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On cubic factors of certain trinomials.

HELGE TVERBERG

1. Introduction.

Let f £ Z[x] be a trinomial of the form x 11 + Ax m + E , where

3<n>m>0+A, and E = ±1 . Assume that f has an

say that f is special, and in this paper we aetermine all special

trinomials. A. Bremner [l] did this for E = 1 , stating that his

methods can probably be used also for E = -1 . We have used a

different method, however, and thus obtain a (largely) independent

verification of his results. He relies (mostly) on a p-adic

method of Skolem, whereas we (mostly) make use of the properties of

the zeros of f .

We refer to [1] for further background.

2. The theorem, and some particular cases of it.

The special trinomials can be normalized in a certain sense.

For if g divides f then -g(-x) divides (-l) nf(-x), cx 3 g(l/x)

divides Ex nf(l/x) and -cx 3 g(-l/x) divides (-x) nEf(-1/x) .

Consider the following list of special trinomials, chosen so that

3 2
irreducible cubic factor, g=x +ax +bx+c€ Ztx] . We shall

n > 2m and A > 0 : f 1 = x 4 + 2x + 1, f 9 = x 5 + x + 1,

~ x + -1, =x 7 + 2x 3 +1, fj. =x 8 + 3x 3 -1,

f 6 = + 1040x4 -i-f7 = x13 + 3x 4 -1,f g = x 14 + 4x 5 -1,

f 9 = x33 + 67x11 +1 > f io,j =x° + 4 Cj 4 - j)x 2 -1, j = -1, ±2, ±3,
Of these, only f is not given in [1] .
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We can now State our

It will be convenient to treat the cases with n < 6 or !A f < 2
3 2 2

separately. One finds easily that f ~(x - x + 1)(x +x+ 1)
3 2 2

and the £, n . , with factors x ± 2jx" + 2j"x ± 1 , are (up toiu, j

normalization) all the special trinomials with n <6 . Note that.

by normalization, we can always assume n >2m and we assume that,

and also n > 6 , from now on. (The other normalizing assumption

A > 0 , which we could make only because it so happens that no

special trinomial has n and m even, A< 0 and E= 1 will

never be used, however.)

I£ IA 1 = 1 we rely on Ljunggren's result (th. 3 in C3 ])

which implies that f factorizes into x“ d + Am E nx d + 1 and an

irreducible polynomial, with d = (m,n) . The first factor divides

other factor, and hence 5 = n - 2d , so that d = 1 or 3 . But

d + 1 , as n > 6 , and hence n = 9, m = 3 , which violates

Ljunggren's further condition, n + m = 0 (mod 3d ), for

factorization.

If IA! = 2 , we use Schinzel’s result [4 ]. His th. 3

(corrected in [5 ]) describes explicitly those irreducible factors

of a trinomial x 11 + Axm + E which have no roots of unity as zeros.
p

They are polynomials in x , of degrees 3k or 4k , and we obtain

the normalized special trinomials

THEOREM. Every special trinomial is, or becomes after normalization,

one of the trinomials f,... , f , f j

x 6d -1 , but no root of unity has degree 3, so g must equal the

£ 3 =x 7 + 2x Z - 1 = (x J -x 2 + l)(x J +x - l)(x + 1),

f 4 = x 7 + 2x 2 + 1 = (x J - x 2 + l)(x 4 + x 2 + x 2 + 1)
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In what follows we add !A! >2 to our assumptions.

3. Location of the zeros of g

We prove that g has one zero inside the unit circle and hence

two outside (as !cI =1 and f has no zero on the circle when

1A1 > 2 ). To see this let first g(w) = 0 , with !wI < 1 . Then

If Iwl > 1 instead, we get

This shows that if g has two zeros inside the unit circle, then

(with B = IA! )

With g håving one zero, denote it by t , inside the unit

circle, there are either two more real zeros, u and v , or a

conjugate pair z,z , outside it. We'll now exclude the first

possibility.

Firstly u and v must be of opposite signs. For if, say,

1 < u< v , then the equation u 11 m + Eu' m =vn m + Ev" m

(= -A) is inconsistent with the fact that d/dx(x n-m + Ex -m ) >

(n-m) - m > 0 , for x > 1 . Now let u > 1 and v < -1 . Then

lw m + A X E! =!w I n !A! 1 < !w! 2m !A I ~ 1 < !a! _1

so that !w 1 m < 21A1 and hence

1w I m < !A! 1 + !w! n 1 A 1” 1 < !A! 1 + 4!A! “^

. . m . .n-m .. „ -m, .. ,Iwl < !w! = IA + Ew ! < ]A! + 1

1= 1 c! m <(B 1 + 4B'" 3 ) 2 (B +1)=(1+ 4B 2 ) 2 (B _ 1 + b' 2 )

But this is absurd, as (1 + 4B < 169/81 and B + B < 4/9

for B > 3 .
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n-m n-m, . -m -m. 0lu - v 1 = Iv -u I < 2 .

even, that lu - ivlI < 2(n -m)

3 • 2 • (n - m) 1 < 2 . Note also

This implies that n - m is

Consider now -a = t + u + v . We find, as 0 < Itl <1 ,

that u + v + 0 . Thus m (and hence n , too,) is odd, and the

inequality E(u - Ivl) < 0 holds. Furthermore E = c , which is

a consequence of the fact that f/g has only complex zeros, so that

E/c= f(0)/g(0) > 0 . If, namely, the evendegreed polynomial f/g

has a real zero, it has at least two (distinct or coincident). Now

(g, f/g) = 1 , as g is irreducible and can not divide f' , which

has at most two real zeros t 0 . Thus two real zeros for f/g

would mean at least five real zeros (out of which at most two are

coincident) for f , and hence the impossible number of four

distinct real zeros for f’ .

It has thus been shown that the zeros of g are t,z and

z , where -1 < t < 1 , and |z| = R > 1 .

4. The case n + 3m

The distinction indicated by this heading seems unmotivated

right now, but its importance will soon become clear.

4

< 1 and that !u° - 1 v!^! <

-1 , • n-m „ -m
3 . 2 • (n - m) < 2 . Note also that the equation u + Eu

|v| n“ m + E(-l) m lvl' m , which holds as n-m is even, gives

u = Ivl for m even, and E(u - Ivl) < 0 for m odd

We consider -a again. As c = E it can now be written as

u+ v - E/uv = E(E(u - Ivi) + u 1v 1 , which shows that la 1 < 1

as -1 < E(u - Ivl) < 0 and 0 < u 1v 1 < 1 . Thus a = 0 and
3 3 3

so -(t + u + v ) = b(t + u + v) + 3E = 3E , which is inconsistent

with lt 3 +u 3 + v 3 l = lt 3 + (u 3 - 1v1 3 ) 1 <1+ 2 .

The equation zn m + a = -Ez" m shows that iRn " m - IA1 I < R -m ,
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and we also have I Itl m - IAI I < I11 n m , as A+Et m = - t n m

(*)

For the discussion of (*} , it is useful to observe that

m > 2 . For g and £/g have both at least one zero inside the

unit circle, while £ has m zeros inside it (as |A1 > 2 }. Now

for m = 2, n > 7 , the LHS of (*) is at least R - 1 , while

for m > 3 it is only at least 1 - R . Using this ( remember

-X_ 2 2 - 1
+(z -z)+ (z -z) has magnitude at most Rq -R q

+ 2 (Rq - Rq 1 } < 1.97 2 , as, generally, lw 1-w|=| |w 1 - Iw) -1 )

Thus I ac -bl= la - bc1 =0, 1 or -1 . Furthermore, as g has

no real zero outside (-1,1) , we have g(l) > 1 and g(-l) < -1 ,

so that -b < a + c < b . Replacing g by -g(-x) we can require

a > 0 , too, and then we are left with the following candidates for

x 3 + 3x“ + 4x + 1 < x 3 + + 3x + 1 < x 3 + x 2 + 2x + 1

and the latter polynomial takes a negative value for x = -Rq 2

Thus any of these three candidates for g would have 0 > t > ~Rq~ 2

i.e. R > Rq , and is hence excluded.

5

Thus lRnm - 1tI m l <R m + lt| nm , which, as Itl = R , gives

IRn j>m _ i | < R + R 2n

n > 2m } one finds that (*) implies R < 1.272 . Put 1.272 = R Q
_ 7

The magnitude of a is at most 2R Q + R Q < 4 , and hence

lal <3 . The integer a - bc , which equals t 1 - t

g :
3 3 2 _

x+x + c, + X 4- +(c + l)x +c, + 2x 2 +3x+1, X 3 + 3x 2 +4x + 1

When -1 < x < 0, we have

3
For x + x - 1 we have R > 1.21 , as 1.2l" 6 + 1.2l" 2 > 1

Then (*) can hold only for m = 2, n = 7 , and for
y

m -3,n=9±l. s t has a unique expression as an integral
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2
combination o£ 1, t, t , the only possibility for f is, in the

8 10 2
first case, f . Expressing t and t in terms of 1, t and

3 r-ji r 8 _ 3 , ,3 , w 5 3 2 , A
t we find also fg = x +3x -1= (x +x - 1)(x - x +x+x+ 1)

for n < 16 we rediscover fg and and also get the new

specimens and fg .

Let d be a divisor in m . Then f-, -x^ + Axm//<4 + E1/d
will also have an irreducible cubic factor. For = »

while the polynomial (x - t*4 ) (x - z^)(x - z 4 ) is in Z[x] and is

clearly irreducible, as |t| < 1 < Iz| . This means that we can in

the first instance concentrate on finding those fs for which m

is a prime. We already know the case m= 2 and we'll see further

below that the only other case is
r r 33 11 3
£=fg = x + 67x +1,g = x +

possible values for m are powers

say, would require ± A to be 67

3
The candidate x + x + 1 has been covered, too

3 2
The final candidate for g is x + x - 1 with R > 1.15

Now (*) shows that m < 6 and that m = 2=> n < 8, m = 3=> n < 11,

m=4=> n < 13 and m=5=>n < 16 . Expressing t n in the basis

1, t, for n < 8(11, 13) , and in the basis 1, t^

4. The case n = 3m

m = 11 . Then

x + 1 . This shows that the only

o£ 2 , or 11 , as m = 22 ,
4

and to have the form 4(j - j)

We start with the powers of 2 .

If £ is x 12 + +E , then ~ + Ax~ + must be

one of the ’ i ,e * A = 4 - j) . Furthermore
2 2 — ?

(x - t )(x - z )(x - z z ) , dividing > mu st be





c)

x 3 - 2jx 2 + 2j 2 x - 1 . Then (x 2 - t 2 ) (x 2 - z 2 ) (x 2 - z 2 )

There are no further Solutions, as the Diophantine equation

= s +1 has no solution with r 4= 1 , For this equatFor this equation

gives s + i = (1 + s - i = (1 - , where the Gaussian

integer is relatively prime to its conjugate s~ (note that

( s + i> s " i) divides 1 + i) . Thus s 4 = (P + , and so

Im(s +i)=1 = (p - q}CP 2 + 4pq + q 2 ) , which implies

iR i • This gives a non-special f . Euler [2] proved around

(but for a false lemma) that 1 + 2r 3 is not the square of a

rational when r is a non-zero rational. As is well known, and

easy to see by arithmetic in Z[((-3) + l}/2] his lemma becomes

correct, and useful in the context, if the assumption (x,y) = 1

x + y (mod 2) is added to it. This finishes the case m = 4

Finally m cannot be 8 (or a higher power of 2 )

7

= -g(x)g(-x) = - + - 1 , which requires

2b - a -2j ,b 2 - 2ac =2j 2 , i.e. b= a 2 -•4- - 2ac

The expression for b shows that a is even, a = 2k , and

that2k 4 - kc must be a square. Now (k,2k 3 - c) = 1 , and so

k = ± r^, -c = ± , with r, s€ Z . Thus = + 1

06 2 ,or 2r = s - 1 .

6 2 +
The equation 2r = + 1 has the solution r = s = 1 in Z

This gives a = ±2, b = 6, c = ±1, j = -4 , and a = ±2, b = 2, c = ±1,

j= 0 . But f 10j Q is not special. We get = f 1Q _ 4 (x 2 }

= + + 6x + 1} - + 6x - 1) - 8x" + 32x + 1)

p=l,q=0, s=l or p = 0, q = 1, s = -1 .
6 2

The equation 2r = s - 1 has the solution r = 0, s = 1
+

De 8 (Or a higher power of 2 ) . For if

m= 8 we find, as above, that (x 3 + a v 2 *u, . „, r 3 2+ ax + bx + cj (x - ax + bx -
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i60 4 , 1
must equal x - 2x + 6x - 1

2b - = -2, - 2ac = 6 .

This implies the impossibility

t is a unit, and so is -a - z

The latter case is excluded, as t

would have a zero in [l,co) , and

(mod p) . Hence b * 0 and

(p - 13/2 . Let q be a prime dividing b . Then q clearly

8

Now let m be an odd prime p . The polynomial

gg =(x “ (x - z?) ( x _ z"P) has integral coef f icients , and
3

zeros in common with = x + Ax + E , which is irreducible.

Thus f i/p "§o and > in P art icular > tp +z P +z p =0 . This

equation shows that z + z = -a

and -a - z . Thus (-a - t)(-a - z)(-a - z)
3 2

(-a ) + a(-a) + b(-a) + c = -ab + c = ± 1 , Replacing g by

-g(-x) we may assume that c = 1 . Then ab = 0 or ab = 2

+ z + z = (mod p) ,

implies -a o (mod p) . Hence ab = 0

b 0, g(l) -a+ 2 . But then a>-2 , as otherwise g

similarly g(-l) = a < 0 . Thus

a - -1 , which contradicts a = 0

a = 0

Now g - +bx+ 1 . Put s R =t k +z k +z\k= 0, 1,

and note that s Q = 3,s x = 0,s 2 = -2b,s. = -3, S/, = 2b 2 and

s 5 5b > while s p -0 . This shows that p> 5 , and then E= 1 ,

as s 3 p =s 3 ( mod P) implies -3E =-3 (mod p) .

We first eliminate the case Ibl > I . Inspired by Bremner

(p. 146 of [1]) , we put - (1 + etc. . Then

s 5p s 0 + + ... + b?s p or ,equivalently,

p 2 (p - 1)/2 = 2(P)b J + 5(P)b 5 + (P)b 3 s 6 + ... + (^)b k ' 3 s k + ... .

This equation shows that (b,p) - 1 and that divides

divides 2(P)b /((p - l)/2) , and 5(j?)b*V((p - l)/2) . I£ q does
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not divide (|J}b k 3 - l}/2}}, for some k > 6 , then q k 3

must divide k(k - 1) , as (£) = p(p - 1) (P ‘ - 1) . But
k-3 k-3

then 2 < q < k , contradicting k > 6 . Thus q(p - l}/2Thus q(p - l}/2

divides only the RHS of our equation

in (- -1}) . Then, as observed by Bremner, g divides
46 2

x - 47(77x + 13x - 27} -1 . This means that, with

where the Ai are rational integers. Thus s r = 0 (mod 47} ,

which (one calculates} happens only for r = 11 , with = 0

This gives the special trinomial f .

A 1 “ 775 2 + 13s l “ 27s 0 = " 73 » and that (p)= J}k/i for

i > 1 . This shows that 47 divides 47 1 ( k }A i to a higher power

than it does 47k ,as 3 does not divide i for i> 1 .

It remains to prove that m cannot be 121 (or a higher

power of 11 }. Assume f to be, say, x 363 + 67x 121 +l . Then

Sq ~ “ z )( x ~ is a cubic factor in

REMARK

The result of this section, in the case of odd m , can also

be expressed as follows: The Fermat equation x m + Ym + Z m = 0

has a solution (x,y,z} , with x,y and z conjugate cubic units,
only in the case m = 11 . This closene<;<; tn thp FprmatThis closeness to the Fermat problem

We are left with g = x 3 + x + 1 (as - x + 1 has a zero

x - 4/(_77x + 13x - 27} -1 . This means that, with

p = 46k + r, 0 < r < 46 , we have

0= 5 =(1+47 (7 71 + 13t - 27)) k t r + ... = s + I 47irk}A
p r i=i 1 1

To see that S 46k+;Q * 0 f° r k> 0 , observe that

33 11 x.
x + o/x +1 , and hence equals x +x+ 1 . But g divides

( 11. _ 33 11
S CT X ' x + x +1 » which is, however, not a special trinomial





also shows up in the fact that 11 divides the Fermat quotient
1 n 10_ n

1 '* which can be shown to be related to the solvability

just mentioned. These quotients are important in the Fermat problem.

Also i£ we modify our problem, asking for three linear factors

x " a » x ” b and x - c , where abc + 0 , and not requiring

IE| to be 1 , we get the Fermat problem in the case n = 3m ,

with m odd.
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