## Repunt Cuminersitelet ì Berga Department

 of
## PURE MATHEMATICS

# On Extremal Bases for the $h$-range Problem, I 

Christoph Kirfel
November 14, 1989

Report No. 53
ISSN - 0332-5407


## UNIVERSITY OF BERGEN <br> Bergen, Norway

Department of Mathematics
University of Bergen
5014 Bergen - U

NORWAY

# On Extremal Bases for the $h$-range Problem, I 

Christoph Kirfel

November 14, 1989

Report No. 53
ISSN - 0332-5407

# ght xol egdad [smaRdx 10  

## lolztix faomaindo

$\sin \log \sin +\sin$
Re in hrogal
Tous - sesm- vael

# On Extremal Bases for the $h$-range Problem, I 

## Christoph Kirfel

November 14, 1989

## 1 Introduction

A set of $k$ positive integers $A_{k}=\left\{a_{1}=1<a_{2}<a_{3}<\cdots<a_{k}\right\} \subset \mathbf{N}$ is called a basis. Let now $h \in \mathbf{N}, M \in \mathbf{N}_{0}=\mathbf{N} \cup\{0\}$ be integers. We say $M$ is $h$-representable by $A_{k}$, if there exist non-negative integer coefficients $x_{1}, x_{2}, \ldots, x_{k} \in \mathbf{N}_{\mathbf{0}}$ such that

$$
\sum_{i=1}^{k} x_{i} a_{i}=M \text { and } \sum_{i=1}^{k} x_{i} \leq h
$$

The set of all integers which are $h$-representable by $A_{k}$ is denoted by $h A_{k}$. We consider now the least positive integer N without such an $h$ representation by $A_{k}$, and call $N-1$ the $h$-range $n_{h}\left(A_{k}\right)$ of $A_{k}$ :

$$
n_{h}\left(A_{k}\right)=\min \left\{n \in \mathbf{N} \mid n \notin h A_{k}\right\}-1 .
$$

Often we call a basis an $h$-range basis.
With $h_{0}$ we denote the least number of addends that is sufficient for the $h$-range to reach the largest basis element $a_{k}$ :

$$
h_{0}=h_{0}\left(A_{k}\right)=\min \left\{h \in \mathbf{N} \mid n_{h}\left(A_{k}\right) \geq a_{k}\right\} .
$$

It is very easy to show that for $h \geq h_{0}-1$ we have

$$
\begin{equation*}
n_{h+1}\left(A_{k}\right) \geq a_{k}+n_{h}\left(A_{k}\right) \tag{1}
\end{equation*}
$$

#  I. moldor 9 



> coent it -odmevein

## froitouboritn I









$$
I-(a A \lambda\rangle s i V A \partial s) \text { aimax }=(, N)_{h a r}
$$

arund spiron-d as zied a lless guf nofio


$$
\begin{equation*}
(a K)_{A N}+a^{n} \leq(a x)_{d+10} \tag{i}
\end{equation*}
$$

For sufficiently large $h$ even equality holds:

$$
\begin{equation*}
n_{h+1}\left(A_{k}\right)=a_{k}+n_{h}\left(A_{k}\right), \text { for } h \geq h_{1} \geq h_{0}-1 \tag{2}
\end{equation*}
$$

For a proof see Selmer [17] or Meures [10]. By $h_{1}$ we denote the least bound for (2) to hold. Selmer [17] could show that if

$$
\begin{equation*}
n_{h}\left(A_{k}\right) \geq(h+1) a_{k-1}-a_{k}, \tag{3}
\end{equation*}
$$

then $h_{1} \leq h$. If (2) holds for all $h \geq h_{0}$, we say that the basis $A_{k}$ is $h_{0}$-stable.
An $h$-representation of $M \in \mathbf{N}$ by $A_{k}=\left\{1, a_{2}, a_{3}, \ldots, a_{k}\right\}$ :

$$
\sum_{i=1}^{k} x_{i} a_{i}=M, \quad \sum_{i=1}^{k} x_{i} \leq h
$$

is called the regular $h$-representation by $A_{k}$ if $a_{k}$, the largest element of the basis, is used as often as possible, and then $a_{k-1}$ is used as often as possible to represent the rest $M-x_{k} a_{k}$, and so on. A representation of $M \in \mathrm{~N}$ is called minimal if the number of addends used in this representation is minimal among all possible representations. The regular representation need not always be minimal.

On the other hand, the minimal representation can always be achieved by starting with the regular one and performing several "transfers" of basis element. In order to describe this process we need the so called normal form of the basis $A_{k}$, introduced by Hofmeister [5]. Let $A_{k}$ be a basis, then there exist uniquely determined integers $\gamma_{i} \geq 2$ for $i=1,2, \ldots k-1$ and $\beta_{j}^{(i)} \geq 0$ for $i=2,3, \ldots, k$ and $j=1,2, \ldots, i-2$ such that

$$
\begin{equation*}
\gamma_{i-1}=\left\lceil\frac{a_{i}}{a_{i-1}}\right\rceil, a_{i}=\gamma_{i-1} a_{i-1}-\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j} \text { for } i=2,3, \ldots, k, \tag{4}
\end{equation*}
$$

where $\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j}$ is the regular representation of $\gamma_{i-1} a_{i-1}-a_{i}$. Here $\lceil x\rceil$ denotes the least integer $\geq x \in \mathbf{R}$.



$$
\begin{equation*}
\operatorname{AD}-x-x D(x+s i) \leq(x+)+4 \tag{8}
\end{equation*}
$$




 2.

 factintitm sd eysulis jor boar 20









## Let now

$$
M=\sum_{i=1}^{k} e_{i} a_{i}
$$

be the regular representation of $M \in \mathbf{N}$, and $s_{i} \in \mathbf{Z}$ for $i=2,3, \ldots k$. Then

$$
\begin{aligned}
M & =\sum_{i=1}^{k} e_{i} a_{i}+\sum_{i=2}^{k} s_{i}\left(\gamma_{i-1} a_{i-1}-a_{i}-\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j}\right) \\
& =\sum_{j=1}^{k}\left(e_{j}-s_{j}+s_{j+1} \gamma_{j}-\sum_{i=j+2}^{k} s_{i} \beta_{j}^{(i)}\right) a_{j}
\end{aligned}
$$

where we put $s_{1}=s_{k+1}=\gamma_{k}=0$. If we write

$$
\begin{equation*}
x_{j}=e_{j}-s_{j}+s_{j+1} \gamma_{j}-\sum_{i=j+2}^{k} s_{i} \beta_{j}^{(i)} \text { for } j=1,2, \ldots, k \tag{5}
\end{equation*}
$$

we get

$$
\begin{equation*}
M=\sum_{j=1}^{k} x_{j} a_{j} \tag{6}
\end{equation*}
$$

Now Hofmeister [5] showed that for every representation - also for the minimal one - there exist non-negative integers $s_{i}, i=2,3, \ldots k$ such that the representation is given by (6) and (5) holds. So every representation of $M \in \mathbf{N}$ is defined uniquely by an integer vector $\left(s_{2}, s_{3}, \ldots, s_{k}\right) \in \mathbf{N}_{0}{ }^{k-1}$. This integer vector is called a transfer or substitution of basis elements.

By the $\operatorname{gain} G\left(s_{2}, s_{3}, \ldots, s_{k}\right)$ of a transfer $\left(s_{2}, s_{3}, \ldots, s_{k}\right) \in \mathbf{N}_{0}{ }^{k-1}$, we mean the reduction in the number of addends caused by this transfer in comparison to the number of addends in the regular representation:

$$
G\left(s_{2}, s_{3}, \ldots, s_{k}\right)=\sum_{j=1}^{k}\left(e_{j}-x_{j}\right)=\sum_{j=1}^{k}\left(s_{j}-s_{j+1} \gamma_{j}+\sum_{i=j+2}^{k} s_{i} \beta_{j}^{(i)}\right)
$$

For the minimal representation of a number $M \in \mathbf{N}$ the gain is always $\geq 0$.

$$
a^{a+3} \frac{3}{2} \frac{4}{2}=M
$$



$$
-2 a+\frac{1}{2}=4
$$





20.2020 .20





## 2 Extremal Bases

### 2.1 Known Results

Now we fix the number of elements $k$ in our $h$-range basis and ask for the basis $A_{k}^{*}=\left\{1, a_{1}^{*}, a_{2}^{*}, \ldots, a_{k}^{*}\right\}$, or possibly those bases, with largest $h$-range for a given integer $h$. These bases are called extremal or optimal. Our main interest is not the particular extremal basis but the sequence $A_{k}^{*}(h)$ of extremal bases, when $h$, the number of addends allowed in the representations, increases to infinity. Throughout this paper we regard $k$ as a fixed number. Rohrbach [16] could show by a simple combinatorial argument that for all bases $A_{k}$ there is a common bound for the $h$-range:

$$
n_{h}\left(A_{k}\right)<\binom{h+k}{k}
$$

and Rödseth [15] was able to sharpen this bound to

$$
\begin{equation*}
\left.n_{h}\left(A_{k}\right)\right) \leq \frac{(k-1)^{k-1}}{(k-1)!}\left(\frac{h}{k}\right)^{k}+O\left(h^{k-1}\right) \tag{7}
\end{equation*}
$$

Since these bounds are of course also valid for the extremal bases $A_{k}^{*}(h)$, we can find a real positive constant $C \in \mathbf{R}$ such that

$$
n_{h}\left(A_{k}^{*}(h)\right) \leq C(h / k)^{k} .
$$

Now it turns out that $(h / k)^{k}$ already is the right "size" of the extremal $h$-range, since Stöhr [19] could show that there exists a real positive constant $c \in \mathbf{R}$ such that

$$
\begin{equation*}
c(h / k)^{k} \leq n_{h}\left(A_{k}^{*}(h)\right) \leq C(h / k)^{k} . \tag{8}
\end{equation*}
$$

In fact, by Stöhr's result [19] we have $c \geq 1$ and by Rödseth's bound (7) we have $C \leq(k-1)^{k-1} /(k-1)$ !.

Hofmeister [5] could show that for all parameter bases $A_{k}(h)$ that satisfy (8) - and there are of course many more such bases than the extremal ones - the "size" of the basis elements $a_{i}(h)$ is given by a simple formula. He showed that there exist real positive constants $c_{i}, C_{i} \in \mathbf{R}, i=1,2, \ldots, k$ such that

$$
\begin{equation*}
c_{i} h^{i-1} \leq a_{i}(h) \leq C_{i} h^{i-1}, \text { for } i=1,2, \ldots, k \tag{9}
\end{equation*}
$$










$$
\left(\begin{array}{c}
x+1
\end{array}\right)>(\Delta x)^{2}+4
$$





$$
x+2 x+2 x+2 x+2
$$


 -


$$
\begin{equation*}
t(S-4) x^{+-3}(r-\alpha) \geq ? \text { ovari swr } \tag{B}
\end{equation*}
$$




 -

The constants $c_{i}$ and $C_{i}, i=1,2, \ldots, k$ are depending on the number $k$ of basis elements but not on $h$.

For $k=2$ we know the extremal bases by Stöhrs result [19]. He showed that

$$
\begin{align*}
& A_{2}^{*}(h)=\{1,(h+3) / 2\}, \text { if } h \text { is odd, and }  \tag{10}\\
& A_{2}^{*}(h)=\{1,(h+3 \pm 1) / 2\}, \text { if } h \text { is even. } \tag{11}
\end{align*}
$$

The corresponding extremal $h$-range is given by one formula:

$$
n_{h}\left(A_{2}^{*}(h)\right)=\left\lfloor\frac{h^{2}+6 h+1}{4}\right\rfloor
$$

Here $\lfloor x\rfloor$ denotes the largest integer $\leq x \in \mathbf{R}$.
In 1968 Hofmeister [4] found out how to determine the extremal $h$-ranges and the corresponding extremal bases in the case $k=3$. Let

$$
\beta(h)=\left\lfloor\frac{4 h+4}{9}\right\rfloor+2, \gamma(h)=\left\lfloor\frac{2 h}{9}\right\rfloor+2 .
$$

If $h \geq 23$, the extremal bases $A_{3}^{*}(h)$ are given by

$$
\begin{equation*}
a_{2}^{*}(h)=2 \beta(h)-\gamma(h)+1, a_{3}^{*}(h)=\gamma(h) a_{2}^{*}(h)-\beta(h), \tag{12}
\end{equation*}
$$

with the corresponding $h$-range

$$
n_{h}\left(A_{3}^{*}(h)\right)=(h+4-\beta(h)-\gamma(h)) a_{3}^{*}(h)+(\gamma(h)-2) a_{2}^{*}(h)+\beta(h)-2 .
$$

Originally, Hofmeister's proof was only valid for sufficiently large $h$. A student of his, Hertsch [2], showed that it was enough to claim $h \geq 500$. In a new attempt, Hofmeister [6] could reduce this to $h \geq 200$, and Mossige [11] verified the theorem for $23 \leq h \leq 200$ on a computer. For $h<23$ the extremal bases and their $h$-ranges can easily be determined by a computer. Table 1 below contains all these bases and their $h$-ranges. Note that for $h=11$ and $h=22$ there are two extremal bases.
 if ind ton ted atasmgle aland -
dant

(II)




$$
S+\left[\frac{5 B^{2}}{e}\right]=(A)+i^{2}+\left[\left.\frac{N^{4} x^{3}}{e} \right\rvert\,=(x) 4\right.
$$


hgrist-al emmibragaenos oils dition
ene

 (


 OH:

Table 1.

| $h$ | $a_{2}$ | $a_{3}$ | $n_{h}\left(A_{3}^{*}\right)$ | $\|\mid r$ | $a_{2}$ | $a_{3}$ | $n_{h}\left(A_{3}^{*}\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2 | 3 | 3 |  | 12 | 11 | 37 |
| 2 | 3 | 4 | 8 |  | 13 | 13 | 34 |
| 3 | 4 | 5 | 15 |  | 14 | 12 | 52 |
| 4 | 5 | 8 | 26 |  | 15 | 12 | 52 |
| 5 | 6 | 7 | 35 |  | 16 | 15 | 54 |
| 6 | 7 | 12 | 52 |  | 17 | 14 | 61 |
| 7 | 8 | 13 | 69 |  | 18 | 15 | 80 |
| 8 | 9 | 14 | 89 |  | 19 | 18 | 65 |
| 9 | 9 | 20 | 112 |  | 20 | 17 | 91 |
| 10 | 10 | 26 | 146 |  | 21 | 17 | 91 |
| 11 | 9 | 30 | 172 |  | 22 | 19 | 102 |
| 11 | 10 | 26 | 172 |  | 22 | 20 | 92 |

Quite a lot of people, Hofmeister and Schell [5], Mossige [12], [13], Braunschädel [1], Selmer [18] and the author have spent great effort on the determination of the extremal $h$-ranges and the corresponding extremal bases in the case $k=4$. Nevertheless the final answer, the value of the extremal $h$-range is not known and we are not able to give the answer in this report either.

According to Hofmeister's notation (4), we write the basis elements of $A_{4}$ in the normal form:

$$
\begin{align*}
a_{1}= & 1 \\
a_{2}= & \gamma_{1} \\
a_{3}= & \gamma_{2} a_{2}-\beta_{1}^{(3)}, 0 \leq \beta_{1}^{(3)}<a_{2}  \tag{13}\\
a_{4}= & \gamma_{3} a_{3}-\beta_{2}^{(4)} a_{2}-\beta_{1}^{(4)}, \\
& 0 \leq \beta_{1}^{(4)}<a_{2} \text { and } 0 \leq \beta_{2}^{(4)} a_{2}+\beta_{1}^{(4)}<a_{3} .
\end{align*}
$$

Hofmeister and Schell presented in [5] a concrete parameter basis with a quite large $h$-range. They put $h=12 d, d \in \mathrm{~N}$ and constructed their basis for each value of $d$. By Mrose [14] this fact does not cause any restriction to the general problem, if our interest is the "asymptotic size" of the $h$-range.

| (EA) 7ea | (4) | 40 | \$ | $(3 \mathrm{~F}) \pm n$ | 24 | St | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 S | T0 | 11 | S | $\varepsilon$ | 8 | 4 | 1 |
| 0as | \$8 | 51 | 81 | 8 | A | 8 | 8 |
| soc. | 85 | It | AI | CI | a | (f) |  |
| A08 | Sa | St | di | 08 | 8 | 12. | A |
| 811 | 185 | di | di | 88 | \% | 0 | z |
| (0) | 18 | H | \$1 | 93 | SI | T | 8 |
| $88^{3}$ | 08 | 4 I | 3 | 9a | 81 | 8 | T |
| 6, | ad | 31 | RIt | 08 | A | O | 8 |
| E215 | 18 | T: | OS | SII | CS | 0 | R |
| 608 | 19 | FI | He | (x) | as: | OI | 9 |
| s00 | sas | (6) | , | 8 mi | -08 | e | ts |
| sice | ¢0 | 36 |  | 821 | 0\% | 01. | 析 |





 tedsio trogion aidt


(83)

$$
\begin{aligned}
& \text { I. } \frac{4}{3}-12
\end{aligned}
$$






The normal form of this basis is:

$$
\begin{align*}
& a_{1}=1 \\
& a_{2}=9 d-6 \\
& a_{3}=3 d a_{2}-(5 d-3)  \tag{14}\\
& a_{4}=2 d a_{3}-(d-1) a_{2}-(6 d-4)
\end{align*}
$$

They could show that for this choice of $A_{4}(h)$ we have

$$
\begin{equation*}
n_{h}\left(A_{4}(h)\right) \geq(3 d+6) a_{4}=2(h / 4)^{4}+O\left(h^{3}\right) \tag{15}
\end{equation*}
$$

For a long time the coefficient 2 in front of the $(h / 4)^{4}$ term was believed to be the largest possible for the $h$-range of $A_{4}(h)$, until Mossige [12] in 1986 by a slight alteration of the Hofmeister-Schell basis could achieve a coefficient 2.008 instead of 2 in front of the $(h / 4)^{4}$ term in (15). The original Mossige basis has very complicated non-rational coefficients. A basis $A_{4}(h)$ with an $h$-range quite close to the one that is achieved by the Mossige basis, and where the coefficients are rational, is given thus: If we put $h=2472 d$, $d \in \mathbf{N}$ and

$$
\begin{align*}
& a_{1}=1 \\
& a_{2}=1869 d \\
& a_{3}=(603 d+3) a_{2}-1031 d  \tag{16}\\
& a_{4}=(392 d+1) a_{3}-(193 d+1) a_{2}-1242 d
\end{align*}
$$

Mossige showed that the $h$-range is given by

$$
n_{h}\left(A_{4}(h)\right)=663 d a_{4}+193 d a_{2}+(1646 d-2)=2.0080397(h / 4)^{4}+O\left(h^{3}\right)
$$

Recently Selmer [18] found another basis - in some sense a dual to the Mossige basis - with the same highest coefficient in the $h$-range. He deleted the constant terms, and gave the basis for $h=2472 d, d \in \mathrm{~N}$ as

$$
\begin{align*}
& a_{1}=1 \\
& a_{2}=1869 d \\
& a_{3}=603 d a_{2}-1441 d  \tag{17}\\
& a_{4}=392 d a_{3}-193 d a_{2}-826 d .
\end{align*}
$$

20





隹 bua K ヨb

$$
\begin{aligned}
& \text { 110 (1) }
\end{aligned}
$$


2

 4.

$$
\begin{align*}
& 1 \text { nim } \\
& \text { Mant }=\text { man } \tag{TL}
\end{align*}
$$

If we apply the upper bound (7) to the case $k=4$ we get

$$
n_{h}\left(A_{4}(h)\right) \leq 4.5(h / 4)^{4}+O\left(h^{3}\right)
$$

so we are left with quite a big gap between the best known upper and lower bounds for the extremal $h$-range. In section 2.3 we treat this problem, and there we will tighten a big part of the mentioned gap.

### 2.2 Properties of the Extremal Bases $A_{k}^{*}$

For parameter bases $A_{k}(h)$ satisfying (8) we have (9). Now put

$$
\bar{h}=h_{0}\left(A_{k}(h)\right)+2\left\lceil C_{k-1} / c_{k}\right\rceil,
$$

then by (1)

$$
\begin{aligned}
n_{h}\left(A_{k}(h)\right) & \geq 2\left\lceil C_{k-1} / c_{k}\right\rceil a_{k}(h) \geq 2\left\lceil C_{k-1} / c_{k}\right\rceil c_{k} h^{k-1} \\
& \geq 2 h a_{k-1}(h) \geq 2 h_{0} a_{k-1}(h) \geq \bar{h} a_{k-1}(h)
\end{aligned}
$$

for sufficiently large $h$, since $2\left\lceil C_{k-1} / c_{k}\right\rceil$ is a constant and $h_{0}$ is increasing with $h$, because

$$
h_{0}=h_{0}\left(A_{k}(h)\right) \geq h_{0}\left(\left\{1, a_{2}(h)\right\}\right)=a_{2}(h)-1 \geq c_{2} h-1 .
$$

This means that for sufficiently large $h$, we have by (3):

$$
h_{0}-1 \leq h_{1}=h_{1}\left(A_{k}(h)\right) \leq h_{0}+2\left\lceil C_{k-1} / c_{k}\right\rceil,
$$

the first inequality stemming from the definition of $h_{1}$. Asymptotically spoken, this means that the bases $A_{k}(h)$ with (8) are $h_{0}$-stable, and

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{h_{1}}{h_{0}}=\lim _{h \rightarrow \infty} \frac{h_{1}\left(A_{k}(h)\right)}{h_{0}\left(A_{k}(h)\right)}=1 . \tag{18}
\end{equation*}
$$

Similarly we have for bases with (8):

$$
n_{h}\left(A_{k}(h)\right) \geq \frac{c h^{k}}{k^{k}} \geq\left(\frac{c h}{k^{k} C_{k-1}}\right) h a_{k-1}(h) \geq h a_{k-1}(h)
$$



 a

## 



$$
\left.d_{90} x_{1}+307+((d))_{n}+\right)_{01}=-31
$$

(I) yd mard

$$
\sec
$$

 saunged, at djiw



(8) dtive sased tot suan ow yhaliarie
for sufficiently large $h$. Thus by (3) we have that

$$
\begin{equation*}
h_{1}\left(A_{k}(h)\right) \leq h \text { for sufficiently large } h, \tag{19}
\end{equation*}
$$

so equality (2) is valid for sufficiently large $h$. Note that this is not trivial, since also the basis changes if $h$ increases.

The problem of finding the extremal bases $A_{k}^{*}$ for given $k$ has shown to be very difficult. Apart from the cases $k=2$ and $k=3$, where the whole truth is known, we know little about the general case. From Stöhr [19] we learned that there exist real positive constants $c, C \in \mathbf{R}$ such that

$$
c \leq \frac{n_{h}\left(A_{k}^{*}(h)\right)}{(h / k)^{k}} \leq C
$$

Whether the $\lim _{h \rightarrow \infty} n_{h}\left(A_{k}^{*}\right) /(h / k)^{k}$ exists or not is hard to say. Of course

$$
T=\limsup _{h \rightarrow \infty} \frac{n_{h}\left(A_{k}^{*}(h)\right)}{(h / k)^{k}}
$$

exists and is positive, and we may choose a sequence $\left(h_{i}\right)_{i \in \mathrm{~N}}$ with

$$
\lim _{i \rightarrow \infty} \frac{n_{h_{i}}\left(A_{k}^{*}\left(h_{i}\right)\right)}{\left(h_{i} / k\right)^{k}}=T .
$$

Therefore we focus our attention on this sequence $\left(h_{\boldsymbol{i}}\right)_{i \in \mathbf{N}}$. By (8) and (9) we know that

$$
\frac{c}{C_{k} k^{k}} \leq \frac{n_{h_{i}}\left(A_{k}^{*}\left(h_{i}\right)\right)}{h_{i} a_{k}^{*}\left(h_{i}\right)} \leq \frac{C}{c_{k} k^{k}},
$$

and therefore we may choose a subsequence $\left(h_{i_{j}}\right)_{j \in \mathbb{N}}$ of $\left(h_{i}\right)_{i \in \mathrm{~N}}$ such that also

$$
t=\lim _{j \rightarrow \infty} \frac{n_{h_{i_{j}}}\left(A_{k}^{*}\left(h_{i_{j}}\right)\right)}{h_{i_{j}} a_{k}^{*}\left(h_{i_{j}}\right)}
$$

exists. In order to reduce the number of indices we write $\left(h_{j}\right)_{j \in \mathbb{N}}$ for the latter sequence.

Now all numbers which have got an $h_{j}$-representation are contained in the interval $\left[0, h_{j} a_{k}^{*}\left(h_{j}\right)\right]$, and the magnitude $t$ now measures the number of consecutive $h_{j}$-representable numbers starting from 0 to the $h_{j}$-range in comparison to the largest $h_{j}$-representable number $h_{j} a_{k}^{*}\left(h_{j}\right)$. So $t$ may


 2




$$
D \geq \frac{((x)+x)}{8(x) N)} \geq 5
$$



(radnthlax
 tadt word gur


Dels
 .someupiza neztal




be interpreted as the covering percentage of the $h_{j}$-range in the interval of $h_{j}$-representable numbers.

If we put

$$
n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)=\epsilon_{k}\left(h_{j}\right) a_{k}^{*}\left(h_{j}\right)+\epsilon_{k-1}\left(h_{j}\right) a_{k-1}^{*}\left(h_{j}\right)+\cdots+\epsilon_{1}\left(h_{j}\right)
$$

for the regular representation of the $h_{j}$-range of $A_{k}^{*}\left(h_{j}\right)$, we see at once that

$$
t=\lim _{j \rightarrow \infty} \frac{\epsilon_{k}\left(h_{j}\right)}{h_{j}} .
$$

Assume that

$$
t<\frac{1}{k}
$$

and put $H_{j}=\left\lceil(1+m) h_{j}\right\rceil$ for a real positive $m$. Then by (2)

$$
\begin{equation*}
n_{H_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)=n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)+m h_{j} a_{k}^{*}\left(h_{j}\right)+O\left(h_{j}^{k-1}\right) . \tag{20}
\end{equation*}
$$

On the other hand

$$
\left(\frac{(1+m) h_{j}}{k}\right)^{k}-\left(\frac{H_{j}}{k}\right)^{k}=O\left(h_{j}^{k-1}\right)
$$

Therefore we can write

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \frac{n_{H_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{\left(H_{j} / k\right)^{k}} & =\lim _{j \rightarrow \infty} \frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)+m h_{j} a_{k}^{*}\left(h_{j}\right)+O\left(h_{j}^{k-1}\right)}{(1+m)^{k}\left(h_{j} / k\right)^{k}+O\left(h_{j}^{k-1}\right)} \\
& =\lim _{j \rightarrow \infty} \frac{\left(\frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{h_{j} a_{k}^{*}\left(h_{j}\right)}+m\right) h_{j} a_{k}^{*}\left(h_{j}\right)}{(1+m)^{k}\left(h_{j} / k\right)^{k}} \\
& =\lim _{j \rightarrow \infty} \frac{\frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{h_{j} a_{k}^{*}\left(h_{j}\right)}+m}{(1+m)^{\frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{h_{j} a_{k}^{*}\left(h_{j}\right)}} \lim _{j \rightarrow \infty} \frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{\left(h_{j} / k\right)^{k}}} \\
& =\frac{t+m}{t(1+m)^{k}} T=f(m) T \text { (say). }
\end{aligned}
$$

Now we choose $m$ optimally namely $m=m_{0}=\frac{1-k t}{k-1}>0$, giving

$$
f\left(m_{0}\right)>f(0)=1 .
$$





A.stas bund

(0s)

$$
\begin{aligned}
& \text { hased terlito ords an }
\end{aligned}
$$

$$
\left(\frac{s-1}{3} \lambda\right) O=\left(\frac{3^{H}}{x}\right)-\left(\frac{\beta^{s}(s x-1)}{x}\right)
$$

बifinw aso sw grolgzadT
mitainet armatis


$$
n=(01)<(\text { arem }) \mid
$$



Picture 1.


Picture 2.

Picture 1, 2 and 3 show the interesting part of the graph of the function

$$
f(m)=\frac{t+m}{t(1-m)^{k}}
$$

for $k=4$ and different values of $t$.

Picture 3.

s sxiskor9
sucir warde \& fre E, 1 grestid
 0

$$
\frac{m y+1}{(3 \pi-1)^{t}}=(m)^{2}
$$







8 amatait

## This means

$$
\lim _{j \rightarrow \infty} \frac{n_{H_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{\left(H_{j} / k\right)^{k}}>\lim _{j \rightarrow \infty} \frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{\left(h_{j} / k\right)^{k}}=T
$$

in contradiction to the maximality of $T$. We can namely write $A_{k}^{\prime}\left(H_{j}\right)$ for $A_{k}^{*}\left(h_{j}\right)$. Then $n_{H_{j}}\left(A_{k}^{\prime}\left(H_{j}\right)\right) \leq n_{H_{j}}\left(A_{k}^{*}\left(H_{j}\right)\right)$, and the left hand side is bounded by $T$.

Now we consider the case $t>1 / k$. If we in addition assume that there exists an increasing sequence of values $h_{j}$ and a real positive constant $\epsilon \in \mathbf{R}$ such that

$$
h_{1}\left(A_{k}^{*}\left(h_{j}\right)\right) \leq(1-\epsilon) h_{j}
$$

for all values $h_{j}$ from that sequence, we find by equation (2) that (20) also holds for negative $m \in[-\epsilon, 0]$, and the whole of the preceding proof goes through if also $m_{0}=\frac{1-k t}{k-1} \geq-\epsilon$.

If $m_{0}<-\epsilon$ we choose $m=m_{1}=-\epsilon$. We know that the function $f(m)$ is strictly decreasing in the interval $\left[m_{0}, 0\right]$, and therefore $f\left(m_{1}\right)>f(0)=1$, giving the same contradiction as before.

So for the sequence $A_{k}^{*}\left(h_{j}\right)$ of extremal bases we are left with the following two situations:

1. $t=1 / k$, or
2. $t>1 / k$, and for any subsequence of $\left(h_{j}\right)_{j \in \mathrm{~N}}$ there exists no real positive constant $\epsilon$ such that $h_{1}\left(A_{k}^{*}\left(h_{j}\right)\right) \leq(1-\epsilon) h_{j}$ for this subsequence.

We now look at the second case. The last statement together with (19) gives us

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{h_{1}\left(A_{k}^{*}\left(h_{j}\right)\right)}{h_{j}}=1 \tag{21}
\end{equation*}
$$

Now we have by (21) and (18)

$$
\lim _{j \rightarrow \infty} \frac{h_{0}}{h_{1}}=\lim _{j \rightarrow \infty} \frac{h_{0}\left(A_{k}^{*}\left(h_{j}\right)\right)}{h_{1}\left(A_{k}^{*}\left(h_{j}\right)\right)}=\lim _{j \rightarrow \infty} \frac{h_{0}\left(A_{k}^{*}\left(h_{j}\right)\right)}{h_{j}}=\lim _{j \rightarrow \infty} \frac{h_{0}}{h_{j}}=1 .
$$

We collect all this information in one theorem.

 miont hothemend

 d.ant flope






 angilsurle ows arivol

$$
20.31=1.1
$$





$$
\begin{align*}
& A=\frac{\left(\left(\mathrm{x}^{\mathrm{d}}\right): E^{*}\right)_{2}+\mathrm{t}}{\mathrm{x}^{4}} \operatorname{mil}  \tag{53}\\
& \text { (8i) bi }
\end{align*}
$$

Theorem 1. Let $A_{k}^{*}\left(h_{j}\right)$ be a subsequence of the sequence of extremal bases $A_{k}^{*}(h)$, where

$$
\lim _{j \rightarrow \infty} \frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{\left(h_{j} / k\right)^{k}}=\limsup _{h \rightarrow \infty} \frac{n_{h}\left(A_{k}^{*}(h)\right)}{(h / k)^{k}}=T,
$$

and where

$$
t=\lim _{j \rightarrow \infty} \frac{n_{h_{j}}\left(A_{k}^{*}\left(h_{j}\right)\right)}{h_{j} a_{k}\left(h_{j}\right)}
$$

exists. Then either

$$
\begin{gathered}
t=\frac{1}{k}, \text { or } \\
t>\frac{1}{k} \text { and } \lim _{h_{j} \rightarrow \infty} \frac{h_{1}}{h_{j}}=\lim _{h_{j} \rightarrow \infty} \frac{h_{0}}{h_{j}}=1 .
\end{gathered}
$$

Remark 1. For $k=2$ the extremal bases (10) and (11) given by Stöhr satisfy $t=1 / 2$ and $\lim _{h \rightarrow \infty} h_{0} / h=1 / 2 \neq 1$. For $k=3$ the extremal bases (12) found by Hofmeister satisfy $t=1 / 3$ and $\lim _{h \rightarrow \infty} h_{0} / h=8 / 9 \neq 1$, whilst the "good" bases (16) and (17) for $k=4$ satisfy $t=221 / 824>1 / 4$ and $\lim _{h \rightarrow \infty} h_{0} / h=1$. The basis (14) satisfies both conditions $t=1 / 4$ and $\lim _{h \rightarrow \infty} h_{0} / h=1$. The best known bases for $k=5$, found in Kolsdorf [8] and [9], have $t>1 / 5$ and $\lim _{h \rightarrow \infty} h_{0} / h=1$. So both alternatives of the theorem seem to be realistic.

Remark 2. Braunschädel [1] showed that for the extremal bases with $k=4$ we have $\limsup _{h \rightarrow \infty} \epsilon_{4}(h) / h \geq 81 / 512$, while our theorem gives $\limsup h_{h_{j} \rightarrow \infty} \epsilon_{4}\left(h_{j}\right) / h_{j} \geq 1 / 4$ for the sequence $h_{j}$ defined above.

### 2.3 Bounds for the Extremal $h$-range $n_{h}\left(A_{4}^{*}\right)$

The method developed in this section is a extension of results obtained by Braunschädel [1] in 1988. In the introduction we already mentioned upper and lower bounds for the extremal $h$-range $n_{h}\left(A_{4}^{*}\right)$ :

$$
2.008(h / 4)^{4}+O\left(h^{3}\right)<n_{h}\left(A_{4}^{*}\right) \leq 4.5(h / 4)^{4}+O\left(h^{3}\right) .
$$

 avstur (d) iA asend

$$
\begin{aligned}
& \text { 20 } \\
& 12+2 \\
& \text { sradur butio }
\end{aligned}
$$


 anuthon



 Chation ad at merna moxondt




 a

We now look at a parameter basis $A_{4}=A_{4}(h)$. We often leave out the parameter $h$ of the basis $A_{4}(h)$. If $n_{h}\left(A_{4}(h)\right) \leq 2(h / 4)^{4}+O\left(h^{3}\right)$, the basis cannot be an extremal one. Therefore we consider only bases $A_{4}(h)$ with

$$
\begin{equation*}
n_{h}\left(A_{4}(h)\right)>2(h / 4)^{4}+O\left(h^{3}\right) . \tag{22}
\end{equation*}
$$

We use the normal form (13), and write

$$
\begin{equation*}
n_{h}\left(A_{4}\right)=\epsilon_{4} a_{4}+\epsilon_{3} a_{3}+\epsilon_{2} a_{2}+\epsilon_{1} \tag{23}
\end{equation*}
$$

for the regular representation of the $h$-range of a given basis $A_{4}$. Now Hofmeister [4] showed that if

$$
\begin{equation*}
\epsilon_{4}+a \gamma_{3}+b \gamma_{2}+c \gamma_{1} \leq h+\delta \tag{24}
\end{equation*}
$$

for positive constants $a, b, c \in \mathbf{R}$, and $\delta \in \mathbf{R}$ then

$$
\begin{align*}
n_{h}\left(A_{4}\right) & <\left(\epsilon_{4}+1\right) a_{4} \leq \epsilon_{4} \gamma_{3} \gamma_{2} \gamma_{1}+\gamma_{3} \gamma_{2} \gamma_{1}  \tag{25}\\
& \leq \frac{1}{a b c}\left(\frac{h+\delta}{4}\right)^{4}+O\left(h^{3}\right)=\frac{1}{a b c}\left(\frac{h}{4}\right)^{4}+O\left(h^{3}\right)
\end{align*}
$$

a consequence of the fact that the geometric mean cannot exceed the arithmetic one. This means that if we can establish an inequality (24) where $\frac{1}{a b c} \leq 2$, then the sequence of bases $A_{4}(h)$ cannot be extremal and can therefore be excluded from further consideration. Now given such an inequality (24), we may refine the result we can get from (25) by additional information. Look at the number

$$
\begin{equation*}
M=\left(\gamma_{2}-2\right) a_{2}+\left(\gamma_{1}-1\right)<a_{3}<n_{h}\left(A_{4}\right) . \tag{26}
\end{equation*}
$$

Here no $a_{4}$ or $a_{3}$ transfers are possible, since there are no such elements in the the regular representation (26), and this representation must therefore be minimal, giving

$$
\begin{equation*}
\gamma_{2}+\gamma_{1} \leq h+3 \tag{27}
\end{equation*}
$$

Now multiplying (27) by a positive weight $x$ and adding it to (24) yields

$$
\epsilon_{4}+a \gamma_{3}+(b+x) \gamma_{2}+(c+x) \gamma_{1} \leq(1+x) h+\delta+3 x
$$





handent
 ii tadts Bywoula (8) tataiomtoH

$$
\begin{equation*}
b+d \geq 1 r^{3}+2 n^{d}+\operatorname{sn}^{n}+43 \tag{18}
\end{equation*}
$$



 (

 tedrusn siti 46 toos shoitsmaini

$$
\begin{equation*}
(6 A)_{A n t}>8 n>(1-(r)+2 n(S-r t)=M \tag{as}
\end{equation*}
$$


 ymbly tanumin oc ( C )

$$
\Delta x+a t \geq x+d x
$$


and in analogy with (25) this gives

$$
\begin{equation*}
n_{h}\left(A_{4}\right) \leq \frac{(1+x)^{4}}{a(b+x)(c+x)}\left(\frac{h}{4}\right)^{4}+O\left(h^{3}\right) \tag{28}
\end{equation*}
$$

Minimizing the coefficient by the optimal choice of

$$
x=\max \left\{0, \sqrt{\left(\frac{3(b+c)-2}{4}\right)^{2}+\frac{b+c-4 b c}{2}}-\frac{3(b+c)-2}{4}\right\}
$$

usually gives a better result than the one we could obtain from the original inequality (24).

By these means we can show at once that (22) implies

$$
\begin{aligned}
\epsilon_{4}+8 \gamma_{3} & >h+\delta \\
\epsilon_{4}+7 \gamma_{3}+\frac{1}{6} \gamma_{2} & >h+\delta \\
\epsilon_{4}+6 \gamma_{3}+\frac{1}{3} \gamma_{2} & >h+\delta \\
\epsilon_{4}+5 \gamma_{3}+\frac{1}{2} \gamma_{2} & >h+\delta \\
\epsilon_{4}+4 \gamma_{3}+\frac{4}{5} \gamma_{2} & >h+\delta \\
\epsilon_{4}+3 \gamma_{3}+\frac{6}{5} \gamma_{2} & >h+\delta \\
\epsilon_{4}+2 \gamma_{3}+2 \gamma_{2} & >h+\delta \\
\epsilon_{4}+\gamma_{3}+5 \gamma_{2} & >h+\delta .
\end{aligned}
$$

Here we may put $t_{7}=0, t_{6}=1 / 6, t_{5}=1 / 3, t_{4}=1 / 2, t_{3}=4 / 5, t_{2}=6 / 5$, $t_{1}=2, t_{0}=5$ and write all these inequalities in one form

$$
\begin{equation*}
\epsilon_{4}+(j+1) \gamma_{3}+t_{j} \gamma_{2}>h+\delta, j=0,1, \ldots, 7 \tag{29}
\end{equation*}
$$

This is going to be used several times later on.
In the sequel we want to present a method that provides inequalities (24). We do this by looking at several "key numbers" and their representations by $A_{4}$. These representations will in general contain the variables $h, \epsilon_{4}$, and $\gamma_{3}, \gamma_{2}, \gamma_{1}, \beta_{1}^{(3)}, \beta_{1}^{(4)}, \beta_{2}^{(4)}$ of (13). Combining several representations, we can get rid of $\beta_{1}^{(3)}$ and $\beta_{1}^{(4)}$. Since by (13) $0 \leq \beta_{2}^{(4)} / \gamma_{2}<1$, we divide the interval $[0,1]$ into the following 12 smaller intervals and choose $\beta_{2}^{(4)} / \gamma_{2}$ from one of them: Ta colorto lisadigo bif ed ansistheon arlf gnisiminiM

(s8) retlaupsil


$$
\begin{aligned}
& 3+5 \ll \quad \text { घn } 6 \text { 4 } k^{3} \\
& 2+A<\cdot a n \frac{1}{5}+a C \Gamma+8
\end{aligned}
$$



no that encrit lempus hoas ad of griog de airlt




 2


Then we know lower and upper bounds for $\beta_{2}^{(4)}$ in terms of $\gamma_{2}$, and we will get inequalities containing only $h, \epsilon_{4}, \gamma_{3}, \gamma_{2}, \gamma_{1}$ and of course constants not depending on $h$.

We look first at the number $N_{1}$ that has the largest regular coefficient sum of all numbers $<n_{h}\left(A_{4}\right)$ and its regular representation:

$$
N_{1}=\left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3}+\left(\gamma_{2}-2\right) a_{2}+\left(\gamma_{1}-1\right)
$$

Now $N_{1}$ must have an $h$-representation by $A_{4}$ using the transfer $\left(s_{2}^{(1)}, s_{3}^{(1)}, s_{4}^{(1)}\right)$, where the upper index denotes that the transfer belongs to $N_{1}$ :

$$
\begin{aligned}
N_{1}= & \left(\epsilon_{4}-1-s_{4}^{(1)}\right) a_{4}+\left(\left(s_{4}^{(1)}+1\right) \gamma_{3}-s_{3}^{(1)}-2\right) a_{3} \\
& +\left(\left(s_{3}^{(1)}+1\right) \gamma_{2}-s_{4}^{(1)} \beta_{2}^{(4)}-s_{2}^{(1)}-2\right) a_{2} \\
& +\left(\left(s_{2}^{(1)}+1\right) \gamma_{1}-s_{3}^{(1)} \beta_{1}^{(3)}-s_{4}^{(1)} \beta_{1}^{(4)}-1\right) .
\end{aligned}
$$

Since the coefficient sum has to be $\leq h$, we have

$$
\begin{aligned}
& \epsilon_{4}+\left(s_{4}^{(1)}+1\right) \gamma_{3}+\left(s_{3}^{(1)}+1\right) \gamma_{2}-s_{4}^{(1)} \beta_{2}^{(4)} \\
& +\left(s_{2}^{(1)}+1\right) \gamma_{1}-s_{3}^{(1)} \beta_{1}^{(3)}-s_{4}^{(1)} \beta_{1}^{(4)} \\
& \leq h+6+s_{2}^{(1)}+s_{3}^{(1)}+s_{4}^{(1)} \leq h+\delta,
\end{aligned}
$$

where $\delta$ is a constant not depending on $h$, since we know by Hofmeister [5] that for bases $A_{4}$ with (22), $s_{2}^{(1)}, s_{3}^{(1)}$ and $s_{4}^{(1)}$ are bounded independently of $h$.

For the reduction of the constant term, we now assume

$$
\kappa_{1}=s_{3}^{(1)} \beta_{1}^{(3)}+s_{4}^{(1)} \beta_{1}^{(4)}-s_{2}^{(1)} \gamma_{1}>0,
$$

and consider the next "key number", with "constant term $\kappa_{1}-1$ :
$N_{2}=\left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3}+\left(\gamma_{2}-2\right) a_{2}+\left(s_{3}^{(1)} \beta_{1}^{(3)}+s_{4}^{(1)} \beta_{1}^{(4)}-s_{2}^{(1)} \gamma_{1}-1\right)$.








$$
\begin{aligned}
& \mathrm{an}^{2}\left(8-\left(x^{2}\right)^{2}-\sec (1+(9))+\sin (98-1-x)=M\right.
\end{aligned}
$$





## 

$$
\text { Alcin (1) (sjo (t) e (ethta }-\infty
$$



Clearly $N_{2}<N_{1}<n_{h}\left(A_{4}\right)$ must have an $h$-representation not using $\left(s_{2}^{(1)}, s_{3}^{(1)}, s_{4}^{(1)}\right)$, since otherwise we would get a coefficient -1 in the last position. So $N_{2}$ uses $\left(s_{2}^{(2)}, s_{3}^{(2)}, s_{4}^{(2)}\right) \neq\left(s_{2}^{(1)}, s_{3}^{(1)}, s_{4}^{(1)}\right)$, and we get

$$
\begin{aligned}
N_{2}= & \left(\epsilon_{4}-1-s_{4}^{(2)}\right) a_{4}+\left(\left(s_{4}^{(2)}+1\right) \gamma_{3}-s_{3}^{(2)}-2\right) a_{3} \\
& +\left(\left(s_{3}^{(2)}+1\right) \gamma_{2}-s_{4}^{(2)} \beta_{2}^{(4)}-s_{2}^{(2)}-2\right) a_{2} \\
& +\left(s_{3}^{(1)} \beta_{1}^{(3)}+s_{4}^{(1)} \beta_{1}^{(4)}-s_{2}^{(1)} \gamma_{1}+\left(s_{2}^{(2)} \gamma_{1}-s_{3}^{(2)} \beta_{1}^{(3)}-s_{4}^{(2)} \beta_{1}^{(4)}\right)-1\right),
\end{aligned}
$$

giving

$$
\begin{aligned}
& \epsilon_{4}+\left(s_{4}^{(2)}+1\right) \gamma_{3}+\left(s_{3}^{(2)}+1\right) \gamma_{2}-s_{4}^{(2)} \beta_{2}^{(4)} \\
& +\left(s_{3}^{(1)} \beta_{1}^{(3)}+s_{4}^{(1)} \beta_{1}^{(4)}-s_{2}^{(1)} \gamma_{1}\right)+\left(s_{2}^{(2)} \gamma_{1}-s_{3}^{(2)} \beta_{1}^{(3)}-s_{4}^{(2)} \beta_{1}^{(1)}\right) \\
& \leq h+6+s_{2}^{(2)}+s_{3}^{(2)}+s_{4}^{(2)} \leq h+\delta .
\end{aligned}
$$

Now we continue constructing $N_{i}$ in the same way as before. For the reduction in the last position caused by $\left(s_{2}^{(i)}, s_{3}^{(i)}, s_{4}^{(i)}\right)$, we write

$$
\kappa_{i}=s_{3}^{(i)} \beta_{1}^{(3)}+s_{4}^{(i)} \beta_{1}^{(4)}-s_{2}^{(i)} \gamma_{1}
$$

for $i=1,2, \ldots, l$ and $\kappa_{0}=\gamma_{1}$ We stop the process for $i=l$, when for the first time

$$
\begin{equation*}
\kappa_{l}=s_{3}^{(l)} \beta_{1}^{(3)}+s_{4}^{(l)} \beta_{1}^{(4)}-s_{2}^{(l)} \gamma_{1} \leq 0 . \tag{30}
\end{equation*}
$$

Since the reduction $\kappa_{i+1}$ cannot exceed the constant term $\kappa_{i}-1$, we have $\kappa_{i}>\kappa_{i+1}$ for $1 \leq i \leq l-1$, so each $N_{i}$ needs a new transfer that has not been used earlier. Since there are only finitely many possible transfers - the numbers $s_{2}^{(i)}, s_{3}^{(i)}$ and $s_{4}^{(i)}$ are bounded independently of $h$ - and since there is always a transfer satisfying (30), namely ( $0,0,0$ ), the described process has to terminate after a bounded number (independently of $h$ ) of steps.

We collect the inequalities for the coefficient sums of $N_{1}, N_{2}, \ldots, N_{l}$ in an array:

$$
\begin{aligned}
& \epsilon_{4}+\left(1+s_{4}^{(1)}\right) \gamma_{3}+\left(1+s_{3}^{(1)}\right) \gamma_{2}-s_{4}^{(1)} \beta_{2}^{(4)}+\gamma_{1}-\kappa_{1} \leq h+\delta \\
& \epsilon_{4}+\left(1+s_{4}^{(2)}\right) \gamma_{3}+\left(1+s_{3}^{(2)}\right) \gamma_{2}-s_{4}^{(2)} \beta_{2}^{(4)}+\kappa_{1}-\kappa_{2} \leq h+\delta \\
& \ldots \ldots \ldots \ldots \ldots \ldots \\
& \epsilon_{4}+\left(1+s_{4}^{(l)}\right) \gamma_{3}+\left(1+s_{3}^{(l)}\right) \gamma_{2}-s_{4}^{(l)} \beta_{2}^{(4)}+\kappa_{l-1}-\kappa_{l} \leq h+\delta .
\end{aligned}
$$


解
griviz


 smis talf
Phe the





 a

$$
\begin{aligned}
& 3+x^{1} \geq 2 x-x^{2}+(24 / 2) 2-\operatorname{se}\left(\frac{(2)}{2}+1\right)+\operatorname{er}((2)+1)+x^{2}+3 \\
& 0
\end{aligned}
$$

## Averaging gives

$$
\begin{equation*}
\epsilon_{4}+\left(1+\frac{\sum_{i=1}^{l} s_{4}^{(i)}}{l}\right) \gamma_{3}+\left(1+\frac{\sum_{i=1}^{l} s_{3}^{(i)}}{l}\right) \gamma_{2}-\frac{\sum_{i=1}^{l} s_{4}^{(i)}}{l} \beta_{2}^{(4)}+\frac{\gamma_{1}}{l} \leq h+\delta \tag{31}
\end{equation*}
$$

where we have used that $\gamma_{1}-\kappa_{l} \geq \gamma_{1}$ by (30).
In the sequel we shall characterize the possible transfers that can be used for $N_{1}, N_{2}, \ldots, N_{l}$, and shall find bounds for $l, \sum_{i=1}^{l} s_{4}^{(i)}, \sum_{i=1}^{l} s_{3}^{(i)}$ and $\beta_{2}^{(4)}$. Thus we get inequalities (24), which we were looking for.

The number $N_{i}$ in our list has got the regular representation

$$
N_{i}=\left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3}+\left(\gamma_{2}-2\right) a_{2}+\left(\kappa_{i-1}-1\right)
$$

since $0 \leq \kappa_{i-1}-1<\gamma_{1}$ for $i=1,2, \ldots, l$. For this kind of numbers, only few transfers are possible if we claim (22). Assume $N_{i}$ uses $\left(s_{2}, s_{3}, s_{4}\right)$ in order to achieve the minimal representation - here we leave out the upper index for a moment. Then as usual

$$
\begin{align*}
N_{i}= & \left(\epsilon_{4}-1-s_{4}\right) a_{4}+\left(\left(1+s_{4}\right) \gamma_{3}-s_{3}-2\right) a_{3} \\
& +\left(\left(1+s_{3}\right) \gamma_{2}-s_{4} \beta_{2}^{(4)}-s_{2}-2\right) a_{2}+\kappa_{i-1}-\kappa_{i}-1 \tag{32}
\end{align*}
$$

and

$$
\begin{equation*}
\epsilon_{4}+\left(1+s_{4}\right) \gamma_{3}+\left(1+s_{3}\right) \gamma_{2}-s_{4} \beta_{2}^{(4)}+\kappa_{i-1}-\kappa_{i} \leq h+\delta \tag{33}
\end{equation*}
$$

Here we find at once that

$$
0 \leq s_{4} \leq 6,
$$

since $s_{4} \geq 7$ together with (33) contradicts (29) for $j=7$. For $0 \leq s_{4} \leq 6$, (33) together with (29) for $j=s_{4}$ implies

$$
\begin{equation*}
0<\left(1+s_{3}\right) \gamma_{2}-s_{4} \beta_{2}^{(4)}<t_{s_{4}} \gamma_{2} \tag{34}
\end{equation*}
$$

where the left inequality stems from the non-negativity of the coefficients in (32). Now for $3 \leq s_{4} \leq 6$ we have $t_{s_{4}}<1$, and therefore (34) implies

$$
\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}-1<s_{3}<\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}} \text { or } s_{3}=\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor
$$

$$
\operatorname{com} \sin \sin \sin
$$ ( IE )






eng ely




(S8) $\quad 1-x^{2}-2-x^{2}+x^{2}(8-83-(3) 9)^{2}-\operatorname{sen}\left(x^{2}+\pi\right)+$
bos



$$
a \geq \mu a \geq 0
$$





if there is a solution of (34) at all. Once $3 \leq s_{4} \leq 6$ is chosen, $s_{3}$ is already determined uniquely, if (34) is soluble. Otherwise ( $s_{2}, s_{3}, s_{4}$ ) cannot be used in (33). For $s_{4}=1,2$ we have $t_{1}=2, t_{2}=1.2$, so (34) gives

$$
s_{3}=\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor \text { or } s_{3}=\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor+1
$$

The second alternative arises only when (34) has two solutions.
In the remaining case $s_{4}=0$, we have by (33)

$$
\epsilon_{4}+\gamma_{3}+\left(1+s_{3}\right) \gamma_{2} \leq h+\delta
$$

By (29) for $j=0$ it follows that $0 \leq s_{3} \leq 3$ if $s_{4}=0$.
What about the choice of $s_{2}$ ? For the minimal representation (32), we always have

$$
0 \leq \kappa_{i-1}-\kappa_{i}-1=s_{2} \gamma_{1}-s_{3} \beta_{1}^{(3)}-s_{4} \beta_{1}^{(4)}+\kappa_{i-1}-1<\gamma_{1}
$$

This means that

$$
\frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}-\kappa_{i-1}}{\gamma_{1}}<s_{2} \leq \frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}-\kappa_{i-1}}{\gamma_{1}}+1 .
$$

Thus $s_{2}$ is uniquely determined. Since $0<\kappa_{i-1} \leq \gamma_{1}$ we have

$$
s_{2}=\left\lfloor\frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}}{\gamma_{1}}\right\rfloor \text { or } s_{2}=\left\lfloor\frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}}{\gamma_{1}}\right\rfloor+1
$$

We collect all the possible transfers in four sets:

$$
\begin{aligned}
A= & \left\{\left(s_{2}, s_{3}, s_{4}\right) \mid 1 \leq s_{4} \leq 6, s_{3}=\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor, s_{2}=\left\lfloor\frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}}{\gamma_{1}}\right\rfloor\right\} \\
B= & \left\{\left(s_{2}, s_{3}, s_{4}\right)\left|1 \leq s_{4} \leq 2, s_{3}=\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor+1, s_{2}=\left|\frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}}{\gamma_{1}}\right|\right\}\right. \\
C= & \left\{\left(s_{2}, s_{3}, s_{4}\right) \mid 1 \leq s_{4} \leq 6, s_{3}=\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor, s_{2}=\left\lfloor\frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}}{\gamma_{1}}\right\rfloor+1\right\} \\
& \cup\{(0,0,0)\} \\
D= & \left\{\left(s_{2}, s_{3}, 0\right) \mid 1 \leq s_{3} \leq 3, s_{2}=\left\lfloor\frac{s_{3} \beta_{1}^{(3)}}{\gamma_{1}}\right\rfloor\right\} .
\end{aligned}
$$







$$
B+d \geq \operatorname{sen}\left(x^{2}+1\right)+n+93
$$

$0=x^{2}$ If $8 \geq a^{8} \geq 0$ farlt avrallet $a t 0=i$ rol $(0 s)$ v\&

-

$$
\begin{aligned}
& \text { गod } \text { arsam }
\end{aligned}
$$



$$
\begin{aligned}
& \{(0,0,0)\}
\end{aligned}
$$

## The possibilities

$$
s_{2}=\left\lfloor\frac{s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}}{\gamma_{1}}\right\rfloor+1, s_{3}=\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor+1
$$

cannot be combined. In this case the gain of the transfer would be negative. Since then $s_{2} \gamma_{1}>s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}$ and $s_{3} \gamma_{2}>s_{4} \beta_{2}^{(4)}$, we have

$$
\begin{aligned}
G\left(s_{2}, s_{3}, s_{4}\right) & =s_{4}\left(\beta_{1}^{(4)}+\beta_{2}^{(4)}-\gamma_{3}+1\right)+s_{3}\left(\beta_{1}^{(3)}-\gamma_{2}+1\right)+s_{2}\left(1-\gamma_{1}\right) \\
& <s_{4}+s_{3}+s_{2}-s_{4} \gamma_{3}<0
\end{aligned}
$$

for large $h$, because the $s_{i}$ are bounded, and by (9) $\gamma_{3}$ increases when $h$ increases.

By the same argument, we cannot have $s_{2}=\left\lfloor\left(s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}\right) / \gamma_{1}\right\rfloor+1$ for transfers where $s_{4}=0$. A transfer from $C$ is assumed to stand at the end of our representation list for $N_{l}$, since only for those transfers $s_{3} \beta_{1}^{(3)}+s_{4} \beta_{1}^{(4)}-s_{2} \gamma_{1} \leq 0$, whilst transfers from $A, B, D$ have to be used earlier in the list.

Now we introduce 11 variables $r_{1}, r_{2}, \ldots, r_{6}, q_{1}, q_{2}, d_{1}, d_{2}, d_{3}$ taking values from $\{0,1\}$, indicating whether the corresponding transfer is used for some $N_{i}$ or not. Here $r_{j}$ stands for the transfers $\left(s_{2}, s_{3}, j\right) \in A, q_{j}$ for $\left(s_{2}, s_{3}, j\right) \in$ $B$ and $d_{j}$ for $\left(s_{2}, j, 0\right) \in D$. In addition we introduce $s \in\{0,1, \ldots, 6\}$ for $\left(s_{2}, s_{3}, s\right) \in C$ used at the end of the list. We then choose values for $r_{j}, q_{j}, d_{j}$ and $s$. All possible lists of representations for the $N_{i}$ using these corresponding transfers under consideration will give rise to the same average inequality (31), so the ordering of the used transfers within the list does not play any role for us. In fact this is the crucial advantage of our method. Regarding all different orderings would make the problem very large and possibly unmanageable. Altogether we have to consider "only" $12 \cdot 7 \cdot 2^{11}$ cases, since $\beta_{2}^{(4)} / \gamma_{2}$ is chosen from one of the 12 intervals $I_{p}$, $p=1,2, \ldots, 12$.

Bounds for the values of the interesting magnitudes can now be computed:

$$
l=\sum_{j=1}^{6} r_{j}+\sum_{j=1}^{2} q_{j}+\sum_{j=1}^{3} d_{j}+1
$$

$$
\operatorname{Lin}+\operatorname{lic}^{2}
$$



 2


 -unt antolma


 4.


 2


 2

$$
81, \ldots, \$, 1=q
$$


tbotuc
the last 1 standing for the ultimate line in the list. Further

$$
\begin{gathered}
\sum_{i=1}^{l} s_{4}^{(i)}=\sum_{j=1}^{6} j r_{j}+\sum_{j=1}^{2} j q_{j}+s, \text { and } \\
\sum_{i=1}^{l} s_{3}^{(i)}=\sum_{j=1}^{6}\left\lfloor\frac{j \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor r_{j}+\sum_{j=1}^{2}\left(\left\lfloor\frac{j \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor+1\right) q_{j}+\sum_{j=1}^{3} j d_{j}+\left\lfloor\frac{s \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor
\end{gathered}
$$

Now the intervals $I_{p}, p=1,2, \ldots, 12$ are chosen in such a way that the values $\left\lfloor j \beta_{2}^{(4)} / \gamma_{2}\right\rfloor$ for $j=1,2, \ldots, 6$ are constant over the whole of each $I_{p}$, and so $\sum_{i=1}^{l} s_{3}^{(i)}$ is constant over $I_{p}$. If $I_{p}=\left[w_{p}, z_{p}\right)$ and $\beta_{2}^{(4)} / \gamma_{2} \in I_{p}$, we have $\left\lfloor j \beta_{2}^{(4)} / \gamma_{2}\right\rfloor=\left\lfloor j w_{p}\right\rfloor$. Then

$$
\sum_{i=1}^{l} s_{3}^{(i)}=\sum_{j=1}^{6}\left\lfloor j w_{p}\right\rfloor r_{j}+\sum_{j=1}^{2}\left(\left\lfloor j w_{p}\right\rfloor+1\right) q_{j}+\sum_{j=1}^{3} j d_{j}+\left\lfloor s w_{p}\right\rfloor
$$

and

$$
\sum_{i=1}^{l} s_{4}^{(i)} \beta_{2}^{(4)} \leq \sum_{i=1}^{l} s_{4}^{(i)} z_{p} \gamma_{2}
$$

and we have computed bounds for all the values we are interested in. For each choice of the variables $r_{j}, q_{j}, d_{j}$ and $s,(31)$ now gives us an inequality (24). We combine this inequality with (27) as we did before, and get by (28) a bound for the $h$-range coefficient.

Now we try to reduce the number of cases to consider. Remember that we have chosen $\beta_{2}^{(4)} / \gamma_{2} \in I_{p}=\left[w_{p}, z_{p}\right)$, and can find out whether (34) is soluble or not. If

$$
1+\left\lfloor s_{4} w_{p}\right\rfloor-s_{4} z_{p} \geq t_{s_{4}}
$$

then

$$
\left(1+s_{3}\right) \gamma_{2}-s_{4} \beta_{2}^{(4)} \geq t_{s_{4}} \gamma_{2}
$$

throughout $I_{p}$, and the corresponding transfer $\left(s_{2}, s_{3}, s_{4}\right) \in A$ or $C$ cannot be used, a fact that reduces the amount of work considerably. In the same way $\left(s_{2}, s_{3}, s_{4}\right) \in B$ can be excluded if

$$
2+\left\lfloor s_{4} w_{p}\right\rfloor-s_{4} z_{p} \geq t_{s_{4}}
$$

The first runs on the computer showed that the cases where $s>0$ and $r_{s}=1$ were the most critical ones, giving large coefficient bounds for the

mandaing and

 aine

bab





 11 forr to aldulos




$$
x^{t} \leq y^{5} x^{2}-\left\lfloor\operatorname{lot} x^{2}\right]+S
$$



$h$-range. Therefore we refined our method in this case. Now $s>0$ and $r_{s}=1$ mean that the transfer $\left(s_{2}, s_{3}, s\right)$ is used at the end of the list, and the transfer $\left(s_{2}-1, s_{3}, s\right)$ at another place, let us say in line $f$. We leave out line $f$ from our list and average. Since the transfers of line $f$ and line $l$ only differ in the $s_{2}$ position, with one unit, we have $\kappa_{f}=\kappa_{l}+\gamma_{1}$, hence $\gamma_{1}-\kappa_{f-1}+\kappa_{f}-\kappa_{l} \geq \gamma_{1}$. Now $\sum_{i=1, i \neq f}^{l} s_{4}^{(i)}=\sum_{i=1}^{l} s_{4}^{(i)}-s$ and $\sum_{i=1, i \neq f}^{l} s_{3}^{(i)}=$ $\sum_{i=1}^{l} s_{3}^{(i)}-\left\lfloor s w_{p}\right\rfloor$. Thus averaging gives

$$
\begin{align*}
& \epsilon_{4}+\left(1+\frac{\sum_{i=1}^{l} s_{4}^{(i)}-s}{l-1}\right) \gamma_{3}+\left(1+\frac{\sum_{i=1}^{l} s_{3}^{(i)}-\left\lfloor s w_{p}\right\rfloor}{l-1}\right) \gamma_{2} \\
& -\frac{\sum_{i=1}^{l} s_{4}^{(i)}-s}{l-1} \beta_{2}^{(4)}+\frac{\gamma_{1}}{l-1} \leq h+\delta . \tag{35}
\end{align*}
$$

This inequality usually gives much better results than (31). A computer run of the described program, taking care of the maximal coefficient bound occuring in each interval $I_{p}$, yields the following situation:

Table 2.

| Interval <br> $I_{p}$ | Largest <br> coefficient <br> bound | Total <br> number <br> of <br> cases | Cases with <br> coefficient <br> bound <br> $>2.008$ |
| :--- | ---: | ---: | ---: |
| $I_{1}=\left[0, \frac{1}{6}\right)$ | 2.00 | 7168 | 0 |
| $I_{2}=\left[\frac{1}{6}, \frac{1}{5}\right)$ | 2.16 | 3072 | 9 |
| $I_{3}=\left(\frac{1}{5}, \frac{1}{4}\right)$ | 2.37 | 1280 | 29 |
| $I_{4}=\left(\frac{1}{4}, \frac{1}{3}\right)$ | 2.59 | 1280 | 46 |
| $I_{5}=\left(\frac{1}{3}, \frac{2}{5}\right)$ | 2.42 | 1280 | 31 |
| $I_{6}=\left(\frac{2}{5}, \frac{1}{2}\right)$ | 2.78 | 6144 | 437 |
| $I_{7}=\left(\frac{1}{2}, \frac{3}{5}\right)$ | 2.30 | 1280 | 39 |
| $I_{8}=\left[\frac{3}{5}, \frac{2}{3}\right)$ | 2.60 | 3072 | 143 |
| $I_{9}=\left[\frac{2}{3}, \frac{3}{4}\right)$ | 2.56 | 3072 | 134 |
| $I_{10}=\left[\frac{3}{4}, \frac{4}{5}\right)$ | 2.64 | 1280 | 94 |
| $I_{11}=\left[\frac{4}{5}, \frac{5}{6}\right)$ | 2.78 | 1280 | 98 |
| $I_{12}=\left[\frac{5}{6}, 1\right)$ | 3.97 | 14336 | 2968 |


禹
 osair
 2



is aldes
ITherinal

The computer result in $I_{1}$ is 1.97 , but since we have used (22) on our way, we cannot conclude better than 2.0.

In order to get even better results, we consider now some other types of "key numbers". We look at

$$
M(m)=\left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3}+\left(m \beta_{2}^{(4)}-\left\lfloor\frac{m \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor \gamma_{2}-1\right) a_{2}+\left(\gamma_{1}-1\right)
$$

for $m=1$ in the intervals $I_{8}, I_{9}, I_{10}$, for $m=2$ in the intervals $I_{6}, I_{11}, I_{12}$ and for $m=3$ in the interval $I_{4}$. In all these intervals, the above representation of $M(m)$ is the regular one, since there $0 \leq m \beta_{2}^{(4)}-\left\lfloor m \beta_{2}^{(4)} / \gamma_{2}\right\rfloor \gamma_{2}-1 \leq \gamma_{2}-2$. Again we construct the corresponding list of the $M(m)_{i}$. Here the transfer $\left(s_{2},\left\lfloor m \beta_{2}^{(4)} / \gamma_{2}\right\rfloor, m\right) \in A$ or $C$ is impossible throughout the list, since it would give us a negative coefficient for $a_{2}$. The set $B$ has to be extended with the transfers

$$
\left(s_{2},\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor+1, s_{4}\right), 3 \leq s_{4} \leq 6
$$

and $\left(s_{2}, 2,1\right)$. In addition $D$ has to be extended with $\left(s_{2}, 4,0\right)$. We introduce the corresponding variables $q_{3}, q_{4}, q_{5}, q_{6}, q, d_{4} \in\{0,1\}$ and compute

$$
\begin{gathered}
l=\sum_{j=1}^{6} r_{j}+\sum_{j=1}^{6} q_{j}+q+\sum_{j=1}^{4} d_{j}+1 \\
\sum_{i=1}^{l} s_{4}^{(i)}=\sum_{j=1}^{6} j\left(q_{j}+r_{j}\right)+q+s \\
\sum_{i=1}^{l} s_{3}^{(i)}=\sum_{j=1}^{6}\left\lfloor\frac{j \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor\left(r_{j}+q_{j}\right)+\sum_{j=1}^{6} q_{j}+\sum_{j=1}^{4} j d_{j}+2 q+\left\lfloor\frac{s \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor \\
=\sum_{j=1}^{6}\left\lfloor j w_{p}\right\rfloor\left(r_{j}+q_{j}\right)+\sum_{j=1}^{6} q_{j}+\sum_{j=1}^{4} j d_{j}+2 q+\left\lfloor s w_{p}\right\rfloor
\end{gathered}
$$

In the same way as before we may reduce the number of cases to consider, when we notice that the use of $\left(s_{2}, s_{3}, s_{4}\right) \in A$ or $C$ is possible only if

$$
0 \leq m \beta_{2}^{(4)}-\left\lfloor\frac{m \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor \gamma_{2}+\left\lfloor\frac{s_{4} \beta_{2}^{(4)}}{\gamma_{2}}\right\rfloor \gamma_{2}-s_{4} \beta_{2}^{(4)}-1<t_{s_{4}} \gamma_{2}
$$

 0.0 melt satjod abulanos fortass sw










$$
a \geq x \geq 8, x\left(x^{2} \cdot 1+\left[\frac{(\sqrt[4 c o s]{4}}{8 c}\right]+8^{8}\right)
$$




$$
\begin{aligned}
& \text { 217 M M Th }
\end{aligned}
$$




If $m \geq s_{4}$ we must demand

$$
\left(m-s_{4}\right) w_{p}-\left\lfloor m w_{p}\right\rfloor+\left\lfloor s_{4} w_{p}\right\rfloor<t_{s_{4}},
$$

and

$$
0<\left(m-s_{4}\right) z_{p}-\left\lfloor m w_{p}\right\rfloor+\left\lfloor s_{4} w_{p}\right\rfloor .
$$

If $m<s_{4}$ we must demand

$$
\left(m-s_{4}\right) z_{p}-\left\lfloor m w_{p}\right\rfloor+\left\lfloor s_{4} w_{p}\right\rfloor<t_{s_{4}}
$$

and

$$
0<\left(m-s_{4}\right) w_{p}-\left\lfloor m w_{p}\right\rfloor+\left\lfloor s_{4} w_{p}\right\rfloor .
$$

Here we used again that $\left\lfloor j \beta_{2}^{(4)} / \gamma_{2}\right\rfloor=\left\lfloor j w_{p}\right\rfloor$ in the interval $I_{p}$. For transfers from $B$ we get similar conditions. As shown before, the cases with $s>0$ and $r_{s}=1$ can be treated seperately and do not cause that much headache.

A new computer run gives new bounds for our coefficient in the mentioned intervals:

Table 3.

| Interval <br> $I_{p}$ | Largest <br> coefficient <br> bound | $m$ | Total <br> number <br> of <br> cases | Cases with <br> coefficient <br> bound <br> $>2.008$ |
| :--- | ---: | ---: | ---: | ---: |
| $I_{4}=\left(\frac{1}{4}, \frac{1}{3}\right)$ | 2.78 | 3 | 1024 | 28 |
| $I_{6}=\left(\frac{2}{5}, \frac{1}{2}\right)$ | 2.33 | 2 | 5120 | 44 |
| $I_{8}=\left(\frac{3}{5}, \frac{2}{3}\right)$ | 2.38 | 1 | 768 | 21 |
| $I_{9}=\left(\frac{2}{3}, \frac{3}{4}\right)$ | 2.35 | 1 | 1024 | 18 |
| $I_{10}=\left(\frac{3}{4}, \frac{4}{5}\right)$ | 2.30 | 1 | 1024 | 11 |
| $I_{11}=\left(\frac{4}{5}, \frac{5}{6}\right)$ | 2.30 | 2 | 1536 | 27 |
| $I_{12}=\left(\frac{5}{6}, 1\right)$ | 2.31 | 2 | 10240 | 99 |

The largest coefficient bound 2.78 , the only one exceeding 2.5 , arises now for $\beta_{2}^{(4)} / \gamma_{2} \in I_{4}=[1 / 4,1 / 3)$. Here we use a new method to reduce the coefficient bound. We consider all lists for $N_{i}$, where the coefficient bound by the averaging method became $>2.008$. In each case we stored the

$$
\begin{aligned}
& 2 \operatorname{loded} \\
& \text { bus }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bumab J }
\end{aligned}
$$


 2


2levistai barioit



 4ill batola
values of $l, \sum_{i=1}^{l} s_{4}^{(\mathrm{i})}$ and $\sum_{i=1}^{l} s_{3}^{(\mathrm{i})}$ corresponding to the average inequality (31). Then we considered all the lists for $M(3)$, where the coefficient bound became $>2.008$. Here we stored the values say $L, \sum_{i=1}^{L} S_{4}^{(i)}$ and $\sum_{i=1}^{L} S_{3}^{(i)}$ corresponding to the inequality
$\epsilon_{4}+\left(1+\frac{\sum_{i=1}^{L} S_{4}^{(i)}}{L}\right) \gamma_{3}+\frac{\sum_{i=1}^{L} S_{3}^{(i)}}{L} \gamma_{2}+\left(3-\frac{\sum_{i=1}^{L} S_{4}^{(i)}}{L}\right) \beta_{2}^{(4)}+\frac{\gamma_{1}}{L} \leq h+\delta$.
Note that $\left\lfloor 3 \beta_{2}^{(4)} / \gamma_{2}\right\rfloor=0$ in $I_{4}$. It turned out that in all these 28 cases $3-\sum_{i=1}^{L} S_{4}^{(i)} / L>0$, so $\beta_{2}^{(4)}$ appears with positive factor in (36) and with negative factor in (31). Now we combine the two inequalities by multiplying (31) with the weight $w_{1}=3-\sum_{i=1}^{L} S_{4}^{(i)} / L>0$ and (36) with $w_{2}=\sum_{i=1}^{l} s_{4}^{(i)} / l>0$, add both and divide the result by the sum of the weights $w_{1}+w_{2}$. In this way we get rid of $\beta_{2}^{(4)}$ and find

$$
\begin{aligned}
& \epsilon_{4}+\frac{w_{1}\left(1+\sum_{i=1}^{l} s_{4}^{(i)} / l\right)+w_{2}\left(1+\sum_{i=1}^{L} S_{4}^{(i)} / L\right)}{w_{1}+w_{2}} \gamma_{3} \\
& +\frac{w_{1}\left(1+\sum_{i=1}^{l} s_{3}^{(i)} / l\right)+w_{2} \sum_{i=1}^{L} S_{3}^{(i)} / L}{w_{1}+w_{2}} \gamma_{2}+\frac{w_{1} / l+w_{2} / L}{w_{1}+w_{2}} \gamma_{1} \leq h+\delta
\end{aligned}
$$

Optimal combination with (27), as in (28), yields that in each of the $28.46=$ 1288 weighted averages, the coefficient bound becomes $<2.43$. This is the largest value occuring. The best known upper coefficient bounds for the different intervals $I_{p}$ are given in the following table 4.

Table 4.

| Interval $I_{p}$ | Largest coefficient bound | Interval$I_{p}$ |  | Largest coefficient bound |
| :---: | :---: | :---: | :---: | :---: |
| $I_{1}=\left[0, \frac{1}{6}\right)$ | 2.00 | $I_{7}=$ | $\left[\frac{1}{2}, \frac{3}{5}\right)$ | 2.30 |
| $I_{2}=\left[\frac{1}{6}, \frac{1}{5}\right)$ | 2.16 | $I_{8}=$ | [ $\left.\frac{3}{5}, \frac{2}{3}\right)$ | 2.38 |
| $I_{3}=\left(\frac{1}{5}, \frac{1}{4}\right)$ | 2.37 | $I_{9}=$ | $\left[\frac{2}{3}, \frac{3}{4}\right.$ ) | 2.35 |
| $I_{4}=\left(\frac{1}{4}, \frac{1}{3}\right)$ | 2.43 | $I_{10}=$ | $\left(\frac{3}{4}, \frac{4}{5}\right)$ | 2.30 |
| $I_{5}=\left(\frac{1}{3}, \frac{2}{5}\right)$ | 2.42 | $I_{11}=$ | $\left[\frac{4}{5}, \frac{5}{6}\right)$ | 2.30 |
| $I_{6}=\left(\frac{2}{5}, \frac{1}{2}\right)$ | 2.33 | $I_{12}=$ | $\left[\frac{5}{6}, 1\right)$ | 2.31 |



 vuilsupari aft of gertbaoceortoo
 (as)
20,


 2






| Tadyza. tmpiatiens Scupd |  | isynatal | traymait tasiantisos Dmaod |  | Isvestal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 08. S |  | $=-1$ | 60, 8 | 7.01 | $=1 \mathrm{I}$ |
| 88. S | ( $\frac{2}{2}$ | min ${ }^{\text {a }}$ | -01.E |  | $=.1$ |
| 38.S | (1) | $\Rightarrow$ तो | TE. |  | $=1$ |
| 08.S |  | $=0.1$ | ens |  | $=14$ |
| 08.5 |  | $=41$ | 84. ${ }^{\text {a }}$ |  | ${ }^{1}$ |
| 18.8 | ( $1 . \frac{2}{2}$ ) | $=3 \mathrm{l}$ | 10.8 |  | 81 |

So we get our final result:
Theorem 2. Given a sequence of bases with four elements $A_{4}(h)$, then

$$
n_{h}\left(A_{4}(h)\right) \leq 2.43\left(\frac{h}{4}\right)^{4}+O\left(h^{3}\right)
$$

Of course this bound is also valid for the extremal bases $A_{4}^{*}(h)$.
A computer program, written in "Pascal", that performs the computations which prove the above result can be found in Kirfel [7].

### 2.4 Bounds for the $h$-range $n_{h}\left(A_{4}\right)$, when special transfers are used

The method presented in the previous section may also be applied in order to obtain upper bounds for the $h$-range $n_{h}\left(A_{4}\right)$, when we know in advance which transfers we are going to use in the interval $\left[0, n_{h}\left(A_{4}\right)\right]$ in order to obtain minimal representations. Here we shall show that, using transfers $\left(s_{2}, s_{3}, 0\right), s_{3} \geq 0$ and $(0,0,1)$, we cannot get a coefficient larger than 2 in (22), and so we cannot get the extremal $h$-range.

Let us start with a simple example, in order to show how our method works. Assume that we only allow transfers of the kind ( $s_{2}, s_{3}, 0$ ), $s_{3} \geq 0$. Look again at

$$
\begin{aligned}
N_{1}= & \left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3}+\left(\gamma_{2}-2\right) a_{2}+\left(\gamma_{1}-1\right) \\
= & \left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-s_{3}^{(1)}-2\right) a_{3}+\left(\left(s_{3}^{(1)}+1\right) \gamma_{2}-s_{2}^{(1)}-2\right) a_{2} \\
& +\left(\left(s_{2}^{(1)}+1\right) \gamma_{1}-s_{3}^{(1)} \beta_{1}^{(3)}-1\right),
\end{aligned}
$$

and the corresponding list of $N_{i}$, as we did in section 2.3. Since $s_{4}^{(i)}=0$ for $i=1,2, \ldots, l$, the averaging process (31) gives

$$
\epsilon_{4}+\gamma_{3}+\left(1+\frac{\sum_{i=1}^{l} s_{3}^{(i)}}{l}\right) \gamma_{2}+\frac{\gamma_{1}}{l} \leq h+\delta .
$$

As we have seen before, only different tranfers are used throughout the list. But $\left(s_{2}, s_{3}, 0\right) \neq\left(\overline{s_{2}}, \overline{s_{3}}, 0\right)$ implies $s_{3} \neq \overline{s_{3}}$ for transfers with positive
(2) allelulive
(S) \#h asasd latastixs ado tof Bilar oals ai bruod aidt sexuroo 10


 besur ars exel


 2.


 2 25 mitas 2004

$$
\begin{aligned}
& (1-m)+\sin (S-2 r)+\cos (S-2 t)+25(1-23)=M \\
& \left.(1)^{2}-\operatorname{sen}\left(I+()^{2}\right)\right)+x^{2}\left(S-\frac{(t)}{\left.e^{2}-a r\right)+a\left(1-k^{3}\right)=}=\right.
\end{aligned}
$$




$$
3+3 \geq \frac{1}{1}+4\left(\frac{5}{4}+\frac{1}{2}+1\right)+85+3 \Rightarrow
$$



gain. Therefore

$$
\sum_{i=1}^{l} s_{3}^{(i)} \geq 0+1+2+\cdots+(l-1)=\frac{l(l-1)}{2}
$$

giving

$$
\epsilon_{4}+\gamma_{3}+\frac{l+1}{2} \gamma_{2}+\frac{\gamma_{1}}{l} \leq h+\delta
$$

and by (25)

$$
n_{h}\left(A_{4}\right) \leq \frac{2 l}{l+1}\left(\frac{h}{4}\right)^{4}+O\left(h^{3}\right)
$$

For $l \leq 4$ this gives us a coefficient bound $\leq 1.6$. If $l \geq 5$ there was an $i$, $1 \leq i \leq l$ such that $s_{3}^{(i)} \geq 4$. This would imply

$$
\epsilon_{4}+\gamma_{3}+5 \gamma_{2} \leq h+\delta
$$

in line number $i$ of our list. Inequality (28) then gives

$$
n_{h}\left(A_{4}\right) \leq 1.78(h / 4)^{4}+O\left(h^{3}\right)
$$

The last formula of course covers both cases. This gives us the following theorem:

Theorem 3. Let a sequence of bases $A_{4}(h)$ be given. Assume that only transfers of the type $\left(s_{2}, s_{3}, 0\right), s_{3} \geq 0$ are used in order to achieve minimal representations in the interval $\left[0, n_{h}\left(A_{4}(h)\right)\right]$, then

$$
n_{h}\left(A_{4}\right) \leq 1.78(h / 4)^{4}+O\left(h^{3}\right) .
$$

In addition to the transfers $\left(s_{2}, s_{3}, 0\right)$ we now want to use $(0,0,1)$. The average inequality (31) for the $N_{i}$-list, where we now allow the use of $(0,0,1)$, then reads

$$
\begin{equation*}
\epsilon_{4}+\frac{l+1}{l} \gamma_{3}+\frac{l^{2}-l+2}{2 l} \gamma_{2}-\frac{\beta_{2}^{(4)}}{l}+\frac{\gamma_{1}}{l} \leq h+\delta . \tag{37}
\end{equation*}
$$

Now assume $\beta_{2}^{(4)}>0$ and look at

$$
M(1)=\left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3}+\left(\beta_{2}^{(4)}-1\right) a_{2}+\left(\gamma_{1}-1\right)
$$

$$
\begin{aligned}
& \text { stolatenT nisg } \\
& \text { (itie } \\
& 3+d \geq \frac{1 r}{1}+2 n^{2+1} \frac{s}{2}+8 r+p^{3} \\
& \text { grivis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8S) vd bres }
\end{aligned}
$$

 What blow aint it $\leq$ (o) ashly (lose ) $\geq b \geq 1$

$$
8+s n^{2} \geq n^{2}+8 c^{2}+k^{3}
$$

covig hoild (88) चJileoperat tall zto to \& redmurn smil hi
dede it fuldar is (ohlare
 :mayoad d




 absmithif ( $(1,4,0)$ ? 0

$$
\begin{align*}
& \text { at floct foce } 0 \text { - (Mhe terveth woh } \tag{58}
\end{align*}
$$

The corresponding list of $M(1)_{i}$, having length $L$, cannot contain the transfer $(0,0,1)$, since otherwise we would get a negative coefficient for $a_{2}$. So only transfers of the form $\left(s_{2}, s_{3}, 0\right), s_{3} \geq 0$ can be used here, and the corresponding average inequality reads

$$
\begin{equation*}
\epsilon_{4}+\gamma_{3}+\frac{L-1}{2} \gamma_{2}+\beta_{2}^{(4)}+\frac{\gamma_{1}}{L} \leq h+\delta . \tag{38}
\end{equation*}
$$

The weighted average of (37) and (38), using the weights $l$ and 1 respectively, gives

$$
\epsilon_{4}+\frac{l+2}{l+1} \gamma_{3}+\left(\frac{l^{2}-l+2}{2(l+1)}+\frac{L-1}{2(l+1)}\right) \gamma_{2}+\frac{1+1 / L}{l+1} \gamma_{1} \leq h+\delta
$$

Running through all values $1 \leq l \leq 5,1 \leq L \leq 5$ and using (28), this gives coefficient bounds $\leq 1.94$. If $l \geq 6$ or $L \geq 6$ we get, as before, a coefficient bound $\leq 1.78$.

The case $\beta_{2}^{(4)}=0$ can in fact be treated in general, not only in connection with the transfers $(0,0,1)$ and $\left(s_{2}, s_{3}, 0\right)$. The average inequality (31) for the list of the $N_{i}$ now reads

$$
\epsilon_{4}+\left(1+\frac{\sum_{i=1}^{l} s_{4}^{(i)}}{l}\right) \gamma_{3}+\left(1+\frac{\sum_{i=1}^{l} s_{3}^{(i)}}{l}\right) \gamma_{2}+\frac{\gamma_{1}}{l} \leq h+\delta
$$

If $s_{4}^{(i)}>0$ and $s_{3}^{(i)}>0$ for some $i, 1 \leq i \leq l$, this implies $\epsilon_{4}+2 \gamma_{3}+2 \gamma_{2} \leq h+\delta$ in line $i$ in our list. By (28) we then get a coefficient bound $\leq 2$. So we may assume $s_{4}^{(i)}>0 \Longrightarrow s_{3}^{(i)}=0$ and $s_{3}^{(i)}>0 \Longrightarrow s_{4}^{(i)}=0$. Note that for $\beta_{2}^{(4)}=0$ we have $\left(s_{2}, 0, s_{4}\right) \neq\left(\overline{s_{2}}, 0, \overline{s_{4}}\right) \Longrightarrow s_{4} \neq \overline{s_{4}}$. Let now $g$ denote the number of transfers $\left(s_{2}, 0, s_{4}\right), s_{4}>0$ used in the list and $v$ the number of transfers $\left(s_{2}, s_{3}, 0\right), s_{3}>0$. Then

$$
l=g+v+1,
$$

the last 1 standing for the regular representation at the end of the list. Since $\beta_{2}^{(4)}=0$, no other transfer could occur in the final line. The averaging inequality (31) now becomes

$$
\epsilon_{4}+\left(1+\frac{g(g+1)}{2(g+v+1)}\right) \gamma_{3}+\left(1+\frac{v(v+1)}{2(g+v+1)}\right) \gamma_{2}+\frac{\gamma_{1}}{g+v+1} \leq h+\delta
$$





 eqvis रlisyid

 --5 - ...

 phern wort M sits lo tall sit?







$$
x+u+\frac{a}{a}-1
$$


 ( 2

Running through the values $0 \leq g \leq 2,0 \leq v \leq 3$ and using (28), we get coefficient bounds $\leq 1.8$. Here $v \geq 4$ would, as before, give a coefficient bound $\leq 1.78$. On the other hand, $g \geq 3$ would imply the use of $\left(s_{2}, 0, s_{4}\right)$, $s_{4} \geq 3$, and this again gives $\epsilon_{4}+4 \gamma_{3}+\gamma_{2} \leq h+\delta$ in the corresponding line of the list, giving a coefficient bound $\leq 1.69$ by (28). These results are collected in the following theorems:
Theorem 4 . Let $A_{4}(h)$ be a sequence of bases, where $\beta_{2}^{(4)}=0$ in (13), then

$$
n_{h}\left(A_{4}(h)\right) \leq 2(h / 4)^{4}+O\left(h^{3}\right)
$$

In fact, this result could have been read off table 4. But the proof given here is not based on a computer result and is thus more transparent.
Theorem 5. Let $A_{4}(h)$ be a sequence of bases, where only transfers of the type $\left(s_{2}, s_{3}, 0\right), s_{3} \geq 0$ and $(0,0,1)$ are used in order to achieve minimal representations in the interval $\left[0, n_{h}\left(A_{4}(h)\right)\right]$, then

$$
n_{h}\left(A_{4}(h)\right) \leq 2(h / 4)^{4}+O\left(h^{3}\right)
$$

In fact this result can be sharpened in the following way:
Theorem 6. Let $A_{4}(h)$ be a sequence of bases, where only transfers of the type $\left(s_{2}, s_{3}, s_{4}\right), s_{4} \leq 1$ are used in order to achieve minimal representations in the interval $\left[0, n_{h}\left(A_{4}(h)\right)\right]$, then

$$
n_{h}\left(A_{4}(h)\right) \leq 2(h / 4)^{4}+O\left(h^{3}\right)
$$

The details of the very technical proof are found in Kirfel [7].
Remark 3. It is enough to claim that no other transfers than the ones under consideration are used in order to achieve minimal representations in the interval

$$
\left[\left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3},\left(\epsilon_{4}-1\right) a_{4}+\left(\gamma_{3}-2\right) a_{3}+\left(\gamma_{2}-2\right) a_{2}+\gamma_{1}-1\right]
$$

since the lists for $N_{i}$ and $M(1)_{i}$ only use information from this interval.
Acknowledgement. I would like to thank Prof. E. S. Selmer for his help when reviewing my manuscript. He supplied a lot of details and corrections and helpful advices.




 Rempargait smiwollol ofls ai botaallas
 nads

$$
\left.\left.f^{2} d\right) 0+(5) d\right)^{3} \geq\left((v)^{3}\right)
$$








 020

$$
\left.f^{2} s\right) 0 A^{2}(P)=(1) s \geq((8) \text { ander }
$$



 livisini sif al
no


[^0]
## References

[1] R. Braunschädel, Zum Reichweitenproblem, Diplomarbeit, Math. Inst., Joh. Gutenberg-Univ., Mainz 1988.
[2] W. Hertsch, Bestimmung der dreielementigen Extremalbasen und deren Reichweiten, Staatsexamensarbeit, Math. Inst., Joh. Gutenberg-Univ., Mainz 1972.
[3] G. Hofmeister, Über eine Menge von Abschnittsbasen, J. reine angew. Math. 213 (1963), 43-57.
[4] G. Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen, J. reine angew. Math. 232 (1968), 77-101.
[5] G. Hofmeister, Zum Reichweitenproblem, Mainzer Seminarberichte in additiver Zahlentheorie 1 (1983), 30-52.
[6] G. Hofmeister, Die dreielementigen Extremalbasen, J. reine angew. Math. 339 (1983), 207-214.
[7] C. Kirfel, On extremal bases for the h-range problem, II, Inst. Rep., Math. Inst., Univ. Bergen, to appear.
[8] H. Kolsdorf, Reichweite fünfelementiger Mengen natürlicher Zahlen, Dissertation, Math. Inst., Joh. Gutenberg-Univ., Mainz 1977.
[9] H. Kolsdorf, Ein Beitrag zur additiven Zahlentheorie, to appear.
[10] G. Meures, Zusammenhang zwischen Frobeniuszahl und Reichweite, Staatsexamensarbeit, Math. Inst., Joh. Gutenberg-Univ., Mainz 1977.
[11] S. Mossige, Algorithms for computing the h-range of the postage stamp problem, Math. Comp. 36 (1981), 575-582.
[12] S. Mossige, On the extremal h-range of the postage stamp problem with four stamp denominations, Inst. Rep. No. 41, Math. Inst., Univ. Bergen, 1986.

## e93r591919S

20 .88er maisl4 wint-grodmetuo .doth


-man $\div=$ *



 101-TY


 NISTOS, (8801) 088 ditsM












[13] S. Mossige, On extremal h-bases $A_{4}$, Math. Scand. 61 (1987), 5-16.
[14] A. Mrose, Ein rekursives Konstruktionsverfahren für Abschnittsbasen, J. reine angew. Math. 271 (1974), 214-217.
[15] Ö. Rödseth, An upper bound for the $h$-range of the postage stamp problem, Acta Arithmetica, to appear.
[16] H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937), 1-30.
[17] E. S. Selmer, On the postage stamp problem with three stamp denominations, Math. Scand. 47 (1980), 29-71.
[18] E. S. Selmer, Asymptotic h-ranges and dual bases, Inst. Rep., Math. Inst., Univ. Bergen, to appear.
[19] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, I, J. reine angew. Math. 194 (1955), 40-65.





 $108-1$ (TseI)
 IT-6S (Obes) TA . batso? intaM sacitoss






Depotbiblioteket

78sd 20215


[^0]:    
    
    

