Department of APPLIED MATHEMATICS

ISSN 0084-778X

On the use of the Richtmyer procedure to compute a finite amplitude sound beam from a piston source

Jarle Berntsen *
April 3, 1987
REPORT NO. 82

UNIVERSITY OF BERGEN
 Bergen, Norway

On the use of the Richtmyer procedure to compute a finite amplitude sound beam from a piston source

Jarle Berntsen *

April 3, 1987

REPORT NO. 82

Abstract

When we apply the Richtmyer procedure [8] to solve a system of parabolic differential equations which describe the propagation of a finite amplitude sound beam, the initial conditions and the boundary conditions may cause unphysical effects. In this paper we explain why these unwanted effects arise, and we describe how we may approximate the initial and boundary conditions in order to make the Richtmyer procedure applicable. In earlier papers $[1,9,6,4]$ the fully implicit method has been applied to solve the described system of equations. The performances of the two methods are compared in a numerical experiment.

[^0]
1 Introduction

In several papers $[1,9,6]$ systems of coupled partial differential equations of the form

$$
\begin{align*}
& \frac{\partial a_{n}}{\partial \sigma}=-c(n, \sigma) a_{n}-k(n, \sigma) \nabla_{x}^{2} b_{n}+i l_{1}(n, \sigma, \underline{a}, \underline{b}) \\
& \frac{\partial b_{n}}{\partial \sigma}=-c(n, \sigma) b_{n}+k(n, \sigma) \nabla_{x}^{2} a_{n}+i l_{2}(n, \sigma, \underline{a}, \underline{b}) \tag{1}
\end{align*} \quad n=1, \ldots, m
$$

where $\nabla_{x}^{2}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{x} \frac{\partial}{\partial x}\right), \underline{a}=\left(a_{1}, \ldots, a_{m}\right), \underline{b}=\left(b_{1}, \ldots, b_{m}\right)$ and m the number of harmonics retained in the numerical solution, have been used to describe the propagation of nonlinear sound beams generated by circular pistons. The first terms on the right hand side are due to absorbtion, the second terms to diffraction and the last terms to nonlinearity.

In the case of moderate or weak nonlinearity, the diffraction terms have to be integrated with greatest care, and therefore we will pay special attention to how these terms should be integrated. Zhileikin [10] applied the Richtmyer procedure [8] to integrate these terms while Aanonsen used a fully implicit method. The source in [10] is Gaussian while the source in [1] is a piston.

In this paper we discuss two problems that may arise when we apply the Richtmyer procedure to solve (1). In sec. 2 we discuss the problem that arises when we have a piston source. The problem is explained for in [4], and here we describe a way to get around it. We also discuss the problems that arise because we have to use a finite range of x and therefore to introduce unphysical boundary conditions.

The use of the Richtmyer procedure together with new approximations of the initial conditions in the case of a source piston we believe is a efficient way of integrating the diffraction terms if also the boundary conditions are approximated with care. In sec. 3 we compare this method with the method described in [1].

2 The initial and boundary conditions

If we simplify (1) bearing in mind that the diffraction terms are the important terms, we get the problem studied by Richtmyer

tioidpuhortar

$$
\begin{align*}
& \square \tag{i}
\end{align*}
$$

 20 (2)

 240

 culothicks thathaod

anoitifuoa yubbubod thas lasiliai git

5

$$
\begin{align*}
\frac{\partial v}{\partial t} & =-\frac{\partial^{2} w}{\partial x^{2}} \\
\frac{\partial w}{\partial t} & =\frac{\partial^{2} v}{\partial x^{2}} \tag{2}
\end{align*} \quad 0 \leq x \leq 1, t \geq 0
$$

The initial conditions are given by $v(x, 0)=v_{0}(x)$ and $w(x, 0)=w_{0}(x)$. The boundary conditions are $v(0, t)=f_{0}(t), v(1, t)=f_{1}(t), w(0, t)=g_{0}(t), w(1, t)=$ $g_{1}(t)$. We introduce some notation used by Fairweather and Gourlay [3]

$$
\Omega=\binom{v}{w} \quad A=\left(\begin{array}{rr}
0 & -1 \tag{3}\\
1 & 0
\end{array}\right)
$$

Equation (2) may then be rewritten

$$
\begin{equation*}
\frac{\partial \Omega}{\partial t}=A \frac{\partial^{2} \Omega}{\partial x^{2}} \tag{4}
\end{equation*}
$$

A rectangular network of points with mesh sizes h and k in the x and t directions respectively, where $N h=1$ is superimposed on the region $0 \leq x \leq 1, t \geq 0$. The values of $\Omega(x, t)$ at the mesh points $x=i h, t=j k(i=0,1, \ldots, N ; j=0,1, \ldots)$ are given by $\Omega_{i, j}$. The methods we consider may then be written

$$
\begin{equation*}
\left(I-\lambda r A \delta_{x}^{2}\right) \Omega_{i, j+1}=\left(I+(1-\lambda) r A \delta_{x}^{2}\right) \Omega_{i, j} \quad i=1, \ldots, N-1 \tag{5}
\end{equation*}
$$

where $r=\mathrm{k} / h^{2}, I$ is the $2 * 2$ unit matrix and δ_{x}^{2} is the usual central difference operator in the x-direction.

For $\lambda=1 / 2$ we get the Richtmyer procedure and for $\lambda=1$ we get the fully implicit method. In [4] we show that the eigenvectors of the solution matrices for both methods are

$$
\nu_{ \pm s}=\left(\begin{array}{c}
i \sin (s \pi / N) \tag{6}\\
\pm \sin (s \pi / N) \\
\vdots \\
i \sin ((N-1) s \pi / N) \\
\pm \sin ((N-1) s \pi / N)
\end{array}\right) s=1,2, \ldots N-1
$$

The eigenvalues of the solution matrix for the fully implicit method are

$$
\begin{equation*}
\mu_{ \pm s}=\frac{1 \pm 4 \operatorname{risin}^{2}(s \pi / 2 N)}{1+16 r^{2} \sin ^{4}(s \pi / 2 N)} \quad s=1,2, \ldots, N-1 \tag{7}
\end{equation*}
$$

The corresponding eigenvalues for the Richtmyer procedure are

$$
\begin{align*}
& \text { NB }
\end{align*}
$$

$$
\left(\begin{array}{ll}
1 & 0 \tag{8}\\
0 & 4
\end{array}\right)=A \quad\binom{4}{4}=n
$$

(1)
ores

(d)
 Hoidirnb-x sult in poserpgo
 20.

Trib abcullacit ithad tof

(a)

2nention

$$
\begin{equation*}
\mu_{ \pm s}=\frac{1 \mp 2 \operatorname{risin}^{2}(s \pi / 2 N)}{1 \pm 2 \operatorname{risin}^{2}(s \pi / 2 N)} \quad s=1,2, \ldots, N-1 \tag{8}
\end{equation*}
$$

It is well known, see [2], that when a step function is approximated by a finite Fourier series, Gibbs oscillations do appear. When we have a piston source and a solution matrix with eigenvectors (6), Gibbs oscillations will also appear in the numerical solution.

The eigenvalues of the fully implicit method are all inside the unit circle. The eigenvalues of the higher harmonic eigenvectors are small in magnitude, and the contribution of these eigenvectors to the numerical solution will therefore soon be damped, and after some steps the Gibbs oscillations will disappear from the numerical solution. If the step sizes used in t direction are small, the lower and moderate harmonics are only to a small extent damped, and this explains why the fully implicit method for small step sizes has produced solutions of (1) that have proved to be in good agreement with physical experiments. However, as we shall see in sec. 4 , if we increase the step size, much energy is lost and the side lobes in the beam patterns gradually disappear.

The eigenvalues when we apply the Richtmyer procedure, all lie on the unit circle, and therefore as shown in [4] the Gibbs oscillations are maintained in the numerical solution.

Thus both methods considered suffer from severe defects in the case of a piston source. In this paper we try to remove the Gibbs oscillations in the initial data before we start solving the system of differential equations by using a filter. We may then apply the Richtmyer procedure without further loss of energy. The filtering achieved with the fully implicit method has already proved to give satisfactory solutions of (1) for small step sizes, and it was therefore natural to make a filter that simulated the filtering achieved by going some steps with this method.

When we complicate (2) by introducing cylindrical coordinates, we get the equation

$$
\begin{align*}
& \frac{\partial v}{\partial t}=-\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{1}{x} \frac{\partial w}{\partial x}\right) \\
& \frac{\partial w}{\partial t}=\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{1}{x} \frac{\partial v}{\partial x}\right) \quad 0 \leq x \leq x_{\max }, t \geq 0 \tag{9}
\end{align*}
$$

To find a general expression for the eigenvectors and corresponding eigenvalues of the solution matrices for this problem is very difficult. It is therefore difficult to predict the exact filtering achieved by using the fully implicit method on problem (9). However, the most important terms on the left hand side of (9) are the second order terms. Therefore, it is reasonable to base a subroutine for simulating the filtering achieved by the fully implicit method, on the expressions (6) and (7). The subroutine is listed in Appendix A.

 2 mons mato

 and

 कoutsum sidt dity bipla (S) oxisilquior ow realy

- Whation
(di)

The test problem used in the numerical experiments to be described is

$$
\begin{align*}
& \frac{\partial a_{n}}{\partial \sigma}=-p_{a b s} n^{2} a_{n}-\frac{1}{4 n(1+\sigma)^{2}} \nabla_{\underline{x}}^{2} b_{n}+ \\
& p_{n o n} \frac{n}{2(1+\sigma)}\left[\sum_{p=1}^{n-1}\left(a_{n-p} b_{p}\right)+\sum_{p=n+1}^{m}\left(b_{p} a_{p-n}-a_{p} b_{p-n}\right)\right] \\
& n=1, \ldots, 8 \tag{10}\\
& \frac{\partial b_{n}}{\partial \sigma}=-p_{a b s} n^{2} b_{n}+\frac{1}{4 n(1+\sigma)^{2}} \nabla_{\underline{x}}^{2} a_{n}+ \\
& \quad p_{n o n} \frac{n}{2(1+\sigma)}\left[\frac{1}{2} \sum_{p=1}^{n-1}\left(b_{n-p} b_{p}-a_{n-p} a_{p}\right)-\sum_{p=n+1}^{m}\left(a_{p} a_{p-n}+b_{p} b_{p-n}\right)\right]
\end{align*}
$$

The initial conditions when we use the fully implicit method, are given by

$$
\begin{align*}
& a_{1}(x, \sigma=0)=\left\{\begin{array}{cl}
\sin \left(x^{2}\right) & \text { when } 0 \leq x \leq 1 \\
0 & \text { when } 1<x \leq 8
\end{array}\right. \\
& b_{1}(x, \sigma=0)=\left\{\begin{array}{cl}
\cos \left(x^{2}\right) & \text { when } 0 \leq x \leq 1 \\
0 & \text { when } 1<x \leq 8
\end{array}\right. \tag{11}\\
& a_{n}(x, \sigma=0)=0 \\
& b_{n}(x, \sigma=0)=0 \quad 0 \leq x \leq 8, n=2, \ldots, 8
\end{align*}
$$

When we apply the Richtmyer procedure, the initial conditions given by (11) are filtered with the subroutine in Appendix A. (Except where otherwise stated.)

The boundary conditions when we use the fully implicit method are

$$
\begin{align*}
& a_{n}(x=8, \sigma)=0 \tag{12}\\
& b_{n}(x=8, \sigma)=0
\end{align*}
$$

Let the values of $a_{n}(x, t)$ and $b_{n}(x, t)$ at the mesh points $x=i h, t=j k(n=$ $1, \ldots, 8, i=0, \ldots, I M A X, j=0,1, \ldots)$ be given by $a_{n}^{i, j}$ and $b_{n}^{i, j}$ respectively. When we apply the Ricthmyer procedure, the boundary conditions are(except for the plot in Figure 4)

$$
\begin{align*}
& a_{n}^{I M A X, j}=2 a_{n}^{I M A X-1, j}-a_{n}^{I M A X-2, j} \quad n=1, \ldots, 8, j=1,2, \ldots \\
& b_{n}^{I M A X, j}=2 b_{n}^{I M A X-1, j}-b_{n}^{I M A X-2, j} \tag{13}
\end{align*}
$$

At $\mathrm{x}=0$ the solution is symmetric, and $\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{x} \frac{\partial}{\partial x}=2 \frac{\partial^{2}}{\partial x^{3}} . p_{a b s}=1 d-6$ and $p_{\text {non }}=1 d-1$ in our experiments. When we apply the Richtmyer procedure,

and and
(2) $15 a_{1}+1=\frac{1}{4}$

 0

$$
2+\pi-1=41 \leq t
$$

(t-munall ini boly
(Ci)

$$
\begin{aligned}
& 2+2+2+2
\end{aligned}
$$

$$
\begin{aligned}
& 90=(7,010 \pi)^{2} \\
& \text { - =awno- myav }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4, min mex vernm }
\end{aligned}
$$

the absorbtion terms are integrated by using the Crank-Nicolson method. (The Crank- Nicolson method applied to (2) is usually called the Richtmyer procedure, see [7].) When we use the fully implicit method on the diffraction terms, the absorbtion terms are integrated by the fully implicit method also. The nonlinear terms are in both cases integrated by an explicit method. $h=8.0 / 250$ in all our experiments. $k=3.5 * 10^{-4} *(1+\sigma)^{2}$ in the experiments in this section(except for the plot in Figure 4). We adjust k in order to keep $k /\left(h^{2}(1+\sigma)^{2}\right)$ constant, see (10).

To illustrate the usefulness of our filter we have applied the Richtmyer procedure on (10). In Figure 1 we plot the amplitude of the initial values of the fundamental ($n=1$) before and after(the dotted line) we have applied the filter. 1.24 per cent of the energy measured in the 2-norm is lost by using the filter.

Figure 1. The initial values.
In Figure 2 we show the computed amplitude of the fundamental at $\sigma=10$. for the initial values in Figure 1 when we apply the Richtmyer procedure. The dotted line shows the results without the filter. We notice that almost all Gibbs oscillations are removed from the numerical solution when we apply our filter. Some unphysical oscillations are left in the side lobes farthest away from the axis. These could to some extent have been removed by using a stronger filter. However, we have to balance between removing the Gibbs oscillations and maintaining the energy in the solution.

 (

 (0i) hate inatanos

 2.

aunss lefotil atiT 1 कruyiz

 20

Figure 2. The fundamental amplitude at $\sigma=10$.

Figure 3. A comparison with the fully implicit method.
In Figure 3 we show the computed amplitude of the fundamental at $\sigma=10$. when we apply the Richtmyer procedure and the fully implicit method (the dotted line). We see that even though the system of equations (10) is more complicated than (2), we achieve almost the same filtering by using the two techniques.

We end this section with some remarks on the boundary conditions. To restrict the values of x to $0 \leq x \leq 8$, as we do in (11) and (12), is clearly unphysical. However, numerically we have to define a finite range of x and try

0.2

 0
20

to make a reasonable choice of boundary conditions.
In earlier papers $[1,9,6,4]$ and in (12) all harmonics in the sound beam are set equal to 0 at the boundary $\left(x=x_{\max }\right)$. When we apply the Richtmyer procedure, no energy is lost, see [10], and all energy is retained inside the window of x that we are considering. We solve problem (10) with the Richtmyer procedure for $k=2.0 * 10^{-2} *(1+\sigma)^{2}$ and let the boundary conditions be given by (12). In Figure 4 we plot the amplitude of the fundamental at $\sigma=10$.

Figure 4. Reflected sound from boundary.
We see that sound is reflected from the boundary, and for smaller values of k the numerical solution overflows. Therefore when we apply the Richtmyer procedure, we have to use a boundary condition that allows energy to escape from the given x-window. This is not necessary when the fully implicit method is used because here the reflected sound is soon damped.

As we see from the heavy oscillations near the boundary in the figures 2 and 3 , we do not run away from all problems by introducing (13), but (13) at least allows sound to escape from our x-window. Therefore, when we apply the Richtmyer procedure in sec.3, (13) will be used to approximate the boundary.

 (To motion

2 Yokuly

3 Numerical experiments

In sec. 2 we showed that if we used the Richtmyer procedure with a filter on the initial values, the results would be almost identical to the results produced by the fully implicit method for $k=3.5 * 10^{-4} *(1+\sigma)^{2}$.

In this section we will study to which extent it is possible to increase the step size and still have a satisfactory solution. We use problem (10) as a test problem and study the amplitude of the fundamental only. As a reference solution we use the solution given by the Richtmyer procedure and $k=3.5 * 10^{-4} *(1+\sigma)^{2}$ (the dotted lines).

In figures 5,6 and 7 we plot the amplitude at $\sigma=10$. produced by the two methods(the Richtmyer procedure to the left in the following figures.) when we use $k=1.0 * 10^{-3} *(1+\sigma)^{2}, k=3.5 * 10^{-3} *(1+\sigma)^{2}$ and $k=1.0 * 10^{-2} *(1+\sigma)^{2}$ respectively.

In figures 8,9 and 10 we plot the amplitude on the axis $(x=0.0)$ when we use $k=3.5 * 10^{-3} *(1+\sigma)^{2}, k=1.0 * 10^{-2} *(1+\sigma)^{2}$ and $k=3.5 * 10^{-2} *(1+\sigma)^{2}$ respectively.

$\underline{\text { Figure 5. }} k=1.0 * 10^{-3} *(1+\sigma)^{2}$.

etrantilsagica fatitermuh

 2

(amil lsuitol
2 20.
 clavilaygeit

$$
4(x+11 \times 5-31505=4 a+1019
$$

Figure 6. $k=3.5 * 10^{-3} *(1+\sigma)^{2}$.

Figure 7. $k=1.0 * 10^{-2} *(1+\sigma)^{2}$.

$\underline{\text { Figure 8. }} k=3.5 * 10^{-3} *(1+\sigma)^{2}$.

$\underline{\text { Figure } 9} k=1.0 * 10^{-2} *(1+\sigma)^{2}$.

Figure 10. $k=3.5 * 10^{-2} *(1+\sigma)^{2}$.
From the figures 5, 6 and 7 we notice that the energy in the side lobes is soon lost when we apply the fully implicit method and increase k . If we want the two first side lobes to their full strength, we must stick to $k=3.5 * 10^{-4} *(1+\sigma)^{2}$. If we are satisfied with having the first side lobe only to full strength, we may increase k to $1.0 * 10^{-3} *(1+\sigma)^{2}$.

From Figure 5 we notice that we may increase the step size when we apply the Richtmyer procedure, to $k=1.0 * 10^{-3} *(1+\sigma)^{2}$ without affecting the numerical solution. When we increase k to $3.5 * 10^{-3} *(1+\sigma)^{2}$, the first two side lobes are still unaffected, but farther from the axis we start to notice differences in the numerical solutions. For $k=1.0 * 10^{-2} *(1+\sigma)^{2}$ this effect becomes more apparent.

From the figures 8, 9 and 10 we notice that if we are conserned about approximating the on axis sound only, we may use greater step sizes. When we apply the fully implicit method, we may at least use $k=3.5 * 10^{-3} *(1+\sigma)^{2}$. For greater step sizes the computed on axis sound increase in strength as the higher harmonics die out and the side lobes disappear.

When we use the Richtmyer procedure, all chosen values of k less or equal to $1.0 * 10^{-2} *(1+\sigma)^{2}$ give almost the same solution on the axis. However, for k equal or greater than $3.5 * 10^{-2} *(1+\sigma)^{2}$ the numerical solution becomes apparently unphysical. We did not notice this dramatic change in the numerical solution when we applied the fully implicit method and increased k.

In the figures 5 to 10 we have studied the amplitude of the fundamental only. However, if we study the amplitude of the second or higher harmonics (or their phases), the relative performances of our two methods are approximately the same

$$
4(x+1)+x^{5}-0 L+2.8=9 \quad 01 \text { arugiq }
$$

$$
(4+1) * 6-01+0.1 \text { os } 1 \text { nensosin! }
$$

4 Conclusions.

In this paper we have used the insight gained in [4] to make the Richtmyer procedure applicable on our system of parabolic equations also for a piston source. The numerical experiments suggest that we may increase the step size 5 to 10 times if we replace the fully implicit method with the Richtmyer procedure. Also for other problems of the form (1), at least in the cases where the diffraction terms are dominant, we believe the Richtmyer procedure to be preferable.

Programs for solving (1) with the fully implicit method are presented in [5]. The programs for solving (1) with the Richtmyer procedure are slightly modified versions of the programs in [5].

anolenfano

Ifi fiven sumit swe towern alds al

A Program FILTER

```
    SUBROUTINE FILTER(X,N,EXTEND,WORK)
C***BEGIN PROLOGUE FIL.TER
C***DATE WRITTEN 870223 (YYMMDD)
C***AUTHOR Jarle Berntsen
C***DESCRIPIION The routine filter the Gibbs ascillations
C present in the initial values stored in X in
C approximately the same way as the fully implicit
C method (100 steps with k=3.5d-4*(1+sigma)**2 and h=8/250)
C
C***INPUT PARAMETERS
C X Double precision array of dimension N.
C}COntains the initial values to be filtered
C N Integer.
C N must not have prime factors greater than 19
C When we use the given NAG routines for the FFT.
C EXTEND Double precision array of dimension 4*N.
C Contains an extension of }X\mathrm{ .
C WORK Double precision array of dimension 4*N.
C Used as working storage by the NAG-routines.
C***OUTPUT PARAMETER
C X Contain on exit the filtered initial values.
C***ROUTINES CALLED COGFAF, COGGBF, COGFBF (From NAG.)
C***END PROLOGUE FILTER
        INTEGER N,IFAIL,I,NX,NDAMP
        DUUBIE PRECISION RSM,LAMBDA
        DOUBLE PRECISION X(N),WORK(4*N),PI,COEFF,EXTEND(4*N)
        NX=4*N
        RSM=16.D0*0.38**2
        NDAMP=100
c
C Extend }X\mathrm{ to make the Fourier expansion a pure
C sin expansion.
C
        EXTEND(1)=0.DO
        00 5 I=1,N-1
            EXTEND(I+1)=X(N-I + 1)
            EXTEND(N+I+1)=X(I+1)
            EXTEND(2*N+I+1)=-EXTEND(I+1)
```


HSTM葠 matgorq

rapplal $+=4$
20

$h \times y=x V$

$$
\text { I0. } a=1110417 \times 7
$$

$\boldsymbol{i}-\mathrm{M}_{8} \boldsymbol{i}=1 \mathrm{~L}-0$ 日
$t=11+1)$ matya
-

CONTINUE
$\operatorname{EXTEND}(N+1)=X(1)$
$\operatorname{EXTEND}(2 * N+1)=0 . D 0$
$\operatorname{EXTEND}(3 * N+1)=-X(1)$
$P I=X 01 A A F(1 . D 0)$
rourier expand EXTEND.
CAIL COGFAF(EXTEND,NX, WORK, IFAIL)
$k=3.5 d-4 *(1+$ sigma $) * * 2$ and $h=8 / 250$.
DO $10 \quad \mathrm{I}=\mathrm{I}, \mathrm{N}$
$\operatorname{LAMBDA}=1 . D 0+R S M *(S I N(I * P I / D B L E(2 * N+1))) * * 4$
LAMBDA $=$ SQRT(1.DO/LAMBDA)
LAMBDA $=1 . A M B D A * * N D A M P$
$\operatorname{EXTEND}(N X-2 * I+2)=\operatorname{LAMBDA*EXTEND}(N X-2 * I+2)$
CONTINUE
form the complex conjugates of the discrete fourier transform.
CAII COGGBF(EXTEND,NX, IFAIL)
Compute the inverse fourier transform.
CAII COGFBF(EXTEND,NX,WORK, IFAIL)
Restrict EXTEND to X.
(10) $20 \mathrm{I}=1, \mathrm{~N}$
$X(I)=\operatorname{EXTEND}(N+I)$
CONTINUE
$\operatorname{EXTEND}(3 * N+I+1)=-X(I+1)$
RETURN
FND

-

 100.0 Matiox 19

M, tol of 04

400. 1*adakis -

 wantina?
(2)

If Hit ths At
G月arx $x^{2} \times 11 \mathrm{x}$
H9413日

64t

References

[1] S.I. Aanonsen. Numerical computation of the nearfield of a finite amplitude sound beam. Dept. of Math., Univ. of Bergen, Norway, Report no. 73, 1983.
[2] A.Papoulis. The Fourier Integral and its Applications. McGraw-Hill, 1962.
[3] G.Fairweather and A.R.Gourlay. Some stable difference approximations to a fourth-order parabolic partial differential equation. Math.Comp., 21:111, 1967.
[4] J.Berntsen and E.Vefring. Numerical computation of a finite amplitude sound beam. Dept. of Math., Univ. of Bergen, Norway, Report no. 81, 1986.
[5] J.Berntsen and E.Vefring. User documentation. Programs SOLTRI, SOLFIV and SOLSEV. Dept. of Math., Univ. of Bergen, Norway, 1986.
[6] M.F.Hamilton,J.Naze Tjøtta and S.Tjøtta. Nonlinear effects in the farfield of a directive sound source. J.Acoust.Soc.Am., 78:202-216, 1985.
[7] M.K.Jain. Numerical solution of differential equations. John Wiley, 1984.
[8] R.D.Richtmyer. Difference methods for initial value problems. Intersc. Tracts in Pure and Appl. Math., Tract 4,Interscience, 1957.
[9] S.I.Aanonsen,T.Barkve,J.Naze Tjøtta and S.Tjøtta. Distortion and harmonic generation in the nearfield of a finite amplitude sound beam. J.Acoust.Soc.Am., 75:749-768, 1984.
[10] Ya.M.Zhileikin. Numerical computation of the equation for nonlinear acoustics of confined beams. U.S.S.R.Comput.Maths.Math.Phys., 22:140156, 1982.

geatsyole 5

 B8II

 Tact

 -....

 reat

REPORTS PUBLISHED BY THE DEPARTMENT OF APPLIED MATHEMATICS UNIVERSITY OF BERGEN BERGEN, NORWAY

No. 1. A. Rildal and S. Tiotta
On acoustic streaming in magnetohydrodynamics, February 1964

No. 2, G. Berge.
On the stability of a magnetized plasma with a continuous density force field, June 1964.

No. 3. J. Falnes.
Coaxial waveguide consisting of a circular aetal tube surrounding a coaxial unidirectionally conducting sheet, August 1965

No 4. R.B. Dysthe.
On nonlinear interaction between two beams of plane electromagnetic waves in an anisotropic medium, December 1964

No. 5. K.J. overholt.
Extended Aitken acceleration, March 1965.
№. 6. G. Berge,
On the stability of a rotating plaswa from the two fluid equations including finite radius of gyration effects, May 1965

No. 1. A. Svardal.
On acoustical gtreaming between two coaxial cylinders, May 1965

No. 8. K. B. Dysthe.
On convective and absolute
instability, November 1965
No. 2. L, Engevik.
On linear and non-linear hydromagnetic vortex otion generated by the interaction of a gravity wave with a solid boundary, April 1966

No. 10. S Tlotta
Some non-linear effects in sound
fields, July 1966
No. 11. L. Engeyik.
on a stability problem in
hydrodynamics. Part I,
November 1966.
№. 12. L. Engevik.
On the stability of plane
inviscid Couette flow,
November 1966
No. 13. L. Engevix
On a stability problen in
hydrodynamics. Part II,
January 1967
Beport NTNE, L. Storesletten
On non-linear magneto-hydro-
dynamic wave motion in dissipative sedia,
September 1967
Ne. 14. K. B, Dysthe
Self-trapping and self-focusing of electromagnetic waves in a plasma, May 1968

Report no. 15 not written
No. 16. 8.B. Dysthe.
Force on a swall inciusion in a standing acoustic wave, July 1968

No. 17. A. Svardal and S. riotts.
oscillatory viscous flows in the vicinity of a cylinder, June 1969

No. 18. A.t. Iien and J. Nare Tidta
Rinetic theory of a weakly coupled
and weakly inhomogeneous gas,
June 1969.

No, 12. M.S. Espedal.
Hydrodynamic equations for a
F.L.R. plasma, August 1969.

No. 20. J. Naze Tietta and A.H. Oien.
Kinetic theory of a weakly
coupled and weakly inhomogeneous
plasma in a magnetic field,
August 1969.
No. 21, K.S. Eckhofis.
On stability.
Part I: General theory,
November 1969.
No, 22. R.S. Eckhoff.
On stability.
Part II: Linear problems,
December 1969
No. 23. K. S. Eckhoff
on stability.
Part III: The energy principle
in MHD, December 1969.
No, 24, B, B, Dysthe
On the stability of a
cylindrical surface-fila,
December 1969
No. 25. M.S. Espedal
The effects of ion-ton collision on a ion-acoustic plasma pulse, April 1970

No, 26. A.H. Dien
Derivation of kinetic equations of a plasma using a multiple time and space scale method, September 1970

No. 27. R, S. Eckhoff
On stability
Part IV: Nonlinear partial
differential equations,
October 1970
Ne 28. 2. Faltinsen and S. T19tta
Interaction between sound waves propagating in the same direction, April 1971

No. 29. I. Leversen and J. Naze Tintta
Solution of a stationary Fokker-
Plank equation, June 1971
No, 30. E. Medand
Application of the Galerkin's method on the proble of cellular convection induced by surface tension gradients, November 1971

No. 31. S. Nissen-Meyer
A note on the problea of reversi-
bility of mathematical models.
(Preliminary issue.),
Deceaber 1971
Ne. 32. L. Hinderaker.
on the foundations of the rethod of matched asymptotic approxiwations to two meeting orthogonal boundary-layers, Deceaber 1971

Ne. 33. A. Bertelsen. A. Syardad and 5 . Ilotts
Non-linear streaming effects associated with oscillating cylinders, December 1971.

No. 34. S. Nissen-Meyer
Some theorems on the problem of reversibilty of mathematical models.
(This report is a revised issue of report no. 31.), April 1972.
№. 35. I. Eidhamer
A minimul resource sorting wethod, June 1972.

No, 36. T.O. Espelid
On the behaviour of the secant method near a multiple root, September 1971.

No. 37, H. B. Drange
The linearized Boltzmann collision operator for cut-off potentials, December 1972

No. 38. J. Naze Tiotta and S. Tilta
Sur le transport de masse produit
par des oscillations en milieu
compressible, dissipatif et
inhomogene, Deceuber 1972
No. 32. M. Aksland
On the twodimentional birth and death process with autation,
January 1973
No. 40 A. H. Dien
Rinetic theory for evolution of a plasma in external electro-
magnetic fields toward a state
characterized by balance of
forces transverse to the
magnetic field, April 1973
No. 91. H. 8 . Drange
On the Boltzmann equation with external forces. April 1973

No. 42. J. Naze Tiotta and

S. Tiltta

On the mass transport induced
by time-dependent oscillations
of finite anplitude in a
nonhoogeneous fluid.
I General results for a
perfect gas, May 1973.
No. 43. L. Engeyik
Pertubation about neutral
solutions occuring in shear
flows in stratified, incompressible and viscid fluids, June 1973.

No. 44. J. Naze Tiotta and

S. Tictta

On the mass transport induced by time-dependent oscillations of finite amplitude in a
nonhowogeneous fluid.
II General results for a liquid August 1973

No. 45. G.Dahl and S. Storay
Enumeration of vertices in the
linear programing problem,
October 1973.
No. 46. M. S. Espedal
The effects of trapped and
untrapped particles on an
electrostatic wave packet. Deceaber 1973.

No. 47 M. S. Espedal.
A procedure to solve the Fokker-
Planck - Poisson equations
consistently, April 1974

usacta ma verausurian

te esifieth yly do exazonity insal
 Plame:
 tetat ivyes ehte ider frusgor to

$+214.4-\operatorname{lon}$

-

 स18t Tifmint.
(1)

 $3-20-20$

 $42-\frac{1}{2} 14$

+. 209 Ellena lunation-1

$$
\text { oxaver }+1=5 t-24
$$

 -0.- 2.
 Cotis may

 (2) 2
bzelt wabulphomidaco

2athat if kuet iffy is butalia bit

xter zasmach

 - lo lo

thel mand
 4.unto

24
MLodisdurelyis.

+2turis2 - +2.s. - 51 रु1 की:le a
 (

 -

 2

> -110408 chillitian mo
P fatuoptiyb OUk Tateras

सेiी dray

42-4

 $4-2$

 - 2

$\rightarrow 2+2$

Hext $\frac{3}{2}$ 5 94

 Net amb alyty wost
setint , it ch entin
 (adut listan walutio

S

क्योi sadamosn

 taty diziax
-

 -

 en erakioule isioutu
-

+ither of eft iek
athy 1seny itaos eteot

mescove ctatiderith 4 ab

laft imambin
(1) ancion - - - -

latit yutiner

1s ustoñ exilisatr an

0

-67

Thet thisstats

(Hue büs palquazflint

acti
-

Thist the invif macester motalituals
alot smat. Alabil rosinido whisinie

Ne. 48 , E, Miolhus

Application of the reductive perturbation method to long hydromag netic waves parallel to the magnetic field in a cold plaswa, May 1974

No $49, \mathrm{~K}, \mathrm{~S}$, Eckhoff

The propagation of discontinuities for linear hyperbolic partial differential equations, August 1974

Ne, 50, T, O, Espeldd.
An algorithm for internal merging of two subsets with swall extra storage requirements, September 1974

Ne. 51. E Meland
Mass transport induced by wave motion in a rotating fluid, October 1974

Ne. 52. L. S. Hedland
A randos exchange model with
constant decrements,
December 1974
No. 53 A. H. dien
on the evolution of a two
component, two teaperature, fully
bonized plasaa in electromag-
netic fields, January 1975

No, 54. K.S. Eckhoft
Stability probless for linear hyperbolic systeas, May 1975

No, 55 . K, S. Eckhoff
On stability in ideal compres sible hydrodynamics, May 1975

No. 56 . Le Storeshetten
A note on the stability of horizontal shear flow of an inviscid compressible fluid July 1975

NQ. 57. K. S. Eckhof f and L. Storesletten
on the stability of shear flow in a rotating compressible and inviscid fluid, July 1975

Ne 58, E.N. Haland and G. Berge Dynamic stabilization of the $m=1$ instability in a diffuse Inear pinch, July 1975

No, 59, E. Meland
Mass transport induced by wave
motion in a stratified and rotating fluid, August 1975

NQ. b0, T, O, Espelid
On replacement-selection and
Dinsmore's improvement, August 1975

No. 61. W. Storesletten
A note on the stability of
steady inviscid helical gas
flows, January 1976
No. 62. E. Meland
A time-dependent model of coastal currents and upwelling, June 1776

No. 63, A. H. Q1en
Corrections to classical kinetic and transport theory for a twotemperature, fully ionized plasma in electromagnetic fields. June 1977

No, 64. S D. F1dm
convergence in law of a series of φ-mixing randow variables 1 畂plies convergence in probability, August 1977

Ne. 65. A. H. Qlen
Kınetic equation for an electron gas (non-neutral) plasma in strong fields and inhowogenities, June 1978.

No. 66 H. Hopze and S. Tiptta
Theory of parametric acoustic
arrays, July 1978
No, 67. T. Q, Espelid
On Eloating-point sumation, December 1978

No. 68. E.N. Hdland
Stability of an inverted pendulum with hard spring and oscillating support, Deceaber 1978

No. 69. S. Stordy
An efficient least distance algorith based on a general quadratic programing method, November 1979.

No. 70. L. F. Engevik.
Amplitude evolution equation for
linearly unstable modes in
stratified shear flows, November 1979
Ne. 71, E. Qliveira-Pinto
Argument reduction for elementary
mathematical Eunctions : An
overview, July 1980.

No. 72 A. H. Dien
A quasi moment description of the evolution of an electron gas towards a state doainated by a reduced transport equation,
September 1980.

J. Berntsen

User-documentation. Program HALF
A subroutine for numerical
evaluation of three-dimensional
complex integrals, spring 1983.

No. 73 S.I. Aanonsen
Numerical computation of the
nearfield of a finite amplitude sound beam, September 1983

No. 74 L.K. Sandal
Influence of equilibrium flows
on viscous tearing modes,
December 1983
No. 75 . D. Pettersen
The nearfield of a high frequency
amplitude shaded batfled piston An analytical/numertcal investigation, July 1981

NQ. 76. R. Pettersen
Numerical solution of the
Buckley Leverett equation with a
general fractional flow function
November 1984
No. 77 I. Mannseth
Bound propagation in the pekeris
wavequide with application to
directional sources
November 1984

No. 78. - Borkve
A study of the Verigin problem
with application to analysis ot
water injection tests
March 1985
No. 72. 3. . danonsen
Nonlinear Effects During Transient
Fluid flow in Reservois as Encoun-
tered in well Test Analysis.
March 1985
Ne 8l. T. Mannseth
Sound propagation in the Pekeris
model of acoustic shallow water
Validity of the Ray, and discrete
normal mode solutions in the
vicinity of mode Cutoff's
January 1986
Ne 81. J. Berntsen and E. Vefring.
Numerical computation of a finite
amplitude sound beam
November 1986

Ne 82. IL Berntsen.
on the use of the Richtmyer procedure to compute a finite amplitude sound beam from a plston source ApL11 1987

－

$2(2+20.20$

4－HESthath vele ned

 0

－

LG hatriouq\％ ＝il

4．

 （20
sh2 shat houshe

\square

0

初相
$-$ \qquad

 symblath № wa
 178） की 0 아

2
 thath turne mint t revin 4．

 0
 tworituit pobt ks benses nobsedion

 atel wat

3tationt thenutat ant

hralatar -1 Hesi
dwint iromeabsi niven
Linitaion of entanam
－$\frac{1}{2}$

Letver photiars froterny A．
－Le

 20

 20 HIffleft
$2+2$ maxatumatis．

useth

$2-2+2$

年相

hog saspanduf－thina

1571 4＋41

 kvs ly

－

[^0]: *Supported by The Norwegian Research Council for Sciences and Humanities and Statoil, Norway.

