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Abstract

A general theory for the mass transport sustalned by

oscillations of finite amplitude in a stratifled fluid in

the field of gravity is presented. The mass transport is

given by the Lagrangian mean velocity, calculated to the

second order in the oscillatory perturbation. We compute

the vertical component of this mean velocity, the divergence,

and the vertical component of the vorticity. We assume an

arbitrary equation of state, and take into account the effects

of viscosity and thermal conductivity. The theory is applied

to standing v/aves. The results seem to provide a qualitative

explanation of experiments by Schaaffs and Haun [1 ] and others





1* Introduction.

Schaaffs and Haun [1] have reported some observations

with standing ultrasonic waves in a liquid in which there is

a solution with a gradient (produced by diffusion) in the

concentration. The waves are in vertical dlrection, i.e.,

along the concentration gradient. Periodic denslty stratifi

cations (concentration zones) are found, the scale of which

is the half wavelength, and they persist for a rather long

time after the sound source has been switched off.

Hobæk [2] has observed similar concentration zones when

the waves are in horizontal direction, perpendicular to the

concentration gradient.

Schaaffs [3] has also observed periodic density strati

fications, after the sound source is switched off, for the

case of a homogeneous (one-component) fluid, and in mixtures

with no concentration gradient. In these cases the effect

was observed only when a temperature gradient was superimposed

the wave motion.

Formation of bands of red cells in the blood vessels

during ultrasonication has been observed by Dyson, Woodward

and Pond [4], and has been associated to the standing wave by

Vashon Baker [5], who has observed segregation and sedimenta

tion of the cells in a standing ultrasonic wave.

All these observations indicate that mass transport is

induced by the oscillations. The purpose of this paper is to

present a general second order theory for mass transport
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sustained by finite amplitude oscillations in a stratlfied

fluid in the field of gravity. The mass transport is given

by the Lagrangian mean velocity, calculated to the second

order in the oscillatory perturbation. We compute the vertical

component of this velocity, the divergence, and the vertical

component of the vorticity, thereby determining the flow

field. The theory is here worked out for a one-component

liquid. We assume an arbitrary equation of state, and take

into account the effects of viscosity and thermal conduc

tivity. In a previous paper [6], we considered the case of a

perfect gas, where also the radiative effects were accounted

for. The motivation was there the possible applications in

astrophysics and geophysics (upper atmosphere).

Applied to standing waves, the theory predlcts a ver

tical drift within the wave zone, and a streaming system,

the scale of which (in the wave direction) is the half wave

length. For a vertical directed beam the drift is always

upward, and the flov/ out side the beam occurs in horizontal

planes. A numerical example shows that the flow effect should

be large enough to be observable in ultrasonic waves. One

may expect that concentration zones are formed for instance

in stagnation regions of the streaming. This seems to give

a qualitative explanation of some features in the experlments

referred to above.
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2 . General theor

The basic equations are:

F

(2) 0

(3) 11
3) t

where i- ~-+Vi. Thevariables V b p I j, are1/ k OC

respectively the usual Eulerian velocity, pressure, density,

temperature and entropy. 7\ is the unit veetor in upward

direction, o, the gravitational acceleration; Jr is the
~y

viscous force, I y the viscous dissipation, and eT O

the accession of heat due to conduction. On has:

where P-y j'- & are the two viscosity coefficients and cr

the thermal conductivity. These coefficients are in general

funetions of

(i) f + <7p + l

21 + f 7.V
Dh

9 V 4 9 t ,

(4) F~ V ( -t + j V.V +V. +p.\7 V - VFp, +

(5) 5 t(T= hfVViFV' + VV:(VV+ (u B ( V.vf

(6) S T(?t = v. ( <rVTj ,
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w s, T are related by the followlng thermo-

dynamical relations;

(7)

(8)

Here fi is the coefficient of thermal expansion, c the

sound speed, ) the ratio of the specific heats at constant

pressure and volume;

(9)

The following identities are consequences of (7)-(8)

and the definitions (9);

(10)

The state of equillbrlum is characterized by

V-V “ o

T - T (P

v/here denotes the altitude. It follows from (1), id)?

df> ~ JL-X d i + _L_ dp
y r

d<6 - d T - -P* C d p •

T f?

A - -jf 21) (2if =

pP SY, and o v depend in general on j> and T

(H V =

<"> - Trrr)s -

1. ~ o

s = S. Li)
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(7)-(8) that the other varlables depend only on 3 and

are such that

(12)

(13)

3f. +V 4I •
(14)

/
&

Subscript zero refers to equilibrium value, prime denotes

the derivative with respect to r .

The special case of isothermal equilibrium, t' ~ o—  — 0 j

leads to * where H- is the scale height

defined by H - co / . If we suppose that H is indepen

dent of , we obtain the exponential decay in density

We suppose that y 9 Y- > j > * >-4 can be developed

in powers of the oscillatory perturbation (or the acoustic

Mach number) at least up to the second order

Substituting these expansions in (l)~(3)* we obtain to the

first order

K = -n. > (*-o<y= o

C'c>

and pressure, ,h= H 3L[tx »> - ,j + ,

vjhere , p 2 are the values of at a- 0

Y -- Y,+ v z+ . . *

S = J, + f, + +
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s. Th + 7 h + * 3 £T> C
r
- A(15)

(16)
O

(17)

and to the second order

(19)

(20)

denotes the vertical component of \/ • , i- A/ 1

The su.bstitutj.on oi the sårne expansions in (T)—(8) gives

to the first order

and a slmilar equation for d , To the second order we

obtain in the same way

+ u +f, m
t

C? T
-I )4- A 1 \jS.' o-l

n> t

(18) + 3.?, - fl- ff, +f. -V 7 fJb ' "Ot

1>b

YV V\ r Q2\ Qj .1 + V ut
— 0 1

n> b

(21) dp, = d +-y d ?-, + ( dT. + (yl 4f, >

(22) Op. = JT + .fsV + (£fV) dTA + d f +CJ5fi) dT + (Li! )y 1 y 1 rJi X'-1 " r i r 40 o 0

and a similar equation for d A , Here a. f i=A 9 z f
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denotes the (i + l)th tem in the expansion of ou in

powers of the expansion parameter.

Let us now choose as first order solution a harmonic

oscillatory motion, and take the average of the second order

equations over one or several periods (the time of averaging

must be small such that the mean drift during this time

is small compared to the characteristic lengths). We assume

that

F b
(25)

where bar denotes time-averaging.

This is a plausible assumption, due to the special

form of the source terms in (l8)-(20) (quadratlc in the first

order variables and their gradients), but to Justify it, one

has to define boundary conditions and prove that b ancj

are non-secular in time. This problem will not be dis

cussed here.

Further, we introduce the second order Lagrangian

mean velocity.

(24)

2h = #
0) k a» y

!U* V.'
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From (19)-(20) we then obtain

(25)

(26) V UT0 L 2.

For a two-dlmensional flow, (25)-(26) deterraine the

flow to an integration constant near, provided that Cj) T ,

i.e., , is known. The equation of motion (1) has not

been used so far.

The three-dimensional flow is determined (to integration

constants near) by Ll s 'lui_ snd the vertical component

of the vorticity, _TL =( V x V L2 ), . From (15), (18) and (24)
we derive

where Index 1 denotes the horisontal component

Remarks;

V- (f. Yli) = j'. + i. = O

oj * fTZT  o 1 '

(27) f-\ V'LSl + SL =7 . +j> \,. VV _
11H l e °

- V- (h f VTwTjJ y

V _ V +1 ur V - V( -f -2_

1« For t-hø incompressible modølj '/ ~of wø hfi.vø_,

=° > 311(1 it follows from (25) that ur, 0- 0
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Equation (26) then determines T z

2. For the non-dlssipatlve model. it follows from

(25)-(26) that tv/ L2_ - V. vt "O,V - o ,- Ll

V/e proceed now to the computation of , f± > Tz
From (18) we. obtain

V, bl 1 z(28)

where F ± Q defined by

The notation is the following: — (•) (resp.— )
'T,o y 'dT l d?/* '

denotes the derivative with respect to j (resp. T ) at

constant T (resp. j> ), taken at T= T, , .

(28) glvcs to an arbitrary function of 2 near.

K being known, we obtain by averaging the vertical

component of (18):

From (22) we obtain a relation between V, T aj- Z * i- 12, 1 -L --1 Z.

Substituting the expressions (28) and (30) for P andi. i 2

fr in this relation, we find

C + F
-X2 X /

(29) C= ? +fv VV 2 (£) r T +!{&£) L1 ]
- St - 1 ">t i bb Tr '

(30) p =_LL Hz f _f f +f v '.>tv ")(
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which determines \ to an arbitrary functlon of a near.

Here fis defined by (U E 0 _ (for a perfect

gas, ).

By using the first order equations (13)—(1T)> (21 )

and the similar equation for d i twø compute C see

appendix. We find that C is the average of quadratic forms

of the first order quantities and their gradients. The

coefficients of these forms depend on f , To s the thermo

dynamical coefficienus (9)> and their first order derivatives

with respect to and 1 taken at equilibrium.

Inserting the result for U into (28) 9 we obtain

where is the modified Stokes number

(aj is the frequency of the given oscillatlon, td the complex

wave number. (indeed, we suppose here that f-1 , jJ t , cr vary

llttle over a wavelenght, i.e., that J. 2lt and other similar
g 2>T

terms are of order one. If thls was not the oase, one should

have to take such terms into account when defining S ) , n

is an arbitrary function. For a procedure to obtain the general

expressions for jq f Yn , see appendix*

(31) 1=
apof0 L s, b» /J

(32) K=(-!.f 3

to) s = lAliL" s=-i r iii s- +a u + u i
' ?, L ’ M
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For the special case of isothermal equllibrium, we

flnd

We have here supposed that S A1 gives the order of

magnitude of the dissipative terms (which rnay not be the case

in boundary layers).

Inserting the result for C into (27), we obtain

an equation for the vertical component of the vorticity

Substitutlng in the source terms of (36) the solution of

\=- (f (1+ 0fs A,)j + 9(t;o

(35) ;[ +C o

where n an arbitrary function and 9= (n+ co2 i? / jf*3 c»Yo +

+const.

(36) f. P'Jl , = •>. v« [f f„ -S.{t » f./.'il )L Jo Jo 1

i ' o
0

-?•I h \ \Ai - - r.7((| Vj, v yjj j
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the non-dlssipative flrst order equations, we obtaln

+ ' V i X 5i

whert is the average of quadratlc forms of the flrst

order variables with coeffloients dependlng linearly on

-L(2T) . 1(21) ' ±(2IL\ , i
f'o '^ T Lo f'*’ 0 0 f) T y o 9 'f /( > anQ ju 0 f 'X p * The S^neral

expresslon, which Is rather long, wlll not be given here. If the

equilibrium is isothermal and tr , y. depend only on T , F\
is reduced to

(38)

The vortlcity equation contains source terrns which
are proportional to <r I c u u /,, „ , ,

°l -fo I 0 > r&o ji o and terms which

are independent of the dlsslpative coefficlents, If one of

these terms is non-zero (which normally is the case for a

laterally conflned, horlzontally propagating wave), the

vertical component of the vortlcity wlll be of zeroth order

in . The mass ciroulation in the horlzontal plane wlll

then domlnate over the vertical drift, which is of the flrst
order in S A'

(37) v'ji * ii t v>iiSI,mO Q ~

I o

-^ivipj] +
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3. Standlng waves.

Let us consider a flow in the ('**, J )-plane, where

is the altitude and x the horisontal coordinate. The mass

transport velocity is obtained from (25)-(26). If de

notes the horisontal component of V L2 ,we obtain

(39)

(40) w
LI

where r. is an arbitrary function, and N is the Vaisala

frequency.

(41)

To our order of approximation, v/here terms 0( S./) have

been neglected, we can now in (39) insert the wavefield in the

non-dissipative approximation. First, we assume a beam in

yertical direction, and put (in the non-dissipative approxi

mation )

(42)

!—
v/here is a non-sero constant r, inside the beam and sero

= lihzH(+ 9tv + (rvj. 7(?7
p* C0Z fv' 1

y~i Ur Ll) + " (cj yJ o o <

n 1 =
/W

7\ CoS CO t ,
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i

3

outside. IV satlsfies

(43)

V/e now assurne that the equilibrium is isothermal and

c o is constant. Then

2t/2lH i
Sivi k i f

UJ
Wii)- e(44) C 1U H i

is a solutlon of (43). With this, (8), (l6), (17) and the

expression (34) for , we determine the flow field given

by (39) and (40), assuming that <r is constant. A solution

with ~ 0 outside the beam, and symmetric in x

is obtained by putting the arbitrary functions in (34) and

(40) equal to zero. Assuming for simplicity that ft 0 , (f c>

are constant and that x , & are independent of j 5 , T
we obtain in the limit kH » /

(45)

A( e c' 1 cJ 14 f caj 1 W - o
\å i J

k 2 -t

1 I 1 w

"  - & |(TK + f* 6 Jf 1+ 2l? 0 +

+ T ° r z + hzi ( i + cosikijl I

%o '
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inside the beam

. 2, 2
as N - ( (f 0 - I )ty /c o for isothermal equilibrium. -3S> is

the width of the beam. ar L1 is positive inside the beam, and

the flow picture is as shown in Figure 1.

To indicate the order of magnitude of the flow valocity,

we choose water at about 20° 0. Then j> o (2 1 g/cnr 5

— 1/deg , d o ~1• 5x ( cm/sec, ol 1.006 ,

(6/3) h> + he.0 - 0*04-g/cm sec and sy/c^ e , where

is the Prandtl nurnber, Pr y 6.75 • The terms containing crp

can here be neglected. With g 980 cm/sec 2 , 00- 2n x l/sec

(l.e., 3 T 0,15 cm) and velocity amplitude 0.1 cm/sec, we

then find as maximum value for 6 x cm/sec, and for
— -1

ix li cm/sec, with F- 0.5 cm. This shows that the flow

should be ooservable at this high frequency for intensities

in the mW region.

The stagnation regions of the flow are defined by

cos 1 k =- 1 , 0 ,i. e., m (vu= 1, 5, ...

This may provide a qualitative explanation of the observa

tions oy Schaaffs and Haun [1], The zones of higher concentra

tions and density in thelr experiments are probably formed

j.n the stagnation regions of a f lov/ system of this kind

inauceo by the oscillations. However, the theory is here

)

1> UJ, , , - V
- kl ( 0, i)

(46) Lt L2_ —

-3) — [°/ h) outside the beam ,
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worked out for a one-component fluid only and one should

not stress too far this cornparison with observations in

raiscible liquids. Also the plane wave model has its limita

tion., and a more realistic model for the oscillatory field

may modi fy the details of this flow picture.

Schaaffs and Haun [1] explain the observed phenomena

as caused by the fluctuating temperature gradient in the

standlng wave. Their estimate of the temperature fluctuation,

however, seems to give a too high value. The general thermo
dynamic relation

gives for an adiabatic fluctuation, with and k? /V »/

T a -x ~* o ~~ w"
M. " ~ P>*

If we use this formula, we find 2 x 10" 3 deg with the

data above and Y 0 = 1.006 . Even if the intensity is in

creased considerably, this seems to be too much below the

order of rnagmtude requlred to produce the effect discussed

in [ 1].

The general theory can be applied to non-isothermal

equilibrium. Thus a similar flow probably occurs in the

experiments by Schaaffs [3].

In order to compare the theoretical results with the

other observations referred to in the introduction, we now

consider the case with a horlzontally directed plane wave.

T lM T>_T _ y- 1 D S
c v 3 b Dfe fj’ Db
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We still suppose i' = o , t, = constant. We have for the
wave

toi kOc tos cot

(47)

where 3 Is a constant and u,, is the horisontal component
of Jf .

v;ith thls, and the expression (34) for T, we find— *• /

Ur oi t0 the arbitrary function 6(t) near. This function

is now determined such that the secularity in x , which

occurs in the integral (40) is removed. We find

 + const. ,

which again leads to the following solutlon

(49) u/Ll

i! to
5 £

(= 0 )

k =
c 0

(„8) o\ -|,.*eww'%.({i.*.(^l)V.^k*.Mk>M,|<> V o V J 0 c >> /V; J

-—; tøv*.»'-*(»£,/ 
Y' 35,

a k 1]! 2, - j j?V[o (T } lf<X  + const. e
% 0 °
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(50)

where the last term in u^ L2 _ can be put equal to zero. The

arbitrary function k in (40) Is zero due to symmetry

requirements.

The vlscous terms dominate also here for the case

of a liquid. Further, ur L1 - 0 for vTh jUn (% = 1,3,5,

I u xzl«|t'/ Ll l . The flow is as shown in Figure 2. It

explains, we believe, qualitatively some features of the

observations by Hobæk [2], Dyson et al. [4], Vashon Baker [5].

)

The amplitude of the oscillation is assumed to be small

compared to the cnaracteristic lengths (wavelength, dimensions,

scale height). Further, it is presumed that the Reynolds

number R of the steady flow is small compared to unity. It

g^ves ff 1 est imate of the order of magnitude of the neglected

term Ll _ compared to the dominating dissipative terms,

V Lt or S vy.v Ll . Håving obtained the flow velocity,

we may estimate \ . In our models with standi a nr.™In our models with standing waves, a oroper

definitlon of R is R- I 1/ki. lt is verified that R<« i

in the numerical example given above.

iir.-i) / c 0 z

V - —-— ihllll e. (-3) 1 +
K* l J ' r ° <=/ 3 '

L J hT. c f „ > ’

Valldlty of the method.
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5* Concluding remarks.

Another possible fleld of application of the theory,

is the studies of the mean ocean currents; for example the

Cromwell current, which flows eastward beneath the surface

in a narrow zone along the equator. Munk and Moore [7] have

suggeoted thau this current is driven by equatorial Rossby

waves. Their model, however, being non-dlssipative, leads

to zero Lagraugian mean velocity and thus no rnass transport.

This has always been pointed out by Moore [8]. Including

dissipation, our tneory shows that internal waves may sustaj.n

a mean current in che ocean. Xt also predicts a smaller vertical

drift if compressibillty is taken into account.

The perfect gas model discussed previously [6], may be

applied to study flow problems in astrophysics, and in the

terrestrial atmosphere. For instance, it is known that guided

acoustic-gravity waves in the upper atmosphere are influenced

by viscous and thermal dissipation (see Francis [9]). As also

non-linearity is likely to become important at high altitude,

such waves may induce horlzontal mass transport over long

distances aud sustain a vertical drift. The streaming Reynolds

number will here stay small due to extremely high values of

the kinematic viscosity and the diffusivity. The method may

thus be used to calculate relatively large flow velocities.

In the solar where radiative loss is important }

olmilai phenomenon may occur. The theory provides a mechanlsm>
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we believe, for relating the observed steady velocifcy fields

in the upper photosphere and lower chromosphere, to the

oscillatory motion which is known to exist (for application

of the theory to a simple model in this field, see Naze Tjøtta

and Tjøtta [6]).
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Appendix.

From (7) - (8) we obtain

Taking the curl of (15) and using (16)-(17) and (A. 1 )

we obtain

or

Using (A.l), (A.2) and (13) - (15) we oompute f -f f t-f
~ Ar bb

and we obtain for C :

(A.l) ; \ = — T , - •
® O P c»

(A.2) -1 Px '/ = AllTx 7 (f'. I r T', f J + 17,
- 1 r, f. -f.

(A.3) gj + 7y2-id

 ' c +. ° f V
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Here b is0

for h > ?,

in (28), (30)

/ y'
defined by ( b o )=-q —~ # General expressions

-7-- ' *-V'
, are then obtained by inserting (A,4)

and (31).

(A. 4) C= E +
- U l Z i S C- J
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Figure 1.

Schematic diagram of the i1ow sustained by a standing vrave
in vertical direction.

Figure 2.
3Ci \ C. Tf] 3-1 i C rl p* t" r\'~* 1 n r-, .

cn uhe ilov; sustained by a standiny
in iorlzontal direction.
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