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Abstract.

We solve a stationary, linearized and inhomogeneous

Fokker-Planck equation describing the electrons of a weakly

coupled and weakly inhomogenous plasma in a magnetic field

at times large compared to the effective electron - electron

collision time.





Introduction.1 .

We propose ourselves to solve a stationary Fokker-

Planck equation. Motivation for this study is to be found in

reference [1 ], [2 ], where evolution of a weakly coupled and

weakly inhomogeneous plasma in a magnetic field is studied

by the multiple-time-scale method. The electron-ion mass

ratio and a weak inhomogenity parameter being introduced

as small parameters, kinetic equations for electrons and

ions are obtained at different orders of approximation in

these parameters. These equations appear as non-secularity

conditions in the multiple-time-scale expansion, and they

are valid at times which are large compared to the effective

electron-electron collision time. As is always the case

when applying the multiple-time-scale method to kinetic

theory, some assumptions are made, which are difficult to

give a strict justification. Therefore it is of some

importance to show that equations obtained as non-secularity

conditions do have Solutions which are physically reasonable

The kinetic equations for electrons obtained in

reference[2]contain, in addition to the linearized Fokker

Planck operator, a diffusion term which is due to the fact

that electrons have a greater velocity than ions, and a

magnetic field term. The kinetic equations for ions [2] do

contaln only the Fokker-Planck operator. We will here

concentrate on the equation for electrons. However,

similar results are easily obtained for the equation for

ions (by maklng 7=0, B=0). As to the possibllity of

extendlng the results to equations where the right hand





sides are of more general form than the ones we consider,

see comments in section [4].

In section 2, we expand the distribution function in

series of surface spherical harmonics. Thus we reduce the

problem to got the solution of an infinite set of ordinary

int egro _ di fferent ial equations. The number01 inhomogeneous

equations is determined by the order of anisotropy of the

right-hand side. In our case this order is finite» It

seems to be very important to make use of this property.

Two parameters, a and 7 , are introduced; the choice

q= i and 7 = 0 corresponds to the case treated by Su [3]

and McLeod and Ong [4].

and 7 < 1 hold, we have: The obtained integral operators
2

e G LO0 , are symmetric and completely continuous, and thecL jo 2'V/p
second-order differential operators, e L. are self

2 2 *
adjoint. Thus e^c and e^c „ + ave same

essential spectrum. The choice 7= 0 gives an essential

spectrum ranging from -°o to 0 , while 0< 7 < 1 gives

a negative, discrete spectrum.

In section 4 we localize the spectrum to obtain the

necessary information on the inverse operators. We conclude

that the Solutions of the integro-differential equations under

consideration, do exist, under suitable conditions.

We also touch upon a corresponding plasma model where

ions are neglected, and we give results in this case.

In section 5 w® show that the Solutions are twice

differentiable. We also give results concerning the

asymptotic behaviour of the Solutions in different cases.

In section 3 we show that if the relations 2a = 7 + 1
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(0

(2)

Reformulation of the problem.2.

The kinetic equation to be solved is [2], Eq.(2.50)

As long as nothing else is indicated, Index 1 refers to

electrons and 2 to ions. , are the peculiar

velocity, charge and mass of electrons, are

the density, pressure and temperature of electrons, and c°

is the total mass transport velocity at zeroth order of

approximation, fqq i- s Maxwell distribution function
/|

at density n° and temperature T°, f°M + f 1M is the

distribution function of electron relocity at first order

of approximation. B is an external magnetic field,

an external force. The Fokker-Planck operator

describing electron-electron interactions and the diffusion

operator of electrons by heavy ions are defined by

Fp n 1 + f 1

x - ‘ iSf + D i (f iM (-c-i = f iM {-i } - +

fp ii = d- '-Hk;~kr;)

D 1 = S7% -(s y
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i)

(3)

(4)

11 12
Tensors <§> and 0 are given by

Specifying cp. . to the Colomb potential and making thei J

appropiate cutoffs, we obtain, see for instance [3]>

where I is the unit tensor and

3*DkT°
A - 22ef

1

i o
A new unknown function $ is defined by f

m 1 i
and the non-dlmensional velocity c_ =(y) ds intro

2kT^
duced. After some calculations the following forms are

obtained for [3]> and :

• • r dcp. i r°° n

$ J W = J dxij dT = ijj = 1 ' 2
J O J

2
,11/ n 0 2 2, w I- w w$ J (w) = 27re. e.ln A __a: r z
~1 J 3w

-2 . e 1?n° + e 2n2
*d = 4tf 5D kT°

Fp 1 i[f°M (G l )f°M ( c ' 1 )($(C l ) =

o 2 o2 4 , . o
8tt m.n. e-, In A 2

= nil e~ c FP' a®)
(2TTkT°) 3 1

r -i 8Tr2m,n° 2 In A 2
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S^i2l(2c2 -3) +

?e-°2 All. [i 9 20. _c3® l +
VBc2 9c9c £ *U

(5)

(6)

r ° 2
vti n2 e 2

c 2
e x dxerf(c)

o

Thus Eq. (1) writes

(7)

and h* c represents the right-hand side of Eq.(i) divided
“ 2

by 8rr 2m.n° 2etln A(2 kT°)”3 g -c _ Thus lt ls a known

quantlty. In order to solve Eq. (7) with respect to o(c_)j

we introduce spherical polar coordinates c f 6,x> the fixed

2

FP . (0 ) = |r®rf(cl(2o2-l) +-e -' 1 1 LL 2c” -i

+ ($S - .|| + 2e’c\ (_c ) +\C ' —

+ l/- d ~ C 1 (c 2 - 1)S2 4(c )
Kj -1 g3 ~ 1

, . ~C2 å f -c 2 02 - - 9$'
= 7e e —3 33— u ø -l

 v = ' — 

4n i e i

FP + D 1 1 ($) - o x B' • || = h-c

1
(2irkT°) 2

where B’ = —— — B
8tt A



 w-

K .

T,
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polar axis høing directed along thø magnetic fiøld B.

may formally ©xpand O in søriøs of surfacø sphørical

harmonics [3] 3 [4]

We

(8)$(c.)

so far, is introducød for mathømatical purposøs. Løt us

assumø for thø moment that the summation and the differential

operators in Eq. (?) do commute. Using Eqs.(7)> (8), Parsevafs

theorem and (10 )j we obtain after sorne calculations

the set of equations Eqs.(ll), (12), (lp)> ( 14 )j ( 1 5)

(9)

U ~ irah
(10)

(11)

(12)

(13)

(14)

(15)

00 i 2

1 l i•“  >*>«>
jg=o m=-^

2
The factor c" 1 eaC , where a is a constant, unspecified

e^2 ( L io + L2q K = 0

e'yc2 (L 11 +L21 -12B' )<t>~ 1 = -(h r ih2 )Jy- 2c 2e^a)c

.^(L11+L2 X - sif sAil'° } °2

e7C (L 11 +L2 1+i2B')l’] =-(h 1 +ih2 )N[y: a)c

2

e7 (L 1 +L2j,+i2mB' )$™ =0,-la m S i, .0=2,3,4,





7

Here the functions hi (c), i = 1,2,3, are the projectlons of

h(c) along three orthogonal vectors e_± , i = 1,2,3,

being parallel to the polar a*is, and e g corresponding

to the 0= 0 and 0= ?r directions. The and

operators are defined by

(16)

L„, - *

+ (4a . 2 + +[3 - +c J L c u
2

+ 2(l . 2a)erflcl . 4a(l _a)erLiol_4 +
Q? C

 4(,+ .Me-2- ill±li{afM(2o2 -1 )+.-' 2)- Si^j*

r°° -(l-a)c^-ac2
Lg \j/ = 4 I )\}/(c 1 )dc 1

o

K (c,c.) is a symmetric kernel defined by [3L [-1H/

£

rt \ 2i C 1 f +1 o 2 - 1 -9j (
K^ c,c i) “ £+1 2i+3 1 j 2^~1 1 J

for < c .

Lp \J/ comes from the integral part of FP ’-] > Eq. (f).åj

The term with coefficient 7 in Iq comes from the

diffusion operator Eq.(6), while the remaining part

of L 1 Q is provided hy the differential part of FP 1 11 ,I Xj

Eq. (5). As it can be seen., both sides ol Eqs.( i1) - (1 5)



.

,
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2
have heen multiplied by e ;C , where 7 is a constant,,

unspecified so far. This is oone for* mathematical con

venience and helps only to invert Eq. (iy). As it does not

complicate argument we keep this factor also in the other

equations in order to unify the notations. We will now

proceed to the solution of Eqs(11)-(15)•

y. Propertles of the operators.

We find by inspection that the right-hand sides in the
p

equations all belong to L (o,co) when a> 7 . Thus we
2 2

investigate e7 "'-' and e7 2n sP^ce

easily seen that the kernel E^{c 3 of e7° is

syrametric ans satisfies

if

(17)

We will throughout assume that a and 7 satisfy this
2

relation. It follows that e7C L0 . is selfadjoint anddjo 2
2

completely continous in L (0,oo). Symmetry of e

follows from Eq, (17)* and selfadjointmess when Z 0 is
c 2 c 2

shown in appendix 1. Thus e7C I7 and e7

Z£ 0, will have the same essential spectrum. A study of

00 00 2

J J H^(c,c 1 )dc dc 1 < oo
o o

2a =7 + 1 and y < 1





9

essential spectrum is void when 0< 7 < 1 and is the

negative semi-axis when 7 0, see appendix 2 for the proof

Finally, when 0< 7 < 1 e^ c , A£ 0* shows to be

negativej as expected for physical and such that

every eigenvalue y satisfies

(18)

where M is a strictly positive constant, see appendix f.
7'C

Thls result justifies the introduction of the factor e

it is only when 0<7 <1 1 that it is possible to invert

Eq. (15), as well as those of the followlng equations corre

spondlng to f > 1 and m= 0.

It follows directly from Eq.(A.3*2) that Eq.(11) has

only Solutions of the form

(19)

where are constants. They correspond to conservation

of mass and energy in the interactions which are considered.

The only solution of Eq.(15) Is zero: where m 0, this

follows from the fact that the operator is negative definite.

Accordingly., there are only a finite number of terms in

2
the differential operator e^' c i 0, shows that the

A < -2-y ÆU+1 )M

4. Existence of Solutions.

o

= ce~ aC (k.+k^c2 )O I c.
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expanslon Eq. (8). Xt was easy to predict thls result due «o

the fact that the right-hand side in Eq. (1) has an order of

anisotropy equal to one, and since interaction- and magneto

field operators do conserve the order of anisotropy for

physical reasons. Thus the problem can be reduced by studying

the restriction of the operator in Eq.(1) to subepaces of

functions with zeroth and first order of anisotropy. If the

right-hand side of Eq.(i) had not a finitø order of anisotropy,

an infinite number of Eq.(15) would be inhomogeneous. As we

have seen, it is always possible to solve such an equation

provided the right-ahnd side belongs to L (0,oo). However,

one would have to prove the convergence in some meaning, of

the corresponding series in Eq.(8) to achieve the solution of

Eq.(1). This problem has not been treated so far.
2

The spectrum of e^ c being real, as shown in

section 3, the left-hand side of Eqs(l2) and (14) can be

inverted and these equations have a unique solution in L (0,-h»).

Zero is a regular value for the operator in Eq.(13) where one

chooses 0< 7 < 1 and when 7 is different from zero (see

Eq. (18)) l.e. provided election-ion interactions are taken

into account. Thus Eq. (13) has a unique solution in L (0,-H»)

2 , X
of e7C (L n +L21 ), see appendix 3. Then Eq. (13) has Solutions

in L2 (0,+ ) if and only if the right-hand side is ort ogonal
o ~ 2 2 -ac^

to c e ; then Solutions are determined to a c e near.

To check up that the orthogonallty condition indeed is fullfilled,

one has to turn back to the original eqiation in [2] since making

7=0 modifies the form of the right-hand side (see [2], p.38

When 7=0, and 0 < 7 < 1, zero is an isolated eigenvalue
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)

for an analogue).

Wø have thus shown that Eq.(1) has Solutions depending

on arbitrary constants (two if 7 / 0, three if 7 — 0)

given by

(20)

fm i A -1 o
c is the nondimensional velocity, £= { “i
“ 2kT
and are Solutions of Eqs.(l2), (i 3)9 respectively,

in L2 (0,-Ho). (c,6,x) are the spherical polar coordinates

of c , the polar axis being directed along B. Thus the

Solutions, Eq.(20) are such that

Further properties of Solutions of Eq.(1) are obtained.

First we establish differentiality of Solutions of Eqs(ll)-
2

(15). We see by inspection that e7 is continous

in (0,+o>). Further a straight forward analysis gives a
2

rough estimation of e7 ° L^^\i(c):

(21

m 1 yzlc 2
f 1 (c ) = h?^——•'?[— e' 2 ($°(c)cosø+<!> 1 1 (o)slnesinx +
11M—1 ' 1Wt°Ac 1 1

_ 2r p T]
+ (c) sinøcosx )+ e + (^“6~ f 0 )’^ c cosø j

, - 2
o 2. "Y~ I C 00 1

e7c "L < (Nc2+Pc3 )e 2 J |^| 2dc 2
o





12

1,

for all c in (0,-h»), where N and P are independent of
2

c and \|/. Defining (e 7 ° \j/) =0 3 we 6 et that
2

e 7 ° L \j/(c) is continuous everywhere when vj/ belongs to2 f

L 2 (0,+oo) i since the right-hand sides of Eqs.{ 11) -(1 5) are

continuous everywhere, and zero is the only singular point of
2

ø"V c l at finite distance, it follows that the solution of
2

these equations (which we know belong to L (0,+oo)) are twice

continuously differentiable on (0,+oo). Continuity and

differentiality of Solutions at c = 0 follow from a study

of asymptotic properties.

Using Eq. (21), we estimate the^non-diff erential terms

in Eqs.(l 1 )-(15) to be of order 0(c 2 ) as c-> 0. For i

relevant equations in the neighbourhood of zero are

Asymptotic Solutions of this equation are obtained by using

the method of variation of coefficients and asymptotic

expansions Eq.(A.1.4) of the Solutions of the

homogeneous differential equations. We get = 0(c 2 )

Using the same method, asymptotic behaviour of Solutions

may be obtained for large c. Relevant equations in the

neighbourhood of c =oo are

1

y" - Icy - % - % + 21mB'y = C^ 2J cr c

m=0, ±1 C 1 constant

when 7> 0 and $™(c) = 0(c 2 ) when 7=0 as c-> 0.

2

y" + [2(2a-1)c-5c' 1 ]y' + [4 a (a-1)c 2 -imBc 3 ]y = C 2 c 7 e‘ ac

m = 0, ±1 ; constant.
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Summarizing the results, we have shown that Eq. (i ) has

Solutions given by Eq. (20). These Solutions are twice con

tinuously differentiable everywhere and are such that

When c -» 00, they tend towards zero at least as fast as
2 2

c^e “ c (c^e~ c if the magnetic field and/or gradients

parallel to the magnetic field are equal to zero). When

c _» 0, the part of the solution arising from £he inhomogeneous
2

term tend towards zero at least as fast as c (c if

election-ion interactions are not taken into account).

rj 2 + -j
When B/ 0, we find that $?(c) = o(c'e ac ) and (c) =

2 r 7
= 0 (cV a ° ). When 6=0, we find that = 0(c e a ),

m = 0, ±1.

Jdc e^ 1 7)0 I f | M (C 1 ) I 2 <», 0 < 7 < 1
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)

2)

3)

Appendix 1.

We determine the number of boundary values needed to
2

make e^ 0 7 selfadjolnt,[5], p. 1506, i.e. we study the

equation

(A. 1 .

We show that Eq. (A. 1 . 1 ) has exactly one solution which is

square integrable near c = 0 and one near c = oo, Hence txbe

operator is selfadjoint with no boundary condition imposed.

We consider the following two cases

(i) 7=0. We get,[5], [4], two linearly independent

Solutions of (A.1.2) which for small c behave as c and

c~K Hence only one of them is square integrable near c = 0

(ii) 7 > 0. We substitute

(A. 1 .

This equation has subnormal Solutions,[6]. For small c,

the two linearly independant Solutions of Eq. (A.1.1) are

2

e 7C L u \|/ = -At , ImTv 0 , i 0.

Equation (A,1.1) becomes near c = 0

-, 2

y" - - cy’ - >Y^U +1 )“W + = " | Aø 7 ° A ° 1 0
L q? c -

y = 0 or 7 > 0.

-1 -1
z=ac, y = u z

where a is a a = 57$(-£+1). F° r la-’ge

Eq. (A.1.1) becomes

u" - z = 0
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• 4)

asymptotically represented by

1

* 3 (|) 4 exp( ± 2lf)
(A. 1

Only one of them is square integrable in the neighbourhood

Investigating the Solutions of Eq.(A. 1 .l) ion large c,

we find that the relevant equation is

Assuming a > 4 substituting

the relevant equation for v near c - oo is

Asymptotic Solutions of this equation tnay be obtained [f]

in the form

Since y < 1, we find that only one of the Solutions of

Eq.(A.1.2) hence of Eq.(A,1.1)* is square integrable near

c = oo. The case a= 4 is treated similarly with the same
2

result. We have thus shown that ® sø ‘^~

adj oint.

00 1c
1 c k ( t )2 ' c 0 * 0k=0

of c = 0.

y" + [2(2a-l)c -3c 1 ]y' + 4o(a-l)c 2 y = 0

2
y = uv u = exp[-(a-i)c ]

v" - C 2 = 0

c 2 _1 00

v(o) =e 2 e 2 £ o k c- k c Q 0
k=o
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Appendix 2.

We wrlte

eigenvalue problem of the Sturm-Liouville equation

To reach standard form we apply the Liouville transformation

or

to get the following equation

e 70 %. = lr (p(c) & + °-i (c)

where p and q„ are defined by this relation and Eq. (16).
1 2

In order to study the spectrum of e^ c we examine the

2

e 7 ° L^vJ/ = vj/

1 c

u, = [p(c)] 4 \j/;x= f [p(|)3v J
o

c y l 1

-y
o s s

2
+ [A-Q(x)]U. = 0 x e (0j A)

dx

e -7C 2 Q(x) = _ + e -<?(£ -%- 8) +

P

_y e “ . lii±li^S£ll2l(2c 2 -1 ) + e" c 'j - 2 ~>^^ +1 )

+ 2e- c2 ) 2
c c or

 TE — 72 *
(erf(c) - ce c )
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We have two cases

(i)

(li)

2

term in Q(x) is (1 - ~4")” e

2

2

Noticing that the essential spectrum of e 7 ° is the

union of the essenstial spectrum of e 7 ° on (0,A q ] and

[A .A), A < A* we get (see [5]* p.1594 and p.1599) that the
L o o 2

essential spectrum of e 7 ° is void when 0 < 7 < 1.

Hence the operator has only a discrete spectrum in this case.

(ii) We have still lim Q(x) =+ 00 while lim Q(x) = 0.
x—o 00

For the same reasons as before we have now that the essential

when 7> 0, then lim x=A < oo
C—xo

when 'y =0, tlnsn lim x— oo
C—>oo

(i) When x-> A the dominant

and lim Q,(x) = +00 when 0<'y < 2, On the other 1 side
x->A

lim Q(x) a lim + 2y = + »
X-K) C-K) 3C C

2
spectrum of n is the negative semi-axis (-o°,0],i Xj



 '  t}
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1 )

2)

(A. 3 •

It is standard work to show that

(A.3.I £ 0

2^
for all 1 which are bounded, bounded and —g continuous

 — C'_

(see [8] for an analogue) and that 1=0 if and only if

where p,6 are constants and k a constant veetor.

Further., let us speeify 1 (o) - c . Usmg

00

- 27.0U+I)M /If l dc
o

2

where M = Inf , c e [0,-h.). Thus the operator is
c^

semibounded on a set of funetions \|; which is dense in

L 2 (0,oo), and it can be extended [9] to an operator which

is selfadjoint and semibounded with the same bound, Thus

Appendlx 3»

We study now the sign of e 7 ° To do so we

examine the quantity

X =J do«(c)FP 11 [f° M (c)f° M (c l )('i'(c) +f(c 1 ))]

, \ 2
Y (c_) = p + c + k*_c

Eqs(3), (4), (5), (6), (16) and (A.3.1) and assumlng 0 < -y < 1

we get

2 r° 2

j dc^ 0 (L u + L 2j .HS - 27i>{iJ+l) j Ui dc
o ° C
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2 ~ /
e 7 ° (L* 0 +L o „) is negative definite when 7f 0 and &t 0.I Xj C-åj

When 7 — 0, i.e. when intenactlons with ions ane not taken

into account, total momentum of electnons is consenved duning

eleetnon-electnon intenactlons, and zeno is an elgenvalue fon
2

%= 1. e 7 ° (L r| +L 21 ) is thus negative, Since 0<7 < 1

is assumed, the essential speetnum is vold, see appendix 2,

and zeno is isolated. lt is thus possible to invent
2

e 7 c (l +L 21 ) on the subspace of element whlch ane onthogonal

to c^e~ (connesponding to 1 (c_) = k*c_, k. constant vecoor j.
2

When fa — 0, also is negative, independont of

the value of 7 and B« Xndeed zeno is eigenvalue as can be

seen fnom Eqs(A. 5.1 )9 (3), (i). (5) and (6), This connesponds

to consenvation of mass and total kinetic enengy duning electnon

electnon intenactions, to consenvation of mass and enengy of

electnons duning electnons-heavy ions intenactlons (see Eq,

(6)) togethen with the fact that the magnetic field openaton

- — c„ x — is a differential rotation operator.
na — 1 — dO^
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