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Abstract

In the present paper we extend a recursive algorithm developed
by Vernic (1999) for compound distributions with bivariate counting
distribution and univariate severity distributions to more general mul
tivariate counting distributions.

1 Introduction

lA. Panjer (1981) described a procedure for recursive evaluation of a com
pound distribution when the counting distribution belongs to a certain class.
Vernic (1999) developed a bivariate version of this recursion, assuming that
the counting distribution is bivariate and the severity distributions univa
riate. In the present paper we discuss a generalisation of the result of Vernic
to a situation with ra-variate counting distribution and univariate severity
distributions. As special cases we obtain the recursion of Panjer in the univa
riate case (m = 1) and the recursion of Vernic in the bivariate case (ra = 2).

The recursions of Panjer and Vernic are briefly recapitulated in Sections
2 and 3 respectively, and the multivariate extension is introduced in Section
4. In Section 5 we look at some examples, and, finally, in Section 6 we briefly
indicate some possible extensions of the theory.

18. In the recursions that we study in the present paper, the distribu
tions are expressed through their probability functions. For simplicity we
shall therefore normally mean the probability function when referring to a
distribution.

We make the convention that a summation over an empty set is equal to
zero and multiplication over an empty set is equal to one.
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2 The recursion of Panjer
In the univariate case, a compound distribution is the distribution of the
sum of independent and identically distributed random variables where the
number of terms is itself a random variable assumed to be independent of
the terms. We shall assume that the terms are distributed on the positive
integers. Let p be the distribution of the number of terms (the counting
distribution), / the distribution of the terms (the severity distribution), and
g the compound distribution. Then g = (n) f™- As /is a confined
to the positive integers, we must have fn* (x) — 0 for all integers n> x, and
thus

in particular we have g (0) = p (0).
If p satisfies the recursion

This recursion was described by Panjer (1981).

3 The recursion of Vernic

When extending the concept of compound distributions to the multivariate
case, one can go in two directions:

1. Let the severities by independent and identically distributed random
veetors.

2. Let the counting distribution be multivariate and the severities one
dimensional; we consider the distribution of, say, m random variables
with compound distributions whose counting variables are dependent
whereas the severities are mutually independent and independent of
the counting variables.

x
<?(*) = £?(»)/"*(*); (1 = 0,1,2,...)

n=o

p(n)= U + -Jp(n-1), (n = 152,...)l 5 2,...)

then
x

g{x) = Ys(a + bl) f &) 9{x ~V)  (x = 1,2,...)y=l
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The two approaches can be combined by letting the severities in Case 2
be random vectors.

For Case 1 recursions have been studied by Sundt (1999); for Case 2 by
Hesselager (1996) and Vernic (1999) in the bivariate case.

In Case 2 the compound distribution is given by

(1)

When assnming that the severity distributions are restricted to the positive
integers, like in the univariate case we obtain that the infinite summations
become finite when we insert an argument in g:

Let us turn to the bivariate case. Vernic (1999) assumed that

(2)

when at least one of ni and n 2 are positive, with

OO OO 771
9= Y 2    Yl p(n^--^nm)Ylf^*-m=o n.m=o t=i

X\ xm tn
g(x1 ,...,xm) = Yl'" Yl p(ri i>---> nm)H/r*ocO;Tll=o Tlm=o i—l

(xi,...,xm = 0,1,2...)

in particular we have g (0,..., 0) = p (0,..., 0).

p(nu n2 ) = ip 12 (ni,n2)p{nl -1,n2 - 1) + ip 1 (nl} n2 )p(nl - 1,n2 ) +
2 {n\,n2)p(nu n2 - 1) C

a 0 +—+ — 4- (ni, ra2 = 1,2,...)
ri! n 2 nin2

0 (otherwise)

&o + — (ni,n2 = 1,2,...)
ni

rfo H (7li =1,2, . . . 712 =U)
ni

0 (ni =0; n 2 = 1,2,...)

coH (ni, n 2 = 1,2,...)n 2

Wni ' n2)= e 0 + K = o;n2 = 1,2,...)n 2
l 0, (m = 1,2,...;n2 = 0)
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and showed that then

(3)(2/2;a?i, x 2) /2 (2/2) 0 (ffi, x 2 - 2/2)

when at least one of X\ and x 2 are positive, with

getting rather messy, and unfortunately it will get even worse when extending
the theory to a more general multivariate case. We shall therefore abstain
from writing out a general theory in full and rather give a rough outline of
what can be done.

4 General results

4A. When considering extension of the Vernic recursions from the bivariate
case to the m-variate case, it will be convenient to use some vector notation.
We shall denote anmxl column vector by a bold-face letter and its elements
by the corresponding italic with the number of the element as subscript;
subscript • denotes the sum of the elements, e.g. x = {x\ y . .. ,xm) and
x. = YllLi x%. By y<x we shall mean that 2/i <X{ for i = 1,..., m, and

Xi X2
g(xi,x2 ) = Yl h (yi)h (2/2) 9(xi -yux2 -y2 ) +

2/I=l y2=l

Yl Vi fi (yi) 9 {xi - 2/1, x 2) +
2/I=l

£
2/2 = 1

( , 2/i , 2/12/2 / 1 T 0 • io\
a 0 +ai ho2- + 0,12 (Vi = 1,...,i»; = 1,2,...; z = 1,2)

Vi 2 (2/i. 2/25 = <
[ 0 (otherwise)

f 60 + 6i— (2/1 = I, ••,£*; xi,x2 = 1,2,...)

4 + 4i!i (2/l = 1,... )X1 ; Xl = 1, 2 ,...;x2 =0)
X!

, 0 (otherwise)

co 4- c2 — (l/i = 1,..., Xi\ Xi = 1,2,...; i - 1,2)

2)= eo+£2 y 2 (j,l = 1i ... )X1 . X1=0; 52 = 1,2,...)X2
fc 0. (otherwise)

Some special cases are studied by Hesselager (1996).
We see that already in the bivariate case the formulae and notation start
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by y < x that y < x with By we shall meaii the vector whose
ijth element is equal to one for j = 1,..., h and all other elements are equal
to zero. We also introduce the vector 0 where all elements are equal to zero.

It is tacitly assumed that all vectors introduced have integer-valued ele
ments.

48. Let N be an ra x 1 vector of non-negative integer-valued random
variables. We introduce positive, integer-valued random variables Yij (i =
1,..., ra; j = 1,2,...), assumed to be independent of N and mutually in
dependent, and for fixed i identically distributed with common distribution
fi. Let p denote the distribution of N. We introduce the random vector

X = (Xi, ..., Xm)' with Xi = YjjLi Yij for t = 1,..., m. Then the distribu
tion of X is the compound distribution g given by (1).

4C. When trying to extend (2) and (3) to an ra-variate situation, it is
natural to look for pairs of functions (V,tl ...th >^il ...t fc ) sucn tnat

m

p(n) - (4)

Like in the Vernic recursion, we would normally have that for i G {1,..., ra} ~
{i1... ih } (n) and <piv .Ah (yi,..., Vh\ x) depend on m and x» respectively
only to the extent of whether they are equal to zero or not.

The following lemma describes the relation we need between a ip and the
corresponding ip.

Lemma 1. If for different integers tj,..., ih € {!,..., ra}

(6)

J 2 ]L *i..4(n)Hn-e11 ..4) (n>o)h=l l<ii<-"<i/l <m

<?(*) =
m h xia h

Yl Yl HYI w* fa> •• •' x) 9(x - Ei=i w,) n h fø)  
/i=l l<ii<--<t/l <m s=l ys =l ,7=l

(x > 0) (5)

E v (YiIU ... ,Yihl ;x) f] (i2 Yv = *.) = V>(n)

for all x, n > 0 such that Y[™=i /T* fa) > °> then
m

VlJl]jf'W =
n>o i=l

h xis h
Y.YI v fø' •• •' y*> x) 9(x - Ej-i n A fe) •(>x °)«=1 l/s=l j=l
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Proof. We extend the set {ti, ... ,t/J to a permutation {zi
{!,..., h}. For all x > 0 we have

...,im} ©f

Q.E.D

In the univariate case Lemma 1 is closely related to Theorem 2 in Sundt
& Jewell (1981).

It is clear that if the pairs (</?i, )• • •» (Pwi VO satisfy the conditions
of Lemma 1, then (53JLi *Wim £»Li CviPv) a^so satisfies the conditions of
Lemma 1 for all constants Ci,..., ev

As the severities are positive, X{ — 0 if and only if Ni = 0. This implies
that if the pairs (<p1} x ) and (<^2 , satisfy the conditions of Lemma 1, then
these conditions are also satisfied by the pair (cp, ip) given by

We have already seen one application of such a construction in the Vernic
recursion, where the coefficients were allowed to depend on whether some of
the variables were equal to zero.

We are now ready to prove our main theorem.

m
P (n-e,,,Jl]rW =n>o i=l

h / nij \"I m

n>o L i=l \r=l / J i=l

J^p(n-ei1 ...*fc )^s^v»(yi,... l yfc ;x) x
n>o s=l j/s =l

Vj=l / j=h+l
h xia / h \

n>o \j=l / j=h+l
h Xia h

SZSZ føl ' •• •' x) #(x ~ Sj=i 2/jeii) 11 4 tø •

v(ih u„x) = / (xi = 1,2,...)

(nj = 1,2,...)
in) -\^2 (n). (n,-0)
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Theorem 1. If there exist pairs of functions tøix...ih * *Pii..Ah ) (4) holds
and each pair satisfies (6) for all x, n> 0 such that IJSi /T** (xi) >0> i/ien
(5) holds.

Proof. From Lemma 1 we obtain that for all x > 0

Q.E.D.

Our next theorem shows a way to construct additional recursions for g
if there are more than one set of recursions that satisfy the conditions of
Theorem 1.

#ien (5) is satisfied with

y*;x),

where the weight functions Cy are chosen such that E«=i °v (x) = 1 for
x> 0.

Proof. By assumption we have

771

3 (x) = X>(n);Q/r(z.) =
n>o *=1

m m

EE E vv,>)p(n- eil ..,jn/r(*.)
n>o h=l \<i\<-<ih <m i=l

tti m

E E J2^...ih^)p(^-^...ih )Ufr"(xi)
h=l l<ii<—<ih <mn>o i=l

*=1

Tn h Xis h

Y Y YY tø> •• •' v* x) 9(x - Ej-i n A fe)
/i=l l<ii<—<th <m s=l i/s=l j=l

Theorem 2. If for v = 1,... ,tu (5) is satisfied urith

W.** = Vii...ih > (1 <ti<• • • < «fc <m;/i = 1,..., m)

w
(yi. • • •» y*; x) = Y, * W fø

(yj = 1,..., Xi.; j = 1,..., h; I<i<•  <x ih < m; h = 1,..., ra; x> 0)

S(*) =
m h %ia h
Y Y YY Vh ] .iH (yi. •• •. vh\ x) 9(x - Ej-i 26-%) Il A fe)h=l l<ii<--<i/l <7n s=l ys =l j=l

(x > 0; v = 1,...,10)
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and the theorem follows by multiplication by Cy (x) and summation over
v. Q.E.D.

In Section 5 we shall consider an application of Theorem 2.
The condition (6) in Lemma 1 is satisfied by the pairs

and consequently by

(7)

(8)

Like in the Vernic recursion the coefficients could depend on whether X{ =
rij = 0 for some z's; in particular this should be done to avoid division by
zero. To give a general expression for (5) based on these functions would
be notationally rather messy, and we shall therefore abstain from that and
rather suggest that one develops the formulae in special cases.

In the univariate case, (7) and (8) reduce to

From Theorem 3 in Sundt & Jewell (1981) follows that these are the only
(V>, for which (6) is satisfied for any possible choice of severity distribu
tion. The present author believes that also in the multivariate case (7) and
(8) give the only (?/>,¥>)'s that satisfy the condition (6) of Lemma 1 for any
possible choice of severity distributions.

5 Examples

SA. The following model is discussed by Hesselager (1996) in the bivariate
case. We assume that the distribution p. of N. satisfies the Panjer recursion

Q 1
V?(2/i,...,2/h;x) =U~-; = ™ {q = 0,1,... ,h)

h q

<p{yu ...,yh;x) =a + Yl bin •••*•« II J?"
9=l l<si<-<s9 <h j=l **i

9=l l<«i<-<s,</i llJ=l l'j

y b
(p (y; x) =a + b-; i[j(n)=a +—.

p. (n.) =(a+- J p. (n. - 1), (n. = 1,2,...)
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and that the conditional distribution of N given that N. = n. is the multino
mial distribution

*w-{? (9)

Hence pis the compound distribution p = (n ) ?"* with univariate
counting distribution p. and multivariate severity distribution q\. Such com
pound distributions are discussed by Sundt (1999). From his Theorem 1
follows that for h — 1,..., m and n > 0 we have the recursion

and insertion of (9) gives

Hence

x/i m Xi

9 (x) =b— Y] yhfh (yh ) ø(x - yheh ) + aVwi V/1 (y4 ) g(x - =Xh y/i=i »=i 2/t=i

( a +fe—) a fø*) #(x ~ 2/^)+ a X fø) g (x ~ e*) •

(10)

Formula (10) gives ra recursions for g. We shall now combine these recur
sions by using Theorem 2. Multiplying (10) by Xh/x. and summing over

g(n)-ainsri—l %
We have q = q" * with

(y = e*; i = 1,2,...)
(otherwise)

nhp(n)= {anh + buh ) qx (u)p(n-u),
o<u<n

771

nhp (n) = bwhp (n - eh ) + anh Jj Wip (n - e,).
i=l

When n > we can divide by and we then obtain
771

p (n) = b—p (n - eh ) +a Y] w{p (n - e») =

[a-\ ) whp (n - eh ) + a w{p (n - e*).
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those values of h where Xh > 0, gives

Compared to (10), this recursion has the advantage that it holds for all
x > 0. On the other hand, as it involves more algebraic operations, it would
presumably be more time-consuming.

As a special case of (11) we obtain

This recursion was also given by Sundt (1999).

58. Teicher (1954) discusses a class of multivariate Poisson distributions
that satisfy the recursion

as well as analogous recursions where we divide by rik instead of nm ; k =
1,..., m — 1. In the bivariate case the corresponding compound distributions
are discussed by Hesselager (1996) and Vernic (1999).

6 Extensions

6A. In the univariate case Sundt (1992) gave the following extension to Pan
jer's (1981) recursion.

Theorem 3. Ifp satisfies the recursion

m xh , v
g(x.) = h {a + b—\fh (yh ) g(x - yheh ). (x >0) (11)

h=i yh=i \ x'/

p(n) =(a+ —j whP(n-eh). (n >0)

P (n) = Icp(n - em ) + XI dh-ihP ( n ~ e I•(n > em )
m \ h=l l<ti<...i /l <m-l /

P (n) =sZ(ai + n ) P ~ ' (w = 1,2,...)

then

g (x) = J2g(x-y)ir(ai + (x = 1,2,...)y=l i=l '
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An analogous extension of the theory in Section 4 would mean to allow
the recursion for p to go k steps back. In that connection we would need the
following extension of Lemma 1.

Lemma 2. 1} for different integers i\, ..., ih 6 {1,..., ra} and positive in
tegers ki,...,kh

Theorem 1 can be extended analogously.
The condition (12) in Lemma 2 is in particular satisfied in the two cases

68. Analogous to Sundt's (1999) extension of Panjer's recursion to Case
1 of Section 3, we could extend the results of the present paper to the case
when the severity distributions are multivariate.

6C. In the present paper we have concentrated on recursions for multiva
riate distributions. In practice one will often approximate distributions by
functions that are not necessarily distributions themselves, and thus it can
be of interest to have recursions for more general functions. In the univariate
case some recursions originally developed for distributions have been exten
ded to more general functions by Dhaene &; Sundt (1998) and Sundt, Dhaene,
& De Pril (1998); Dhaene, Willmot, k Sundt (1999) discuss recursions for
some classes of functions related to distributions, in particular cumulative dis
tribution functions. Some multivariate extensions have been given in Sundt
(1998). Analogously, the recursions of the present paper could be extended
to more general functions. However, as the deductions in the present paper
depend heavily on the conditional expectation in (6), which could obviously
not be applied if we leave the realm of distributions, we would then need
other proofs.

" / fei fe/, \ h fnS \ "

. \J=l J=l / i=l \r=l / .

for all x, n> 0 such that IJSLi /P** (x*) >0> enm
£V (n) v (n- EU k*n)II / "* W =n>o z=l
X] ic • • •' 2/h; x) (x " s*-i 2/Jeii) n4r (j/j) •(>x °)

9 ~
y>(yi,...,3to;x) = ™ . (9 = 0,1,...,/?.)
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