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Abstract

We study autoregressive (AR) time series with suddenly changing struc
ture. There are two interrelated estimation problems associated with this
model: The estimation of shift points and the estimation of AR parame
ters. In this paper we study the properties of the AR parameter estimates.
We prove consistency and asymptotic normality when the shift points are
known. When the shift points are unknown, the parameter estimates will
in general be biased, and we find an approximate expression for the bias in
a simple situation. The results are checked by simulations.
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1 Introduction

In this paper we will study autoregressive (AR) time series with suddenly
changing parameters. Such changes may be due to external events, e.g. po
litical or stock market events influencing an economic time series (Tyssedal
and Tjøstheim 1988) or a geophysical time series obtained from layered
geological formations (Karlsen and Tjøstheim 1988). Various aspects of
such phenomena have been considered by Maddala (1986), Millnert (1982),
Picard (1985), Sclove (1983), Telknys (1986) and Wichern et al (1976),
and more background material has been given in Tyssedal and Tjøstheim
(1988). Quite often it is reasonable to assume that the external events them
selves are regulated by a random mechanism leading to a doubly stochastic
time series model (Tjøstheim 1986a). Our models are also related to the
threshold models of Tong (1983), but they lack the feedback mechanism
from past observations inherent in those models.

Although our results can be generalised to an AR(p) model, for sim
plicity we will only treat AR(l) models {Xt} given by

Xt = OtXt-i +et ,t >1 , XQ =x 0 (1.1)

Here {et , t > 1} is a sequence of independent identically distributed (iid)
random variables independent of XO , and {Bt , t > 1} is a deterministic
sequence or a stochastic process. In either case each 9t is only allowed to
take k values au ...,ak , corresponding to k possible states for the correlation
structure of {Xt}.

There are two interrelated estimation problems associated with this
model: The estimation of shift points, where 9t jumps from one value to
another, and the estimation of the AR parameters {a1? ...,ak }. The nature
of these problems are quite different. In general the shift points are stochas
tic variables, and, in the absence of external information, they cannot be
estimated asymtotically with an arbitrary preselected level of accuracy.
The estimation of the AR parameters, however, can be phrased in more
traditional terms.

Some theoretical aspects of shift point estimation has been discussed in
Telknys (1986), but as far as we know the properties of the AR estimates
in this situation are unknown, and the main concern of this paper is to try
to establish such properties. In section 2 the estimation problem will be
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discussed under the assumption that the shift points are known, which is
not very realistic unless they are generated by a known external mechanism.
In section 3 we adopt the somewhat more realistic attitude that the shift
points are unknown, but that we know a probability distribution for them.
This distribution could have been furnished subjectively by an expert, or
it could be the result of an estimation procedure for the shift points. The
distribution of shift point estimates is not easy to derive, but the interested
reader may consult Telknys (1986), where a few of the papers are dealing
with this problem.

As far as applications are concerned, it is important to have good esti
mates of {ai, ...,ajb} to be able to identify and distinguish between various
correlation or frequency structures. For seismic or other geophysical time
series, say, one may try to link such a characterization directly to geological
properties by labelling geological layers. (cf Karlsen and Tjøstheim 1988)

2 The shifts are known

We let {Xt} be the process generated by (1.1), and we denote by 6it , i =
1, ...,& , the ith state indicator process given by

(2.1)

We assume that the indicator processes are known. This amounts to know
ing the shift points and which states are involved at each shift.

With the above notation (1.1) can be written

(2.2)

We assume in addition that E(et ) = 0 and E(e2 ) =a 2 < 00. Our
task is to find estimates of the AR parameters {ai,...,a*} and to eval
uate their properties. To this end let Jt be the a-algebra generated by
{X 3 , 5 <t}. Then Xt\t-i = E{Xt | Jt-i) = X)t Oi&ttXt-.i , and given obser
vations XO , ...,Xn , thejeast squares estimates of at- , i=1,...,k , obtained by
minimizing 52t (Xt - Xt \t-i) 2 are given by

- fl for $t =<H
\ 0 otherwise

k
Xt — z 2 OiSitXt-i = et
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(2.3)

for i=1,...,k. (We assume that > 0 , i.e. all states are visited.
Otherwise we can just omit the corresponding at- in (2.3)).

Proof :In general the process {Xt } is nonstationary, and we cannot rely
on the ergodic theorem. We can prove strong consistency using the general
theorem of Tjøstheim (1986b), but in this case we may as well proceed
directly using martingale theory.

Using (2.2) and (2.3) and the fact that 6it6jt = 0 for i± j and 6ft =
6it » we have that

(2.4)

From the iid property of {et} we have E(Sit etXt-i \ ?t-i) =' 0 , and the
process £« Bit8it etXt-i is a martingale difference sequence with respect to {7t}.
Similarly conditionally on {6it } being known, E{(6it etXt-i) 2 } = Bit8ito2
It follows from the defining equation (1.1) that

(2.5)

and using the iid property of {et} and the independence of X 0 we have

(2.6)

Since max,- |0,-| < 1 , there exists an M > 0 such that E{{8it etXt-i) 2} =
6ucr2 E(X?) < M and it follows from the martingale convergence theorem
(Stout 1974, Th. 3.3.8) that

t=l t=l

Theorem 2.1 Let {Xt} and {a,- ,i = !,...,&} be as defined above. If
n

a,-1 < 1 and lim in/(n"l > 0 ,
*=1

then cii —di-V0 as n —* oo for i = 1,..., k.

ek - Oi = (n" 1 £ SitetXt.J/in- 1 £ fcj£.J

Xt = (t[ 9,.,)X0 +e, + 2('n Bt-i)et-, ,
J=o 3=l j=o

E(Xf) < <7 2 {1 + £(max W)*} + (max |a,|) f£(Xj).3=l * '





n
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n- 1 SaetXt-x 0 (2.7)

(2.8)

as n — oo in (2.4). From the strong law of large numbers
n

—1 V* 2 2 a - a - rk
n et ~ G ~¥ ° (2.9)

Inserting from (2.2) we have

(2.10)

(2.11)

It is easily checked that {ut } is a martingale difference sequence with respect
to {It } and since E(u2t ) = a2 E,a?^^(Xf2_ 1 ) <tf for some K>o, it
follows from the strong law for martingales that ra -1 £ut 0. Inserted in
(2.9) and (2.10) this yields

n

n-^Xt-n-1 (2.12)

Since Æ(Xt2 ) <M, implies ra I (Xj^t|fl+l 0 as n- oo , and since
St = 1 for all t, an alternative way of writing (2.12) is

(2.13)

Taking expectations in (2.10) and (2.11) and using the same reasoning as
above we have

t=l

as n — oo for i=1,...,k.
It remains to prove that

n
lim inf (ra-1 Y\ > 0n—*oo x » * 't=l

t=l

t\ = X] - 2 £ OiSitXtXt-x + 53 a?*,X**»=i i=i
and

* k k
22 OiSnXtXt-i —22 ai^*tXt^l = e &%6itXt-i =ut
t=i i=i t=i

t=i I=lt=l

imi t=l
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(1 - a?)"" 1 SitE{Xl x ) - <r 2-* 0 (2.14)

Combining the two we obtain

(2.15)

Since max,- |a,| < 1 and since the variables Yin , i = 1,...,jfc , are linearly
independent , it follows that

(2.16)

for i=1,...,k. From (2.5) it is easily proved that E(X2_ l ) >a 2 for £> 2
and (2.8) follows from the persistency assumption on Su in the theorem and
from (2.16).

Next we turn to the asymptotic distribution.

Theorem 2.2 Let {Xt} and {at- , i= 1, ...,&} be as in Theorem 2.1 and
let abe the column vector defined by a = [als ...,ak]T . Moreover, let 7*
be the identity matrix of dimension k and diag(-) the diagonal matrix. If
the asumptions of Theorem 2.1 hold and in addition E(ef) < oo , then as
n — oo

Æaj(JÉ4^(^.)]'/2)(3 -«) -*• M(0,Ih )& *—i (2.17)

Proof : Using (2.16), it is sufficient to prove that

(2.18)

From (2.4) we have that the ith component Cni of Cn is given by
n n

Cni Bit8it etXt-I)l{c{Y,6itE(X*_x)Yli\ (2.19)

t=l t=l

t=i L t=i t=i

= E(i - -f)n. ** o

n- 1 £ fc*t, - n' 1 £ fc*(JKjLj 5* o

where a = [3i, ...,afc]T twiA a,- øtven 6t/ fi?.S^.

c-d^{^m^ {z - a) - mh)

*=1
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We use a Cramer-Wold argument. For k arbitrary real numbers ai,...,ak
it is then sufficient to prove

(2.20)

For this purpose we introduce Fni = ø{J2t=i btE(Xt-i)} 1/2 and

With our assumptions on {Sit } and a,- it is not difficult to show that {Dnt}
are martingale increments for a zero-mean square integrable martingale
array. It is then sufficient to verify the following conditions (cf. Hall and
Heyde 1980, Th. 3.2, where the nesting and integrability conditions of that
theorem are trivially fulfilled).

Using the technique of Hall and Heyde (1980, p.53), (i) is fulfilled if the
Lindeberg condition

(2.21)

holds for all e> 0. Here l(-) is the indicator function. Since 6it Sjt = 0 for
i j and 6ft = 6it , the left hand side of (2.21) equals

(2.22)

(2.23)

f>cm^.v(o,X>,?)

£>„« å J 2 aiF^1 SitetXt.i.»=1

(t) max \Dnt \ 0V ' Kt<n ' '

t=i t=i

(iii) E( max D2nt ) is bounded in nv ' K \<t<n ntJ

ZE{Dintl(\Dnt\>€)}-+0t=l

t=l i=l l t=l J

Since max,- |oj| < 1, we have

E{AXU) < < c4{l - max(a?)} _1i
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Further, using the persistency condition on Bit8it ,as n gets large

for some m > 0. It follows that for a given 8 there is an n 0 such that for
ra > n 0 and all t

The relationship (2.21) now follows from (2.22)-(2.25) using standard ar
guments and (i) is proved.

Since E(ef) < oo and |0,-| < 1, i=1,...,k , the expansion (2.5) implies that
there exists a. K> 0 such that 2 } = BitE(ef)E(X*8itE(ef)E(X*_ 1 ) <K- It
is easy to check that

Hence (2.24), the independence of et from Jt-i and the definition of Bit8it
implies

which tends to zero as n tends to infinity. On the other hand, reasoning
exactly as in the proof of Theorem 2.1, corresponding to (2.16), we have

(2.28)

But using (2.24) and (2.26) we have

(2.29)

*5 = °* £ > ™*™ (2-24)*=1

SitE{e]XUl(J2 a]Fj8ite\XU > e 2)} < S (2.25)I=l

Dlt = Y,^F-Hite]XU (2.26)t= l

t=i i=i t=i

<nW2 , (2.27)
t=i

£«rø [É - £ t* 0
t=l Lf=l t=l

£ E{Dl) = £ «?itf £ 6ito>E(XU) = £ a,2 ,*=1 t=l t=l t= l
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and from (2.29), (2.28) and (2.27) combined with Chebyshev's inequality
it follows that (ii) is fulfilled.

Finally,

from wich (iii) follows, and the theorem is proved
It should be noted that we have asymptotic independence of the esti

mates a,- , i=1,...,k , in the sense that the asymptotic covariance matrix is
diagonal. For k=l, (2.17) reduces to the familiar result

<j- l {nE{X2)} ll 2 {ai - ax ) -i #(0,1) valid in the ordinary AR(l) case.
Due to Theorems 2.1 and 2.2 and (2.16) it is clear that Var(a{ ) can be

estimated by

where a 2 = n~ l E?=i{Xt - £,- åi6itXt-i)2 . Finally it should be noted that
the conditions of Theorems 2.1 and 2.2 can be relaxed. For example it
is not necessary to require that the et 's are identically distributed. If a 2
is replaced by n" 1 £?=! E(e2 ) ,it is not difficult to check that the general
martingale arguments presented in the proof of Theorem 2.1 hold if the
et 's are independent with E(et) = 0 and m < E(e2 ) < M for two positiv
constants m and M. This means that we may have e.g. step changes in
the residual variance as well, thus generalizing the result of Tyssedal and
Tjøstheim (1982) where only the variance and not the AR coefficients where
allowed to change. If E(ef) is bounded one obtains asymptotic normality
as well.

3 The shifts are unknown

We will limit ourselves to a model where {$t} of (1.1) is a stationary ergodic
process independent of {e t} and taking only two values {au a 2}. In addition
{ØJ » and {Xt} of (1.1) will be assumed given on —oo <t < 00. The
time points where {$t } changes from one value to another will be denoted
by ...T_i < Ti < T 2 < ... , where Ti > 1. Contrary to the situation in

£(max Dl) < E(±Dl) = £ a,2 , (2.30)t=l t=l

Var(å,)=d'/(£SuXi.l) (2.31)
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Section 2 we do not know the change points, but we assume that estimates
{Ti} are available, and that these estimates are related to the true change
points by a time- invariant symmetric probability distribution of range M,
depending only on the sequence {Ti}, such that

If \Ti+i -Ti\ <2M,it is possible to have fi+x < Ti. We assume that
such a pair of division points (T{ , Ti+l ) will not be detected with probability
Pr{fi+l < Ti) = Pr(\Ti+l - T{ \ < M)Pr(fi+l <f{ | \Tm - T{ \ < M).
This results in a revised stationary sequence of estimates {f/} , where some
of the original Tfa may be missing. In the following we will omit the prime
in our notation.

The sequence {%} leads to an estimated state indicator process given
by

(3.2)

for i=l,2. In general the distribution {pk} in (3.1) will be unknown. In
practice it will have to be assigned subjectively from a priori belief or by
using the properties (possibly evaluated by simulation) of the shift point
estimation method as a guide.

Since we do not know {6it } , the least squares estimates (2.3) cannot be
used, but by simple analogy we introduce

(3.3)

Inserting from the defining equation (2.2) we have, letting i=l,2 and j=2,l

(3.4)

and thus

Ot* — €L%

(3.5)

Pr(fi =Ti+ k) = Pr(fi = Ti-k)= Pkl o<k < M , (3.1)

with po + 2 Ef Pk = 1.

£ fl for §t =di
\ 0 otherwise

a. = (E&-Xi*<-i)/(£&-X?-x) •t=l f=i

Xt = {ai(l - 6jt) + aj6jt}Xt-i + et

fa - <*)SJUfr&x?-i ,
£?=i Sit -X?-1 Er= i £•« -X?-1

Bni + Sni
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where Bni is a bias term due to the estimation error in Bit8it , and Sni is a
standard error term due to the error sequence {et}.

With our assumption on {9t } and {et }, the process {Xt , 6it } is ergodic
if \oi\ <1 , i=l,2 , with {Xt} being represented by

(3.6)

We can now prove asymptotic normality for a bias adjusted version of a,- ,

Theorem 3.1 Let {Xt} , {6it } , at- and Sni i-1,2 be as defined in (34),
(3.2), (3.3) and (3.5) respectively. Moreover, let a = [ai,a2 ] r and Bn =
[8n1 ,8n2 ] T . If \at\ < 1 and E{6itX'}_ l ) > 0 , then

diag (cr-l {^(SlJKjLI)}1/» -a - Bn)) -i >/(0, 12).

Proof: Due to the ergodic theorem n~l £?=! ** Æ(4*,2_i). This
expectation is positiv since > pO E{8it X^_ l ) > 0. Using (3.5) and
a Cramer-Wold argument again it is then sufficient to prove

(3.7)

However, with the given assumption on {Sit }, we have
E(BitetXt-i | =* 0 and Billingsley's (1961 a) stationary martingale
central limit theorem yields the conclusion.

Compared to Theorem 2.2 it should be noted that the assumption
E(e*) < oo is no longer needed. On the other hand we have assumed
that {Sit } is only depending on {Ti} and not on {et}. Since

it is seen from the above proof that the independence of {6it } on {et} may
be replaced by the weaker assumtion

(3.9)

oo a—l
*« = « + £(II*«-y)«*-.

*=1 j=o

£««crl{*(^i)}-,/,n-V»£fc«lXi_i -i M(o,J2a*).

E(6ii etXi. l | Jt-i) = E [8itXt. x E{et \ Jtl x V ?°) | a=" 0, (3.8)

E{(Sit - S*)* | Tt-i} a= 0
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It seems plausible, due to symmetry, that this assumption will hold for a
number of shift point estimation methods.

Using the ergodic theorem we have under the conditions of Theorem 3.1

(3.10)

as n tends to infinity. However, our estimates will in general be biased,
i.e. E{Bni) does not tend to zero. To analyse this situation we assume in
addition to ergodicity that {ot } is a Markov chain with transition matrix
Q = {%'} > where q{j = P{st+i = a.j \ot = a,). The expected lenght of each
visit in state iis(l - qu)~ l . Further, due to symmetry of the distribution
(3.1), the expected number of terms of mismatch pr shiftpoint contributing
to the term ££«5-tX£_i in the expression for Bni in (3.5); i.e. E{ number
of terms pr shiftpoint for which the true state is j , whereas the estimated
state is i}, is given by £* kpk Since {Xt } is stationary it follows from (3.5)
that in the long run the bias term for at- will be approximated by

M

(«y-*.•)]£ fø* (i-ø«) (3.11)

It is seen that if a{ > aj , the bias term for at- is negativ, while the opposite
is true if a,- < ay. This means that the estimated values will be closer than
the true ones, but the bias decreases as the two values approach each other,
so there is still a good possibility of distinguishing between them.

4 Simulation

Our results are asymptotic and it is reasonable to check them by simula
tions. This was done by generating a two-state ergodic Markov chain with
a symmetric transition matrix Q = for the parameter process {9t}.
This was done both in the case where {6it} is known, and where it is un
known with an estimation error governed by the distribution in (3.1) with
M varying between 1 and 3. In each case the series {et} was taken to be
normally distributed random variables with zero mean and variance one.
The process {et} was generated by the random number generator NAG,
and for each model 500 replicas of {Xt } were generated with sample size
varying from 250 to 4000.

"» n 0.3. ,-»
a{ -a{ - Bni -+ 0

Jb=l
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Typical normal plots illustrating how the distribution approches nor
mality is shown in Fig.l for the case of ax = 0.9 and a 2 = -0.3 in (2.2),
po = 0.5 and p\ = 0.25, in (3.1), and with transition matrix given by
qu = 922 = 0.95.

Bias and standard errors of the estimates are given in Tables 1-3. In
Table 1, {Sit } is known; i.e. p 0 =1 in (3.1), in Table 2p0 = 0.5 and
Pi = 0.25 ,and in Table 3 various probability distributions with a fixed
sample size of 1500 have been tried. Some of the examples of Table 3 are
clearly very unreal, but they have been inchided to illustrate the formula
in extreme situations with large skewness.

The correspondence between the observed simulated biases and those
obtained using formula (3.11) is seen to be quite good in the case of small
bias. There are larger disagreements for cases of large skewness. This
is really not surprising since then there is a high percentage for which
Ti+i < Ti (in fact over 10% for the last example of Table 3). Since such
shift points are removed in our estimation procedure, there will be a sizable
portion of the estimated segments for each state which in fact consists of
a mixture of the two states, and this will create an additional bias where
the estimated coefficients are drawn against each other in the situation
considered by us.

In Tyssedal and Tjøstheim (1988) is given an asymptotic expression for
the standard error of a,- , i=1,...,k , in the stationary Markov chain case
where {6it } is known:

varfa) ~ (titt,-)- 1 [(1 - a]) + E{{S^X - feJXJLj/Ættotj] (4.1)

where tt,- is the stationary probability of state i. In the two-state case
n* =(1 — 9yy)(2 —E» Qu)' 1 , and wi = tt2 =\if gn = q2 2. It is also shown
in Tyssedal and Tjøstheim (1988) that for a slowly varying chain {$t }, i.e.
qa — 1 small, approximately

var(ai) « [nwi) 1 (1 -a?), (4.2)

and this is the formula used to obtain theoretical standard errors in Table
1, where qa is 0.9 or 0.95. It is seen that there is a very good correspon
dence for the low values of a,-, wheras the theoretical formula tends to
underestimate the error for the large values of a,-.
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Strictly speaking the above derivations from Tyssedal and Tjøstheim
(1988) only refers to the case of a known {Sa}, but using Tables 2 and 3 it
was found that it continues to hold to quite a good approximation in the
case of unknown.

Finally it should be noted that a real data example concerning stock
market data was given in Tyssedal and Tjøstheim (1988), whereas applica
tions to oil well measurements were considered in Karlsen and Tjøstheim
(1988). In those publications explicit methods for detecting shift points are
given as well.
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Figure captions

Figure 1: Normal plots of estimated values for the parameter ai = 0.9
with sample size a):250, b):500, c):1500. The state indicator process {Sit } is
unknown with p 0 = 0.5 and px = 0.25 in (3.1). The normal plots are made
by the program BMDP-PSD (Dixon W.J. et.al. (1983): BMDP Statistical
Software). The estimated parameters åi are plotted along the horizontal
axis and the normal scores Y along the vertical axis.
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Table captions

Tab le JL: Simulated and theoretical values for the parameter estimates
when {Sa} is known.

Table 2: Simulated and theoretical values for the parameter estimates when
{6it } is unknown with p 0 = 0.5 and px = 0.25 in (3.1).

Table 3: Simulated and theoretical values for the parameter estimates when
{Sit } is unknown with various probability distributions in (3.1).
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Table 1

Sample Mean value Standard error
Parameters size qi{ Theor. Simulated Theor. Simulated

0.9 250 0.95 0.9 0.879 0.039 0.056
-0.3 -0.3 -0.298 0.085 0.094

0.9 500 0.95 0.9 0.892 0.028 0.036
-0.3 -0.3 -0.296 0.060 0.065

0.9 1500 0.95 0.9 0.897 0.016 0.022
-0.3 -0.3 -0.299 0.035 0.036

0.9 1000 0.90 0.9 0.894 0.019 0.031
-0.3 -0.3 -0.297 0.043 0.047

0.9 1500 0.90 0.9 0.897 0.016 0.025
-0.3 -0.3 -0.300 0.035 0.036

0.9 4000 0.90 0.9 0.898 0.009 0.016
-0.3 -0.3 -0.300 0.021 0.022

0.8 1500 0.95 0.8 0.798 0.022 0.025
0-4 0.4 0.399 0.033 0.036

0.8 1500 0.90 0.8 0.799 0.022 0.027
0.4 0.4 0.397 0.033 0.038
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Table 2

Sample Mean value Standard error
Parameters size ga Theor. Simulated Simulated

0.9 250 0.95 0.885 0.867 0.060
-0.3 -0.285 -0.283 0.096

0.9 500 0.95 0.885 0.882 0.038
-0.3 -0.285 -0.280 0.067

0.9 1500 0.95 0.885 0.887 0.025
-0.3 -0.285 -0.281 0.036

0.9 1000 0.90 0.87 0.870 0.036
-0.3 -0.27 -0.260 0.051

0.9 1500 0.90 0.87 0.873 0.027
-0.3 -0.27 -0.265 0.036

0.9 4000 0.90 0.87 0.875 0.018
-0.3 -0.27 -0.266 0.022

0.8 1500 0.95 0.795 0.797 0.025
0.4 0.405 0.402 0.036

0.8 1500 0.90 0.79 0.793 0.027
0.4 0.41 0.406 0.036
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Table 3

Sample Mean value Standard error
Parameters size qa Theor. Simulated Simulated

Po = 0.02 pi = 0.49

0.9
-0.3

1500 0.90 0.84 0.852 0.029
0.038-0.24 -0.237

0.9
-0.9

1500 0.90 0.81 0.801 0.038
0.038-0.81 -0.803

Po = 0.4 pi = 0.2 p 2 = 0.1

0.9

-0.3
1500 0.95 0.876 0.881 0.024

0.044-0.276 -0.248

0.9

-0.9
1500 0.95 0.864 0.849 0.033

0.031-0.864 -0.852

Po = 0 pi = 0.2 p 2 = 0.3

0.9

-0.9
1500 0.95 0.828 0.799 0.041

0.046-0.828 -0.795

Po = 0 pi = 0 p 2 = 0.1 p 3 - 0.4

0.9

-0.9
1500 0.95 0.774 0.701 0.064

0.066-0.774 -0.701










