Department

of
APPLIED MATHEMATICS

Rate of Convergence of a Space Decomposition method and
 Applications to Linear and Nonlinear Elliptic Problems

by

Magne S. Espedal and Xue-Cheng Tai

Report No. 103 September 1996

.............

UNIVERSITY OF BERGEN

Bergen, Norway







Department of Mathematics ISSN 0084-778x
University of Bergen

5007 Bergen

Norway

Rate of Convergence of a Space Decomposition method and
Applications to Linear and Nonlinear Elliptic Problems

by

Magne S. Espedal and Xue-Cheng Tai

Report No. 103 September 1996






RATE OF CONVERGENCE OF A SPACE DECOMPOSITION METHOD AND
APPLICATIONS TO LINEAR AND NONLINEAR ELLIPTIC PROBLEMS
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ABSTRACT. Convergence of a space decomposition method is proved for a general convex programming
problem. The space decomposition refers to methods that decompose a space into sums of subspaces,
which could be a domain decomposition or a multilevel method for partial differential equations. Two
algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they
reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. In the
numerical implementations, two “hybrid” algorithms are also presented. They converge faster than the
additive one and have better parallelism than the multiplicative method. Numerical tests with a two
level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the
proposed algorithms.
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1. INTRODUCTION

This work presents a general space decomposition method for convex programming problems
and gives an estimation of the rate of convergence of the method. One intension is to use the
method to solve linear and nonlinear elliptic partial differential equations by domain decomposition
or multilevel methods. In the applications given in this work, a two level overlapping domain
decomposition method is considered. :

The essence of the proposed method is to decompose the minimization space into a sum of
subspaces and then solve the original minimization problem sequentially or in parallel over each
of the subspaces. Due to the fact that the decomposed spaces can be arbitrary, especially since
they are not orthogonal to each other, the usual convergence proofs for block relaxation methods
cannot be used here to predict the convergence. However, using the experiences from domain
decomposition and multigrid methods, we assume that the decomposed spaces satisfy a certain
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”spectral” bound, see constants C; and C, in (2.8) and (2.9), and then use these constants to
estimate the convergence rate of the proposed methods.

The proposed algorithms are given for a convex programming problem. We expect that they
could also be used to get efficient algorithms for some optimal control problems related to partial
differential equations, see Kunisch and Tai [26] and [27] for applications.

The two level domain decomposition method can be viewed a space decomposition is inspired
by the work of Xu [36], where it was observed that domain decomposition methods, multilevel
methods and multigrid methods can be viewed in some way as space decomposition techniques
and many of the methods proposed in literature for the above mention techniques are in essence
similar to the Gauss-Seidel or Jacobi method. an abstract convergence was given for linear self-
adjoint and also indefinite

Two schemes are proposed in this work. They could be used both for linear and nonlinear elliptic
preblems. In the linear case, they reduce to the standard additive and multiplicative Schwarz
methods. Therefore, the algorithms generalise the known additive and multiplicative methods to
certain nonlinear cases. Due to appearance of the nonlinearity, a modified abstract convergence
theory is given. In the numerical implementations, two ”hybrid” algorithms are proposed. They
converge faster than the additive scheme and have better parallelism than the multiplicative scheme
when used for overlapping domain decomposition.

The well-known substructuring BPS (see [6], [7], [8]) and BEPS (see [5]) preconditioners use
nonoverlapping subdomains, see also [4], [29]. For a nonoverlapping domain decomposition, a
finite element function w can be decomposed as w = w, + wy, here wp, has zero trace on the
interfaces and wy equals to w on the interfaces and is extended to the interior by harmonic
extension. If we use Gauss-Seidel iteration, we get the exact solution in one iteration. However,
to get the harmonic extension wy is equivalent to solving the original problem. The construction
of the preconditioners in [7]-[8] and [5] can be regarded as Jacobi iteration with approximate
solvers for the harmonic extensions. The methods of [6] and [29] is a Gauss-Seidel iteration with a
further suitable decomposition for wg. By using a slightly different decomposition, in Espedal and
Ewing (22, p. 125], a parallel nonoverlapping method was derived for solving a linearised two-phase
immiscible flow. We hope that by viewing the construction of nonoverlapping preconditioners as
an iterative approximate solving of a space decomposition, an abstract convergence analysis can
also be obtained for them for some nonlinear problems.

In the literature, domain decomposition methods, multigrid methods and multilevel methods
have been successfully used for different kinds of linear partial differential equations, see [25], [35],
[36]. However, the results for using them for nonlinear problems are not as rich as for linear
problems. In Cai and Dryja [11], a semilinear elliptic equation is first linearised by the Newton’s
method and then solved by the additive Schwarz scheme. In papers by Xu [37], [38], a two level
method without doing domain decomposition is used for nonlinear elliptic problems. In Axellsson
and Kaporin [1], a minimum residual adaptive multilevel method is given for some nonlinear
problems. In Dawson and Wheeler [18], a two level method is used for a nonlinear parabolic
equation; The work of Lions [28] seems to be the pioneering work for using domain decomposition
methods for nonlinear partial differential equations. In Rannacher [30], a Newton type algorithm
is studied for nonlinear elliptic problems. Multigrid methods for nonlinear problems are studied
by Bank [2], Brandt [10], etc. For some earlier works of the authors related to this one, consult
[31] and [32]-[34].

When we apply the methods here for a nonlinear problem, we need to solve many smaller size
problems in an iterative way and this iterative procedure convergence as ”quickly” as for linear
problems. For some nonlinear problems, by reducing the large size problem into many smaller size
problems and then linearising the smaller size problems, substantial computational efforts can be
saved compared to first linearising and then decomposing the problem, see §5.

2. STATEMENT OF THE PROBLEM AND THE ALGORITHMS
Consider the nonlinear problem
min F(v) . (2.1
veV

Above, the function F is differentiable and convex, the space V is a reflexive Banach space. One

2
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knows that partial differential equations of the type
- ZDi(aiiju) +bu=fin Q,

and
=V (p(|Vu|)Vu) = f in Q ,

with a suitably given p, can be solved by (2.1) by defining the function F' and space V properly.
We shall use space decomposition methods to solve (2.1). A space decomposition method
refers to a method that decomposes the space V into a sum of subspaces, i.e. there are spaces
Viyi=1,2,--- . m such that
V=Vi+Vot--+V,. (2:2)

The meaning of the above decomposition is that Vv, there exists v; € V; such that v = Z:L V;
and on the other hand, if v; € V;, then > v; € V. If the space can be decomposed as in (2.2),
then the followings algorithms can be used to solve (2.1).

Algorithm 2.1. (An additive space decomposition method).

Step 1. Choose initial values u} = u® € V and relazation parameters a; > 0 such that )

Step 2. Forn > 0, find UZH% € V; in parallel for i =1,2,--- ,m such that

m
i O 1L

m m
b
il Y e s laa S Mapiesivnl L Wonai (2.3)
k=1,k#i k=1,k#i
Step 3. Set
i
W = 4 a(u] T —u?) (2.4)

and go to the next iteration.

Algorithm 2.2. (A multiplicative space decomposition method).

Step 1. Choose initial values u? = v° € V.
Step 2. For n > 0, find ui"H € Vi sequentially for i =1,2,--- ,m such that

F Z wpt! f a4 Z uy

1<k<i i<k<m
(2.5)
<F Zuf“—}-vi-{- Z b |l s Y e .
1<k<i i<k<m

Step 3. Go to the next iteration.

In the following, the notation (-, ) is used to denote the duality pairing between V and V', here
V" is the dual space of V. Function F is assumed to be Gateaux differentiable (see [15]) and there
are constants K > 0, L < oo such that

(F'(w) - F'(v),w —v) > K|w o}, , Vw,weV,

/ (2.6)
|F'(w) = F'(v)|lv: < Lllw—v|ly, YwveV,
and from which, it is easy to deduce that
Klw—v|} < (F'(w) = F'(v),w —v) < L|lw—2|?, YwoveV. (2.7)

Under assumption (2.6), problem (2.1) and subproblems (2.5) and (2.3) have unique solutions, see
[21, p. 35].
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For the decomposed spaces, we assume that there is a constant C1 > 0 such that Vv € V, we
can find v; € V; to satisfy:

v=>Y v,and > |luill} < C2lv)? . (2.8)
=il =1

Moreover, assume that there is a C, > 0 such that there holds

T m % m %
>3 (o) < o S b)) (3 o)
=0 =i i=1 i=1 (2.9)
Vwij € V.Vu,; € Vi,ij & V] g

Domain decomposition methods, multilevel methods and multigrid methods can be viewed as
different ways of decomposing finite element spaces into sums of subspaces. For the estimation of
the constants C) and C; for different type of decomposition of finite element methods for linear
problems, one can find the proofs or references in Xu [36].

Later, the error reduction factor for the above two algorithms shall be estimated. In the follow-
ing, we shall use €™, n = 0,1,2,---, which is defined as:

=

e":](F'(u")—F'(u),u"-—u)f ;

as a measure of the error between u” and u. Here and later, u stands for the unique solution of
(2.1). For convenience, constants ami, and amq, are defined as Wiy, = WG Ca i O By ==
maxi<i<m &, and «; is the relaxation parameters in Algorithm 2.1. Constants Cp and Cj, which
are ! -

Cp = (a,_nfnL = a%azCQ)C], Cs = CQCl, (210)

will play an important rule in analysing the error reduction factor.

Remark 2.1.
(1) When F is differentiable and if we define

m
1 1
wi"Jr2 = E uﬁ+u?+2 ] (2814)
k=1,k#i

then (2.3) is equivalent to solving

<F’(w?+%),vi> =0, Mem (2.12)
(2) Let
g S S 0 o @ 13)

p=il
and w?+% be defined as in (2.11), then

nt g +%__un
] 1

n
w, = @ L,

Il

and the value of u™*! corresponding to (2.4) can be obtained by

m m

il
aRll o n n+3 n
” _E ui+E o=t

= }7—”,‘ aiw?+% +(1- Z a;)u™. (2.14)
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In the applications of §5, with a two level domain decomposition method, only the values of
u™*! and the coarse mesh problem are needed for the next iteration, and u™*! is updated
by the above formula after the computations of each of subdomain problems.

(3) For Algorithm 2.2, if we define

Wit = 3Tl p S L ST (2.15)
k<i k>i
then it satisfies
(F’(w?“),vi) =0, Vuy;eV;. (2.16)

and after the solving of w!™! from (2.16) for each i, we only need to set w1 = e
(4) Intuitively, one may think that the algorithms need rather large amount of memory. How-
ever, in the implementation later for a two level domain decomposition, we only need to

A
store the value of u™*! and one of the w:hL * (the coarse mesh solution) in the memory.

Remark 2.2. Algorithm 2.2 solves the minimization problems sequentially over each subspace.
Algorithm 2.1 solves the minimizations in parallel over each of the subspaces. In applications, by
suitably decomposing the minimization space, the minimization problem over each subspace can
be done by many parallel processors, and so both algorithms are suitable for parallel machines, see
§5. Moreover, with a suitable decomposition, the constant C; can be made to be independent of
the size of the problem, and so the convergence of the above two algorithms also does not depend
on the size of the problem.

3. THE CONVERGENCE OF THE ADDITIVE ALGORITHM
We first give the rate of convergence for Algorithm 2.1.
Theorem 3.1. If the space decomposition satisfies (2.8),(2.9) and the function satisfies 12.8));
then for Algorithm 2.1 we have:

(a). If F is quadratic with respect to v and the norm of V is chosen as ||v||y = (F'(v),v), then

there holds )
|en+1 |2 < _P__Z 'e
1+€2

(b). If F is third order continuously differentiable, then

e (8 (3.1)

le"* | > 0asn— o0, and |e"P < Bule™?, Yn>0.
For n sufficiently large, we have 0 < 3, < 1. In fact

CQ
nli—»néoﬁnzlfC<1 and C'=K—p2. (&.2)

Before we go to the proof of the theorem, we first present a lemma which is needed in the proof.
The lemma can be proved in a similar way as [21, p. 25], and the proof can be found in [32].

Lemma 3.2. If condition (2.7) is valid, then we have for function F:

F(w) — F(v) > (F'(v),w — v) + %Hw -3, Yo,weV, (&)

F(w) — F(v) < (F'(v),w — v) + gHw —ol}, Yo,weV. (3.4)

Proof of Theorem 3.1. Let u™*! and w?+% be defined as in (2.13) and (2.11). As F is a convex
function, by using (2.4), (2.12), (2.14) and (3.3), one obtains

Jeal el ol i u}tt)
=1l

5
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— P F <Zaw"+z+ ia,)u) (33)

m m

> F(u™) — ZOA;F (w ) ( Ozz)

=1 =1

= Sy Mt n n+i K & n nt+1o
>3 @il Fl(w] ), ul — ] )+ 5 D alluf -
i=1 =il

[{ L 1
= 32%[“?*“? 2l
=1

As u is the solution of (2.1), it satisfies (F'(u),v) =0, Vv € V. For iy Ay € Ve, =1l % <00 mip
such that 3 v; = u, we shall use (2.12), and (2.6) to estimate:
<F” e I mi = u>
= (F/(un+1)’ n+ Z <F (un+1 u:H—l _ 'Ui>

=1

I
M=

n+3
Flumh) = P/ + o2 — o) ul - o)

( e
(o

i

= i F// 9n+1 71+1 m un)7 ?_H &, > i <F11(9n+1) - uf‘),u{”‘l T 'Ui>
i=il =1
(67 = 0u™t + (1 - 9wl 6 €0,1])
% i i (PO )@t = up), ™ — vy}~ zm: (P @p ™ = ap), - v

=i

m % m 5 m i
i
S uptt - "nv) (Znu:‘“—vin%) S e
7 p=il =il
. j i }
n
ol 2—u?||2v) (Znu?“—mn%)
1=l
1 m i
+12\° il 2\’
> el - W) (e - wit )]
mln,/ ( =

From the property of the space decomposition (2.8), there exists ¢; € V; such that u"t! — 4 =
iy ¢ir and 3 [|64ll3 < C2llun+! — ul|}, So we take v; = u?t! — ¢; and see that

-
Il

(Y
.
Il

—

IA
S

(3.6)

I
s

Ms

g
[

i

m m
Dol = vy = 3 el < CHlut =l . (3.7)
=1l o=t

By combining (3.5)—(3.7), there comes
(P SR ) )

2

m +1
ol
P (Z [ S g
=l

s : : (3.8)
+ Lan, (Z ailluy™* ~ u?n%) LGy [lu™ = wlly

1=1

[SIE

2
<01 (ahasCo + aphiL) | (FuM) = F)| ™ —uly

6
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Let us note that
[Pl S (L L

)

therefor there follows from (3.8) that

<F/(un+1) L5 F/(u)’un-H 100 U) S Cp % (F(un) iy F(un+1)) 2

KTV J(Fr(untl) = Fi(u), untt — u)

o

and so
et — e u)

=20 = G| (3.9)
:QC]% [F(u™) — F(u) + F(u) — F{urth)]
Summing (3.9) for n = 0,1,2,---, N, we find that
N

D1 <267 /KA [F(u) - F(u*1)] < 26,2/ K2[F(u®) — F(u)]

n=0

<)

and so
le"*t!| =0, asn — oo . (3.10)

We shall first prove (a) and then prove (b). From relations (3.3)~(3.4), there holds

F(u) = F(u) < (F'(w),u" = u) + 2" — ulf}

ot (G
=Sl ~ ulf
and e
F(u) = P@™!) < —(F'(u),u™" —u) = 2 u™ —ulf}
i (3.12)
S G
Substituting (3.11) and (3.12) to (3.9) and using (2.7), it gives
K2len+l|2
g o I .
<26, (e =l - T —al )
L IK
< 2 Sl W2 s R =L 012
—2Cp (2K|e | 2L|e |> 9
which shows that sl
lent1]? < LK~ Gy )2 (B1)

- K2+ KL-1C,?

As F is quadratic and satisfies (2.7), then /(F'(v),v) defines a norm for V and F'(v) is linear
with respect to v. In the proof given above, if we choose the norm of V to be

el =SVt e et
then we have K = L = 1 in (2.7), moreover
|e™? = [(F'(w") = F'(u),v" = w)| = [{F'(«" — u),v” —u)| = [le"[I}

and so (3.13) implies (3.1).
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Next, we prove (b). First, we note that |e”| — 0 as n — 00, so there exists a ball B(u, 6)
which is centred at u and is with a radius of § such that u" € B(u,6), Vn. As F is third order
continuously differentiable, one can assume that there is a constant C'(u) such that

[F() - (v,v,0) < C)olly,, VE € B(u,68),Yo eV .
We use the Taylor’s formula (see Cea [15, Chap.2]) to get:

F(u™) — F(u) = (F'(u),u™ - u) + %F"(u) (u — u)z

+ %F’”(u +6™(u" —u)) - (u" —u)?; (3.14)
F(u) = Fu™*) = ~(F'(w),u™ — u) ~ 2F"(u) - (@™ — u)?
- %F’”(u eeat Rt e =) (B:L5))

Above, 6™,6"*1 € [0,1]. Summing (3.14) and (3.15), and using (2.7) and the property that
(F'(u),v) =0, Yv € V, it follows that:

1 ; 1 :
Bl i e Sl S R s (3.16)
where ] :
Iy =§F"(U) S(u" —w)? - §(F'(Un) Sl

(@
<Cl)u” - ulfy < %le“ﬁ :

12 e %Fll(u) i (un+1 e ,u)2 o
C(u)

<CEl* —ulfy < =52e™?,

T e

| =

; (3.17)
I3 :EF’”(u +6™(u" —u)) - (u" - u)?
C(u)

<CEl —ulfy < =",

14 E g %F’”(U e 9n+1(un+l i u)) : (un+1 . u)B
C(u)

SC)llu™ —ully, < =52e™™)?
K2

Let Ca= E%C#. From relations (3.9) and (3.16)—(3.17), there follows
2

(KQ 1L Cp2) |en+1’2

SCp2'€n|2 +C*[€n13 +C*]en+l|3 ;
and so k by i
Ien+1|2 < Cp+0 |6 |

= K2+ C2 = Crjent]]

From (3.10), we see |e™| — 0, and so for n large enough if

et

I
"< — 3.18
€ < 5o (3.18)

K?
n+1 <
™1 < 5w

then

C2 + C*|e”|
Gy= <l
© K?+ C; = et
Moreover

: c i
n]LII;Oﬁn—m<1, andC—K2 ;
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4. THE CONVERGENCE OF THE MULTIPLICATIVE ALGORITHM
The convergence of Algorithm 2.2 is similar as Algorithm 2.1.

Theorem 4.1. Let the space decomposition satisfies (2.8) and the function satisfies (2.7), then
for Algorithm 2.2 we have:

(a). If F s quadratic with respect to v and the norm of V is taken as ||v||ly = (F'(v),v), then

there holds 2

l€n+1 l? < _é_zle
e
(b). If F is third order continuously differentiable, then

2 (4.1)

et > 0asn— o0, and |2 < L[ e R
For n sufficiently large, we have 0 < 8, < 1. In fact

@ 2
nlirréoﬁnzl—_*_—c<l and C:%Q.

(4.2)

Proof of Theorem 4.1. Let w™*! and w}*! be defined as in (2.13) and (2.15). We see that u"+! =
wp . If we also define wl™! = 4™, we observe that

F™) - F) = 3 (F(wi*) - Flur+))

K m
2 Y (P @)l — )+ S (4.3
o=l

=il
K& ’
= 5 2 Muf ~
=1

Similar as in the proof of (3.6), there exists v; € V;, i = 1,2,--- ,m such that = w Ushg
(2.16), and (2.7) to estimate:

<Ff(un+1) o F’(u),u"“ ' u>
i (Fl(un+1)7un+1 B U) o i <Fl(un+1)’u?+l e vi>

—1

= i <F’(u"+l) — Fl{wfth),ult! - vi>

m
= 3 (FUOr @ —wrt) ut —w) (0 = pun 4 (1 0l g€ [0,1])

=il
m
=303 (POt - up),uft - u) (4.4)
=il
m 3, m L
< cz(z gt — u?u%) (Z gt — vin%) .
12— =l

Take v; such that (3.7) is valid. By combining (4.3)—(4.4), there comes

(F'(wh) = F'(w),u™ — u)

<c, (Z |au?“—u$||2v) Cuuntt — ully (4.5)
i=1
9 3
<Gi0s | (P = Fr )| —

9



i sl L S e A ,J‘IMM o it mm‘&Mv
jii T B AT i , ...mmm ot {3.23 bas ,.‘M&; ::

% ¢ : 5 \ e i~ﬁ [uwx ( “J:}W‘i}-

j 3 \ o R
\ 4.
\m.:&_ z

#

_.a“

¢ jridit F ot A PR
T G i TR

I L e 3

-
B Lk Ll SEE S TR LTS iy

o i v':““ & T P e S
g : ? s J

Veath

. : ; 7 Jomg
n o 3 i3] L 2
" . 8
"”1 gl" ; N
T Sloel bl L
fpe! -
Ed SR .

LSRN ‘ 3 " 0
AR g T | gL
o ’“Mf‘g ! f b S M e
; ] X Lf:.-lv g -i.:\rt £

‘ . et U Ry :mtslb*’-" vl AR AR #y ;@é&ﬂ'&tﬂ‘ml' vﬁ Tt &'t
e s : ¥ | L ’-“",n:,a,»iﬁ?‘w _--{v.'*“‘:w*"‘i) _ A S e et

e i Fidlr, 8 ) g Sl —«Mm‘u ' EO




Similar as in getting (3.9), one deduces from (4.5)
R B = S e u)
=20 B Al )]
=2C,* [F(u") — F(u) + F(u) — il 0 e
The rest of the proof is the same as for Theorem 3.1.
5. APPLICATIONS TO LINEAR AND NONLINEAR ELLIPTIC PROBLEMS

In this section, the space decomposition algorithms will be applied to linear problem:

=V (@) = Fin Q€ 5.
(5319
=0 @n ) .
and to nonlinear elliptic problem
= WS e s = R e R 1 ) .
u =0 on 9N (5.2)

Defining
V=H\(Q), F) :/ (%mﬁ L fv) i
Q

it is known that problem (5.1) is equivalent to solving (2.1). More general boundary conditions
for (5.1) can also be considered. Correspondingly, we just need to modify the definitions of space
V' and function F.

For equation (5.2), we assume f € W_I’SI(Q), % + si = 1. By standard techniques, it can be
shown, see [21], that (5.2) possesses a unique solution which is the minimizer of problem

min F/ |Vv|3—(f,v)J
vEW* () LS Ja

This problem appears in certain mathematical models describing the mechanical deformation of
ice (see for example [23] [24]). Even with very smooth data, the solution u may not be in the
space W2»*, see Ciarlet [16, p.324]. When s is close to 1 or is very big (s > 2), it is difficult to
solve this problem numerically.

We see that the algorithms can also be used to compute the full potential equation for the
velocity potential of fluid flows:

=V - (p(|Vu)Vu) =0,
where the density is given in terms of the potential

1

=1l q‘2 T—1
00

For the derivation of this equation and for the meaning of the parameters, consult [13] and [17].
Suitable boundary conditions should be supplied. If the flow is everywhere subsonic, this problem
fits into our frame work. This equation has important applications in aerospace industry. For
recent numerical results by domain decomposition for this equation, see [12] and [13].

In the following, we shall use a two level domain decomposition as a space decomposition
method to solve these problems. Numerical experiments show very good convergence properties.
For problems like (5.2), the method is especially appealing. Normally, one uses a linearization
method or other type iterative methods to solve (5.2), see [24], [23]. These methods converge
slowly when the size of the problem is big. The proposed algorithms here reduce problem (5.2)
into many smaller size problems of the same kind. These smaller size problems can be solved more
efficiently than the original large size problem. Moreover, we solve these subproblems iteratively.
The analysis tells that this iterative procedure produces a solution that converges to the true
solution with a rate that is independent of the size of the original problem. For the kind of
problems as in (5.2), by first decomposing the problem and then linearising, we gain efficiency
compared to first linearising and then decompoesing the problem.

10



ke

iF m}&;(c@,i S m‘ el s gacd di mwd W !W q a«kf mh»&i x. ';;,‘tq‘,.emqaw :
' ‘ sethisF et .uun.!mq shdy selo
o s ot T ol i nm L 5T : ady fady g

o ~ ; semiont el o Latimaden
R eI -M Vs P

NS

I amauycy el & b o} neadw

i A ) ¥
NA—*«E o Ly S AR K‘;

s

IR TR R

& "mihngp atels T g sidatrteih sdy sl
w:&rn«,m\ Sl :

vqm;..{h‘ easd sidakme
o
Kis mz‘ e ol thimar ledbotmim Ipasas

i

A2

‘—i*.l:g'm zutm*
< miwirnky Baal pwn 4 sae. dadl o ?
v ‘-ﬂm !m;wa ‘Mfm bl a -*‘wrwm#w?m Isaliveap®  bmelduty seods ovine o8 hodisxa
“{ﬂﬁ?" it v Bovlpop skl A4S z’.} adi waelddong 10
» { rarldcy 10 ){‘-KL'..?’}’GA
] Kt ';sﬂ ;m:d 2k umMm &vdﬁ 10 agig sds sede. ylwols

R A esmﬁxﬁuw m & wum %&ﬁ? ‘7‘ ORI '»-13 Yo wimraldony rallsam vnem ol
' L ey sl el teuintio ods wadd vliasinille
#“ i w«mg nmifaf Grv avikeaer A dedy sllot sievisas sdT

4 .
adan oal

@

3 '-wﬂww mmu\y 3 rs;y o e ol tostibnegalial o ety eiat 2 dibe aolsuion
il vk g m&mpmu H“W“W ol M} il 58 emoldong

ma‘-ﬂfiﬁ'(’i& m!;; ‘ _ 5 Mﬂkm




5.1. Decomposition of the finite element space .

As the multigrid method [25], multilevel method, domain decomposition method [35] can be
viewed as different ways of decomposing the finite element space, the proposed algorithms of this
paper can use them to solve the above problems. The analysis indicates that the convergence does
not depend on the regularity of the solution, it only depends on the lower and upper bound of the
differential operator, i.e. the constants L and K. In this section, a two-level domain decomposition,
e, an overlapping domain decomposition with a coarse mesh shall be used. For the two level
method, let {€;}, be a shape-regular finite element division, or a coarse mesh, of Q and Q; has
diameter of order H. For each ;, we further divide it into smaller simplices with diameter of
order h. In case that Q has a curved boundary, we shall also fill the area between 9 and Ny,
here Qg = Uf‘ilﬁi, with finite elements with diameters of order h. We assume that the resulting
elements form a shape regular finite element subdivision of (2, see Ciarlet [16]. We call this the
fine mesh or the h-level subdivision of  with mesh parameter h. We denote 0, = U{T € T,} as
the fine mesh subdivision. Let S C H () and S} C H}(R) be the continuous, piecewise linear
function spaces, with zero trace on 0y and 0§, over the H-level and h-level subdivisions of
respectively.

The global fine mesh Color O: the coarse mesh
= 2 1

0.8

0.6

0.4

0.2

o 0.5 1 o 0.5 1 o 0.5 it

Color 2 subdomains Color 4 subdomains

0.8

0.6

0.4

0.2

o 0.5 1

Figure 5.1. The coloring of the subdomains and the coarse mesh grid

For each §;, we consider an enlarged subdomain Q¢ = {T' € 7y, dist(T,Q;) < 6}. The union of
Qf covers (1 with overlaps of size . Let us denote the piecewise linear finite element space with
zero traces on the boundaries 9902 as SP(92¢). Then one can show that

S D B (5.3)
For the overlapping subdomains, assume that there are m colors such that each subdomain ¢ can
be marked with one color, and the subdomains with the same color will not intersect with each
other. For suitable overlaps, one can always choose m =2ifd=1;m <4ifd=2;m <6 ifd = 3,
see Figure 5.1. Let Q; be the union of the subdomains with the ‘" color, and

V= ue Skl iz =0t e

By denoting subspaces Vy = S, V = Sk, we find that decomposition (5.3) means
V:VO‘*‘ZVia (5.4)

‘and so the two level method is a way to decompose the finite element space. Let {6}, be a
partition of unity with respect to {2}, i.e. 6; € C§°(2;NN) and >, 6; = 1. It can be chosen
so that |V6;| < C/é. Let I, be an interpolation operator which uses the function values at the
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h-level nodes. For any v € V, let vg € Vg be the solution of (vg,dy) = (v,dx),Véy € Vo, and
v; = I (6;(v — vo)). They satisfy v = 37" v;, and

m
@IIE
”UOHiﬂ(Q) r Z ||Ui“§11(nl-) < 6*2”1)”%2(9) e

H2
VolZ2g) < C(1 + 6—2)“1)“%11(9)- (5.5)

The proof of (5.5) can be found in different places, we refer to Xu [36, p. 608]. Moreover, using
the Cauchy-Schwarz inequality, it is easy to see that

S < ci il }mj Joslls < Cm(i il ) ; (fj uvjn%p)% (5.6)

=1l =il
Estimates (5.5) and (5.6) show that for overlapping domain decomposition, the constants in (2.8)

and (2.9) are
H2
Cy =C 1+'57, Con = Clin-

By requiring ¢ = coH, where ¢y is a given constant, we have that C; and C, are independent of
the mesh parameters h and H, the number of subdomains, and estimate (5.5) is also valid for 3D
problems. So if the proposed algorithms are used, their error reductions per step are independent
of these parameters.

The error estimates (3.1) and (4.1) predict that the error reduction per step in the energy norm
for linear problems is independent of the regularity of the solution, and is also independent of the
lower and upper bound of the differential operator. It only depends on the parameters C; and
C>. However, when the coefficient has large jumps, we need to prove (5.5) with the energy norm
instead of the usual H'-norm. Results by [9] and [39] present some elementary techniques for
estimating the constant C) in this situation. The constant C; does not depend on the jumps, but
depends now on the mesh parameters and its dependency is different for 2D and 3D problems, see
[19], [3] for the estimations.

(

aVui, V'Uj)

5.2. Applications to linear elliptic equations .

As was shown above, the two level method is a space decomposition method. With the coarse
it

mesh, the number of the subspaces is m = 5, see Figure 5.1. For Algorithm 2.1, by defining w?+ 2
as in (2.11), the subproblems that need to be solved in each subdomain is

(@VW[T2, V) = (f,u), Vs € SB(Q)

s (5.7)
W, P =uon okl
and w?+% =u” in Q\Q. If we define w?{+% = ung% —u? € SE(Q), then the coarse mesh problem
is
(aV(u” +why ?),Vog) = (f,vr), Yug € SEQ). (5.8)
For Algorithm 2.2, for the coarse mesh problem, if we let w%“ = uf*t! — 4, then it satisfies
(@V(u" +wi'), Vog) = (f,ur) , Vo € 57 (Q). (5.9)

After solving the coarse problem, let w**! be defined as in (2.15), then the subdomain problems
are A
(avw?+1avvi) = (fyvi)a vvi € S() (Qz) 3
if Gl =g om0, (5.10)
Rl e )

and for each ¢

u+wt ifi=1,
T { e in Q\Q, . (5.11)

1 > .
Wi Seafes i,

1
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After computation of the subdomain problems and the coarse mesh problem, for Algorithm 2.1,
solution u™*! is updated by

4
1 1
s :ao(u"+wg+2)+ E aiw:hLQ +(1- E a;)u”
i=1 ]

and this is needed for the boundary values for the subdomain problems for the next iteration and
for computing the residual for the coarse mesh problem. For Algorithm 2.2, one simply sets

n+1 o n+1

For each i, domain ; is the union of the disjoint subdomains of the same color. Thus, the
computations of (5.7) and (5.10) can be done in parallel in each of the subdomains of the ith color.
For Algorithm 2.1, the computations for different ¢ can again be done in parallel.

For the linear problem, the above formulation shows that Algorithm 2.1 and Algorithm 2.2
reduce to the standard additive and multiplicative Schwarz algorithms, see [35, Chap. 5]. In
literature, the condition number of the matrices for the additive and multiplicative methods are
estimated for different types of space decomposition, see [36], and then the conjugate gradient
method is applied to accelerate the convergence. However, it may not be possible to use conjugate
gradient method to accelerate the convergence for nonlinear and nonsymmetric problems.

Ezample 5.1. In this example, Algorithm 2.2 is tested for the case that a = €*¥, u = sin(37z) sin(37y),
Q2 = [0,1] x [0,1]. Uniform mesh is used both for the coarse mesh problem and fine mesh problem.
For a given IV, the coarse mesh size is taken as H = Hr = Hy = % The fine mesh is then taken
8 [ = e = o) = ﬁlg Each subdomain is extended by M elements to get overlaps. In Table 5.2,
the initial guess is taken as the coarse mesh solution. In Table 5.4, the initial guess is taken as

i 10* in the interior nodes of Q ,
= (5.12)

0 on the boundary of €2 .

Figure 5.3 is the computed solution and errors. One sees that it is reducing the maximum error
from 10 to 1073 in about 9 steps. The same kind of convergence was also observed with tests of
other smooth solutions.

Iteration | max-error | reduction
0 3.0552e-01
i 0.0729 0.24
2 0.0166 0:23
3 0.0036 0.22
4 0.0017 0.46
5 0.0015 0.88

Table 5.2. Maximum error with H=1/10, h=1/100, M=2.
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Initial error u_0O—u. Computed solution u_n.

A\

UL

THNY
.9.\:\\.\‘\:"’;

\“.,'

Figure 5.3. The computational for H = 1/10,h = 1/100, M = 2,u° as in (5.12).

Iteration | max-error | reduction

0 10000.9995

1 3248.4466 0532
2 760.5149 0.23
3 93.3381 0.12
4 8.0150 0.09
5 1.5830 0.20
6 0.2481 0.16
i 0.0346 6.14
8 0.0034 0.10
9 0.0015 0.43
10 0.0014 1.00

Table 5.4. Maximum error with H = 1/10,h = 1/100, M = 2,4° as in (5.12).

Ezample 5.2. In this example, Algorithm 2.1 is used to compute the same problem of the last
example. As m = 5, the relaxation parameters are taken as a; = % Algorithm 2.1 can use more
processors, but the error reduction per step is not as good as Algorithm 2.2. With overlap size
& = g—, the error reduction per step is nearly always around 0.85 for different mesh sizes. Figure
5.5 demonstrates the relation between the error and iteration number for initial guess u® = ug,
where up is the coarse mesh solution. Figure 5.6 shows the errors and error reduction with wg

taken as in (5.12).

Different tests were done for Algorithm 2.1 and the convergences are similar. For a given initial
guess, it always reduces the error by a factor ~ 0.86. When the computed solution is getting closer
to the global FEM solution, the error reduction is getting closer and closer to 1. Nearly in all
tests, we find that if the error reduction factor is bigger than 0.95, then the computational error
is always less than two times the global FEM solution error. However, the error reduction factor
depends on the overlapping size. If we decrease it (§ < %), then the reduction number becomes
bigger. If we increase it, the reduction number becomes smaller.

14



s e

ipsmvas of Do of £8 il i f .8 ool
Vo R el s STt Tl 5 46 == % 2d  slgmeis
S BT R RS C bl wys it dud o SN
z‘@)”l\ﬂl‘ skl vivsen w gdew e dondete v aili el
SUALTON: e 10use. ol tewind aoiinler edt padgiiasomeb 6.4
vise sitd oode B sl olhwioy siania Beroay od) 0 it onedw :
H81.40) ol 2s aouas i

i ‘:o*i&’m LE e R vill ks I & dudinionld, 10t a00b srww eaiod Mol
4 9@ ity D80 = 1ol 8yl wree o) esosben evawls 1 ceew
b ity ol aoisophes wits sde sotiolos MET ledoly sidf op
4 ks w%iti e "m*m} aoi mym 1O 9&& H sk hsﬁ a9 ,a&m&;'
W‘H sy o

i T
£ Rma aurinEb 103
X e ol




max—error at iteration= 45 is 0.001956 Error reduction factor

0.35 1
0.95 =
0.3F =
o.9 d
0.25} Bl o.8s5| 4
S o8t 4
S 0.2} — £
z é 0.75 S
E o0.15 S g
@ 0.7 B
o Ji o.es| q
o6t 4
o.o5 d
0.55} J
o o.s
() 20 40 60 10 20 30 a0
Iteration number Iteration number

Figure 5.5. The computational results with # = 1/10,h = 1/100, M = 2,
u® = up, error reduction =~ 0.86.

max—error at iteration= 105 is 0.001398 Error reduction factor
12000 1

10000 o

8000 -

68000 -

max-ermor
Error reduction
(o}
N
L]
T
.

4000 4

2000} E [
o.ss5| ]
o 0.5
o 50 100 150 20 40 60 80 100
Iteration Nnumber Iteration number

Figure 5.6. The computational results with H = 1/10,h = 1/100, M = 2,
u® as in (5.12), error reduction ~ 0.86.

5.3. Applications to nonlinear elliptic problems.

The Gauss-Newton method (Matlab subroutine fiminu) is used to solve the minimization prob-
lems (2.3) and (2.5). Without using the domain decomposition, the original problem is simply too
large and costly to be solved. With 500 grid points, we are already run out of memory and it
takes days to compute the global problems. With the domain decomposition, we can compute the
problem with 10° unknowns.

Ezample 5.3. We use an analytical solution u = sin(27z)sin(27y) on Q = [0,1] x [0,1] to test
the Algorithm 2.2. Figure 5.7 and Table 5.8 show the computational results with fine mesh hz =
hy = 11Wv and coarse mesh Hr = Hy = 1—16' Each subdomain is extended by 2 elements to get
overlaps. The initial guess is the coarse mesh solution. The value of s is 3. For this test problem,
a(u) = |Vu|*~2 = 0 at some points. This violates the normal assumption a(u) > ¢ > 0. Our error
analysis is still valid for this problem, however, the numerical results in Figure 5.7 shows that the

computational error is bigger near the points that a(u) = 0.

Tests with different overlapping sizes were also done. The error reduction number is smaller
with bigger overlapping size and becomes bigger if we decreases the overlapping size. According to
the error analysis, for the nonlinear problem, the convergence may be slow in the beginning if the
initial guess is not good enough. However, numerical tests show that the algorithms converge for
arbitrary initial guess and the error reduction does not depend on the initial guess, see Table 5.9.
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Initial error u_0O—u. Computed solution u_n.

Figure 5.7. The computational results for the nonlinear problem by Algorithm 2.2.

Iteration | max-error | reduction
0 0.1345
1l 0.0257 0.19
2 0.0049 0.19
3 0.0012 0.24
4 0.0007 0.57
) 0.0007 1.01

Table 5.8. Maximum error for the nonlinear problem by Algorithm 2.2.

Iteration | max-error | reduction

1 10000.9961

2 4308.0546 0.43
S 1291.3744 0.30
4 244.0996 0.19
) 48.5262 0.20
6 10.7099 0.22
7 Dol (114 0.26
8 0.7627 0.28
9 0.1026 0.13
10 0.0139 0.14
i1l 0.0073 0:53
12 0.0062 0.85
il 0.0061 0.98

Table 5.9. Maximum error for the nonlinear problem by Algorithm 2.2
with initial guess as in (5.12), H =1/5,h=1/25,M = 1.
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5.4. Applications to linear interface problems .

Ezample 5.4. A similar problem as in Bramble, Pasciak and Schatz [7] is computed here. The
coefficients are taken as (see Figure 5.10)

™ in [0,0.5] x [0,0.5] U (0.5,1] x (0.5,1] ,

@ =

SEUSGT0 im0 0005, L] Bi(0t5; 1) s&(00 5]
Instead of giving an analytical solution, we take f = 4 — 2cos(z)exp(y) on Q = [0,1] x [0,1].
The global fine finite element solution is first computed. After that, the problem is computed by
Algorithm 2.2 and the error between the iterative domain decomposition solution and the global
fine mesh solution is calculated. Table 5.11 gives the results for hz = hy = llm, il = By = 11—0.
The algorithm convergences for arbitrary initial guesses. Each subdomain is extended by 2 elements
to get overlap. Table 5.11 shows the error reduction in the energy A-norm, i.e. the energy norm
(JqaVi(u™ - up)dz)? and here up is the global fine mesh solution. Tests with different number of

subdomains and different overlap sizes were also done. The convergence is similar as for smooth
problems.

(a) Coefficient a(x,y). (b) Computed solution u_n.

(d) Global FEM solution u_h.
0.04

0.02

—0.02
3

Figure 5.10. Computational results for a linear interface problem.

Iteration A-error reduction

0 1.7594e+05

1l 2.3242e+04 0.13

3 4.2870e+02 0.13
5 6.5544e+00 0.13
7 1.7773e-01 0.18
9 1.1470e-02 0.27
11 8.7597e-04 0.28
13 6.7270e-05 0.28
15 5.1710e-06 0.28

34 8.8572e-16 0.88

Table 5.11. A-error for a linear interface problem.

5.5. Two hybrid algorithms .
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When combined with the two level method, both Algorithm 2.2 and Algorithm 2.1 can be used
with parallel processors. For Algorithm 2.2, each processor need to take care of 4 neighbouring
subdomains, but all the processors must wait for the coarse mesh processor after their computa-
tions. For Algorithm 2.1, each subdomain problem is computed by one processor in parallel and
the coarse mesh problem is also computed by a processor in parallel with the subdomain problems.
The good point of Algorithm 2.2 is that it converges faster. The weak point is that it uses less
processors. Moreover, the coarse problem is becoming a ”bottle neck” in the iterative procedure.
In order to over come this difficulty, we shall propose some ”hybrid” algorithms, i.e, we shall
computed the coarse mesh problem in parallel with the computation of the 4 color subdomain
problems.

Ezample 5.5. We compute the coarse mesh problem in parallel with the subdomain problems.
However, the subdomain problems of the 4 colors are computed sequentially. More specifically,
let 4™ be known for iteration n, then we use " to form the residual vector to solve the coarse
mesh problem (5.8). In solving the subdomain problems, instead of solving (5.7), we solve (5.10)
sequentially for the 4 color subdomains, but for the color 1 subdomains, instead of using u" +wht!

as boundary condition and set w}™' = u™ + wi in Q\Q}, we use u™ as boundary conditions and
set w1"+1 = u" in Q\Q), so it can be done in parallel with the coarse mesh problem. After the

n+1 n+1
]l il

computation for w has been done, we use w as boundary conditions and solve the color 2
subdomains to get wy™! in ) from (5.10). The value of wi*! in Q\(Y) is taken as A Ve e
and do so for the color 3 and color 4 subdomains. After w}*! has been obtained, we set
= 1(u" = wz+%) + lwf“ ‘
2 2
This scheme can be regarded as a special case of Algorithm 2.1 by choosing the relaxation param-
eters «; in a suitable way.

The same problem as Example 5.1 is computed by this "hybrid” scheme with the same mesh
sizes, same overlap and same initial guess. Table 5.12 displays the computed results. Comparing
them with the results of Table 5.2 and Figure 5.5, one obviously finds that the error reduction
number here is between that of Algorithm 2.2 and Algorithm 2.1.

We also test this algorithm for the nonlinear problem of example 5.3. With the same parameters
as in Example 5.3, the computational results are given in Table 5.13.

Iteration | max-error | reduction

0 0.3055

1 0221 0.73
3 0.0981 0.67
5 0.0445 0.67
7 0.0197 0.67
9 0.0090 0.68
11 0.0045 0572
i3 0.0026 0.79
15 0.0019 0.87
il 0.0016 0.94
18 0.0015 0.96

Table 5.12. Maximum error by the hybrid algorithm of Example 5.5
for the linear problem of Example 5.1.

Ezample 5.6. In this example, we test another way of dealing with the coarse mesh problem. In
each iteration, the coarse mesh problem is first computed in parallel with the color 1 subdomains
problems. When both of them have done their computations, we update the solution by using
the color 1 subdomain solution and the coarse mesh solution. After that we compute the coarse

18
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Iteration | max-error | reduction

1 0.7718

3 0.2668 0.63
b) 0.1137 0.65
7 0.0495 0.66
9 0.0229 0.69
11 0.0127 077
13 0.0087 0.84
15 0.0069 0.91

Table 5.13. Maximum error by the hybrid algorithm of Example 5.5 for
the nonlinear problem of Example 5.3, see also Table 5.9.

mesh problem again with the color 2 subdomain problems and when finished, update the solution
by using both of them. Then compute the coarse mesh problem in parallel with the color 3
subdomain problems and update, and do so for color 4 subdomains. Then goto the next iteration.
More specifically, let u™ be known, then we compute the coarse mesh problem (5.8) to obtain
1 1 1 i
w?fz and solve (5.7) to obtain w?+2 in Q). The value of w?+2 in Q\Q is w;l+é = u". After the
n+%

il
computation of w and w!'"?, we update u™ b
H 15 p N

1 i i
u” — 5(’&” aF wzﬂ ) =F 5'LUT+2

A
With this updated ™, we solve again (5.8) to get a new coarse mesh solution w?f * and solve (5.7)

1 i
for the color 2 subdomains to obtain w;+2 and similarly set w;+ = u” in Q\Q, (Here u™ is the
newly updated one). Continue in this way for color 3 and color 4 subdomains. After we have done
this for the 4'" color subdomains, we take the newly updated solution as w= N fe.

o)

and go to the next iteration. This scheme is also a special case of the Algorithm 2.1.

As in the previous example, in the computation, only the coarse mesh solution and the computed
solution from the previous updating need to be stored. Table 5.14 is the computational results with
this new hybrid scheme. The functions and needed parameters are the same as Example 5.1. The
error reduction is better than the previous hybrid algorithm, but still not as good as Algorithm
2827

5.6. Special caution for the coarse mesh problem .

In using the proposed algorithms, special care must be applied for the coarse mesh problem.
For example, when we are solving the coarse mesh problems (5.8) and (5.9), we need to use an
integration to form the needed matrices and vectors. If we just use the cell centre of the coarse
mesh as the integration point to form the matrices and vectors for (5.8) and (5.9), then an error

of O(H?) will be carried with wZJr% and w}}“, and this error will pollute the computed solutions

globally, because it affects wi"+% and w]*! through the boundary conditions in (5.7) and (5.10).
This is confirmed by numerical results, see Table 5.15 and Figure 5.16. So, we should use as many
integration points as for the fine mesh when we are forming the vector (f,vg). This observation is
obvious for linear problems and the vector (f,vy) is often implicitly calculated by using the fine
mesh elements when one is getting the residual vectors. However, for nonlinear problems, special
caution must be paid. In the following two examples, we use the procedure given in §5.2 to solve

the linear problem and show the effect of the integration error.

Ezxzample 5.7. In this example, the cell centres of the coarse mesh elements are used as the integra-
tion points for assembling matrix Ay = (aVeZ, V(ﬁf), and vector (f,¢H), here ¢ are the FEM
basis for S (Q) and Ay is the stiffness matrix for (5.8). Table 5.15 and Figure 5.16 show the com-
putational results for the same problem of Example 5.1. The iterative solution stops to converge

1)
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Iteration | max-error | reduction

0 0.3055

1l 081537 0.50
2 0.0787 0.51
3 0.0429 0.55
4 0.0234 0.55
5 0.0131 0.56
6 0.0077 0.59
i 0.0047 0.62
8 0.0032 0.68
9 0.0024 0.74
10 0.0019 0.81
11 0.0017 0.87
i1 0.0015 0.93
13 0.0015 0.97

Table 5.14. Maximum error by the hybrid algorithm of Example 5.6 for
the linear problem of Example 5.1, see also Table 5.2 and Table 5.12.

to the global fine mesh solution when it reaches an accuracy which is nearly the same as the coarse
mesh solution accuracy |lug — ullc = 0.12. The global fine mesh error is ||up — ul|co = 0.0014.
Similar thing was observed for the nonlinear problem (5.2). In all the numerical tests of Exam-
ple 5.1-Example 5.6, the integration that is needed for the coarse mesh problem is done with an
accuracy that is the same as for the fine mesh problem.

Iteration | max-error | reduction

0 10000.9995

1 3247.6241 0.32
2 758.6012 0.23
3 93.1200 0.12
4 7.9555 0.09
5 1.6210 0.20
6 0.2855 0.18
7 0.0692 0.24
8 0.0636 0.92

Table 5.15. Iterative solution stops to converge to the
fine mesh solution when it reaches the coarse mesh solution accuracy

20
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(a) Initial error u_0O—u. (b) Computed solution u_n.

(c) Computational error u_n—u. (d) Global FEM error u_h—u.
3
x 10

Figure 5.16. Computational results for the linear problem of Example 5.1

Ezample 5.8. In this example, the cell centres of the coarse mesh elements are used as the inte-
gration points for assembling matrix Ay = (quSlH,V(,zS]H), but the integration for assembling the
vector (f,#H) is done by using the fine mesh cell centres. Table 5.15 shows the computational
result for the same problem of Example 5.1. The convergence is the same. This shows that the
integration error for the stiffness matrix does not effect the convergence, but the integration error
for vector (f,vg) can pollute the iterative solution.

Iteration | max-error | reduction

0 10000.9995

1 3247.6315 0.32
2 758.6414 0.23
3 93.1445 0.12
4 7.9947 0.09
5 1.5787 0.20
6 0.2480 0.16
7 0.0344 0.14
8 0.0033 0.10
9 0.0015 0.44
10 0.0014 1.00

Table 5.17. Same convergence as Example 5.1.

6. CONCLUSION

Using the observation that the domain decomposition and multilevel methods are space decom-
position techniques, a convergence analysis is given for a general convex programming problem.
The applications here are given for a two level domain decomposition, but the algorithms can be
equally applied for decompositions of multigrid type if a suitable approximate solver is used for
the subproblems.

Acknowledgement. The authors like to thank J. Xu and P. Bjorstad. Many insightful com-
ments from J. Xu during the process of the work helped us to improve some of the results and the
presentation of the paper. Some discussions with and valuable comments by P. Bjorstad clarify
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