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1. INTRODUCTION

The report discusses the solution of the non-strictly hyperbolic

system

u + (gu) 0
X

(1.1)

V t (gv) 0
X

assgming that the equation

ug - vg
u

0 (1.2)
V

defrnes two distinct curves in the (u,v)-space along which the system

£q ,(1.1) has a parabolic degeneracy. As shown in the Appendix, such

systems can be used modelling non-isothermal two-phase flow an a

porous medium.

First, the Riemann problem associated to tq.(1.1) is solved,

i.e. the Cauchy problem defined by Eq .( 1 .1 ) and the initial data

(u, v ) (i. 3 )

L H
u , u etc denote constant values. In the solution of the Riemann

problem, entropy conditions valid mdependently of local linear

degeneracies of the system tq .(1.1) are defined. The system allows

for an additional conservation law, an entropy equation, and this

equation is solved explicitly. Opposite to stnctly hyperbolic

systems, it is not possible to construct locally a convex entropy at

all pomts in the phase space. Results from application of the

Riemann solver in the Random Choice Hethod for numerical solution of

fcq•( 1.1 ) is presented.

r L l
(u , V )

, R R
(u ,v )

>< < 0

t = 0
x > 0
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Based on the Kxemann solution, it xs proven that the general

Cauchy problem for fcq. (1. 1 ) has a solution. This is a generalxzatxon

of a proof given by Tsmple [27] in the case of a sxngle transitxon
curve,

Hyperbolic. systems wxth parabolic degeneracxes have been studxed

by several authors [4,7,11-16,26,27]. The solution of the (Uemann

pioblem for Eq .(1.1) involvxng a single transitxon curve in phase

space where the exgenvalues are equal, has been gxven by Keyfxtz and

Kranzei [l4], assuming one of the wave families to be genuinely

nonlxnear, A specxfic applxcatxon to a reservoxr modellxng problem,

where a sxngle local degeneracy exists, was dxscused by Isaacson [l2].

Johansen and Wxnther [l3] solved the Rxemann problem for a system

closely related to tq. (1. 1 ) , aiso involvxng a sxngle transxtxon curve,

Pajts of the general solutxon of Lq.M.l), wxth special sxgnificance

to reservoxr modellxng, was fxrst gxven by Hovdan [ll] and by Pope

[26]. The general solutxon presented in thxs report has also beed

found xndependently by ba Hota [4], with a slxghtly more restrxctxve

defxnition of the functxon g.
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2. ALTERNATIVE FORMS OF THE MODEL EQUATWNS

U wxll be convenient to operate with several dxfferent forms of

the system Eq.(1.1). As shown in the Appendix, when modelling non

xsothermal flow in a porous medxa, the system origxnated through the

physxcal varxabies S and T, representxng saturatxon and temperature

respectxvely. In these varxabies, the system is wrxtten in matrxx

form as

sr f f
S T

T g o
u j t *~

Q

Q

s
(2.1)

T
J x

The relationship taetween (S.T) and (u,v) is given by

S u - P
(2.2)

v
T

u - 0

and the functxons f and g are related as

f + a

S t 0
g (2.3)

u and 0 are posxtxve constants representxng thermodynamxc parameters.

In the physxcal model a < 0, but thxs restrictxon xs not xmposed an

the followxng. Note that g wxll be used both as functxon of (u,v) and

of (S.T).

A polar-coordxnate form of the equatxons is wrxtten as

r t (rg) 0
X

[2 A )

0t g 0 0
H

The dependent varxabies are then defxned by

Arctg( - )ø
u

(2.5)

r

Arctg( T )

2 2
u + v (S+p) J 1 + T 2
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3. DESCRIPTWN OF THE FUNCTWN f = f(s,T)

The function fis defined on the (S,T)-domam [0.13x10,13. For

constant T, f is assumed to be the S-shaped fractionai-fXow function

weXX-known from rsothermaX fXow in porous media:

LÅ 2 3 . 1. :

Exampie of f(S,T-const)

Further. t wiii be assurned to have the foXXowing properties:

(3.1)

S = 0 (3.2)

S = 1 (3.3)

Fq5.(3.2-3) toget her assure the existence of two distinct transrtron

curves rn phase space, r.e, m (S,T)-space, where the eigenvaXues of

the system matrix are equaX. These properties are onXy possibXe if

for each Te[o,l3, there exist at Xeast one pornt where f -0. As

Xong as two and onXy two transitron curves exist, no restriction wiXX

be made on the number of rnfXextion points of f(T=const). Hence,

gravity may ba mcXuded in the modeX equations, as described in the

Appendix. It will however be assumed that f(T~const) is convex in the

vicmety of the transitron curve S , concave in the vicinety of S ,
S 1 (T) < S (T) .

f < 0
1

a
f < -

S p

T £ (0,1)

a t 1
f <

S (3 t 1





5

A simple example of a function f with the desired propertj.es Is

given by

2
S

f
(3.4)2

S + k(1-S)
2

i

dK
where both k = k(T) and are positive.

dT
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4. STRUCTURE OF THE FUNDAMENTAL HAVES

The structure of the fundamental waves xs independent of the

values of the constants d and (3, and has prevxously been discussed by

Key+xtz k Kranzer lU] and by Isaacson (12 3. The maxn properties wxll

be revxewed here for the sake of compleetness.

The eigenvalues and eigenvectors of the system-matrix given m

Eq .(2.1) are given by

Consequently, the two transxtxon-curves S and S where the eigen-1 2
values are equal are defined implicitly by the folJowing equation,

equivalønt to Eq .(1.2):

f og (4.2)s

The system is not dxagonalizable along S and S . Note that in theI t
(f,S)-space, the transxtxon curves are easxly determxned as poxnts

where straxght Ixnes through the poxnt P = ( - a,- 0 ) are tangents to

the curves f = f( S ,T = const) . The transxtxon curves dxvjde the phase

space into three separate regions, defined as:

A = { (S,T) |Te 1 0. U Q < S < S (T) }

B = { (S,T) (TelO.l] S i IT) < S < $ 2 (T) }

C= { (S.T) I Tt[o, 13 S 2 (T) <S< 1 >

1
A f

s

2
A g

1 T 2 r
r = (1,0) r =

1 V 9 - V
(4.1)

1 1 2 1
1 - (f - g , f ) 1 (0,1)

S T
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From Fq s . (3.2-3) , it follows tjiat f $ - g is non-posxtxve In A C, non

negativ xn B. A point xn the phase space will be denoted U = (s,T).

The characterxstic family belongxng to the exgenvalue Å 2 is

linearly degenerate, whereas the other famxiy has a local degeneracy

at each reflextxon point of f(T=const);

1 1
r • VA f

SS

(4.3)2 2
r »VA e 0

2
fhe last equation also shows that A = g is a Rxemann invariant for

the system, the other invariant is given by T. Due to the lack of

strict hyperbolxcity, no unique transformatxon between the Rxemann

xnvarxants and the original varxables (S,T) exxsts:

3( g.T )

9( S, T )
0 1

(4.4)

9 s

Ihe dini ont uiuitxes are descrxbed by the Rankine-Hugonxot conditions;

l f \ ( ( i + a ) I J
o (4.5)IS]

a denotes the speed of the discontxnuxty and the symbol [x] the gump

in x across the dxscontinuxty. The last equation may easxly be

transformed to a form showxng that one of the Riemann invarxants has

to be constant across a dxscontinuxty . Hence, a dxscontinuity belongs

to one of the two following types:

If]

IS] "Buckley-Leverett shock"o

o g - const. Contact dxscontinuxty9

In a summary, the solutxon of the Riemann problem for Eq. (1. 1 )

consxsts of a sequence of the follwxng waves: .

9 9
S a T

1
(f - q )

S+ P S

t(størn

I = const.
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1) Rarefaction waves where T is constant and the wave speed given by
+ S *

2) Shocks where T is constant across the discontinuity, and the shock
speed is given by the Rankine-Hugoniot condition.

3) Contact-discontinuities where g is constant across the

discontinuity, and the speed of the discontinuity equals g,

The two first types wUI be treated together and denoted as a S-wave.

the last type wUI be denoted as a Consequently, if a

fundamental wave is allowed to be "degenerate" in the way that the

left state equals the right State, the general form of the Riemann

solution is S | T l S 2 T n< S 1 is a wave with left state U L , Ta wave

with right state U R . Let a l:.curve denote a general contineous.

piecewise smooth curve m phase space, connecting two states and

consisting of a union of sements of level curves for T and g. In the

phase space, the solution of the Riemann problem obviously is a J

curve. Fig 4.1 shows level curves for g. together with an example of
a J-curve.

Note that changes in T can only occur through a T-wave, i

through a contact discontinuity.

S

£ia ia
level curves for g, together with an example of a J-curve
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5. ENTROPY CONDITIONS

An entropy condrtron for a non-strictly hyperbolic system was

formulated by Keyfitz and Kranzer [143, generalrzing the well-known

iax entropy condrtron [lB3. For a 2x2 system, the Keyfitz-and-Kranzer

entropy condition states that for a drscontrnuity in the solution to
be admissrble, either

1) 3 characteristics enter the drscontinuity and 1 Xeav/es, - or

2) 2 characterrstrcs are tangønts to the dlscontrnurty and at Xeast

one of the remaining enters the drscontxnuity, - or

3) the shock may be regarded as a Xrmrt of a sequence of shocks
satisfying 1) or 2)

As an exampXe of a shock admrssrbXe accordrng to condrtron 3), take a

situatron where one of the shock vaXues is srtuated on a transitron

curve; then 3 characteristics are tangents. whaXe the remarnrng enters

or leaves the discontinuity. By a carefui chorce of the functron f,

rt rs aiso possrbie to construct discontrnurties where aXX the

chaiacteristics are tangents to the Xrne of discontinuity, confer Frg

5.1. The condrtron (t) grven by Temple [273 does not adequateiy
descrrbe these srtuatrons

£.13 .Q. .1 :
Fxample of a discontrnurty
where aXX characteristics
are tangents to the Xrne
of discontinuity

/

It rs well-known that for a strrctly hyperbolrc system with

local Xinear degeneracres. the Lax criterron rs not restrrctrve enough





10

to resoive a umque soiution [20,23]. As the function f(T=cnnst) may

have more than one infiection point, we wiii not use the generaiized

tan enten on directiy. Combming the Rankrne-Hugoniot condition,

Eq.U.5), and the reiation between f and g, Eq.(2.3), we have

L
S t 0R

9 - o
L

( 9 a ) (5.1)
s R + 0

As (S+p ) is aiways positive, it foiiows that if o + g L , one of the

characteristics beionging to the second famiiy Xeaves, whiXe the other

enters the discontinuity. Hence, for a "Buckiey-Eeverett" shock it is

sufficient to study the behaviour as if oniy one fanuiy of waves is

present. The foXXowing shock-admissibiXity entenon is eqivaient to

the generaiized La x critenon i f no XocaX linear degeneracies is

present:

Shoc:

A f-wave ib admissibie if it does not cross a transition curve. A S

wave is admissibie if it satisfies the Oleinik condition [23] for

constant T:

R L
f -_f_

L R
S - S

f -_f

s - s
R

fwo fundamentai waves may be combined into one wave through a

constant State ( U u --> ) if the speed of the front of

the chasing wave is iess than the speed of the tail of the chased. and

if this condition is fuXXfiXied, the two fundamentai waves are said to

b® £9mß3UbXe. A necessary and sufficient criterion for determing

when two waves are compatibie is given by the foXXowing compatibiiity
condit ions:

L R
T=l - T
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The two fundamental waves xn a TS-wave are compatxtale if and only if
one of the followxng conditxons is satisfxed:

1) Ihe S-wave contains a rarefaction part dose to
and U M e B.

2) The S-wave contaxns a shock dose to U M and. xf supscript R
denotes the right shock value,

M R
I—3. . q
s M - s R

The two fundamental waves xn a ST-wave are compatxble xf and only xf
one of the following conditions is satisfied;

1) The S-wave contains a rarefaction part dose to IJ M
and c A C.

2) The S-wave contaxns a shock dose to U M and, xf supscript L
denotes the left shock value,

M l9 - 9 0
S M - s L

£IPPf;

Only the fxrst part concernxng the TS-wave will be shown. as the

second case xs analogous. If S has a rarefaction part dose to U M ,

the waves are compatxble xff g M < f H , x.e xff U M eB. If S has a
M

shock dose to LI , the waves are compatible xff

M R
f - f

M R
S - S

M R
H 9-9 . R

7 i ' s t Ms - s
0 v 9 (5.2)

Here. the Rankxne-Hugonxot expressxon for the shock speed has been

used. As ( S + p ) xs always posxtive. the result follows,

The shock admxssxbxlxty criterion is valid xndependently of the

number of transxtion curves and the number of inflextion poxnts of f.

Also, the CC xs easxly extended to be valxd for a general number of

transxtxon curves. Together, the shock-admxssxbxlxty crxterxon and

the CC wxll be used to construct a solutxon of the Riemann problem,
unxque in the (x.t)-space, termed the entroov/ solutxons

CQfllP.a ty conditions (CC)
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6. CONSTRUCTWN OF AN ENTROPY FUNCTION

An entropy function E for the a hyperbolic system is a scalar

function, håving the foXlowing properties

1) E is convex, i.e the Hessian d 2 E is positive døfimte

2) A scalar function E exists such that VE = A VE where A is the

system matrix and V is the gradient operator in the unknown

functions

For a stnctiy hyperbolic, genuine non-linear system, if an entropy

exists, a viscous reguiarization must satisfy the followmg inequaiity

in the topoiogy of distributions [l9];

(6.1)

I+’ t is a known function, Eq. (6. 1) can be used as a shock

admissibility cntenon. Using Eq .M. 1 ) , is it easy to to show that a

function E = E(u,v) can have the property 2) oniy if it satisfies the

foXXowrng equation:

ug E + ( vg
v uu ug ) E Vg E 0 (6.2)v u uv u vv

Eor a generaX 2x2 system, the entropy-equation is of equaX type as the

original l.order system, i.e. Eq. (6.2) is hyperbolic everywhere except

along the transition curves. The equation may be integrated by
wnting the equation on the form

(9 . - 9 )• V[ uE + vE - E ] 0 (6.3)v U U V

AS ( V " V 15 the tan 9 ent ~vector to level-curves of g, it foXXoWS

that E must satisfy Clairauts differential equation with an

inhomogeneity term sp, - ip being an arbitrary function of g;

uE + vE - E *P (S ) (6.4)u v

By transformmg to polar coordinates as defined in Eq.(2.5), the
soXution for £ is written:

E+F S 0
t x
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tp
r J-- dr t n|*E (6.5)

r

4> =4» ( 0 ) is a new arbxtrary function. The entropy-flux Fis given by

F gt + J (p dg (6.6)

A necessary condition for the given entropy function to be

convex in (r,B) is that E is positive:r r

E
rr (6.7)

ip denotes the cjerivative of ip with respect to g. As changes sign

across the transition curves, it follows that E also changes sign in

the phase space. Hence, it is not possible to construct a contineous

entropy that is globally convex, and at the transition curves it is

not possible to construct a locally convex entropy. Note that for a

strictly hyperbolic 2x2 system, it was shown by Lax (19J that it is

always possible to defme a convex entropy locally.

H (x) denotes a change in the quantity x through a
L R

discontinuity, fx] - x - x , then the entropy production caused by a

discontmuity is given by

It follows easily that for a contact discontinuity - and also for a

Øuckley-Leverett" shock håving g L - g R - the entropy change across

the discontinuity is zero. Expanding the right hand side of Eq.( 6.8)

in a Taylor senes in the "shock strenght" (r R - r L ), we have

oIEJ - [F3 (6.9)

Now asßume that a given wave is fully contamed in one of the regions

A, B or C and satisfies the shock-admissibility criterion given in

'P
2 9 r

r

ip' 9
r 1 / 2 . ,l- R L 3{ _- ( r g ) } ( r - r ) +

2 r ri

R R
R L r g

o [ E 3 - t F 3 - - r r

g - g

R L
; S- dr

. 2
+ f ip dg

( 6 . B )
r - r L r L

r g
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Chapter 5. As (r 9 r =(S + o)f<j S , Eq.(6,9) shows that for a

suf fx l i en l ly weak shock where fo, the shock-admissibility

crxterion is equxvalent to an increase or decrease in entropy,

accordxng to whethør the wave is contained in AUCorin B. However,

waves crossrng a transition curve may cause an xncrease, a decrease or

no effect in the entropy.

When derivxng the property Eq.(6,1) for a strxctly hyperbolxc

system, the choice of a convex or concave entropy is just a matter of

convenience, - the inequality sxgn in Eq.(6.1) must however be

reversed xf a concave entropy is chosen [6], Hence, for a weak shock

the given entropy could be used to resolve the entropy solution if and

oniy if it could be guaranteed that the solution does not cross a

transition curve.

It will be shown in the next sectxon that in some cases where no

entropy-change xs produced, the solutxon of the kxemann problem is not

unique in the phase space.
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7. CQNSTRUCTWN OF THE RIEMANN SOLUTION

In the following, Xet lUU ,U R ] denote the solution of the

Riemann problem Eqs.M.l) and (1.3). As already shown, the solution

is composed of a sequence of fundamental waves J=S T S . ~,‘f , where
i 1 1 2 n

is a wave wxth left state U . The goal of this chapter is to show

the following theorem

IJlLM£J±__l

Ihe Rxemann problem for Eqs.(l.l) has an entropy solutxon of the form

S , TS 2 - The solutxon xs unxque in (x, t)-space, but not xn the phase
space.

The proof is based on a study of cases, where the solution is shown to

belong to one of the foilowxng classes of J-curves:

Cia s s 1

Each fundamental wave satisfxes the shock-admxssxbxlity
L H

crxterxon. If LI e S US, , then U e ti.1 2

Ciass 2

Each fundamental wave satxsfies the shock-admissibxlity

crxterxon. If U R e then U H e AUC.

Ciass 3

Each fundamental wave satxsfies the shock-admissibilxty

criterxon- One of the states or xs lying on the

transxtxon curve near U L , accordxng to the following rule;

J = TS where T : U L -->

S : U M --> U R

J = ST where S: l/ --> Ll*'1

T: U M --> U R

.1 -S TS where S ;U L --> U M U L t AL)C

r : ,J M -> U N

S 2 : U N --> U R
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U L e C and f L <f R => U N eS U S1 2
LI L e A and J L >T R => U N eS\J S

Else u e \J

It is easiXy seen from Fig A.l that between two arbitrary states,

infinitely many J-curves not belonging to one of the classes 1, 2 or 3

exrst. However, at least one curve belonging to one of the classes

does exist, - and in each class, if it exists, the J-curve is unique.

In three following lemmas, crxterions for when the Riemann

solution bølongs to one of the three classes will be given. Finally,

it will be shown that the given cntørions covers all possible
L p

combinations of U and U. To facilitate the statement of thefacilitate the statement of the

criterions, defme the quantities g.( and g ? by:

If no solution for T 1 exists, defme T ] - 0. If no solution for T ?
exists, defme T = 1 .

2

If a solution of Class 1-3 exists, it rema ins to show that also

the compatibility criterion CC is satisfied, as each of the

fundamental waves satisfies the shock-admissibility criterion, To

show that a given J-curve consists of compatitale waves, the following
corollaries of the CC will be used:

CQ.6.QFCARV 1

The fundamental waves in a Class-1 wave are compatible if both and
11 R .
u are contamed in B. The fundamental waves in a Class-2 wave are

compatible if both U and U are contamed in Aor if both are
contamed m c.

9 , • 9(
R R

S 1 (T ) ,T )

9 l
R R

S 2 ( T ) . 1 )

(?. 1 )

A1s o, let ' 1 and L be defined implicitly as Solutions of the

equations

R
g gl VV’ T 1 5

R
9 9 I W' T 2 '

(7.2)
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CQ£QL LAM

The fundamental waves in a J-curve of Class 1 or Class 2 are

When a given wave Jis of Class 1 and U L , U R eB, the whole J

curve is contamed in B. As g $ 0 in B. the CC is satisfied.
Analogous for a Class-3 wave.

o

M
The proof is shown for UeS . If the S-wave has a rarefaction

M
part close to U , the result follows immediately from the CC. As

f (T-const. )is convex in the vicinety of S , the S-wave contams a
M R '

shock dose to U only if Ue A. This gives two possibilities for a

shock, accoiding to whether the S-wave or the T-wave is contamed in A

laking each case separately, it is easily checked that the CC is

satisfied.

UMMA 1.

R[U, U R ] is of Class 1 if U e B, and in addition, one of the

following conditions is satisfied

I)UR e A and g R 4 g^

2) LI R e 0 and g, 4 g < g1 2

3) U R e C and g \ g < g R

£jpof

From Fig 4.1 showing the level curves for g, it is obvious that

when U e B, g g* g guarantees the existence of a J-curve of
1 R

Class 1 connecting U and U. It remains to show that the fundamental

waves are compatible.

If the S-wave has a rarefaction wave dose to the CC is

immediately satisfied, as U M e B when U L eB. Hence, m the

following, it is sufficient to study the situations where the S-wave

contams a shock dose to U M ;

M
compatibXe if U e US? .
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P
When II e A, the S-wave contains a shock Crossing the transition

curve S , as f(T=const) is convex in the vicinety of S , If U*

clenotes the light shock val u e , then S SR~ > g g , and the

concjition 1) in the lemma guarantees that the CC is satisfied. The

argument is identical when U R e C. When U R e 0, the lemma follows

immediately from Corollary 1.

R p
The lemma is shown for U e A, as the proof for U e C is

R
analogous. When U eA, the condition T guarantees the

existence of a J-curve of Class 2 connecting l/ and IJ R .

When U L f A, the CC is satisfied by Corollary 1. If U L e 0, the

S-wave must cross by a shock, as f(T=const) is convex in the

vicinety of S . The S-wave may still contain a rarefaction part close
M

to U , and the CC is then straightforward satisfied. If the S-wave
M

contains a shock close to LI , the S-wave must be a pure shock wave.
ML R M L

As S < S and as g - g > g , the CC is satisfied.
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Lamma. 1

R[U L ,ll R ] as of CXass 3 af one of the followang conditions are
sa tisfred:

1) U R eAUßandU*~eC

2) II R eB U C and U L e A

3) U R eA, e A and T*" < T

3) U R e C, 0 L t C and T L > T 2

A) U R e AU B, li** e B and g 2 < g L

5) U R e BU t, U*“ e B and g*“ < g.j

Pimf,

The Temma as proven by an each case combining Lemma 1 or Lemma 2

together with Corollary 2. Only one case will be shown, the case
R L

u e A, LI e C ; In this case, it is obvaouslv oossible to constructIn this case, it is obvaously possibie to construct
N

a CXass-3 J-curve with U £ . Lemma 2 then gaves that the

fundamental waves in the S f T-wave are compatible. Corollary 2 gives
that the combination TS is compatable.

Fag 7.1-7, pp 21-22 show all the combanations of U L and U R

covered by the Lemmas 1-3. In each figure, U R is specafied, and the

phase space as davided into different regions showang the solutaon

type af U L as contaaned in the regaon. It as easily seen that all

possable combanataons have been covered by the lemmas.

Jf u is satuated on the boundary between two regions, the

lemmas may state that solutaons of two different classes exist. The

reason for thas may be that the J-curve belongs to two of the classes

simultaneously, as when a S-wave in a Class-3 curve is "degenera te" ,

a.e has equal left and raght states, However, an certain cases two

dafferent solutaons exist an phase space,- this is when

L
U e B

R
U e A U C

(7.1)L R
g 9
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It is easily checked that in (x, t)-space, the solution is unique,

being a single discontinuity with speed g L . The solution could be

regarded as a pure T-wave, but this would however not satisfy the

shock-admissibility criterion. The non-uniqueness in the phase-space

was frrst pointed out by Isaacson [I2J in the case when the system has

a single transition curv/e. It follows from Eq • (7.1) and Eq .(6 . a ) that

the change rn entropy caused by the non-uniqge waves is zero.

Note that in some cases, a small perturbation of the initial

states may change the solution drasticly. This is the case for

instance i f the initial states are dose to a situatron as described

by Eq.17.1); a perturbation may cause the solution to change between a

Class-1 wave and a Class-2 wave.





fl 9 7,1 £l9 7,2

£19-7,3 .£ia_lA

hi 9 7t.1 ~ 7 : Solution regions in phase space.
The position of is shown by a biack dot
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Fia 7,fi fia-u:





23

9. EXISTENCE OF A SOLUTION OF THE GENERAL CAUCHY PROBLEM

T(ns chapter prov/es an existence theorem for the general Cauchy

problem associated with the system in tg. (1.1), involving two

transisiton curves. For the case where the system involves a single

transition curve, Temple [27] generalized the Glimm [B] existence

theorem for a strictly hyperbolxc system. The proof here follows the

steps outlined by Temple, defining a transformation f: (S,T) -> (2,T),

regular everywhere except along the transisition curves, and using

this transformation to construct the Glimm functional. As only the

construction of the Glimm functional deviates from the proof of

Temple, it is sufficient to prove that the Glimm functional is

minimized by the waves of the Riemann solution R[U L ,U R ]. Given a

certain property of the function g, the proof may be extended to a

general number of distinct transition curves.

møREH -1

The Cauchy problem for the system Eg. (1.1), mvolving two transisition

curves, has a global weak solution for arbitrary initial data of

bounded variation in 2 and T.

The variable 2 is defined by first extending the definition of g

into the domain (S,T) e [o,l] x[- 1,2 j. This is done by extending the

level curves for g in a non-intersecting differentiable manner, as

shown on Fig 8.1, The level curves are monotone everywhere except at

the transisiton curves, and the extension of the level curves also

involves an extension of the transition curves in a smooth way.

Note that to each point U in the original phase space it is

possible to associate ope point on each of the extended transition

curves lying on the same g-løvel curve as U. These two point will be





24

for IJ and denoted and U respectiveXy,
o

The extensxon of the XeveX curves is not unxque, and to facUitate the

anaXysxs, an extensxon wiXX be chosen such that xf A and B are two

arbitrary states,

ia. 11

Thrs xs aXways possibXe if the foXXowxng conditxon xs satxsfxed:

gcs 1 to). oj < g[s2 m,n (8.2)

If xt xs not possibXe to define a extensxon satxsfyxng Eq. (8 .1 ) , the

sxgnxfxcante played by the to transitxon curves in the foilowxng must

be interchanged. In the case of n transxtion curves, one must assume

the foXiowxng condtxon can be satisfied:

(8.3)

Now defxne the varxabXe i xn the foXXowxng manner:

(8.4)

The Jacobian of the transformatron f equals 2 and from the relation

termed the a s soc

U = (S , T ) .i i i

f-ifl 3r 1 :
txtension of the function g

,A 0 A 0

T 2 - V < 2 ' T , T, I

-v.'

T 2 - T U e C

= - T- i 2 Ue B

- ( T - T 1 ) - ( T 2 - T 1 ) u e A
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ar

as

I
18.5)

it foliows that the transformation is reguiar everywhere, except along

the transxtion curves.

iet T + and T cjenote T-waves where S, from ieft to rxght, is

increasing or decreasing respectiveXy. Then define the wave strenoth

in the foiiowing way:

Note that for a S-wave in A 0, the definxtion of wave strenght may

create two dxfferent sxtuatrons , demonstrated xn Fig 8.2:

LLSU-iJLA : Wave strength for waves Crossing S .

I g r Hi + g T .1
di (s .r )x x

l= I . 2

sl= 21 T A - T t )t(r* - t“ I
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f-ia-i-iJI : Wave strength for waves Crossing .

The sxgnxficance of the extensxon condxtxon Eq.(B .1 ) xs demonstrated

xn the iatter possibility, as Eq(8.1) ensures that the expressxon

gxven for |S| is posxtxve.

Finally, xf J denotes a general J-curve as defined xn Chapter 4,

the Glxmm functxonal xs defxned by

F{ J) l ( |S( + |T | ) (8.7)
J

fo prove that i xs mxnxmxzed by J = the concepts of additxon

and Of waves wxll be used, as xntroduced by Temple.

Addxtxonally, a concept of reductxon of waves wxll be defxned. The

purpose is to use these operatxons successxvely to transform an

arbltrary J-curve xnto the Rxemann solutxon, and and the same txme

ensure that the Glimm functxonal decreases through each step of
transformatxon.
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ON OF NA

fhis sectxon gxves three lemmas stating the behavxour of F when addxng

fundamental waves. The first xs a straxght-forward consequence of the

defxnxtxon of the Glimm functxonal, b'q . ( 8,7 ):

JLftIHA 1

The next lemma concerns addxtxon of S-waves. If J- S S takes U L to

U , defxne the sum S = t as the unique wave S = R[U L ,U R ].

LimA ?

HS 1 ts2 ) < FIS 1 ) + FIS ) .

If S and S have only one state xn common, then FIS) = FIS ) + p(s )1 2

Proof

A comple te proof xnvolves a study of all possxble combxna txon s of
p

anc* * * ' anc* only a few wxll be shown here to verxfy the lemma. Let

A. B and Cbe three states such that T= T A =T 9 = T C . Let S be a S

wave from A to B, S a S-wave from B to C, and let S = S t S The1 12
next page shows some typxcal casøs. Note that the extensxon condxtxon
tq.18.1) xs used several txmes.

F(S T) = FIS) + FIT)
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iACI ! /// ILU. L

T,9 -
A -

F(S 1 |tF(S 2 )

11 i
i i ,

' '
i I i \ ;
' / / i \

* i i 1 i I

F(S)

F(S 1 )tP(S 2 )

1 /
l / /

FIS) = 2(T 2B - J2C ) +4 IT T 0) *é
0

-A
,''~\

// I
C ASE 4 : // ,

/ /

/ /
/

t ( t 2a - r B )  21 T - r A )
FIS )1/

// FI S 2 )

FIS)I /
I , /

FIS) = 21 T C - T B ) > 0FIS, )tF(S, )1 2 2 2

 -i
/ X 1/ I

I/ / I
1I 1 1I 1 1 Ii 1 1 / I

I '! / l
uiJJJ' ifl// C / I
1W 1 1' y /
\ 1 ’\i / ,

FIS,) = 2 ( T® - 1* 1 - I T® - T* )

F(S2 ) =2( T® - T 2C I- ( T -T® |

F(S) = 2( T - rf ) - ( T C1 2

F(S) = 0

/O" I
CASf 2 ! // 1

// 1

Fis I - 21 T - rf ) - I r,B - T* I* L 2

F(S 2 ) r® t T 2C -2T
1 IB I 6
\ I 1
i ; /
1 /

T 2 * T 2 - 2, f

F( S ) = Q

I

CASE 3 ; / 1

ti 1 !

j' S |f// l 1
1 ' / K i

' / ; \ ;// 1 i
*I, / ' 1
1/ C 0I / I

F( V =T2 *T2 ' 2T {

F(S2 I = Ir“-Tj ) 2( T -T® )

FIS) -- r A tr c - T
2 2

F(S 1 ) + F(S 2 )

n

A !'
• *-4

1 / c,

T C - T B
2 2

2( T -T*) - ( I 2C -T* )\ 1 /
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The addxtxon of T-waves xs a bxt more complicated. If J = T T takes
IK 1 2

U to U , defxne the sum as following:
1 2

r L w
RIU ,U ] when f and T 2 both are contaxned xn
the same domain A, B or C.

L R
TS-wave takxng U to L) when the

L R
are separated by S and T > T

L R
TS-wave takxng U to U when the

L R
are separated by S and T < T

rr ... L *
SF-wave takxng U to U when the

are separated by and T < T

L R
ST-wavø taking U to U when the

are separated by and T > T

If + is a f-wave, and T and have one poxnt xn common only

then P(T. t TI - P(T ) + F( T, ) .
1 2 1 2

£j'Pflf

Once agaxn the proof xnvolves a study of ali possxble combxnatxons of
L R

d and U , and only a few wxll be shown. Let T be a wave from State

A to state B, a wave from B to C, and let J - T + T . The next

page shows four typxcal cases.

fhe three lemmas statxng the behaviour of f when addxng waves

wxll be treated together and termed the additxon lemma.
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( SvF I

-i
X I

-1

/ I

F(T 1 )tF(T2 )

FIT ) + F(T )
I 2

P( V+ FIT2 )

F( T )
1

fit 2 )
F(J )

CASE t : /

21 T A - T B )

61 T C - T B )
FIT 1 )

F(T 1 )=8( T A -T B )

fit2 ) =8( r L -r B )
f( j) = a( r c - r A )

F( J ) = 0

2( r A - r B )

6( T c - r B )

2( r A - r c ) t 2( r (: - r B i

MJ) = B( T C - T B ) > 0

F(T ) ) =u r A -r B )
m 2) =a( r c -r B )

F(J) = a< T c - r A ) t 2( r A - r B )

F(J) 10( T A -T 0 ) > 0

F(T 2 ) =6( r -T P )

f( j) = 2( r A - r B ) f 6( r c - r A )

F(T 1 )+F ( T 2 l-FUI -6(T A - T^1 ) Q
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E QF MAVE

let J be of the form ST (TS). In many cases it is possible to
L R

connect U and U also through a wave of the form J' = TS (ST), thus

constructing a parallelogram of segments related to the two states.

Introduce the followmg defimtion:

U R
Gaven two states U and U and assume that it is possible to

construct a parallelogram as described above, The waves J and J' will

be termed j nterchangeable if

L R
1) U and U are contained in the same domain A, B or C.

L R R
2) U and LI are separated by S 1 only, and U t- A

(_ R u
3) U and U are separated by S ? only, and U e C

The expression "separated by S only" means that only ojie of the

transitxon curves separates the two states. Note that no waves

Crossing two transition curves are interchangeable, even though it may

be possxble to construct a parallelogram of waves around the two

states. The sxgnificance of the concept "interchange" follows from

the followang lemma:

LEMMA i

If the waves J and J' are interchangeable, then p{J) = p (J' ) , and the
I tø

Rxemann solutxon RUI ,U } is given by J or by J ‘ .

Proof

Once agaxn the proof xncludes a study of all possible cases, and only

a few typrcal examples are shown on the next page. In all the

examples, J = ST and J' = TS. Also, the shorthand notation R » U W ,

L = Ll*" is used.
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F(J) = 2(T L - r R ) - (T 2R - T 2L ) t2{ r L - T R )

HJ') = 4 (T L - T R ) - (T R - T 2L )  2(T R - T R )

F( J ) = F(J ‘ )

R C U L .U R ] = J
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REDUCTION OF UAVES

In the work of Temple [2l], the following lemma is included as a

special case of Propositron 5.1;

kfctifiA s
L R

Let LI and U be two states that may be jomed by a single T~ or S

wave, J. Let J' be another J-curve of the form S TS or T ST
12 12

connecting the two states. Then F(J) < P(J ’) .

£i:g,Qf

If some of the fundamental waves in J’ are interchangeable, then the

lemma follows drrectly from the lemmas of addition and rnterchange.

From the defrrutioris of wave strenghts, it also follows readxly that
R L

if J = S, then F(J ) - F{J) 4|T -T |. Some typical examples when

J = T and none of the fundamental waves in J are interchangeable are

shown below:

H
CASE 1

/ / I
f f I

i
/ I

CASE 2

F ( J ) = 8(T R - r L )

F( j • ) S 2(T L - rj-) - (T 2L - T*)

 6 (J R - T L )

t 2(T R - ij-) - (T 2L - T*)

nr) -f( j» 4(t l - rj-) - 2it[ - t x ) > o

f( j) = a(r R - r L )

F( J‘ ) = (T R t T X - 2T L )
2 2 1

t 4(T M - T L )

(T* * T* - 2 T L ,
2 2 1

Fl J' )- F (J) = 2(T 2L - T L ) t 2(T 2L - T X )

+ 4(T L - T L ) > 0
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It is not possible to trans form an arbltrary J-curve J into the

Riemann soiution thxough the operations addition, rnterchange and

reduction oniy. However, by a successive application of the three

lemmas, J may be transformed into a new curv/e J' , p(j * ) < f(j), where

J rs contarned on or inside a certain "trapezoid" around U L and U R .

J can also be restricted to follow certain "main routes" inside the

trapezoid, confer Fig 8.3:

hl.9—ÉL_l s "liarn routes" after a transformation of J

To prov/e that Rtll L ,u R ] gives the minimum valuø of f inside the

trapezoid, in addition to the lemm as of addition, rnterchange and

reduction, we will need the following lemma:

LIÆAJsi
L R

take U to U by Crossing maximum one transition curve. and

also assume that J r- ST or J - IS. Then F(J) < F(J ) where J
L w

R[ U , U j .

ProQf;

The proof can be divided into three parts, according to whether the

Riemann soiution crosses S , or no transition curve. The proof

when J crosses S,) or follows the same lines as the proofs on the

previous pages, also confer the proof of Proposition 5.0 by Temple

[27]. Hence, we will only study the situation when ug transiton curve

is crossed. Then three possibilities exist: Fither J = J', j and J'
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L R
are interchangeable, or LI and U are both contained on S 2 . In

the two first cases, obviously F(J) = FIJ *). An example of the last

Finally, the next page show some examples on how the lemmas 1-6

can be combined to successiv/ely transforming a J-curve following one

of the "nu m routes" of Fig 6.3 into the Riemann solution. In the

examples shown, the following abbreviation indicate the lemma used

during an operation:

(A) Lemma of addition

II) Lemma of interchange

(X) Lemma 6
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(A)

(I)

(A) (X)

(A) (I)

(A)

F(J' ) = F(RACL)

= F(RAB) t F(BC) + F(CL)

= F(RFfI) t FIBC)  F(CL)

* P(R P ) + P(P E ) + P(E C ) + P(C L )

= P(RF)  P(PE) t P(EOL)

« P(RPDL)

= PI J >
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9. USE OF THE RTEMANN SOLVER IN NUMERICAL APPLICATIONS

SeveraX numerical methods for solving hyperbolic conservation

laws have been based on solution of local Riemann problems, examples

are the RancJom Choice Method 12,3 3. Godunov-type methods [lo], and the

front-tracking method of Glrmm et al [9]. As noted in Chapter 7, the

Riemann problem of the Eqs.(l.l) is "unstable M In the sense that small

peiturbations in the initial states may change the solution drasticly,

and this indicates that use of the Riemann solver in nurnerical

solution of the Eqs.(l.l) is not advantageous. This chapter shows

examples of the use of the solver in the Random Choice Method (RCM),

also named the Uniform Sampling Hethod.

A common feature of methods based on exact Rremann solvers is

that only a small part of the information contamed in the Riemann

solution is used. A Riemann problem for Eqs.M.l) may involve

solution of as much as four non-lmear equations, and as great care

has to be taken to pick the right solution, much time is used to

pjoduce information which is later disregarded in the solution. As

the number of grid block increases, the RCM applied to Eq. (1. 1 )

becomes ra ther time-consuming. For strictly hyperbolic systems, this

diawback can in some cases be compensated by using aoproximate Riemann

solvers 110], and it is an interesting question whether for instance

Godunov-type methods could be constructed with approximate Riemann

solvers in the case of non-strictly hyperbolic systems. Godunov-type

methods are obviously less sensitive to the instability in the Riemann

solution than the RCM, as the first tend to average the Riemann
solution.

In practical applications, the function f may be represented by

a table only, and as the problem is not structural stable m the same

way as for a single hyperbolic equation 15,25], the method chosen for

interpolating f could highly influence the solution. In all examples

shown in this chapter, the function f is represented analytically,
using Eq .(3 .4 ) together with the definition
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1
K(T) (9.1)2 - T

AU non-linear equations are solved by the Newton-Raphson method.

Also, in all the examples shown, a = 0,5, p = 3.5 and a Courant number

of 0.8 is used. If nothing else is specified, the number of grid

blocks is 200. The Solutions are shown for t = 1,

As g is a slowly varying function of T, the initial T-profilø is

convected with a minor deformation only, and in most of the examples,

only the S-profile is shown. With the given function f, both the

eigenvalues of the system matrix are positive, and Godunovs method is

equiva lent to standard upstream differencing: use of the Riemann

solver is not necesarry. For comparison, results using this method is

shown together with the results from the RCM.

In cases where the solution of the fqs.M.l) does not posess a

transition State in contineous parts of the solution, the RCM behaves

as for strictly hyperbolic systems. It as well-known that the method

then resolves discontinuities without dispersion, but has rather low

acruracy in smooth pai'ts of the solution, Fig 9.1 shows the solution

°f a Riemann problem modelling injection of cold water into a hot oil
[ R

reservoir: U - (1,0), U = (0,1), Godunovs method needs a very high

number of grid blocks to resolve the plateau with constant S

suf ficiently.

Also, Fig 9.2-4 all show Solutions of Riemann problems, these

satisfymg or dose to satisfying the conditions of £q. (7. 1 ) producing

non-uniqueness in phase space, The intital states are given in Table

9.1. Obviously, the upstream differencing method are not capable of

resolving the abrubt changes in the solution and also reflects the

non-uniqueness of the solution in the case where Eq . (7. 1 ) is exactly

satisfied. Also note that the numencal solution in this case is non

monotone, even though Godunovs method is monotone for strictly

hyperbolic equations.
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L l U L L R

la.fe l e 9 ...1 : Initial states for the solution shown in Fig 9.2-4.
U is identical in all threø cases.

In cases where the solution has a transition statø m smooth

parts of the solution, large instabilities may occur in the RCM, and

the method converges slowly as the block lenght of the grid goes to

zero. This is demonstrated in Fig 9.7-10, usmg the initial condition

shown in Fig 9.5-6. Note the difference in the solution produced by

merely changing the random-number generator involved. Except from the

results of Fig 9.9, the random-number generator descnbed in [241 is
used .

Finally, two examples when all the initial states are situated

on the transition curve is shown in Fig 9.11-12. T is chosen to

vary linearly with x initially. Both when T increases and decreases

with x, the solution seem to "avoid" the transition curve, and the

solution does not involve any specific problems.

Fxg. S T S T a g

9.2 0.79 0.7 0.3369940

9.3 0.7936178 0.7 0.9319771 0.0 0,3378500 0.3378500

9.4 0.81 0.7 0,3386065
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£.Ia.JL.2. : S-profile in the solution of
the Riemann problem
specrfred in Table 9.1

Fig 9.3 : S-profile in the solutron of
the Riemann problem
specifred in Table 9.1

Flfl P t ; S-profile in the solution of
the Riemann problem
specified rn Table 9.1

FJ-g 9.1 : S-profile in tha solution of

the (Uemann Problem

U - (1.0). LI = (0, 1)
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f*t
j

( Sif
I

f

f
iii

/tI
CD

O 2

j-l-g fl ,5 - ; Initial S and J-profile Crossing

fig fl f ?-å : Solution profiles using the initial condition
i

shown in Fig 9.5-6

f_U3—!LUsl : Solutions based on two different random-number

generators, shown in the phasa space

fia fl' I.Q As Fig 9.7 but using 2000 grid blocks
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T

Eig 9-JU ; Solutxon of a Cauchy problem
with all xnitial states on S„
T increases rnltiallyO

T

Eig 9•1 £ : Solution Of a Cauchy problem

with all inxtxal states on S ?
T decreases initiallyo

s
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APPENDIX: DERIVATION OF THE MODEL EQUATIONS

To correct a small flaw and to supplement a derivation first

gav/en by Fayers [73, this Appendix shows the derivation of the model

equations describing non-isothermal two-phase flow in a porous medium.

In the following, the subscnbts w.o and r will be used to

denote parameters characterizing water, oil and rock respectively. Let

(q--w,o) be the mobility of fluid q, i.e. the relative permeability

divided by the viscosity, and let (q=w,o,r) denote the thermal

capacity per unit injyjs. is the capillary pressure, and A is the

total thermal conductivity,- both are functions of water saturation S

and temperature T. tp is used for porosity, k for absolute

permeability and u for the total volume flux. Also introduce the

notation

A
w

f
Å + A

W Q

(Al )

b

F f - aS - blx K

Both the functions a and b are normally positive [ll, and is

normally negative [l7]. Assuming incompressibility and neglecting

gravity, conservation of mass is expressed through the equation

BS Bf
ip + u

at Bx
a asu a * arb 1 (A 2)

Gravity is easily mcluded by a redefimtion of the function f [2l].

, Å Å 9p
j< w o
u A + X 9s

w o

A A 3p
]< w o c
u A + A dTw o
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Conservation of energy is expressed as

(A 3 )

Introduce the thermodynamrc functions

A k - K
w o

1 -tp
K

ip S
0 K +

0

c K
0

(A 4 )

c + c' T
a t a ' r

cx A t A’ 7 * Q

0 t B 1 T

A t A ' T
p

In general, the thermal capacities per unrt mass are functions of

tempera ture, and the sign is used to denote derivation with

respect to T. After a scaling of the equations, and after a

substrtution of Eq.(A2) mto Eq.lA3), the system of conservation laws

simpXifies to:

S + f
t

( aS t bT )
x X XX

(A 5 )

The functions a,b,A etc are now redefined as dimensionless. In his

derivation, Fayers [7l seem to neglect A‘ B' and C even when A, ø

and C are allowed to vary as function of temperature. Following

Fayers, the function (f+a/S+Ø) is termed the thermal advance function.

As a model for high-rate conditions, the terms representmg

capiilary pressure and thermal conduction will now be negløcted and

the system reduced to a first order system. If a and 0 are assumed

constant, the equations may be wntten m the form given in Eq. (2. 1) .

s
{ t tpK S + IPK (1-S) + U-lp)K ] T }

at w o r

* u~{ [ K F + K I- P ) ] T } = A ™ }
OX w 0 dx 9x

f t a
T t T
t S t (3 k

1
-7 r AT 3 + ( aS + bl )T
A + AI x x x xx
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Ihis is achieved i f A,B and C have the foliowin 9 functional form:

This is obvaously satisfied rf the thermal capacities are indspendent

of temperature, and from the defrnition of A. B and C, it then follows

that u < p. Note that if CT = const., the system reduces to the form

studied by Johansen and Winther 113].

AT -
V 1

A
1 A . A , B . .

0 1 0 '
.., consts.

BT =
V * B , (A6)

CT *
V *

C
1

C # Q
0
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