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ON THE CONVERGENCE RATE OF OPERATOR SPLITTING FOR
HAMILTON-JACOBI EQUATIONS WITH SOURCE TERMS

ESPEN ROBSTAD JAKOBSEN, KENNETH HVISTENDAHL KARLSEN, AND NILS HENRIK RISEBRO

Abstract. We establish a rate of convergence for a semi-discrete operator splitting method
applied to Hamilton-Jacobi equations with source terms. The method is based on sequentially
solving a Hamilton-Jacobi equation and an ordinary differential equation. The Hamilton-Jacobi
equation is solved exactly while the ordinary differential equation is solved exactly or by an

explicit Euler method. We prove that the L°° error associated with the operator splitting
method is bounded by <D{At), where At is the splitting (or time) step. This error bound is an
improvement over the existing o{\SAt) bound due to Souganidis [4o]. In the one dimensional
case, we present a fully discrete sphtting method based on an unconditionally stable front
tracking method for homogeneous Hamilton-Jacobi equations. It is proved that this fully discrete
sphtting method possesses a linear convergence rate. Moreover, numerical results are presented
to illustrate the theoretical convergence results.

1. INTRODUCTION

The purpose of this paper is to study the error associated with an operator splitting procedure
for non-homogeneous Hamilton-Jacobi equations of the form

where u = u{x,t) is the scalar function that is sought, uq = uq{x ) is a given initial function, H
is a given Hamiltonian, and D denotes the gradient with respect to x = (x\,..., xw). Hamilton-
Jacobi equations arise in a variety of applications, ranging from image processing, via mathematical
finance, to the description of evolving interfaces (front propagation problems).

In general problems such as (1.1) do not have classical Solutions. In fact, it is well known that
Solutions of (1.1) generically develop discontinuous derivatives in finite time even with a smooth
initial condition. However, under quite general conditions they possess generalized Solutions, i.e.,
Solutions that are locally Lipschitz continuous and satisfy the equation almost everywhere. Usually,
the generalized Solutions are not unique and an additional selection principle, a so-called entropy
condition, is needed to single out physically relevant generalized Solutions.

To resolve the issue concerning non-uniqueness of generalized Solutions, the notion of viscosity
Solutions was introduced by Crandall and Lions [B], see also [6]. The major advance contained
m this notion of weak solution is that indeed uniqueness of the viscosity solution can be proven
for a very wide dass of equations without requiring a strong convexity assumption as in, e.g.,
[27]. A viscosity solution is by assumption continuous, but need not be differentiable anywhere.
However, a viscosity solution which is locally Lipschitz continuous will satisfy the equation almost
everywhere. Generalized Solutions obtained by the well-known method of vanishing viscosity
belong to the dass of viscosity Solutions in the sense of [B]. Since the appearance of [B], the
theory of viscosity Solutions has been intensively studied and extended to a large dass of fully
nonlinear second order partial differential equations. We refer to Crandall, Ishii, and Lions [7]
for an up-to-date overview of the viscosity solution theory for such general partial differential
equations.
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It is well known that (homogeneous) Hamilton-Jacobi equations are closely related to (ho
mogeneous) conservation laws. In the one-dimensional case, the notion of viscosity Solutions of
Hamilton-Jacobi equations is equivalent to the notion of entropy Solutions (in the sense of Kruzkov
[29]) of scalar conservation laws, see [5, 20, 22, 27, 33, 20] for details. In the multi-dimensional case
{d > 1), this one-to-one correspondence no longer exists. Instead the gradient p = Du satisfies
(at least formally) a non-strictly hyperbolic system of conservation laws, see [2O, 23, 27, 33] for
details. Exploiting this “correspondence” between Hamilton-Jacobi equations and conservation
laws, many numerical methods have been developed to accurately capture Solutions of Hamilton-
Jacobi equations with discontinuous gradients; see [9, 34] for finite difference schemes of upwind
type (see also [2B]); [l, 26] for finite volume schemes; [36, 37] for ENO schemes; [32, 30] for Central
schemes; [4, 19] for finite element methods; [2o] for relaxation schemes; and [23] for front track
ing methods. Using operator splitting, it is also possible to use “homogeneous” Hamilton-Jacobi
solvers as building blocks in numerical methods for non-homogeneous problems. In the present
context, operator splitting means “splitting off” or isolating the effect of the source term G.

Operator splitting for Hamilton-Jacobi equations, or more generally fully nonlinear second
order partial differential equations [7], have been used by Souganidis [4o], Barles and Souganidis
[3], Sun [42], and Barles [2]. Among these, the paper by Souganidis [4o] is the most relevant
one for the present work. In that paper, general operator splitting formulas are analyzed and
shown to converge to the unique viscosity solution of the governing Hamilton-Jacobi equation as
the splitting step tends to zero. The generality in [4o] allows for dimensional splitting as well as
“splitting of” the source term as we do in the present paper.

In Barles and Souganidis [3], the authors consider fully nonlinear second order elliptic or para
bolic partial differential equations and propose an abstract convergence theory for general (mono
tone, stable, and consistent) approximation schemes. This theory is then applied to splitting
methods as well as many other types of numerical methods. In Barles [2], the author studies,
among other things, splitting methods for nonlinear degenerate elliptic and parabolic equations
arising in option pricing models. In Sun [42], the author studies a dimensional splitting method for
a dass of second order Hamilton-Jacobi-Bellman equations related to stochastic optimal control
problems.

We now summarize the operator splitting procedure analyzed in this paper and state briefly the
obtained theoretical result. To ease the presentation, let us for the moment consider the simplified
non-homogeneous Hamilton-Jacobi equation

A presentation of the splitting procedure and the corresponding theoretical result in the general
case (1.1) can be found in §3. Let v{x,t) = S{t)vo{x) denote the unique viscosity solution of the
homogeneous Hamilton-Jacobi equation

where S{t) is the so-called solution operator associated with (1.3) at time t. Next, let E{t) denote
the explicit Euler operator, i.e., v{x,t) = E{t)vo{x) is defined by

Our operator splitting method then takes the form

where At > 0 is the splitting (or time) step and i = 0,..., n with nAt = T.
In this paper, we prove that this splitting approximation converges as At — 0 to the unique

viscosity solution of (1.2). More precisely, we prove that the L°° error associated with the time
splitting (1.4) is of order At:

for some constant K > 0 depending on the data of the problem but not At.

(1.2) ut + H(Du) = G{u), u(x, 0) = uq(x), x E M n , t 6 (0, T).

(1.3) vt + H{Dv) =O, u(x, 0) = i>o(z), xemN,t>o,

v{x,t) = v 0 (x) + t G{vo{x)).

(1.4) u{x,iAt)& [S{At)E{At)] l uoix),

(1.5) max u{-,iAt) ~ [S{At)E{At)V uq < KAt,
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In passing, we mention that the proof of (1.5) is inspired by an idea used in Langseth, Tveito,
and Winther [3l]. In that paper, the authors proved a linear L 1 convergence rate for operator
splitting applied to one-dimensional scalar conservation laws with source terms. Håving said this,
we stress that our method of proof uses “pure” viscosity solution techniques and do not rely on
the equivalence between the notions of viscosity [B] and entropy [29] Solutions, which exists (only)
in the one-dimensional homogeneous case.

As an easy by-product of our analysis, we also obtain an error estimate of the form (1.5) for
a variant of (1.4) in which the Euler operator E{t) is replaced by the exact solution operator
associated with the ordinary differential equation

(1.6)

This error estimate is an improvement of an earlier estimate by Souganidis in [4o]. In [4o], an L°°
error estimate of order VAt is obtained for a more general operator splitting procedure, which
also includes source splitting. This low convergence rate reflects of course the lack of regularity
of the viscosity solution and is the “usual” convergence rate obtained for (finite difference and
viscous) approximate Solutions of Hamilton-Jacobi equations, see [2B, 33, 9].

In applications, the exact solution operator S{t) must be replaced by a numerical method. In
this paper, we consider the one-dimensional case and replace S{t) by an unconditionally stable
front tracking method [l5, 22]. Furthermore, we prove that this fully discrete splitting method
has a linear convergence rate and present two numerical examples.

We would like to mention that the main results obtained in this paper also hold for weakly
coupled systems of Hamilton-Jacobi equations. The details will be presented in a future paper.

Although operator splitting methods have to some extent been studied and used as computa
tionally tools for Hamilton-Jacobi (and related) equations, we feel that these methods have not
reached the same degree of popularity as they have for hyperbolic conservation laws. In fact, the
first order dimensional splitting method was first introduced by Godunov [l4] as a method for
solving multi-dimensional conservation laws. Later this method was modified by Strang [4l] to
achieve formal second order accuracy. Rigorous convergence results (within the Kruzkov frame
work of entropy Solutions [29]) for dimensional splitting methods appeared two decades later with
the paper by Crandall and Majda [lo], see also Holden and Risebro [l7]. More recently, L l error
estimates of order y/At were obtained independently by Teng [44] and Karlsen [2l], Splitting
methods for scalar conservation laws with source terms have been analyzed by Tang and Teng [43]
and, as already mentioned, Langseth, Tveito, and Winther [3l], see also Holden and Risebro [lB]
for conservation laws with a stochastic source term. Operator splitting methods for conservation
laws with parabolic (diffusive) terms have been analyzed by Karlsen and Risebro [24] and Evje and
Karlsen [l3], see also the lecture notes [l2] (and the references therein) for a thorough discussion
of viscous splitting methods and their applications. Finally, splitting methods for conservation
laws with dispersive terms have been used very recently by Holden, Karlsen, and Risebro [l6].

The rest of this paper is organized as follows: In §2, we collect some useful results from the
theory of viscosity Solutions for Hamilton-Jacobi equations. In §3, we provide a precise description
of the operator splitting and state the main convergence results. In §4, we give detailed proofs
of the results stated in §3. In §5, we present and analyse a fully discrete operator splitting
method for one-dimensional equations. Furthermore, we present numerical examples illustrating
the theoretical results. Finally, in §6 we give a proof of a comparison result used in §4.

2. Preliminaries

We start by stating the definition of viscosity Solutions as well as some results about existence,
uniqueness, and regularity properties of such Solutions. These results will be needed in the sections
that follows. Proofs of these results (or references to proofs) can be found in [39], see also [4o].

Let us introduce some notation. If U is a set, and / : U — M is a bounded measurable function
on U , then ||/|| := ess supxeU \f(x)\. If X is set, then let BUC{X), Lip{X), and Lipb {X ) denote
the spaces of bounded uniformly continuous functions, Lipschitz functions, and bounded Lipschitz

ut = G{t,x,u), v{x,o) = vQ {x), x G M n , t> 0.



JAKOBSEN, KARLSEN, AND RISEBRO4

functions on X respectively. Finally, if / G Lip{X) for some set X, we denote the Lipschitz
constant of f by ||D/||.

For F G C([o, T] xW N xMx M A ), we consider throughout this section the following general
equation

(2.1)

with initial condition

where uq G BUC{Mn). Note that (1.1) is aspecial case of (2.1) and (2.2).

Definition 2.1 (Viscosity Solution). Lei F G C{[o,T] xWN xM x M N).

1) A function u G C{Qt) is a viscosiiy subsoluiion of (2.1) if for every <f G Cl {Qt), if u ~ <P
aiiams a local maximum at {xo,to) G Qt, ihen <p t {xo,io)+F{to, xq , u(x o , to), B<fi(x o ,t o )) <O.

2) A function u G C{Qt) is a viscosity supersoluiion of (2.1) if for every <f G Cl {Qt), ifu —cp
attams a local minimum ai (xq, to) G Qt, then 4>t{xo,to) + F{to, xo,u{xo,to), Df{xo,to)) >O.

3) A function u G C{Qt) is a viscosity solution of (2.1) if it is both a viscosity sub- and
supersoluiion of (2.1).

4) A function u G C{Qt) is viscosity solution of the initial value problem (2.1) and (2.2) if u
is a viscosity solution of (2.1) and u(x,o) = uq{x) in M. N .

In order to have existence and uniqueness of (2.2), we need further conditions on F.

F G C([o,T] x xM x RN ) is uniformly continuous on
(Fl) [O, T] xMn x [-R, R] x Bn{o, R) for each R> 0,

where BN { O, R) := {x GRN : jxj < R}.

For each R> 0 there is ajr G M such that F{t, x, r,p) - F{t, x, s,p) > jß {r -s)
for x G R n , -R< s<r < R,t e [O,T], and p G RN .

For each R > 0 there is a constant Cr > 0 such that
(F4) \F(t, x, r, p) - F{t, y, r,p)\ < CR { 1 + H)|x -y |

for t G [O, T], )r| < R , and x, y,p G M N .

We now state a comparison theorem for viscosity Solutions.

Theorem 2.1 (Comparison). Let F : [O,T] xMA xl xMA —* M satisfy (Fl), (F3), and (Ff). Lei
u,v G BUC{Qt) be viscosity Solutions of (2.1) with initial data uq,vq G BUC(Mn) respectively.
Lei Rq = max(||u||, ||n||) and 7 = jRo . Then for every t G [O ,T],

IK-,t)- v{-,t)\\ < e Tt l|u 0 - vo \\.

The next theorem concerns existence of viscosity Solutions.

Theorem 2.2 (Existence). Let F : [O,T] xl xlA —* M satisfy (Fl),_(F2), (F3), and (F4).
For every uq G BUC{Mn ) there is aT = T(||uo||) > 0 an d u BUC{Qt ) such that uis the
umque viscosity solution of (2.1) and (2.2). If, moreover, 7r in (F3) is mdependent of R, then
(2.1) and (2.2) has a umque viscosity solution on Qt for every T > 0.

The following two results are about the behavior of viscosity Solutions under additional regu
larity assumptions on u 0 and u.

Proposition 2.1. Let F : [O,T] xM A xMx M A — M satisfy (Fl), (F2), (F3), and (Ff). If
Uq G Lipb {RN), and u G BUC{R N ) is the umque viscosity solution of (2.1) and (2.2) in QT , then
u G Lipb{QT)-

ut + F{t, x, u, Du) = 0 in Qt,

(2.2) u(x, 0) = uq(x) in M N ,

There is a constant C > 0 such that

C = supg T \F{t, x, 0, 0)1 < 00.
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Proposition 2.2. Lei F : [O, T] x xRx RN —> M satisfy (Fl), and (F3) with jR < 0 for
every R> 0. Assume thai for u 0 G BUC{MN), u G BUC(QT ) is a viscosiiy solution of (2.1) and
(2.2). Let R > \\u\\ and 7 = jR . Then the following statemenis are true for every t, s G [O, T\:

(a) If H satisfies (F2), then (|u(-,t)(( < e 7< (||mo|| + tC), where C is given by (F2).
(b) If F satisfies (Ff) and u{-,t) G Lipb {R N) for every t G [O,T] with L:= supfo (|D«(-,<)||,

then

where Cr are given by (Ff). Moreover

(c) Ifuo G Lipb (RN), ||w(-,t)-uo || <te (xt)e gT \F(t,x,r,p)\.
\r\<\\uo\\
\p\<\\Du o \\

(d) //«(•,<) G Lipb (Rn) for every t G [O,T] and L := sup [o T] \\Du{-, <)(|, then u G Lipb {QT )
and

IK',O - «(-,s)|| <\t ~ s\e lT sup \F{t,x,r,p)\.
(x,t)eQT

\P\<L

Finally, we will need the following stability result whose proof is given in the appendix.

Proposition 2.3. Let F : [O, T] xRN xMx MN -> M satisfy (Fl), and (F3), and let f be a
nonnegative, bounded function that belongs to C{RN x [O,T]). Assume that u G Lipb {Qr) is the
viscosity solution of (2.1), and v G LipbiQr ) is a viscosity solution of

(2.3)

Remark 2.3. This is essentially Theorem V.2 (iii) in [B]. The proof we give in the appendix is
different from the proof given in [B], We use techniques from [39], and the proof resembles the
proof of Proposition 1.4 in [39].

3. Statement of the results

We will study the convergence of operator splitting applied to the Hamilton-Jacobi equation
(1.1), where u 0 G Lipb(RN ) and H and G satisfies the following conditions.

||D«(.,i)|| < e-T'(||D«o || + + L)),

L < eT^c’>‘"' T -^\\\Duo \\ +

\vt + F{t,x,v,Dv)\ < f{x,t) in QT .

Lei R 0 = max(||u||, ||v||) and 7 = jRo . Then forO<s<t<T,

e7'lK.O - »(-,011 < e7’|K,s) - »(•, »)|| + /(•, <r)|| der.J s
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Conditions on H.

H G C([o,T] x xM x M A ) is uniformly continuous on
(Hl) [O, T] xW N x [—i?, .R] x Bn{ o, R) for each R> 0,

where 8/v(0, R) := {x G : |x| < R.}.

For each R> 0 there is a constant CR > 0 such that
(H4) \H{t, x, r,p) - H{t , y, r,p)\ < Cg(l + |p|)|x -y\

for t G [O, T], |r| <R, and x, y,p G M. N .

/ TTr \ There is a constant LH > 0 such that 1 Hit, x, r. p) Hit, x, s, p)| < LH \r —sl
(Hs > for ie[o,n*.P6 and re R.

For each R > 0 there is a constant > 0 such that
(H6) 1 H{t,x,r,p)- H{i,x,r,p)\ < Ng (l + |p|)|f-t|

for t, t G [O, T], |r| < R, and x,p G M. N .

For each R > 0 there is a constant Mr > 0 such that
(H7) | H(t,x,r,p)~ H[t, x, r, q)\ < MR \p-q\

for i G [O, T], |r| <R, x,p,q G and |p|, |g| <R.

Conditions on G.

„ Gg C([o, T] xm N xM) is uniformly continuous on
[O, T] xRn x [-R, R!] for each R> 0.

„ For each R> 0 there is a constant CR > 0 such that
| G(t, x, r) G(t, y,r)\ <CR \x —y\ for t G [O, T], |r| < R, and x, y G

There is a constant L° > 0 such that \G(t,x,r) G{t,x,s)\ < L°\r ~s\
for < G [O,T], 2 G , and r,sGl.

p For each R > 0 there is a constant > 0 such that
° \G{t,x,r) G{i,x,r)\ < Nj(\t— t\ for t, t G [O, T], |r| <R, and x G .

Conditions (Hl), (H2), and (H4) are conditions (Fl), (F2), and (F4) from §2 in the case
F{t,x,u, Du) = x,u, Du). The condition corresponding to (F3) is replaced by the stronger
condition (H5). Conditions (H5)-(H7) are needed for proving error estimates. The conditions on
G are just the corresponding conditions for the case F{t, x, u, Du) = G{t, x, u).

By these assumptions the function F{t,x,r,p) = H{t,x,r,p) G{t,x,r) satisfies conditions
(F1)-(F4). Condition (H5) and (G4) implies condition (F3), with yR =— L G LH . Note the
minus sign! Also note that this constant is independent of R. So by Theorem 2.2 there exist
a unique viscosity solution u of (1.1) on any time interval [O,T], T > 0. By Proposition 2.1,
u G Lipb {QT ).

First we will state an error bound for the splitting procedure when the ordinary differential
equation is approximated by the explicit Euler method. To define the operator splitting, let
E{t,s) : Lipb {M a ) —+ Lipb (R N ) denote the Euler operator defined by

(3.1)

, There is a constant CH > 0 such that

CH = supg T \H{t, x, 0, 0)1 < 00.

(G2) There is a constant CG > 0 such that CG supg T \G{t, x, 0)| <oo

E{t , s)fo(z) = + {t - s)G{s, x, vo {x ))
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for o<s< t < T and v 0 E Lipb(M N). Furthermore, let S{t,s) : Lipb(R N) —> Lipb{R N) be the
solution operator of the Hamilton-Jacobi equation

where u 0 G Lipb(M Ar). Note that Sis well-defined on the time interval [s, T], since (3.2) is basically
aspecial case of (1.1). More precisely, there exists a unique viscosity solution v E Lipb{RN x[s, T']),
for any T' > 0.

The operator splitting solution {v(æ,< t-)}"=1 , where ti =iAt and tn <T, is defined by

(3.3)

Note that this approximate solution is defined only at discrete t-values. The first result in this
paper states that the operator splitting solution, when (3.2) is solved exactly, converges linearly
in At to the viscosity solution of (1.1).

Theorem 3.1. Let u(x,t ) be the viscosity solution of (1.1) on the time interval [O,T] and v{x,ti )
be the operator splitting solution (3.3). There exists a constant K > 0, dependmg only on T, ||t/0 11,
l|Duo|l> INI, ||TM, H, and G, such that for i = 1,..., n,

We will prove this theorem in the next section.
Our second theorem gives a convergence rate for operator splitting when the explicit Euler

operator Eis replaced by an exact solution operator E. More precisely, let É{t,s) : Lipb{RN ) — 
Lipb{R N ) be the exact solution operator of the ordinary differential equation

where vq E Lipb{RN). Note that Éis well defined on the time interval [s,T]. In fact, the assump
tions (G1)-(G5) madeon G are sufficient for (3.4) to have a unique solution u E Cl ([s, T']; Lipb(RN))
for any T' > 0.

Let us define the following operator splitting solution {v{x, L)}”_i, where iAt and tn < T,
by

As a consequence of Theorem 3.1 and GronwalFs inequality we get the following theorem.

Theorem 3.2. Let u{x,t) be the viscosity solution of (1.1) on the time interval [O,T] and v{x,ti)
be the operator splitting solution (3.5). There exists a constant K > 0, dependmg only on T, ||uo|l,
||Duo|l> l|vo(l, ||Duo||, H, and G, such that for i 1,..., n,

IK-,L) - v(-,L)|| < K(\\u0 - uo |l + At).

We also prove this theorem in the next section.

Remark 3.3. Theorem 3.2 improves Theorem 4.1 (b) in [4o] for the splitting defined in (3.5). Note
that the generality in [4o] allows for a G function also depending on the gradient. The convergence
rate o{y//At) is obtained for this more general operator splitting.

4. Proof of Theorems 3.1 and 3.2

In this section, we provide detailed proofs of Theorems 3.1 and 3.2, starting with the proof of
Theorem 3.1. An important step in this proof is to introduce a suitable comparison function.

a) Introducing a comparison function.
Before we can introduce the comparison function, we need an auxiliary result. For 0 < s < t < T,

vt + H(t, x, v, Dv) 0 in R N x (s,T),
(3-2) „

v{x, s) = ro(x) in M ,

~ S(ti , ti— i , ti— l)u( ‘ j —1) (*c) j

v(x, 0) = t)o(æ).

IK,*,-) - v(-,ti)|| < K{\\uo - Voll + At).

vt =G{t,x,v) in Rn x (s,T),

v(x, s ) = in

v{x,U) =

v(®, 0) = vo(®).
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let - S{t,s)wo denote the viscosity solution of the Hamilton-Jacobi equation (3.2) with
initial condition wO . For a given function ip € x [O,T]), we introduce the function

Assuming that wis Cl , it follows that qisa C 1 solution of the following initial valne problem

Moreover, this is still true if w and q are only required to be viscosity Solutions of equations (3.2)
and (4.1) respectively.

Lemma 4.1. Let w be a viscosity solution of equation (3.2) and xp £ C' 1 (M iV x [O,T]), then
q := w + xp is a viscosity solution of equation (f.l).

Proof. Assume <p £ x (s, T)) and that q— <p has a local maximum at (z O , to) G M x (s, T).
This means that w [<p xp) has a local maximum at (xqTo)- Since {<p ip) is aC 1 test-function
and w is by assumption a viscosity solution of (3.2), the definition of a viscosity subsolution yields

where we replaced w{xo,to) by {q ip){xo,to). The inequality holds for any test function <p and
for any local maximum of q <p. So q is a viscosity subsolution of (4.1). Similarly you can show
that q is a viscosity supersolution of (4.1).  

Let j be such that 1 < j < n. Recall that to compute the operator splitting solution v at time
tj = jAt, we do j steps. In each step we first apply the Euler operator E for a time interval
of length At. Then we use the resulting function as an initial condition for problem (3.2) which
is also solved for a time interval of length At. The main step in the proof of Theorem 3.1 is
to estimate the error between u and v for one single time interval of length At. Hence we are
interested in estimating

where u(z,o) = fo(z).
Now fix i = 1,.. ~n, and define the function (: W N x [tj_ i, t*] — ®as follows

Observe that

To estimate the difference between w(-, tj) and i>(-, t,), we need to introduce the comparison function
q b ;M a x [t{-i, tt-j —> M defined by

(4.3)

Here r]s{x) where r] is the standard mollifier satisfying

The introduction of the function q 6 is inspired by the comparison function used in [3l].
For each x£ M A we see that q B {x,ti) = u(z,t t ) and we will later show that

The difference

q{x,t) := w{x,t ) + ip{x,t).

qt + H{t,x,q - ip, Dq - Dxp) = xpt in M Ar x {s,T),

q{x, s) = Wq{x) + ip{x, s) in

Ot - ipt){xo,to) + H{to,xo , (q - iJ>){xo,to), {D(p - Dip){x 0 ,t 0 )) <O,

-S{tii-

COM) : =

C OM») = v{x,ti).

(4.2) q s {x,t) = C{x,t) + ip 6 {x,t)

where ip 6 :M A x —> Mis defined by

Tp s {x,t) - -{ti -t) [ ris{z)G{U-i,x-z,v{x - z,U-i))dz.

r] G C^°(M"V ), rj{x) = 0 when |z| >l, j r]{x) dx =l.718^

q 6 {x,U-i) —* as <5 -+ 0.
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will be estimated by deriving a bound on the difference

To this end, observe that q 5 is a viscosity solution to

This is a consequence of Lemma 4.1 since xp s G C°°(MjV). Now we proceed by deriving a priori
estimates for u, v, , and q 5 that are independent of At.

b) A priori estimates for u, v, ips , and q s .
We start by analyzing S and E. Let w G Lipb {RN). Assume that

For 0 < s < t < T, let w{x,t s) = S{t, s)w{x). This function is a viscosity solution of equation
(3.3) on [O, T—s] when H(t, x, r,p) is replaced by H{r+s, x, r,p). The initial condition is w{x, 0) =
w{x). Applying Proposition 2.2 (a), (b), and (c) to w and then using S{t,r + s)w{x) = w{x,r),
we get the following estimates

Note that 7 = -LH , and that in the expression (4.8), the constant Lin Proposition 2.2 (b) is
replaced by its bound.

Let us turn to E. The following estimates are consequences of the definition (3.1) of E and the
properties of G, w.

Now we see that assumption (4.6) holds. Just replace t - s by T in expressions (4.7) and (4.11).
Let us introduce some notations which will be useful in what follows:

(4.14)
Gr := Cg +Cg for R> 0,

Nr := Ng +Ng for R> 0.

Lemma 4.2. There exists a constant R 2 independent of At such that maxi< i<n ||n(-, A)(| < R 2.
Moreover, for every 1 < i < n,

(b) ||Z>v(-,t*)ll < e (£+ -ft- l( -R2))t *{||Di;o|| + tiC + TK\{R2 ))].

Proof. Assume there is a constant R 2 independent of At such that

(4.15) max ||w(- J * i )|| < R 2.

In expressions (4.7) - (4.13) replace R 1 (whenever it appears) by R 2, tby ti, sby t,_i, and wby
v(-Ai-i)- Successive use of expressions (4.7) and (4.11) yield (a), and similarly (b) follows from
(4.8) and (4.12). In (a), replace L by T and we see that the assumption (4.15) holds.  

(4.4) q‘t +H{t,x,q‘ -^,Dql -D^l )=rf in K"x (<, _!, ti),
(4.5) = + in M*.

(4.6) Rx := max{sup0 < 5 < t < T || E{t, «Hl, sup 0 < s < t < T \\S{t, sH|} < to.

(4.7) ||S(«,«H|<ei ''<'-)(HI + (t-«)C") 1

(4.8) \\D{S(t, «)to>|| < e(i ''+*>(«>»('-){||Du) || s)C£(l + TK^Rt))]

(4.9) ||s(*,s)u; - ty|l < {t-s)e s) sup{|#(*, ar, r,p)| : (ar,*) G QtM < |H|, \p\ < IPHI).
where

(4.10) = Cg eT{- 2C% eLHT +LH\ R > 0.

(4.11) ||£(<, sH| < (1 + L°(t - s))|H| + (t- ,

(4-12) IP{E(M)i»}|| <(1 + La (t - s))||Dm|| +(< - s)Cg ,

(4.13) s )w «'li < s){CG + iG |H|),

L ;= 2max{LH ,LC )

C:= CH +CG

(a) |K-,* t )|| < eLt '{\\vo \\ +UC),

max ||v(-,ti)|| < R 2.l<i<n
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From the definition (4.3) of VJ<S , we see easily that the following lemma is valid:

Lemma 4.3. For every 1 < i < n and t E [ti_i,t,],

(a) U6 { ,t)W <{U -t){CG +
(h) \\D^{.,t)\\<{t t -t){Cl+LG \\Dv{;U^)\\}.

Now we are in a position to prove a corresponding result for q 6.

(c) There exists at constant M independent oft, i, and At such that

Proof. We only give the proof of (c). The other statements are easy consequences of expressions
(4.7), (4.8), (4.11), (4.12), and Lemma 4.3. By estimate (4.9) we get

Using (H2), (H5), and (H7) we write \H{t,x,r,p)\ <CH + |r| LH + |p|Mr2 . By Lemma 4.2 and
estimates (4.11) and (4.12) there are constants V and R' independent of i and At such that

So we use (4.9) and get

\\S{t f - £(ti ,t J _i)i;(-,t l _i)|| < Const At,

where the constant is independent of t, i and At. By using expression (4.13) and Lemma 4.2 we
can show that

where the constant is independent of i and At. By Lemmas 4.3 and 4.2 we can find a constant
independent of t, i and At such that

We finish by noting that by the definition (4.2) of q 6,

Finally we come to (the exact solution) u. Using Proposition 2.2 with F{t, x,r,p) H(t,x, r,p)—
G(t, x, r,p) (see also the derivation of (4.7) and (4.8)), we get the following result;

Lemma 4.5. There exisi a constant R 2 such that maX[o,T] || u ('iOll < A3. Moreover for t E [O, W],
the following statements hold

There is a constant R 4 independent of t, i, and At such that |k <5 (-,t)|| < R4. This follows
from Lemma 4.4 a) by replacing ||v(-, t*_i)|| by R 2 and At by T. Similarly there is a constant R$
independent of t, i, and At such that \\ips (•, t)(| < Rs. Define

Lemma 4.4. For every 1 < i < n and t € , t,-].

(a) H ? s (.,<)||<e 2£a‘(lK-.i.- l )ll + 2AiC),
(i) l|D9f (',<)ll < e (2i+A' l< ',a,)A, {lK.<._i)ll + At + TK^R,))},

< mm.

x (t,x) 6 Qt, |r| < |p| < ||D{£(*i,*i_i)v(- J <i_i)}|l}.

||£(ti,tj_ 1 <R' and <V.

< Const At,

< Const At

+ V(;ti_l)|| + ||^||.

(a) IK-,011 < eLt (tC + |M),
(b) \\Du{-,t)\\ < + tCRiI + TK2 {R3 ))}, where

K2 (R) = CR eT{- 2CReLT +L) •

(4.16) R := max{R,2, Ra, Ra, Rs)-
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By a similar argument there is an L independent of t, i, and At such that

(4.17) max ||Du(-,<i)||, sup \\D^6 {-,t)\\, sup \\Dq\-, *)(|, sup \\Du{-, *)|| < L
-- [t-P,] [ti-i.ti] [O,T]

Furthermore we set

We will need the M to be this big because of equation (4.1). We are now in a position to prove
Theorem 3.1.

c) The proof of Theorem 3.1

We prove Theorem 3.1 by applying Proposition 2.3 to u and q s . Let us start by deriving an
inequality of the form (2.3) from the equation (4.4) satisfied by the comparison function q 6.

Let (j) be a C l function, and assume that q 6 f has a local maximum point in {t, x). Then by
the definition of viscosity subsolution and equation (4.4) we get

(4.19) + - Dil>6 (x,t)) <^{x,t).

Now we estimate s{x,t) and H{t, x, q s (x,t) - xp s {x,t), Df{x,t) - D^6 (x,t)) as follows:

/ T}s{z)G{ti-i,x- z,v{x - z,ti-i))dz - G{ti- U x,q6 {x,t ))

where we have used (G3), (G4) and M is given by Lemma 4.4 (c). Using this estimate and (G5),
we see that

< G(t, x, q\x,t)) +At {LM + Nr ] + S{CR + LL].
We get the following estimate for H :

(4-21) > H{t,x,q6 {x,t),D<j>{x,t))- L\xp 6 {x,t)\ -M\D^s {x,t)\

> H(t, x, q[x ,t), D<j>{x, t)) At]L[C + LR) + M (Gr + LL)] ,

where we have used (H5), (H7), and Lemmas 4.3 and 4.4. Dehne the constant M 0 by

(4-22) Mq := L{C LR] + M{Cr + LL] +LM + Nr.

Substituting (4.20) and (4.21) into (4.19), we get

In a similar way we can show that if <f> is C 1 and q b - f has a local minimum in {x,t), then

+ H{t,x,q6 {x,t),D(j){x,t )) - G{t,x,qs (x,t)) > -f{x,t)
This means that q å satisfies

(4.18) M = M2L .

tøtOM) ~ G{ti-i,x,qb {x,t))\

< / T]s {z)\G{ti-i,x - z,v{x - z,U-i)) - (?(*, _i, x - z,q\x - z,t))\dz

+ / r]s{z)\G{ti-i,x ~ z,q 6 {x - z,t)) - G{ti-i,x,q\x - z,t))\dz

+ / V6( z)\G{ti- I ,x,q 6 {x - z,t)) - G{ti-i,x,q\x,t))\dzJm N
< LMAt + CrB + LL6,

s’(*.<) < G(t.*>«*(*,<)) +
(4-20)

H{t, x, q 6 {x, t) - ips {x,t),D(j){x,t) - Di> 6 {x,t))

&0M) + H{t,x,q6 {x,t),D(j){x,t)) - G{t,x,q6 {x,t )) < f{x,t)
where

(4-23) f{x,t) :=AtM0 + 6{CR + LL}.

\q St {x,t) +H{t,x,q\x,t),DqS {x,t))-G{t,x,qS {x,t))\ < f{x,t)
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in the viscosity sense, where / is given by (4.23).
Now we are in a position to apply Proposition 2.3 to u and q 6. Let r G [t,_i,ti] and note that

Applying Proposition 2.3 we get

(4.24) e Lt \\ u(-,r) - q 6 {-,r)\\ < e1**- 1 ||u(-,A_i) - g*(- J t f _i)|| + At2 M0 + AtS{CR + LL}.
Next, observe that

(4.25)

< At 6L\\Dv{-,ti-i)\ \ -f At SCR

where the last estimate follows from the triangle inequality, (G4), and (G3).
By (4.24) and (4.25), we get

where A=(l + MOT)eLT and M 0 defined in (4.22). So, by the definition of L and MO , Lemmas
4.2 - 4.5, K is a constant depending on H , G, T, ||tio||, ||A>ao||, and ||.Dvo|| but not At.

Now we are done since sending 6 —> 0 in inequality (4.27) produces the desired result.

d) The proof of Theorem 3.2
We end this section by giving the proof of Theorem 3.2. To this end, we need Theorem 3.1 and
the following estimate

where C is a constant depending on C, H , T, l|i/o||, ||-Duoll> ||vq||, and ||.Dvo|| but not At. Equipped
with (4.28), w7e get, for every i 1,..., n,

Let K K + C and we can immediately conclude that Theorem 3.2 holds.
It remains to show (4.28). Let w, v, F G Lipj(lRA ), and let Gbe defined as before. Let

i = 1,...,nbe fixed. Then let w, v G C 1 ([t,-_i, t,-]; Liph {RN)) be the Solutions respectively of

and

We now state the following comparison principle.

/ e- La \\ /(-, cr)||dcr < At 2 M0 +At 6{CR + LL]Jti-i

- q 6 {x,ti- i)l = \v{x,ti-i) -

= |AtG(tj_i,2;,t;(æ,i l _i)) -f b {x,t%- 1)|

<At ri6 {z) G{t i - I ,x,v{x,ti - 1 ))
Je n

G{U-i,x - z,v{x - z,ti-i)) dz

\\u(-,ti) - v(-,* i )ll = IK-. < i)-95 (-^<)ll

< elAt \\u{x,t l . 1 ) - v(®,^_ l )|| + At 2 M0 e lAt + 26At {CR + LL]elAt

Since i 1, ..n was arbitrary, successive use of (4.26) gives
i i

||u(-, tj) - »(-,<i )|| < e L ‘i[\u0 - vo || + At 2 Mo Y e UA’ + 2{A( {Cfi + lL ) Y
(4-27) t=i i

< K{\\u0 fo|| + At) + 26T{Cr + LL}e^T , for j 1,..., n,

(4.28) ||i>(x, ti) v{x, t,)|| < CAt,

H-,u) - v{-,u) || < |l u{-,u) - + IK.*O -

< A'(||u o vo|| + At) -f CAt.

wt F(x ) in iA x
(4-29) . N

w(x, ti-i) = w(x) in

vt = G{t,x, v) in M A x

v{x,ti-i) v{x) inM A .
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Lemma 4.6. For every t G (L'-i,L'L we 9e i

\\w{-,t) - v{-,t)\\ < eL{t t, - l) \\w - v\\ + e L{t t '~ I \t - U-i)K*,

where K' := sup (Tia. )e[t ,_ iit , ]x]R „ | F(x) - G(r, x, w{x, r))|.

Proof. Using the equations for w, v, we see that

|w(æ, 0 v{x, t)\t < |T(z) G{t, x, v{x, t))| a.e.

where ||L>ra|| denote the Lipschitz constant of w{x,t). The last inequality follows from (G4), (G5),
and w G Lipb{M. N). For every i = 1,..., n, we can show that

< eLAt \\E{t i ,ti- I )v{-,t i - 1 ) -

by using Theorem 2.1 and arguments similar to those used when proving estimate (4.7). Moreover,
by Lemma 4.6 and the estimate (4.30) we get

(4.32) e£A'||£’(^,L_ 1 )u(-,f i_i) - £(*.- > *i_ l )v(-,* i_i)|| < e 2LAt At 2 {L\\Dw\\ + NR ).

Using the equation (4.29), it follows that

where we used (G2), (G4) and the definitions (4.16), (4.17) of R, L. Since i was arbitrary, repeated
use of inequalities (4.31) and (4.32) now gives us (4.28).

5. A FULLY DISCRETE SPLITTING METHOD FOR ONE-DIMENSIONAL EQUATIONS

In this section we describe a fully discrete operator splitting method that actually possesses
a linear convergence rate. There are not many numerical methods that are likely to produce
linear convergence, since numerical methods for Hamilton-Jacobi equations are usually based on
numerical methods for conservation laws. Most methods for conservation laws (even “higher
order” methods) have an L 1 convergence rate of 1/2 (or less). Roughly speaking, this translates
to a L°° convergence rate for the Hamilton-Jacobi equations of 1/2. Therefore the linear error
contribution o{At) (see Theorem 3.1) coming from the temporal splitting is swamped up by the
method-dependent error, unless one uses a method that possesses a convergence rate of at least 1
for the Hamilton-Jacobi equation (3.2). The only methods likely to achieve this are translations of
front tracking methods for conservation laws. Since these methods are first order (or higher [3s])
only in the one-dimensional case, this section is entirely devoted to one-dimensional equations.

The front tracking method we shall use here was first proposed by Dafermos [ll] and later
shown to be a viable method for conservation laws by Holden, Holden and Høegh-Krohn [ls]. An
extension of this method to Hamilton-Jacobi equations was studied in [22].

Without modification it applies to the initial value problem for the scalar conservation law

Pt + H (p) x —O,

Moreover,

|F(x) - G{t,x,v{x,t))\ < | F{x) - G{t,x,w(x,t))\+ | G{t,x,w{x,t))- G{t, x,v{x,t)) |
< L\w(x, t ) v{x, i)| + K'.

By Gronwalßs inequality

\w(x,t) - v{x,t) | < eL(' i ~ tl~ l^\w{x ) - n(æ)| + - ti-i)K',

and we are done.

Let w (x) = v{x,ti- 1) = v(x), F(x) = x, v{x,ti-i)), and t G Then

(4.30) I\ = sup \G{U-i, x, v{x, U-i)) G{t, x, w{x,t))\ < L\\Dw\\At +NrAt,

\\Dw\\ < lpv(- > /f_i)|| + At sup |G(^-_i,æ,u(x,^_i))|
a;6K w

< L + T{C° + LR),
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which is equivalent (see the discussion in §1) to the Hamilton-Jacobi equation

(5.1) u t + H (ux ) =O, u(x, 0) = u 0 (x).

The Riemann problem for this is the case where

(5.2)

where p/ and pr are constants. We now briefly describe the solution of (5.2). Let (p\pi,pr )
denote the lower convex envelope of H between pi and pr , i.e.,

(5.3) (P',Pi,Pr ) = sup|G(p) | G" > 0 and G{p) < H{p) for p between p\ and pr |.

Similarly, let (p;p;,pr ) denote the upper concave envelope of H between p; and pr . Let also

Note that H'{p) is monotone between p\ and pr , hence we can define its inverse and set

pi for x< t min (p;), H' (pr )|,

(5.4) p{x,t)=< (f) for t min (p/), H 1 (pr )| <x < t max (p;), H' (pr ) jl ,
pr for x > t max (p;), H' (pr )

Then the viscosity solution of the Riemann problem (5.2) is given by (see [22])

Note that in the case where H is convex, this formula can be derived from the Hopf-Lax formula
for the solution to (5.1).

Note that the above construction (5.4) and (5.5) only requires that H is Lipschitz continuous,
not differentiable. Exploiting this, let 8 be a small positive number and set

lf H is Lipschitz continuous, then H 6 is piecewise linear and Lipschitz continuous. Furthermore,

also H 6 will be piecewise linear and will be piecewise constant. Now set us to be the

viscosity solution of the Riemann problem for the equation

From (5.5) we then see that us will be piecewise linear. The discontinuities in u sx will move with
constant speed in the (x,t) plane.

This construction can be extended to more general initial vaiues. Assume that Uo! 2-) a
continuous piecewise linear function such that

Then one can solve the initial Riemann problems located at the discontinuities of u s0x according to
(5.5). At some ti > 0, two of these discontinuities will internet, thereby defining a new Riemann
problem at the interaction point. This can now be solved and the process repeated. Note that
this amounts to solving the initial value problem for the conservation law

In [ls] it was shown that this yields a piecewise constant function p <s (a;,t), which is constant on
a finite number of polygons in the (x,t) plane. Let u 6 (x,t) denote the result of applying (5.5) at
each interaction of discontinuities. From [22], we have the following lemma;

/ \ / n x . j Pix for a; <O,uo {x) = u o (0) + <
1 pr x tor x > 0,

fr, \ j H~{P',Pl,Pr) lf Pl<Pr,
H{p\Pl,Pr)= <

[H^[p]pi,pr ) lf Pl >Pr  

(5.5) u{x,t) = u0 { 0) + xp{x,t) - tH{p{x,t)).

(5.6) H\p) - H{i6) + {p- iS) + for ib <p< (i + 1)5

u‘ + H‘ = 0,

(5.7) lim \\u* ~ uo\\ =O.\ / 6^Q II U ||

p» + jy«(p4 ) x = o o) = <,(*).
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Now we can state our main result:

Theorem 5.1. Let u[x,t ) be the viscosity solution of

(5.9) ut + H (ux ) = G{x,t, u), u{x,o) = uo {x)

Let S 6 be the solution operator for (5.8), and let

v 6 {x, 0) = uo(jAx) +(x - jAx) U + —MjAx) yor x e (j + l)Ax],

Then there is a constant K, dependtng only on ||wo|[, ||wo ja; ||, H, G and Tm , such ihat

(5.11) < K{S + At + Ax), V< G (O, Tm ).

Proof Let w s denote the viscosity solution of

Then Theorem 3.1 and the fact that w 6 is Lipschitz in time ensures the existence of a suitable
constant K such that

(5.13) IKtO) - »T,i)|| < K (||»s (-, 0) - uo || + At).

By the definition of ?/(x,O) and since uq G Lipb{M),

since we assume that His locally Lipschitz. The result now follows from (5.13) and (5.15).  

Remark 5.2. If H and uq are twice continuously differentiable, then the estimates (5.14) and (5.15)
can be replaced by

||i/(-,0)-uo || < A'Ax 2 and ||it(-, t) - w 6 {-, t) || < K8 2

respectively. Thus the final error estimate (5.11) is found to be

(5.16) || u(-,t) - < K (<^ 2 + Ax 2 + At) .

Therefore, if H and u 0 are C 2, then 6 and Ax can be chosen much larger than At without loss of
accuracy.

Example 5.1. We now illustrate the above result with a concrete example, and test the operator
splitting method (5.10) on the initial value problem

(5.17)

The approximate solution operators are front tracking for the Hamilton-Jacobi equation

and Euler’s method for the ordinary differential equation ut = u. Figure 1 shows the approximate
solution found using Ax = 0.02 and 6 = 2Ax, as well as the upwind approximation (5.18) with
the same Ax. To the left we see the approximation u(x, 1/2) obtained by two splitting steps, i.e,
At = 0.25, and to the right we have used At = 0.025. To check the convergence rate (5.11), we

Lemma 5.1. The piecewise hnear funciion u s {x,t ) is the viscosiiy solution of

(5.8) ust +Hs {ul)= 0, =

(5-10) v\x,t) =S6 (<i,ti_i)Æ7 {U, v*(. fort £ {t i _ l ,U],

wiih

(5.12) w6t t+6(H 6 (wsx ) = G {t, x, w 6) , w\x,o) = uo {x )

(5.14) 0) mq|| < KAx

Also, from Proposition 1.4 in [39], we find that

(5.15) || u{-,t) - «;*(•, <)|| < K sup | H{p) - H\p) | < KS,
\p\<l

l, 3 ( n x j sin(7rx) for |æ| <l,
I U otherwise.

1 , x 3
U t + g («*) = 0,



JAKOBSEN, KARLSEN, AND RISEBRO16

compared the splitting approximations to a difference approximation on a fine grid. We used the
upwind stencil

At ,\ 3

3 ( Ai J ’
(5.18)

with (hopefully) self-explanatory notation. For the reference solution we used Ax = 1/250. In
Table 1, we list the percentage relative L°° error for three difference sequences of approximations:
Ax = 0.04, Ax = 0.02, and Ax = 0.01. In all cases 6 2Ax. We compared the approximations at
t 1/2. In the left column are the number of splitting steps (At = l/2#steps) and in the other
columns we show the errors. From this table we see that the numerical convergence rate is linear
in all three cases, confirming (5.11).

Table 1. Convergence of operator splitting applied to (5.17).

Example 5.2. As another example where we test the convergence rate (5.16), we compute ap
proximate Solutions of the initial value problem

(5.19)

As a reference solution, we have used the Engquist-Osher (or generalized upwind) scheme

with Ax = 1/2000 (special millennium value). We compared the approximations at t = 1. In
Figure 2 we show the approximate Solutions with 1, 2, 4 and 8 steps as well as the reference
solution at t = 1. Also, instead of the splitting described above, one can use the Strang splitting

FIGURE 1. Left; u{x, 1/2) with At 0.25, right: u{x, 1/2) with At = 0.025

u‘ +1 =(1 + A

1 2
wt +-(wx) =u, u{x, 0) = sm(7r®).

n] =„ (! + At) - 1 ‘'.oj a*''- 0 ) j  

100 x relative L°°-error

#steps Ax = 0.04 Ax = 0.02 t> H II o o  —1
1 41.2 38.4 39.9
2 22.8 23.2 23.2
4 11.3 14.5 11.8
8 6.2 7.4 5.9
16 3.3 3.0 2.9
32 1.6 1.8 1.4
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Figure

Table 2 Convergence of Godunov and Strang splitting

u{-,iAt) w [E{At/2)S{At)E{At/2)]1 u 0

This gives formal second order convergence, and one would expect it to be better than the Godunov
splitting in practice. To take advantage of (5.16), we set

as parameters for the front tracking scheme. In Table 2 we list the results. From this we see that
in both cases the convergence rate is linear, but Strang splitting gives a much smaller error.

6. Appendix; Proof of Proposition 2.3

In this section we present the proof of Proposition 2.3. The proof follows rather closely the
proof of Proposition 1.4 in [39].

In what follows, we shall need the following Gronwall type resuit for viscosity Solutions.

Lemma 6.1. Let T > 0, 7 G M, and v, h G C([o,T]). Suppose that v satisfies

(6.2)

2. Approximate Solutions of (5.19) at t = 1, with At = 1/Nstep and Nstep = 1,2,4, 8

At = l/#steps, Ax = and 6 = y/KtJlO

(6-1) v'{t) + jvft) < h(t)

in the viscosity sense. Then, for 0 < s < t < T,

< + f e7T /i(r) dr.
J S
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The proof of this result can be found in §l.ll in [B].

Remark 6.1. Condition (6.1) means that for every <f> G C 1 ((0, T)), if v-</> attains a local maximum
at t 0 G (0, T), then (f>'{to) + jv{t 0 ) < h{t o ).

In order to prove Proposition 2.3 we will proceed as follows. Assume that we have a certain
comparison principle involving u{x,t) - v{y,t) where \x - y\ < £, for e > 0. We start by showing
that Proposition 2.3 follows from this comparison principle when we let s —* 0. Then we prove
the comparison principle. It is this proof that is similar to the proof of Proposition 1.4 in [39].

a) A comparison principle to dose the proof of Proposition 2.3.
In order to state the comparison principle we need to define some quantities. Let e > 0, R 0 be as
defined in Proposition 2.3, and /3e {x) := /3{x/e), where /3 G Cq°(Rn) is such that

(6.4) De = {(x,y) : x,y G iW , |i- y\ < e],

We will prove the following comparison principle

e7T sup {[u(x, r) - v{y, r)| + 3R0 e 7(r s) (3e {x - y)]
( x,y)ED c

(6.5) f r
< e 75 sup {|u(x, s) - v(y, s)| + 3R0 } + / e 7<7 l|/(-, cr)|| da + Ku>{e)

(x,y)eD e Js

where 7 is defined in Proposition 2.3, K is some constant, and u is some modulus. We recall that
a modulus a; is a positive, nondecrasing, continuous function satisfying limr _+ = 0.

Using this fact, the comparison principle (6.5), and letting e —»• 0, we get

e7T {|n(-, r) - v{-, r)|| + 3R0 e 7(r s) } < e'*’{\\u{-, s) - v{-, s)\\ + 3R0 } + ||/(-, <r)|| der,

which is Proposition 2.3. We will now prove the comparison principle (6.5).

b) An alternative statement of the comparison principle.
We start by defining m± ,

The comparison principle (6.5) follows if we can show

Thanks to Lemma 6.1, since m± G C([o,T]) it is sufhcient to show that m ± is a viscosity solution
in (0, T) of

We only prove this for m+ , since the proof for m is similar.
So let n G C 1 ((0, T)) and let f G (0, T) be a strict local maximum of m+ —ninl := [r —a, r+ a]

for some a > 0. We want to show that

If m + (f) = 37?0e 7(T 5 \ then fis the maximum of 3Rq6 l(- T n(r) in I, and (6.7) is obviously
satisfied. So assume

m+ (r) > 3Roe 7(T(6.8)

(6.3) 0 </?<!, /?(0) =l, |L>/?|<2, /?(ar) = 0 when |ar| >l.

Let 0 < s < r < T, and define Ds as follows

Now note that

| u{-, r) - v(-, r)|| + 3 Roe~ 1(T ~ s) < sup {|u(x, r) - v{y, r)\ + 3Ro e~'r{T ~ s) /3£ {x - y)}.
(x,y)EDc

(6.6) m± (r)= sup {(«(x, r) - v{y, r))* + 3R0 e 0(T 5) /?£ (x-y)}
(x,y)eD c

where (•) = min(-,0) and (-) + = max(-,0).

e7T m± (r) < e7S m± (s) + f e 7<7 ||/(-, <j)|| da -f Ku){e)
J S

(rr? ± )'(r) + T m± (r) < ||/(-, r)(| + w(e).

(6.7) n\f ) + 7m+ (f) < |)/(-, r)|| + w(e).
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where Rn := supte/ |n(t)|, 7 G is such that o<7 < 1, 7(7-) = 0 when |r| >l, and
76 1 (r) := 7{r/6'). Since <F is bounded on M77 xRN x/ x / for every 8' >O, there is a point
(zi, 2/1 , ri, ri) 6 M 77 x M 77 x/ x / such that

Next select C G Cq^M 77 x M77) satisfying 0<( < 1, C(»i.2/i) =l, PCI <l, and define
:RN xRN xI x I by

there exists a (x O , yo, rO , r 0) G 1R 77 x M 77 x/ x / such that

(6.11) yo, rO , r 0) > y, r, r) for every (x, y, r, r) G M 77 x M 77 x/x /.

d) Some properiies of ihe maximum point (xq, yo, ro, ro)
We claim that the following properties hold:

Proof. (1) Assume to the contrary that 8' < Pf- and |ro - r 0( > B'. So 7,5'(r0 - r 0) =O, and by
(6.11) we get

(H) Let .5' be so small that (6.12) hold. If |x o - yo | >f, then (6.3), (6.11), and (i) implies

i.e.,

which is a contradiction.

c) “DouhUng of vanables”.
For 6' > 0, let x x/x/-+lbe defined by

s>{x,y,T,r) = (u{x,r) - v{y,r)) + +3RO e s) (5£ {x -y)
(6-9) /r + n

+ (3Æo + 2Rnh6'{r - r) - n(—),

> sup $-(s'.
M N xT& N xlxl

(6.10) tø(x, y, r, r) = s{x, y, r, r) + 26'({x, y)

Since = $ off the support of ( and

= s{xi,yi,r1 ,r1 ) + 26' > sup $+ b'
* N xlNx/x/

Lemma 6.2. (i) If 5' < —? , then \tq ro| <6'
(ii) |æo yo | < £ when

(6.12) 2<s' + sup{|n(r) - n(<)| :|r- t\ < S' /2} < RO .ixi

(iii) To,ro —+ r as 6' —* 0.
(iv) As 6' —> 0,

(w(æo ,ro ) -'y(y0 ,r0 ))+ +3RO e s)p£ {x 0 -y 0)

= u{x o , tq) - v{y0 , r 0) + - yo) -> m+ (f)

2R0 + 3R0 e 7(T+Q S) ~ n {~~2—~) + 2<s' > yo, tq, r 0) > x, f+a,f + a)

> 3i?oe 7(T+a s) + 3_R0 -f 2Rn n{f + a),

i.e.,

28' >Ro + 2Rn n{f -f ot) + n >Ro so that 6' >
\ 2j s 2

which is a contradiction.

2/20 + 3.R0 + 2 Rn - n °) + 2 6' > 0 , yO , rO , r 0) > x, rO , r 0)

> 2>Roe 7(T° 5  + 3/? o + 2.Rn n(ro),

2 6' + n{ro ) - 7 °) > RO ,
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(iii) Since lis compact, there is ar € / such that ro, ro — r along a subsequence as b 1 0 (we
denote the subsequence in the same way as the sequence). If we assume (6.12), then it follows
from (6.6), (6.11), and (ii), that for every (x, y) £ x and r £ I,

But then r= f, since ris a strict maximum of m+ —non I.
(iv) As before, we use (6.11) to obtain the following:

> (u(x, r) - v(y, f)) + + 3Roe 7(V a^/3£ {x y)-\-SRq+ 2Rn n{f).

Here x, y£ RN are arbitrary, so

Now by the above limit inferior and since fis the global maximum in lof m+ -n, we get

Finally, if along some subsequence lim^—o(u(xo , To) v{yo, +— 0, then m+ {f) < 3Rq6 y(- T s \
which contradicts (6.8). So now we have proved the claim. D 

e) Using the equations to dose the proof of the comparison pnnciple.
By Lemma 6.2 d) let b' be so small that (u(xo,to ) v{yo,r0 )) + = u{xo,tq) - > - Now
observe that by (6.11), (x o ,ro ) £Qtis a local maximum for u - <f>, and (yo,r0 ) £Qtis a local
minimum of v </>, where we define

Recall that u and v are viscosity Solutions of equation (1.1) and inequality (2.3), respectively. By
the defmition of viscosity sub- and supersolutions, we get

e s \v{y0 , t 0) - v(y0 , r 0) +m+ (r 0) -n( - °) + 26' + 3RO + 2Rn
> (x o> yO , tO , r 0) > \P(x, y, r, r)

> 3i?o + 2Rn + {u{x, r) - v{y, r)) + + ZRq(5£ {x -y) - n(r),

i.e., since x and y are arbitrary,

e-7('J^“a-, )(w(y0 , r 0) - v{y0 , r 0) + m+ (r0 ) - n(J° + 26' > m+ (r) - n(r).

Remember that v G and let b' —> 0, we then get

m+ (r) n(r) > m+ (r) n(r) for envery r £ I.

(u(xo,7b) v{yo, ro)) + + 2>Roe 7(-~rt:sl s )/3£ (x 0 yo) + 3Rq + 2-Rn ~—) + 2S'

>y{x 0 , 2/0, TO , r 0) > V{x, y, f, f)

{u{xq, r 0) - v{yo, ro)) + + 3Roe s^f3£ {xo - y 0) > m+ (f) + - ) - n(f) - 2 6',

and this implies that

liminf{(u(x0 , r 0) v{yo, ro))+ + 2>Roe 7( S '(3£{x o -yo)}>m+ {f).b' —>-0

m+ (f) - n(f) > limsup{(w(æo, r 0) - v{yo, r 0) + 3Rq€ 7(-£VLa *)/?e (z 0 - J/o)} ~ n6' —o

> lim inf{(u(xo, r 0) - v{yo, r 0) + 3Roe 7( (3£ {xq - yo)} - n{f)~ s‘-*0

>m+ (r) n(f).

(6- 13 )

4>{x, t) := 2>Roe~ y^^JL ~ s^f3£ {x - y 0) - (3.R0 + 2Rn)76'{T - r 0) - 26'({ x , Vo) + ) -

(6.14) r+r
<j>(y,r) :=3Roe~'ll- L°fL -‘'l l3c (x0- y) + (3RO+ 2R„hl‘(To - + 2«'C(io, y)

4>t{x o, To) + F(ro, Xo, u(Xo, To ),D^(xo, To)) <O,

4>t{yo,r0 ) + F{ro , t/o, v{y0 , r 0), D^{y0 ,r0 )) > -f{yo,r0 )-
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Now we compute øt(x o , r 0) and (f>t(yo,ro) and subtract the two inequalities, yielding

(6.15)

We will estimate the various terms on the right hand side of this inequality in order to obtain
inequality (6.7). We assume that 6' is so small that (6.12) is satisfied.

Define L:= max{sup [OT] \\Du{-, f)||, sup[oTj \\Dv{-, *)||}. Since u,v G Lipb (QT ), L < 00. Since
(u - 4>){xq, t 0) >(u - <f>)(xo + th, t 0) for all t€M, h G M N , we have by (6.13)

This means that \\D(p\\ < L and in a similar way we can show that \\D<f)\\ < L.
Let lof be the modulus given by (Fl) when R = max{RO ,L). Furthermore, let u> u denote the

modulus of continuity of u. To derive the desired estimates, we will also use condition (F3). To
use this condition, we have to distinguish between two cases: (i) u{x o , t 0) p(y0 , ro) is nonnegative
and (ii) w(xo,ro) v{yo,r0 ) is nonpositive. Since the result is the same and the calculations are
similar in both cases, we only treat case (i).

We compute D<j){x 0 , r 0) and D(j){y0 ,so) and use (Fl), (F3), and the fact that u,v G Lipb . The
result is

F{to ,x o ,u{xo, r 0), D(j){xo, r 0))

4- F{To,yo ,v{yo,ro),D(j){yo,so)) - F{ro , yO , v{y0 , r 0), D<p{y0 , s 0))

+ F{to , x O , v{y0 , ro), D<j){y0 , s 0)) - F{to , yQ , v{y0 ,r0), D^(y0 , s 0))

+ F{to , Xq, u{xo, To), D<j>{yo,so)) - F{tq, Xq, v{y0 ,r0 ), D(f)(y0 ,so))
(6.16)

+ F{to , Xq, u{x 0, To), D(f){x 0 , T 0)) - F{to , Xq, u{xq, Tq) , D<f){y0 ,S0 ))

Now, by letting 6' —*• 0, we get inequality (6.7). This follows from Lemma 6.2 and the fact that
(«(æ O , s 0) - v{y0 , s 0) < |m(® o , s 0) - v(y0 , so )|. This ends the proof of the comparison principle.
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