## Department of

## APPLIED MATHEMATICS

SOLUTION OF A NON-STRICTLY HYPERBOLIC SYSTEM MODELLING NON-ISOTHERMAL TWO-PHASE FLOW IN A POROUS MEDIUM

by<br>Tor Barkve



## UNIVERSITY OF BERGEN <br> Bergen, Norway



```
Department of Mathematics
University of Bergen
5007 Bergen, Norway
```

SOLUTION OF A NON-STRICTLY HYPERBOLIC SYSTEM MODELLING NON-ISDTHERMAL TWO-PHASE FLOW IN A POROUS MEDIUM

by<br>for Barkve





## Fobr fizus

## TABLE OF CONTENS

page
Introduction ..... 1
Alternative forms of the madel equations ..... 3
Description of the function $f$ ..... 4
structure of the fundamental waves ..... 6
Entropy conditions ..... 9
Construction of an entropy function ..... 12
Construction of the Riemann solution ..... 15
Existence of a solution of the general Cauchy problem ..... 23
Use of the Riemann solver in numerical applications ..... 37
References ..... 43
Appendix: Derivation of the model equations ..... 46
日gin?


## 1. INTRODUCTION

The report discusses the solution of the non-strictly hyperbolic system

$$
\begin{align*}
& u_{t}+(g u)_{x}=0  \tag{1.1}\\
& v_{t}+(g v)_{x}=0
\end{align*}
$$

assuming that the equation

$$
\begin{equation*}
u g_{u}-v g_{v}=0 \tag{1.2}
\end{equation*}
$$

defines two distinct curves in the $(u, v)$-space along which the system Eq. (1.1) has a parabolic degeneracy. As shown in the Appendix, such systems can be used modelling non-isothermal two-phase flow in a porous medium.

First, the Riemann problem associated to Eq. (1.1) is solved, 1.日. the Cauchy problem defined by Eq. (1.1) and the initial data

$$
(u, v)_{t}=0=\left\{\begin{array}{cc}
\left(u^{L}, v^{L}\right) & x<0  \tag{1.3}\\
\left(u^{R}, v^{R}\right) & x>0
\end{array}\right.
$$

$u^{L}, u^{R}$ etc denote constant values. In the solution of the Riemann problem, entropy conditions valid independently of local linear degeneracies of the system Eq. (1.1) are defined. The system allows for an additional conservation law, an entropy equation, and this equation is solved explicitly. opposite to strictly hyperbolic systems, it is not possible to construct locally a convex entropy at all points in the phase space. Results from application of the Riemann solver in the Random Choice Method for numerical solution of Eq.(1.1) is presented.

int
$\qquad$

คcき
$(\overrightarrow{3}) \mid$

 Hil -



 (t-1)











Based on the Riemann solution, it is proven that the general cauchy problem for Eq. (1.1) has a solution. This is a generalization of a proof given by Temple [27] in the case of a single transition curve.

Hyperbalic systems with parabolic degeneracies have been studied by several authors $[4,7,11-16,26,27]$. The solution of the Riemann problem for Eq.(1.1) involving a single transition curve in phase space where the efgenvalues are equal, has been given by Keyfitz and Kranzer [14], assuming one of the wave families to be genuinely nonlinear. A specific application to a reservoir modelling problem, where a single local degeneracy exists, was discused by lsaacson [12]. Johansen and Winther [13] salved the Riemann problem for a system closely related to Eq. (1.1), also involving a single transition curve. Parts of the general solution of Eq.(1.1), with special significance to reservoir modelling, was first given by Hovdan [11] and by Pope [26]. The general solution presented in this report has also beed fourd independently by la Mota [4], with a slightly more restrictive definition of the function $g$.



isuxp:















## 2. ALTERNATIVE FORMS OF THE MODEL EQUATIONS

It will be convenient to operate with several different forms of the system Eq. (1.1). As shawn in the Appendix, when madelling nonisothermal flow in a porous media, the system originated through the physical variables $S$ and $T$, representing saturation and temperature respectively. In these variables, the system is written in matrix form as

$$
\left[\begin{array}{l}
s  \tag{2.1}\\
T
\end{array}\right]_{t}+\left[\begin{array}{ll}
f_{s} & f_{T} \\
g & 0
\end{array}\right]\left[\begin{array}{l}
s \\
T
\end{array}\right]_{x} \quad=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The relationship between $(S, T)$ and $(u, v)$ is given by

$$
\begin{align*}
& S:=u-\beta  \tag{2.2}\\
& r:=\frac{v}{u-\beta}
\end{align*}
$$

and the functions $f$ and $g$ are related as

$$
\begin{equation*}
g=\frac{f+\alpha}{s+\beta} \tag{2.3}
\end{equation*}
$$

$\alpha$ and $\beta$ are positive constants representing thermodynamic parameters. In the physical model $\alpha<\beta$, but this restriction is not imposed in the following. Note that $g$ will be used both as function of $(u, v)$ and of $(S, T)$.

A polar-coordinate form of the equations is written as

$$
\begin{align*}
& r_{t}+(r g)_{x}=0  \tag{2.4}\\
& \theta_{t}+g \theta_{x}=0
\end{align*}
$$

The dependent variables are then defined by

$$
\begin{align*}
& \theta=\operatorname{Arctg}\left(\frac{v}{u}\right)=\operatorname{Arctg}(T)  \tag{2.5}\\
& r=\sqrt{u^{2}+v^{2}}=(S+\beta) \sqrt{1+r^{2}}
\end{align*}
$$





 $2 \operatorname{cosen}$


 ffl: 2 ) 8


## 3. DESCRIPTION OF THE FUNCTION $f=f(s, T)$

The function $f$ is defined on the $(S, T)$-domain $[0,1] \times[0,1]$. For constant $T, f i s$ assumed to be the $S$-shaped fractional-flow function well-known from isothermal flow in porous media:


```
Fig 3.1 :
Example of \(f(S, T=\) const \()\)
```

Further, f will be assumed to have the following properties:

$$
\begin{array}{ll}
f_{T}<0 & T \in(0,1) \\
f_{S}<\frac{\alpha}{\beta} & S=0 \\
f_{S}<\frac{\alpha+1}{\beta+1} & S=1 \tag{3.3}
\end{array}
$$

Eqs.(3.2-3) together assure the existence of two distinct transition curves in phase space, i.e, in $|S, T|-s p a c e$, where the eigenvalues of the system-matrix are equal. These properties are only possible if for each TE[0,1], there exist at least one point where $f_{S S}=0 . A_{S}$ long as two and only two transition curves exist, no restriction will be made on the number of inflextion points of $f(T=c o n s t)$. Hence, gravity may be included in the model equations, as described in the Appendix. It will however be assumed that $f(r=c o n s t)$ is convex in the vicinety of the transition curve $S_{1}$, concave in the vicinety of $S_{2}$. $S_{1}(T)<S_{2}(T)$.





|T: R!
|SF|
(18.0)
$41.01=35$
$4=2$
$1-2$









 $\left.(11) 5^{2}+111\right)^{2}$

A simple example of a function $f$ with the desired properties is
given by

$$
f=\frac{s^{2}}{s^{2}+k(1-s)^{2}}
$$

where both $k=k(T)$ and $\frac{d k}{d T}$ are positive.



## 4. STRUCTURE OF THE FUNDAMENTAL WAVES

The structure of the fundamental waves is independent of the values of the constants $\alpha$ and $\beta$, and has previously been discussed by Keyfitz \& Kranzer [14] and by Isaacson [12]. The main properties will be reviewed here for the sake of compleetness.

The eigenvalues and eigenvectors of the system-matrix given in Eq.(2.1) are given by
$\lambda^{\prime}=f_{S}$ $\lambda^{2}=9$
$r^{\prime}=(1,0)^{\top} \quad r^{2}=\left(f_{F^{\prime}} g-f_{S}\right)^{\top}$
$I^{\prime}=\left(f_{S}-g \cdot f_{T}\right)^{T} \quad 1^{2}=(0,1)^{\top}$

Consequently, the two transition-curves $S_{1}$ and $S_{2}$ where the eigenvalues are equal are defined implicitly by the following equation, equivalent to Eq.(1.2):

$$
\begin{equation*}
f_{s}-g=0 \tag{4.2}
\end{equation*}
$$

The system is not diagonalizable along $S_{1}$ and $S_{2}$. Note that in the (f, S)-space, the transition curves are easily determined as points where straight lines through the point $P=1-\alpha,-\beta$ ) are tangents to the curves $f=f(S, T=c o n s t)$. The transition curves divide the phase space into three separate regions, defined as:

```
A={(S,T) |TE[0,1] 0\leqslantS\leqslantS,T T }
B={(S,T)|T\varepsilon[0,1] S S (T)\leqslantS\leqslantS S (T)}
C={(S,T)|TE[0,1] S_(T)\leqslantS\leqslant1}
```








$$
\text { Le waturn wid } 1-\mathrm{f} \text { ? }
$$

11.1)




15.21

4.








From Eqs.(3.2-3), it follows that $f_{S}-g$ is non-positive in $A(C$, nonnegativ in B. A point in the phase space will be denoted $U=(S, T)$.

The characteristic family belonging to the eigenvalue $\lambda^{2}$ is linearly degenerate, whereas the other family has a local degeneracy at each reflextion point of $f(T=c o n s t)$ :

$$
\begin{align*}
& r^{1} \cdot \nabla \lambda^{1}=f_{S S} \\
& r^{2} \cdot \nabla \lambda^{2} \equiv 0 \tag{4.3}
\end{align*}
$$

The last equation also shows that $\lambda^{2}=g$ is a Riemann invariant for the system, the other invariant is given by $T$. Due to the lack of strict hyperbolicity, no unique transformation between the Riemann invariants and the original variables $(S, T)$ exists:

$$
\frac{\partial(g, T)}{\partial(S, T)}=\left|\begin{array}{cc}
g_{S} & g_{T}  \tag{4.4}\\
0 & 1
\end{array}\right|
$$

$$
=g_{S}=\frac{1}{S+\beta}\left(f_{S}-g\right)
$$

The discontinuities are described by the Rankine-Hugoniot conditions:

$$
\begin{equation*}
\sigma=\frac{[f]}{[S]}=\frac{[(f+\alpha) \mid]}{[(S+\beta) T]} \tag{4.5}
\end{equation*}
$$

a denotes the speed of the discontinuity and the symbol [ $x$ ] the jump in $x$ across the discontinuity. The last equation may easily be transformed to form showing that one of the Riemann invariants has to be constant across a discontinuity. Hence, a discontinuity belongs to one of the two following types:

$$
\begin{array}{lll}
a=\frac{[f]}{[S]} & T=\text { const. } & \text { "Buckley-Leverett shock" } \\
0=g & g=\text { const. } & \text { Contact discontinuity }
\end{array}
$$

In a summary, the solution of the Riemann problem for Eq. (1.1) consists of a sequence of the follwing waves: .





$$
22^{i=} \quad r_{x q}+1
$$

(6. h

$$
0=s_{A V} \cdot{ }^{5}
$$





(4) w1
 (18, R)







1) Rarefaction waves where $T$ is constant and the wave speed given by ${ }^{f} S$.
2) Shocks where $T$ is constant across the discontinuity, and the shock speed is given by the Rankine-Hugoniot condition.
3) Contact-discontinuities where $g$ is constant across the discontinuity, and the speed of the discontinuity equals g .

The two first types will be treated together and denoted as a s-wave, the last type will be denoted as a T-wave. Consequently, if a fundamental wave is allowed to be "degenerate" in the way that the left state equals the right state, the general form of the Riemann solution is $S_{1} T_{1} S_{2} \ldots T_{n}$. $S_{1}$ is a wave with left state $U^{L}$, $T_{n}$ a wave with right state $U^{R}$. Let a j-curve denote a general contineaus, piecewise smooth curve in phase space, connecting two states and consisting of a union of sements of level curves for $T$ and $g$. In the phase space, the solution of the Riemann prablem obviously is a Jcurve. Fig 4.1 shaws level curves for 9 , together with an example of a J-curve.

Note that changes in $T$ can only accur through a $T$-wave, $\dot{f} . e$ through a contact discontinuity.


Eig 4.1 : Level curves for $g$, together with an example of a J-curve
 $3^{7}$
（2）












 －9yてบンーに 5




## 5. ENTROPY CONDITIONS

An entropy condition for a non-strictly hyperbolic system was formulated by Keyfitz and Kranzer [14], generalizing the well-known Lax entropy condition [18]. For a $2 \times 2$ system, the Keyfitz-and-Kranzer entropy condition states that for a discontinuity in the solution to be admissible, either

1) 3 characteristics enter the discontinuity and 1 leaves, - or
2) 2 characteristics are tangents to the discontinuity and at least one of the remaining enters the discontinuity, - or
3) the shock may be regarded as a limit of a sequence of shocks satisfying 11 or 21

As an example of a shock admissible according to condition 3), take a situation where one of the shock values is situated on a transition curve; then 3 characteristics are tangents, while the remaining enters or leaves the discontinuity. By a careful choice of the function $f$, it is also possible to construct discontinuities where all the characteristics are tangents to the line of discontinuity, confer fig 5.1. The condition (E) given by Temple [27] does not adequately describe these situations.


Fig. 5. 1 :
Example of a discontinuity where all characteristics are tangents to the line of discontinuity

It is well-known that for a strictly hyperbalic system with local linear degeneracies, the Lax criterion is not restrictive enough



 ratyla , old lasembs od



 (8) (ies mintoitua








to resolve a unique solution [20,23]. As the function f(T=const) may have more than one inflection point, we will not use the generalized Lax criterion directly. Combining the Rankine-Hugoniot condition, Eq. (4.5), and the relation between $f$ and $g$, Eq. (2.3), we have

$$
\begin{equation*}
g^{R}-a=\frac{s^{L}+\beta}{s^{R}+\beta}\left(g^{L}-a\right) \tag{5.1}
\end{equation*}
$$

As $(S+\beta)$ is always positive, it follaws that if $\quad \neq g^{L}$, one of the characteristics belonging to the second family leaves, while the other enters the discontinuity. Hence, for a "Buckley-Leverett" shock it is sufficient to study the behaviour as if only one family of waves is present. The following shock-admissibility criterion is eqivalent to the generalized Lax criterion if no local linear degeneracies is present:

## Shock-admissibility criterion

A T-wave is admissible if it does not cross a transition curve. A Swave is admissible if it satisfies the oleinik condition [23] for constant $T$ :

$$
\frac{f-f^{R}}{s-s^{R}} \quad \frac{f^{L}-f^{R}}{s^{L}-s^{R}} \quad T=T^{L}=T^{R}
$$

Two fundamental waves may be combined inta one wave thraugh a canstant state $U^{M}\left(U^{L} \cdots U^{M} \cdots U^{R}\right)$ if the speed of the front of the chasing wave is less than the speed of the tail of the chased, and if this condition is fullfilled, the two fundamental waves are said to be compatiple. A necessary and sufficient criterion for determing when two waves are compatible is given by the following compatibility conditions:





## fryd











 -1 3 (061anas
\%ingianos







## Compatipility conditions (CC)

The two fundamental waves in a TS-wave are compatible if and only if one of the following conditions is satisfied:

1) The $S$-wave contains a rarefaction part clase to $U^{M}$, and $U^{M} \varepsilon 日$.
2) The S-wave contains a shock close to $U^{M}$ and, if supscript $R$ denotes the right shock value,

$$
\frac{g^{M}-g^{R}}{s^{M}-s^{R}} \geqslant 0
$$

The two fundamental waves in a ST-wave are compatible if and only if one of the following conditions is satisfied:

1) The S-wave contains a rarefaction part close to $\|^{M}$, and $U^{M} \in A \quad C$.
2) The $S$-wave contains a shock close to $U^{M}$ and, if supscript $L$ denotes the left shock value,

$$
\frac{g^{M}-g^{L}}{s^{M}-s^{L}} \leqslant 0
$$

## Proof:

Only the first part concerning the is-wave will be shown, as the second case is analogous. If $S$ has a rarefaction part close to $U^{M}$, the waves are compatible iff $g^{M} \leqslant f_{S}^{M}$ i.e iff $U^{M} \varepsilon B$. If $S$ has a shock close to $U^{M}$, the waves are compatible iff

$$
\begin{equation*}
0 \frac{f^{M}-f^{R}}{s^{M}-s^{R}}-g^{M}=\frac{g^{M}-g^{R}}{s^{M}-s^{R}}\left(s^{R}+\beta\right) \tag{5.2}
\end{equation*}
$$

Here, the Rankine-Hugoniot expression for the shock speed has been used. As ( $S+\beta$ ) is always positive, the result follows.

The shock-admissibility criterion is valid independently of the number of transition curves and the number of inflextion points of $f$. Also, the $C C$ is easily extended to be valid for a general number of transition curves. Together, the shack-admissibility criterion and the CC will be used to construct a solution of the Riemann problem, unique in the $(x, t)$-space, termed the entropy solution.
lari nit ambur fefmamatmbl awl unt


$$
\text { . } 8 \text {. } \mathrm{H}_{\mathrm{H}} \mathrm{u} \text { has }
$$




6


 20 2


 $2-1+3$
( $\cdots \cdots$




$$
(1)^{\prime}+\frac{4}{4}+\frac{n_{2}}{9_{2}-M_{2}}
$$

$$
m_{0}-\frac{\sigma_{1}-M_{2}}{\omega_{2}-N_{2}}
$$










## 6. CONSTRUCTION OF AN ENTROPY FUNCTION

An entropy function $E$ for the a hyperbolic system is a scalar function, having the fallowing properties

1) $E$ is convex, i.e the Hessian $d^{2} E$ is positive definite
2) A scalar function $F$ exists such that $\nabla E=A$ $\nabla F$ where $A$ is the system matrix and $\nabla$ is the gradient operator in the unknown functions

For a strictly hyperbolic, genuine non-linear system, if an entropy exists, a viscous regularization must satisfy the following inequality in the tapology of distributions [19]:

$$
\begin{equation*}
E_{t}+F_{x} \leqslant 0 \tag{6.1}
\end{equation*}
$$

If $E$ is a known function, Eq.(6.1) can be used as a shockadmissibility criterion. Using Eq. (1.1), is it easy to to show that a function $E=E(u, v)$ can have the property 2$)$ only if it satisfies the following equation:

$$
\begin{equation*}
u g_{v} E_{u u}+1 v g_{v}-u g_{u} 1 E_{u v}-v g_{u} E_{v v}=0 \tag{6.2}
\end{equation*}
$$

For a general $2 \times 2$ system, the entropy-equation is of equal type as the original 1 .order system, i.e. Eq. (6.2) is hyperbolic everywhere except along the transition curves. The equation may be integrated by writing the equation on the form

$$
\begin{equation*}
\left.g_{v},-g_{u}\right) \cdot V\left[u E_{u}+V E_{v}-E\right]=0 \tag{6,3}
\end{equation*}
$$

As $\left(g_{v},-g_{u}\right)$ is the tangent-vector to level-curves of $g$, it follaws that $E$ must satisfy Clajraut's differential equation with an inhomageneity term $\varphi,-\varphi$ being an arbitrary function of $g$ :

$$
\begin{equation*}
u E_{u}+v E_{v}-E=\varphi(g) \tag{6.4}
\end{equation*}
$$

By transforming to polar coordinates as defined in Eq. (2.5), the solution for $E$ is written:

## 




   *加





$$
5 \quad 3-x^{4}+y^{3}
$$



 mincisuge padwalley

## |940

a. $=3$ av









20.2.


```
    E =r\int\frac{\varphi}{\mp@subsup{r}{}{2}}dr+r\psi
\psi}=\psi(0) is a new arbitrary function. The entropy-flux F is given by
    F}=gE+\int\varphid

A necessary condition for the given entropy function to be convex in \((r, \theta)\) is that \(E_{r r}\) is positive:
\[
\begin{equation*}
E_{r r}=\frac{p^{\prime}}{r^{2}} g_{r} \tag{6.7}
\end{equation*}
\]
\(\varphi^{\prime}\) denotes the derivative of \(\varphi\) with respect to \(g\). As \(g_{r}\) changes sign across the transition curves, it follows that \(E_{\text {rr }}\) also changes sign in the phase space. Hence, it is not possible to construct a contineous entropy that is glabally convex, and at the transition curves it is not possible to construct a locally convex entropy. Note that for a stractly hyperbolic \(2 \times 2\) system, it was shown by Lax [19] that it is always possible to define a convex entropy locally.

If \([x\) ] denotes a change in the quantity \(x\) through a discantinuity, \([x]=x^{L}-x^{R}\), then the entropy production caused by a discontinuity is given by
\[
\begin{equation*}
\sigma[E]-[F]=-r^{L} r^{R} \frac{g^{R}-g^{L}}{r^{R}-r^{L}} r^{r^{R}} \frac{\varphi}{r^{2}} d r+g^{g^{R}} \int \varphi d g \tag{6.8}
\end{equation*}
\]

It follows easily that for a contact discontinuity - and also for a "Buckley-Leverett" shock having \(g^{L}=g^{R}\) - the entropy change acrass the discontinuity is zero. Expanding the fight hand side of Eq. (6.8) in a Taylor series in the "shock strenght" \(\left(r^{R}-r^{L}\right)\), we have
\[
\begin{equation*}
\sigma[E]-[F]=\left\{\frac{\varphi^{\prime} g r}{r^{2}}\left(r^{2} g r^{\prime}\right\}^{L}\left(r^{R}-r^{L}\right)^{3}+\ldots .\right. \tag{6.9}
\end{equation*}
\]

Now assume that a given wave is fully contained in one of the regions \(A, ~ 日\) or \(C\) and satisfies the shock-admissibility criterion given in
(a) al (4x a \(\left.\frac{4}{5}\right)^{4}+x^{4}+4\)
 (3.3)
\[
\text { 加 } 41+3 n=3
\]

 17. 21.
\[
\frac{4}{5}=\frac{4}{5}=12
\]












 (





Chapter 5. As \(\left(r^{2} g_{r}\right)_{r}=(S+\beta) f_{S S}\). Eq. (6.g) shows that for a sufficiently weak shock where \(f_{S S} \neq 0\), the shock-admissibility criterion is equivalent to an increase of decrease in entropy, according to whether the wave is contained in \(A \cup C\) or in \(B\). However, waves crossing a transition curve may cause an increase, a decrease or no effect in the entrapy.

When deriving the property Eq. (6.1) for a strictly hyperbolic system, the choice of a convex or concave entropy is just a matter of convenience, - the inequality sign in Eq.(6.1) must however be reversed if a concave entropy is chosen [6]. Hence, for a weak shock the given entropy could be used to resolve the entropy solution if and only if it could be guaranteed that the solution does not cross a transition curve.

It will be shown in the next section that in some cases where no entropy-change is produced, the solution of the Riemann problem is not unique in the phase space.




 ugh74as edynt dapits en





 स4




\section*{7. CONSTRUCTION OF THE RIEMANN SOLUTION}

In the following, let \(R\left[U^{L}, U^{R}\right]\) denate the solution of the Riemann problem Eqs. (1,1) and (1,3). As already shown, the solution is composed of a sequence of fundamental waves \(J=S_{1} T_{1} S_{2} \ldots T_{n}\), where \(S_{1}\) is a wave with left state \(U^{L}\). The goal of this chapter is to show the following theorem

\section*{IHEOREM 1}

The Riemann problem for Eqs. (1.1) has an entropy solution of the form \(S_{1} T S_{2}\). The solution is unique in \((x, t)\)-space, but not in the phase space.

The proof is based on a study of cases, where the salution is shown to belong to one of the following classes of \(J\)-curves:
\(\begin{aligned} & \text { Class } 1: J=T S \quad \text { where } T: U^{L} \rightarrow U^{M} \\ & S: U^{M} \rightarrow U^{R}\end{aligned}\)
Each fundamental wave satisfies the shock-admissibility criterion. If \(U^{L} \in S_{1} \cup S_{2}\), then \(U^{M} \varepsilon B\).
\(\begin{aligned} \text { Class } 2: J=S T \quad \text { where } S: U^{L} & \rightarrow U^{M} \\ T: U^{M} & \rightarrow U^{R}\end{aligned}\)
Each fundamental wave satisfies the shock-admissibility criterion. If \(U^{R} \in S_{1} \cup S_{2}\), then \(U^{M} \varepsilon A \cup C\).

Each fundamental wave satisfies the shock-admissibility criterion. One of the states \(U^{M}\) or \(U^{N}\) is lying on the transition curve near \(U^{L}\), according to the following rule:

 ghety fith
 tmexauts ankuofiot ant
\(\qquad\)





-
an-
\[
9_{0}+H_{y}
\]
\[
\begin{array}{ll}
U^{L} \varepsilon C \text { and } T^{L}<T^{R} \Rightarrow & u^{N} \varepsilon S_{1} \cup S_{2} \\
U^{L} \in A \text { and } T^{L}>T^{R} \Rightarrow & U^{N} \varepsilon S_{1} \cup S_{2} \\
\text { Else } & U^{M} \varepsilon S_{1} \cup S_{2}
\end{array}
\]

It is easily seen from Fig 4.1 that between two arbitrary states, infinitely many 1 -curves not belonging to one of the classes 1,2 or 3 exist. However, at least one curve belanging to one of the classes does exist, - and in each class, if it exists, the J-curve is unique.

In three following lemmas, criterions for when the Riemann solution belongs to one of the three classes will be given. Finally, it will be shown that the given criterions covers all possible combinations of \(U^{L}\) and \(U^{R}\). To facilitate the statement of the criterions, define the quantities \(g_{1}\) and \(g_{2}\) by:
\[
\begin{align*}
& g_{1}=g\left(S_{1}\left(r^{R}\right) \cdot T^{R}\right) \\
& g_{2}=g\left(S_{2}\left(r^{R}\right) \cdot T^{R}\right) \tag{7.1}
\end{align*}
\]

Also, let \(I_{1}\) and \(T_{2}\) be defined implicitly as solutions of the equations
\[
\begin{align*}
& g^{R}=g\left(S_{1}\left(r_{1}\right), r_{1}\right) \\
& g^{R}=g\left(S_{2}\left(r_{2}\right), T_{2}\right) \tag{7.2}
\end{align*}
\]

If no solution for \(T_{1}\) exists, define \(T_{1}: 0\). If no solution for \(T_{2}\) exists, define \(T_{2}=1\).

If a solution of Class \(1-3\) exists, it remains to show that also the compatibility criterion \(C C\) is satisfied, as each of the fundamental waves satisfies the shock-admissibility criterion. To show that a given l-curve consists of compatible waves, the following corollaries of the CC will be used:

\section*{COROLLARY 1}

The fundamental waves in class-1 wave are compatible if both \(u^{t}\) and \(U^{R}\) are contained in \(B\). The fundamental waves in a Class-2 wave are compatible if both \(u^{L}\) and \(U^{R}\) are contained in \(A\) or if both are contained in \(C\).








 (17.1)
\[
\begin{aligned}
& t^{n}+1^{n}+11^{2} 18=18 \\
& t^{n} r_{1} t^{n}+1_{8} z^{2} 10=18
\end{aligned}
\]
 aholyaupa







Liomabus ant

 2 al beaccatnos

\section*{COROLLARY ？}

The fundamental waves in a J－curve of Class 1 or Class 2 are compatible if \(U^{M}\) \＆\(S_{1} \cup S_{2}\) ．

\section*{Proof of Corollary 1：}

When a giver wave \(J\) is of Class 1 and \(U^{L}\) ，\(U^{R} E B\) ，the whale J－ curve is contained in \(日 . \quad A s g_{S} \Rightarrow 0\) in 日，the CC is satisfied． Analogous for a Class－3 wave．

\section*{Progf of Corollary 2：}

The proof is shown for \(U^{M} \varepsilon S_{1}\) ．If the \(S\)－wave has a rarefaction part close to \(U^{M}\) ，the result follows immediately from the \(C C\) ．As \(f(T=c o n s t\).\() is convex in the vicinety of S_{1}\) ，the \(S\)－wave contains a shack close to \(U^{M}\) only if \(U^{R} \varepsilon A\) ．This gives two possibilities far a shock，according to whether the \(S\)－wave or the \(T\)－wave is contained in \(A\) raking each case separately，it is easily checked that the cc is satisfied．

\section*{LEMMA 1.}
\(R\left[U^{L}, U^{R}\right]\) is of Class 1 if \(U^{L} \varepsilon B\) ，and in addition，one of the following conditions is satisfied：

1）\(U^{R} \& A\) and \(g^{R} \leqslant g^{L} \leqslant g_{2}\)
2）\(u^{R} \in B\) and \(g_{1} \leqslant g^{L} \leqslant g_{2}\)
3）\(u^{R} \varepsilon c\) and \(g_{1} \leqslant g^{L} \leqslant g^{R}\)

Progf
From Fig 4.1 showing the level curves for \(g\) ，it is obvious that when \(U^{L} e 日_{1} g_{1} \leqslant g^{L} \leqslant g_{2}\) guarantees the existence of a J－curve of Class 1 connecting \(u^{L}\) arid \(u^{R}\) ．It remains to show that the fundamental waves are compatible．

If the \(S\)－wave has a rarefaction wave close to \(U^{M}\) ，the \(C C\) is immediately satisfied，as \(U^{M} \varepsilon\) 日 when \(U^{L} \varepsilon B\) ．Hence，in the following，it is sufficient to study the situations where the \(S\)－wave contains a shock close to \(\mathrm{U}^{\mathrm{M}}\) ：

EJnomstomat edt


LLuydstoges to magis
memi wavian a marll



\section*{}





 hextiatyon

LAtmad a in: \(\frac{10}{10}\)


Inot9
2

 +9tatiagmo3 bye louiw





When \(U^{R} \varepsilon A\), the \(S\)-wave contains a shock crassing the transition curve \(S_{1}\), as \(f\left(T=\right.\) const) is convex in the vicinety of \(S_{1}\). If \(U^{*}\) denates the right shack value, then \(S^{*}>s^{R}:=>g^{*} \leqslant g^{k}\), and the condition 1) in the lemma guarantees that the \(C C\) is satisfied. The argument is identical when \(U^{R} \varepsilon C\). When \(U^{R} \varepsilon B\), the lemma follows immediately from Corollary 1.

Lemma 2
\(R\left[U^{L}, U^{R}\right]\) is of class 2 if one of the following conditions are satisfied;
1) \(U^{R} \in A, \quad U^{L} \in A\) and \(T^{L} \geqslant T_{1}\)
2) \(U^{R} \in A, \quad U^{L} \in B\) and \(g^{L} \leqslant g^{R}\)
3) \(U^{R} \in C, U^{L} \in C\) and \(T^{L} \leqslant T_{2}\)
\(4) U^{R} \in C, U^{L} \in B\) and \(g^{L} \geqslant g^{R}\)

\section*{Proof:}

The lemma is shown for \(U^{R} \varepsilon A\), as the proof for \(U^{R} \varepsilon C\) is analogous. When \(U^{R} \varepsilon A\), the condition \(T^{L} \geqslant T_{1}\) guarantees the existence of a J-curve of Class 2 connecting \(u^{L}\) and \(U^{R}\).

When \(U^{L} E A\), the \(C C\) is satisfied by corollary 1 . If \(U^{L} E B\), the \(S\)-wave must cross \(S\), by a shock, as \(f(T=c o n s t)\) is convex in the vicinety of \(S_{1}\). The \(S\)-wave may still contain a rarefaction part close to \(U^{M}\), and the \(C C\) is then straightforward satisfied. If the \(S\) wave contains a shock close to \(U^{M}\), the \(S\)-wave must be a pure shock wave. As \(s^{M} \leqslant s^{L}\) and as \(g^{R}=g^{M} \geqslant g^{L}\), the \(C C\) is satisfied.
'解





20










Lemma 3
\(R\left[U^{L}, U^{R}\right]\) is of class 3 if one of the following conditions are satisfied:
1) \(U^{R} \in A \cup B\) and \(U^{L} \in C\)
\(21 U^{R} \varepsilon B U C\) and \(U^{L} \in A\)
3) \(U^{R} \in A, U^{L} \in A\) and \(T^{L}<T_{1}\)
3) \(U^{R} \in C, U^{L} \in C\) and \(T^{L}>T_{2}\)
4) \(u^{R} \in A \cup B, U^{L} \in\) 日 and \(g_{2}<g^{L}\)
5) \(U^{R} \varepsilon B \cup C, U^{L} \varepsilon B\) and \(g^{L}<g_{1}\)

\section*{Proof:}

The lemma is proven by in each case combining Lemma 1 or Lemma 2 together with corollary 2. Only one case will be shown, the case \(U^{R} \varepsilon A, U^{L} \varepsilon C\) : In this case, it is obviously possible to construct a Class-3 J-curve with \(U^{N} \varepsilon S_{2}\). Lemma 2 then gives that the fundamental waves in the \(S_{1} T\)-wave are compatible. Corollary 2 gives that the combination \(\mathrm{IS}_{2}\) is compatible.

Fig 7.1-7, pp 21-22 show all. the combinations of \(U^{L}\) and \(u^{R}\) covered by the Lemmas \(1-3\). In each figure, \(U^{R}\) is specified, and the phase space is divided into different regions shawing the solution type if \(U^{L}\) is contained in the region. It is easily seen that all possible combinations have been covered by the lemmas.

If \(U^{l}\) is situated on the boundary between two regions, the lemmas may state that solutions of two different classes exist. The reason for this may be that the J-curve belongs to two of the classes simultaneously, as when a S-wave in a Class-3 curve is "degenerate", i.e has equal left and right states. However, in certain cases two different solutions exist in phase space, - this is when
\[
\begin{align*}
& U^{L} \varepsilon B \quad U^{R} \in A \cup C \\
& g^{L}=g^{R}
\end{align*}
\]

\(20 \operatorname{ents}\)








 bumnil edd val hatevaz aond bueftishastenidpoa sldieang
\(\qquad\)
\(\qquad\)






\[
\text { yutar } 4 \text { 4 }
\]
\(\langle(t, T)\)
\[
0, j
\]

It is easily checked that in \((x, t)\)-space, the solution is unique, being a single discontinuity with speed \(g^{L}\). The solution could be regarded as a pure T-wave, but this would however not satisfy the shock-admissibility criterion. The non-uniqueness in the phase-space was first pointed out by lsaacson [12] in the case when the system has a single transition curve. It follows from Eq. (7.1) and Eq. (6.日) that the change in entrapy caused by the non-unique waves is zera.
```

    Note that in some cases, a small perturbation of the initial
    states may change the solution drasticly. This is the case for
instance if the initial states are close to a situation as described
by Eq.(7.1); a perturbation may cause the solution to change between a
Class-1 wave and a Class-2 wave.

```

\section*{0 OS}














Fig 1.1


Fig 7.3


Fig 7.2


Fig 7,4


Fig 7.5

Eig 7.1-7 ; Solution regions in phase space. The position of \(U^{R}\) is shown by a black dot



1. ILed?



4.I. 817



Fig 7.6


Fig 7.1

\section*{8. EXISTENCE OF A SOLUTION OF THE GENERAL CAUCHY PROBLEM}

This chapter proves an existence theorem for the general Cauchy problem associated with the system in Eq.(1.1), invalving two transisiton curves. For the case where the system involves a single transition curve, Temple [27] generalized the Glimm [8] existence theorem for a strictly hyperbolic system. The proof here follows the steps outlined by remple, defining a transformation \(\psi:(S, T) \rightarrow(2, T)\), regular everywhere except along the transisition curves, and using this transformation to construct the Glimm functional. As only the construction of the Glimm functional deviates from the proof of remple, it is sufficient to prove that the Glimm functional is minimized by the waves of the Riemann solution R[ \(\left.U^{L}, U^{R}\right]\). Given a certain property of the function \(g\), the proof may be extended to a general number of distinct transition curves.

\section*{IHEOREM?}

The Cauchy problem for the system Eq. (1.1), involving two transisition curves, has a global weak solution for arbitrary initial data of bounded variation in 2 and \(T\).

\section*{Definition of the Glimm functional}

The variable \(Z\) is defined by first extending the definition of \(g\) inta the domain \((S, T) \in[0,1] \times[-1,2]\). This is done by extending the level curves for \(g\) in a non-intersecting differentiable manner, as shown on Fig 8.1. The level curves are monatone everywhere except at the transisiton curves, and the extension of the level curves also involves an extension of the transition curves in a smooth way.

Note that to each point \(U\) in the original phase space it is possible to assaciate one point on each of the extended transition curves lying on the same g-level curve as \(U\). These two point will be

\section*{}













5.f13 Hy 184

 or bnis finc meisedray bohnmod









termed the associated points for \(U\) and denoted \(U_{1}\) and \(U_{2}\) respectively, \(U_{i}=\left(S_{i}, T_{i}\right)\).


\section*{Fig 8. 1 :}

Extension of the function \(g\)

The extension of the level curves is not unique, and to facilitate the analysis, an extension will be chosen such that if \(A\) and \(\theta\) are two arbitrary states,
\[
\begin{equation*}
\left|T_{2}^{A}-r_{2}^{B}\right| \leqslant 2\left|T_{1}^{A} \cdots T_{1}^{B}\right| \tag{8.1}
\end{equation*}
\]

This is always possible if the following condition is satisfied:
\[
\begin{equation*}
g\left[s_{1}(0), 0\right] \leqslant g\left[s_{2}(1), 1\right] \tag{8.2}
\end{equation*}
\]

If it is not possible to define a extension satisfying Eq. (8.1), the significance played by the to transition curves in the following must be interchanged. In the case of \(n\) transition curves, ane must assume the following condtion can be satisfied:
\[
\begin{equation*}
\left.\left|T_{n}^{A}-T_{n}^{B}\right| \leqslant 2\left|T_{n-1}^{A}-T_{n-1}^{B}\right| \leqslant \ldots \leqslant 2 \mid n-1\right)\left|T_{1}^{A}-T_{1}^{B}\right| \tag{8.3}
\end{equation*}
\]

Now define the variable 2 in the following manner:
\[
Z(S, T)= \begin{cases}T_{2}-T & U \in C  \tag{8.4}\\ T-T_{2} & U \in 日 \\ \left.-\left(T-T_{1}\right)-1 T_{2}-T_{1}\right) & U \in A\end{cases}
\]

The Jacabian of the transformation \(\psi\) equals \(Z_{S}\), and from the relation

\section*{}
\[
t=7 \times 21=4
\]

\author{
 \\ Q thoidandit xatt-7a nosersaxa
}

\(\qquad\)



\[
\begin{equation*}
\left[1,(f) s^{2]}\right]=\left[0 .(0), \frac{3}{4}\right] \tag{in}
\end{equation*}
\]







\[
\begin{equation*}
\frac{\partial T_{i}}{\partial S}=\frac{g_{S}}{\left[g_{S} \frac{d S_{i}}{d T}+g_{T}\right]} \quad i=1,2 \tag{8.5}
\end{equation*}
\]
it follows that the transformation is regular everywhere, except along the transition curves.

Let \(T^{+}\)and \(T^{-}\)denote \(T\)-waves where \(S\), from left to right, is increasing or decreasing respectively. Then define the wave strength in the following way:
\[
|s|=\left|z_{R}-z_{L}\right|
\]


Note that for a \(S\)-wave in \(A \quad B\), the definition of wave strenght may create two different situations, demonstrated in Fig 8. 2 :

\[
|S|=21 T^{A}-T_{1} \mid+\left(T_{2}^{A}-T_{2}^{B}\right)
\]

Fig B. \({ }^{\text {A }}\) : Wave strength for waves crossing \(S_{1}\).
 GQ4Ráa tuitsankit unt








\(|S|=21 T-T_{1}^{A}\left|-1 T_{2}^{B}-T_{2}^{A}\right|\)

Fig 8. 2B: Wave strength for waves crossing \(S_{1}\).

The significance of the extension condition Eq. (B.1) is demanstrated in the latter possibility, as Eq(8.1) ensures that the expression given for \(|s|\) is positive.

Finally, if J denotes a general J-curve as defined in Chapter 4, the Glimm functional is defined by
\[
\begin{equation*}
\left.F(J)=\sum_{j} 1|S|+|T|\right) \tag{8.7}
\end{equation*}
\]

To prove that \(F\) is minimized by \(J=R\left[U^{L}, U^{R}\right]\), the concepts of addition and interchange of waves will be used, as introduced by Temple. Additionally, a concept of reduction of waves will be defined. The purpose is to use these operations successively to transform an arbitrafy J-cufve into the Riemann solution, and and the same time ensure that the Glimm functional decreases through each step of transformation.

 subscash at lef tont anvia


\[
1.171+1211+=1691
\]








This section gives three lemmas stating the behaviour of \(F\) when adding fundamental waves. The first is a straight-forward consequence of the definition of the Glimm functional. Eq.(8,7):

\section*{LEMMA 1}
\(F(S T)=F(S)+F(T)\)

The next lemma concerns addition of \(S\)-waves. If \(J=S_{1} S_{2}\) takes \(U^{L}\) to \(U^{R}\), define the sum \(S=S_{1}+S_{2}\) as the unique wave \(S=R\left[U^{L}, U^{R}\right]\).

\section*{LEMMA 2}
\(F\left(S_{1}+S_{2}\right) \leqslant F\left(S_{1}\right)+F\left(S_{2}\right)\).
If \(S_{1}\) and \(S_{2}\) have only one state in common, then \(F(S)=F\left(S_{1}\right)+F\left(S_{2}\right)\).

\section*{Proof}

A complete proof involves a study of all possible combinations of \(u^{L}\) and \(U^{R}\), and only a few will be shown here to verify the lemma. Let \(A\), \(B\) and \(C\) be three states such that \(T=T^{A}=T^{B}=T^{C}\). Let \(S_{1}\) be a \(S\) wave from \(A\) to \(B, S_{2}\) a \(S\)-wave from \(B\) to \(C\), and let \(S: S_{1}+S_{2}\). The next page shows some typical cases. Note that the extension condition Eq. (8.1) is used several times.

选




10978

 2

 0

\[
\begin{aligned}
& F\left(S_{1}\right)=2\left(T_{1}^{B}-T_{1}^{A}\right)-\left(T_{2}^{B}-T_{2}^{A}\right) \\
& \left.F\left(S_{2}\right)=2\left(T_{2}^{B}-T_{2}^{C}\right)-1 T-T_{1}^{B}\right) \\
& \left.\left.F(S)=21 T-T_{1}^{A}\right)-1 T_{2}^{C}-T_{2}^{A}\right)
\end{aligned}
\]
\[
F\left(s_{1}\right)+F\left(S_{2}\right)-F(S)=0
\]

CASE 2 :

\[
\begin{aligned}
& \left.\left.F\left(S_{1}\right)=21 T-T_{1}^{A}\right)-1 T_{2}^{B}-T_{2}^{A}\right) \\
& F\left(S_{2}\right)=T_{2}^{B}+T_{2}^{C}-2 T \\
& F(S)=T_{2}^{A}+T_{2}^{C}-2 T_{1}^{A}
\end{aligned}
\]
\[
F\left(S_{1}\right)+F\left(S_{2}\right)-F(S)=0
\]

CASE 3 ;

\[
\begin{aligned}
& F\left(S_{1}\right)=T_{2}^{A}+T_{2}^{B}-2 T_{1}^{C} \\
& \left.F\left(S_{2}\right)=1 T_{2}^{B}-T_{2}^{C}\right)+2\left(T-T_{1}^{B}\right) \\
& F(S)=T_{2}^{A}+T_{2}^{C}-T
\end{aligned}
\]
\[
F\left(S_{1}\right)+F\left(S_{2}\right)-F(S)=2\left(T_{2}^{B}-T_{2}^{C}\right)+4\left(T-T_{2}^{B}\right) \geqslant 0
\]

\section*{CASE 4 :}

\[
\begin{aligned}
& \left.\left.F\left(S_{1}\right)=1 T_{2}^{A}-T_{2}^{B}\right)+21 T-T_{1}^{A}\right) \\
& F\left(S_{2}\right)=T_{2}^{C}-T_{2}^{B} \\
& \left.\left.F(S)=21 T-T_{1}^{A}\right)-1 T_{2}^{C}-T_{2}^{A}\right)
\end{aligned}
\]
\[
\left.F\left(S_{1}\right)+F\left(S_{2}\right)-F(S)=21 T_{2}^{C}-T_{2}^{B}\right) \geqslant 0
\]
\[
\begin{aligned}
& 1 \frac{1}{5}-\frac{1}{5} 1=+\frac{4}{5^{4}}-\frac{6}{1} \text { is }=1,213
\end{aligned}
\]
\[
\begin{aligned}
& \text { a. } 4\left(213-15^{217}+3,214\right.
\end{aligned}
\]
\[
\begin{aligned}
& \text { Ts }-3 \times 8 \text { o } \\
& 01=\text { (2) } 7=1 s^{219}+217
\end{aligned}
\]

( 3212

1. 3202
\[
\begin{aligned}
& 4 \text {, } 4 \text { + }-4 \text { ana }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 造 }
\end{aligned}
\]

The addition of \(T\)-waves is a bit more complicated. If \(J=T_{1} Y_{2}\) takes \(U^{L}\) to \(U^{R}\), define the sum as following:
\[
\begin{aligned}
& R\left[U^{L}, U^{R}\right] \text { when } T_{1} \text { and } T_{2} \text { bath are contained in } \\
& \text { the same domain } A_{\text {, }} \text { of } C \text {. } \\
& \text { The unique } T \text {-wave taking } U^{L} \text { to } U^{R} \text { when the } \\
& \text { two states are separated by } S_{1} \text { and } T^{R^{2}} T^{R} \\
& \text { The unique TS-wave taking } U^{L} \text { to } U^{R} \text { when the } \\
& \text { two states are separated by } S_{2} \text { and } T_{R}^{L} \leqslant T^{R} \\
& \text { The unique ST-wave taking } U^{L} \text { to } U^{R} \text { when the } \\
& \text { two states are separated by } S_{1} \text { and } T^{R} \leqslant T^{R} \\
& \text { The unique ST-wave taking } U^{L} \text { to } U^{R} \text { when the } \\
& \text { two states are separated by } S_{2} \text { and } T \geqslant T^{R}
\end{aligned}
\]

LEMMA 3
\(F\left(T_{1}+T_{2}\right) \leqslant F\left(T_{1}\right)+F\left(T_{2}\right)\).
If \(T_{1}+T_{2}\) is a \(T\)-wave, and \(T_{1}\) and \(T_{2}\) have one point in common only, then \(F\left(T_{1}+T_{2}\right)=F\left(T_{1}\right)+F\left(T_{2}\right)\).

\section*{Proaf}

Once again the proof involves a study of all possible combinations of \(U^{L}\) and \(U^{R}\), and only a few will be shown. Let \(r_{1}\) be a wave from state \(A\) to state \(B, T_{2}\) a wave from \(B\) to \(C_{1}\) and let \(J=T_{1}+T_{2}\). The next page shows four typical cases.

The three lemmas stating the behaviour of \(F\) when adding waves will be treated together and termed the addition lemma.



 2




10019
\(2 \times\) an





C.4.8 1 :

\[
\begin{aligned}
& \left.F\left(T_{1}\right)=81 T^{A}-T^{B}\right) \\
& \left.F\left(T_{2}\right)=81 T^{C}-T^{B}\right) \\
& \left.F(j)=81 T^{C}-T^{A}\right)
\end{aligned}
\]
\[
F\left(T_{1}\right)+F\left(T_{2}\right)-F(3)=0
\]

CASE 2 :

\[
\left.F\left(T_{1}\right)+F\left(T_{2}\right)-F(J)=61 T^{C}-T^{B}\right) \geqslant 0
\]

CASE 3 :


CASE 4 :
\(\qquad\)

\[
\begin{aligned}
& \left.F\left(T_{1}\right)=21 T^{A}-T^{B}\right) \\
& \left.F\left(T_{2}\right)=61 T^{C}-T^{B}\right) \\
& \left.\left.F(J)=21 T^{A}-T^{B}\right)+61 T^{C}-T^{A}\right) \\
& \left.F\left(T_{1}\right)+F\left(T_{2}\right)-F(J)=61 T^{A}-T^{B}\right) \geqslant 0
\end{aligned}
\]


57289

+
coldind when
\[
\begin{aligned}
& 1 \mathrm{~B}_{1}=\frac{\mathrm{A}_{2} 15-1475}{4}
\end{aligned}
\]
\[
\begin{aligned}
& \text { 路 }
\end{aligned}
\]
\[
\begin{aligned}
& 11^{B}+a^{A}+5=1 \quad \Gamma 17
\end{aligned}
\]
\[
\begin{aligned}
& 2
\end{aligned}
\]
\[
\begin{align*}
& \text { 4.87- }-1+15=1,179 \tag{e}
\end{align*}
\]
\[
\begin{aligned}
& 1 \mathrm{I}_{1}-1818-134 \\
& ()^{A}+{ }^{3}+28+1 \text { - } 13 \\
& \text { 教 } \\
& 4=1017-1,1+4+1,5)
\end{aligned}
\]

Let \(J\) be of the form ST (TS). In many cases it is possible to connect \(U^{L}\) and \(U^{R}\) also through a wave of the form \(J^{\prime}=T S\) (ST), thus constructing a parallelogram of segments related to the two states. Introduce the following definition:

Given two states \(U^{L}\) and \(U^{R}\) and assume that it is possible to construct a parallelogram as described above. The waves \(J\) and \(J\) will tue termed interchangeable if
1) \(U^{L}\) and \(U^{R}\) are contained in the same domain \(A\), \(B\) or \(C\).
2) \(U^{L}\) and \(U^{R}\) are separated by \(S_{1}\) only, and \(U^{R} \varepsilon A\).
3) \(U^{L}\) and \(U^{R}\) are separated by \(S_{2}\) only, and \(U^{R} \in C\).

The expression "separated by \(S_{i}\) only" means that anly ane of the transition curves separates the two states. Note that no waves crossing two transition curves are interchangeable, even though it may be possible to construct a parallelogram of waves around the two states. The significance of the concept "interchange" follows from the following lemma:

\section*{LEMMA 4}

If the waves \(J\) and \(J^{\prime}\) are interchangeable, then \(F(J)=F(J)\), and the Riemann salution \(R\left[u^{L}, U^{R}\right]\) is given by \(J\) or by \(J^{\prime}\).

\section*{Proof}

Once again the proof includes a study of all possible cases, and only a few typical examples are shown on the next page. In all the examples, \(J=S T\) and \(J^{\prime}=T S\). Also, the shorthand notation \(R=U^{R}\), \(L=U^{L}\) is used.


 inulytatiab gaimollatianta abubaymal










 bomon blacurlet mill
(


\author{
10074
}
\(0.1 . . . . .\).


\(F(J)=8\left(T^{R}-T^{L}\right)+\left(T_{2}^{R}-T_{2}^{L}\right)+2\left(T^{L}-T_{1}^{R}\right)\) \(F\left(J^{\prime}\right)=6\left(T^{R}-T^{L}\right)+\left(T_{2}^{R}-T_{2}^{L}\right)+2\left(T^{R}-T_{1}^{R}\right)\) \(F(J)=F(J)\)
\(R\left[u^{L}, U^{R}\right]=J^{\prime}\)

CASE 2 :

\(F(J)=8\left(T^{R}-T^{L}\right)-\left(T_{2}^{R}-T_{2}^{L}\right)+2\left(T^{L}-T_{1}^{R}\right)\)
\(F\left(J^{\prime}\right)=6\left(T^{R}-T^{L}\right)-\left(T_{2}^{R}-T_{2}^{L}\right)+2\left(T^{R}-T_{1}^{R}\right)\)
\(F(J)=F\left(J^{\prime}\right)\)
\(R\left[U^{L}, u^{R}\right]=j\)

CASE 3 :

\(F(J)=2\left(T^{L}-T^{R}\right)+\left(T_{2}^{R}-T_{2}^{L}\right)+2\left(T^{L}-T_{1}^{R}\right)\)
\(F(J)=4\left(T^{L}-T^{R}\right)+\left(T_{2}^{R}-r_{2}^{L}\right)+2\left(T^{R}-T_{1}^{R}\right)\)
\(F(J)=F(J)\)
\(R\left[U^{L} \cdot U^{R}\right]=J\)

CASE 4 :

\(F(J)=2\left(T^{L}-T^{R}\right)-\left(T_{2}^{R}-T_{2}^{L}\right)+2\left(T^{L}-T_{1}^{R}\right)\) \(F(J)=4\left(T^{L}-T^{R}\right)-\left(T_{2}^{R}-T_{2}^{L}\right)+2\left(T^{R}-T_{1}^{R}\right)\) \(F(J)=F(J)\)
\(R\left[U^{L}, u^{R}\right]=J\)


F
\[
\begin{aligned}
& 1713=(2) 8 \\
& \frac{1}{2}=x^{9} 0.419
\end{aligned}
\]

E.
and in zena

d 7825

\[
\begin{aligned}
& \text { 17617 } 51613 \\
& 46=4^{9} 0, \frac{1}{4}+48
\end{aligned}
\]
\[
\begin{aligned}
& \text { 4 = } \mathrm{E}^{4} 4-1019 \\
& \text { ox }
\end{aligned}
\]

\section*{REDUCTIUN OF WAVES}

In the work of Temple [27], the following lemma is included as a special case of Proposition 5.1;

\section*{LEMMA 5}

Let \(U^{L}\) and \(U^{R}\) be two states that may be joined by a single \(T\) - or \(S\) wave, J. Let \(J\) be another J-curve of the form \(S_{1} T S_{2}\) or \(T_{1} S T_{2}\) connecting the two states. Then \(F(J) \leqslant F(J)\).

\section*{Proof}

If some of the fundamental waves in J' are interchangeable, then the lemma follows directly from the lemmas of addition and interchange. From the definitions of wave strenghts, it also follows readily that if \(l=S\), then \(F\left(J^{\prime}\right)-F(J) \geqslant 4\left|T^{R}-T^{L}\right|\). Some typical examples when \(J=T\) and none of the fundamental waves in J' are interchangeable are shown below:

CASE 1

\[
\begin{aligned}
& F(J)= \theta\left(T^{R}-T^{L}\right) \\
& F\left(J J^{\prime}\right)= 2\left(T^{L}-T_{1}^{L}\right)-\left(T_{2}^{L}-T_{2}^{X}\right) \\
&+6\left(T^{R}-T^{L}\right) \\
&+2\left(T^{R}-T_{1}^{L}\right)-\left(T_{2}^{L}-T_{2}^{X}\right) \\
& F\left(J^{\prime}\right)-F(J)=4\left(T^{L}-T_{1}^{L}\right)-2\left(T_{2}^{L}-T_{2}^{X}\right) \geqslant 0
\end{aligned}
\]

CASE 2 :

\[
\begin{aligned}
& F(J)= \theta\left(T^{R}-T^{L}\right) \\
& F(J)=\left(T_{2}^{R}+T_{2}^{X}-2 T_{1}^{L}\right) \\
&+4\left(T^{R}-T^{L}\right) \\
&\left(T_{2}^{R}+T_{2}^{X}-2 T_{1}^{L}\right) \\
&\left.F(J)^{\prime}\right)-F(J)=2\left(T_{2}^{L}-T^{L}\right)+2\left(T_{2}^{L}-T^{X}\right) \\
&+4\left(T^{L}-T_{1}^{L}\right) \geqslant 0
\end{aligned}
\]
 if．\％maisiragory to anac libiagas


3002 anion on Wathata


 sended muwata
年保
\(\qquad\)

\[
\begin{aligned}
& x+{ }^{4}-118=1017 \\
& \text { bridit Juan Sexum } \\
& \mathrm{f}^{3},=\frac{8}{7}+14 \\
& \text { i M M }
\end{aligned}
\]
\[
\begin{aligned}
& 1^{\frac{1}{T}}+\frac{1}{T} 12+1 \\
& \mathrm{~L}
\end{aligned}
\]

It is not possible to transform an arbitrary J-curve \(J\) into the Riemann solution through the operations addition, interchange and reduction only. However, by a successive application of the three lemmas, J may be transformed into a new curve J', F(J) \& F(J), where \(J\) 'is contained on or inside a certain "trapezoid" around \(u^{L}\) and \(u^{R}\). J' can also be restricted to follow certain "main routes" inside the trapezoid, confer fig 8.3 :


Fiq 8. 3 : "Main routes" after a transformation of J

To prove that \(R\left[u^{L}, u^{R}\right]\) gives the minimum value of \(f\) inside the trapezoid, in addition to the lemmas of addition, interchange and reduction, we will need the following lemma:

\section*{LEMMA G}

Let \(J\) take \(u^{L}\) to \(U^{R}\) by crossing maximum one transition curve, and also assume that \(J^{\prime}: S_{\text {: }} J^{\prime}=T S\). Then \(F(J) \leqslant F(J)\) where \(J=\) \(R\left[U^{L}, U^{R}\right]\).

\section*{Proof:}

The proof can be divided into three parts, according to whether the Riemann solution crosses \(S_{1}, S_{2}\) or no transition curve. The proof when Jerosses \(S_{1}\) or \(S_{2}\) follows the same lines as the proofs on the previous pages, also confer the proaf of Proposition 5.0 by Temple [27]. Hence, we will only study the situation when no transiton curve is crossed. Then three possibilities exist: Either \(J=J, J\) and \(J\) '











a it ens
 of \(\mathrm{u}_{4}+124\)






are interchangeable, or \(u^{L}\) and \(U^{R}\) are both contained on \(S_{1} S_{2}\). In the two first cases, obviously \(F(J)=F(J)\). An example of the last case is shown by the following:

\[
\begin{aligned}
& R\left[u^{L}, u^{R}\right]=3 \\
& F\left(J^{\prime}\right)=6\left(T^{R}-T^{L}\right)+\left(T^{R}-T^{L}\right) \\
& F(J)=4\left(T^{R}-T^{L}\right)+\left(T^{R}-T^{L}\right) \\
& F\left(J^{\prime}\right)-F(J)=2\left(T^{R}-T^{L}\right) \geqslant 0
\end{aligned}
\]

Finally, the next page show some examplas on how the lemmas \(1-6\) can be combined to successively transforming a J-curve following one of the "main routes" of fig B. 3 into the Riemann solution. In the examples shown, the following abbreviation indicate the lemma used during an operation:
```

(A) Lemma of addition
(I) Lemma of interchange
(X) Lemma 6

```
es



\[
\begin{aligned}
& L=t^{2} 4,419
\end{aligned}
\]


而
 20.


\author{
 \\ 200 \\ e mming | \(\mid \mathrm{Al\mid}\)
}
\[
\text { CASt } 1 \text { : }
\]

```

F(J')=F(RABDL)
= F(RAB) + F(BDL)
* F(REB) + F(BDL)
=FF(REB) + F(BCL)
(I)
:= F(RECL)
:= F(J)
(A)
$(X)$
(I)
(A)
$=\quad F(1)$

```

CASE 2 :

\(F(J)=F(R A C L)\)
\(=F(R A B)+F(B C)+F(C L)\)
(A)
\(=F(R F B)+F(B C)+F(C L)\)
\& \(F(R F)+F(F E)+F(E C)+F(C L)\)
(A) \((x)\)
\(=F(R F)+F(F E)+F(E D L)\)
(A) (I)
\(=F(R F D L)\)
(A)
\(=F(J)\)

(1)
(X)
(4)
(a)
(A)
\((11)\)
(x) (a)
(1) \(\mathrm{fR1}\)
(A)

114日年817
\(1-59\)
bininuava

\(1+138+4+6830+7\)
cumberat
11) \(=\)

32 23

1.196817
(c) 9
- 4 ELentid

\((10) 7\) + 13914 \& \(13719+17917+5\)
(insia - igula a lacia -
4 +4919
1414

\section*{9. USE OF THE RIEMANN SOLVER IN NUMERICAL APPLICATIONS}

\begin{abstract}
Several numerical methods for solving hyperbolic conservation laws have been based on solution of local Riemann problems, examples are the Random Chaice Method [2,3], Godunov-type methods [10], and the front-tracking method of Glimm et al [9]. As noted in Chapter 7, the Riemann problem of the Eqs. (1.1) is "unstable" in the sense that small perturbations in the initial states may change the solution drasticly, and this indicates that use of the Riemann solver in numerical solution of the Eqs. (1.1) is not advantageous. This chapter shows examples of the use of the solver in the Random Choice Method (RCM), also named the Uniform Sampling Method.
\end{abstract}

A common feature of methods based on exact Riemann solvers is that only a small part of the information contained in the Riemann solution is used. A Riemann problem for Eqs.(1.1) may involve solution of as much as four non-linear equations, and as great care has to be taken to pick the fight solution, much time is used to produce information which is later disregarded in the solution. As the number of grid block increases, the RCM applied to Eq. (1.1) becomes rather time-consuming. For strictly hyperbalic systems, this drawback can in some cases be compensated by using approximate Riemann solvers [10], and it is an interesting question whether for instance Godunov-type methods could be constructed with approximate Riemann solvers in the case of non-strictly hyperbolic systems. Godunav-type methods are obviously less sensitive to the instability in the Riemann solution than the RCM, as the first tend to average the Riemann salution.

In practical applications, the function \(f\) may be represented by a table only, and as the problem is not structural stable in the same way as for a single hyperbolic equation \([5,25]\), the method chosen for interpolating \(f\) could highly influence the solution. In all examples shown in this chapter, the function \(f\) is represented analytically, using Eq. (3.4) together with the definition








 bertain patigmse . mzetinu edf bamen quis













 nalatilaz






\[
\begin{equation*}
k(T)=\frac{1}{2-T} \tag{9.1}
\end{equation*}
\]

All non-linear equations are salved by the Newtan-Raphson method. Also, in all the examples shown, \(\alpha=0.5, \beta=3.5\) and a courant number of 0.8 is used. If nothing else is specified, the number of grid blocks is 200. The solutions are shown for \(t=1\).

As \(g\) is a slowly varying function of \(T\), the initial T-profile is convected with a minor deformation only, and in most of the examples, only the \(s\)-profile is shown. With the given function \(f\), both the eigenvalues of the system matrix are positive, and Godunov's method is equivalent to standard upstream differencing; use of the Riemann solver is not necesarry. For comparison, results using this method is shown together with the results from the RCM.

In cases where the solution of the Eqs. (1.1) does not posess a transition state in contineous parts of the solution, the RCM behaves as for strictly hyperbolic systems. It is well-known that the methad then resolves discontinuities without dispersion, but has rather low accuracy in smooth parts of the solution. Fig 9.1 shows the solution of a Riemann problem madelling injection of cold water into a hot oil reservair: \(u^{t}=(1,0), u^{R}=(0,1)\). Godunav's methad needs a very high number of grid blocks to resolve the plateau with constant \(s\) sufficiently.

Also, Fig 9.2-4 all show solutions of Riemann problems, these satisfying or close to satisfying the conditions of Eq. (7.1) producing non-uniqueness in phase space. The intital states are given in Table 9.1. Obviously, the upstream differencing method are not capable of resolving the abrubt changes in the solution and also reflects the non-uniqueness of the solution in the case where Eq. (7.1) is exactly satisfied. Also note that the numerical solution in this case is nonmonotone, even though Godunov's method is monotone for strictly hyperbolic equations.
(2, 0 )
\(4 \frac{1}{1-5}=\) IIA
















 (20)








 Wlyafore for enatongm 42 bonisom a'vonuliod Asuanls nove, tonatonom - tnalさgupn azLotitegvel.

\begin{tabular}{|l|ll|ll|l|l|}
\hline 9.2 & 0.78 & 0.7 & & 0.3369940 & \\
9.3 & 0.7938178 & 0.7 & 0.9319771 & 0.0 & 0.3378500 & 0.3378500 \\
9.4 & 0.81 & 0.7 & & 0.3386065 & \\
\hline
\end{tabular}

Iaple 9.1: [nitial states for the solution shown in fig 9.2-4. \(u^{\text {is identical in all three cases. }}\)

In cases where the solution has a transition state in smooth parts of the solution, large instabilities may occur in the RCM, and the method converges slowly as the block lenght of the grid goes to zera. This is demonstrated in Fig 9.7-10, using the initial condition shown in fig 9.5-6. Note the difference in the solution produced by merely changing the random-number generator involved. Except from the results of Fig 9.9, the random-number generator described in [24] is used.

Finally, two examples when all the initial states are situated on the transition curve \(S_{2}\) is shown in Fig 9.11-12. Tis chosen to vary linearly with \(x\) initially. Both when \(T\) increases and decreases with \(x\), the salution seem to "avoid" the transition curve, and the solution does not involve any specific problems.










buain







Fig 9.1 : S-profile in the solution of the Riemann Problem \(u^{L}=(1,0), \quad U^{R}=(0,1)\)

Fig 9.2 : S-profile in the solution of the Riemann problem specified in Table 9.1


Fig 9.3: S-profile in the solution of the Riemann problem specified in Table 9.1


Fig 9.4: S-profile in the solution of the Riemann problem specified in Table 9.1

mafogra aminiall ant



Eig 9.5-6 : Initial S- and T-profile crossing \(S_{2}\)


Fig 9.7-8 : Solution profiles using the initial condition shown in Fig 9.5-6



Fig 9.g : Solutions based on two different random-number generators, shown in the phase space

Fig 9. 10 : As Fig 9.7 but using 2000 grid blocks







\(\begin{aligned} \text { Fig 9. } 11: & \text { Solution of a cauchy problem } \\ & \text { with all initial states on } S_{2} . \\ & \text { } \quad \text { increases initially }\end{aligned}\)

Fig 9. 12 : Solution of a Cauchy problem with all initial states on \(S_{2}\). T decreases initially
anfdoza yisuiz a to notsixiog



1

\section*{}
 \(+\)






\section*{REFERENCES}
[ 1 ] J.Burger, P.Sourieau, M.Combarnous : Thermal Methods of Oil
        Recovery
        Editions Technip, Paris, 1985
    [ 2] A.J.Chorin : Random Chaice Solution of Hyperpolic Systems
        J. Comp. Phys. 22 (1976) pp.517-533
    [ 3] P.Coricus, W.Proskurawski : Numerical Solution of a Nonlinear
        Hyperbolic Equation by the Random Choice Method
        J. Comp. Phys. 30 (1979) pp. 153-166
    [4] J.C.Da Mota : The Riemann Problem for a Simple Thermal Model
        for Two Phase flow in porous Media
        Mat 04/86, Dept.Math. Pontificia Univ. Catolica do
        Rio de Janeiro
    [ 5] C.M.Dafermos : Polygon Approximations of Salutions of the
        Initial Value Problem for a Conservation Law
        J.Math.Anal.Appl. 38 (1972) pp.33-41
    [ 6] C.M.Dafermos : Hyperbalic Systems of Conservation Laws
    in "Systems of Nonlinear Partial Differential Equations"
    ed J.M.Ball, D. Reidel Publishing Co., 1983
[ 7] F.J.Fayers : Some Theoretical Results Concerning the
    Displacement of a Viscous Oil by a Hot fluid in a porous
    Medium
    J.Fluid.Mech. 13 (1962) pp.65-76
    [8] J.Glimm : Solution in the Large for Nonlinear Hyperbalic
        Systems of Equations
        Comm. Pure Appl. Math. 18 (1965) pp.697-715

```

                                    VI啲yoasy
    ```


上ez-sca.oo laratl sh vavnly, amoa:



 sitieth mucto4 ni wal7 ssad9 owT 101
 0x4anol ab of


mituby

 gfonithip3 \%o dmeszyz

[9] J.Glimm, D.Marchesin, O.McBryan, E.Isaacson: Front Tracking for Hyperbolic Systems

Adv.Appl.Math. 2 (1981) pp.91-119
[10] A.Harten, P.Lax, B.van Leer : On Upstream Differencing and Godunov-type Schemes for Hyperbolic Conservation Laws SIAM Rev. 25 (1983) pp.35-61
[11] M.Hovdan : Vanninjeksjon - Inkompressibel analytisk losning med temperatureffekter (in Norwegian) Statoil Document MH-1/86, Statoil, Stavanger, 1986
[12] E.L.Isaacson : Global Solution of a Riemann Problem for a NonStrictly Hyperbolic System of Conservation Laws Arising in Enhanced Gil Recovery

Rockefeller University Preprints
[13]
[14] 日.L.Keyfitz, H.C.Kranzer: A System of Nan-Strictly Hyperbalic Conservation Laws Arising in Elasticity Theory Arch.Rat.Mech.Anal. 12 (1980) pp.219-241
[15] B.L.Keyfitz, H.C.Kranzer : The Riemann Prablem for a Class of Hyperbolic Conservation Laws Exhibiting a Parabolic Oegeneracy 1. Diff.Eq. 红 (1983) pp.35-65
[16] B.L.Keyfitz, H.C.Kranzer : Non-strictly Hyperbolic Systems of Conservation Laws: Formation of singularities

Cont.Math. 17 (1983) pp.77-89
[17]
M.Latil : Enhanced Dil Recovery

Edition Technip, Paris, 1980








 Khayoash tko boandint


 palbaet?








\begin{tabular}{|c|c|}
\hline [18] & P.D.Lax : Hyperbolic Systems of Conservation Laws II Comm. Pure Appl. Math. 10 (1957) pp.537-566 \\
\hline \multirow[t]{2}{*}{[19]} & P.D.Lax : Shack Waves and Entropy \\
\hline & \begin{tabular}{l}
in "Contribution to Nonlinear Functional Analysis" \\
ed. E.H.Zarantonello, Academic press, Now York, 1971
\end{tabular} \\
\hline \multirow[t]{3}{*}{[20]} & T.P.Liu: The Riemann Problem for General \(2 \times 2\) \\
\hline & Conservation Laws \\
\hline & Trans.Amer.Math. Soc. 199 (1974) pp.89-112 \\
\hline [21] & C.M.Marle : Multiphase Flow in Porous Media Edition Technip, Paris, 1981 \\
\hline \multirow[t]{2}{*}{[22]} & NAG Fortran Library Manual, Mark 11 \\
\hline & The Numerical Algorithm Group, Oxford, 19 \\
\hline \multirow[t]{4}{*}{[23]} & 0.A.Oleinik : Uniqueness and Stability of the Generalized \\
\hline & Solution of the Cauchy Problem for a Quasilinear Equation. Uspehi Mat.Nauk. 14. (1959) pp. 165-170 \\
\hline & Engl.transl: Amer. Math.Soc.Transl., Ser.2, 33 (1963) \\
\hline & pp.285-290 \\
\hline \multirow[t]{3}{*}{[24]} & Q.Pettersen : Numerical Solution of the Buckley-Leverett \\
\hline & Equation with a General fractional Flow function \\
\hline & Report 76, Dept.Math., University of Bergen, 1984 \\
\hline \multirow[t]{2}{*}{[25]} & @.Pettersen : The Random Choice Method: Structural \\
\hline & Stability of a Conservation Equation in Reservoir Dynamics SIAM J.Numer.Anal (To appear) \\
\hline \multirow[t]{2}{*}{[26]} & G.Pope : The Application of Fractional Flow Theory to Enhanced Dil Recovery \\
\hline & Soc. Pet, Eng. J. (June, 1980) pp.191-205 \\
\hline \multirow[t]{3}{*}{[27]} & B. Temple : Glabal Solution of the Cauchy Problem for a Class \\
\hline & of \(2 \times 2\) Nonstrictly Hyperbolic Conservation Laws \\
\hline & Adv.Appl.Math. 3 (1982) pp.335-375 \\
\hline
\end{tabular}


\section*{APPENDIX: DERIVATION OF THE MODEL EQUATIONS}

To correct a small flaw and to supplement a derivation first given by Fayers [7], this Appendix shows the defivation of the model equations describing non-isothermal two-phase flow in a porous medium.

In the fallowing, the subscribts \(w, o\) and \(r\) will be used to denote parameters characterizing water, oil and rack respectively. Let \(\lambda_{q}(q=w, o)\) be the mobility of fluid \(q, i\).e. the relative permeability divided by the viscosity, and let \(k_{q} \quad(q=w, o, r)\) denote the thermal capacity per unit mass. \(p_{c}\) is the capillary pressure, and \(\wedge\) is the total thermal conductivity, - both are functions of water saturation s and temperature \(T . \quad 4\) is used for porasity, \(k\) for absalute permeability and \(u\) for the total volume flux. Also introduce the notation
\(f=\frac{\lambda_{w}}{\lambda_{w}+\lambda_{0}}\)
\(a=-\frac{k}{u} \frac{\lambda_{w} \lambda_{0}}{\lambda_{w}+\lambda_{0}} \frac{\partial p_{c}}{\partial S}\)
\(b=-\frac{k}{u} \frac{\lambda_{w} \lambda_{0}}{\lambda_{w}+\lambda_{0}} \frac{\partial p_{c}}{\partial T}\)
\(F=f-a S_{x}-b T_{x}\)
\[
\operatorname{dos}_{x}
\]

Both the functions a and \(b\) are normally positive [1], and \(f\) is normally negative [17]. Assuming incompressibility and neglecting gravity, conservation of mass is expressed through the equation
\[
\begin{equation*}
\varphi \frac{\partial S}{\partial t}+u \frac{\partial f}{\partial x}=u \frac{\partial}{\partial x}\left[a \frac{\partial S}{\partial x}+u \frac{\partial T}{\partial x}\right] \tag{A2}
\end{equation*}
\]

Gravity is easily included by a redefinition of the furiction f [21].

\section*{}











\(\qquad\)
\[
\begin{aligned}
& \frac{a^{6}}{26} \cdot \frac{a^{A} 4^{A}}{a^{A}+x^{2}} 4^{2} \cdot \frac{4}{4}=1=4
\end{aligned}
\]
6.4.
\[
\frac{n 0}{76} \frac{a^{A} w^{A}}{a^{K}+w^{A}}-\frac{x}{y}=\text { de }
\]
\[
\text { - } b=1
\]



\[
\left.5 \frac{16}{x 6}+\frac{26}{46}\right) \frac{d}{x d}-\frac{16}{x 6}-2+\frac{28}{16} 9
\]


Conservation of energy is expressed as
\[
\begin{align*}
& \frac{\partial}{\partial t}\left\{\left[\varphi k_{w} S+\varphi k_{a}(1-S)+(1-\varphi) k_{r}\right] T\right\} \\
& +4 \frac{\partial}{\partial x}\left\{\left[k_{w} F+k_{o}(1-F)\right] T\right\}=\frac{\partial}{\partial x}\left\{\wedge \frac{\partial T}{\partial x}\right\} \tag{A.3}
\end{align*}
\]

Introduce the thermodynamic functions
\[
\begin{aligned}
& A=k_{w}-k_{0} \\
& B=k_{0}+\frac{1-\varphi}{\varphi} k_{S} \\
& C=k_{0} \\
& \alpha=\frac{C+C^{\prime} T}{A+A^{\prime} T} \\
& B=\frac{B+B^{\prime} T}{A+A^{\prime} T}
\end{aligned}
\]

In general, the thermal capacities per unit mass are functions of temperature, and the sign "'" is used to denote derivation with respect to \(T\). After a scaling of the equations, and after a substitution of Eq. (A2) into Eq. (A3), the system of conservation laws simplifies ta:
\[
\begin{align*}
& S_{t}+f_{x}=1 a S_{x}+b T_{x} 1_{x}  \tag{A5}\\
& T_{t}+\frac{f+\alpha}{S+\beta} T_{x}=\frac{1}{A+A \cdot T}\left[\wedge T_{x}\right]_{x}+\left(a S_{x}+b T_{x}\right) T_{x}
\end{align*}
\]

The functions \(a, b, \wedge\) etc are now redefined as dimensionless. In his derivation, Fayers [7] se日m to neglect \(A^{\prime} B^{\prime}\) and \(C^{\prime}\) ever when \(A, B\) and \(C\) are allowed to vary as function of temperature. Following Fayers, the function \((f+\alpha / S+\beta)\) is termed the thermal advance function.

As a model for high-rate conditions, the terms representing capillary pressure and thermal conduction will now be neglected and the system reduced to a first order system. If \(\alpha\) and \(\beta\) are assumed constant, the equations may be written in the form given in Eq. (2.1).
\[
\left(\pi x^{2} \times(\varphi+1)+\left(2-11 \text { se }+2\left(\frac{2}{5}\right)-1 \frac{6}{16}\right.\right.
\]
(eh)
\[
f \frac{16}{x 6} A \frac{6}{x 6} \rightarrow\left(14(t-t)_{6} x+7_{4}^{4} 41\right) \frac{6}{x 6} u+
\]




 8) 20.
(6A)





हncyneamiquy



\[
\begin{array}{ll}
A T=A_{0} T+A_{1} & A_{0}, A_{1}, B_{0}, \ldots \text { consts. } \\
B T=B_{0} T+B_{1} & \\
C T=C_{0} T+C_{1} & C_{0} \neq 0
\end{array}
\]
\[
(A G)
\]

This is obviously satisfied if the thermal capacities are independent of temperature, and from the definition of \(A, B\) and \(C\), it then follows that \(\alpha<\beta\). Note that if \(C T=\) const., the system reduces to the form studied by Johansen and Winther [13].



J




No. 1. A. Ridal and \(\$\), Tlotta. on acoustic streasing in magnetohydrodynamics, Pebruary 1964.
\(\mathrm{No}, 2, \mathrm{G}\), Berge.
On the atability of a magnetized plasma with a continuous density force field, June 1964.

No. 3. I. Falnes.
Coaxial waveguide consisting of a circular metal tube surrounding a coaxial unidifectionally conducting sheet, Auqust 1965.

No. 4, R.B. Dysthe.
on nonlinear interaction between two beans of plane electromagnetic waves in an anisotropic medium, Decenber 1964.

No. 5. R.J. Oyerholt.
Extended Aitken acceleration,
March 1965.
No. 6. G, Rerge.
On the stability of a rotating plasma from the two fluid equations including finite radius of gyration effects, May 1965.

No. 7. A. Syardal.
on acoustical streaming between two coaxial cytinders, May 1965.

No, 8, R. B, Dysthe.
on convective and absolute
instability, November 1965
No. 2, L. Engevid
on linear and non-linear hydro-
magnetic vortez motion generated
by the interaction of a gravity wave with a solid boundary, April 1966

Ho. 10, S. Tidtas.
Some non-linear effects in sound
fields, July 1966.
No. 11. L. Engevib.
On a stability problem in
hydrodynamics. Part I
November 1966.
No. 12. 1. Engeyik.
On the stability of plane
inviscid Couett flow,
November 1966.
No, 13, 4, Engeyis
on a stability problem in
hydrodynamics. Part II,
January 1967.

\section*{ReRort NTNR I Storesletten}

On non-linear magneto-hydro-
dynasic wave motion in disgipative wedia, September 1967

He 14, K, B. Dysthe
Self-trapping and self-focusing of electronagnetic waves in a
Plasea, May 1968.
Report no. 15 not written.
Mo. 16, IP. D. Dysthe.
Force on satil inclusion in a standing acoustic wave, July 1968.

No. 17, A, Sysadal and S. Tidtas.
oscillatary viscous flows in the vicinity of a cylinder, June 1969

\section*{No, 18 , A.th Rien and J. Naze Tigtta \\ rinetic theory of a weakly coupled \\ and weakly inhomogeneous gas, \\ June 1969}
№. 12, M, S. Espedal,
Hydrodynamic equations for a
F.L.R. Plasma, August 1969.

No. 20. J, Naze Tiotta and A. H. Dien
Kinetic theory of a weakly
coupled and weakly inhomogeneous
plasas in a magnetic field.
August 1969.

\section*{No. 21, R, S. Eckhoff. \\ on stability. \\ Part I: General theory,}

November 1969.
No. 22, 8, 5, Eckhotis.
on stability.
Part II: Linear problems,
December 1969.
№. 23. K. S. Eckhoff.
On stability.
Part III: The energy principle
in MHD, December 1969.
No. 24. R. B. Dysthe.
on the stability of a
cylindrical surface-file,
December 1969.
No. 25, M.S. Espedal
The effects of ton-ion collistion on a ion-acoustic plasma pulse, Aprtl 1970

No. 26, A.H. Dien
Defivation of kinetic equations of a plasma using a multiple time and space scale method, September 1970
№, 27, R, S, Eckhoff
on stabllity.
Part IV: Nonlinear partial
differential equations,
October 1970.
No, 28, Q, Ealtinsen and S. Tidtta
Interaction between sound waves propaqating in the same direction, Aprtl 1971.

No. 29, T, Leversen and J. Naze Tietta Solution of a stationary Fokker-
Plank equation, June 1971
No, 30. E. Meland
Application of the Galerkin's
method on the proble of cellular convection induced by surface tension gradients, Noverber 1971

No. 31. S. Nissen-Mever
A note on the problem of reverst bility of mathematical models. (Preliminary issue.),
December 1971
No. 32. 4. Hinderaker.
on the foundations of the wethod of matched asymptotic approximations to two meeting orthogonal boundary-layers, Decenber 1971
\(\mathrm{No}, 33,4\). Bertelsen. A. Syardal and 5 , Tluts
Non-linear streaming effects
associated with oscillating
cylinders, Deceaber 1971.

No. 34. S. Nissen-Meyer
Some theorems on the problem of reversibilty of mathematical models.
(This report is a revised issue of report no. 31.), April 1972.

No. 35. I Eidhanmer
A minimu resource sorting wethod, June 1972

No. 36, T.O, Espelid
on the behaviour of the secant method near a multiple root, September 1971.

No. 37, H. B. Drange
The linearized Boltzamn collision operator for cut-off potentials, December 1972
\(\frac{\mathrm{No}, ~ 38 . ~ J . ~ N a z e ~ T i g t t a ~ a n d ~ S . ~ T i d t a ~}{\text { Sta }}\)
Sur le transport de masse produit
par des oscillations on milieu
compressible, dissipatif et
inhomogene, Deceaber 1972.
№. 32. M, Aksland
On the twodimentional birth and death process with witation, January 1973

No. 40. A. H. Oien
Rinetic theory for evolution of a plasma in external electromagnetic fields toward a state characterized by balance of forces transverse to the magnetic field, April 1973.

No, 41, H. B, Drange.
on the boltzmann equation with external forces. April 1273.

\section*{No. 42, J. Naze Tiotta and} S. Tietta

On the mass transport induced by time-dependent osctllations of finite amplitude in a nonhoogeneous fluid.
I General results for a perfect gas, May 1973.

NQ, 43. L. Engevis
Pertubation about neutral solutions occuring in shear flows in stratified, incompressible and viscid fluids, June 1973.

No. \(44, \mathrm{~J}\). Naze Tidtta and

On the mass transport induced by time-dependent oscillations of finite amplitude in a
nonhomogeneous fluid.
II General results for a liquid. August 1973.

No, 45, G, Dand and S. Storay
Enumeration of vertices in the ilnear programing problem,
October 1973.
No. 46, M. S. Espedal
The effects of trapped and untrapped particles on an electrostatic wave packet. December 1973.

No. 47 M. S. Espedal
A procedure to solve the Fokker-
Planck - Poisson equations
consistently, April 1974

\title{
 \\  \\  \\ (x)
}
 4acam M 40 no baviontly sbit Mand (allon


(2
 214 paris




4. \(4524=3,-15\)

 kret molerom





latesta

新新

 - biak.





Hagsy rave notackoin of at












 18tel kath



-

 -


 ctol couran
 (1- Mancua in zuonils and




 2 \(20-20\) 2
 hersegat 16 -

Litraint tue ti ct


 honmbet anfint wiseva livs telquas than

attaydina \(3 \times 15-9\)
 wham Navilik it yest
\(\rightarrow 2 \rightarrow-20\)
 wakamin kacuth 111 zeen

 -7athast le


Stiti





 geth Llifa




turither A P, It, AH











\section*{}




 it te malliono nit on ptor for - finklementsan 4o whalel -
 neis In smolsthunti isi हो। -20)-6,








 P2.

Maxdacpin a io valitise sat ne mate

+ सrntex sict ati as obluphere Jitions Priut lame vivalik



Lobszisidk 16p34tnon of





Man (ini-v











\(0-2+2\)



4 wiot?
ghith
- \(\rightarrow\) Th
anle twant.
axat wha

 it इ7ay kotanapaytirs -10.





 in ut in indantivionina -


 -
 10. 125 verue sispurn heositself
-

-xtavan in bl and





No．18，E．Mislhus
Application of the reductave per－ turbation method to long hydromag－ netic waves parallel to the magnetic field in a cold plasma． May 1974.

No．49．K，S．Eskhori．
The propagation of discontinuities for linear hyperbolic partial differential equations，Auqust 1974

No． 50 ．T，O，Espelid．
An algofithe for internal merging of two subsets with smalt extra storage fequirenents，September 1974

\section*{No．51，F．Meland}

Mass transport induced by wave motion in a rotating fluid， October 1974

40．52，I．S．Hedand
A rando exchange model with constant decrements，
December 1974.

No， 23 A． \(\mathrm{H}, \mathrm{Clen}\)
on the evolution of a two
component，two temperatufe，fully
lontzed plasse in electromag－
netjc fields，January 1975
No．51，K，5，Eckhoff
Stability problems for linear hyperbolic systems，May 1975

No， \(55, K\), S，Ecthof \(f\)
On stability in ideal compres sible hydrodynamics，May 1975

No， 56 ． 4 ．Storegseftsen
A note on the stabiblty of horizontal shear flow of an inviscid compresstble flutd，
July 1975
№，57，K，S，Eckhoff and
L．Storesletten
on the stabllity of shear flow in
a rotating compressible and invisctd flutd，July 1975.

No．58，E，N，Hs land and G，Berge Dynamic stabilization of the m \(=1\) instability in a diffuse tineaf pinch，July 1975.

No．59，E，Maland
Mass transport induced by wave motion in a stratifted and rotating fluid，Auqust 1975

No．60，T，0，Espelded
On replacement－selection and Dinsmore＇s tmprovenent，August 1975

No．81．4．Stores．enten
A note on the stability of
steady inviscid helical gas
flows，January 1976
No． 26 E E．Medand
A time－dependent model of
coastal currents and upwelling，
June 1976
No，63，A，H，Eben
Corrections to classical kinetic and transport theory for a two－ temperatura，fully tontzed plasma in electromagnettc ffelds， June 1977

No．64，S．D．F．dim．
Convergence +n law of a sertes of p－ixing random varlables taplies convergence in probability，
August 1977
No，65，A，H．ILen
Kłnetic equation for an electron qas（non－neutral）plasma \(1 n\) strong fields and inhomogenities， June 1978

NQ． 66 ．H．Hopatk and \(S\) ．Tiptts Theory of parametric acoustic afrays，July 1978

No，67，T， 8 ．Espelid
on floatinq－point sumation， Decemper 1978.

No 68 E．N．HSland
Stablitty of an inverted pendulum with hard spfing and oscillating support，Dece⿴囗十⿴囗十灬丶ry 1978

No．69．S，storoy
An efficient least distance algo－ rithe based on a qeneral quadratic programming method，November 1979.

No．70．E．Engevik
Amplitude evolution equation for
linearly unstable modes in
stratified shear flows，Noveuber 1979
No， \(71 . E\) ，oliyeira－Pinto
Argument reduction for elementary
mathematical functions ：An overview，July 1980.

No．72，A．H，gien．
A quasi moment descraption of the evolution of an electron gas towards a state dominated by a reduced transport equation， September 1980.

\section*{J．Berntsen}

User－documentation．Proqral HALF
A subroutine for numerical
evaluation of three－dimenstonal
complex inteqrals，spring 1983

No．73．Sib Aanonsen
Numerfcal computation of the
nearfield of a finite amplitude sound beas，September 1983

No． 74 L \(K\) Sandal
Influence of equilibrium flows on viscous tearing modes， December 1983

Ne． 75 ．Pettersen
The nearfteld of \(a h+g h\) frequency amplitude shaded baffled piston An unalytical／numerical investt gation，July 1981

No．76．P．Pettersen
Numerical salution of the
Buckley－Laverett equation with a generat fractional flow function， November 1984

No． 77 I．Mananseth
sound propagation in the pekefis wavequide with application to
drectional sources
November 1984
No．78．T．Barkye
A study of the Verigin problem
with application to analysis of
Water injectan tests．
March 1985
Ne， \(72,3,1\) Asnensen
Nontinear Effects During Transient
Flutd Flow in Reservois as Encoun－
tered in well－Test Analysis
March 1985.

No 80．T．Mannseth
Suund propaqation in the pekeris
model of acoustic shallow water：
Validity of the Ray，and discrete normal mode solutions in the
vicintty uf mode Cutoff＇s．
January 1986.
No 81．J．Berntsen and E Vefrang， Numerical computation of a finlte dmplitude sound beam．
Hovember 1986.
No 83，J，良的tsen，
on the use of the Richtmyer proce－ dure to compute a fintte amplitude sound bear from a piston source． Apfll 1987
davkent at at of wat

 3 2





 He mork
 Catic switesate?
- - - -
 Lasymman for mithtrutadu! f alualdat-mbita \%o moldhulava








\(x \rightarrow 2\)




filif Whuh athatery










\(+2-2-2\)


afest hotsiniol ishat
buer istion



 74.

 2 (20)


\(x_{0}-2\)
Ghasly
 020 -
```

