i Bergen. Mat.-Naturv.

Serie 1964, No. 8.

./v .
/v 2

In Fig. 1 we show V y = v 2y^lV versus z = y / 6 AC

a curve (Fig. 2) showlng versus a has b een drawn.

6 DC r
depends on e. A curve giving vs * as

5. Effect of compresslblllty, expandlng waves.
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3

find that the generating steady volume forces P and Q are

non-zero only withln these non-steady boundary layers. In the

limit of very high frequency we therefore find that the steady

flow of second order is generated in a vanishlng thln layer

near the plate. the inner flow system becomes very thin and

the flow velocity decreases with increasing co, the other

parameters being constants.

So far we have assumed an incompressible MHD fluid. We

have also studied the effect of compressibility on the

generation of second order streaming in general. In the case

of a vibrating plate discussed in the precedlng section, thls

effect will only slightly modify the general flow picture for

low frequencies. Inclusion of compressibility, however, leads

to generation of expanding waves, and at frequencies in the

ultrasonic range, it turns out that absorptlon of these waves

may lead to a steady flow of second order.

We shall here study an example of a MHD wave propagating

perpendicularly to a uniform external magnetic field. Linearized

we then have a longitudinal magneto-acoustic wave with phase

velocity

where a 1

is the sound velocity. Since we take into account diffusion

effects, the wave will be attenuated, and we shall see how

this leads to generation of hlgher order vorticlty.

In the first, linearized approximation we put

P p 1/2
a = + a £ )

Is the Alfven veloclty and a g = (y£) 1//2

V x v = 0
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II

slnce we limlt curselves to the'case of'propagatlon

perpendicularly to the magnetic field. In this case VX v 1

satisfles the ordlnary dlffusion equatlon and therefore it

cannot propagate out of the thin boundary layer near the

wavesource. On the other hand Vx b + 0, as the

propagatlon of V x is coupled to that of only in

an incompressible MHD fluid wlll V x diffuse in directlon

perpendicularly to B .

In other directions of propagatlon the situatlon is more

complex as the propagatlon of Vx v is coupled to that of V*

Therefore both toi©''eTfe5tt~ of . v x and V*v, have to be

accounted for in the square terms determinlng the steady forces

driving the steady flow. Only the component of V x along

the magnetic lines of forces propagates - along t : he llnes of

force - uncoupled to can be seen from the general

vorticlty equations, in which V.v-j enters only through the

term B q x W» v-], håving no component along B .

For an Incompressible MHD fluid, on the other hand, this

term dlsappears, and therefore both Vx v_ and Vx b 1 then

propagate in one dimenslon along the lines of force, being

attenuated only because of flnite electric conductlvity, and

non-zero vlscosity. In this case all non-llnear terms in the

general vorticlty equations are zero, and thus there wlll be

no generation of second order vorticlty, either in v or b

for this case of V>v =0. In an incompressible fluid hlgher

order steady vorticlty can only be generated in the boundary
layers near solid bodies.

We now return to our example with a longltudlnal wave.

For the moment we neglect the effect of a gradlent in the



 '

- : :    ! h\} r

' ' . •



15

coefficient of shear-viscosity and shall return to the

validity of this approximatlon later. The vorticlty equation

In v now takes the form

(28)

to the second order of approximatlon

If we substitute the isentroplc values for and

in equation (1), the rlght-hand side becomes zero, and there

will be no generatlon of second order vorticity. Slnce we

here, however, have taken into account dlffusion effects in the

linearized approximatlon, the wave becomes attenuated and lt

turns out that the right-hand side of Eq, (28) is proportional

to the attenuation coefficient. Furthermore, this side of the

equation becomes independent of time, and therefore only steady

vorticlty can be generated to this order of approximatlon.

We get

(29)

where D is the diffusivity and p 1 the Isentroplc denslty
fluctuation.

If we introduce the intenslty vector
4

I =<pv> = |-JJ Xm (ip Vpp we find;

(30)

where a =- -r is the absorptlon coefficient. Thus the effect
a^

increases strongly with an increase in the frequency, whereas

the boundary layer effect discussed previously decreased with

increasing values of the frequency. Furthermore, we find this

effect only if Vx l_ =|= 0 somewhere. For a plane wavebeam this

will be the case at the edge of the beam. The volume force

n 2 h Vp. a Vl
JL V 2 V xv 2 - V XV 2 = X -^1

iL v 2 v xv 2 - v xv 2 = - v Pl x v

v " v x X 2 =-§ v X X .
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drlvlng the flow can for this case be traced back to the

gradient In the radiation pressure. This we shall not

dlscuss further here. Xnstead we refer the reader to a

work by Piercy and Lamb in which the concept

of radiation pressure was introduced to explaln the steady

streaming observed in ultrasonics.

So far we have neglected the effect from a gradient in the

coefficlent of shear-vlscoslty. This coefflcient will in

general depend on the temperature and therefore oscillate with

the excess temperature in the wavefield. For a well defined

wavebeam, however, lt turns out that the contrlbutlon to the

source term in the vorticlty equation in v is negligible

small. For further dlscussion of this and a general

discussion of Eq. (30) in fluid mechanlcs, we refer to prevlous

works by one of the authors. 11 ’ 12 ' • Here one also finds a

blbliography on streaming problems in general.

We further have from the equation of continulty

V<v 2 > = - t vg = P1 > 2
° P o

This is very small and to our order of approximation we can

which together with Eq. (3) and given boundary conditlons
deterralne the flow fleld. A transformation into a Lagran gian
reference system is not needed in the case of ultrasonic

frequencles as the transforms become very small for high
frequencles. &

10) — — — ,
Piercy, J.E. and Lamb,J.: Proc. Roy. Soc. A. 226, 43 (1954)

Tjøtta, S.: On some non-linear effects in sound fields with
speclal emphasis on the generation of vorticlty and the
formation of streaming patterns I and II. Archiv. for

og Naturv. B LIV Nr. 102, Oslo. nathem.
12)

Tjøtta, S.: On Quartz—Wlnd, Universitetet 1 Bergen Årbok
1962, No. 7.

put

(5 1 ) v  <v 2 > = o ,
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