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Abstract.

Starting from a basic set of equations describing
irreversible flow in magnetohydrodynamics, general equations
governing the generation and transport of vorticlty are
obtained. These equations are solved by applying the method
of successlve approximations. Diffusion effects are accounted
for in a first linearized approximation. To a second
approximation it is then shown that the oscillatory motion
within the boundary layers near a vibrating plate will generate
steady circulations in the fluid. It 1is also shown that the
absorption of magneto-acoustic wavebeam of finite amplitude
leads to formation of a steady vortex motion.

*) To be presented at the 11th International Congress of
Applied Mechanics, Munich 1964,
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T Introduetion.

The many non-linear effects in hydrodynamics, arising
from the non-linearity of the governing equaﬁions of motion,
wlll also appear in magneto-hydrodynamics. However, they
may be more or less modified by the electromagnetic fields,
and in addition some new, purely hydromagnetic effects may
oceur,

In this work we shall study a non-linear effect, whiech
in a non-conducting fluid is known as acoustic streaming.
In acoustics there are two kinds of such streaming. One
occurs near solld boundaries oscillating in a viscous fluid or
near a boundary with which a standing sound wave is allowed to
interact; the other kind of streaming is produced by the
Interaction of a free progressing soundbeam with the surrounding
fluid. In the latter case, the linearized motion will be
lrrotational, whereas the first case is characterized by having
a rotational first order solution in the motion of the viscous
fluld near the solid boundaries. The acoustic streaming cannot
be explained from the linearized equations of motion, as the
osclllatory solutions of these are equal to zero when averaged
in time. The explanations are found in the higher apprcximations
of these equations.

The present work is a theoretical study of a similar
effect in magneto-hydrodynamics. First we derive generell
equations governing the generation and transport of vorticity,
and give a short discussion of these equations in general.
Thereafter two examples are worked out in detail: (1) the filuid
motion near a flexible membrane vibrating, with finite amplitude

in a uniform, external magnetic field, (ii) the flow generated
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by the absorption of a magneto-acoustic wave of finite

amplitude propagating perpendicularly to a uniform, external
magnetic field. 1In the last case the linearized motion is
irrotational while in the first case the linearized motion

1s rotational near the membrane. For more general cases in
magneto-hydrodynamics the situation is more complicated as the
propagation of V X v and V *Vv 1n the linearized approximation

are coupled to each other.

II. Baslc equations.

The staveing polnt will.be . the following set of equations,

describing irreversible flow in magnetohydrodynamics:

(1) %% +p Vv = 0 ,

Dv
(2) pﬁg = -V(p-k div K‘%ﬂ div X-an)+uV?X+VX(KXVu)-xvguflx B

OB
(3) VXB=pj , VYXE= - 3% p B R
(4) 2ol vw X

Here v denotes the fluid velocity, p the density, »p
the pressure, E and B the electric and magnetic field
respectively, and J the current density. Further, ! and

K are the coefficients of shear and bulk viscosity
respectively, and o 1is the electrical conductivity. The
magnetic permeability is taken to be that pertaining to free
space, l.e. p =p = o %g%g% . The rationalized MKS
units are used in all equations.

This set of equations is, of course, not complete before

we have specified the heat-exchange equation, an equation of

state, and the coefficients n and o , but feor the moment
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these equations are not needed.

III. Vorticity equations.

Let us put
(5) B=3B,+b

where B  denotes a uniform, time-independent external field.
By applylng well known vector identities, we can now
readily derive differential equations governing the fluid
vorticity and the magnhetic vorticity.
From Eqs. (2) and (3) we obtain:

B Dv
32_5 o8 L Iy Y ..l_x ‘.
i (pV BE)VXK+ i VUXh = 5% 56 Ux (vXxVxv) + upv (bx(Vxb) |

+ SLVPvXn-yxvPTn+7? (yxvn) V9. (vx¥n) 472 v ]

From Eqs. (3) and (4) we obtain:

oe

f
(EBV - BE)VXEfEO‘VVXKfﬁoXVV’K = VxWx(bxv) +
(7) ¥
Vo_ " — Vo Vo 1 Vo
+ e + 7§x[‘§o'VK+(VfK)§o]+ XX (bxv) - EBVX[?;X(VXE)]

Some conclutions can already be drawn from these
equations. All terms on the right hand side of the equations
(6) and (7) are of second or higher order in v, Vp, Vn and
Vo. Let us neglect these terms and take n/p and O to be
constants on the left-hand side of the equations, and assuming
for a moment that all magnetic field is produced by the motion
of the fluid, i.e., we put Eo = 0. Then we obtain linearized
diffusion equations, and the well known result that the

propagation of linearized vorticity in ¥. and.. B, for.the
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“case- of no. external field, -depends only on the-kinematic
shear viscosity and the electric conductivity, respectlvely.
Further, no generation of linearized vorticlty can take place
in an unbounded space where there is no external magnetic field.
However, the non-linear equations (6) and (7) show that
higher order vorticity can be produced 1n an unbounded space,
and an external maghetic field will nearly always lead to
generation of linearized vorticlty. ZFor an incompressible,
electric conducting fluild, however, thée vorticity in both
v and b will, even with Eo = 0, remain equal to zero in the
linearized approximation, if both were zero at a certain time.
In the following we shall see examples of non-linear
vorticity generation. The method of successive approximation
will be applied in solving one bagic set of non-linear

equations and the derived vorticity equations. We set

+-0o

|<
i
lo
+
I<
+
<

(8)

I ©
I It
5 S o)
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+ +
4 2
+  +
o b

no
+ +

where the subscript indicates the orders of magnitude, the
first order being the linearized solution. Thls we insert
into our equation and study the solutions to second order.
For all first order variables we assume a harmonic time-
dependence with frequency . The square terms 1in the
equations will then generally be terms with double frequency
2w, as well as terms independent of time. The former ones
will modify the maln oscillation with frequency , while the
latter ones generate steady vortex motion. We obtain general

vorticity equations governing this steady second order motion
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by substituting Egs. (8) in Eqs. (6) and (7) and taking the

time-average. Furthermore, we note that

(9) CAMTY

and from the equation of continuity we find
— 1 4

where { > indicates that the average in time 1s taken. When
adjusted so as to satisfy appropqiate boundary conditions, the
solution of our time-averaged equations completely specifies
the steady second order velocity, <12>. It is of interest
to note that this steady velocity field is not, in general,
divergence-free when as here specified in Eulerian coordinates.
In a Lagrangian description, However, it turns out that the
generated steady velocity of second order will always be
divergence-free. (See Westervelt 1953.)1 Therefore, we obtain
a more convenient set of equations by using the latter
description. In experiments the steady velocity field is
observed by tracing small particles following the flow, and
the velocity observed will therefore be the Lagrangian one.

If we have computed <12> we must therefore make a
transformation to a Lagrangian reference system before we compare

our result with experiments. The transformation is given by
(11) g, = v + L(Jv, at)-wv >

In fluld mechanics a transformation of this kind has shown to

2
bring the theory into good agreement with experiments.*’z)

i Weastdiwelt, PIWr 0.0 % J. Acoust.Soc.Am. 25,60 21953;.

2) Skavlem, S., and S. Tjgtta: J. Acoust.Soc.Am. 27,26 (1955

3) Raney, W.P., J.C. Corelli and P.J. Westervelt: J. Acoust.Soc.
Am. 26,6(1954).
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IV. Two dimensional streaming.

We now proceed to discuss in more detail the two dimensional
streaming generated near an insulating plate vibrating with
finite amplitude in an incrompessible MHD fluid. The motion
1s assumed to take place in the (x,y) plane, and for the

magnetic field we put
(12) B =B s e

where &5 is the unit vector in the y-direction. The functions

¥ = ¥(x,y) and ¢ = ¢(x,y) are introduced by

_Y_=V><(‘Y_9_) s

(13)

b =W % (g iauk
and thus

VXX=—_e_3V2‘I’ p
(14)

VXDb= - §3V2m

The vorticity equations (6) and (7) now take the forms

B
i e o s s VI Moo, W e
(15) Qv )V t e eV 0 = VY - L bowe

(16) (15 V% - 7% + B, & VP = [vx Y x(v x b)] e, ,

where we also have assumed all diffusion coefficients to be
constants. Furthermore, we also need the following relation

between v and b obtailned from Egqs. (3) and (4):

(16b) (n%vg-gf)g+§o%y_=-v><(y_xg)






i i
Eq. (16) is obtalned by taking the curl of this equation.

1. First approximation.

As a first approximation, we take the solution of the
linearized equations, which we obtain by neglecting the right-
hand side of Egs. (15) and (16). Furthermore, we assume for

the first order solutions,

Y1 =) CJ ens kx e 5
J
(17)
-qu+iwt
By = 3 K, cos kx e :
j J
where qj(j = 1, 2y wew 4. Dlksspatsalutions of the following
characteristic equation in  @:
& 2 2, 2 2.2 2 2
(18) ,.[(71-q)(vg—q)—VBQJ(q—k)=0,
Here
£ 2. 1w -SRI -l 17 R W el
71 = k™+ /“’:72 = k=+ /V*"YB “'B“‘.\';: V"‘B:V*“‘H_o‘
b i . :
am___g__, ﬂ:-.L.,e -:,-l_{_.Y,S* __:ka'
oL Vv Lov W w

k = wavenumber and o = frequency with which the plate

vibrates.
The coefficients KJ are related to Cj by Eq. (16b):
B qrsE
, i i o 1 ] 2
(20) KJ = - ___EE_~_ ;oA L & i (qj iy

Boundary conditions for the first approximation.

The boundary conditions for this first approximation
are taken to be

145 P Vs S e e

1y ¥ il AL« B
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v being the velocity amplitude of the plate, and further

that all effects from the boundary shall vanish for y — .,

For the electromagnetic field we would in general have the
conditions that E and % should both have continuous
tangential components at the boundary, and in addition that the
normal component of B also should be continuous. We shall,

however, here assume pu = v in the plate as well, a

o}
consequence of which is that B must be continuous at the
boundary. Extension to other cases can readily be made. For

¥y S 0 we then have

ky Hlwt ky+iwt

(22) B=Be, + b e, cos kx e + b e, sin kx e A

o—2 1

which satisfies V:B =10 and ¥ % B = 0, and gives 21 b
for y - - o,

Not all solutions in q are relevant, as we require the
effect from the boundary to vanish for ¥y =%, PFpom Bg. (18)
we can besides the root q3 = k only use the two roots, say
qy and Ao, having a positive real part.

The boundary conditions thus impose the following

relations between the constants C. and KJ:

d
; 0
;TR
J21 81 =5
i
ZC.=—k—Q
(23) -
5 Ko xtta b
iy oy o
o
ZKJ = -T
Assuming v_, B, and k fixed, Egs. (20) and (23) determine
bo’ Cj and Kj'

Before we proceed to discuss some limiting cases, we note
the following expressions for the fluid and magnetlc vorticity

of first order
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cos kx e

~d.¥
2) 1 &

-qsY
(24) v2¢1 = [og(ng— k)e + 03(q32— kg) e } e

2

-,y
(25) Voo, e

i

-,y
2 }cos kx eiwt

Far outside the boundary layers with thicknesses (Re(q1))‘1

and (Re(qg))'1 we have

B T

U P
and therefore no coupling between the fluid motion and the
electromagnetic field. Near the boundary, however, the
motion is greatly changed due to viscosity, and here the
motion will also be affected by magnetic field. Requirements

which must be satisfied in order to have typical boundary

layer effects are that Re(q1) 25 and Re(q2) >> k.

Limiting cases.

Since the boundary layers play a dominant role in the
discussion of acoustic streaming, we shall discuss the roots
g7 "do wversus 'k for different Timiting cases of ThHe
parmeters a, B and € . Other limiting cases have already
been discussed by Kildal in a previous paper(4). For cases
with k = 0, Hide and Roberts'®) have given a throughout
discussion.

We commence our discussion with the case

BB P21, Aiss Bioi. E4arads

4) Kildal, A.: Z. Physik 172, 49 (1963).
5) Hide, R. and P. H. Roberts: Rev. Mod. Plays. 3, o faopnl.
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ao =\[;‘% Bl EG4 pRyes +%)J

e : 1 ;
A =V[§%¥ _1 + 1 + §(1 w4y L % }

This is a case with low conductivity and weak magnetic

field. Two waves are generated near the plate, one with the
well known penetration depth 61 = %g' in hydrodynamics and
one with the analogue magnetic penetration depth 6y = 61Jb :
Both skin depths are small compared to the wavelength. It is
only inslde these non-steady boundary layers that the first
order fluid motion is influenced by viscous and magnetic

forces.

R ey e T e S

———y

a, =, §%¥ (1 + 1 + terms of higher orders) |,

¥
q2 =\f?(.0\7 (1 Lt " ] ] )

This case of high conductivity and weak magnetic field leads to

results in quantitative agreement with 1.

a

R - B -]3—>> s B <
Q1= %%(1"':1-'2%) P

(26)

— 1
qgﬂf%(l+$s+§

This is a case with a strong magnetic field. One Alfvén wave

)

Q™

1s generated at the plate. The penetration depth 1s

148 -1
e <lcoq> (Be + 5 &)






et

To calculate the second approximation in this case we need
to know a4 and Ao to a rather high approximation in &,
a and B . Numerical results show one clreculation for the

secondary flow.

2. approximation.

We now pass to the second approximation and find that

the steady flow field i1s governed by the following set of,

equations:
p = P + (7 x <o By + 0 VKD,
5] 1 e
0 =9+Bo??37<y-2> +E’6v <32>,
)
V< iy =0 ,
v<£2> =0 )

where now all variables refer to the time-averaged second order
quantities, and P and Q are the time-average of the square
terms in first order quantities, being determined when ¢1 and
¢, of Eq. (17) are known. Thus P and Q are the force
terms that drive the streaming. By timeaveraging of the
vorticity equations (15) and (16) we find that the source

terms in steady vorticity equations are given by V X B

and V X Q, which vanish outside the two non-steady boundary
layers. The source terms are proportional to sin 2k x.

Having assumed V'<K2> = 0, we therefore obtailn as the result of
the second approximation, a steady motlon consisting of a
geries of vortices periodic with respect To X "With peviod
m/k. We have also computed the transform given in Eq. (11).
Near the plate the difference between the Lagrangian velocity
<32>L and the Eulerian one <X2> is considerable.

In The numerical calculations the velocity 1s made non-






“Hag
2

v
0 w
dimensional by division by '873\[# and the x-dependence 1is
supressed. The physical distance y 1s made non-dimensional

by division by the non-steady boundary layer thickness

By = [V
AC Nw o
VO w y/é

In Fig. 1 we show Vy = <V2y>L 867/: versug 2z = AC
for different values of a defined in Eq. (19).

We see from the curves that the steady boundary layer
thickness 5DC defined as the value 7y where <V2y>L changes
direction varies with a. To see the variation in detail,

5
a curve (Fig. 2) showing DC/éAC versus a has been drawn.

We also give (in Fig. 3) a set of curves showing Vy

ve, 2z for different values of € from which we learn that
o)

6nc depends on . A curve giving DC/éAC vs. Ye has

been given. For cylinders oscillating in a non-magnetic

o)
fluid, universal curves showing Dc/éAc vs. €ylinder radius

are well known.2’3’7’8))
If Vy does not change direction, only one circulation
is formed. This always takes place when € or o‘/ﬁ becomes
sufficiently large.
Other cases are discussed in a paper by one of the

authors (Kildalg).

5. Effect of compressibllity, expanding waves.

In the case of a vibrating plate, we find that the non-
steady boundary layers decrease in thickness with increasing

il
frequency as ® 2. Furthermore, to a second approximation we

7) Holtsmark, J., I. Johnsen, T. Sikkeland and S. Skavlem:
J. Acoust, Soc. Am. 26,26 [ iS51).
8; Olsen, T.: J. Booust. See. Mp. ot g §1956g
9) Kildal, A.: Arbok for Universitetet i Bergen. Mat.-Naturv.
Serie 1964, No. 8. '
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find that the generating steady volume forces P and Q are
non-zero only within these non-steady boundary layers. 1In the
limit of very high frequency we therefore find that the steady
flow of second order is generated in a vanishing thin layer
near the plate. the inner flow system becomes very thin and
the flow velocity decreases with increasing ®, the other
parameters being constants.

So far we have assumed an incompressible MHD fluid. We
have also studied the effect of compressibility on the
generation of second order streaming in general. In the case
of a vibrating plate discussed in the preceding section, this
effect will only slightly modify the general flow picture for
low frequencies. 1Inclusion of compressibility, however, leads
to generation of expanding waves, and at frequencies in the
ultrasonic range, it turns out that absorption of these waves
may lead to a steady flow of second order.

We shall here study an example of a MHD wave propagating
perpendicularly to a uniform external magnetic field. Linearized,
we then have a longitudinal magneto-acoustic wave with phase

velocity

1/2
2 2
a = (a1 al - )

2
B, 1/2 1/2
where a, =< Y is the Alfven velocity and a = (7%)
1s the sound velocity. Since we take into account diffusion
effects, the wave will be attenuated, and we shall see how
this leads to generation of higher order vorticity.

In the first, linearized approximation we put






P LY

since we limit curselves to the case of “propagation
perpendicularly to the magnetic field. In this case V X V4
satisfies the ordinary diffusion equation and therefore it
cannot propagate out of the thin boundary layer near the

wavesource. On the other hand V X b + 0, as the

=1
PEbpagatilicn el TRV b1 g coupled Bo that of V'X15 on iyt dn

an incompressible MHD fluid will V X b diffuse in direction

1
perpendicularly to Bo‘
In other directions of propagation the situation is more

complex as the propagation of V X il

Therefore both the effelt-of VXv and . Veyghaye to he

1
accounted for in the square terms determining the steady forces
driving the steady flow. Only the component of V X My along
the magnetic lines of forces propagates - élong the llnes of
force - uncoupled fo V-K15This can be seen from the general
vorticity equations, in which V.v, enters only through the
term Eo X VV'X1, having no component along Eo'

For an incompressible MHD fluid, on the other hand, this

term disappears, and therefore both V X v and V X b4 then

1
propagate in one dimension along the lines of force, being
attenuated only because of finite electric conductivity, and
non-zero viscosity. 1In this case all non-linear terms in the
general vorticity equations are zero, and thus there will be
no generation of second order vorticity, either in ¥ oor. b
for this case of V:v = 0. In an incompressible fluid higher
order steady vorticity can only be generated in the boundary
layers near solid bodies.

We now return to our example with a longitudinal wave.

For the moment we neglect the effect of a gradient. in the

is coupled to that of V.v

1






e

coefficient of shear-viscosity and shall return to the
validity of thils approximation later. The vorticity equation
in v now takes the form

(28) b i O
o5 b4

2'8%‘7@2:73“)‘?6
to the second order of approximation.

If we substitute the isentropic values for P, and v,
in equatilon (1), the right-hand side becomes zero, and there
wlll be no generation of second order vorticity. Since we
here, however, have taken into account diffusion effects in the
linearized approximation, the wave becomes attenvated and it
turns out that the right-hand side of Eq. (28) is proportional
to the attenuation coefficient. Furthermore, this side of the
equation becomes independent of time, and therefore only steady

vorticity can be generated to this order of approximation.

We get

op
N g2 9 e 1
(29) o VU X v, - 35 V Xy, = 5 Vo, X V 5z

where D is theydlffusivity. and Py the isentropic density
f luctuation.

If we introduce the intensity vector

4
15 - a AL smisle
I=Xpw-= 5B Im (2p1Vp1) we find:

2 A 2a
(30) VIV X v, = - or L hoa
Bafein | :
where g = 3 is the absorption coefficient. Thus the effect
a

increases strongly with an increase in the frequency, whereas
the boundary layer effect discussed previously decreased with
increasing values of the frequency. Furthermore, we find this
effect only if, V X T + 0 somewhere. For a plane wavebeam this

will be the case at the edge of the beam. The volume force
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driving the flow can for this case be traced back to the
gradient in the radiation pressure. This we shall not
discuss further here. Instead we refer the reader to a
work by Piercy and Lamb (1954)10), in which the concept

of radiation pressure was introduced to explain the steady
streaming observed in ultrasonics.

So far we have neglected the effect from a gradlient in the
coefficlent of shear-viscosity. This coefficient will in
general depend on the temperature and therefore oscillate with
the excess temperature in the wavefield. For a well defined
wavebeam, however, it turns out that the contribution €o the
source term in the vorticity equation in YV vdsineptigible
small. For further discussion of this and a general
discussion of Eq. (30) in fluid mechanics, we refer to previous
works by one of the authorsj1’12)' Here one also finds:.a
bibliography on streaming problems in general.

We further have from the equation of continuity
i 1 o 2
» o)
This 1s very small and to our order of approximation we can
put
(31) v @GS e
which together with Eq. (3) and given boundary conditions
determine the flow field. A transformation into a Lagrangian

reference system is not needed in the case of ultrasonic
frequencies as the transforms become very small for high

frequencies.

picroy, 7.8, ang Taub,5.¢ Peod mer mn 226, 43 Lioudy

11)Tj¢tta, S.: On some non-linear effects in sound iields ‘sieh
special emphasis on the generation of vorticity and the
formation of streaming patterns I and ITI. Archiv. for Mathem.
og Naturv. B LIV Nr. 102, Oslo.

c ot e CiE-s O Quartz-Wind, Universitetet 1 Bergen, Arbok
196, Mo T
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