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Abstract

The stellarator configuration and tokamak configuration with helical fields
are studied both from an equilibrium and stability point of view. The
model is resricted to a surface current model wiht a sharp boundary be-
tween plasma and vacuum. A general derivation of equilibrium and stability
based on the Energy Principle is given. Physically the unstable modes are
identifyed as external global modes. Detailed numerical results in differ-
ent parameter regimes are presented and discussed. Critical - limits for
equilibrium and stability are obtained and in particular we show that in
ceartain parameter ranges there exist a high-3 as well as a low - region of
stability.



Chapter 1

Analytic Derivation

1.1 Introduction

This work is primarily motivated by the promising aspects of the stellarator
configuration. Recent results suggest that a toroidal device with helical
fields may have some advantages compared to axisymmetric devices, i.e.,
tokamaks, with regard to controlling disruptions. In this context one could
think of two classes of systems: (a) pure stellarators (no ohmic heating
current) or (b) a tokamak with superimposed helical windings. The present
work is generalization of previous work !l which was restricted to one type
of helical field (one ¢-number, ¢ being the poloidal multipolarity) and no
vertical field. We have now been able to generalize this to include any
combination of helical fields and also an arbitrary vertical field (which is
essential for having an average magnetic well). This applies both to the
equilibrium and the stability analysis.

The study is restricted to the surface current model, where we assume
all the current to be flowing in a thin sheath forming the boundary between
plasma and vacuum. Previous experience suggest that such a model gives
a reasonable description of the equilibrium and the stability properties of
the global modes in such systems.

The main part of this work is analytic, and we resort to numerical
solutions only at the final step both in the equilibrium and the stability
analyses.

The equilibrium is established by the Princeton stellarator expansion in



the inverse aspect ratio (¢) . We can solve for the critical 3 for any net
current, including the pure stellarator case with zero net current.

The stability part is based upon the MHD-energy principle. We are
able to write this in a concise form suitable for numerical evaluation.

We discuss critical S-limits from equilibrium and stability for systems
with different combinations of helical fields.

A brief preliminary account of this work was presented elsewhere!2.

1.2 Equilibrium

We consider the equilibrium and stability of a toroidal stellarator/tokamak
hybrid system as described by the sharp boundary surface current model.
Although the analytic as well as the numerical work permits the study
of hybrid systems, we shall here consider the case of a pure stellarator
configuration (no net current). The geometry is illustrated in fig. 1. The
cylindrical coordinates (R, 8, z) are related to toroidal coordinates by R =
Ry+rcosb, Z =rsinb, ¢ = —z/Ry.

As stated earlier this class of configurations are characterized by having
arbitrary helical fields, i.e. combinations of several helisities simultaneously
as well as a vertical field. The fields are written as

Bplasma o= Blb ) Bvacuum — BO(b + B) y (11)
Ro 1
=— -V .
b=—Fe. + V(¥ +x), (1.2)

where h is the helical wavenumber and 3 and x represents the helical and
vertical fields respectively. The inverse aspect ratio is a/Ry=¢ where a is
the average plasma radius. Qur expansion parameter is 6, the measure of
the amplitudes of the helical fields, and the following ordering is assumed,

1
6%62zﬁzﬂ, (1.3)

where [ = p/%Bg (p is plasma pressure) and N = hRy, the number of
helical periods.



We introduce new variables by z = hr, s = hz, and take the plasma
surface to be given by z = z(6,s). By solving the problem order by order
in § we obtain

z(6,s) = zo(0) + z1(0,3) + ..., (1.4)

o N %Py | Oxa 3
amo +x1 6$(2] + axo +O(6 )’ (1'5)

B,/B; =

o _1_8¢1 2y Y iah I 3¢1
= xq 00 & 10000z, ' o 08 2 00

+ 0(6%), (1.6)

01 | Oxz 9%, To 3
B,/B; =1+ P - 9% +$1333x0 hROcos0+O(6) (1.7)

~ 1
For convenience we write
1. s R s
= 51,/)16 +cc., T, = She + c.c., (1.9)
P O P (.10
3 = 2 C., X2 —= 2X26 c.c., -
dn Bz, 2200’ d6 00 oz’ °T a8 (L)
We define the following important quantity
F=i{Viix Vi e, +2x: —x3)} = F(8,20). (1.12)

where means complex conjugate (c.c.). From now on V = Vg, = exé—z; +
The solution to the problem can be written as

% =103 (determines z¢(9)), (1.13)
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. diy dipy
Iy = — dn s n = 0, (114)
sidn Vo) tee = (o 58 ) (1.15)
b% + 2ikb — (B/e)(w + X)) =0, (1.16)
where
1 dyy _ €3
= 200 8 YT\t 2 &)
. 1
Ly = ZIEVF’ (1.18)
1
in=éplsgn( = 4—€Q0Fxo (helical transform), (1.19)
1 ~ 2 2."130 .
= 2—€|V¢1| - cos 6 (magnetic well) , (1.20)

av
T,, = ha and )\ 1is a constant related to net current.

From eq.(1.16) we notice that b is determined by a quadratic equation
and this equation has two branches of solutions. However, the stellarator
case with no net current is obtained only from one of these branches, which
we shall discuss here. We also notice that unless #/e is below a certain
value there is no solution, this condition for solution determines the critical
equilibrium F-limit. The problem is solved numerically by first integrating
eq.(1.13) to find the surface, and then determine A and the critical 3 for
a given net current. Some typical crossections for different configurations
are given in figs. 2a and 2b. More details about the equilibrium derivation
is provided in appendix A. In the following figures case C and case D refer
to table 1 on page 13.
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1.3 Stability Analysis

We investigate the stability of this configuration by means of the Energy
Principle l. From previous experience the surface current model provides a
reasonable description of long wavelength (low toroidal mode number, low
poloidal mode number) instabilities. A simplifying feature of the analysis
follows from the fact that in minimizing §W the most unstable modes comes
out to be incompressible to leading order i.e. V-§, =0 with £, the leading
order plasma displacement. We notice that in general §W can be reduced to
a form which only depend on a single scaler quantity, £, = n-€ evaluated
on the plasma surface.

For the surface current model, the potential energy §W is conveniently
written as a plasma-, surface- and vacuum-contribution

§W = W, + §W, + 6W, (1.21)

where

W, = é/plBlde, §W, = %/si§|2n~V“(p+ B?/2)]|ds, 6W, = é/vifhl?dr

(1.22)
The simplified expression for §W,, reflects the fact that the most unstable
modes are almost incompressible, and B; and B; are the perturbations
in the magnetic field in the plasma and vacuum regions respectively, £ =
£(0,z) = n- £, is the normal component of plasma displacement evaluated
on the plasma surface (r =r,). The notation [A] denotes the jump in A
across the sharp boundary from vacuum to plasma.

1.3.1 The Perturbation

The first step in the stability analysis is the specification of the perturbation
€. The most general form of £ can be quite complicated in an arbitrary
three- dimensional geometry. However, if we restrict the attention to long
wavelength modes and make use of the stellarator expansion, then the most
general form of £ can be written as

£(8,5) = {€0(8) + 6{Ese™ + E_cT} + 6%,(8,5)} ™ (1.23)
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here, k = n/hRy =n/N, n is the toroidal wavenumber of the perturbation
and "the long wavelength assumption” implies k &~ en ~ §2. The quantities
€0, {+, £~ and & are each of order unity, and it is these functions which
must be varied to minimize §W. (Note that a slightly different definition
of € is used in eq.(C.3). Eventually, by analytically minimizing §W , &,
is eliminated and £, and {_ are expressed in terms of . Therefore the
final minimization requires the variation of only one single scaler quantity
of one variable £y(6).

Physically & represents the basic "flute like” contribution to the per-

turbation and £, and £_ represents helical sideband distortions induced by
the helical field.

1.3.2 Surface Energy

The second step in the analysis is the evaluation of §W,, which is the only
term that can give rise to an instability. A straight forward calculation
shows that the surface element ndS can be expressed as

ndS = n,(r,R/hRy)dfds, 0< 6 <2r, 0 < s< 27N, (1.24)
where
19 0
n=n,/|n,|, n, :e,_aé%’eg —%%ez. (1.25)

This formula is valid fo an arbitrary, (unexpanded) three-dimensional sur-
face, r = r,(#,z). We note that V x B = 0 in both the plasma
and vacuum region and that n-BJ|,, = 0. Consequently we may write
n-V(p+ %3) =—B-(B-V)n. After a lengthy calculation, this term can
be evaluated and substituted into §W,. The result is

R [[B3] 9 . 10r,
ow, = 5 [ dvasn-gppt {8, 20,

56 rz 09
—2[393]]6 Roa'rp}

9 Roar ;)
H H[az R? 02 ‘r_ﬁag(rpsmﬁ)]} . (1.26)



Eq.(1.26) is valid for an arbitrary surface given by r = r,(6, z).

We now substitute the expanded form of the equilibrium and the per-
turbation into the expression for é§W,. After a considerable amount of
algebra the first non-vanishing terms are of order 6* and can be written
as

§W, ! . g(zo) . p dw
= Af 16l {0V -~ L2008 4 00 - 20 g .
27 Ro o 1% { el U e G R,
where
1,0, 1 d _1d
A= 5€ BgC, b= 4€VF, &= Qodn’ (1.28)
and C' is the circumference of the plasma boundary.
in = |ip|sgnFy, = 4—1€Q0Fxo , (helical transform), (1.29)
1 2 21‘0 . .
i) = 2—€|Vz/)1{ + cos @, (magnetic well), (1.30)
b* + 2ipb — (B/e)(w + A) =0, (1.31)

the last equation determines b for a given current () ) and

T2 o £2 dzg
zo) =1+2%0 _To Q_—.[1+—-° ro = —2.. 32
9(wo) =1 2 oz P zd’ 0= "8 (852

Notice that in order to arrive at this form £, and £_ has to be determined
from the plasma and vacuum energies, which is discussed in the following
section, and arclenth variable v is replacing 6, where

@ _ C
dv N JCoQO ’

Details of this derivation are given in appendix B.

0<v<l. (1.33)



1.3.3 Plasma and Vacuum Energies

The perturbations which minimize éW, and éW,, subject to the con-
straints V-B; =0, V-B; =0 has VxB; =0 and V x B, = 0.
Therefore the magnetic fields that minimizes §W, and éW, have all the
currents flowing on the plasma surface. As a result we can write

B, =VV, B, =VV, with V2V =0 and V?*V =0. (1.34)

We require V' regular at the origin and 1% regular at infinity (no con-
ducting walls which gives a pessimistic estimate on stability). Under these
conditions, the plasma and vacuum terms can be converted to surface in-
tegrals in the usual way

1 R

¢5W,£,——-2 hRo

. LR, ~
V*n, -VVdids, §W, = Z/hROV n,-VVdéds. (1.35)

The problem now is to express V, V and n,-VV, n,-VV in terms
of € = £(6,z). This is accomplished in two steps. First we observe that
n,-VV, and n,-VV are related to € by using the boundary conditions
n-B,=n-B=0 at the plasma- surface. Secondly, after some algebra
and analytic minimization using the freedom to choose £, we obtain

1(d .
oty 4 /O{E(szhnme}v*(v)dv, (1.36)
25:‘;0 _ __g ;{Ed;[g([h+b)]+ikT§}V‘(v)dv‘ (1.37)

Details are given in appendix C.

Here kr is the toroidal mode number. We are now left with the
problem of determining V* and V* at the boundary (V" is the complex
conjugate of V). We use a Greens function technique as described in!*l
for doing this. We also use truncated Fourier expansion in v to represent
all physical quantities. The perturbation £(v) is represented as a vector
in Fourier space and éW can be conveniently written in matrix form

g



W ~ & W -€. (1.38)

Let Anin be the smallest eigenvalue of W. We then have that
Amin > 0 is a necessary and sufficient condition for §W > 0, i.e. stability
is determined by the sign of A,,;,. A numerical procedure is used to
determine A,,;, and a scan in [ is used to determine where \,.;,
changes sign, which correspond to the critical value of stable 3. The
critical stability (3 curves in figs. 3 - 7, 11 - 14 are determined by this
procedure.

The details of the derivation of the W- matrix is given in appendix D,
where W is given by eq.(D.45).
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Chapter 2

Numerical Procedure

The final steps in both the equilibrium and stability analysis must be done
numerically. The numerical code has two main elements, the equilibrium
part and the stability part. The equilibrium code has the following input
parameters: The helical field amplitudes, the average radius of plasma
crossection, and the vertical field. (One can also have a non zero net
toroidal current as input parameter.) The helical field amplitudes are nor-
malized so that each amplitude given, corresponds to the transform of
the actual helical field, provided there is only one helical field component
present and with the vertical field set to zero. Notice that the net trans-
form produced, when there are several helical fields of different helisities
as well as a vertical field, has a rather complicated dependency on the field
amplitudes. This total transform can, however, easily be determined nu-
merically. The equilibrium code provides the necessary information for the
stability analysis. The following quantities as functions of # are provided:
ro(8) 20(0), in(0), V-in(0), W(8), dW(8)/dn as well as related quanti-
ties. In figs. 8, 9 and 10, we have plotted "shear”, "well” and ”transform”
versus vertical field. These quantities are in the general case a function
of 6. We have made the following simplification when these quantities are
plotted. As representative of ”shear” we have taken the maximum value of
Vi, and for "well” we have taken the minimum value of dW(6)/dn with
respect to #. For the transform #, we have plotted the total average value.
The equilibrium code also compute a maximum value of 3 for obtaining
equilibrium for a given net toroidal current, f... One can at this point
also give a value of # < f..;; and compute the corresponding equilibrium.
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The stability code uses this part of the equilibrium code when iterating to
find the critical B for stability. The stability code uses the information
from the equilibrium code to test for stability, based on matrix manipu-
lations leading to the éW-matrix. First the Greens function problem is
solved numerically to account for the plasma and vacuum contributions to
6W. Then the plasma-surface contribution is computed. These three
contributions add up to give the full éW- matrix. The next step is to
minimize é6W numerically. The §W-matrix is symmetric, and the lowest
eigenvalue corresponds to the minimum value of éW. Since we are not
concerned with growth rates, we need not normalize the eigenfunctions.
Stability changeover occurs when the lowest eigenvalue of the 6W-matrix
changes sign. A negative eigenvalue corresponds to an unstable system.
When all eigenvalues are positive it means that the system is stable. The
normal procedure is as follows: First compute the equilibrium and check
whether this equilibrium is stable or unstable for the actual value of [Becri:.
If it is unstable, then decrease [ to find the critical 8 for stability. If it
is stable, it could still be unstable for lower (- values, and then become
stable again for even lower 3- values, as is shown in fig. 5 and fig. 6. To run
a typical case, i.e., compute the equilibrium and test for stability requires
approximately 3 sec. of cpu time on a Cray X-MP computer.

2.1 Results and Discussion

When presenting these results one should keep in mind that there is a diffi-
cult problem of optimization as far as finding the best regime of operation
in parameter space. Basically we have a six parameter problem: four
helisities, a vertical field, and the plasma crossection. If a net current is
included this adds one more parameter. The plasma crossection is scaled
with the helical wavelength. Concerning 3 and ¢ the critical parameter
is the ratio 3/e. The results will be given in terms of this parameter, and
will apply to any value of ¢ within the limits of validity of the expansion.
Given the six basic parameters the ratio (/e is determined as a critical
value for obtaining equilibrium and stability.

Thus, notice that in the following figures the BETA-axis is scaled as
BETA = /¢ and the B - vertical axis is scaled as B — vertical = B, /e By.
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2.1.1 Stellarator

We first consider the following cases according to table 1.

[ Cases with Different Parameters 1

~

Case | i ty i3 L4 ol
A .01 4 0 0 .8
B 0 .9 0 0 1.4
C | -05| .8 .03 0 1.1
D |{-05| .7 .02 0 1.2
E 0 9 1 0 1.5

Table 1

In case A we see from fig. 3 that we have a stable plasma all the way
to the equilibrium A-limit for a vertical field By > .052 x ¢B,. The
equilibrium and stability [-limit is rather low in this case amounting to
approximately 0.085 in the parameter [3/e. This is in contrast to case B
fig. 4, where the equilibrium A-limit is more than three times larger, but
in this case there is virtually no stable S-region. This demonstrates that
a high equilibrium fA-limit does not necessarily mean anything in terms of
confinement, because the configuration may be unstable as this case clearly
shows.

From fig. 8 and 9 we see that the main difference between case A and
case B is that there is a pronounced difference in the ”well”-effect for the
two cases, whereas ”shear” is not so different. We therefore conclude that
the main reason for the improved stability for case A as compared to case
B is due to an average magnetic " well”-effect.

Turning now to cases C and D, figs. 5 and 6, we notice that the stability
boundary turns around giving a range in the vertical field where there is a
low as well as a high # - region of stability. This effect is most pronounced
in case D. Referring to the magnetic "well”-effect these cases are similar,
see fig. 9. There 1s, however, somewhat higher shear in case C than in case
D, which is the likely explanation fore the overall better stability character-
istics for case C. Case D has, however, a larger "second region” of stability,
for moderate values of the vertical field. We notice that for higher values of

13



the vertical field By /eBy > .45 case C has the highest equilibrium S-limit
as well as stability limit with [/e~ .33. We also notice that in agreement
with most cases the equilibrium S3-limit decreases as the vertical field is ap-
plied in a direction so that it pushes the plasma outward. If the plasma is
pushed inward one can theoretically obtain very high equilibrium A-limits
as shown in figs. 4 and 7, but this is at the expense of a very low critical
B-limit for stability. This appears to be in agreement with the conclusion
reached by Mikhailov and Shafranovl®l. We notice also that figs. 5 and
6 show that as the plasma is pushed outward the equilibrium S passes
through a minimum and then start increasing again. This effect can be
explained by fig. 10 which shows a increase in the net helical transform
induced by the increasing vertical field for these cases. Most of the cases
discussed so far has relevance to the ATF- stellarator [ being constructed
at ORNL. ATF is basically an ¢ = 2 system with high shear, and with
ta ~ .35 on axis and ¢y ~ .9 at the edge. The aspect ratio is 1/7 and x¢
at the plasma edge is 1.7. The Wendelstein VII-A stellarator [} operates in
a different regime as it is a low shear system with helical transform ¢, ~ .45
and large aspect ratio, zo ~ .25. Results relevant to this configuration
are presented in figs. 11 - 14. The figures reveal the same general behavior
as for the ATF-regime of parameters We notice, however, that there is in
general a lower critical S-limit in this regime of parameters.
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2.2 Summary and Conclusions

We have, largely by analytic means, established a sharp boundary toroidal
equilibrium with an arbitrary harmonic content of helical fields, as well as
a vertical field. The helical fields are ordered to be small as /¢ and the
vertical field is small of order ¢ (¢ is the inverse aspect ratio, a/Rp). This
class of equilibria is tested for stability for parameter regimes relevant to the
ATF-experiment at ORNL U.S.A. and the W-VII A experiment at Garch-
ing, F.R.G. It is found that there exists stable equilibria in both regimes.
The critical parameter is # which is relatively low for stable confinement.
The critical S for stable confinement appears to be lower for the W-VII A
regime of parameters than for the ATF-regime. This is in agreement with
other independent investigations on this subject. For the ATF-parameter
regime the highest S-limit found is about 5%. (the sharp boundary model
has some uncertainty concerning the interpretation of the S-limit).

In a previous paper!! a similar problem with a single harmonic field and
no vertical field was studied. The present investigation clearly shows the
effectiveness of a vertical field in terms of creating an effective magnetic
well which permits stable confinement for the pure stellarator case (no net
current). The vertical field also has a positive influence on the equilibrium
B-limit in some cases. We believe this is due to an increase in the effective
transform as demonstrated in fig. 10.

Another interesting feature is the presence of a second region of stability
around the equilibrium S-limit for some parameter regimes relevant to the
ATF. We want to point out that usually the second region of stability is
associated with ballooning mode theory with n — oo (n being the toroidal
wavenumber). In our case, however, this stability regime is associated with
the n = 1 mode. Note that this analysis is based on a low n-mode expan-
sion, or equivalently weak z-dependency, where z is the toroidal coordinate.
It then turns out that in this regime there are strong indications that n = 1
is the most unstable mode.

When we compute critical 8-limits for equilibrium and stability it be-
comes clear that one can easily find parameter- regions where there is a
very high critical equilibrium S-limit. However, it also turns out that all
these regions have a very low stability S-limit. One therefore has to make
a tradeoff in equilibrium £ in order to gain in stability-3. As already men-
tioned, in some parameter-regions it is possible to push up the equilibrium
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B in a good stability region by increasing the vertical field, an effect which
is due to the influence of a vertical field on the total transform.

Finally we conclude that stable 3-limits exists for current free stellara-
tors, and by carefully optimizing in parameter space, these $-limits may be
sufficiently high to provide the basis for a steady-state fusion reactor.

There is another regime of parameters which could easily be explored
by the present code, and that is the hybrid systems. This could be in
parameter-regimes ranging from a pure tokamak to a pure stellarator. One
way of determining the current would be to look at flux conserving equi-
libria, in which case there is no equilibrium A-limit. However, since the
most attractive feature of stellarators is associated with current free oper-
ation we do not include any results from this regime of operation in this
presentation.

In summary we have found:

o The magnetic well effect produced by the vertical field is apparent.

e The stable [-regimes are sensitive to the harmonic content of the

helical fields.
e Shear has a positive influence on stability.

o In cases where a second region of stability exists, this region can be
accessed from low 3 by operating at higher vertical fields.

e There is a noticeable difference in the maximum A-values for ATF-
like parameter values and Wendelstein-like parameter values. The
difference being that the latter regime has lower maximum J3-values.

e It has also been shown that it is easy to find parameter values giving
high equilibrium S-limits, but always at the expense of very low stable
[B-limits.

® A systematic optimization in parameter space is difficult due to the
large dimension of this space. Therefor the specific results presented
constitute examples and not optimal values, even though some effort
was spent in searching parameter space for good values.
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Appendix A

Equilibrium

A.1 Plasma Vacuum Interface

The plasma-vacuum interface is given by

a=tu( s (A1)
A surface normal is given by
n = ng+n;+n;+...,
e 1 d(L‘O
n = e — ———eg,
0 To df 6

_ |mdz 10 | 9
MO \22d8 T .00 % B e

0
n;, = {}er+{}e9—§s—2ez’

(The prime on n’ indicates that | n'| #1).

A.2 The Interface is a Flux Surface

The boundary condition n-B = 0 is trivially satisfied to leading order.
To first order one obtains
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ory _ vy
= (A.2)

0s
After some algebra the second order condition yields
d ‘* n » A %
= {Vd7 x Vi1 e, +2(%a - 3)} = 0. (A.3)
or
d
%F(G,mo) = (1), (A4)

where we define F(6, z¢) as the real quantity

F(8,20) = i { Vi x Vi1 - e, +2(Rz — )} - (A.5)

Notice that 5%;4— =n-V and Q da =t-V, where n and t are the unit
normal and tangent vectors to the plasma vacuum- interface, to leading
order respectively. The tangent vector is taken in a plane s=constant.
Similarly for the vacuum field we obtain to second order

diyy

=, (A.6)

and to third order

el _lad Ty O,
2d 1,1)6 e z0d6 (zo 60) (A7)

This is all the information we need from the condition n-B = 0 at the
interface. We then proceed to look at the pressure balance condition at
the interface.

A.3 Pressure Balance

We expand the relation

2p+ B2 = B} {b* + 2b- b + §?} (A.8)
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and obtain an equation to each order. We define

g 22

- (A.9)

The significant information we shall need is contained in the third and
fourth order equations. To third order a straight forward calculation gives

1 diy 9y,
—ify - 2d6 96

Bs = —ifdh — {5‘“ 0%y | 1 9% 6%} (A.10)

ax() B:EO .'EO 69 69
To fourth order a more elaborate calculation results in the following equa-

tion

9224 1 .
_ ﬁ{x\-{—TcosG-{—sz/sz/J}

1 - R

+ ac_%[ {vd)ldﬂv% Vl/’l V‘/h} —OV¢TXV¢‘1'GZ
df_ . \10%: Q% [0\

+ Eg{xﬁm H 50 +$§<69) =00}

Now we have

dip; Oy, % _ O, O
0 =06 T, ” 20 =% 55 (A1
(Notice that 22 =0, see eq.(A.6)).
We may now write the fourth order equation as
@ (%), 410 o
22 \ 0 + A 22 06 SERE— (A.12)

where



1 d_ . —d_-) i . d . .
gL = % {VI/MEEV% - V‘/’l?ﬁvwl} S ;(;VI/)I x Vi, -e, + %(Xz + X3)
2z 1 -
I —B{A-}-—JVOCOSG-{-EIVI/)I |2}

By multiplying eq.(A.12) by z2 + 22 = 2z2Q2 we obtain

d¢2 2 dl[)Z 2,12 _
< 20 ) il 70 OBy (A.13)
After some algebra we can rewrite the expression for
A as
A:i—x(—)Q2—q—{V1f)*xV¢3 - e, + 2(x —;2)} (A.14)
2 08.130 L ! z 2 ¢ ’ '

Finally this can be cast into the form given by eq.(1.16). Here we have
used the relation

1 1 1 a €

Nnh—RO:haRo_w,w

(A.15)

where a is the average plasma radius defined so that z,, = ha and

Loy = \[— (A.16)

us

where A is the cross-sectional area enclosed by the curve z = zy(6).

A.4 Helical Transform

The equations of the magnetic field lines are given as

dr rdf dz dzx rdb ds
B, B, B, © B B, B, i)

Thus
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df By

ds  zB,
By averaging this equation over z or s = hz, over one helical period and
keeping terms to second order we obtain after some algebra

(A.18)

N 8 om OF(zg.8) 2
59h:/ 9 ,, _ 27 0F(z0,6) _ 27
0

dz 4.’1)0 01’0 4(E0 on (Alg)

Here 66, is the transform over one helical period. Assuming this to be
small we can write

@ s

dz " 2rR/N -

(A.20)

Let the length a field line must travel to obtain a transform 27 be L.
Then by integrating along a field line we obtain

L 27 2r
dz dé
L_/dz: %= | @ (A.21)
0 0 0
The transform for the vacuum field is now given by
2R . ¢ 2R
Lty = T - 21 or gy = -2—% = T (A22)
Thus we have
) 2R 27N
Ly = o = Y= . (AQB)
/ (R/N)d6 / dé
1 Y
T I on
0 41‘0 Fo ¢ 4.’1)0
Introducing the arclength variable v, we have
o C 7
g Sl (6 — /:cOQOdH, (A.24)
dU II,'()QO

0
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where C' is the circumference of the plasma- vacuum boundary z = z4(9)
(to leading order) and ve[0, 1]. Since 2£ =0 and VF = er% +egi%§
we obtain |V F|sgnF,, = QoF;,, and we may write

o ., 1
p=—o (A.25)
¢ a
th
where
ih = ~QoFs, = — | VF | sgn (E..) (A.26)
Lp = i ol'zg = Ae sgn zo) - s

We notice that the scale factor £27z,, takes the value one if z = z4(4)
is a circle, in which case zo = const,and Q, = 1.

A.5 Total Transform

The total transform includes the effect of the current flowing in the plasma-
vacuum interface. This can be evaluated by computing the transform just
outside the interface which means that the poloidal field produced by the
plasma current must be included. The result is formula (A.25) with i,
replaced by i, + b where b is given by eq.(1.16).

A.6 Magnetic Well

We take the magnetic well quantity to be U and given by

(A.27)

_ By [ dt_ By 79(199
" 27R B__27rR0 B,

Computing the contribution to the magnetic well over one helical period
we obtain

1771 > B 2.’[0
8T, = F[§ | Vi [F + 52 cos e] . (A.28)
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As we integrate along a field line, the corresponding change in angle is 66},
given by eq.(A.19). Again assuming these quantities §U, and 86, to be
small we replace them by the continuous function

du U,
W ~ m . (A-29)
With this approximation we have
U 1 [% | Vi |? +22 cosG]
d N 2m
4.’130 o
B ¢ [2-15 | Vi, |2 +2—f3 cos 9]
T 2nzyg, 1 '
45330 o
Thus
eC | wd
v
U= , (A.30)

T oz ¢
av o h

and w 1is given by eq.(1.20) and i, by eq.(1.19).

COMMENTS

By the relations presented here the quantities ¢,, and w are given a
physical interpretation in terms of helical transform ¢y, current-transform,
total transform and magnetic well. It should, however, be pointed out
that in the stability analysis it is only the local quantities of the transform

and well that appear explicitly. That is local with respect to the variable
6.
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Appendix B

Surface Contribution to §W

§W, = %/ In-&2 n-[[V(p+—1-B2)]]ds

= /%/%%!n €|2{Bg (1+2——7)

+ 2[ByB,] (7'97" 1 Te, + _r_ﬁ (rcosH)) Ry

rR R R2 06
2 RO & i 0 R() 2
- HBZ” — (72—) T, + I cosf|1+2 ( R )
1 i R
+Ergsm9} }Yz—od&iz. (B.1)

. . 1.
UBa?H = B; {ﬂ byt + 2bg1bg3 + 2bga(bey + bgy + -2'b02)} + 0(8°),
[BoB.] = B {Bbar + bas + baa(1+ bur) + binbea} + O(6%),
[B2]] = B2{(1+2b.1)+2bs} +0O(6%).
We may now write

d6
§W, = —m Ry /(wo+Wl)d o (B.2)
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where we have performed the z-integration, and where # has been replaced
by the arclength variable v, (df/dv = C/(z¢Qo)). Here W, are the terms
that do not contain 3 explicitly and W; are the terms proportional to 2.
We first consider the 3-dependent terms

B.1 (B-dependent Terms

Collecting all the S-dependent terms we find

~ 2
W, = |n-¢J? Bg[{ﬂbef+2b91b§§)}{1+2(E> _16_9}

r r

p@\[rers _Tes T O }
+ 2{ﬂb"1+b93}{r12 R T Riag(m st R

) 2
+ {8+ 20 + 22N (5) 0o,
2
+% cosG(l - 2(%”) ) - r—}gsin 9}] . (B.3)
Here we have written
bos = by + B | by = b + b3 (B.4)

where the last term in each expression is proportional to A3, the first term
does not include S explicitly. We proceed to derive expressions for these
terms. Starting from the equation for by3 we have

ey 19

Bom = g _
B0 xl@xo zo 06 z9 06

From the third order n-B =0, and pressure balance conditions we have

}eis + c.c. (B.5)

- d -~ 1 d(x 0¢2}
——thae® f e, = ——JLZ72 B.6
i dn V3¢ Tec zode{zo 98 | B0
- a1 dy Oy
Y3 = —131/)1 - 1(2) 6 08 (B-7)

29



respectively.
Notice that eqs.(B.4) and (B.5) are valid at the plasma surface only and
that in order to evaluate bg3 given by eq.(B.3). We need to know %%’L at
the surface. This can be obtained from the formula
O3 1 ( d d )
= = | —tpy — p— ) B.
EY’ QS d0¢3 xodn¢3 (B.8)
Notice that d/df is a derivative along the surface and di3/df can be
obtained by taking the derivative of eq.(B.7). After some algebra where
we also use the fact that !

d di,
Eé%— = ) (B.g)
we obtain
j0 _ i O d Oy i {i(léﬁ)
7 223 00 d6 06 ' 2x0Q%\ dO\z2 df
fgi(_l_dl[)l) 9(zo) dlZ’l}albz
T aedd\zo dn) ¥ T2y dnJt o T (BIO)
s _ =B diy
b = 57003 df +c.c.. (B.11)
Turning to 1323 we have
. 1 s
i = §¢3e” + c.c., (B.12)
and by using eq.(B.7)
o _ L dhds
b3 = 9278 a6 (e
. 7~
pA) = ~580. (B.14)

Y'dis/dn = 0 along the surface, therefore its derivative along the surface is also zero.
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Now we write

. 2
T\=<|n-¢|* B? {ﬁbgl +2b91b§§)}{1 +2(1;'£) B r_:z} >

|§0 Lol 5 6¢1 Fo  Oth O

where << () >> means averaging () over z.

+c.c.}g(zo) (B.15)

= el Bg{ﬁb91+l}§§)}{ de(;%?)}»
= e (52 3) - B H (1), e
T, = «|n-¢J B2ﬂ{1+2bzl+2bw)}{;f:6(xosm9)
— (20 +ml)a;:;} >
B lg)ol { 'd% |2+N@(x°sm9)} BOBC;(,%? C:/)lda 6
- S8 SR
+2| % 2 —10;131‘?”‘ . } (B.17)

Collecting these terms we obtain

W, = T+ T, + T3

- Sl 0-5) B - B
(S0 g) - BRI .
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dy , 2d dyi d (1 0,
s +Nd6($osmg) i dH(xo ao)
_ zgd_@_(idz%)
Q3 dn db\z, dn
ddn 2, d¢1 (La_‘ﬁl_l_d'ﬁf> ]
2| [ Heatny Q2 90 zo dn ) T&©

+ term integrating to zero.

After some algebra this expression can be written in the compact form

16 ® 1o

A= 2Q2

BB z —{— | Ve | +Ezocose} (B.18)

B.2 p-independent Terms

We first consider the terms 74 containing bg;) and bﬁ‘;) which we write
as

T4 = a2(t] + t2 + t3) (Blg)

. 2
tp, = 2belb§,§){1+2<ﬁ> *%}y
r

- oT, Tgz T, O
t, = zbfg){’:;z _%+R289(rc039)}m,

5 Ry\? R \ rg .
ts = 2b(z%){—(io> P r RCOSG[I +2(ﬁ0r‘,) ] + Efsm 9},
. _ 1&PB

20807

After some algebra we find
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ty

i3

.9(z0) O}
Q7 28

1 dz/;l
To d9

1 diby

zo dn

{d0( )+x0d9(

+g(:1:0) d’/;l 0,

@)

+c.c.,

s
do
d b,
dé 06

1 dij;

o dn

992
o6

)

22 df Q2 dn
a6 d6(

zo dn } 06
{ (1 dz/n) . Zog(x0) diy
Q3 de
_%_1M)
zo dn
1 5¢1 Oy 02
OSCO 6.’130 86 89

zg Q%

The remaining terms we call 75 and they are given by

Ts
where
and | €, [}
R,
Ry
R,

1.
B2 << 2bga(bgy + boy + = bez)(l + 2( S roo) | & |2

RO ToT,

+ 2bgy(1 + by ) | €n I7>>

R1+R2+..‘+R7’

|6 =1 & 1" + [ & I3,

is obtained form eq.(C.3) and (C.6). For convenience we write

)}

(B.20)

1 0:1:1
Jds

283 by <1 €. 2 {g(a0)bn = 205 (-

41202 by << by > g(x0),
(i 81‘1

—4T(2) Cl2bgzb21$0 S o 95

dé

) >,
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2
- z
R4 = 4.17(2) a2 bgz < bolml >> (’—0 —4— )
3

xo
5 . 4z . 1
R, = 4zl a® b92{<< bgrzy > ——2,9— < by, > —},
~ TreT
R = 4:17(2) 02 b92 < (_z - 7'02) >,
i 2

R, = 2a% b2, g(z).

Substituting for | £, |, by egs.(C.3) and (C.6) and for z; by egs.(1.9)
and (1.14), we find after some algebra

R ZB2 a",bg al/)l ( 1 d'l/)l) | 6 lz
! " 222Q2% 98 06 df\z, dn o
d )y 2ig ( g(xo)alf)l} d ( 1 dz/Z*)
2 - _ s S W s 14
i [{2 0 in 0zg i T 2 Q% 06 )db\z, dn

al/)l d 01/11 Oy
— 2¢(x } c.c

o) 00 dn dzol 08
B 10,07 | d&;}awz
He = a {.T,O 92y 08 T 080z, dn

(zo) + c.c.

. 1 dij;\ O
2.2 1
s = mlOLdG(:rOdn)aG T,

2 _ ul'o 1 61,/)1 81/)1 01/)2
R, ia (g(.ro) 1+ )l‘o 32, 00 00 + c.c.,

Ry = ia? {4$0d¢1 +4I0 (1 dz/;l)

g dn zg df \zo dn
1 d (dz[vf)}azp] Oy
20 d62 \ dn 06 06
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. d¢1
. 2
e = A d9(

)+

zo dn

R, = 24d° (66122) g(zo) .

After some more algebra these terms can be collected to give

Wo = T4+T5 T4+R1+ +R7

252 1 0¢,0
+ {gé20) + ( 0) :I:g 0(2)g(x0)+ng } 6¢'1 5[;1

1 i dy | 0y, d 3
M g(mO){ngg 20 49 2706 dn Oy
N &1y dd?;H O
060z, dn 08 o
Ox2 0 O\ 2
i 2029(‘“’){2 o aﬁz t ( al?) }

o af 100 0Y; D (iarﬁ;)( 0%y A>}8¢2
- Oxo{xo Oz, 06 +02:0 Ty 06 28:v0 —% 06 e

0 oF 0
+ 2atgm){(52) + 22L2

where the last step also takes a fair amount of algebra. In order to arrive

at our final form we need one more step. The following identity can be
proven to be true

; _ 10¢10¢1 }
ViF = iV? {xo(?:vo 2 + 21x, + c.c.

o2 _1_.5_’5%}
1V {1?0310 20 + c.c.
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_ 100100 D 10y B ..
B 22{1'0 Ozo 06 +6xo(zo 69)(2 Ozl 5 )}+C'c"

where

#1018
0z " z00zo @ 22062
From this identity it follows that

= (B.21)

. iGQ;I oy 0 (_1_61[,;)< 2p - )}
2{1'0 Ozo 06 b Ozg \zo 06 zaxg - + c.c.

1
= —=V?F.
2

Using this result we obtain the final form of Wj,.

L))

%2 1 2arg(ao){ (92) + 2R, 22}

Wo = —30’QiiV'F
= -2« 52Q0T0{bv g(To)(b2+2 b)} (B.22)
T0Q3

Notice that
1 diy T

= S — 1 oy
5$0Q0 dg QO Sl .’13(2)

t, = —VF
“h 4e ’

1

4—Q0Fro (helical transform),

in = |in|sgn(Fy,) =

3} 1 d

—
26"~ 02 dg"?
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B.3 The Surface Contribution to §W

We add the two terms from eqs.(B.18) and (B.22) to obtain

SW, 1 dé
=—= —d
27 Ry 2/0 (WO+Wl)dv o
e?B2C 5 . 9(zo0) . B dw
: -2 o) -
2 /olf‘)l {V‘ ong(b+‘h 2% dn | 40
where
d 1 d 1 7 2.’170
— = = — 6.
2 = Oudn and w 5 | Vb, |2 + - cos
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Appendix C

Plasma and Vacuum §wW

The boundary-condition (n-B |,-,,=0) to first order can be written

1 d d
WV |o,= ;@{gg—(mmo + R (QB.} . (C1)
Since the contribution to éW from both plasma and vacuum are positive
definite, and since the destabilizing surface terms are small of order &,
this requires that we carefully taylor our perturbation in the plasma- and
vacuum-region such that 6W, and éW, also are small of order §*. From
the boundary-condition eq.(C.1) we see that n-VV |-, is at most of
order 6. Consistent with this fact we assume that V is also at most of
order 4. From eqs.(1.35) we sce that this makes 6W, small of order 2,
but since the largest contribution from éW, for any unstable mode can at
most be of order é*, this requires that we choose the perturbation such
that the R.H. side of eq.(C.1) becomes small of order 62. It then follows
that the first order part of this expression must be zero i.e.

d d ‘
[@(RQSB()) = ROE(TprBZ)]l =0, (C.2)
Let
Q¢ = [fo +épe +EeT + 52] et (C.3)
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Q=1+, Q3=1+£§, (C.4)
and
d
@* = Q3 +2225 () o). (C5)
After some algebra this determines £, and £_ as
€ = 3G, ), € = —5G(&,61), (C6)
where
o 1(d (&0 i ‘
i - LSS ra(o0)). e

By expanding V and n-VV in Fourier series in the variable s, one can
prove that the different Fourier modes decompose. And by choosing £,
properly 6W, can be minimized by making all contributions coming from
terms having the z-dependency vanish. By writing

2
(n-VVds), = BORO{GO(O) + D a.(6) eim}eik’ dédz , (C.8)
(n#0)
and
2 . .
= {VO(G) + > Va(8) e’"s}e’k", (C.9)
n=-2
(n#0)
we obtain
W, By ff 4e |
S = / Vi (8)ao(8)d6 . (C.10)

After some algebra ay(#) can be determined from eq.(C.1)

39



d (& .
ag(ﬂ) = 6% (@—(—)Lh

Then taking ¢ = -é,l Vo(8) = Boe V(v) , k' = %¢ and using the arclength

0 )
variable v we obtain

) Pt (C.11)

oW, e*B
2nRy, 2

Vy(v) a(v)dv, (C.12)

where

a(v) = %(Elh) + k'€, (C.13)

and we have omitted the subscript 0 on a(v).

The contribution from vacuum can be derived in the same way, the only
difference now is that the "transform term” is modified by the current
flowing in the surface (&, — @& + b)

d
a(v) = %{§(2h+b)}+ik’f (C.14)
W, B o . s
orRe 3 /l (v)a(v)dv . (C.15)

0
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Appendix D

Matrix Representation

D.1 Perturbation in Plasma and Vacuum

In order to determine the perturbation in the vacuum-magnetic field we
need to know V, eqs.(1.35) - (1.37). In order to determine V at the
surface we shall use a Greens-function technique similar to that used in 4.
From Greens formulae we have

/{f/v"-U—Uvsz}drz/{f/n-VU~Un.vf/}ds. (D.1)

v

Here V' is the volume outside (inside for the plasma region) the surface
S. V is the potential such that B, = VV and U is the Green’s
function. We assume V' goes to zero sufficiently rapidly so the volume
integral exists. Which means that we do not have any boundary in the
vacuum- region. This makes our perturbation slightly pessimistic, since a
conducting boundary would limit the motion somewhat. ( However, on a
long time scale the real effect of a conducting boundary would be limited
to the resistive time-scale of that boundary). We then have

VU =6§(r—r), V2V =0. (D.2)

Since we do not take into account an outer boundary and since the ip-
tegration the long way around the torus can be done analytically to the
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significant order, we need only to consider the two dimensional problem
with
U = U(rr,86,68)
VU = 6(r—r',6—6') (deltafunction),

and
V(r,8) = /{ff’ﬁ' VU - U -V'V'} 2, Q) de, (D.3)
o

where a prime(’) refers to the coordinates r’,6 and V' = V(r',§') etc.
Notice that n’ is the unit normal vector pointing outward from the surface.
We change to arclength variable and obtain

]!
V(z,6) = —c/ (Vi - VU~ Ui - V'V do' (D.4)
0

When the observation point (z,6) moves on to the surface we have z =
z(0) orin arclength variable z = z(v). The integral from the deltafunction
is then reduced by a factor 1/2. Therefore when we evaluate V at the
surface we obtain

1
V(x(v), v) = —20/ [V’ -0 - UR -V} av'. (D.5)
0

The two dimensional Green’s function for the Laplaces equation is given by
p q g Y

U:—l—lnr, (D.6)
27

where

PR \ﬂx_I/)2+(y_y/)2,
¢ = r'cosb', y =r'sinf

£ = rcosf, y=rsmé.
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We introduce

hr = /2’3 + 22 — 2zqx} cos(6 — 6'), (D.7)
and obtain
c |
V(z(v),v) = =-— {V’“' Vin(hr) — In(hr)i’ V'V’}dv. (D.8)
0

It is convenient to introduce the function
C 1
G =G(v,v')=——In {x{) + x2 — 2x0xf cos(d — 9')}2 , (D.9)
T
and we can write
1
— /{ (V)i - VG — Gﬁ-vf/(v')}dv'. (D.10)
0
We then evaluate n’-V'G at the surface and obtain

C ap— x9cos(8 —8') + (24/x)z0 sin(d — € )

n' VG = (D.11)
Q) it —+— z2 — 2z0x( cos(f — 6')
In the limit v — v’ we find
. / C g(.Z'o)
-VG = —— . 12
uh—r»{;l' " e 21 ToQ3 (D.12)

It is also convenient to resolve the singularity of G at v =v'. After some
algebra we find the dominant term in this limit, which can be written as

gln gsin{ﬂ(v — v} . (D.13)
m

us

For the numerical evaluation it is convenient to write
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G = G(v,v') + G,(v,0'), (D.14)
where
A C 's 4 22 — 2z0z!) cos(f — §')
A 0T %o 0o .
G(v,v) e n{ £ |sinm(v' —v) | } ’ (D-15)
Bl = —gln{% | sin w(v’ = v) |} . (D.16)

Summarizing these result we have:

V(v) = —/I{G(v,v’)ﬁ' L VV (') = V()i - V’G(v,v')}dv', (D.17)

G = G + G, given by eqs.(D.14) - (D.16), lim G =0, G, is singular
at v =12, - VG and lim h-VG are given by egs.(D.11) and (D.12),

i - V'V’ is given by eq.(C.1) or in elaborated form by eq.(C.14). We can
therefore regard eq.(D.17) as an integral equation for determining V(v) at
the surface. We shall solve this equation by Fourier expansion in v. Let

E= Y & e, (D.18)
n=-—oo
(n#0)
notice that the summation omits the n =0 terms. This follows from the
fact that we have already by analytic minimization determined the displace-
ment vector § to have V:.£ =0 to leading order. Since the variation in
z (or s) is zero to leading order this "incompressibility” condition implies
that in the fourier series for £(v), & = 0. Notice that a & # 0 would
correspond to a uniform contraction or expansion of the surface, inconsis-
tent with the leading order perturbation being incompressible. We now
write
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V(v) = ieBge™* > Voe?mine (D.19)

(n0)
fi-V'V(v) = ieBoe™™ f: iy €LRT (D.20)
(o)
= fj b, €2 (D.21)
(n0)
I i Cn €77, (D.22)
(n0)
G’(v,v') = f: i R S (D.23)
(it
EX i g: ., ermmv e'”im'v', (D.24)
it
i .V'G = fj ) e e (D.25)
(o

Notice that the Fourier transform of G, , g;, ... can be calculated analyti-
cally, (which was the purpose of extracting the singular part of G in that
special form). After some calculation we obtain

11
s o N _—2mimv _2mim'v’ /
e — G,(v,v')e e dvdv
00

2 Q

11
//{cos 2n(mv — m'v') 4+ i sin 27(mv — m'v')}
00
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X ln{—f— | sin7(v —v') l}dvdv'

c 1
{ a7 fr O w5l (D.26)

C (]
—;1!15;6,,”,11 m=0.

Continuing we have

11
Omm! = //G’(v,v'){cos 2m(mv — m'v') + ¢ sin 27(mv — m'v’)}dvdv',
00

(D.27)

gmm' has to be evaluated numerically and since G(v,v’) is regular in the
limit v — v/, this is a straight forward matter. By utilizing the symmetry
properties of G(v,v’) we can show that

11
Gt :/ G(v,v") cos 2m(mv — mv')dvdv' . (D.28)

00

In a similar way we find

11
VYmm! = //ﬁ' -V'G cos 2n(mv — m'v')dvdv' . (D.29)
00

When evaluating §,m and g, it is convenient to expand the cosine
term

/ / . .
cos 2m(mv — m'v") = cos 2rmo cos 2rm’v’ + sin 2rmo sin 2rm'y’,

then §nm and G, can readily be evaluated by using fast Fourier
transform routines in real space. The Fourier transform of G(v,v’) is now
given as

Imm' = émm’ ais __—-“6mm’ . (DBO)
m |

Notice that §eo will not appear in the problem because of the incompress-
ibility condition discussed after eq.(D.18).
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We now substitute by egs.(D.11) - (D.16), (D.18) - (D.29) in eq.(D.17) to
obtain

fore) oo
z Vn e27rmu S Z {gmm’ e2mmv al 6lm’ — Ymm! e2mmu Vvl &m:},
n=-o00 m,m'=-0c0
(n#0) (m,m’#0)
(D.31)

eq.(D.31) can be rearranged and written as a matrix equation

{I-T}.-V=-G-a, (D.32)

where I is the unit matrix and the matrices I' and G have the elements
Yme and gms respectively. V is a vector with components V, and & is
a vector with components a,. By solving eq.(D.32) we obtain

VA= (R SN GRS (D.33)
The next step is to find an expression for a. From eq.(C.13) we have
R d( . p
= %{f(ch + b)} s (D.34)

Substituting the Fourier expansion given by egs.(D.18), (D.21) and (D.22)
we obtain

E An 2minv —
(n#0)
=5 2rimy 3 EpEhjes i e L it
dv 2 ne > (Cotboe i Y K
m=—00 [:—OO e
(m#0) (££0) (m#£0)
=1 Z Z {27Tn< e TP b"—m)fm I kl(snm €m}e2rinu )
m#0) (n#0)

In matrix notation we then have
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a=iA €, (D.35)

where

/i-mn = 27rn(Cn—m 1 bn—m) + klémn ) (D36)

and £ is now a vector in Fourier space having components given by eq.(D.18).
From eq.(D.23) we obtain

V=—(I-I)'-G-A-¢. (D.37)

D.2 OW Matrix

We now return to the expression for 6W,, eq.(C.15). By substituting the
Fourier expansion into this equation we obtain

§W, 2B &

27‘(R0 = — 2 n___z—oo ay Vn
(n#0)
232 . 22 .
= 0. V= S0,
2
and in matrix notation
§W, e’B2 - .
= e AT . I-D)'.G . A-E. .
= € AT (1-D)7 G A g (D33)

The plasma contribution can now be determined in exactly the same way.
The only difference is a change in sign on T', (the other sign-changes cancel)
and a different a,

a=1tA-§, A, =2m C,_,, + k'6,,,., (D.39)
§W, B2 . .. .
=20 ¢ AT (I4+T)'-G-A-€. (D.40)
21 Ry 2
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The surface term matrix can easily be obtained from eq.(B.23).

- 9(51’50) (2 o > g d — omi
b . = ez [ ] 9 . — mTinv
\VJ Lh $0Q8 ar th 2 d’flw nzz_:oo Sp € 3
(n#0)
1t then follows
oW,  e*B? .
= 06 -8 - €v

27TRO - 2
where the elements of the S matrix are given by
Smn = Sn—m -
Finally we obtain the complete W-matrix formulation as

SW 4B
= W
27TRO 2 € 6’

where

W=AT".I-T)'".G-A+ AT I+I)' - G-A+S.
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(D.41)

(D.42)

(D.43)

(D.44)

(D.45)
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