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OPERATOR SPLITTING METHODS FOR DEGENERATE
CONVECTION-DIFFUSION EQUATIONS II:

NUMERICAL EXAMPLES WITH EMPHASIS ON
RESERVOIR SIMULATION AND SEDIMENTATION

HELGE HOLDEN, KENNETH HVISTENDAHL KARLSEN, AND KNUT-ANDREAS LIE

Abstract. We present an accurate numerical method for a large dass of scalar, strongly de
generate convection-diffusion equations. Important subdasses are hyperbolic conservationlaws,
porous medium type equations, two-phase reservoir flow equations, and strongly degenerate
equations Corning from the recent theory of sedimentation-consolidation processes. The method
is based on splitting the convective and the diffusive terms. The nonlinear, convective part is
solved using front tracking and dimensional splitting, while the nonlinear diffusion part is solved
by an implicit-explicit finite difference scheme. In addition, one version of the implemented
operator sphtting method has a mechanism built in for detecting and correcting unphysical en

tropy loss, which may occur when the time step is large. This mechanism helps us gain a large
time step ability for practical computations. A detailed convergence analysis of the operator
sphtting method was given in Part I. Here we present numerical experiments with the method
for examples modelling secondary oil recovery and sedimentation-consolidation processes. We

demonstrate that the sphtting method resolves sharp gradients accurately, may use large time
steps, has first order convergence, exhibits small grid orientation effects, has small mass balance
errors, and is rather efficient.

1. Introduction

We study numerically a large dass of convection-diffusion equations of the type

for all (x,t) £Qt x [O,T]. Here u = u(x,t) is the unknown function that is sought, while
f = (/i) •• • > fm) i = [h !).••> Km) >O, A (Ai,..., Am ), and uq are given, sufficiently regular
functions. The velocity field V = (W,..., Vm ) is assumed to be divergence free. Therefore the
convective part of (1) is written on transport (or non-conservative) form.

For the nonlinear diffusion coefficient A = A(s) we require only that

thus making (1) a so-called strongly degenerate (sometimes we use the simpler term degenerate)
parabolic equation, which means that hyperbolic conservation laws of the type

constitute an important subclass of (1). Other important subdasses mclude one-pomt degenerate
porous media equations [43], two-pomt degenerate convection-diffusion equations ansmg m models
for two-phase flow in porous media [lo], and strongly degenerate parabolic equations coming from
the recent theory of sedimentation-consolidation processes [9],

Nonlinear partial differential equations of hyperbolic-parabolic type such as (1) possess Solu
tions which may exhibit quite complex behaviour (such as formation of sharp transitions and
singularities) in a small region in space (and time) and this makes them particularly hard to solve
numerically. It is therefore of considerable interest to construct and analyse numerical methods
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for such mixed type equations that work “uniformly” in the diffusion coefficient A! > 0, and as
such are able to resolve sharp transitions and singularities in the Solutions.

If (1) is allowed to degenerate at certain points, that is, A'{u) = 0 for some values of u, Solutions
are not necessarily smooth (but typically continuous) and weak Solutions must be sought. On the
other hand, if A\u) is zero on a set of positive measure, (weak) Solutions may be discontinuous
and are not uniquely determined by their initial data, as can be easily inferred from the maximum
principle and what is known about the hyperbolic conservation law. Consequently, additional
admissibility criteria—entropy condiiions—must be imposed to single out the physically correct
solution. It is outside the scope of this paper to go into details about the notion of entropy Solutions
for degenerate parabolic equations and the current state of the corresponding mathematical theory.
Instead, we refer to the overview given in our companion paper [3l], hereafter denoted as Part I,
and the references cited therein.

Perhaps somewhat surprisingly, there have been few attempts up to very recently (confer the list
of references given below) to develop a systematic treatment of such nonlinear partial differential
equations within a unified mathematical framework. In fact, the construction and analysis of
numerical methods for first order hyperbolic and second order parabolic problems are usually
considered as separate subject areas. A partial aim of our work is to demonstrate that it is
possible to give a coherent treatment of numerical methods for such a large dass of nonlinear partial
differential equations. Our ultimate goal is to have the same mathematical/numerical framework
for the hyperbolic case (A' =0) and the parabolic case (A' >0) as well as for the mixed hyperbolic
parabolic case (A' > 0). In the present paper and Part I (see also [26, 27, 21, 6]), we are concerned
with operator splitting methods. For related work on numerical methods for strongly degenerate
parabolic equations, see Evje and Karlsen [23, 24, 25, 22] for upwind difference schemes; Kurganov
and Tadmor [37] for Central difference schemes; and Bouchut, Guarguaglini, and Natalim [s] for
kinetic BGK schemes. In passing, we also mention the work by Afif and Amaziane [l, 2, 3] which
deals with finite volume methods for two-point degenerate convection-diffusion equations with a
monotonely increasing flux function (for which weak Solutions are unique).

It has become a well accepted practice to utilize conservative methods satisfying a discrete
entropy condition when solving first order hyperbolic conservation laws. The reason for this is of
course that if such methods converge, they do so to the unique physically relevant weak solution of
the conservation law, whereas merely conservative methods may converge to a wrong solution. It
turns out that the situation is similar for strongly degenerate parabolic equations. When solving
such equations, one should always employ (conservative) numerical methods that satisfy a discrete
entropy principle [23, 24]. To back up this claim, we refer the reader to an example presented
by Evje and Karlsen [23] which shows numerically that a “standard finite difference scheme for
uniformly parabolic equations may fail to produce correct entropy Solutions in the case of strong
degeneracy. Although the scheme is convergent also in the case of strong degeneracy, it does not
seem to satisfy a discrete entropy condition.

In Part I, we outlined various operator splitting methods for (1) and presented a convergence
analysis within the entropy solution framework for one specific method. In particular, L l con
vergence results and precise entropy estimates were provided. The entropy estimates allowed us
to conclude that any convergent sequence of operator splitting approximations must converge to
an entropy solution of (1), thereby showing that the operator splitting methods can be used with
confidence as numerical methods for strongly degenerate parabolic equations such as (1).

The operator splitting methods described in Part I are constructed to accurately resolve sharp
fronts or transitions. A key feature of the methods is the use of an unconditionally stable, front
tracking method for hyperbolic sub-steps. As a result, the splitting methods can in principle use
verv large time steps. In this paper we apply these splitting methods successfully to several test
problems arising in applications. The emphasis is on reservoir simulation, but we also include two
examples from the simulation of sedimentation-consolidation processes, and two mixed hyperbolic
parabolic model problems in multidimensions.

Although our methods allow for large time steps, there is a trade-off in that large time steps
mean great computer efficiency but tend to produce too much diffusion near steep gradients. Our
aim is to resolve sharp fronts, and there is a complicated interplay between the hyperbolic operator
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and the parabolic operator. To compensate for the entropy loss that takes place between the
Oleinik solution of the hyperbolic equation and the diffusive nature of the parabolic equation, we
apply a corrected operator splitting technique introduced by Karlsen and Risebro [3s] (see Section
2 for more details) which helps us to gain the large time step ability for practical computations.
This is demonstrated for a one-dimensional Buckley-Leverett, for which we also demonstrate that
the splitting method is more ethcient than standard finite difference methods.

In multidimensions, large splitting steps also tend to produce lack of mass conservation. We
study this effect for a classical test case from oil reservoir simulation—the quarter five-spot with
water injection at (0,0) and production at (1, 1). Earlier studies [34] have demonstrated that lack
of mass conservation is very small before water breaks through in the production well, also for large
time steps (cfl numbers of magnitude 10). Here, we observe negligible lack of mass conservation
for small CFL numbers (around 1.0) also after water breakthrough. For CFL numbers above 1.0,
the lack of mass conservation increases drastically as water breaks through due to the singularity
in the Darcy velocity held at the production well. A sensible solution to this problem is to keep
high CFL numbers until breakthrough, at which point the CFL number is reduced to unity.

Dimensional splitting techniques are known to exhibit certain grid orientation effects. For
viscosity ratios dose to one, little such effects are observed for the quarter five-spot case. However,
for viscosity ratios of 1 : 10, these effects are noticeable, since in this case the effective flux function
is linear and contains no self-sharpening effect to counteract splitting errors.

To support the theoretical convergence analysis in Part I, we present numerical convergence
studies that indicate first order convergence.

Our final example regarding fiow in porous media shows two highly heterogeneous quarter five
spots (permeability fields generated as the exponential of Gaussian fields) where we demonstrate
that the method resolves viscous fingering accurately.

Our application is taken from sedimentation-consolidation. Here the degeneracy of the diffusive
term is considerably more complicated than in the cases we studied for reservoir simulation. Our
two examples are taken from Bustos et al. [9] and describe the settling of a flocculated suspensions
in a one-dimensional idealized continuous thickener (ICT). An unusual feature of the governing
equation is its mixed hyperbolic-parabolic nature, where the mixed type nature corresponds to the
interface between the compression zone, where the so-called solid effective stress varies, and the
hindered settling zone, in which this quantity is assumed to be constant or to vanish. Above the
interface region the equation is hyperbolic, below it is parabolic, and this interface is not known
a priori. From conservation of mass and momentum and a constitute law one obtains the model
(26). Our operator splitting technique is quite effective on this problem.

Finally, we compare our method with the recent second-order method of Kurganov and Tadmor
[37] on a multidimensional Burgers’ equation with a strongly degenerate diffusion term, see (28).
For this problem operator splitting is considerably more efficient. In our final example we keep the
strongly degenerate diffusive term, but introduce in addition a variable velocity held. The behavior
in this case is highly involved with a complicated interaction between parabolic and hyperbolic
regions. We demonstrate first order convergence, once more, and discuss the error mechanisms in
the method.

In closing, we mention that Dahle, Espedal, Ewing, and collaborators [l2, 15, 13, 14, 20] as well
as Dawson, Wheeler, and collaborators [l6, 17, 18, 19, 44] are using operator splitting algorithms
similar to ours. We refer to the lecture notes by Espedal and Karlsen [2l] for a general introduction
to operator splitting algorithms and a long list of relevant references as well as a discussion of how
the splitting algorithms in the literature relate to ours.

Acknowledgement. We thank Magne Espedal, Vidar Haugse, and Nils Henrik Risebro for valu
able discussions. Our pressure solver was coded by Johnny Frøyen and Vidar Haugse. The
permeability fields were generated by Håkon Tjelmeland. Karlsen would like to thank Raimund
Biirger and Steinar Evje for discussions and collaboration on the subject of degenerate parabolic
equations and their apphcations to sedimentation-consolidation processes.
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2. Operator Splitting Based on Front Tracking

We are primarily interested in capturing sharp gradient variations in the solution of (1). To
this end, we use operator splitting to augment efficient and accurate methods for conservation
laws. Our basic building block is a front-tracking method [29, 39] for hyperbolic equations in one
spatial dimension, where the nonlinear flux is approximated by its piecewise linear interpolant
and one tracks an evolving piecewise-constant approximation. Front tracking is unconditionally
stable, highly efficient, and gives exact resolution of discontinuities. Combining front tracking
with appropriate methods for the diffusive forces, we can design methods that are unconditionally
stable and deliver more than the standard resolution with surprisingly high efficiency.

2.1. One-dimensional equations. Let us for a moment consider the one-dimensional problem

(2) ut + V{x)f{u)x = s(K{x)A{u)x ) x , u{x,o) = u o {x).

The core of the splitting method lies in the solution of the hyperbolic problem

(3) vt + V{x,i)f{v)x =O, v{x, 0) = t>o(®).

Henceforth, let St denote the front tracking solution operator. The second step of the operator
splitting method consists of solving

The approximate solution operator Ti t can either be an explicit or an implicit finite difference
scheme, or a finite element method. The corresponding operator splitting method reads

where tt is the (piecewise constant) projection operator defined with respect to an underlying
ffixed grid. The projection operator tt has been included since the front tracking method is grid
independent and generally produces piecewise constant Solutions on a nonuniform grid with arbi
trary large mesh ratios. Reversing the operators (i.e., tt o SAt o Ti&t ) is not recommended since
the self-sharpening effects in the hyperbolic step would tend to produce discontinuous Solutions.

The operator splitting (5) will converge as the discretization parameters Ax and At tend to zero
with At/Ax fixed, see [26, 31] and below. Unfortunately, this does not guarantee that the quality of
the solution is good for an arbitrary ratio between the splitting step and the spatial discretization.
In general, large splitting steps tend to produce approximations that are too diffusive near steep
fronts in the solution. The mechanism is as follows (assume for simplicity that A' (w) > 0): in the
hyperbolic step, the solution is picked according to an entropy principle, which introduces a local
linearization (or Oleinik convexification) of the flux function. The structure of (self-sharpening)
parabolic fronts is in some sense controlled by the difference between the flux function and its local
convexification. This flux residual is thrown away in the hyperbolic step, giving an unphysical loss
of entropy that results in a lack of self sharpening.

To compensate for the entropy loss, a correcied operator splitting algorithm was introduced
by Karlsen and Risebro [3s] where the local flux residuals are included in the parabolic step
(or possibly in a separate hyperbolic step). Consider a one-dimensional problem with a simple
moving front that solves Ut + f{u)x = sA{u)xx . In the hyperbolic step vt -f f(v)x =O, this front
is represented by a discontinuity with left and right limits vl and V R • The local flux residual is
identified as /res =/ /c , where fc denotes the convex or concave envelope (depending on the
entropy condition) of the flux / on the interval bounded by vl and vr. Then the new diffusion
step is given by

In accordance with the discussion above, the residual flux /res is defined to be nonzero only in a
small domain around the point of discontinuity. Although the equation is on the same form as
the original unsplit equation, the nonlinearity in the flux function is less severe since the advective
part has been removed in the hyperbolic step. The remaining residual flux ensures that the front
gets the correct amount of self sharpening. An example of the corrected operator splitting is given
in Section 3.3.

(4) wt - {K{x)A{w)x )x , w{x,o) = wo {x)

(5) u{x,nAt) & [HAt ott o SAt ] n Kv0 ,

Wt + fres{w; x)x = eA{w)xx .
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2.2. Multidimensional equations. For the multidimensional problem (1), we are left with two
possible approaches for splitting, once we have chosen to use the one-dimensional front tracking
method as our basic building block. One choice is to split (1) into a a hyperbolic problem

and a degenerate parabolic problem

Letting St denote the solution operator associated with (6) and 7it the solution operator associated
with (7), we define the (semi-discrete) operator splitting solution as

(8) u(x,nAt) fa [hAt oSAt ] n u0 .

However, for numerical computations exact solution operators have to be replaced by approximate
ones. To this end, we introduce a regular grid in M m with mesh size Ax and a piecewise constant
projection operator onto this grid, denoted by tt. To solve (7) we use a suitable finite difference
method, which will be mtroduced below. For the hyperbolic step we can further use dimensional
splitting to obtain a sequence of one-dimensional hyperbolic problems

which are solved by front tracking, see below. If SJt denotes the front tracking solution operator
associated with (9) and 7i t the finite difference solution operator associated with (7), we can
compactly define the operator splitting solution as

This way, the composite operator tt ° '' '° may t>e viewed as an approximate solution
operator (at time t At) for the multidimensional hyperbolic problem (6). The use of dimensional
splitting together with front tracking as a numerical method for (6) was first considered by Holden
and Risebro [3o] and later by Lie et al. [3B, 40].

Algorithmically, our splitting goes as follows in two spatial dimensions:

Define n 0 and get parameter At.
Compute initial approximation on grid {xi,yj}: u{x, y, 0) := 7ruo (x y)
While nAt < T

For each row j = 1,..., Min the grid (i.e., yj <y < yj+l ),
Compute front tracking solution on row j up to t = At:

Project solution back onto grid: u{x, y, nAt ) := ir3x v{x, At)
For each column i = 1,..., Nin the grid (i.e., x{ <x < xi+l ),

Compute front tracking solution on column i up to t = At:

Project solution back onto grid: u{x,y,nAt) := 7p'i;(y, At)
Solve parabolic problem on 2-D grid up to t = At:

The second splitting method first uses dimensional splitting on (1) to give a sequence of one
dimensional equations of the form (2) for each spatial direction. Then each of these equations are

m

( 6 ) vt + x)fj{v)Xj =°, w(x,o) = u0 (æ)
3 = 1

m

(7) wt = e^2(Kj{x)Aj{w)Xj ) w{x,o) = wo {x).
j= i

( 9) vt + Vjix)fj(v)xj =o, v{x, 0) = V 0 (x),

(10) u{x, nAt) « [H&t o7T O O••• O 7T O *S^ t ] n 7TM O .

v t + Vi{x; yj)fi(v)x =O, v{x, 0) = u{x, y, nAt)

vt + V2 (y; Xi)f2 (v) y =O, v{y, 0) = u(x, y, nAt),

wt = {x, y)\7A{w)) , w[x, y, 0) = u(x, y, nAt)
Increase time: n ;= n + 1

Update solution: u{nAt,x,y) := w(x,y,At)
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solved using the splitting (5). The overall splitting method takes the form

(11) u{x, nAt) w [H2t °7T o °•• • ° t 07C0

where 'HJAt denotes the finite difference solution operator associated with the one-dimensional
problem

We will henceforth refer to the splitting (10) as OS and the splitting (11) as OSds . The first
approach avoids dimensional splitting of diffusive forces and is therefore likely to have smaller
splitting errors (see, e.g., Figure 8). On the other hand, OSds will give faster solution of the
parabolic steps. In case of an implicit discretization of the parabolic steps, OSds involves solving
tridiagonal linear systems by LU factorization, whereas OS typically gives (2m + l)-diagonal
systems that must be solved by some iterative method (e.g., conjugated gradients). For explicit
schemes, OSds results in less numerical operations than OS. Moreover, the storage requirements
for OS ds are less than for OS.

The second approach (OS ds ) opens up for the use of the corrected operator splitting idea, that
is, instead of solving a parabolic step of the type (12), we solve

where /Jres is a residual flux term determined from the jth directional hyperbolic solution, i.e.,
the solution of (9) (with suitable initial data). If 7i denotes the approximate solution operator
of (13), the multidimensional corrected operator splitting reads

We will refer to this splitting as COS. As an alternative to (14), the residual fluxes can be
included in an ad hoc, multidimensional fashion in (10); see Evje et al. [27] for more details and
a discussion of different correction strategies. Since the algorithmic descriptions of (11) and (14)
are very similar to the one that we gave for (10), we choose not to present them here.

2.3. Front tracking. Now that the operator splitting methods have been introduced, it is time
to discuss the numerical methods used for each part in more detail. For the hyperbolic problems
we use front tracking [29, 39]. Given an equation on the form (3), we first approximate the initial
data by a step function ttuq and the flux function and the velocity (which we for simplicity assume
only to depend on x) by piecewise linear functions /6 and V a . This way, the Cauchy problem
is reduced to a series of Riemann problems. Since the flux function is piecewise linear, each
Riemann problem is solved by a set of constant states separated by discontinuities (henceforth
called fronts). A front with left and right state v~ and propagates according to the ordinary
differential equation

which can be solved explicitly if, for instance, V° is piecewise linear. The numerical method
consists of tracking discontinuities as the time evolves. Each time two or more discontinuities
internet, a new Riemann problem is solved. The front-tracking algorithm is illustrated in Figure 1.
Except for the specification of ttuq, the method is grid-independent and has no intrinsic time step.
The tracking of fronts is implemented using two linked lists of front objects; one list represents
the fronts m x from left to right, and one list keeps track of the queue of possible colhsions. Each
front object typically contains the left and right states of each discontinuity, its Rankme-Hugoniot
speed, start position (aro ,t o ), and collision point (x e ,t e ), see Risebro and Tveito [42] for further
details on the data strueture.

The virtue of front tracking is that Riemann problems can be solved exaetly. Furthermore,
since there is no intrinsic time step, no CFL condition is imposed. Extension of the front tracking
method to multidimensions by dimensional splitting (as outlmed above) is described in detail by
Holden and Risebro [3o] and Lie et al. [3B, 40].

(12) wt = e{Kj{x)Aj{w)Xj ) x w{x, 0) = wo {x)

(13) wt + Vj{x,t)fj !res {w)Xj =e{Kj {x)Aj{w)Xj ) Xj , w{x,o) = wo {x),

(14) u{x, nAt) « [HaT °n ° sat °'’ ’ ° \°77 ° njru o-

• \ ra ( uf5 (v+ )-f6 (v h

I = r (*H—^7=—
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Figure 1 Illustration of the front tracking algorithm for a variable coefficient problem.

2.4. Finite difFerence scheme. In the parabolic step we solve (degenerate) equations

for m > 1. To this end, we use an implicit-explicit finite difference method. Assume a mesh with
a uniform spacing Ax in each spatial direction and a time step r. Let a = (ai,. .., am ) GZw be
a set of indices and define e 3 such that the jth component equals unity and all other components
equal zero. Let W£ denote the approximate solution in grid cell a at time t = nr. Furthermore,
let (3a = £rKja+e^2 /Ax2 and A^n = Aj{W£). Then the scheme reads

(16)

where the parameter 6 is in the interval from zero to one; 6 = 0 giving a fully implicit scheme and
0 = 1 a fully explicit scheme. The scheme is stable provided [3l]

(16)

2.5. Convergence of splitting methods. Here we give a brief review of the main results from
Part I. The (semi-discrete) splitting method (8) says that the solution u at timet G ((n-l)At, nAf]
of (1) is approximated by the piecewise constant time interpolation uAt {t):

or alternatively replace <SAt by SAt o•• • o SAt . For this approximation we prove the following
result (Theorem 2.1 in Part I). The approximation uAt converges along a subsequence as At 0
m l]OÅQt ) lo an entropy solution u that satisfies G L 1(M m)nL°°(M m)n5F(M m ) uniformly
in t and is uniformly L 1 Holder continuous in time with exponent 1/2. Here we assume that
the initial data u 0 belongs to n L°°(M m ) n BV (M m ) and that the coefficients f3,V 3, Kj ,
and Aj are sufficiently regular (see Part I for details).

The fully discrete splitting is obtained in (10) using front tracking and finite difference methods.
In the front tracking method the fiux function fj and the velocity held Vj are replaced by and

m

wt = gy: dxj (Kj{x)dx .Aj{w)), w(x,o) = w0 (x),
j=i

m
ws+1 =w; +o V [Æ(4';e ,. - a?) - (a>* - A=’Z ei)J = 1

m
+(1- ») E [Æ(<' - Aan+l ) - ØLe, +l - )1 .3 = 1

ST

mfx(s“p Ki (®) s^p A'i ( M )) 2^-

uAt {t) = [HAtoSAt ] n uo , t e {{n - l)At,nAt], n = 1,...,N, NAt =T,
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Vj7 , respectively, that is, by continuous, and piecewise linear approximations such that f- — fj
and Vja — V} as 6— 0 and <j —* 0. Let a t denote the approximate solution operator. For
the parabolic equation we use an implicit-explicit difference scheme (see equation (15)), and the
corresponding solution operator is denoted by 7iAx,t- Thus we obtain the fully discrete method

where n=l,.. ~ N, NAt =T, and the discretization parameters are collected in p = {At, a, Ax).
In this case we prove (Theorem 2.2 in Part I) that uv converges along a subsequence as rj — 0 in
L]oC {Qt) to an entropy solution u that satisfies u{-,t) G L 1(M m ) fl L°°(lRm) fl BV{Rm ) uniformly
in t and u{-,t) is uniformly Ll Holder continuous in time with exponent 1/2. Again we assume
u 0 G L 1(M m ) fl L°°(Mm ) fl BV(M m ) as well as appropriate regularity of fj, Vj, Kj, and Aj.

3. Reservoir Simulation

In the following we will give some numerical examples of the above operator splitting techniques
applied to the simulation of a secondary recovery (water injection) process in oil reservoirs. First,
however, we give a short introduction to the mathematical model which consists mainly of a
saturation equation (25) and a pressure equation (24). The saturation equation is a parabolic
equation on the form (1), generally possessing a two-point degeneracy. The operator splitting
strategy will only be applied to stable displacement processes. Unstable displacement are discussed
elsewhere [2B]. Unless stated otherwise, we use the fully explicit scheme (equation (15) with 6=l)
for the (degenerate) parabolic steps.

3.1. Mathematical model. Let s denote the water saturation (and 1 - s the oil saturation).
Then the incompressible displacement of oil by water in a porous medium can be described by the
following set of partial differential equations (given in dimensionless form);

where q\ and q 2 denote the injection/production wells and eis a dimensionless scaling parameter.
The total Darcy velocity is defined as V = Vw + VO , where Vi is Darcy velocity of phase i = w,o
(water, oil). Moreover, [ii are the viscosities of the fluids; kri are the relative permeabilities; and
A(s) denotes the total mobility of the phases,

A(s) A U) (s) + A 0 (s),

where = kTi///£ is the mobility of phase i = w,o. In (18), pis the global pressure [lo]

where pw and pQ denote the pressure of water and oil, respectively, pc (x,£) p0 Pw is the
capillary pressure function, and sc is chosen such that pc {x,s c) = 0. In (18)—(19), we have

Equation (19)—the so-called saturation equation—is the fractional flow formulation of the mass
balance equation for water. The fractional flow function f{s), which is typically an 5-shaped
function of s, is given as

Uv {t) = [hAxAt ° • - ° °‘sl,<7,Ai]” 7rw o, t e ((n - l)A*,nA<],

(17) V • V = qi(x),

(18) V =-K(x)Å(s)(Vp-p(s)Vh),

(19) <l>{x)s t + V • (f{s)V + fg {s)KVh) - eV • (/\(®)d(s)Vs) = q 2 {x),

1, v 1 f f w dpc \ ,
(20) P= 2Jg [ X afj^ s

p{s ) = g{X w Pw + opo ),

where pi is the density of phase £ = w, 0, and

= ( pW - Po )f{s)X o .

x v Aw (s)
<2l > /(S) = A.W + A.W -
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where the derivative of the capillary pressure function pc (x, s ) is assumed to be negative. We refer
to [4, 10, 41] for a complete survey and justification of the model. For computational purposes,
the analytical forms for the relative permeabilities are chosen as

Assuming incompressible fluids, no gravity forces, and unit porosity, the model (17)-(19) sim
plifies to

3.2. Solution strategy. To solve the fractional flow system (24)-(25), it is common to use some
form of operator splitting. Here we will use the IMPES approach (implicit pressure, explicit satu

ration). Starting from the initial saturation distribution, we first solve the pressure equation (24)
with the given total mobility. Subsequently, the total velocity held is calculated from the pressure
solution, using Darcy’s law. Then, the velocity held is assumed to be constant throughout the
solution of the saturation equation (25). Håving now established both pressure and saturation one
time step forward in time, we can repeat the process, and so on.

The pressure equation is discretized using a nine-point scheme with upstream weighting and a
harmonic average on the mobility. The resulting linear system for the pressure in the cell centers is
solved by a multigrid method. A conservative flux consideration is used to determine the velocity
at the centre of the grid cell boundaries. The saturation equation is solved numerically by one of
the operator splitting methods introduced above.

3.3. One-dimensional Buckley-Leverett problem. The purpose of the first example is twofold
we wish to demonstrate the effect of the correction strategy introduced above and the efhciency
of the operator splitting method. To this end, consider the one-dimensional saturation equation

on the domain x G [o,l] with initial data u0 (a;) = 1 for x < 0.1 and «0 (x) = 0 otherwise. We
set s = 0.01 and compute the solution at time t = 0.5 on a grid with 64 cells. To solve the
modified parabolic step we use explicit finite differences with an Engquist-Osher discretization
(see below) of the residual flux. Figure 2 shows the solution computed with one splitting step with
and without correction and with 32 steps (cfl number 2.0) without correction. Figure 3 shows the
(intermediate) solution after the first step and the induced local linearization of the flux. We see

that by including the corresponding residual flux in the parabolic step, the shock layer is resolved
(almost) correctly. For the rest of this section, the correction strategy can be considered as more
of a curiosity that may come in handy if we wish to use large splitting steps.

The operator splitting is a bit comphcated, and a natural question is whether somethmg is
gained by using it. To answer this question, we will make a comparison with two simple finite
difference methods, that is, we compare with a Central scheme

The diffusion function is given as

(22) = =
os å w +An os

(23) krw sp , kro ={l s) q , p, q—2 or 3

(24) -V(/v(x)A(s)Vp) = qi , V = -K{x)X{s)Vp,
(25) +V • (V(x)f{s)) = • {K{x)d{s)Vs) + q 2.

+(s + U-a) 2 ). = e (4"( 1 - “)"*).

<+l -< j_ _ A{u?+l ) - + Aiu^^
At 2Ax £

and an Engquist-Osher scheme

<+l -< j. fw-ffe.) _ x(«?+1 ) - 2-4(0 + -4(01)
A( Ai Ai “ e Ai 2

where

/ («) = J min(// (s), 0) ds, f+ {u) = J max(/'(s), 0) ds.
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L 1: 6.05e-03, L°°: 2.02e-01L 1: 4.28e-02, L°°: 2.98e-01 L 1: 1.23e-02, L°°: 1.95e-01

FIGURE 2. Solution and errors obtained with one splitting step (left), one step with
correction (middle) and 32 steps (right). Reference solution is computed by the first
order upwind method on a fine grid.

FIGURE 3. (Left) Solution after one hyperbolic step. The circles indicate the position
where the residual flux is identified and the thick line the interval on which it is applied.
(Right) Flux function (dash dot), local linearization (solid), and residual (dot).

The stability conditions for the two methods are

respectively. Since the flux function is strictly increasing in this example, the Engquist-Osher
scheme reduces to the upwind method.

A natural measure for comparing the methods is to plot error versus runtime. Figure 4 gives
such a comparison for operator splitting, the Central scheme, and the upwind scheme. The errors
are measured relative to a reference solution computed by the upwind scheme on a grid with 2 X ~
cells. The number of grid cells were 2n for n 5,..., 10. For the operator splitting method we
used a fixed CFL number 2.0, since this is typical for the multidimensional examples below. The
Central diflerence scheme has a rather severe stability restriction for small values of z and was
therefore not used for e = 0.001. Comparing with simple diflerence schemes is fair, since our
parabolic step uses such a scheme. We see that by isolating the advection in a separate step we
gain slightly in efflciency.

For multidimensional problems we expect to gain even more in efflciency. During the hyperbolic
step we focus the computations only on the regions where there are dynamics. Furthermore, a
more sophisticated method could be used for the parabolic step, e.g., an implicit method (see (15)).
Such methods would typically involve iterations to resolve the nonlinear diffusion, for which the
separate hyperbolic step would provide a good initial guess (and reduce the number of iterations).

3.4. Homogeneous quarter five-spot. Our second example is the well-known quarter five-spot
case where water is injected at the origin and oil is produced at the four pomts (il, il)- This five
well configuration is repeated periodically to infinity in all four quadrants in the plane. Symmetry
reduces the test case to a problem on the unit square with an injection well placed at (0,0) and
a production well at (1,1). Both wells have rates equal unity and we assume unit mobility ratio.

h max 1 /'(tx)| <2s and max |/ / (u)|- + max |.4 / (w)|——- <l,' v '' Ax Axz
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FIGURE 4. Error versus runtime for e =

in L 1 (upper row) and F OO (lower row).
0.01 (left) and 0.001 (right). The errors are

For the fractional flow function, we have used (21) and (23) with p = q = 2, i.e.,

Our splitting method for the saturation equation is unconditionally stable and thus allows for

arbitrary large time steps. In [34] it was demonstrated that the method allows for relatively large
(fixed) time steps. To achieve better accuracy we introduce adaptive steps aimed at keeping a fixed
CFL number. This is achieved by measuring the maximum wave speed during each pass through
one-dimensional front tracking. The wave speed is easily monitored in the routine computing
possible wave interactions. Initially, the time steps are small due to the high velocities near the
injection well. As the water front moves into the reservoir, the time steps increase and then start
to decrease as the water front approaches the production well, see Figure 5.

Mass conservaiton. The use of dimensional splitting for the hyperbolic part of the saturation
equation leads to lack of mass conservation. Karlsen et al. [34] observed small errors in the mass
balance before water breakthrough. Figure 6 shows the observed mass error also after water

breakthrough on a 129 x 129 grid with 32 pressure updates and c 0.0005. The correspondmg
plot of oil and water production is given in Figure 5. The mass error (or material balance error)
is here dehned as the difference between the net injection of water and the net increase of water
remaining in the reservoir.

With fixed CFL number 1.0, the mass error remams below 6 • 10~ 4 throughout the whole simula
tion. After the initial phase, the relative error is below 0.1%). For cfl—2.o, the relative mass error

is around 0.12% before water breakthrough and then increases dramaticaily. A natural strategy
would therefore be automatically to reduce the CFL number to 1.0 at water breakthrough. Apply
ing this strategy with an initial CFL number 4.0, we observe that the relative mass error increases

to around 0.27% before water breakthrough and then decreases to 0.15% at t = 1.0. (Time equals
the number of pore volumes injected).

f( s)=
S 2 + (1 ~ s) 2 /fl o
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FIGURE 5. (Left) A typical plot of the time step in the satnration solver versus accu
mulated time. After water breakthrough only every two-hundred step is plotted. (Right)
Accumulated production of oil and water.

FIGURE 6. (Left) Mass error versus the cumulative number of pore volumes injected
for three choices of CFL numbers. (Right) Percent mass error relative to the cumulative
number of pore volumes injected.

FIGURE 7. Mass error (relative to initial amount of oil) and oil and water production
for viscosity ratios /i 0 :nw equal 1:1 (upper row) and 20:1 (lower row).
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Figure 7 shows the result of simulations up to time t = 10.0 for two different viscosity ratios.
The grid is 129 x 129, no capillary effects are included (i.e., f = 0.0), and we have used 1000
IMPES steps. As in Figure 6, the mass error is positive and increases before water breakthrough.
To explain this phenomenon, we consider one row (or column) of the grid near the upper (or right)
boundary. The oil bank trapped along the boundary (see e.g., Figure 9) will cause a flow of oil
into the grid block that is connected to the well. Hence the water production is underestimated
in each splitting step. This effect is also discussed in [2B]. At the same time, the grid blocks near
the producer will be partially filled with water (during the splitting step in the other direction),
eventually giving an increased fractional flow in the well. Thus, the mass error decreases as the
reservoir becomes more and more flooded and gradually stabilizes itself at a constant value (see
Figure 7).

TaBLE 1. Measured errors for solution on an Nx N grid relative to a2Nx 2 N grid at
time t 0.45 for four different values of e. The upper half is for OS with exphcit finite
differences. The lower half is for OS ds with implicit dijferences, i.e., (15) with m— 1
and 6 1.

Convergence. Another interesting question is how fast the algorithm converges. Since the ana
lytical solution is not known, we have chosen to investigate the self-convergence of our splitting
methods. To this end, we define a sequence of meshes MAx , MAx/ 2 ,... and measure the L 1 error
on mesh M^x relative to M^x/ 2 . Table 1 gives the errors and corresponding convergence rates
measured by refining a 64 x 64 grid three times for four different values of e. In all runs we
used viscosity ratio equal one, only one IMPES step, and CFL number 8.0. (Due to restrictions
on the number of unknowns caused by the multigrid method in our pressure solver, the actual
computations were performed on grids with 2N + 1 cells in each direction and projected onto 2N
grids.)

Table 2. CPU times for simulations on a 257 x 257 grid for three operatør splittings

OS 1.0
OSds 0.0
OS ds 1.0

301.0 see 62.7 see 36.5 see 32.8 see
55.9 see 41.7 see 37.7 see 33.5 see
73.4 see 37.5 see 32.9 see 31.4 see

Efficiency. Runtime is an important issue when choosing the optimal splitting strategy. Table 2
gives the runtimes on the 257 x 257 grid for the simulations reported in Table 1. In addition
we have included timings for OSds with an implicit diffusion solver. OSds with explicit diffusion
solver is the most efhcient method, except for e 0.05, where the implicit solver is most efficient.
The reader should keep in mind that in the computations presented in Table 2, we have chosen
the time step in the implicit diffusion solver such that the L 1 error for the corresponding splitting
method is roughly the same as for the splitting method with the explicit diffusion solver. This
explains the somewhat disappointing (but not surprising) runtimes found in Table 2 with the
implicit diffusion solver {9 = 0.0).

Method 9 e=s• 10 2 £= 5- 10“ 3 e= 5 • 10~ 4 e= 5 . 10~ 5

N £ = 5 o
1 U3 £ = 5 10~ 3 £ = 5 10~ 4 £ = 5 10“ 5

64
128
256

9.60e-03
4.78e-03
2.50e-03

1.01
0.94

6.05e-03
3.38e-03
1.88e-03

0.84
0.85

5.83e-03
2.94e-03
1.47e-03

0.99
1.00

5.85e-03
3.32e-03
1.54e-03

0.82
1.11

64
128
256

5.97e-03
3.91e-03
2.17e-03

0.61
0.85

5.81e-03
3.08e-03
2.01e-03

0.92
0.62

5.77e-03
2.88e-03
1.47e-03

1.00
0.97

5.84e-03
3.32e-03
1.52e-03

0.81
1.13
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FIGURE 8. OS, OSds , and COS Solutions computed on a6sx 65 grid compared with
a reference solution on a 257 x 257 grid.

Corrected splitting. Next, we demonstrate the effect of the correction strategy. Figure 8 shows a
plot of the solution at time t = 0.45 for e = 0.005 obtained on a6sx 65 grid with OS, OSds , and
COS. To enhance the differences between the three methods, the CFL number is 16.0 in all runs.
For reference, we have included a solution computed on a 257 x 257 grid by OS with CFL number
2.0. We observe that both OS and OSds give a too wide representation of the water front due
to errors in the viscous splittings. Moreover, OSds shows some minor grid orientation effects. By
including the correction strategy, the water front is resolved (almost) correctly.

Grid orientation effects. Methods based on dimensional splitting are known to exhibit grid orien
tation effects. To investigate this effect, we rotated the grid 45° clockwise. The problem setup is
then as follows: a square of length y/2 with injection wells in the lower left and upper right corner
and production wells in the other two corners. In the original setup, the main flow direction is
along the diagonal, while in the new setup the flow follows the axis of the grid. We set e = 0.005
and use a 129 x 129 grid with a CFL number of 2.0 and 52 impes steps to reach time t = 1.3. Hence
the cells on the rotated grid are a factor y/2 coarser than on the original grid. Table 3 shows the
times to water breakthrough and oil production at time t = 1.3 for viscosity ratios p 0 : p,w equal
10:1, 1:1, and 1:10 for both the rotated and the original grid. Notice that the differences are minor
for the 10:1 runs, a bit larger for the 1:1 runs, and quite large for the 1:10 runs. The latter case
corresponds to near piston-like displacement (linear effective flux functions) and is a worst case
for our saturation solver due to the lack of self-sharpening in the hyperbolic steps.

TABLE 3. Water breakthrough, accumulated oil production at final time t 1.3, and
largest observed mass balance error (relative to initial oil volume).

Figure 9 shows the saturation at time t = 0.66 for the 1:1 simulation on the rotated geometry
and the corresponding saturation on the original grid. Observe that the plots are almost identical.
The only difference is in the tip of the water finger. For the original setup, the tip has a slightly
rounded profile due to numerical diffusion in the two grid directions. For the rotated grid, the
finger occurs at the right boundary of the computational domain and is therefore subject to less
diffusion. Hence, the tip is kept sharp. The same observations were made for runs with viscosity
ratio 10:1.

The results for the 1:10 runs are shown in Figure 10. Here, there is a pronounced difference m
the two plots (as one would expect from the different times to water breakthrough in Table 3).
For the rotated geometry, the water is flowing too fast along the upper and the right boundary in
the original domain. These boundaries correspond to the diagonal on the computational grid, see
Figure 11. Due to numerical diffusion, the tip of the oil finger(s) is rounded, which gives faster flow

10:1

original rotated

1:1

original rotated
1:10

original rotated
water b.t. 0.321 0.319 0.671 0.666 0.970 0.960

oil prod. 0.582 0.580 0.848 0.845 0.981 0.971

error (%) -0.037 -0.034 0.049 -0.056 0.23 -0.70
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FIGURE 9. Saturation on the rotated geometry (left) and on the original setup (right)
at time t 0.66 for viscosity ratio 1:1

FIGURE 10. Saturation on the rotated geometry (left) and on the original setup (right)

FIGURE 11. (Left) Relation between the rotated grid (solid line) and the original
grid (dashed square). The dotted square is a reflection of the computational grid
around the diagonal x = y. (Middle) The oil finger on a 129 x 129 grid and on a
257 x 257 grid (right).

of water towards the production well. Decreasmg the number of impes steps reduces this effect. In
fact, with 13 IMPES steps the water breaks through at time 0.946 on the rotated grid and at time
0.949 on the original grid. The oil productions are 0.976 and 0.981, respectively and the errors are
-0.28% and 0.11%. In the case of OS , the grid onentation effects are more pronounced, since
this method uses dimensional splitting also for the diffusive part of the equation.

Similar grid orientation studies have been carried out for unstable displacements [2B], where it
is demonstrated that the operator splitting method converges to different Solutions for the two
orientations of the grid.

at time t = 0.85 for viscosity ratio 1:10
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FIGURE 12. Permeability field plotted on a logarithmic color scale. The permeability
varies between 13 mD and 4.2 D.

FIGURE 13. Quarter five-spot simulation for viscosity ratios fi o : equal 1:1 (top)
and 5:1 (bottom). The error is measured relative to the initial amount of oil inplace.

3.5. Heterogeneous quarter five-spots. In the next example, we include a heterogeneous per
meability field in the quarter five-spot simulation (see Figure 12). The permeability held is gener
ated as K{x) = exp(Z(æ)), where Z(x) is a Gaussian field. The Gaussian field is specified by its
covariance function (giving the smoothness) and the expectation.

Figure 13 shows Solutions computed for viscosity ratios iio : fiw equal 1:1 and 5:1. The diffusion
coefficient is £ = 0.005, the simulation grid consists of 129 x 129 blocks, and we use 20 IMPES
steps to reach final time t = 0.8 with a CFL number of 2.0 for the saturation solver up to water
breakthrough. Notice that the error is of the same magnitude as observed for the homogeneous
quarter five-spot simulations.

Next, we consider a permeability field containing low-permeable blocks wT hich are barriers to
the flow (see Figure 14). The blocks follow a Poisson point process, that is, the number of barriers
is Poisson-distributed and the positions are uniformly distributed over the domain. The areas
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FIGURE 14. Permeability field with low-permeable regions plotted on a logarithmic
color scale. The permeability varies between 0.012 mD and 8.6 D.

Time 1=02

FIGURE 15. Quarter live-spot simulation for viscosity ratios \io : fiw equal 20:1 (top)
and 1:2 (bottom). The error is measured relative to the initial volume of oil inplace.

of the blocks are independent, while the extents in each direction are correlated and bi-normally
distributed. The Gaussian field was generated using an expectation with a (low) constant inside
the blocks and another (higher) constant outside.

Figure 15 shows the Solutions computed for viscosity ratios fiQ : equal 20:1 and 1:2. The
diffusion coefficient is e = 0.005 and we use 257 x 257 grid with 80 impes steps to reach final
time 0.8 and CFL number 2.0 in the saturation solver. As for the above case, the fingering effects
are more pronounced at the adverse viscosity ratio. Notice also the improved areal sweep and
penetration into low-permeable regions in the lower plot. Figures 16 and 17 show saturation
surfaces at four different times up to water breakthrough for each simulation.

It is also interesting to compare the time steps of the two simulations as in Figure 18. Here we
clearly see the effect of the switching in CFL numbers at water breakthrough (we set CFL equal 1.0
when the water production exceeds 10 -4 ). For the 20:1 simulation, the CFL number was reduced

Time 1=0.0
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FIGURE 17. Saturation surface plots for viscosity ratio 1:2

already at time t - 0.168. The simulation spent a total of 21 668 time steps in the saturation
solver, out of which 555 were with CFL number 2.0. For the 1:2 simulation, the CFL number was
reduced at time t 0.637, håving spent 929 out of 5 201 time steps.

Time t = 0.15 Time t = 0.20

FIGURE 16. Saturation surface plots for viscosity ratio 20:1

Time tTime t = 0.45
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FIGURE 18. Time steps in the saturation solver for the 20:1 simulation (left) and 1:2
simulation (right). After water breakthrough (vertical dotted line), only every one
hundred step is plotted.

FIGURE 19. Idealized continuous thickener (ICT)

4. Sedimentation

In the previous section, the parabolic equations possessed at most a two-point degeneracy. In
this section we consider strongly degenerate equations, i.e., equations with a mixed hyperbolic
parabolic nature. An important application of such equations occur in the phenomenological
theory for batch and continuous sedimentation of flocculated suspensions [9]. We present the
result of our solution strategy applied to two simple examples of batch sedimentation from [9],

4.1. Mathematical model. Sedimentation is the process under which a mixture of fluid and fine
solid particles is separated into its solid and liquid components under the influence of gravity. The
process is applied in a variety of industrial applications, especially in the mining industry. The
settling of flocculated suspensions in a one-dimensional idealized continuous thickener (ICT) leads
to a mathematical model of mixed hyperbolic-parabolic type of the form (1) for the volumetric
solid concentration <j>, see [9]. Here, the mixed nature corresponds to the interface between upper
part of the system where the solid effective stress cr e is constant and the portion in space where this
quantity varies. This stress is transmitted when the solid flocs get into contact with each other and
form a network at a critical concentration value <j> c . Above the interface the governing equation
is nonlinearly hyperbolic, and below it is nonlinearly parabolic. The location of the interface
is unknown beforehand. By modeling the process as a mixed hyperbolic-parabolic problem, one
avoids the use of different models in the two regions combined with some interface tracking method.

An ICT is a cylindrical vessel showing no wall effects and in which all field variables are assumed
to depend only on height 2 and time t. The thickener is fed at the top (2 = L) and emptied at
the bottom (z = 0). Based on local mass and momentum balances and constitutive laws for solid
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(26)

where

Here q < 0 is the volume average velocity of the mixture, a a function relating solid-fluid interaction
force per mass to solid-fluid relative velocity, g gravity, and Ap the density difference of solid and
fluid. The Kynch batch flux density is negative in the interval (0,1) and zero outside, and
a{(p) > 0 for <j) c < <j> < 1 and zero elsewhere. A typical plot of / and a is given in Figure 20.

The equation is further restricted by the boundary conditions

(27) |2=o =O, <i>{L,t) = <j> L {t).

The well-posedness of (26) and (27) within a suitable entropy solution framework is established
by Biirger and Wendland [B] and more recently by Biirger, Evje, and Karlsen [7].

4.2. Solution strategy. To solve (26) we use the operator splitting (5) introduced previously in
this paper, augmented with a special treatment of the boundary conditions (27), see also [6]. The
condition at the upper boundary is imposed on both the hyperbolic and the parabolic step, whereas
the condition on the lower boundary is only imposed on the parabolic step. In the hyperbolic step,
no condition is specified at the lower boundary, corresponding to an outflow condition where waves
are allowed to leave the domain without any kind of reflections. Thus the hyperbolic step reads

and similarly the parabolic step

We have also experimented with other forms of splitting for the lower boundary condition. One
could for instance impose /bk('l’(0T)) = 0 on the hyperbolic step and a[w{o,t))wz (o,t) = 0 on the
parabolic step, but this approach implies a zero gradient at z 0, which is unphysical.

4.3. Batch settling of a uniform suspension. We consider a settling column of height L =
6 [m] filled with a flocculated suspension of uniform concentration øo = 0.123. (In [9] the height
is L= 2 [m] ). The column is closed at the bottom and without feed. For the Kynch batch flux
density, we use a Richardson and Zaki type function

and solid effective stress function of the form

I- - - ’ ijff]

FIGURE 20. Flux f{<f>,t ) = fbk{<f>) and diffusion function a{<f>).

and liquid components one derives the model

<f>t + = {a{<f>)<f> z ) z , <f>{z, 0) = <f> o {z)

/(</>, t) = q{t)<f> +fhk{<f>), /bkW = -Ap#2 (l-^)2/aW, = ~^LX^c^'

vt + f{v,t) z =O, v{z, 0) = v Q {z), v{L,t) = (f)L {t)

wt [a{w)wz ) z , w{z, 0) = wQ {z), - a{w)wz ) |,_ o —O, w{L,t)

/bktø) = -6-05 x 10"V(1 - ø) 12 59 [m/s],

Jo, <f) < (j)c 0.23
J5.35 x exp(l7.9(/>) [N/m 2], (f) > 4>c  
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FIGURE 21. (Left) Settling plot for batch sedimentation with compression. (Right)
Concentration profiles at various times.

TABLE 4. Maximum CFL numher, CPU time, maximum mass error in percent, and
relative L 1 error in percent at four selected times for different number of splitting steps
n. The L 1 errors are computed relative to a fine grid solution computed on a 3 000 grid.

This gives a discontinuous diffusion coefficient a{6), see Figure 20. The other parameters are
Ap =ps —pf = 1500 [kg/m3] and g = 9.81 [m/s2].

Figure 21 shows a settling plot (isocontours of <j> in the {t, z) plane) for the first 96 hours of the
settling process. We have also included five selected concentration profiles. Due to the gravity,
the fiocs start to move downwards and come into contact at the bottom. Simultaneously a column
of pure liquid forms at the top; see the concentration profile at time t = 1.5. Notice especially
the kink in the sediment profile at <j> = <f) c = 0.23, which is caused by the discontinuity in the
diffusion coefficient a{<f>) at the interface between the hyperbolic and the parabolic region. As time
increases, the interface between pure liquid and the suspension (with concentration 4> o = 0.123)
moves downwards, while the interface between sediment and suspension moves upwards. Around
t = 9.0, the initial suspension has disappeared and there is only one interface between sediment
and pure liquid. The interface moves downwards causing increasing compression and the process
goes towards a steady state.

The plots in Figure 21 are from a simulation with 3 000 splitting steps on a grid with 300
cells. The quality of the solution is very good with a lack of mass conservation of at most 0.12%.
Reducing the number of splitting steps gives higher efficiency, but increases the mass error, see
Table 4. On the other hand, minimum L 1 error is observed for 2 000 splitting steps at all four
times.

4.4. Repeated batch sedimentation. In the next example we start with the same setup as
above. Then after 96 hours we replace the pure liquid above the sediment with a new suspension.
Numerically this corresponds to replacing all concentration values below <j) c by the initial value
<po. Figure 22 shows the corresponding settling plot and four concentration profiles. The results
are in good correspondence with those obtained in [9].

5. Strongly Degenerate Problems in Multidimensions

In this section we give a few examples of mixed hyperbolic-parabolic problems in multidi
mensions. In the first example, we compare our splitting methods with a recent second-order
Central difference scheme by Kurganov and Tadmor [37]. In the second example, we investigate
convergence rates for a variable coefficient problem.

n CFL CPU time m.m.e. t = 6 h t = 12 h II to QOIIto
4000 2.5 6.0 sec -0.12 1.543 0.604 0.365 0.524
2000 5.0 4.3 sec -0.20 0.842 0.523 0.288 0.456
1000 10.0 3.7 sec -0.46 1.239 0.686 0.482 0.551
500 20.0 3.1 sec -1.08 1.668 1.023 1.039 1.049



HOLDEN, KARLSEN, AND LIE22

FIGURE 22. (Left) Settling plot for repeated batch sedimentation with compression
(Right) Concentration proflles at various times.

FIGURE 23. Solution at time t 0.5 for Burgers’ equation with degenerate diffusion
(left) contour plot, (middle) surface plot, (right) solution along the diagonal.

5.1. Burgers’ equation with degenerate diffusion. Consider

(28)

where a(u) = 0 for |u| < 0.25 and a(u) = 1 elsewhere. Thus the parabolic equation contains
a hyperbolic region, u E [—0.25,0.25]. The initial data equals —1 and 1 inside two circles of
radius 0.4 centred at (0.5, 0.5) and (—0.5, —0.5), respectively, and zero elsewhere inside the square
[—1.5,1.5] x [—1.5,1.5]. This example was first introduced in [27]. Figure 23 shows the solution at
time t = 0.5 for £ = 0.1. Notice in particular the transition between the hyperbolic and parabolic
regions at u ±0.25.

To assess the efficiency of our splitting methods, we compare with a semi-discrete, high
resolution, Central difference scheme introduced recently by Kurganov and Tadmor [37]. To dis
cretize the ODEs arising from the semi-discrete formulation we have used Runge-Kutta methods
given in Table 5.1 in [37]. Table 5 gives L 1 and symmetry errors for a grid refinement study for
the operator splitting methods. Table 6 gives L 1 errors for the finite difference scheme. The L 1
errors are computed relative to a fine grid solution (N = 2 10 ).

We see that OS gives less error but has a slightly higher runtime than OS ds . The Central
difference scheme is less accurate and has much higher runtime on the same grid. Figure 24 gives
a plot of numerical error versus runtime for the four methods. The difference in efficiency between
the operator splitting methods and the Central difference schemes is striking (a factor around
100). This is first of all due to the strict stability restriction of the two Runge-Kutta solvers.
Kurganov and Tadmor [37] used an explicit embedded integration method with a large stability
region. This is likely to give a significant improvement in the efficiency of the Central difference
scheme. However, there is also a similar speedup potential in the operator splitting methods.
With 128 grid blocks in each direction, around 75% of the runtime is spent in the diffusive steps
(which use forward Euler for the time integration). For the 256 grid, the diffusive steps represent
90% of the runtime. By introducing super-time-stepping as in [27], the runtime was reduced by
30 to 60%.

u t + Vu2 =eV • (a(u)Vu), u{x, 0) = wo(x),
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TaBLE 5. Runtimes in seconds and measured L 1 and symmetry errors for operator
splitting computations on an N x N grid with n splitting steps.

TABLE 6. Runtime in seconds and measured L 1 errors for Central difference computa
tions on an N X N grid with CFL number v.

FIGURE 24. Estimated L 1 error versus runtime for the operator splitting methods and
the Central difference schemes.

5.2. Burgers’ equation with variable coefficients. Consider

where

and uq equals one inside a circle with radius 0.4 centered at the origin and zero elsewhere. The
diffusion coefficient is e = 0.01 and a(u ) equals zero for u < 0.5 and one elsewhere, giving a
hyperbolic subregion for u G [0,0.5]. All computations are carried out using OS.

Figure 25 shows the solution at four distinct times up to t = 2.0. Figure 26 shows a comparison
with the solution for the purely hyperbolic problem (a(w) = 0) and the purely parabolic problem
(a(u) 1). The purely hyperbolic problem was studied in [3B]. The parabolic solution is obviously
a ‘diffusive’ version of the hyperbolic solution, whereas the solution in the degenerate case has
certain features not seen in the other two cases. These features arise from the interplay of the
hyperbolic and the parabolic region.

Tables 7 gives the result of a convergence study with respect to the spatial discretization. The
convergence rates indicate first order convergence. Similarly, Table 8 reports a convergence study
with respect to the number of splitting steps. With few splitting steps, the splitting error in
the hyperbolic step gives a large contribution to the total error. As the number of splitting steps

ut + (U{y,t ), K(x,/)) • V(u 2 ) = £V(a(u)Vu), u{x, y, 0) = uq{x, y),

U{y,t) = cos(n{y + t)), V{x,t) = sin(?r(x -f 1))

N n
Method: OS

L 1 error sym. err. CPU
Method: OS ds

L 1 error sym. err. CPU
32 4 1.161e-01 4.822e-02 0.04 1.272e-01 1.500e-01 0.04
64 8 6.638e-02 1.337e-02 0.24 7.201e-02 8.130e-02 0.23

128 16 3.109e-02 3.754e-03 2.57 3.788e-02 4.171e-02 2.38
256 32 1.499e-02 1.466e-03 44.1 1.940e-02 2.120e-02 39.9

N
Runge-Kutta order 2
u L 1 error CPU

Runge-Kutta order 3
v L 1 error CPU

32 0.200 1.806e-01 0.12 0.25 1.835e-01 0.14
64 0.110 1.025e-01 1.58 0.124 1.032e-01 2.15

128 0.055 5.520e-02 31.1 0.070 5.535e-02 37.2
256 0.027 2.822e-02 543.0 0.035 2.824e-02 626.0
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FIGURE 25. Contour plots of the solution at times t=o.s, 1.0, 1.5, and 2.0 (from upper
left to lower right) computed on a 200 X 200 grid with 100 splitting steps. There are 10
equally spaced contour lines in the hyperbolic region u € [0,0.5] (solid lines) and in the
parabolic region u € [0.5,1] (dotted lines).

FIGURE 26. Solution at t 1.0 for hyperbolic problem (left), mixed hyperbolic

parabolic (middle), and parabolic (left).

increases, the splitting error decreases and so does the total error. At the same time, the numerical
dissipation increases in the hyperbolic steps (due to repeated projections). Around 64 steps (cfl
number equal 6.0), the two error contributions balance at a minimum. For larger number of
steps, the numerical dissipation becomes dominant and the total error increases. The effect of the
projection errors increases with increasing time, as is observed for e.g., n 256.

6. CONCLUDING REMARKS

In this paper we have demonstrated the applicability of operator splitting methods to a large
dass of scalar, convection-dominated problems. Due to explicit tracking of shocks in the hy
perbolic part, and the possibility of correcting unphysical entropy loss, the methods give very
accurate representation of sharp gradient phenomena. This has been demonstrated for both reser
voir simulation and simulation of sedimentation processes. The main ingredient in the splitting
methods is the use of a large-step front-tracking method, which is very computationally efficient
compared with standard fimte difference methods. In the parabolic steps, we have mostly used
a simple explicit finite difference method. This step can be made more efficient by using a more
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TaBLE 7. Convergence rates and errors in L 1 -norm relative to a fine grid solution (800
X 800 with 400 steps) for runs with m time steps on an n X n grid.

TABLE 8. Convergence rates and errors in L 1 norm relative to a fine grid solution for
runs with n steps on a 200 x 200 grid.

sophisticated method, based e.g., on semi-discretization and a large-step ODE solver or an impiicit
discretization combined with an efficient nonlinear solver.
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