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Abstract:

We present a general method of automatic segmentation of a data

trace. The underlying model is that of an autoregressive process with

randora parameters shifting according to a Markov mechanism. The data

trace is segmented according to the shape and scale of its frequency

distribution. The method is applied to 4-track dipmeter measurements

from an unidentified drilling hole in the North Sea, and it seems to

work well when the segmented dipmeter traces are inspected visually.

We also do a preliminary attempt to compare with the core description

and other logs which are available. At least some of the points that

are of interest geologically seem to be determined more accurately

by the segmented dipmeter log than by more standard logs.





1. Introduction.

Segmentation of oil well data is usually based on a number of loga

such as the gamma log, the density log and the RXO and MXL logs.

In addition drilling cores are used if available.

A distinct disadvantage of using these logs is that the vertical

resolution is quite bad (ca. 20 cm), so that it is usually necessary to

use core speeimens if more detailed information is desired. However,

such BpecimenB are expensive to obtain and analyse and, as a rule, are

available only a long time after the drilling.

The dipmeter log has a considerably better vertical resolution than

the other logs. It is based on measuring electric conductivity by passing

several (usually 4 or 8) electrodes down in the drilling hole. On modem

instruments the sampling rate is 4 measurements for each centimeter leading

to a resolution of ca 1 cm. We refer to Knai (1985) for a further descrip

tion of its technical properties.

The dipmeter instrument is primarily constructed to measure dip of

bedding planes and more specifically the structural dip resulting from

tectonic stresses. The high resolution of the dipmeter has lead to

suggestions that it could also provide useful information on the

segmentation of the sedimentary structures. This is not entirely unproble

matic since the dipmeter measures the geological properties of the drilling

hole quite indirectly, and at least on older instruments there has been

trouble with controlling the level of the electric current (the so-called

EMEX shift, see e.g. Knai 1985). This makes the actual level of the

measurements somewhat unsuitable for segmentation purposes, and perhaps

due to such difficulties the literature on segmentation using the dip

meter is quite limited (see Delhomme and Serra 1984 and Kerzner 1983, however)
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A statistical method of segmentation based on the main logs is given in

Berteig et al (1985). See also Bølviken and Helgeland (1986) and Kerzner

(1986).

To be able to exploit the dipmeter measurements in a meaningful way

it seems to us that the main emphasis has to be put on characteristic

features of the frequency and amplitude distribution. In Karlsen and

Tjøstheim (1986) it was proposed that the dipmeter curve could be charac

terized by so-called autoregressive time series models, and that autore

gressive parameters should be used as segmentation parameters. This

approach is motivated by the use of autoregressive representation in other

areas in waveform recognition (e.g. Markel and Gray 1977, Tjøstheim 1981).

The modeling in the dipmeter case is made difficult by nonstationarity in

level, variance as well as in frequency distribution, but the preliminary

results of Karlsen and Tjøstheim (1986) indicated that the autoregressive

parameters may contain useful information for segmentation purposes.

Our earlier study was hampered by the lack of a fully developed

numerical segmentation algorithm pinpoiting exact change points and also

by the absence of core data against which our results could be tested.

In the present paper we present a two-stage algorithm which nominally

gives exact numerical values for the points of structural change, and we

describe in more detail the relationship between autoregressive parameters

and the spectral distribution (Sections 2 and 3). The algorithm is applied

to an unidentified drilling hole in the North Sea for which core descrip

tion as well as other logs exist , and in Section 4 we point out some

common features. The evidence so far does indicate that the dipmeter

trace contains information that is valuable for segmentation,and that the

accuracy for some of the important change points are far better than for
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the other logs. But it is also clear that it has to be used with care,

and that to obtain definite conclusions geologists and petrophysisists

must be involved in the interpretation, and more extensive data sets must

be examined.

For completeness and ease of reference we include in this section

a short description of autoregressive model fitting to dipmeter data.

Mucb of this material is taken from Karlsen and Tjøstheim (1986).

From a statistical modelling point of view the dipmeter trace will

be considered to be a time series {X , tCl} , where X denotes the

dipmeter reading at the depth t , or the series obtained by forming

differences between consecutive measurements, and where I is the obser

vation interval. It was observed in Karlsen and Tjøstheim (1986) that

in general nonstationary models are needed, but that it is reasonable to

assume that the dipmeter traces are locally stationary in the sense that

there are local segments where a stationarity assumption holds approximately.

The dipmeter series {X ,t€ 1} is fitted to an autoregressive

model; i.e, it is assumed that {X } satisfies a difference equation

(2.1)

where y  E(X ) is the expectation of X_ , where a,,...,a are thet t  * p

autoregressive coefficients, and where {e } is a white noise residual

and 5  0 otherwise. Furthermore, the letter p is used to denoteL S

2. Autoregressive model fitting to dipmeter data.

Vv-«l at_ 1 -!0 •p (xt-P -»,) =e t •

process with E(e )- 0 and E(e e ) = 026o 2 6 with 6 = 1 for t= st t s ts ts
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the order of the series, and we use the abbreviation AR(p) to signify

an autoregressive series of order p .

Alternatively (2.1) can be written

(2.

P

where c =u - £ a.u . It is seen from (2.2) that the AR assumption
i=l

implies that X can be written as a linear combination of p previous

X -values and a residual term e . The AF model is one of the main

time series models, and it is described in considerable detail in numerous

time series books (e.g. Box and Jenkins 1970).

Strictly speaking the dipmeter data are not time series data, and in

a sense it would be more natural with a bilateral model for {X } avoiding

the unilateral distinction between past and present inherent in any time

series model, Thus one could imagiiie a model of the form

(2.

so that the dipmeter reading at depth t depends on the neighboring

readings above and below t . However, such models are more difficult

to analyse (Whittle 1954). For example least squares estimates are

not consistent. Moreover, it can be shown (Whittle 1954) that bilateral

schemes have an equivalent mathematical representation in terms of a one

sided autoregressive model. For reasons of mathematical and statistical

convenience we will therefore use the unilateral model (2.1) in the

following.

appearing in (2.1) to characterize the dipmeter trace. These parameters

X = c + a,X . + ••• +a X +e ,t i t-1 p t-p t '

P q

t £i i t-i .* i t+i t '

The key idea is to use the parameters y,a ~..,a and a 21 P
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have certain optimality properties in a pattern recognition context

although it is difficult to give them a concrete physical interpretation.

Actually they depend on the sampling rate used. However, the parameters

do characterize the autocorrelations or equivalently the spectral pro-

perties of {X } . In fact it is well known (Box and Jenkins 1970,p,56)

that if {X } is an AR(p) process, then the spectral density f(X)t

of {X } is completely determined once the parameters a.,*..,a and

a 2 are given, since

, (2

where 6 is the sampling interval. Therefore characterizing {X }

by its autoregressive parameters amounts to a characterization of {X }

by means of its power spectral density. Moreover, since many time

series can be approximated by AR(p) processes, these arguments hold

approximately for a wider class of time series.

With the exception of Karlsen and Tjøstheim (1986) as far as we

know autoregressive parameters have not been used before as identifiers

for dipmeter data, although they have been used on a wide variety of

other data such as brain waves, speech data and seismic traces.

The AR raodel given by (2.1) is time invariant, and it is stationary

under the added constraint that the roots of the characteristic polynomial

P ,
A(z)  zP - ][ a. zP are inside the unit circle. However, as explained

i» 1 X

in Karlsen and Tjøstheim (1986) it is clear from plots of the dipmeter

traces that these data are only segmentwise stationary. This means that

separate AR models must be fitted to each segment. The various segments

2a2
f (X) = - 22

| 1 - l a exp(inX/6)| 2
n=l n
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can be pieced together in a timevarying AR model defined by

(2

where U «E(Xj , and where E(ej=o and E(e e) = 6 . Heret t t tSUto

u , a.(t) t .,.,a (t) and OT? are supposed to be constant locally
rt * p t

within eacb stationary segment.

As indicated in Karlsen and Tjøstheim (1986) an alternative to

letting tbe parameters be step functions in time (or rather depth) is to

let them be random processes. This results in so-called doubly stochastic

processes described in Tjøstheim (1986). This apparent increase in model

complexity may in fact have some simplifying effects statistically. A

possibility is to let yfc , a 1 (t),...,a (t) and a 2 be a vector

Markov chain with a finite state space, and where each state corresponds

to a particular geological or petrophysical structure, which can be

repeated along the borehole in a stochastic fashion according to the

transition probabilities governing the Markov chain. This statistical

model has been described in some detail by Tyssedal and Tjøstheim (1985),

where it has been applied to economic data. In many ways a more natural

application would be to dipmeter data since the segmentation mechanism

inherent in the model seems more plausible in this case.

In practice the modelling via (2.5) means that a model of type (2.1)

has to be fitted to each dipmeter segment. In Karlsen and Tjøstheim

(1986) it was found that a low order p (p = 2,3) gives quite a good

fit to the data. Once p is determined, estimates of the parameters

If a segment consists of data points X1f ...,X , then least squares

aP (t) (x =et •

U. a .....a and a 2 can be determined for example by least squares
r  x' p
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estimates for y , a.,...,a for this segment can be obtained by minimizing

2

ap (Xt-p-^) (2.6)

This leads to the following equations for the least squares estimates
4* J*. *»

and

(2.8)

The parameter o 2 can then be estimated as

(2.9)

Alternative estimates are maximum likelihood, Burg type and Yule-

Walker estimates. In fact we have used Burg type estimates. They are

similar to least squares estimates, but they are stable, i.e. the roots

of the estimated characteristic polynomial are inside the unit circle,

and they are quite fast. We refer to Karlsen and Tjøstheim (1986),

where also a way of measuring the actual fit of an estimated AR model

is described.

n

F(y,a x> ...,a ) = l (x -p-a (X -y)
F t=p+l

v i a 1 1•••» a0 •

n P

l[X -u- I£. (Xt_.-y)](X -y) = 0 j-1 p . (2.7)
t=p+l i=l J

t=p+l I=l

i n r p ~ ~ i 2
° 2 -—W I (X -5)- la. (X, .-y)

n-p-1 t=p +l L v t i t-i H'J
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3. The segmentation algorithm.

We assume that the dipmeter trace can be segmented into N segments

In segment j the observations {XJ } follow an AR(p) model with the

order p not depending on j , so that

(3

and O 2 to each segment j

This corresponds to (2.5) with y , a,(t),...,a (t) and O 2 locally
ir t J- p t

constant within each segment, and it implies that the geological structure

is segmentwise homogeneous. We are currently working on models allowing

continuous transitions as well (Karlsen 1986).

In Karlsen and Tjøstheim (1986) models as in (3.1) were fitted quite

crudely by computing a running estimate of a. (or rather a.(t) for

selected time points) and approximate division points were indicated

through a graphical analysis. No attempts were made to estimate the

values of the coefficients within each segment or to obtain more accurate

estiraates of the transition points. Such estimates are clearly crucial

for possible geological or petrophysical applications, and they will be

provided in the present paper. The estimates are obtained by modifying

an algorithm in Tyssedal and Tjøstheim (1985). It will be assumed that

y, = 0 within each segment. In fact as mentioned in Karlsen and

Tjøstheim (1986) it may pay to remove y. by differencing of the original

series. In this way at least parts of the EMEX shift will be eliminated

and therefore in the following all of our data will be assumed to be

differenced.

XJ-U. = ii i a{(xj_.-u.) + ej J-1.....1

• 2
with E{ (e*:) }= O 2 for j = 1,... ,N , and where we fit a separate AR

model with parameters y. , a^,...,aJ
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3.1. The model.

We introduce the Markov model treated in Tjøstheim (1986) for the

AR coefficients, but we stress that the algorithm as such is not dependent

on the Markov assumption. It works equally well for AR models where

a.(t) and O 2 can only take a finite number of values a.. . i = 1,... ,k
i t ji

and a 2. , j  1,,,,, k in a repetitive manner, but the interpretation is

different in the non-Markovian case. Related models are presented in

Telknys (1986), In the doubly stochastic model (Tjøstheim 1986) we

assume that the observations are generated by a stochastic process {X }

given by

(3.

where {9 } = {9 ~...,9 } is a vector Markov chain which is irreduciblet ti tp

and aperiodic and has a finite state space consisting of k states

5,,,,.,5, with each state s. constituting a p-dimensional vector
1 k j

S, B [d, < ,.,,.a. ] . Furthermore, {e } is a sequence of independent
j j 1 JP t

(and generally non-identical distributed) random variables with zero

Alternatively [9 *02 ] could be assumed to be a vector Markov

process with state vectors [s.,o*.] . From the spectral formula (2.4)

it is seen that spectral shape is determined by the autoregressive

coefficients s. = [a.......a. ] . whereas spectral sodle is controlled
J J 1 JP

by the residual variance 02.O 2. . Each vector [5.,0\3 j = 1,... ,kk_ then
JJ J 0

denotesaparticular state with a certain frequency structure and scaling.

The idea is that such a state vector should correspond to a particular

State for the geological/petrophysical properties, and that changes

between Markov states should correspond to geological changes.

p
x = y e . X .+et .*• ti t-1 tI=l

raean and k 0 possible values a*,...,a£ for its variance.
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For algorithmic purposes it is adventageous to treat the processes

{8 } and {e } separately. The main principles will be explained for

the coefficient process {6 }  {0 ~...,0 }. This is assumed to be a

Markov chain,and its transition probability matrix Q= (q..) is given

by

(3

where s.  [a...,...,a. ] and s. = [a.,,...,a. ] are autoregressive
J J ' Jr ir

coefficient vectors corresponding to state i and j , respectively.

It should be noted that for an irreducible and aperiodic Markov chain

with a finite state space there exists a unique vector of stationary

It is convenient to introduce an indicator process {A } indicating

at each time point which state the process {9 } is in. It is defined

by

(3

where

(3

We assume that the autoregressive order p is known in advance.

One way of deterraining p was described in Karlsen and Tjøstheim (1986),

where it was also shown how the fit can be measured afterwards. Our

experience is that p= 2 captures most of the structure of the frequency

distribution after the data series has been differenced.

To start the algorithm we need initial values for k and 51t.,.,ss lt .,.,s

3.2. The algorithm.

~ - P(e t -s.| e t _, -s.) i.j-i,...,k

probabilities tt = ... ,tt ] where ir.=P(o =s.)

A t - [« It .« 2t 6 kt ]

,1 if e -s.
6. -{ t J•* 0 otherwise
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(3.6)

These are obtained by sliding and fitting an ordinary AR(p) mode! to

segments of the data.

To be more precise, assume that data points X 1 ,...,X are given

and consider a data interval of length 2b + 1 centered at t .

Let

coefficients by minimizing v t (b) . Edges can be treated by extra

polation, e.g. by putting å.(t,b) equal to ,b) and

for t«l,,M,b and t = n-b+l,.. ~n , respectively. Moreover, since

it can be computationally burdensome to do this routinely for every t ,

an alternative is to let t move in steps. In fact this is essentially

the approach used in Karlsen and Tjøstheim (1986), where we had b= 30

and used a step length of 40.

The above estimation procedure produces p more or less smooth

curves a.(t,b) , i=1,...,p ; the smoothness depending on the design

parameter b and on the step length. If the model (3.2) is correct,

and if the transition probabilities q.. are not to large for i*j ,

the curves will contain typical levels corresponding to the number of

states and roughly their values (cf. simulation experiments in Tyssedal

and Tjøstheim 1985). Thus one can reasonably expect that quite good

initial values of k and 519...,5,s 19 ...,s, can be determined when the states

are reasonable far apart and do not shift too often, which is also the

case of largest practical interest. It should be borne in mind that

in many ways k is the most important number coming out of the graph

t+b / P \ 2

v (b) =1 U - l a (t,b)X J
c j=t-b V J i=l J J

for t - b+1,b+2,...,n-b , and determine estimates a.(t,b) of the AR

of a.(t,b) , i=1,...,p, since the state vectors s i = ~.. ,a ip ] ,
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i= 1,... ,lc , are reestimated later with a possibility of getting an

improved estima te then.

For I£i £ k and 1 m p , let A = (a..) be the kx p

matrix obtained by lumping the state vectors together. If initial

values of the number of states k and of the entries (a. ) in theim

matrix A are given, then the state indicator process {A } defined

in (3,3) and (3.4) can be estimated by minimizing a local sum of squares

criterion over a window of 2c+ 1 samples, i.e. for each t choose

the state i = i(t) minimizing

(3.7)

[fi.,.,6^,,, • .6. 1 are known, then A=(a. ) can be estimated byIt it kt im

choosing those entries for A which minimizes the global sum of squares

criterion

(3.8)

and we can then go back to (3.7) and reiterate the procedure.

The entire estimation algorithm can be summarized as follows:

1, Find input values of k and A= (a. ) from a plot of a.(t.b) ,im r i ' '

i * 1,... ,p

2, With these input values find an estimate of the state indicator

process {A } = {[6- t ,-..,6. ]} by minimization of (3.7). This

t+C / P x 2 t+C

M c > = I (X. - Ya. X. ) def I e 2..
j=t-c x J m=l J ' j=t-c J

for t =p + 1 +c,...,n-c . Edges can be treated as for v (b) in (3.6)

We can now reestimate A= (a. ) : If k , p and Aim r t

n / P k v 2
i(x - y ya. 6. X 1

t=p x m=l I=l '
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(3.9)

may (Tyssedal and Tjøstheim 1985) appropriately be called. the

separation phase of the algorithm.

3, With this estimate of {A } , reestimate A=(a. ) usine (3.8).t im & '

and if necessary go back to 2.

In Tyssedal and Tjøstheim (1985) the expression (3.7) for R (c)t

was recomputed for each t . This is not necessary since it is easily

shown that for i fixed the following recursion holds:

The implementation of (3.9) leads to a reduction in computer time at

a factor of about 10.

From the final estimate of {A } it is also possible to estimate

the transition probabilities Q=(q..) and the stationary probabilities

7T=(Tf,) as described in Tyssedal and Tjøstheim (1985). Moreover, at

least approximately for slowly varying chains, standard errors of a. im

can be found by using the corresponding formulae for standard AR(p)

processes (Box and Jenkins 1970, p.244) but with n replaced by
n

n 4 " I &4- which is the number of samples for which the process is
1 i-1 Xt

in state i ,

t+l t V t+c+l *•. im t+c+l-m/m=i '

- ( x - 1 - l*• x « \\ t-c-1 L . im t-c-1-m
m—l J
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The algorithm for segmenting the residual våriance (i.e. the scale

of the spectral distribution in (2.4)) has the same structure as for

the autoregressive coefficients. Corresponding to the running estimate

a.(t,b) of the AR coefficient process we get a running estimate ofi

the residual process

(3

and a corresponding estimate of the residual våriance

(3

where 3 2 (b) can be extrapolated at the edges using the same technique

as before.

Based on a plot of a 2 (b) we can pick the number of states k Q *t

and initial values a?,...,a 2 of each state. Then the transition

points or the indicator process {A } for the a 2 - process are estimated

by choosing the state i = i(t) which minimizes the local criterion

(3

where 3 2 (c) is computed from (3.11) and only the last term of (3.12)

is involved in the minimization

As beforewecan reestimate a 2 by minimizing the global sum of

3.3. The algorithm for the residual våriance.

é t (b) =x t - S.(t,b)x t _.

b >-2fH j_ b <b)

S (c) -T (^-o^) 2 =T (^-^(c)) 2j=t-c j=t-c

+ (2c + 1)(c*(c)-a*) 2
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squarea criterion

(3

and again the algorithm can be reiterated as for the coefficient case.

It is of course also possible to couple the two algorithms together

by using step value estimates of the AR coefficients when generating

e (b) and using estimates of the residual variance in the estimation

of a.(t,b) . There is a possibility that this will lead to improved

estimates, and we plan to look into this at a later stage.

3.4. A more accurate determination of a single segmentation point.

Smoothing by using an average of length 2b + 1 as in formula

(3.6) can lead to bias in the determination of change points, particularly

if very large changes are involved from one segment to another. Since

it is especially important to find an accurate value of such sharp

segmentation points, we will outline a procedure for a more precise

determination of a segmentation point when they are treated one at a time

The procedure presupposes that an initial segmentation has been

done according to the methods described in Sections 3.1-3.3. Let

segmentation points established

and as sume that we want a revi sed

i , k = 1,... ,m be the series of

using the method just referred to,

The revised estimate of i, is simply obtained by picking the s

minimizing

k o

estimate of i, .

Let å.(k-l) and a.(k) be the estimates of on the

data strech St < i fe and t < \ +] * respectively.
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(3

If s is less than 10 data points from i , or i , , the segmen

tation point is removed. The estimation is carried through successively

for all division points, and then the whole process can be reiterated if

necessary. In a sense it would also be natural to go back to the pro

cedure of Section 3.2 to reestimate the AR coefficients and then

return to (3.14). However, in certain cases of peaked values for the

parameter estimates over time we have encountered stability problems if

this procedure is followed,and thus it cannot be recommended at present.

Similarly for the residual variance we reestimate a division point

by picking the s minimizing

(3

where a 2 and a. 2 are the estimated values obtained by us ing the
k~l k

method of Section 3.3. Both methods will be illustrated on real data

in the next section.

4. Fitting and segmentation of autoregressive models to dipmeter data

from the North Sea.

In this section we undertake the actual fitting of AR models to

dipmeter measurements from an unidentified drilling hole in the North

Sea. Our main data set consists of measurements from a four track

instrument, and a plot of the four data traces for a section of length of

S / P \ 2 \ / P n 2

i (X t - I S.( k -,) V .) + l (x -l a.(k)X t „.)
t=l, < N 1= 1 ' t=S +1 N 1= 1 'k-1

s L 1 J.lV 2 k+l «9
K fel-a 2 J + I fe 2 -snt=l k-1 ' k " 1 t-s t k
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approximately 20 m at a depth of 2500 m is shown in Fig. 1. It is

seen from this figure that there are several coramon features for the

traces, but that especially trace 3 deviates somewhat from the others

visually.

Due to problems with the EMEX shift etc. we have found it tiecessary

(cf. Section 3) to take differences of the data, so that the level of the

measurements itself is not used in the segmentation procedure. (Possibly

differencing can be avoided for the new 8-track instruments.) In the

following {X } will denote the differenced series; i.e. x t = Y t "" Y t -.i

with {Y } being the original measurements.t

Using among other things the diagnostic checking of Karlsen and

Tiøstheim (1986) it was found by a number of experiments that a second

order (p  2 in (2.5)) AR model gives a reasonably good fit. Thus

we represent {X } by

(4

and the dipraeter trace is characterized by the three parameter functions

a (t) , a (t) and a 2 =E(e 2 ) , where these are assumed to be step

functions corresponding to the underlying segmentation. Running estimates

of these quantities are obtained using the formulae (3.6), (3.9) and

(3.10) and are displayed on Figs. 2-4 using an interval length 0.50 m

and a step length of o.lom . These curves depict the variation in the

shape of the frequency distribution (a l (t,b), å 2 (t,b)J and in the

scaling of this distribution (ø*(b)) . Again it is seen that there

are marked similarities, but there are also considerable differences.

When we look at the residual variance plot in Fig. 4 it is seen

V a l (t)X t-1- a 2 (t)X t-2 =e t •
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that there are several coraraon peaks for all four traces. However, there

are also some isolated peaks. The plots of the AR coefficients in

Figs. 2 and 3 display more variation both individually and from trace

to trace. A quick inspection reveals that, with the possible exception

of the stretch of data from 55 - 60m , the similarity from trace to

trace is most prominent in the last section of the data. Especially for

the first 15 meters there seem to be considerable discrepancies.

The core description corresponding to this data section is shown

in Fig. 5 together with the density and gamma log. It should be noted,

however, that the core description is missing between ab. 35 - 45m .

Comparing the curves for in Fig. 2 to the density and gamma

log it is seen that there are signs of a positive correlation in that

high values of a x (t,b) correspond roughly to high values for the gamma

and density log and vice versa. In this context it should be remarked

that Knai (1985) has only found limited evidence for correlation between

these logs and the vaw traces of the dipmeter.

In Fig. 6 the frequency distribution is shown for a trace with a

high and low value for , respectively. It is seen that the

data segment with a high coefficient value contains a larger component of

low frequency energy. This also follows theoretically from the fact

that a time series with a large value for is strongly auto

correlated. Referring back to the correlation with the density log it

means that a dipmeter segment coming from a higher density region tends

to have a proportionally larger part of its energy in the lower frequency

ranges.

We will now look at two data sections in more detail, namely 0-6 ra

and 57.5-70 m , and we will refine the picture given by Figs. 2-4 by

using the segmentation methods of Sections 3.2-3.4.
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4.1. The data segment 0-6 m .

It ia seen from Fig. 6 that the core description presents an

inhomogeneous and quite erratic picture for this data segment. Thus

it cannot really be expected that the four dipmeter traces should all

have the same structure. To illustrate the methods of Section 3we

will start by looking at trace 1 in more detail, and then discuss

coramon features of all four traces, the density log, the gamma log

and the core description.

The first stage in the segmentation methodology, is to determine

initial values. From a look at the plot of and å 2 (t,b)

(cf. Figs. 2 and 3) four different states (levels) were identified and

the initial values shown in the left hand part of Table 1 were used.

Using clustering analysis would give an alternative method of determining

such initial values, and this approach is currently tested.

The initial values were used as starting points for the segmentation

algorithm described in Section 3.2-3.3. The algorithm was used repeatedly

until we got stable values; for trace 1 shown in Table 1 . In

most cases of our use of the algorithm small changes occurred

after the second iteration , but nevertheless on the average

ca. 10 iterations were performed. For trace 1 the segmentation given

in Fig. 7 was the result. In this figure are also shown the actual

values a., of the segmented - coefficient. If we compare the

segmentation to the visual picture of the raw trace,there appear to be

sorae inconsistencies in particular for the Ath, sth, Bth and 9th division

point* This is thought to be due to the smoothing present in the algo

rithm, and to get an improved segmentation the more refined segmentation

of Section 3.4 was tried. The result is given in Fig. 8. Comparing the
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two figures it is seen that there are clear differences, and visually

the last one seems to be the most convincing. All of the doubtful

division points discussed above have been removed or shifted. Moreover,

one level has been eliminated resulting in a considerably simpler picture.

It should be borne in mind that the segmentation of Fig. 8 is only

based on characteristic features of the frequency distribution. Therefore

it is not necessary a fault of the algorithm that the rise in amplitude

at approximately Im, say, is not separated out, because it is primarily

the task of the algorithm segmenting the residual variance to detect

amplitude variations (unless of course these represent frequency changes

as well).

The difference in frequency content as described by the AR

coefficients is quite dramatic for some of the change points, and it is

certainly far beyond any statistical significance limits, since the

Standard errors (cf. Section 3.2) of the estimated AR coefficients

The residual variance 5 2 (t,b) was treated in the same way, and the

final results based on the techniques of Section 3.4 are shown in Fig. 9.

The residual process itself given by (3.9) is displayed on the same plot,

and the segmentation seems quite reasonable. The rise in amplitude at

about 1m is clearly captured by the segmentation, and thus it is

separated out as a pure scaling effect. It is also seen that there are

several other scaling effects which are independent of the frequency

changes of Fig. 8.

The algorithms determine the change points with a nominal accuracy

of Icm , and the points for the AR parameters and the residual

for a certain state i is of the order n. where n. is the number

of observations in this state.
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variance corresponding to Figs. 8 and 9 have been listed in Table 2.

To get an idea about the variation from trace to trace we went

through the same procedure for traces 2- 4 , and the results are given

in Figs. 10- 15. Again the segmentation produced by the algorithm seems

to correspond well to the changes that can be observed visually on the

traces.

Comparing Figs. 8-15 it is seen that the segmentation reveals

considerable differences from one trace to another, and especialiy

trace 3 deviates from the others, which is not very surprising in view

of Fig. 1. This somewhat erratic picture is perhaps what could be

expected, since, as is clear from Fig. 5, the core specimens from this

data section is rather inhomogeneous with quite large variations over

a cross section.

However, there are also some important common features, the main

ones being listed in Table 3. These features should really be correlated

with the core description and the other logs to examine their possible

geological significance. The most dramatic effect on the gamma and

density log is the large fall in magnitude between 3.5 and 4.5 m.

Corresponding to this there is a jump in grain size measured from the

core specimens at approximately 4m. It is interesting to observe that

the main common feature for the frequency segmentation of Figs. 8, 10,

12 and 14 is a strong rise in AR coefficients (resulting in more

energy at lower frequencies; whereas normally a fall in the neutron and

density log seems to correspond to a fall in value of the AR coefficient)

at 4.00, 3.97, 3.94 and 3.92 m, respectively. Assuming that the

discontinuity is horizontal and using conventional standard errors this

gives a value of 3.96±0.02m, and it seems reasonable to identify
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this point with the change in the gamma and density log and the grain size

just described. In fact, we understand that this point also marks the

top of the oil column for this drilling hole, and the segmentation point

is therefore of special significance. The main impact of the segmented

dipmeter log in this case is that it allows us to pinpoint the dis

continuity point much more accurately than tha gamma or density log,

and that this can be done without coring. Actually, virtually the same

accuracy as with coring seems possible.

The most noteworthy common feature of the segmented residual plots

of Figs. 9, 11, 13 and 15 is the spike at 1.61-1.67 , 1.58-1.67 and

1.54- 1,60 m, respectively for traces 1,2 and 4 (while trace 3 has a

spike at 1.86- 1.90 m) . This could possibly correspond to the grain

discontinuity observed at about this location for the cores (cf. Fig. 5 ).

Another common feature is the increase in amplitude (residual variance)

for all traces at 1.05±0.03m. Moreover trace 1 and 2 has a common

descent in amplitude at 2.51 and 2.49 m , and this also corresponds

very closely to a frequency change for these two traces at this location.

It is an interesting task to try to interprete geologically these points

and other major change points occuring more or less separately along

the traces.

4.2. The data segment 57.5-70 m.

A corresponding analysis was done for this data segment. The drilling

cores of Fig. 5 present a more homogeneous picture here, and as can be

seen from Figs. 16-23 this is the case for the segmentation of the

dipmeter traces as well. It is noted that the main features are the
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same although there are many differences in detail. Again, however,

trace 3 differs somewhat from the other traces. The main common

features are tabulated in Table 4.

From this table and from the lower portion of Figs. 16, 18, 20 and

22 we have that there is a general alternation between regions with a

large proportion of the energy at low frequenciefl and regions where the

energy is more evenly distributed. Moreover, the main plateaus and

troughs described by the AR coefficients coincide quite well.

From Figs, 17, 19, 21 and 23 and Table 4 it follows that with the

exception of trace 3 , the segmentation based on the residual variance

has a number of common features, and there is also a high degree of

consistency with the frequency segmentation for this data section with

some of the change points corresponding rather closely for the individual

traces.

Looking at the grain size, density log and gamma log the most dramatic

effect is the change just before 70 m . This point actually marks the

lower end of the oil column. It is also clearly reflected on the dipmeter

log both for the frequency and residual variance segmentation and, in this

case, for all four traces. For the frequency segmentation we get a divi

sion point at 69.73±0.07m, whereas the residual variance yields

69.77 ± 0.07 m, resulting in a combined estimate of 69.75 ±0.05. It

should be noted that this point is fairly close to the end of the analysed

data trace, and therefore this may have some negative effect on the

accuracy.

Another noteworthy fact is that the two main higher frequency

plateaus in the region 60.1-61.7 m and 65.3-66.2 m correspond

roughly to the peaks of the gamma log and the density log and to the
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glimmer content of the cores at these locations. This again.points to

a possible correlation between the gamma and density log and the seg

mented dipmeter log (although this is somewhat contradicted by the

behavior of these logs close to the major division point at 3.96 of

the first data section) with a possibility of determining division points

much more accurately from the dipmeter log.

There are also a number of common features on a smaller scale for

two or more of the traces, but clearly a more detailed geological

analysis is needed to reach more definite conclusion.

5. Summary remarks and further research.

We have presented a general method for segmenting a data trace.

The purpose of the segmentation has been to subdivide the trace into

segments according to the shape and scale of the frequency distribution

The shape has been measured by the AR parameters of a second order

autoregressive model, whereas the scaling is measured by the residual

variance. The method seems to work well when the segmentation obtained

is inspected visually for a number of raw traces. Also results from

simulations (Tyssedal 1985 and Johnsen et al. 1987) seem promising. A

simple simulation example is presented in Fig. 24 a) and b) showing

a good correspondence between true and estimated picture.

Thus if the dipmeter trace really contains significant geological

information which is reflected in the frequency or scaling properties

of the curve, there should be a good possibility of exploiting this to

get more accurate information on structural shift points, than is

feasibly using the other logs which have a much poorer vertical

resolution. We have given examples of at least two such points, which
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appear to be geologically significant, and which can be more accurately

determined by the dipmeter log than by the other logs, but more work

remains to determine the real potential of our methods.

Further work should be concentrated on an attempt to correlate

segmented parameter values more directly against geological structure.

In such an analyste it will probably be necessary to use cluster and

discrimination analysis. Cluster analysis could also provide input

values to the segmentation algorithm, and it seems to work fairly well

(Johnsen et al. 1987) in this respect. Moreover, the possibility of

using recently developed image analysis techniques and robust auto

regressive estimation methods (Kiinsch 1984) should also be explored.

Finally, the new 8-track instruments may offer possibilities for using

the level of the measurement in a useful way; i.e. it may not be

necessary to eliminate this by differencing as for the 4-track instrument
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Table captions.

Table 1 : Initial values and values after 4 and 6 iterations for the

first order AR coefficient,and initial values and values

after 4, 8 and 10 iterations for the residual variance using

the segmentation algorithm of Section 3.3 on the data

section 0- 6 m for trace 1.

Table 2 : Numerical values of change points for the residual variance

and the AR coefficients for trace 1 corresponding to

Figs. 8 and 9.

Table 3 : Some common features for the four data traces for the data

section 0- 6 m .

Table 4 : Some common features for the four data traces for the data

section 57.5 -70 m .
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Tab le 1

AR coefficients

Level Init.v. Iter.4 Iter.6

1.4 1.338 1.337A

1,1 1.081 1.080B

0.5 0.175 0.180c

0.0 -0.126 -0.126D

AR coefficients

Change pointsLevel

0.0 - 1.61

1.62- 1.69

1.70-2.53

2.54-4.00

4.00-4.77

4.77-5.23

5.24-6.00

A

B

A

C

A

C

A

Residual variance

Level Init.v. Iter.4 Iter.B Iter.lo

9.70 9.70 9.70

4.42 4.51 4.51

3.47 3.58 3,58

1.75 1.76 1.76

1.00 1.02 1.02

10.0A

5.0B

2.5C

1.5D

0.8

Residual variance

Change points

0.0 - 1.01

1.01 - 1.61

1.61 - 1.67

1.67-2.39

2.39-2.51

2.51 - 2.57

2.57-3.68

3.69-4.21

4.22-6.00
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Trace

1

2

3

4

Trace

1

2

3

4

Trace

1

2

3

4

Tab 1 e 3

AR coefficients Residual variance

Common changepoints Trace Common changepoints

1.58 2.51 4.00 1 1.01 1.61 1.67 2.51

1.12 1.58 1.67 2.491.70 2.53 3.97 2

AR coefficients - common changepoints

Residual variance - common changepoints

61.61 61.80 65.29 66.21 69.84

66.29 69.7761.67 61.98 65.40

61.55 61.62 69.82

61.80 65.27 66.22 69.67

59.30 60.15 61.84 64.57 65.34 66.19 69.70

59.11 60.07 61.84 64.50 65.26 66.22 69.78

58.99 60.36 61.61 64.54 65.27 66.10 69.82

59.27 60.09 61.85 64.31 65.30 66.16 69.66
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Figure captions.

Figure 1 : A data section of 70m from a 4-track dipmeter log from an

unidentified drilling hole in the North Sea.

Figure 2 : Running estimates a x (t,b) for the first order AR
coefficient for all four traces.

Figure 3 : Running estimates a 2 (t,b) for the second order AR
coefficient for all four traces.

Figure 4 ; Running estimates a 2 (t,b) for the residual variance for
all four traces.

Figure 5 ; Core description and density and gamma log.

Figure 6 : Spectral plots for a model with a high and a low set of

values for the AR coefficients. In the upper part the

Figure 7 : Segmentation for the data section 0- 6 m based on the two

AR coefficients a and a 2 for trace 1 usihg the

method of Section 3.3. Only the segmented values of

are shown in the lower half of the figure. The segmentation

points are inserted on a plot of the differenced raw data

trace in the upper part of the figure.

Figure 8 : Segmentation for the data section 0- 6 m based on the two

AR coefficients a x and a 2 for trace 1 combining the

methods of Sections 3.3 and 3.4. Only the values of a x
are shown in the lower half of the figure. The segmentation

points are inserted on a plot of the differenced raw data

trace in the upper part of the figure.

Figure 9 : Segmentation for the data section 0-6 m based on the

residual variance O 2 for trace 1 combining the methods

of Sections 3.3 and 3.4. The segmented values of a 2 are

shown in the lower half of the figure. The segmentation points

are inserted on a plot of the residual process as estimated

from (3.9) in the upper part of the figure.

raodel X »1.4 X . - 0.65 X .+ e and in the lower part

X t = 0.5X t _, + 0.15X t _ 2 + e t .
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Figure 10 : Same as figure 8 for trace 2 .

Figure 11 : Same as figure 9 for trace 2 .

Figure 12 ; Same as figure 8 for trace 3 .

Figure 13 : Same as figure 9 for trace 3 .

Figure 14 : Same as figure 8 for trace 4

Figure 15 : Same as figure 9 for trace 4 .

Figure 16; Segmentation for the data section 57.5- 70m based on the

two AR coefficients a ± and a 2 for trace 1 combining

the methods of Sections 3.3 and 3.4. Only the values of a 1

are shown in the lower half of the figure. The segmentation

points are inserted on a plot of the differenced raw data

trace in the upper part of the figure.

Figure 17 : Segmentation for the data section 57.5 - 60m based on the

residual variance a 2 for trace 1 combining the methods

of Sections 3.3 and 3.4. The segmented values of o 2 are

shown in the lower half of the figure. The segmentation

points are inserted on a plot of the residual process as

estimated from (3.9) in the upper part of the figure.

Figure 18 : Same as figure 16 for trace 2

Figure 19 : Same as figure 17 for trace 2

Figure 20 : Same as figure 16 for trace 3 .

Figure 21 : Same as figure 17 for trace 3

Figure 22 : Same as figure 16 for trace 4 .

Figure 23 : Same as figure 17 for trace 4 .

Figure 24 : a) True values of the AR coefficient a and corresponding

segmentation.

b) Estimated values of the AR coefficient a x an£ j corre

sponding segmentation.
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