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ON THE UNIQUENESS AND STABILITY OF
ENTROPY SOLUTIONS OF NONLINEAR DEGENERATE
PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS

KENNETH HVISTENDAHL KARLSEN AND NILS HENRIK RISEBRO

ABSTRACT. We study nonlinear degenerate parabolic equations where the flux function i@, i, w)
does not depend Lipschitz continuously on the spatial location z. By properly adapting the
“doubling of variables” device due to Kruzkov [23] and Carrillo [12], we prove a uniqueness
result within the class of entropy solutions for the initial value problem. We also prove a result
concerning the continuous dependence on the initial data and the flux function for degenerate
parabolic equations with flux function of the form k(z)f(u), where k(z) is a vector-valued
function and f(u) is a scalar function.

1. INTRODUCTION

The main subject of this paper is uniqueness and stability properties of entropy solutions of
nonlinear degenerate parabolic equations where the flux function depends explicitly on the spatial
location. In particular, this paper is concerned with the case where the flux function does not de-
pend Lipschitz continuously on the spatial variable. Our study is motivated by applications where
one frequently encounters flux functions possessing minimal smoothness in the spatial variable.

The problems that we study are initial value problems of the form

uy +divf(z,t,u) = AA(w) + qlz, t,u), (z,t) € Ir =RE x Q. 70),

1) u(z,0) = ug(z), =€ RE,

where T' > 0 is fixed, u(z,t) is the scalar unknown function that is sought, f = f(z,t,u) is
called the flux function, A = A(u) the diffusion function, and ¢ = (z,¢,u) the source term. The
coefficients f, A, q of problem (1.1) are given functions satisfying certain regularity assumptions.
The regularity assumptions on f, g will be given later.

For the initial value problem (1.1) to be well-posed, we must require that 4 : R — R satisfies

(1L.2) A € Lipjoe(R) and A(:) is nondecreasing with A(0) = 0.

Notice that (1.2) implies that the nonlinear operator u — AA(u) is of degenerate elliptic type, and
hence many well known nonlinear and linear partial differential equations are special cases of (1.1).
In particular, the scalar conservation law (A’ = 0) is a “simple” special case. Included is also the
heat equation, porous medium type equations characterized by one-point degeneracy, two-phase
reservoir flow equations characterized by the two-point degeneracy, as well as strongly degenerate
convection-diffusion equations where A’(s) = 0 for all s in some interval [a, 5]. Consequently,
partial differential equations of the type (1.1) model a wide variety of phenomena, ranging from
porous media flow [31], via flow of glaciers [18] and sedimentation processes [9], to traffic flow [34].

We recall that if the problem (1.1) is non-degenerate (uniformly parabolic), it is well known
that it admits a unique classical solution. This contrasts with the case where (1.1) is allowed
to degenerate at certain points, that is, A'(s) = 0 for some values of s. Then solutions are not
necessarily smooth (but typically continuous) and weak solutions must be sought. On the other
hand, if A'(s) is zero on an interval [a, f], (weak) solutions may be discontinuous and are not
uniquely determined by their initial data. Consequently, an entropy condition must be imposed
to single out the physically correct solution.

Date: April 28, 2000.
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2 KARLSEN AND RISEBRO

Roughly speaking, we call a function u € L' N L*® an entropy solution of the initial value
problem (1.1) if

(i) |u~—c|, +div [sign (u — ¢) (f(k,u) — f(k,c))]
(1.3 +sign (u — ) (divf(k,c) — q(z,t,u)) — A|A(u) — A(c)| <0in D' Ve € R,
(il) VA(u) belongs to L2,

In addition, we require that the initial function uo is assumed in the strong L' sense. We refer to
§2 for a precise definition of an entropy solution.

The mathematical (L'/BV) theory of parabolic equations was initiated by Oleinik [26]. She
proved well-posedness of the initial value problem in the non-degenerate case with A(u) = u, and
showed that weak solutions are in this case classical.

In the hyperbolic case (A" = 0) with the flux f = f(z,¢,u) depending (smoothly) on z and
t, the notion of entropy solution was introduced independently by Kruzkov [23] and Vol'pert [32]
(the latter author considered the smaller BV class). These authors also proved general existence,
uniqueness, and stability results for the entropy solution, see also Oleinik [26] for similar results
in the convex case fy, > 0.

In the mixed hyperbolic-parabolic case (A’ > 0), the notion of entropy solution goes back to
Vol’pert and Hudjaev [33], who were the first to study strongly degenerate parabolic equations.
These authors also showed existence of a BV entropy solution using the viscosity method and ob-
tained some partial uniqueness results in the BV class (i.e., when the first order partial derivatives
of u are finite measures). In the one-dimensional case, Wu and Yin [35] later provided a complete
uniqueness proof in the BV class. Further results in the one-dimensional case were obtained by
Bénilan and Touré [3, 4] using nonlinear semigroup theory.

As for the uniqueness issue in the multi-dimensional case, Brézis and Crandall [6] established
uniqueness of weak solutions when f = 0. Later, under the assumption that A(s) is strictly
increasing, Yin [36] showed uniqueness of weak solutions in the BV class. Bénilan and Gariepy [2]
showed that the BV weak solution studied in [36] is actually a strong solution. The assumption
that u; should be a finite measure was removed in [37, 38].

An important step forward in the general case of A(-) being merely nondecreasing was made
recently by Carrillo [12], who showed uniqueness of the entropy solution for a particular boundary
value problem with the boundary condition “A(u) = 0”. His method of proof is an elegant
extension of the by now famous “doubling of variables” device introduced by Kruzkov [23]. In
[12], the author also showed existence of an entropy solution using the semigroup method.

In [7] (see also [28]), the uniqueness proof of Carrillo was adopted to several initial-boundary
value problems arising the theory of sedimentation-consolidation processes [9], which in some cases
call for the notion of an entropy boundary condition (see also [8] for the BV approach).

In the present paper we generalize Carrillo’s uniqueness result [12] by showing that it holds
for the Cauchy problem with a flux function f = f(z,t,u) where the spatial dependence is non-
smooth (non-Lipschitz). Only the case f = f(u) was studied in [12]. Moreover, we also establish
continuous dependence on the flux function in the case f(z,t,u) = k(z) f(u).

With the assumptions on the diffusion function A already given (see (1.2)), we now present the
(regularity) assumptions that are needed on the flux function f and the source term ¢, with the
those on f being the most important ones. Concerning the source term ¢ : R? x (0,T) x R — R,
we assume that ¢(z,t,0) = 0 Vz,t and '

(1.4) q(-,-yu) € L (0,T; L®(R%)) Yu; q(z,t,-) € Lipioc(R) uniformly in z, t.
With the phrase “uniform in z,¢” in (1.4), we mean
\Q(‘T,t’v) i q(:z:,t,u)| §C|U—U|, vz>tav7uv

for some constant C' > 0 (independently of z,t, v, u).
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DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS 3

Concerning the flux function f : R x [0,7] x R — R?, we assume without loss of generality
that f(z,¢,0) = fu(z,¢,0) = 0. Moreover, we assume that

(15) f(> '7“) S Ll (OvTv W&)’Cl(Rd)) \V/’U,, f($7t7 ) € LiplOC(R) uniformly in z,t;
(1.6) ol u) € LHO, T L=(RY)) Vu;  fa(a,t,-) € Lipioc(R) uniformly in ¢,

where f; = fz(,¢,u) in (1.6) denotes the function obtained by taking the divergence of the flux
f = f(z,t,u) with respect to the first variable. With the phrase “uniformly in z,#” in (1.5) and
(1.6), we mean

jf(fl:,t,'U) . f(I,t,U)|, !fm(.’l',t,’l)) i ffb(x,tvu” S C’U v ula VI',t,’U,U,
for some constant C' > 0 (independently of z,t,v, u).
The conditions in (1.4)-(1.6) are sufficient to make sense to the notion of entropy solution
(see §2). In the general case, however, we need one additional regularity assumption on the

dependency of f to get uniqueness of the entropy solution. Inspired by Capuzzo-Dolcetta and
Perthame [10], we assume that

(17) (F(.’L‘,LU,U) "F(I/,S,'U,u)) (Z‘—y) Z —7|U_u||z~y|2a V‘Tayatyvvuu
for some constant v > 0 (independent of z,t,v,u), where
(18) F(l’,t,l},u) = Sign (U i U) {f(I,t,’U) = f($at7u)]'

Note that condition (1.7) does not imply that f is Lipschitz continuous in the spatial variable z.
We remark that if f = f(z,u) is of the form

[ = k(z)h(u),

for some vector-valued function k : R — R?, and a Lipschitz continuous function &, then (1.7)
reduces to

(19) (k(l.) g k(y)) i (‘T ik y) 2 ) |I i y|2> Vz,%t,%uy

for some constant v > 0 (depending also on the Lipschitz constant of h). As pointed out in [10],
this condition requires a bound only on the matrix V,k + (V. k)T (the symmetric part of the
Jacobian Vg k) and k itself need not belong to any Sobolev space. To see this, let z = z — y and
rewrite the left-hand side of (1.9) as follows

P

(k(z) — k(y)) - (z —y) = /0 d—dg [(k(y + £2) — k(y)) - 2] dE

il
:/ Vok(y + €2)z - zde
0

1 1
=5 | (ke (VR 0+ 2122,

since 1 (Vak — (Vok)T) (y + £2)2- 2 = 0.

In [10], the authors showed the universality of (1.7) by proving that under this condition,
uniqueness holds for the Kruzkov-Vol’pert entropy solution of hyperbolic equations, the Crandall-
Lions viscosity solution of Hamilton-Jacobi equations, and the DiPerna-Lions regularized solution
of transport equations. With the present paper, we add to that list uniqueness of the entropy
solution of degenerate parabolic equations. More precisely, we prove the following theorem:

Theorem 1.1 (Uniqueness). Assume that (1.2) and (1.4)-(1.7) hold. Let v,u be two entropy
solutions of (1.1) with initial data uo € L'(R?) N L2 (R?). Then v = u a.e. in Iy = R? x (0,7).

By combining the arguments used in the present paper by those used in [16], Theorem 1.1 can
be proved even for a large class of weakly coupled systems of degenerate parabolic equations.
We next restrict our attention to problems of the form

uy + div(k(z) f(u)) = AA(u), (z,t) € I,

-5 w(z, O = uglz), <R
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4 KARLSEN AND RISEBRO

where k : R — R?, f : R — R, and f(0) = 0. Problems of the form (1.10) occur in several
important applications. Our first result for (1.10) states that in the L>(0,T; BV(R?)) class of
entropy solutions, an L! contraction principle actually holds provided

(1.11) f € Lipioe(R); k€ WL (RY);  k,divk € L®(RY).

loc

More precisely, we prove the following theorem:

Theorem 1.2 (L' contraction). Assume that (1.2) and (1.11) hold. Letv,u € L0 T B R
be entropy solutions of (1.10) with initial data vo,ue € L'(RY) N L°(RY) 1 BV (RY), respectively.
Then for almost all t € (0,T),

: lv(-t) = u(, )l ey < |Jvo — Uol| L1 ().
In particular, there exists at most one entropy solution of the initial value problem (1.10).

We remark that the existence of an L>°(0,T; BV (R?)) entropy solution of (1.10) is guaranteed
if divk € BV (R?). This follows from the results obtained by Karlsen and Risebro [19], who prove
convergence (within the entropy solution framework) of finite difference schemes for degenerate
parabolic equations with rough coefficients. For an overview of the literature on numerical methods
for approximating entropy solutions of degenerate parabolic equations, we refer to the first section
of [19] and the lecture notes [14] (see also the references given therein).

Let us mention that Theorem 1.2 includes the L! contraction property proved by Klausen
and Risebro [20] for the one-dimensional scalar conservation law with a discontinuous coefficient
k(z). Throughout this paper the coefficient k(z) is not allowed to be discontinuous. In the one-
dimensional hyperbolic case (A’ = 0) with k() depending discontinuously on z, the equation (IL.10)
is often written as the following 2 x 2 system:

(1.12) =R (k) —10) o = QO

If 8f/0u changes sign, then this system is non-strictly hyperbolic. This complicates the analysis,
and in order to prove compactness of approximated solutions a singular transformation U (k,u)
has been used by several authors [29, 15, 22, 21]. In these works convergence of the Glimm scheme
and of front tracking was established in the case where k may be discontinuous. If k € C? (R%),
then convergence of the Lax-Friedrichs scheme and the upwind scheme was proved in [26]. Under
weaker conditions on k (k' € BV) and for f convex in u, convergence of the one-dimensional
Godunov method for (1.12) (not for (1.1)) was shown by Isaacson and Temple in [17]. Recently,
convergence of the one-dimensional Godunov method for (1.1) was shown by Towers [30] in the
case where k is piecewise continuous. In this case, the Kruzkov entropy condition (1.3) no longer
applies, and in [22] a wave entropy condition analogous to the Oleinik entropy condition introduced
in [26] was used to obtain uniqueness, see also [21]. Klausen and Risebro [20] analyzed the case
of discontinuous k by ”smoothing out” the coeflicient k¥ and then passing to the limit as the
smoothing parameter tends to zero. In particular, they showed that the limit ”entropy” solution
satisfied the L' contraction property. We intend to study the degenerate parabolic problem (1.10)
when k(z) is discontinuous in future work.

Theorem 1.2 gives the desired continuous dependence on the initial data in degenerate parabolic
problems of the type (1.10). Next we will establish continuous dependence also on the flux function.

To this end, let us also introduce the problem
v +div(i(z)g(w)) = AA(u), (1) € I,
LGS
S o(@.0) = wlz), @ e R,

where [ : R & R?, g: R = R, and g(0) = 0. We are interested in estimating the L' difference
between the entropy solution v of (1.13) and the entropy solution u of (1.10). To this end, we
assume

(1.14) f>g € Lipioc(R);  k,1 € WHY(RY); k1, divk, divl € L®(R?).

Under these assumptions, we prove the following continuous dependence result:
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DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS 5

Theorem 1.3 (Continuous dependence). Assume that the reqularity conditions (1.2) and (1.14)
hold. Let v,u € L*(0,T; BV (R)) be entropy solutions of (1.13), (1.10) with initial data vo,uy €
L'(R?) N L>(R?) N BV (RY), respectively. For definiteness, let us assume that v,u take values in
in the closed interval I C R and that there are constants V,,V, > 0 such that

|U('7t)|BV(Rd) € ‘/TU Vt e (O,T)> Iu('at)|BV(Rd) < Vu Vi € (OvT)
Then for almost all t > 0,

lo(-, 8) = u, Dl pray < llvo — wollp e

= t{(C’f’”Hl = kllpo@ay + C3|l = klpy®ra) + C5llg — flleery + C1*|lg — f”Lip(I))
Al =l o 4l — @ Elle=
1 L= (R4) 2| fBV(Rd) + Csllg f||L°°(I) +Cy%lg f||Llp(1) )

where Cf"" = ||gllLipy Vo, CT* = || Flluipgry Ve CF = lgllze=(r; €3 = Ifllzeecry, C¥ = |kl Bv (R4,
k,v | u <
Cé — |Z|BV(]Rd)7 04’ = “k”Loo(]Rd)I/«v, 0111’ = Hl”Loo(Rd)‘/u) and a A b = mln(a,b).

We remark that Theorem 1.3 includes the continuous dependence result obtained in Klausen and
Risebro [20] for the one-dimensional scalar conservation law with a discontinuous coefficient k(z).
Results regarding continuous dependence on the flux function in scalar conservation laws with
k(z) = 1 have been obtained by Lucier [25] and Bouchut and Perthame [5]. Finally, we mention
that Cockburn and Gripenberg [13] have obtained a result regarding continuous dependence on
both the flux function and the diffusion function in (1.10) when k(z) = 1. Their result does not,
however, imply uniqueness of the entropy solution since their “doubling of variables” argument
requires that one works with (smooth) approximate solutions. By properly combining the ideas in
the present paper with those in [13], one can prove a version of Theorem 1.3 which also includes
continuous dependence on the diffusion function A. We will present the details elsewhere.

The rest of this paper is organized as follows: In the next section we introduce (precisely) the
notion of entropy solution as well as stating and proving a version of an important lemma due
to Carrillo [12]. Equipped with our version of Carrillo’s lemma, Theorems 1.1, 1.2, and 1.3 are
proved in §3, §4, and §5, respectively. Finally, in §6 (an appendix) we provide a proof of the weak
chain rule needed in the proof of Carrillo’s‘ lemma.

-

2. PRELIMINARIES
We shall use the following definition of an entropy solution of (1.1):

Definition 2.1. An entropy solution of (1.1) is a measurable function u = u(z,t) satisfying:

D.1 uwe LIy n L2 Ily) N C0,T; L (RL)).

D.2 Forallc € R and all non-negative test functions in C§° (Ily), the following entropy inequality
holds:

flte-

@280 jyes

¢ + sign (u —¢) (f(z,t,u) — f(:c,t,c)) Vo +|A(u) — A(c)|Ag

—sign (u — ¢) (divf(z,t,c) — q(w,t,u))qb) dtdz > 0.

D.3 A(u) € L2(0,T; H (R?)).
D.4 Essentially as t | 0,

. ’u(m,t) — uo(z)l dr — 0.
Rd

Remark 2.1. (i) Observe that when A’ = 0, (2.1) reduces to the well known entropy inequality
for scalar conservation laws introduced by Kruzkov [23] and Vol’pert [32].

(i) Condition (D.4), i.e., that the initial datum wuy should be taken by continuity, motivates
the requirement of continuity with respect to ¢ in condition (D.1).
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6 KARLSEN AND RISEBRO

Let u be an entropy solution. Then, since A(u) € HY(R?) for ae. t € (0,T), it follows from
general theory of Sobolev spaces that V|A(u) — A(c)| = sign (A(u) — A(c)) VA(u) a.e. in Ip.
Also, sign (A(u) — A(c)) = sign (u — c) provided A(u) # A(c). Again since A(u) € HY(R?) a.e. for
t € (0,7), it follows that VA(u) = 0 a.e. (w.r.t. dtdz) in {(z,t) € U1 : A(u(z,t)) = A(c)}. We
therefore conclude that

V|A(u) — A(c)| = sign (u — ¢) VA(u) a.e. in Iy

and the entropy inequality (2.1) can be written equivalently as

//(Iu — |t + sign (u — ¢) [f(:zr,t,u) — flz,t,¢) — VA(u)] -V
(22) M

— sign (u — ¢) (div f(z,c) - q(m,t,u))qﬁ) dtdz > 0, Vo € C5°(Il7).

If we take ¢ > esssupu(z,t) and ¢ < essinfu(z,t) in (2.1), then we deduce that u satisfies

23) [ (ut+ St To+ A@AG +a(o,t,0)0) dede =0, Vo € G (1)
106

Note that (1.5) implies
(2.4) |‘f($at7“)||%2<n7) < Const [[uf| peo(mp) [Jullp1(1p) < 00,

so that f(z,t,u) — VA(u) € L*(Il7; R?). Similarly, (1.4) implies q(z,t,u) belongs to L*(I7).
An integration by parts in (2.3) followed by an approximation argument will then show that the
equality ‘

(2.5) // <u¢>t + [f(a:,t,u) - VAW)] - V¢ + q(;z:,t,u)qb) @i = (0
IIr

holds for all ¢ € L2(0, T; HY(R?)) N W1 (0, T; L°(R?)).
We can even go one step further. To this end, let (-, -) denote the usual pairing between H~!(R%)
and H{ (R?). From (2.5), we conclude that

8w € L*(0,T; H'(RY)),

so that the equality

(2.6) - /OT (B, @) dt + //([f(m,t,u) — VA(U)] -V + q(w,t,u)qﬁ) didui =10
Iz

holds for all ¢ € L%(0,T; H}(R?)) N Wh1(0,T; L>°(R?)). The fact that an entropy solution u
satisfies (2.6) will be important for the uniqueness proof.
We now set

(2.7) Aotz = [ A

where ¢ : R — R is a nondecreasing and Lipschitz continuous function and zo € R. Concerning
the function Ay, we shall need the following associated “weak chain rule” :

Lemma 2.1. Let u: 7 — R be a measurable function satisfying the following four conditions:
(a): u e L*(Il7) N L= (IIr) N C(0, T; LY(R4)).
(b): u(0,-) = ug € L®(R?) N LY(R?).
(e): B e L2(0,T; H-*(R%)).
(d): A(u) € L?(0,T; HY(R)).
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DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS i

Then, for a.e. s € (0,T) and every nonnegative ¢ € CS°(R¢ x [0,T)), we have
- / (Bvup(Au)) ) dt
0

= / Ay (uw)dy dt do + / Ay (uo)p(z,0) do — Ay (u(z, s))p(z, s) dz.
0o Jmrd R4 R4
Lemma 2.1 can proved more or less in the same way as the “weak chain rule” in Carrillo [12],
see also Alt and Luckhaus [1] and Otto [27]. For the sake of completeness;, a proof of Lemma 2.1
is given in §6 (the appendix).
In what follows, we shall frequently need a continuous approximation of sign (). For e > 0, set

=
sigu {(oyh=et e Sl s el
11 T > 6

Note that sign, (—r) = —sign, (r) and sign, (—7) = sign’ (r) a.e.
We let A=' : R — R denote the unique left-continuous function satisfying A~*(A(u)) = u for
all w € R, and by E we denote the set
E = {r : A7!(-) discontinuous at r}.
Note that E is associated with the set of points {u : A’'(u) = 0} at which the operator u — AA(u)
is degenerate elliptic.
We are now ready to state and prove the following version of an important observation made

by Carrillo [12]:

Lemma 2.2 (Entropy dissipation term). Let u be an entropy solution of (1.1). Then, for any
non-negative ¢ € C§°(Il7) and c € R such that A(c) ¢ E, we have

//(|u — c|¢: + sign (u —¢) [f(a:,t,u) — f(z,t,c) — VA(u)] -Vo
il
(2.8) — sign (u — ¢) (divf(z,t,c) — q(, t,u))gb) dt dzx
= lim | .lVA(u)IQSign'E (A(u) — A(c)) pdt dz.

J

el0

Proof. The proof is similar to the proof of the corresponding result in [12]. In (2.7), introduce the
function v.(z) = sign, (z — A(c)) and set zp = c¢. Notice that the conditions of Lemma 2.1 are
satisfied and hence

7
R G ) e L
| (o sign. (At - () 0) r[/ e (W) dt o
Since u satisfies (2.6) and [sign, (A(u) — A(c)) ¢] € L?(0,T; HE(R)) is a test function, we have

ar
= [ (orusign. (4w - A(0) ¢} dt
0
+ [0 = 1(o,1,0) - V@) - Vsien, (4w) - A@) )
il

— (divf(z,t,c) — q(z,t,u)) (sign, (A(u) — A(c)) ¢)) dt dz = 0,
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8 KARLSEN AND RISEBRO

which implies that

/ Ay, ()¢ dt dz + //([f(:r,t,u) — f(z,t,c) — VA(u)] - V(sign, (A(u) — A(c)) @)
7

ar

— sign, (A(u) — A(c)) (divf(z, t,¢) — q(z, t,u))qﬁ) dtds = 0.

Since A(r) > A(c) if and only if r > ¢, sign, (A(r) — A(c)) - 1 ase | 0 for any r > ¢. Similarly,
sign. (A(r) — A(c)) = —1 as e | 0 for any r < c. Consequently, whenever 4 (c) ¢ E,

Ay, (u) = Ju—c| ae. in Iy ase | 0.

Moreover, we have | Ay, (u)| < |u —¢| € L{, (Il7), so by the Lebesgue dominated convergence
theorem

liﬁjl// Ay, (u)¢r dt dz :/ lu — c|¢y dt dz.
W My
For c such that A(c) ¢ E, we have

1}}}} // (z,t,u) = fz,t,¢) — VA(u)] - V [sign, (A(u) — A(c)) ¢] dtdz

EiO // (z,t,u) (52, %, c).— VA(u)] - Vsign, (A(u) — A(c)) ¢ dt dz

+hm // sign, A0) [f(z,t,u) = fz,t,¢) — VA()] - Vedtds

= hm // sign, (A(u) — A(e)) (f(z,t,u) — f(z,t,c)) - VA(u)gpdt dz

I

—hm//lv4 81gn (A(u) — A(c)) ¢pdtdz

+ 1:1?01 // sign, (A(u) — A(c)) [f(z,t,u) — f(z,t,¢) - VA(u)] - Vedtdr.

One can check that
= hm // divO. (A(u))@ dt dz,

where Q. is defined as

Dellz) = /0: sign’ (r — A(c)) <f($7t,A_1(r)) - f(a:,t,c)> dr

min(z,A(c)+e)
— (#at, A7) - Fat, A7 AE))) o

Since f = f(z,t,u) is locally Lipschitz continuous with respect to u, Q.(z) tends to zero as e | 0
for all z in the image of A. Consequently, by the Lebesgue dominated convergence theorem,

—13%1//@ u))Vodtdz = 0.

Observe that for each ¢ € R such that A(c) ¢ E,
sign (u — ¢) = sign (A(u) — A(c)) a.e. in 7.
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DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS 9

Therefore, from the Lebesgue bounded convergence theorem, it follows that

Jls = // sign (u — ¢) [f(x,t,u) — (@, 0) = VA(U)} -Vodtdx
It

and
HE)I // sign, (A(u) — A(c)) (divf(z,t,c) - q(z,t,u)) ¢ dt de
Ir
= // sign (u — ¢) (divf(z,t,¢) ~ q(z,t,u)) ¢ dt dz,
il
Therefore, letting € | 0 in (2.9), we obtain the desired equality (2.8). (]

3. PROOF OF THEOREM 1.1

Equipped with the results derived in §2 (in particular Lemma 2.2), we now set out to prove
Theorem 1.1 using the “doubling of variables” device, which was introduced by Kruzkov [23] as
a tool for proving the uniqueness (L' contraction property) of the entropy solution of first order
hyperbolic equations. We refer to Carrillo [11, 12], Otto [27], and Cockburn and Gripenberg [13]
for applications of the ”doubling” device in the context of second order parabolic equations. The
presentation that follows below is inspired by Carrillo [12].

Let ¢ € C®(Iy x [7), ¢ >0, ¢ = #(z,t,y,s), v=v(z,t), and u = u(y, s). We shall also need
to introduce the "hyperbolic” sets

o= {(m,t) €llr: A(v(z,t)) € E}, S {(y,s) € r : A(u(y,s)) € E}
Observe that we have
(a0 £ sign (v — u) = sign (A(v) — A(u))
ae. (w.r.t. di drdsdy) in [HT X (nT\gv)] U[(HT\gu) X HT} and
(8% V:A@w) =0 a.e (w.r.t. dtdz) in &, VyA(u) =0 a.e. (w.r.t. dsdy) in &,.
From the definition of entropy solution, Lemma 2.2, and the first part of (3.2), we have

— [[[] (10 sler+ sign (0 - 0 [10,0) = 52, 1,) ~ V2 AW)] - Vet

HT XHT

(3.3) — sign (v — u) (divzf(x, t,u) — q(z,t, v))d)) dtdz ds dy

—lim //// V. A(v)[*sign’ (A(v) — A(w)) ¢ dt dz ds dy

el0
(HT\EH)XHT

i //// V. A(v)|*sign’. (A(v) — A(u)) ¢ dt dz ds dy.

(M \Ew) X (TTP\Ey)

IN

A
2
s

=

Il

The inequality (3.3) is obtained by using Lemma 2.2 with v(z, t) where (z, t) is not in the hyperbolic
set £, noting that the integral over Ilr \ &, is less than the integral over II7. Finally, (3.4) follows
from (3.2).



W mmaw / o "WWW
allisdle™ sy $o wonitsilags 16

d .ieﬂiﬂ ‘mmmmm
I _ 3 T _ o 4 O S $6 R 35 R
it e . et g ‘eann il wdld ssuboninl of

S R
i k A fiibitod iy a,“ ki TRy 5
PRt g - (i) i el ’ il

TR e s i Pl i b
L% Lk st () ’ J"MIM tidae wiBaniesdo o (8.5 viidsupaniadT © ol
we T mﬁ!mgmw aikd sady ETE N e LT s

s timeR e




10 KARLSEN AND RISEBRO
Similarly, using Lemma 2.2 for u = u(y, s), and the second part of (3.2), we find the inequality
— ][ (= w160+ sign =) [£60,5,) = 0,5,9) -V, 4000] - 9,0
HT XHT

(3.5) = sign (u =) (divy f(3,5,9) = q(y, 5,u))9) dt du ds dy

< —lim //// ]vyA(u)]zsign;(A(u)—A(U))¢dt§xdsdy.

€l0
HT\S ) X HT\EU)

Observe that whenever V, A(v) is defined,

//‘ Vi A(v) - Vy(sign, (A(v) — A(u)) ¢)dsdy = V,A(v) - // V., (sign, (A(v) — A(u)) @) dsdy = 0,
IIr

1Dlp

or more conveniently,

// sign, A(u)) Vo A(w) - Vy¢ dsdy = / Vysign, (A(v) — A(u)) - Vo A(w)pds dy.

Iir

Similarly for a.e. (y,s) € Ir,

// sign, - 4(11))V A(u) - Vo dtdz = //V sign, (A(u) — A(v)) - VyA(u)¢ dt dz.

Now using integrating (3.6), (3.1), and (3.2), we find that

b //// sign (v — u) V, A(v) - Vyd dt dz ds dy

HrxIr
(3.8) //// sign (A A(u)) V3 A() - Vy¢dtdz dsdy
Oz x(IIT\&y)
» _15%1 //// -V, A(v)signl (A(v) — A(u)) ¢ dt dz ds dy.

HT\E )X HT\g

Similarly, using (3.7), (3.1), and (3.2); we find that

//// sign (A(u) — A(v)) VyA(u) - Vo¢ dt dz ds dy
Iy xH7
. B //// - VyA(v)sign; (A(v) — Aw)) ¢ dt dz ds dy.

(HT\E X(HT\E
Adding (3.3) and (3.8) yields
(3.10)

//// |v — u|g: + sign (v — u) [(f(:c,t,v) — fz,t,u)) - Vi
II7 xII7

— ViAW) - (Ve +V qb)] — sign (v — u) (div, f(z, t,u) — q(m,t,v))d)) dtdz ds dy
e //// \v AW)[ -V, Au) - VIA(U)>sign’E (A(v) — A(w)) ¢ dt dz ds dy.

el0
(M \Eu )Tl NES)
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DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS 11

Similarly, adding (3.5) and (3.9) yields
(3.11

)
- ////(|u—v|¢5s + sign (u — v) [(f(y,s,u) ~ f(y,5,9)) - Vyob

HT XHT

— VyA(u) - (Vyo + quﬁ)} — sign (u — v) (divy, f(y, 5,v) — q(y, s, u))¢) dt dz ds dy

< ~lim //// (|vyA(u){2 i Al vyA<u)>sign; (A(w) — A(v)) pdt dz ds dy.
(I \&u) X (M1 \&w)
Note that we can write
sign (v —u) (f(z,t,v) — fz,t,u)) - Vad — sign (v — u) div, f(z,t,u)
= sign (v — u) (f(z,t,ﬂ) — fly,s,u)) - Vy¢ + sign (v — u) divz[(f(y,s,u) = f(z,t,u))d)]
and
sign (u — v) (f(y,8,4) = £(y,5,0)) - Vy¢ — sign (u — v) div, f(y, 5,0)¢
= sign (v — u) (f(z,t,v) — fly,s,u)) - Vy¢ —sign (v —u) divy[(f(:c,t,v) — flgs s eiel].
Taking these identities into account when adding (3.10) and (3.11), we get

5 ////(Iv —ul(¢+ ;) + 1+ B+ I;) dt duds dy

HT XHT
(3.12) L W L
< - El'ﬁ)l ]va(U) -~ VyA(u)| sign, (A(v) — A(u)) ¢ dt dz ds dy
(HT\SH)X(HT\SN)
<0,
where

I, =sign (v — u) [f(:at,v) - fly,s,u) = (Vo A(v) - Vg,A(u))} (Voo + Vy9)

I, = sign (v — u) {divw[(f(y,s,u) - f(z,t,u))¢] — divy [(f(z,t,v) — f(y,s,v))qﬁ]],
Iy = sign (v — u) (g(z,t,v) — q(y,s,u)) .

We are now on familiar ground [23, 24] and introduce a nonnegative function § € C§°(R) which
satisfies

6(0) = d6(-0), 6&(o)=0for|o| >1, /Ré(o) daa=HI"

o=Le(2).

Pick two (arbitrary but fixed) Lebesgue points v,7 € (0,T) of [[v(-,t) — u(-,¢)|| 1 (ga)- For any
@ € (0,min(y, T — 7)), let

For py > 0, let

! ¢
Wao(t) :Hao(t—y)“Hao(t—T)v Hao(t) :/ 5ao(s)ds‘
Inspired by [10], we introduce a nonnegative function w € C*° (R, ) which satisfies
(3.13) wiz)i= 0 for 2 Al SSEHEIEE0 fortz el () / e = 1.
Rd

For p > 0 and = € R?, let
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12 KARLSEN AND RISEBRO

Observe that

1 z —yl?
Ve =9 =~z (P2 - ) = v,

Moreover, we introduce R € C§°(Ry ) such that
i
e {1, z € [0, 2],
il
and R'(z) <0forall 2> 0. For a > 0 and z € R, let
Ra(z) = R(ajz]).

Observe that

%)
e
332?/’ ) = VyRa(z +y).

. (x;u) . a(z;y)R, (a

We now take ¢ to be of the form

13 5

(3.14) (5 1y W, &) = I8 < ) Wao (t) wp(z — )b, (t — s) € CC (Tl x M),

so that the derivatives of ¢ which are singular in the limit p, pg | 0 cancel:

61+ 60 = B (L) [t =) = B4 = ey~ )bt ),
S , e N b e
Ve + Vyp = TR = 1 Weao (t) wp(x — 4)d,, (t = 5).

With ¢ as defined in (3.14), inequality (3.12) now takes the form

(3.16) - /// lv(z,t) — u(y, s)| (¢ + ¢s) dt dzds dy < //// (11 + I + Ig) dt dz ds dy.

I xIIp Il xIp

Sending a, ag, p, po 4 0 in (3.16) by an L* continuity argument, we get

/Rd lv(z,7) — u(z, 7)| dz

< / lv(z,v) — u(z,v)|de + lim //// (11 + Iy +Ig) dtdz ds dy.
R4 a,000,p,p040

HT XHT

(3.17)

Before we continue, let us write Iy = I + I5 5, where
12»1 = Sigl’l (U i U) |:(f(y75au) H f(I,t,U)) k V'c¢ T (f(.’l’,t,’U) = f(y,s,’u)) ' Vy¢],
Ir5 = sign (v — u) (divy f(y, s,v) — dive f(z,t,u))¢.

Inserting this into (3.16), we get

(3.18) /]v(x,7)—u(z,7’)|dz§/ lv(z,v) — u(z,v)|dz + lim (E1+E2+E3+E4>,
R4 R4

a,a0,p,p040

Elz////fldtdmdsdy Eg:/// I, dtdz ds dy,
J/

IIr xIIr IIr xII7

Eg:////[g,zdtdl’dey, E4:////]3dtda:dsdy

HTXHT HTXHT

where
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DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS 13

Sending p, po | 0 in B using (1.5) and an L continuity argument, we get

p,P040

lim By = // sl el AR s Tl (@ RN ol (a|z|*) Wa, (t) dt dz
I8l

— 0 as a | 0 due to (1.5) (see also (2.4))

- // sigg(v(a;,t) — u(z,t)) (Vo A(v(z, 1)) — Ve A(u(z, 1)) - z aR' (a|z|?) W, (t) dt dz .

Iz

— 0 as a | 0 due to (D.3)
Equipped with (1.5), we can subsequently send «, ag | 0 to obtain
(3.19) lga  J8y = (),

a,a0,p,0040,
Next, using (1.6), (1.4), and an L' continuity argument, we get
o
lim (Eg + E4> < Const/ / |v(z,t) — ulz,t)| dt dz.
a,a0,p,p040 v JRd

It remains to pass to the limit in E,. To this end, we introduce the shorthand notation Wy, Uy

T+y 1 Ae=aP
Wl:Ra( 7 >(z_y)pd+2w<| p2|>’
2
.\p2:w3<a}fﬂ2’_y >wp(x—y),

2
so that V, [Ra (5)w,(z —y))] = ¥y + ¥,. If we take into account the second part of (815,

then I ; can be rewritten as
IZ,l o (F(.T,t,?),u) it F(y,S,U,U)) i szb
i Sign (’U i U) (f(fl?,t,'l)) Fi f(y7 S,'U)) : \IJQ Wao(t)6P0 (t i S)a

where F' is defined in (1.8). Sending ag,po | 0 in E5 (again using (1.5) and an L' continuity
argumentj, we obtain

lim B, :/: /Rd -/Rd(F(m,t,v(z,t),u(y,t)) — F(y,t,v(a:,t),u(y,t))) - Wy dy dz dt

@0,p040

(3.20)

; / ! /R d /R sigm (02, 1) — u(y, 1)) (f(2,,0) - F(y,t, ) - o dy da s

— 0 as a | 0 due to (1.5)

Taking (1.7) into account, we have

(P08, ul31)) = Pl 06,1,y ) - = )z’ (220

il

< vlv(z,t) — uly, )| S

= 7' \ ) ( pz pd
From this we obtain the following estimate

lim /T /ﬂ;d /Rd<(F(z,t,v(m,t),u(y,t)) — By, vz, o), uly, o)) 0y

a,pl
< lim COSSt / / / [v(z,t) — u(y,t)| dy dz dt.
pd0 P v JREJ|z—y|<p

— Const/ / lv(z,t) —u(z,t)| dz dt.
v R4

2
a5 = 1 !
w' ('-7|—>‘ < 7lu(z,t) — u(y, t)| max|w’'| ﬁllz—yl@'
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14 KARLSEN AND RISEBRO

Summing up, we have proved that

/. lv(z,7) — u(z,7)|dz
JR4

< /Rd lv(z,v) —U(z,u)}dr+0/’/T /Rd}v(m,t) —u(z,t)|dz dt,

for some constant C' > 0 depending on f, q and the test function. Sending v | 0 and then using
Gronwall’s lemma, we get

(@2) / vz, 7) = ulz,7)lde < eCT/ [vu(z,0) — u(z,0)|dz = 0.
Rd Rd
Since this inequality holds for almost all 7 € (0,7"), we can conclude that v = u a.e. in Il

4. PROOF OF THEOREM 1.2

In this section, we restrict ourselves to problems of the form (1.10), i.e., f(z,t,u) = k(z)f(u)
and g(z,t,u) = 0. Let u,v € L(0,T; BV(R?)) be two entropy solutions of (1.10) with initial
data ug,vo € L*(R?) N L>(R?) N BV (R?), respectively. As before,we are interested in estimating
the L' distance between v and u. In what follows, the test function ¢ = ¢(z,t,y, s) is still the one
defined in (3.14). Repeating everything up to (3.17), we find that

(4.1) Ad|v(z,7) —u(z,7)|dr < / lv(z,v) —u(z,v)|de+ lim (E1 +E2+E3>,

Rd a,00,p,p040
where
B = [[[[signw-w [be)50) - hio) 10
I xIIp
S vyA(u))} (Ve + V) dt dz ds dy
B = [[[[siento - [()7w) - b@) 1) - Va0
Il xIIp
: - (k(@)f() = k() f ) - V9| dtdwds dy,
E; = //// sign (v — u) (divyk(y) f(v) — divok(z) f(u))¢.
I xIIr
As before (3.19), it is not difficult to show that
(4.2) lim E, =0.

a,00,p,p040
Next we estimate E5. To this end, introduce the function

(4.3) F(v,u) :=sign (v —u) [f(v) = f(u)],

and observe that from the identity (3.15) we have

£ = [[[[ () - k) F00)- 9.0

Il xIIr
— sign (v = ) £(0) (k(®) = k(y)) - C2Wa, ()35 (t = 5) ) dt du ds dy,

where U5 is defined in (3.20). To continue, we need the following simple lemma (whose easy proof
can be found in, e.g., [5]):

Lemma 4.1. Consider a function z = z(z) belonging to L= (R) N BV (R%) and let h € Lip(1.).
Then h(z) belongs to L (RY) N BV (R?) and

0

—h(z2) in the sense of measures, j =1,...,d,
ij

15}
< |hlleipe) ‘_8?2
J
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DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS 15
where I. denotes the interval [~|]z||Lw(Rd), 2]l oo mey ] -

Note that the function F'(v,u) defined in (4.3) is locally Lipschitz continuous in v and u with
Lipschitz constant that of f. Now since v(-,t) € L>(R%) N BV (R?) for each t, by Lemma 4.1
V. F(v,u) is a finite measure. After an integration by parts, we thus get

3 //// (divak(@) F(o, g de du ds dy + (k(z) — k(y)) - VoF(v,w)e

HT XHT

+ sign (v — u) f(v) (k(z) — k(y)) - 2 Wa, (£)8,, (t — s)) dtdz db: dy.

S /5 E b,

loc

1] -1 s

IIr xIlp

(RY) and V,F(v,u) is a finite measure, it follows that

+ sign (v — u) f(v) (k(z) — k(y)) - YoaWaq ()8, (t — 5)) dtdxdsdy — 0 as p | 0.

Consequently, we end up with

T
lim B, = —/ / divk(z)F(v(z,t),u(z,t)) Ry (T) dz dt.
v JRd

@op,po0

Finally, since k € VVI})CI (R%), the usual L! continuity argument gives

(4.4) lim Ej :/T/ divk(z)F (v(z,t),u(z,t))Ra(z)dtde = — lim E,.
v JR4

@0,p,p040 aop,pod0

From (4.1), (4.2), and (4.4), we get

/. ol ) = vl )| el = / lv(z,v) —u(z,v)|dz — / |v(z,0) — u(z,0)|dr as v | 0.
JRA R4 R4

Since 7 € (0,7") was an arbitrary Lebesgue point of ||v(-,¢) — u(, t)||L1(Rd), we immediately obtain
the L' contraction property claimed in Theorem 1.2.

5. PROOF OF THEOREM 1.3

In this section, we are going to estimate the L! difference between the entropy solution v of
(1.13) and the entropy solution u of (1.10). To do this, we proceed exactly as in the proof of
Theorem 1.1. In what follows, we let ¢ = ¢(z,t,y,s) be an arbitrary test function on Il x II7.

Similarly to (3.10), we can derive the following integral inequality for the entropy solution
W= gilas, ) wit (LI1S)s

)
= ][ (1o = lor +sign 0~ w [12) (6(0) - g(w) - V0

HT XHT
— VzAW) - (Ve + V d))} — sign (v — u) div,l(m)g(u)d)) dtdr ds dy

sl o

(T \Ew) X (I \Ey)

=, ) va@)) sign’ (A(v) — A(w)) ¢ dt dz ds dy.
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16 KARLSEN AND RISEBRO

Similarly to (3.11), we can derive the following inequality for the entropy solution u = u(y, s)
of (1.10):
(52)

//// Ju = vl s + sign (u — v) [k(y) (F(u) = F(v)) - Ty

HT XHT

=) (Y o qb)} — sign (u —v) divyk(y)f(v)qﬁ) dtdz ds dy

£ = 13?01 //// ‘VyA(u)‘z - V. Av) - VyA(u)) sign’ (A(u) i A(v)) ¢ dtdz ds dy.
(IIr\&u) x (TIx\&y)
Next we write
sign (v — u) [(z) (g(v) — g(u)) - Vo — sign (v — u) div,l(z)g(u)d
= sign (v — u) (I(z)g(v) = k(y) f(u)) - Vo + sign (v — u) divy [(k(y) f(u) = I(z)g(u))¢]
and
sign (u — v) k(y) (f(u) = f(v)) - Vyo — sign (u — v) divyk(y)g(v)d
= sign (v — u) (l(z)g(v) — k(y)f(u_)) - Vy¢ — sign (v — u) div, [(l(m)g(v) - k(y)g(v))cﬂ.
Similarly to (3.12), adding (3.10) and (3.11) we obtain

(5.3) —/// <|U“U|(¢t+¢s)+11+Ig)dtdzd5dy§0,

HT XHT

where
Iy = sign (v~ v) [1(@)g(v) ~ k@)f (1) = (VoA®) = VyA@W)] - (Vad + Vy9)
I = sign (v — w) [div, [(k(v)S (1) — U)g(w)) ] ~ div, [(He)g(v) - k(v)1 (©))4]]

At this stage, we need to choose a suitable test function ¢. In view of (1.14), we will not use
the test function defined (3.14), but the simpler one

(54) B(@,4,,) = Wao 0005 = 9)05(t =), 5,00 >0,
so that (v and 7 are as before arbitrary but fixed Lebesgue points in (0,T))
ot + ¢s = [ Oao (t =) — 80, (t — T)]ép(:z; —y)0,, (t — 9), W@ o o = (0
Before we continue, let us write Ir = I + I o with
L1 = sign (v = ) [ (k)£ () = (@)g(w) - Vo ~ ({(@)g0) ~ k) f(0) - V8]
L2 = sign (v — u) (divy k(y) f(v) - divzl(2)g(w)) .
With the test function ¢ defined in (5.4), we can send aqg, p, po 4 0 as usual and get

65) [ pen-uenlds | ey -ued lm (5 E),
R4 Rd @,p,p040
where
Elz////lg,ldtdxdsdy, EQZ////Iz,zdtdl'dey-
I xIIr I xIIp

Taking into account the identity V,¢ = —V,¢, we get
L1 = (U{z)G(v,u) — k(y)F(v,u)) - Va9,

where F' is defined in (4.3) and G is defined by the same formula but with f replaced by g. Since
v(-,t) € L®°(RY) N BV (R?) for each t and F,G are locally Lipschitz continuous, V,F(v,u) and
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V.G (v,u) are finite measures. Therefore, after an integration by parts followed by adding and
subtracting identical terms, we get

o //// <—div$l(m)G(v, w) = U(z) - VoG(v,u) + k(y) - Vo F(v, u)> ¢ dt dz ds dy

Il xIIr ;
- //// (~dival(@)G(v,u) + (k(y) - 1)) - VaGlv,w)
II7 xIIr
+k(y) - Vo (F(v,u) - G(v,u)))¢dt oo
By adding and subtracting identical terms, we obtain
— div,l(2)G (v, u)p + I
= sign (v = u) div, K(9)f(v)  sign (v - w) div, ()90}
= sign (v — u) [div,k(y) (f(v) - g(v)) ~ (div,k(y) — div,l()) g(v)] 6.
Adding E; and E, we thus get
(5.6) i
B+ Ep = //// (sign (v - w) [divy k() (F(©) - 9(v)) = (divyk(y) — dival(z))g(v)]

HT XHT

+ (k(y) - Uz)) - VaGl(v,u) + k(y) - Vo (F(o,u) — G(v, u)))qS dt dz ds dy.

Observe that by Lemma 4.1 we have

1

0 0
anG( )l<|wnhp 8$

e ) i >ﬂ<nf s

ooy 7= yo0s @k

J

(5.7)
v(z, t)’ J= 1o sagth

3}
dx; Ly
Equipped with (5.7) and (1.14), we send g, p, po 4 0 in (5.6) to obtain

i <E1 s Eg)

@0,p,p0+0

< / /Rd<|divk($)| If = gllze + |divk(z) — divi(z)] ||gl|z
+M@»—umwmmp§]§%uaﬂ\

+ [llz= 15 - mmp§j% .)]) do.
In view of (5.5), the following continuous dependence estimate now follows

/ lv(z, 7) — u(z, 7)| dz S/ lv(z,v) — u(z,v)|ds
Rd d

= T <|]9|]Lip S(UP [v(, ) By re) 1k = Ulpeo®a) + llgllLe [k = U By ®ae
te(0

+ Haviaa 1f = glli= + Il sup o0 8laviss I = ollin)
€00

Sending v | 0 and using symmetry, we finally conclude that Theorem 1.3 holds.
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6. APPENDIX (PROOF OF LEMMA 2.1)

In this appendix, we give a proof of Lemma 2.1. The proof follows Carrillo [12], but see also Alt
and Luckhaus [1] and Otto [27]. Note that A, is a nonnegative and convex function. Convexity
implies that for a.e. (z,t) € Iy, we have

Ay (u(z,1)) — Ay (w(z,t — 7)) < (ulz, t) - ulz,t — 7)) (A(u(z,t))),

where we define u(t) = uo for ¢ € (—7,0). In the sequel let ¢ € C§°(R? x [0,T]). Multiplying the
above inequality by &(z,t) yields

Ay (u(z, ) d(z,t) — Ay (w(z,t — 7)) p(z,t — 7) + Ay (u(z,t — 1)) (d;(m,t -7) L qb(z,t))'

(6.1) = Ay (w(z,1)) d(x,1) — Ay (ulz,t — 7)) p(2, 1)

< (u(z,t) — u(z, t — 7)) (A(u(z, 1)) d(z, t),
where we define ¢(z,t) = ¢(2,0) for t < 0. Note that Ay(ug) € Li (R%) and Ay(u) €
L>(0,T; Li, .(R?)). Dividing (6.1) by 7 and integrating over R? x x (0,s), we get

= /S_T 4 Ay (u(z,t)) ¢(z,t) dz dt — ;/0 /Rd Ay (uo(z)) ¢(z,0) dz dt
(6.2) + % /5 Ay (u(z, t = 7)) (p(z, t = 7) — ¢(z, t)) dzdt

0 d

R
< %/OS/RA(U(N) —u(z,t — 7)) (A(u(z, 1)) d(z, t) dz dt.

Since ¢ € C5°(R* x [0,T]) and A(u) € L*(0,T; H*(R?)), we have )(A(u))¢ € L (0 ErCR
Therefore, exploiting that v € C(0,T; L*(R?)) and du € L?(0,T; H-1(R?)), we can let 7 | 0 in
(6.2) and obtain

/ Aw(u(:c,s));b(x,s)dx—/ Ay (uo)p(z,0) dz
R4 R ’
- [ [ Atwsedsae s [Omv(aw)oar
0 R4 0

for a.e. s € (0,7). Convexity implies also that for a.e. (z,t) € Il and ¢t > 7, we have

Ay (ulz, 1) ~ Ay (ule, t = 1)) > (u(z, 1) — ulz,t - 7))o (Aulz,t — 7).
Multiplying this inequality by ¢(z,t — 7) yields
Ay, (u(x, t))qﬁ(z, t)— Ay (u(z, t— T))¢(I,t —7)+ Ay (u(z,t)) (gb(l’,t —7) — ¢(z, t\)

(6.3) = Ay (u(z,t))p(z,t — 7) — Ay (u(z,t - 7)) (z,t —7)
> (u(z,t) —u(z,t — 7))y (A(ulz, t - 7‘)))925(.7: t—17).
After dividing (6.3) by 7 and integrating over R? x ), we obtain

/ST Rd.Aw u(z, 1)) mtdmdt——/ Rd.A¢ u(z,t)) ¢(z,t) dr dt
(6.4) 2 [ Aoluta,) (6@, - 1) - ota,0) dea
> —/ /Rd u(z,t) —u(z,t — 7)Y (A(u(z, t — 7)) ¢(z,t — 7) dz dt.

Finally, similarly to (6.2), letting 7 | 0 in (6.4), we get, for a.e. s € (0,T),
/ Ay (u(z, s))d(z, s) dz — / Ay (ug)p(z,0) dz
R4 R<
[ A dsat > [ @ w(aw)e) a
0 JRd 0

This concludes the proof of the Lemma 2.1.
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