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Abstract

Energy diagnostics are useful for understanding the transfer of energy through instabil-
ities and between different scales. In this note the conservation equations for kinetic and
potential energy, divided into suitable mean and eddy quantities, for a sigma coordinate
ocean model are set up. By identifying the transfer terms responsible for the conservative
conversions between the different energies, an energy flow diagram is suggested. The moti-
vation for this is twofold. Firstly, the average operator required for dividing the quantities
of the flow into mean and eddy parts is in general not well defined in Cartesian coordinates
when the upper and lower boundaries are not at fixed vertical levels. This is overcome by
introducing the “terrain-following” sigma as the vertical coordinate. Secondly, and most
important, many of todays numerical ocean models have this as the vertical coordinate.



1 Introduction

The idea of understanding the energetics of geophysical flows by the separation of kinetic and
potential energy into mean and eddy components goes back to Lorenz (1955). Mean quantities
are defined from a suitable temporal or spatial average. and eddy quantities are the deviation
from these. Orlanski and Cox (1973). Qiu et al. (1988), and Wood and Ikeda (1994). among
others. have set up and utilized these quantities for the oceanic primitive equations in Cartesian
coordinates with the model domain chosen to be a cyclic channel and the free surface replaced
by a rigid lid. Mean flow quantities are then defined as along-channel averages. In the two
latter papers, there is no bottom topography, while Orlanski and Cox (1973) account for cross-
channel variations. Thus there are no temporal or spatial variations in the upper and lower
boundaries of concern to the averaging process. Roed (1997) describes an energy diagnostics
scheme for a reduced gravity, nonisopycnic ocean model. Bleck (1985). hereafter referred to as
BS5. provides a general framework. He finds energy conservation and conversion laws for the
primitive equations for a general vertical coordinate, and no assumptions are made regarding
the upper and lower boundaries. Neither is the Boussinesq approximation applied. The content
of this note. where the vertical is resolved by the so-called sigma (o) coordinate. may to an
extent be said to be a special case of B85.

This note is organized as follows: in the rest of the introduction the well known energy
equations in Cartesian coordinates, and the motivation for rephrasing them in sigma coor-
dinates, are presented. In section 2 the sigma coordinate transformation is defined, and the
equations governing the flow in sigma coordinates are set up. Section 3 consists of the kinetic,
potential, and total energy equations in these coordinates, and their partition into mean an
eddv quantities. In section 4. the associated energy flow is discussed, and compared with that
of B85. A summary and concluding remarks are found in section 5.

The model ocean is described by the three-dimensional primitive equations. These are the
Lorizontal equations of motion, with the Boussinesq approximation applied.

du 1 dp
b NV e e 1
5 +u-Vu- fu T (1)
v 1 dp
Afiee et Ol (2
B v+ fu . )
hvdrostatic balance
dap
0=—— —pg, 3
Bt i
the continuity equation
Ve = (0), (4)
and the conservation equation for density
il TR e 5
()f u ﬂ 5 s ())

In the above Cartesian representation. V is the three dimensional gradient operator. u =
ul + vj+ wk is the three dimensional velocity field with @ and y as the horizontal coordinates.
respectively. and z as vertical coordinate, f is the Coriolis parameter, p is pressure. and pg
is a constant reference density. The pressure at the free surface. = = n(x,y,t). is set to zero.
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Diffusion and dissipation have been neglected. There is no external forcing present. The
inclusion of these processes has no influence on the reversible energv conversions which are the
scope of this text.

Adding equations (1) and (2) multiplied by u and v. respectively, and using hydrostatic
balance (3) and the continuity equadon (4), gives the following conservation equation for the
kinetic energy density, k = po(u® + v%)/2.

Ok
o7+ V (u(k +p)) = —pug. )

In a hydrostatic fluid, only the horizontal velocities come into consideration, and % is propor-
tional to pg, not p, because of the Boussinesq approximation.

Potential energy density may be defined as ¢ = pzg. The material derivative is do/dt =
pwg. Taking into account (4), this may be written on the flux form

J
—O+V (ug) = pwyg. (

=~J
S

Thus, the equation governing the evolution of the total energy density is

0 ;
a—f(k+o)+V-(u(k+o+p)):0. (8)
The fluid is restricted by a rigid bottom at = = —H(z,y). and the free surface = = n(z,y.t).

Let V" denote the volume restricted by these surfaces, and some fixed lateral boundary S. The
integral of equation (8) over V' gives

gt/(k+od1+/k+o+ll)u ds = 0. (9)

Thus, the total energy of the fluid contained in V" may only be changed by energy fluxes through
S. The upper and lower boundaries being material surfaces, give no contribution. For details
concerning the above, see Gill (1982).

If there is no net flux of energy through S, for example if the lateral boundaries are either
rigid or cyclic, then total energy is conserved

i/(k+o)dv:o. (10)
dt Jv
Herein. the focus will be on energy conversion processes internal to V', and the possible net
contributions from flux divergence terms are not discussed.

Let v be a suitable (horizontal or temporal) averaging operator, where 1* may be any
quantity of the flow. Then

=+ V. (11)
In the above ¥ = ¥ — . v/ = 0, represents the residual. i.e., eddy or turbulent. part of v.

Then. following for example Wood and Ikeda (1994), the conservation equations for kinetic and

potential energy may be decomposed into



%T+V-(E(Afm+ﬁ)) S (12)
Pl e s L
o TV (Whe TR F7)) = (@, ke) + (b, ke) (13)
9% e i =
E+V-(uo+u’®’) = @b @)l @l (14)

where km = po(T? + 9%)/2 and k. = po(u'? +v'*)/2, are the mean and eddy flow contributions
to the average kinetic energy, i.e., %k = ky + k.. For ¢ = pzg, there is no contribution from
the eddy flow. The right hand sides of the above equations represent the possible conservative
conversions between the different kinds of energy. The energy transfer terms. ¢(...), are such
that ¢(A, B) > 0 represents the conversion of energy of type A into type B. and ¢(B,A) =
—¢(A. B). The definition of individual transfer terms is not unique. The conservative system
of energy equations (12)-(14) provides only two linearly independent equations to determine
the three possible energy transfers. Additional physical arguments are required. The explicit
expressions are then, still following Wood and Ikeda (1994), found to be

(b, km) = —pWg (15)
c(d,k.) = —pw'g (16)
c(km,ke) = POEH'(v'(u/ué{))' (17)

Subscript H denotes the horizontal component of the vector quantity in question. Positive
(0. k) represents the average buoyant production of mean kinetic energy. and negative the
transfer from kp, to ¢. The equivalent for ke is ¢(¢, ko). Baroclinic instabilities are charac-
terized by positive C(E, ke). The term c¢(km, ke) is recognized when positive (negative), as the
production (loss) of eddy kinetic energy from (to) the mean flow through nonlinear advective
interaction. Such shear production of eddy kinetic energy at the cost of mean kinetic energy
constitutes barotropic instability. The commonly used term “shear production™ is due to the
alternative formulation

¢(km, ke) = poV - (W(uy - Wn)) — pouy - (0’ - V), (18)

which shows that the net contribution to the internal barotropic conversion of energy is given by
the interaction of the Reynolds stresses with the mean velocity shear. Both Orlanski and Cox
(1973). and Qiu et al. (1988)in their numerical studies of predominantly baroclinic instabilities
of ocean currents find that the integrated effect of ¢(km.k.) may be negative. That is. kinetic
energy is fed back from the eddy field to the mean flow at certain stages of the instability.
This is also found in the linear analysis of Shi and Roed (1999) of frontal instabilities in a
two laver. primitive equation ocean model. In non-eddy-resolving simulations. such a process
is not possible as energy is continuously dissipated from the flow through eddy viscosity for
most parameterizations. Thus energy diagnostics as sketched above may give insight both into
instability processes in eddy-resolving experiments, and a cue to how sub-grid scale effects
should be parameterized in non-resolving experiments.

For the above Cartesian description to be correct, the averaging operator must be applicable
to any position in the fluid at any time. A horizontal average is not applicable, at least not in a
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2 The sigma coordinate model

mathematical sense, when either the upper or lower boundary is not at a fixed =-level. Neither
is a temporal average applicable in the presence of a free surface, that is an upper boundary that
vary both in space and time. These discrepancies may for many applications be of academic
interest only. The upper boundary in most oceanic applications can be approximated by
z = 0 when averaging, as long as the potential energy of the surface elevation is accounted
for. If surface gravity waves may be neglected in the problem under consideration. the surface
elevation present will correspond to the pressure anomalies at that boundary when replaced by
a rigid lid. In both cases, a temporal average would indeed be applicable. If in addition. the
lower boundary is chosen to be horizontal or the fluid assumed to be motionless below a certain
z-level not intersecting the bottom topography. any horizontal average would be applicable as
well.

By transforming the vertical coordinate to o-levels, see next section, the potential problems
of the averaging operator are overcome. In these new coordinates the fluid is contained between
fixed upper and lower levels of & at all times. Another obvious and more important reason for
rephrasing the problem in these coordinates, is that this is the chosen coordinate representation
for many of the numerical ocean models in use today, see for example Blumberg and Mellor
(1987), and Berntsen et al. (1996).

2 The sigma coordinate model

The transformation from Cartesian coordinates (z,y, z,t) to the “terrain-following™ sigma co-
ordinate system (%, §, 0, 1), originally due to Phillips (1957), is given by

X L 2=
— = SELAE 19
T, Y=y, 0 s (19)

The total depth of a fluid column is D = H + 7, thus o ranges from o = 0 at the free surface
z=n(z,y,t),to ¢ = —1 at the bottom z = —H(z,y). The unit directional vectors are those
of the Cartesian system, 1, j and k. The differential operators are transformed as follows:

d d D) L @)
sl Rl s k=)
KRB 2R (21)
Jdz ar. Do
_0_ = i T i()_fi (223
0y dy D oyado
AR (23)
0z 1D Qe
d 0 0 = d
dt ot il ot s at
Z is the Cartesian vertical coordinate in sigma coordinates.
5= i g.0.0)=n3,4.0) + aD(&,5,T). (25)
The V operator is defined as
- J 0 J
= —i+ —j4+ —k (26)
B Sl v



and the “velocity” vector u as
= S e (27)

where iy = un(Z, §, 3,1), and w is the material derivative of o, wD being the vertical velocity
relative o-levels, vanishing at the upper and lower boundaries, w(0) = w(-1) = 0. It may seem
curious that the sigma coordinate gradient operator and velocity vector are defined such that
their vertical component is not of the same dimension as the horizontal ones. This is done so
that advective and flux terms may be put on a compact form in the upcoming energy analysis.
Then V and @ are both being present as parts of a dot product. the result being dimensionally
consistent.

The relation between w and w, the vertical velocity relative z-levels, in sigma coordinates
is
i+a-¢)n—a(i+ﬁ-'¢)p (28)
ot ot 4

or
' oD

WA @ = 00 Wy o 1))
Using the above relations, the continuity equation may be rewritten

oD =
0=DV-u=—+ V. (uD). (30)
ot
The primitive equations (1)-(5) transformed to the new coordinate system then. omitting tildes.
on flux form readily follow:

duD 1 o Bz @ )
5 +V - (uuD) — foD = —%(D%'—%%)]) (31)
ovD 1 =00
ST V ) — LI, EE i S
5 — (vvD)+ fuD /70( T P (329)
s —.5»,)2— Dy (33)
do
oD !
e (34)
opD
g—t+v-(upD) Ly (35)

In (2.y.o)-space, pD is the mass in a unit volume, the o-direction being dimensionless and
of length D in physical space. In general, if v is a quantity per unit volume in Cartesian
coordinates. then the corresponding density in sigma coordinates is ¥ = ¢ D.
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3 Energy partition and equations

The kinetic energy equation for this regime is found by multiplying equation (31) bv u and (152)
by v and adding them together taking hydrostatic balance (33) and the continuity equation
(34) into account. Then

oK

) J
57 TV (& +pD))— ==((1+ 0)pV - (uD)) = ~pDuyg. (36)

do
K = kD, and k = po(u® + v?)/2 as before. Note that the last term on the left hand side
vanishes when integrating over a water column, thus having no net influence on the energetics
of the flow. This term may also be understood as a flux divergence where =
—D7 Y1+ 0)V-(uD)k is the “velocity” causing the flux of pressure pD. The vertical velocity
occurring in the second term is the vertical velocity relative a fixed z-level given by equation
(29). Although the conversion terms and most of the equations presented herein are given
on local form, it should be stressed that a description of the energetics from the conservative
transfer terms ¢(.,.) alone, is formally only valid when integrated over the volume in question.
As stated earlier, the possible contribution from lateral fluxes into the domain is not considered.
The new definition of potential energy density is ® = ¢D, or equivalently ® = pDzg. Using
the material derivative of ¢ and the continuity equation (34), potential energy is governed by
Q—¢+V~(u¢):pDU'g. (37)
ot
Thus total energy is conserved according to

/. X 0
TR EL +<I>)+V~(u(1x+<1>+pD))—0

ot —a((1+0)])V(uD)):O (38)

Taking the integral over the geometric (in sigma coordinates) volume V', assuming no net fluxes
through the lateral boundaries, states that the total energy within V" is constant.
d
— / (N + @)dV = 0. (39)
at Jv
Alternatively, the above energy conservation equations may be found by applying the trans-
formations (20)-(24), and the continuity equation (34) to the Cartesian energy equations (6)
and (7) directly.
Let ¢ be the conventional averaging operator introduced previously. Averages are now to
be evaluated at levels of constant o, not z. This requires the introduction of an additional
average. This depth weighted average is defined as

s (40)
=

L3
thus the quantity ¥ may also be written.

b = b+ BT, (41)
where the residual in the above sense, ©* = v — v, obeys v* = 0. or equivalently v=D = 0.

The average of the equations (36) and (37). governing kinetic and potential energy gives

the following relations:
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U—U]{i+\—-(f1(—]T+ﬁ5)+u"K+up’D)
—3((1+o)p\7-(uD)) A (42)
do
a—¢)+'\7-(ﬁ5+u‘¢>) = (T B (43)

The conversion term giving the conservative transfer of energy between average kinetic and
average potential energy is found to be

(®.K)=—pDwg = —pDwg — pDuw'g, (44)

This is. as one would expect from the fact that the definitions of kinetic and potential energy
densities have only been modified by the factor D, equivalent to the transfer found for the
Cartesian representation.

The average kinetic and potential energy densities may be decomposed into contributions
from the mean and eddy flow:

ey 1 — - -
o= §p0(u2 + l‘Z)D = Ikm + -Ae (45)
1 2 Ao
e — ;2-,00(1‘—{-1 )D (46)
i LW =
pr = §p0(u*2 -|"l"2)D (4‘)
o = Zgl= O = (48)
e e e (49)
W, =  @wihz (50)

As opposed to the Cartesian representation, the eddy fields contribute to the average potential
energy.

The sum of the averages of the momentum equations (31) andsE3 2

duD i ol S
V - (aaD)+ V- (wuwD) = ——(D— — —— 51
ot o L L /)0( . (O Gle » e
0D g i ey
Ve (i) &2 Y o (i D)) = ——(ll=—= —=— 1 52
ot 5 s Puge po 0y (')y()ajp o
multiplied by poit and pg?. respectively. when the averaged continuity equation.
oD -t
e N T 5:
E - (00 =@ (533

. . . . . D i) s
which states that the mean volume is conserved in the mean flow. multiplied by po(a® + #%)/2
is subtracted. gives an evolution equation for the mean kinetic energy,
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OIS
ot
= —pDWg + pD(ufy - Vuz)g — G - (D'Nup + (pDVaz')g) — potiy - (V - (wui D))

S e oy ()0 (14 o)pY - (aD))

o

= (Pm, Am) + c(@e, W) + el (54)

The term mean/eddy kinetic (potential) energy is to be understood as the contribution to i
(®) from the mean/eddy flow.
The difference between the averaged kinetic energy equation (42) and the above equation

for the mean kinetic energy, provides an equation for the evolution of A,

DI g LR A ' e ol
—.X—-I- V-(ukhe+u*k +up'D) — .g((l?L o)p’'V -(uD))
Jt do

= —pDw'g — pD(uf - Vuz)g + iy - (D'Vap' + (pDVuz')g) + poiy - (V - (u=up D))

(Pm, Ke) + (P, Ke) + (A, He). (53)

An evolution equation for the mean potential energy is found by using the average of the
density equation (35),

dpD i SEL A

2=+ V. (4pD) + V- (T D) = 0, (56)
and the average of the vertical velocity w, that is the material derivative of z, given in equation
(29),

9, (I)m

TR pDWg — pD(ujy - Vuz)g —ZV - (wp=D)g

= @ Kane W) 38 @ @) A5 @l @ @) (D7)

Equation (43), subtracted the above expression for the mean potential energy, gives an equation
governing the eddy potential energy.,

0P,

= + V. (1@, + uw®) = pDuw'g+ pD(ufy-Vuz)g+3zV - (upD)g

= @M, ) o @l A ) A @@ @) (58)
All possible conservative conversions of energy are represented by the ¢(...)s in equations (54).
(B (BT 1) &umlel (515)
4 The energy flow chart
In the previous section the four governing equations (54), (55), (57), and (58). for kinetic and

potential energy, divided into suitable mean and eddy quantities. were set up. These equations
provide three independent relations to determine the five unknown transfer terms.
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c(®m, Kn)+ c(@; Ky)

= —pDwg + pD(uf - Vuz)g — an - (D'Vup' + (pDVH')g) (59)

c(Pm, Ke) + ¢ L ()

= —pDw'g — pD(uf - Vuz)g + tn - (D'Nup’ + (pDVhu2')g) (60)
(K, @) + (Ko, ) + (P, Pm)
= pDwg - pD(uf - Vuz)g — =V - (wp D)y, (61)
as the barotropic transfer of energy is recognized as
e( K Ke) = pottgt - (¥ - (Wup D). (62)

Additional arguments are required to close the system. Note that all the terms but the first ones
on the right hand sides of the above system of equations are due to the change of coordinates.
For the special case of a domain with rigid lid and flat bottom., where sigma coordinates are
Cartesian, they all vanish.

Let d/dt = 0/0t + 0 - V. By the use of equation (29), the change of the mean geopotential
level ¢Z in the mean flow is

dg= SO D]
%:(m—u;{-vm)g. (63)

As D is conserved in the mean flow and K is insensitive to changes in p from the Boussinesq
approximation, changes in ®, from changes in pD should leave N, unaffected. It is therefore
suggested that the conversion between mean potential and mean kinetic energy is given by

(Pm, Km) = _/}—D_mg ar ﬁﬁ( uf{ -Vaz)g. (64)
Negative (positive) ¢(®m, A'm) gives an increase (decrease) in the mean potential energy through

a rise (fall) in the mean geopotential level. This is done at the cost (gain) of mean kinetic energy.
Equation (59) then implies

(@, Kim) — —un (D Vup' + (pDVHZ)g) (65)

The above definition is consistent as ¢(®., i) represents work done by mean kinetic energy
against /with eddy potential energy.

With ¢(®,,, K1) defined by equation (64). there is only one unresolved term at the right
hand side of equation (61). From the averaged density equation (56). —V - (u*p*D) gives the
rate of change of mean mass density from eddy flux of density. When negative (positive), @
is being increased (decreased) at the cost (gain) ot A, s

@ = Y o (e 0. (66)
and

o{ D =1 (67)
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then follows.
The last conversion term must then be

c(®e. Ke) = —pDw'g— pD(ufy - Vuz)g+ un - (D'Vup' + (pDN 12 )g) ==V - (u=p=D)g.(68)

At first sight, it is not obvious that this describes a process involving only the eddyv contributions
to A" and ®. The above expression may be rearranged, neglecting flux divergence terms. to
give

¢(®e, Ke) = —ufy - (DVap + (pDVaz)g). (69)

[t is then clear that ¢(®., i) describes the interaction between the eddy forms of kinetic and
potential energy. This completes this sigma coordinate description of the energetics. The
resulting energy flow diagram is displayed in figure 1.

c(D; Ko
ON -

G K

(P, K,) XY
.

o
c(D K

Figure 1: The energy flow chart. Arrows do not indicate any preferred flow direction of energy, only
the direction for ¢(.,.) > 0.

Before concluding, a comparison with B85 is required. As B85 outlines the energetics for a
general vertical coordinate. one should expect the findings herein to be consistent with his. The
present definition of potential energy density is ® = pDzg. while the definition of BS5 in sigma
coordinates is pD. These two definitions are equivalent for describing the internal energetics
as ® = pD — J(pz)/do, and the last term’s net contribution to the flow is through work done
at the lower boundary. The weighted average defined by (40) deviates slightly from that of
BS5. He uses the mass weighted average vpD/pD. which is not suitable in the present context
because the inertial effects of varving density are neglected under the Boussinesq approximation.
Another argument for choosing (40), is that when sigma coordinates are Cartesian. ¢ = 7, and
the transfer terms found in this section are equal to the Cartesian terms (multiplied by D) set
up in the first section. This is not the case for the mass weighted average.

Taking the above into account, the conversion terms suggested in this section may. through
manipulations similar to those leading to equation (69). be shown to be equivalent to those
put forward by B85 (his equations (21)-(25)).
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5 Concluding remarks

In the above. the conservation equations for kinetic and potential energy. divided into suit-
able mean and eddy quantities, for a sigma coordinate ocean model have been set up. The
transfer terms, (62), (64), (65), (66), and (68). responsible for conservative transfers between
the different energies and the resulting energy flow diagram, figure 1, have been suggested.
This description is consistent with both B85, and the special case of sigma coordinates being
Cartesian.

The generation of instabilities in the flow is diagnosed by

i/ A’ede/ IRV il (el @mae) + @R V. (70)
ot Jv 1% 14

The first integral on the right hand side contributes to barotropic instabilities. and the second
to baroclinic instabilities.

The mean value of a quantity ¥ in an eddy-resolving numerical experiment defined by the
weighted average (40) and ¢ calculated in a corresponding non-eddy-resolving experiment. are
by no means equivalent. Still, if the eddy-dissipation (e.g., Mellor and Blumberg (1985)) of the
latter experiment is believed to parameterize the transfer of kinetic energy between grid and
sub-grid scale, there should be a qualitative agreement between this dissipation il (el A 105,
estimated from the eddy-resolving experiment.

Future work is hoped to include the implementation of the suggested energy diagnostics in
the sigma coordinate ocean model of Berntsen et al. (1996). This may not be a trival exercise.
First of all, the energetics must be evaluated consistently with the numerical scheme applied
for solving the governing equations. Even then. keeping in mind the ongoing discussion on
errors associated with the estimation of the pressure gradient in sigma-coordinate ocean models
(see Song and Wright (1998), and references therein), there can be discrepancies hetween the
temporal evolution of the volume integrated energies found by direct calculations. and that
estimated from the transfer terms (included the effect of dissipation and lateral fluxes). A
suitable test case could be the energetics of eddies generated in a stratified fluid flowing over
an isolated topographic feature, see for example Huppert and Bryan (1976). restricted to a
cyclic channel.
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