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Abstract

A general theory for the mass transport sustained by
oscillations of finite amplitude in a stratified rauld-in
the field of gravity is presented. The mass transport is
given by the Lagrangian mean veleeity, ealenlated to the
second order in the osclllatory perturbation. We compute
the vertical component of this mean velocity, the divergence,
and the vertical component of the vorticity. We assume an
arbitrary equation of state, and take into account the effects
of viscosity and thermal conductivity. The theory is applied
to standing waves. The results seem to provide a qualitative

explanatlon of experiments by Schaaffs and Haun [1] and others.
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(RN Reodictons:

Schaaffs and Haun [1] have reported some observations
with standing ultrascnic waves in a liquid in which there is
a solution with a gradient (produced by diffusion) in the
concentration. The waves are in vertical divectlion; 1.ey,
along the concentration gradient. Periodic density stratifi-
cations (concentration zones) are found, the scale of which
is the half wavelength, and they persist for a rather long
time after the sound source has been switched off.

Hobzk [2] has observed similar concentration zones when
the waves are in horizontal direction, perpendicular to the
concentration gradient.

Schaaffs [3] has also observed periodic density strati-
fications, after the sound source 1is switched gt Deribhe
case of a homogeneous (one-component) fluid, and in mixtures
with no concentration gradient. In these cases the effect
was observed only when a temperature gradient was superimposed
the wave motion.

Formation of bands of red cells in the blood vessels
during ultrasonication has been observed by Dyson, Woodward
and Pond [4], and has been associated to the standing wave by
Vashon Baker [5], who has observed segregation and sedimenta-
fion of the cells in a standing ultrasonic wave.

All these observations indicate that mass transport is
induced by the oscillations. The purpose of this paper 1is to

present a general second order theory for mass transport
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sustained by finite amplitude oscillations in a stratified
fluid in the field of gravity. The mass transport is given .
by the Lagrangian mean velocity, calculated to the second
order in the oscillatory perturbation. We compute the vertical
component of this velocity, the divergence, and the vertical
component of the vorticity, thereby determining the flow
field. The theory is here worked out for a one-component
liquid. We assume an arbitrary equation of state, and take
into account the effects of viscosity and thermal conduc-
tivity. In a previous paper [6], we considered the case of a
perfect gas, where also the radiative effects were accounted
for. The motivation was there the possible ciojellilesivatons Ll
astrophysics and geophysics (upper atmosphere).

Applied to standing waves, the theory predicts a ver-
tical drift within the wave zone, and a streaming system,
the scale of which (in the wave direction) is the half wave-
length. For a vertical directed beam the drift is always
upward, and the flow outside the beam occurs in horizontal
planes. A numerical example shows that the flow effect should
be large enough to be observable in ultrasonic waves. One
may expect that concentration zones are formed for instance
in stagnation regions of the streaming. This seems to give
a qualitative explanation of some features in the experiments

referred to above.
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2. General theory.

The basic equations are:

(1) 53_¥+Vp+233= F
[ DS g V.V e
B :
L4 g
e R g e
Dt
where é%& ‘_;;€+ V.V. The variables Y, p, g e

respectively the usual Eulerian velocity, precsure; density,
temperature and entropy. A is the unit vector in upward

direction, %‘ the gravitational acceleration; E‘ s the
v i i
viscous force, ¢ T @ the viscous dissipation, and e TQ

the accession of heat due to conduction. On has:

2 i
(4)  F= V[(Eep )RV s VO] 4 p 0V o VPG o Px (Vi V)
(5) TR = p[VV:vV « VY. (PV)". = (7¥)"] + po( 7V )
(6) ¢TQ = V.(cVT),

where MW, M, are the two viscosity coefficients and o

I

the thermal conductivity. These coefficients are in prenerel

functlons|of 5/'T .
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b, A, ¢ T are related by the following thermo-
/

dynamical relations:

(7) dp:ﬁ?’_dT+ < dp

v
(8) e P kAo el
T (s

Flilenie ﬁ is the coefficlent of thermal expansion, ¢  the

sound speed, ¥ the ratio of the specific heats at constant

pressure and volume:
L S N Bl

@/ o0 9% gud v ¢, depend in general on 5 Sad 0.
The following identities are consequences of (7)-(8)

and the definitions (9):

(10) (¥-1) ¢, = ﬁl s
(11) l m = ’B(_(_’_?:) _Z(f_i\ :-l(+@ilj
%S( ¥ >T AT Bt i BRond ‘o SR S

The state of equilibrium is characterized by

Ve et
LA )
g B

where 2 denotes the altitude. It follows from (1), (3),
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(7)-(8) that the other variables depend only on 2 and

apelsichnthiat

I

(12) Pl i e

(13) L :

1l

)

I

|
\@
“o

(12) Al e T

Subscript zero refers to equilibrium value, prime denotes

the derivative with respect to x .

. . . . . l
The specilal case of isothermal eguilibrium, U i

leads to §2/fo: - I/H, where H is the scale height
defined by H = Cf/zgg, . XL we suppose that H  1s indepen-
dent of 2 s we obtain the exponential decay in density
and pressure, S BE5) ik R e P s hor [exo (-2/H) —{]+ P
where, By ,.¢,. . 2ve the values of b , L A

We suppose that y " }:,~9 s T 54 can be developed

.

in powers of the oscilllatory perturbation (or the acoustic

Mach number) at least up to the second order

Substituting these expansions in (1)-(3), we obtain to the

=,

first order
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(15) 5>DW4+VP4+135’4 AR
2t
(16) LRI T A iz
D
2
EA N L5 TIS Ai W, A Q,‘ )
T e

7 R
e R Vil D Sl ]
(19) e Aol Gl ek )
ie
v y
(20) 2 os S g nity St e R B L O
X

W, denotes the vertical component of yi’, bie 2 .

The substitution of the same expansions in (7)-(8) gives

to the first order

o 7 /3,(;‘? - C?“ ol
it ﬁocfgo el Colifged Co g a3y Erngs a6,
(21) il ; at, «+ YOC;,‘ ( é,}/’ \Z-’)4

2]

and a similar equation for <ﬂ2q . To the second order we

obtain in the same way
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denotes the (1 + 1)th term in the expansion of o in
powers of the expansion parameter.

Let us now choose as first order solution a harmonic
oscillatory motion, and take the average of the second order
equations over one or several periods (the time of averaging
must be small such that the mean drift during this time
is small compared to the characteristic lengths). We assume

that

V
(23) e A el
L

where bar denotes time-averaging.

This is a plausible assumption, due to the goecial
form of the source terms in (18)-(20) (quadratic in the first
order variables and their gradients), but to Justify it, one
has to define boundary conditions and prove that y; sk e
91 arc mnon-gecular 1In tlime. Thig provien will not be dis-
cussed here.

Further, we introduce the second order Lagrangian

mean velocity,

(24) Sl RO [ e
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From (19)-(20) we then obtain

/

(e5) V(fo YLZ) e _U?LZ + EDV'YLZ ek

(26) e phbding o G WS Kenltatlon L7 T,

@ [LIL 3

For a two-dimensional flow, (25)-(26) determine the

o
flow to an integration constant near, provided that QQ p

i.e., T, , 1s known. The equation of motion (1) has not

been used so far.

The three-dimensional flow is determined (to integration

constants near) by w,, s V.V ., and the vertical component

of the vorticity, g { Ve Voo )y « From {18}, (18) and (24)

-L2/2

we derive

'— P ?V V\/
VQ..IL ) l ‘_Q, = } .V X[ el \\/,’. i". =
(27) . er*VO%g AN gu‘bb . 1

o=
o
=
o
Mr”
=e
-~
=
N

‘\7(’)”4 V\./u' \_/4 VLH«' 'HOV(( |

where index 1 denotes the horizontal component,

= : = g
Ve S e Tb g Ll ST L
'3
Remarks:
1. ' For the incompressible model, V-Y::o 5OE ekl

[6], V.V , =0, and it follows from (25) that W g

AN
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Equation (26) then determines T, .

2.~ For the non-dissipative model, it follows from

(25)-(26) that w,, = V.V =o.

We proceed now to the computation of T T - P

From (18) we. obtain
o) e B <l e

where C is ‘defined by

nF(_cj 6, TR0 Ci 0 s
cl ’DJD ?}-ﬁr’o?_ 2

2

The notation is the following: —( i mesp, ) )

denotes the derivative with respect to Tl 1 e B el -1

constant T (resp. ¢ ), takenat T=T, , ¢= ¢, -

(28) gives ?i to an arbitrary function of 2 near.

b, being known, we obtain ¢ by averaging the vertical
2 9

component of (18):

B R — e —ce "}

e /) S /Bl/b :_f \‘
0 PRI LS e ol N /e J "
(3 ) f,}' g [ . i\ o} ?’Z’ 4 rbL f ~4
From (22) we obtain a relation between Vl‘T 4 VLT% b VLfl
Substituting the expressions (28) and (30) for v, 7> and

N

59 in this relation, we find






on 0T e [008R 2 (]

which determines T; to an arbitrary function of 2 Teal,

Here b, 1is defined by Mﬁgo)/: _%5;/Cf (for a perfect
gity o= b )

By using the first order equations (15)-(17), (21)
and the similar equation for dJ, , we compute C , see

appendix. We find that Q is the average of quadratic forms

of the first order quantities and their gradients, The
coefficients of these forms depend on Bl g ke herme
dynamical coefficlents (9), and their first order derivatives
with respect to ¢ and T taken at equilibrium.

Inserting the result for Q into (28), we obtain

. A5pT T

0l / 4 /
zgoco 'ZAO (’/1~o

~Is

(32) —EL: (“fo <|+ O(SM)) + 0(2),

where Sh\ is the modified Stokes number

i 9 )
(33) SM = }_é[_%_[- ) B ?' [ ¥, - i %f*o i VBOJ

(o]
| 4o

w 1s the frequency of the given oscillation, K the complex

wave number, (Indeed, we suppose here that M* , Mg, © vary
little over a wavelenght, LBy, Ehat ig.%y%< and other similar
terms are of order one. If this was not the case, one should
have to take such terms into account when defining b >. n

is an arbitrary function. For a procedure to obtain the general

expressions for ¢ , T , see appendix.

p
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L e

For the special case of isothermal equilibrium, we

find
(34) ?Z:_(_EE‘:\;T)—,E‘TQ (1+0(sm)) + Pla)
L : o EVIGHI o s SO 6 R
(35) 57,* 605’(50\_/4)-VT4+%C{°[_ v4 . Tor&f(fc,{v)’ljo +@5(f32)@oh‘:
L Mg eGS0
-Zfo%‘f(gc,)T,o“‘J 3”(“}( rolsa)),

L
where TI an arbitrary function and @:'Xo(”+'% ”/5}3)/5oCoSo+

+const. .
We have here supposed that Sm glves the order of

magnitude of the dissipative terms (which may not be the case

in boundary layers).
g inte (27), we obbdin

Inserting the result for
an equation for the vertical component of the vorticicy

P LY G D b ! v X &—F/. plt
(36) oV AL +{*L§%J1'“ L vxl:gf‘Fal §°(‘4X Vk‘ﬁ e, )1
T

Substituting in the source terms of (36) the solution of
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the non-dissipative first order equations, we obtain

] )

o . k % t
67)V7ﬂ.+ﬁ}%g_:zgquvqgvyu+a£y TN

o%
f<¢

= R A
Ho F

e ) AR TR
P’AOf

where Bl is the average or quadratic forms of the first
order variables with coefficients depending Linearly on

R

I ol B st _
Fol T AT HOC®T>&0 g }:;pzyfﬁo’ HE Bl

expression, which is rather long, will not be glven here. If the

A

eéquilibrium is isothermal and % » P degend ionly on T o

is reduced to

(38) EL:-#O
The vorticity equation contains source terms which
are proportional to <,/ “%o o s Moo /Mo and terms which
are independent of the diggipative coefficients, If one of
these terms is non-zero (which normally is the case for a
laterally confined, horizontally propagating wave), the
vertical component of the vorticity will be of zeroth order
in SN\. The mass circulation in the horizontal plane will
then dominate over the vertical drift, which is of the SEILEElE

. Q
order in 5
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3. Standing waves.

Let us consider a flow in the (%,% )-plane, where 2
is the altitude and x the horizontal coordinate. The mass

transport velocity is obtained from (25)-(26). If U,, de-

notes the horizontal component of VLZ , we obtain
B PSR R s e
Gal - Glel eT vl (5, 7ol
Bocr N
> e
ol [ )C/’b e ;
(40) \LLZ_ = s '—S{“S ? (fo LJL'Z} Gl D == ol (%)/
@0 &

where f 1is an arbitrary function, and N is the Viisili

frequency,

(4:1) Nl = (_XND“).‘B /S/ :

To our order of approximation, where terms <9(3M) have
been neglected, we can now in (39) insert the wavefield in the
non-dissipative approximation. First, we assume a beam in

vertical direction, and put (in the non-dissipative approxi-

mation)

(42) e et

—
-

D . .
where T, 1s a non-zero constant A inside the beam and zero
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outside. W satisfies

d 2 d W
d

\
(43) _}<§>C'° d% j b f"

We now assume that the equilibrium is isothermal and

© fIENC oIS aniG N

o

2/ZH i 5

<
|
Sl ey Sin k2 7 e Al e
'\/(i)—- & : & } 4 e Coz

(44)

is a solution of (43). With this, (8), (16), (17) and the
expression (34) for '?1 » we determine the flow field given

by (39) and (40), assuming that O 4s constant. A solution

with vﬂé_: © outside the beam, and 4,, symmetric in = |,

1s obtained by putting the arbitrary functions in (34) and

(40) equal to zero. Assuming for simplicity that f@o,, 5

are constant and that < , »~, Mg are independent of iy Fey

| "

we obtain in the limit kH >P !
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= ?EL_Z (¢, %)

inside the beam

ait s
(46) w,, (%1) » -~
2wy
-D £ (0,%) outside the beam ,
%
1 2
ag N = ({,-1 ) %Z/é% for isothermal equilibrium. <D is

the width of the beam. W, 1is positive inside the beam, and
the flow picture is as shown in Figure 1.

To indicate the order of magnitude of the flow veloglty,
we choose water at about 20° C. Then e g/cm3 g

o2 Sy 7 T N R N < VR eim/see, ¥ o 1.006 ,

[}

Vo —

(4/3)Me+ Mg, 2 0.04 g/cm sec and S;/q; Nfﬁjg;Pf, where Ir
1s the Prandtl number, P+ 6.75 . The terms containing ¢%
can here be neglected. With st o cm/sec2 i e g ;,<1o6 1/sec
(i.e., 7~ 0.15 cm) and velocity amplitude 0.1 cm/sec, we
then find as maximum value for W, 6 x 1072 cm/sec, and for
IIH_ o cm/sec, with D= 0.5 em. This shows that the flow
should be observable at this high frequency for intensities
in the mW region.

The stagnation regions of the flow are defined by
cos kg = —| s SIMORE Sl C L0 FL el ale Vit y el i i
This may provide a qualitative explanation of the observa-
Tions by Schaaffs and Haun [1]. The zones of higher concentra-
tlons and density in their experiments are probably formed
in the stagnation regions of a flow system of this kind

induced by the oscillations. However, the theory is here
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e e

worked out for a one-component fluld only and one should
not stress too far this comparison with observations in
miscible liquids. Also the plane wave model has its limita-
tion, and a more realistic model for the oscillatory field
may modify the details of this flow picture.

Schaaffs and Haun [1] explain the observed phenomena
as caused by the fluctuating temperature gfadient in the
standing wave. Their estimate of the temperature fluctuation,
however, seems to give a too high value. The general thermo-

dynamic relation
G P I i ¥~ De

e B & E pe Dk

f
glves for an adiabatic fluctuation, with T,=o0 and R H>>I

14
==
o

|
F\
LN

T ~nJ Xo "
g e et WAL

g [ c
If we use this formula, we find T, ~ 2 x 10_5deg with the

data above and Y, = 1.0056 . Even if the Intensity 4 dn-
creased considerably, this seems to be too much below the
order of magnitude required to produce the effect discussed
Lo fd ]

The general theory can be applied to non-isothermal
equllibrium. Thus a similar flow probably occurs in the
experiments by Schaaffs Eir

In order to compare the fheoretical results with the
other observations referved to in the introduction, we now

consider the case with a horizontally directed plane wave.




. : G .a'w:nu:q wol‘! M:ﬂﬁ ‘m mm wuld WIM W
gj"{_‘ mﬂmm@maﬁq bwvuspdo edd u:squa {ti ﬁnﬂﬂ_bnw m&tsﬁﬂae
} ww k. :.nw.tbma mvm@wﬂ ammm:m add wd bﬁmﬂ M

e i ﬂensie': qm@“’

| : e il 1 i
VECH S ST O bt [ msasm ma mAw:ﬁ,

WA e Tl ?‘i—";}; *«e;"
m ‘wm 5‘”‘%’( 01’ X% ¥ Bk sw ‘ammox am# aa&t “ fa ,I

~m. am wimtﬂ“:?m eyl O
WW wmwd dﬂmm ocd od ot Gubes ahﬁ ag:;tdﬁ'tebtmoa bam'm
iﬁf*ﬂﬂ'»ﬁ&ib.-iﬂﬁfﬂpb @ri aouborg M‘ bawﬂwgm @wun@nm m -:tsm

i




- 17 ;

- /
We still suppose T, =o o

" s “o = constant. We have for the
wave
(Yo-1)g2/cCo
w. - e cos k'x ¢os b }2: o
1 { Co
(47)
uf/\ = o )
where B  is a constant and W, 1s the horizontal component
G Y4 .

With thils, and the expression (34) for

T, we fingd
W, to the arbitrary function 6(2) near. This function
1s now determined such that the secularity in = o nleatelh

occurs in the integral (40) is removed. Ve fing

I}

S
(48) .

2’\zro~')%z/cf{
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= & =

. Ly, RN e
w, 2 b L0k, (EAMEO LT o Py

LL~48[50T0534 e i
(50)
oA R A R |
+[(6;Jf%)—~kﬂ(2v %;;;J_Q;IT31 §S:n2J2x + %(%)/

where the last term in ';}LL can be put equal to zero. The
arbitrary function ‘% in (40) is zero due to symmetry
requirements.

The viscous terms dominate also here for the case

Qi & Mauldeliluthen, i o = 0 fona o = adlan (we 1,3,5, ...)
and ‘alz\<<n;Lz\ « The flow is as shown in Figure 2. It
explains, we believe, qualitatively some features of the

Observations by Hobzk [2], Dyson et al. [4], Vashon Baker [5].

4. Validity of the method.

The amplitude of the oscillation is assumed to be small
compared to the characteristic lengths (wavelength, dimensions,
scale height). Further, it is presumed that the Reynolds
number E of the steady flow 1is small compared to unity. 1%
gives an estimate of the order of magnitude of the neglected

v . : . . ]
term VLf‘7§LL compared to the dominating dissipative terms,

(H/jjvzylz or 5VV.V,, . Having obtained the flow velocity,

we may estimate K . In our models with standing waves, a proper

definition of R is R = IEQJ/ ké . It is verified that R |

in the numerical example given above.
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5. Concluding remarks.

Another possible field of application of the theory,
1s the studles of the mean ocean currents; for example the
Cromwell current, which flows eastward beneath the surface
in a narrow zone along the equator. Munk and Moore [7T] have
suggested that this currenf 1s driven by equatorial Rossby

waves. Their model, however, being non-dissipative, leads

to zero Lagrangian mean velocity and thus no mass transport.
This has always been pointed out by Moore [8]. Including
dissipation, our theory shows that internal waves may sustain

a mean current in the ocean. It also predicts a smaller vertical
drift if compressibility is taken into account.

The perfect gas-model discussed previously [6], may be
applied to study flow problems in astrophysics, and in the
terrestrial atmosphere. For instance, it is known that guided
acoustic-gravity waves in the upper atmosphere are influenced
by viscous and thermal dissipation (see Francis [9]). As also
non-linearity is likely to become important at high altitude,
such waves may induce horizontal mass transport over long
distances and sustain a vertical drift. The streaming Reynolds

number will here stay small due to extremely high values of

| the kinematic viscosity and the diffusivity. The method may
thus be used to calculate relatively large flow velocities.
In the solar atmosphere, where radiative loss is important,

similar phenomenon may occur. The theory provides a mechanisms
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we believe, for relating the observed steady velocity fields
in the upper photosphere and lower chromosphere, to the
osclillatory motion which is known to exist (for application

of the theory to a simple model in this field, see Naze Tjgtta

and Tjgtta [6]).
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Appendix.

From (7) - (8) we obtain

9© 2 e cvo )4 -] cp
(A.1) F4: MT,‘*‘_iif,, / 2)4' " T’1 > Mf/l
Xo X0 i Djo
Taking the curl of (15) and using (16)-(17) and (A.1)
we obtain
G e e U0 b Vx E,
(heg) o Bl is- T X L(fo i g
“Toile b Xofo fcx
or
. el Sl ThA bk e i T
(a2} Rgy v e emig! Dbl VlE I Bl S0 190 B i
fbtl Gy C4v ) c 7 fe
0 e ,1vo
Using (A.1), (A.2) and (13) - (15) we compute J>rél; + € V;-qu
N N

and we obtain for C .
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)
Here b, 1is defined by (5, ) = ol % | General expressions

]

&

foliiein e o T, are then obtained by inserting (A.4)
in (28), (30) and (31).
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Schematic diagram of the flow sustained by a standing wave
in vertical direction.
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