
Projecting Art into Virtual Reality
Creating artistic scenes through parametrization utilizing a

modern game-engine

Runar Tistel

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,
Western Norway University of Applied Science

Department of Informatics,
University of Bergen

June 2018

Abstract

Recent advancements in virtual reality both on the hardware and software front have
made high-quality virtual reality experiences both cheaper, and easier to obtain. This
thesis aims to explore how virtual reality can be used as a new medium for digital
artists, and how virtual reality as a medium changes how a user experiences art. A
successful attempt is made to create a solution for creating and parameterizing artistic
scenes inside virtual reality through a visual node-based scripting language. This thesis
presents the results of applying this solution to two works of art by Hariton Pushwagner.
In addition, a secondary solution attempts to translate The Persistence of Memory by
Salvador Dali into an interactive virtual reality experience. An analysis of response from
a public viewing session of the scenes resulting from the solution is provided. The virtual
reality scenes produced by the solution transmit scale, space, and movement particularly
well. Several respondents reported that virtual reality as a medium placed them in an
active viewing position, creating a very different experience in comparison to viewing
the original two-dimensional artwork.

Acknowledgements

I would like to thank my supervisors at Western Norway University of Applied Science
(HVL), Harald Soleim, Atle Birger Geitung, and Daniel Patel for their guidance and
support throughout my work on this thesis. Their frequent feedback and assistance
has helped me greatly, and without their contribution, this thesis would not have been
possible. I would also like to send a heartfelt thanks to Fredrik Malmedal Salhus and
Torkell Bernsen from the Faculty of Fine Art, Music and Design, University of Bergen
(UiB). They have contributed heavily to this thesis through their support, and insight
into the world of modern art. They also helped organize the public viewing session of our
results at their faculty, and helped spread the word about my work. Their involvement
is greatly appreciated. Finally i would like to express my condolences to the family and
friends of Hariton Pushwagner, who sadly passed away 24th April 2018, during my work
on this thesis.

Contents

Contents i

List of Figures iv

List of Listings vi

Glossaries vii

1 Introduction 1
1.1 Thesis Outline . 1
1.2 Motivation . 2
1.3 Goal . 2
1.4 Research Questions . 2
1.5 Art . 3

1.5.1 Hariton Pushwagner . 3
1.5.2 Salvador Dali . 3
1.5.3 Artworks Used in Thesis . 3

1.6 Related Work . 5
1.6.1 Before the Computer Age . 5
1.6.2 The Sword of Damocles . 8
1.6.3 CAVE . 9
1.6.4 Virtual Reality And Modern Art 9
1.6.5 Use of Virtual Reality Tools for Artists 10
1.6.6 Generative Art . 12

1.7 Node Based Parametric Modeling using Archimatix 13
1.8 Appearance Transfer . 14

2 Background 15
2.1 Meshes . 15

2.1.1 Triangles . 16
2.1.2 Triangle Mesh Representation . 16

2.2 Rendering a Graphical Scene . 16
2.2.1 Geometry Instancing . 18

i

CONTENTS ii

2.2.2 Level of Detail . 19
2.3 Game Engines . 20

2.3.1 Should a commercial game engine be used? 21
2.3.2 Unity . 21
2.3.3 Unreal Engine . 22
2.3.4 Choosing Unreal Engine . 23

2.4 Virtual Reality . 23
2.4.1 Virtual Reality Headsets . 24
2.4.2 Virtual Reality Challenges . 26

2.5 Parametric Design . 27
2.5.1 Parametric Equation . 28

3 Solution 29
3.1 Project Setup . 29

3.1.1 Program Flow . 30
3.2 Procedural Mesh Support . 30

3.2.1 Runtime Mesh Component . 30
3.3 Building Scenes . 31

3.3.1 Using External Modeling Tools . 31
3.3.2 Scene as a Function of Input . 31
3.3.3 Parametric Function Nodes . 32

3.4 Using Unreal Blueprints . 33
3.4.1 Creating our Blueprint . 33
3.4.2 Creating Graph Nodes . 33
3.4.3 Generating Meshes in Code . 35
3.4.4 Using the Runtime Mesh Component 38

3.5 Creating a Scene . 38
3.5.1 Populating the Scene . 40
3.5.2 Recreating the Visual Style . 42

3.6 Re-creating The Persistence of Memory 44

4 Results 47
4.1 ”Selvportrett”(Selfportrait) by Hariton Pushwagner 47
4.2 Manhattan by Hariton Pushwagner . 50
4.3 Original Scene - Reactor . 52
4.4 The Persistence of Memory . 53

5 Evaluation 54
5.1 Evaluating our Method . 54

5.1.1 Measuring Numerical Performance 55
5.1.2 Creating and Altering Scenes . 57

5.2 Evaluating our Feedback . 59
5.3 Public Demo . 59

5.3.1 Response . 60

CONTENTS iii

5.3.2 Oral Feedback . 60
5.3.3 Written Feedback . 61

5.4 Feedback Related to Research Questions 65

6 Conclusion 67
6.1 Geometry and Visual Style . 67

6.1.1 Geometry . 68
6.1.2 Visual Style . 68

6.2 Performance and Comfort . 68
6.3 Reception of Results . 68

7 Further Work 70
7.1 Expanding Function Library . 70
7.2 Custom Scene Editor . 70

Appendix A Demo Response 77

Appendix B Node List 81

Appendix C Node Graphs 82

Appendix D Images 88

List of Figures

1.1 Two works of art by Hariton Pushwagner displayed side by side. (a):
Selvportrett depicts a scene of many people spread over several floors, with
a spiral of humans stretching from the bottom to the top of the image.
The top is domed and covered with images of faces. (b): Manhattan
depicts several buildings in bright colors, that seem to bend and sway in
un-natural ways. 4

1.2 Persistence of Memory by Salvador Dal 5
1.3 Rotund cross section . 6
1.4 Sensorama commercial . 7
1.5 The Sword of Damocles . 8
1.6 Example of CAVE in use by Hydro VR. 9
1.7 BMW Art Car 2017 . 10
1.8 Tilt Brush in use . 11
1.9 Still image from the video ”Dreams of Dali: 360 Video”[25] 11
1.10 Still image from the video ”The Starry Night VR”[23] 11
1.11 Network D 01 . 12
1.12 Example image of Archimatix . 13
1.13 Transfering visual appearance from source image to a target 14

2.1 Representing a rectangle using triangles and points 17
2.2 OpenGL pipeline diagram . 18
2.3 Example of geometry instancing used to render a large amount of objects. 19
2.4 A human model shown with different levels of detail 20
2.5 Blueprint graph snippet . 22
2.6 Oculus Rift headmounted display . 24
2.7 Oculus Rift with diodes . 25
2.8 VR hand controllers . 25
2.9 Google cardboard . 26
2.10 Sinus curve . 28

3.1 Example diagram of scene description . 32
3.2 Image of a circle of cubes . 32
3.3 Colored function shown as a node . 35

iv

LIST OF FIGURES v

3.4 Cuboid mesh generator node . 36
3.5 Meshdata flow . 37
3.6 Runtime meshes sectioned in memory . 38
3.7 Selvportrett with identified parameters . 39
3.8 Variables for our scene inside Blueprint 40
3.9 The Blueprint graph describing Selvportrett 41
3.10 Using MakeHuman to create a model . 41
3.11 Textures displaying normals and depth of the rendered image 42
3.12 Before and after applying post-process effect 43
3.14 Simple mesh of a clock with and without texture 45
3.15 FleX particles attached to mesh . 45
3.16 The Persistence of Memory inside the Unreal Engine Editor 46

4.1 Close up of a single floor of the scene . 48
4.2 Same area seen from the side . 48
4.3 Looking down the middle of the scene, with the spiral of humans going

down. Note how details get lost in the distance due to the nature of the
shading style. 49

4.4 A birds eye view of the Manhattan scene, seeing how it is constructed. . . 50
4.5 Looking up into the sky. 51
4.6 Two different viewing angles of our original scene. The smaller cube is

where the viewer stands and looks at the surrounding structure. 52
4.7 An outside view of the scene from further away. 52
4.8 The Persistence of Memory scene inside Unreal Engine is intractable using

controllers, where the controllers are represented as hands inside the scene. 53

5.1 The performance head-up display showing performance numbers inside
our Selvportrett scene. The runtime performance in this instance stays
around a steady 90 frames-per-second. 55

5.2 When looking out into the center of the scene, the frame-rate drops signif-
icantly, down to roughly 35 frames-per-second. The MTPL latency also
increases drastically. 57

5.3 A large amount of nodes, making it more difficult to get an overview of
the graph. 58

5.4 Description of scene collapsed into sub-graphs 58
5.5 Expanded view of subgraph . 58
5.6 Image of an art student viewing one of our scenes 59

Listings

3.1 Example of a basic class for use within the Unreal Engine. Written in
C++ it also makes use of UE specific annotations such as UCLASS and
GENERATED BODY, to mark the class and its variables with metadata.
The metadata is used by the engine during compilation. It contains a
sample of our function library. 34

3.2 The colored function, with the UFUNCTION annotation 35
3.3 Code for generating a cuboid using GeometronLib. 36

vi

Glossary

Filmbox Proprietary file format, used to store 3D object data together with motion
and other metadata.. 31

Wavefront .obj Geometry definition file format. The format is open, and has been
adopted by most 3D graphics applications in one form or the other.. 31

vii

Acronyms

2D 2 Dimensional. 2, 12, 23, 60, 62, 63, 65–67, 69, 70

3D 3 Dimensional. 2, 3, 12, 13, 23, 29, 30, 39, 40, 42, 44, 47, 50, 57, 60, 63, 66–71

6-DOF 6 Degrees Of Freedom. 24, 25

API Application Programming Interface. 20, 21

CPU Central Processing Unity. 17, 18, 56

CSG Constructive Solid Geometry. 70

CV1 Consumer Version 1. 27

FPS Frames Per Second. 55, 56, 68

GPU Graphics Processing Unit. 16–19, 30

HISMC Hierarchical Instanced Static Mesh Component. 33

HMD Head Mounted Display. 8–11, 24, 26, 27, 55, 62, 70

HUD Head-Up Display. 55

IR Infrared Radiation. 25

LOD Level of Detail. 19, 56, 68

MTPL Motion to Photon Latency. 55, 56

OO Object Oriented. 22

RMC Runtime Mesh Component. 31, 33, 35, 37, 38

viii

Acronyms ix

UE Unreal Engine. 22, 23, 29–31, 34, 42, 50

VR Virtual Reality. 2, 3, 5, 8–10, 13, 24, 26, 27, 29, 30, 44, 46, 47, 53–56, 59–71

Chapter 1

Introduction

1.1 Thesis Outline

Introduction Provides a brief and concise introduction to the thesis. Some context
is given for the work that has been done. The goal of the written thesis is conveyes, and
and an overview of the related work is provided.

Background The needed background information for this thesis is described. Infor-
mation surrounding technologies used is provided, including the implementation and
usage of virtual reality.

Solution The solutions that were attempted in this thesis are outlined and described.

Result The result of the scenes produced by our solution are described.

Evaluation After displaying the results, an evaluation is performed based on perfor-
mance data. We also evaluate the ease of which we are able to parametrize a work of
art, and the re-create it in 3 dimensions. We also evaluate user feedback from a public
demo, and how other users experience our results.

Conclusion Based on our result and evaluation, a conclusion is made, answering our
research questions stated in section 1.4.

1

CHAPTER 1. INTRODUCTION 2

1.2 Motivation

Usually when a classical artist beings a new work, he is restricted to the media available
to him. The media can for instance be some form of colored particles (charcoal, ink,
oil paint, etc.) projected onto a two-dimensional base. Even three-dimensional scenes
are usually projected into two dimensions using perspective projection. Virtual Reality
(VR) is maturing both in its hardware and software aspects, new avenues are opening
for digital artists. We want to see how we can employ VR for representing art. We
want to use the computer and its graphical abilities as the medium to present spatial
art. This is done by combining the power of modern hardware computation with the
immersive imaging of head mounted VR displays. Utilizing the power of a fully featured
game engine found in Unreal Engine 4.0 [1], an attempt is made to construct complex 3D
environments using techniques such as parametric design and hardware instancing.

1.3 Goal

The goal with this work is to expand classical and modern art, from two-dimensional
paintings, to 3 Dimensional (3D) scenes. This is done by re-projecting existing 2 Di-
mensional (2D) images into 3D. In addition, we want to add new dimensions to the
work, by adding animation(temporal dimension), and sound. The ambitious goal was
to create a high level abstracted meta-language for describing art. With this language
it should be possible to create 3D art in VR by describing the shapes and visual style
of the artwork in a compact parametric way. To test the expressability of the language,
some known works of art should be re-created inside 3D. Successfully recreating the art
in 3D, will demonstrate that the method is powerful enough for it’s intended purpose.
As a secondary goal, another method will be used to attempt recreating a known work
of art into VR. This method should attempt the recreation of a work of art, that differs
from the other works that have been attempted in both shape and visual style.

1.4 Research Questions

For this thesis, two research questions are asked:

1. How can a two dimensional work of art be interpreted through virtual reality?

2. What happens when a two dimensional work of art is transformed through these
processes?

CHAPTER 1. INTRODUCTION 3

1.5 Art

In this thesis, a few works of art are referenced. The artists behind these works are
Hariton Pushwagner[2], and Salvador Dali[3].

1.5.1 Hariton Pushwagner

Hariton Pushwagners real name was Terje Brofos[2], and was born May 2, 1940 in
Norway and died April 24, 2018. His art is known as Pop art[4]. Pop art grew as an
art around 1950, and take inspiration from everyday items and consumerist goods that
could be found at the time. The style can be described as bold, with strong colors.
Hariton Pushwagners works of art often have strong colors, and portray surreal (not to
be confused with surrealism) scenes that often contain repetitive elements on a large
scale. Examples of his art can be seen in Figure:1.1a and Figure:1.1b.

1.5.2 Salvador Dali

The full name of Salvador Dali is Salvador Felipe Jacinto Dali y Domenech. He was born
May 11, 1904 and died January 23, 1989. Salvador Dali was known as a surrealist artist,
and is viewed as an important contributor to this artistic movement. His artworks often
depict scenes where items or objects are deformed in ways that seem illogical, while still
keeping a large amount of realistic detail in his artworks.

1.5.3 Artworks Used in Thesis

To demonstrate the capabilities of our solution we need to choose a small set of tradi-
tional artworks. These works of art will be the reference when attempting to re-create
art in 3D. For this purpose two artworks are chosen: Selvportrett[5] (see Figure:1.1a)
and Manhattan[6] (see Figure:1.1b). These works of art were chosen because of their
structure and visual style. Both images are very spatial, in that they portray a large
expansive space. This portrayal of a large space will most likely translate pretty well
into VR, as one of the largest improvements that VR has over traditional media, is the
sense of space and scale it provides. The artworks also feature heavily repeated elements.
If an image or work of art is more uniform, it simplifies the process of describing the
artwork, and re-creating it as a scene in VR. An original scene will also be created, after
re-creating these two works of art.

CHAPTER 1. INTRODUCTION 4

(a) Selvportrett[5]

(b) Manhattan[6]

Figure 1.1: Two works of art by Hariton Pushwagner displayed side by side. (a): Selvportrett
depicts a scene of many people spread over several floors, with a spiral of humans stretching from
the bottom to the top of the image. The top is domed and covered with images of faces. (b):
Manhattan depicts several buildings in bright colors, that seem to bend and sway in un-natural
ways.

CHAPTER 1. INTRODUCTION 5

For the secondary method, a classic work of art by Salvador Dali named The Persistence
of Memory[7] will be used. The three works of art (Figures: 1.1a , 1.1b, 1.2) are also
included as larger versions in appendix D.

Figure 1.2: Persistence of Memory by Salvador Dali.[7] The image depicts a scene where an
everyday objects (clocks) seem to melt as if they where soft, while in reality these objects would
be rigid and stiff.

1.6 Related Work

Art outlets have shown interest in VR since it’s early days. It is no surprise that
projects have been developed before, with the intent of testing virtual reality as an
artistic tool.

1.6.1 Before the Computer Age

The ideas behind taking traditional art beyond the common two-dimensional canvas has
existed for years before the arrival of modern computer power. Back in 1792, Robert
Barker painted the worlds first panorama painting[8], and created the term by naming
the work “The Panorama”. The artwork depicted a full 360◦view of London. A year
after, Robert Barker moved his paintings to Leicester Square, where a purpose-built
panorama building would house his paintings (see Figure:1.3). The building would hold
two large panoramas, both housed in separate compartments illuminated from the roof.
These circular housings would allow the viewer to stand on a platform in the middle,
and look around at an uninterrupted 360◦view of the painted surroundings. The entire
idea of this panoramic scene was to present a believable illusion to the viewer. Anyone

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Cross section of the planned Panorama.[9]

standing in the middle would view the art, as if they were standing inside the depicted
scene.

CHAPTER 1. INTRODUCTION 7

Attempts in Motion Picture

A heightened sense of immersion has been sought after in the film industry for years. 3D
cinema using stereoscopic image projection and higher quality surround sound systems
are just some examples. A more obscure piece of history is the Sensorama [10] invented
by Heilig Morton in 1962 (see Figure:1.4). The sensorama attempted to give viewers a
more immersive movie experience by stimulating as many senses as possible. Electric
fans provided gusts of wind, and it even employed aromas and vibrating motion in its
attempt to bring the user a heightened sense of presence. The sensorama never became
a very popular motion picture system, but it’s attempt inspired later attempts of similar
4D cinema[11] experiences.

Figure 1.4: Commercial for the sensorama.[12]

CHAPTER 1. INTRODUCTION 8

1.6.2 The Sword of Damocles

Ivan Sutherland[13] is regarded as a pioneer within computer graphics and VR. His
work of creating the first VR system in 1968, is considered to be the first Head Mounted
Display (HMD) system ever attempted. This system, called The Sword of Damocles[14]
by Ivan, incorporated many of the same techniques seen in modern HMD systems, like
head-tracking and stereoscopic display. This early system however, was so heavy and
mechanical, that the HMD unit required to be suspended in the air through a ceiling
mounted mechanical arm.

Figure 1.5: Image of the head mounted display HMD, Sword of Damocles. Invented in 1968 by
Ivan Sutherland.[15]

CHAPTER 1. INTRODUCTION 9

1.6.3 CAVE

The CAVE project is a later attempt at virtual reality. The intent of CAVE was to create
an immersive 3D environment. The CAVE concept is not based upon head mounted
displays, but instead uses the surrounding walls of a square room combined with several
projectors, to create the illusion of a 3D environment. The CAVE project requires
extensive calibration at setup, but when calibrated, is capable of tracking the position of
the user through electromagnetic, or optical sensors. The CAVE project has mostly been
applied in an engineering environment, used to enhance product design and development.
Figure 1.6 demonstrates a CAVE system, being used to assist the planning of new oil
wells.

Figure 1.6: Example of CAVE in use by Hydro VR.[16]

1.6.4 Virtual Reality And Modern Art

Since the release of the two HMD units, Oculus Rift and HTC VIVE in 2016, the
respective companies have started an initiative to bring better VR experiences to the
general public. Some modern museums hold free and open VR art installations. These
installations provide a new way to experience the museums content. An example of such
an art installation is the VR Museum of Fine Art[17]. This VR application presents a
fully explorable 3-dimensional environment, meant to represent a museum. The virtual
museum contains real life scale digital replicas of works of art found in the Museum
of Fine Arts Boston. These museums or institutions utilize VR as a means to expand
the availability of their art collection, making it available to an audience that might
not have the ability to travel to the museums location. A great example of art where
virtual reality was a key part, is the BMW Art Car from 2017.[18] These art projects
are initiated by BMW, and entail painting a work of art on the exterior of a BMW

CHAPTER 1. INTRODUCTION 10

car model. The newest art car from 2017, is painted by chinese multimedia artist Cao
Fei[19]. This art car is special, as it is painted fully in VR. By utilizing VR as a tool,
Cao Fei was allowed to paint on both the exterior surface of the car, and in the nearby
space surrounding the car.

Figure 1.7: Image of the BMW 2017 art car produced by Cao Fei. By using VR as her tool, she
was able to produce a unique art car, that stands out among the other BWM art car entries.[18]

1.6.5 Use of Virtual Reality Tools for Artists

There are already tools available for artists that want to work in a fully virtual environ-
ment. Tools like Tilt Brush[20], and Oculus Medium[21], give users the ability to paint
and sculpt models in three dimensions. Figure 1.8 shows Tilt Brush in use. The users
hands hold the tracked hand controllers, and use them as if they were digital brushes.
While painting, the user also views their work inside VR using the Vive HMD. The Vive
hand-controllers are multi functional, in that their function can be changed through in-
teractive menus attached to the controllers inside VR. Settings like brush color, size, and
type can be changed through menu interactions. For this thesis, a search was done for
art tools or projects that are closely related to the goals and questions posed in section
1.3. Nothing beyond what is mentioned by this thesis was found, regarding parametriza-
tion of art combined with virtual reality. The most relevant examples are ”The Starry
Night VR”[23] by Motion Magic VR[24], and ”Dreams of Dali”[25] by GS&P[26]. These
VR applications both attempt to transport the viewer into known artworks by their
respective artists (see Figure:1.9, and Figure: 1.10). It’s difficult to find any reliable in-
formation on how these solutions were implemented, but they appear to be hand made,
and are therefore not relevant to our work.

CHAPTER 1. INTRODUCTION 11

Figure 1.8: Example image taken from the HTC Vive homepages. The image displays a woman
painting a sculpture using the positionally tracked controllers, while also viewing it through the
Vive HMD unit.[22]

Figure 1.9: Still image from the video ”Dreams of Dali: 360 Video”[25]

Figure 1.10: Still image from the video ”The Starry Night VR”[23]

CHAPTER 1. INTRODUCTION 12

1.6.6 Generative Art

Generative art is described as works of art that emerge from a system that has some
degree of autonomy, hence the name generative. In most cases the art is generated not
by the artist, but by the system itself. The artists job in this case is setting the rules
and constraints for the system. Generative art is a broad term,[27] and can be difficult
to describe accurately. Over the years, many systems have been used that could be
described as generative art, wherever it be procedural maps inside a video game, or
images produced by an algorithm. Generative art is not required to have a random
element in its production, meaning that our method of generating 3D scenes, also can
be described as a form of generative art.

Processing

Casey Reas[28], the creator of Processing[29], is a popular generative artist. In addition
to creating his own works of art (see Figure:1.11), Casey Reas developed Processing.
Processing was initially a programming language and learning tool for teaching code.
Focusing on visual output. As Processing became more popular it became a popu-
lar language for experimenting with computer generated visuals. Processing allows a
programmer to experiment with producing computer generated visuals through an al-
gorithmic approach. Processing is not used in this thesis, as it is designed for 2D visual
output, and can not be utilized to produce realistic 3D interactive experiences.

Figure 1.11: Example of artwork produced by artist and developer Casey Reas. Network D
created in 2012.[30]

CHAPTER 1. INTRODUCTION 13

1.7 Node Based Parametric Modeling using Archimatix

In section 3.3.3 it is detailed how a parametric node graph can work as a solution to-
wards producing artistic 3D scenes using parametrization. A third party library for
Unity 5.0 (2.3.2) called Archimatix[31] already implements this method. Archimatix is
maintained by Roaring Tide Productions, and was released, March 2017. It is a third
party tool developed towards producing 3D mesh assets for use in Unity. Archimatix fo-
cuses on enabling an iterative design process through parametric modeling, and achieves
this through integrating a visual node graph editor into its core workflow. A designer
can start creating 3D meshes by dragging and dropping nodes from a node library, into
the graph editor. Nodes are connected through wires, that function as input and output
controllers between nodes. Archimatix is licensed for purchase on the Unity store. Archi-

Figure 1.12: Example image of Archimatix in use. The node graph on the right describes the
resulting output mesh on the left. All nodes and parameters are editable both in the editor and
during runtime.[32]

matix was considered as a possible tool that could be useful for the thesis. In the end a
custom solution inside Unreal Engine was chosen as the desired choice. Archimatix is a
mature and powerful tool, but is built exclusively as a tool for Unity. In section 2.3.4 the
reasons for choosing Unreal Engine, as opposed to Unity has been described in detail. A
change over to Archimatix would entail moving over to Unity 5.0, as opposed to Unreal
Engine 4.0. In addition to this, creating a custom solution inside Unreal Engine gives
us full control over the development of the solution. The source code of Archimatix is
hidden, and is not possible to extend upon. In the event that a custom editor solution
for use inside VR were to be created, Archimatix might not be usable, as it is not de-
signed with VR in mind. Making a VR application utilizing Archimatixes functionality
would then not be possible, and is therefore a bad fit for our project. Lastly, it is not
possible to animate Archimatix scenes after they are constructed. For our thesis, the
introduction of a temporal dimension into the resulting scenes is one of our goals, hence
being able to animate the scene during runtime is important.

CHAPTER 1. INTRODUCTION 14

1.8 Appearance Transfer

Successful attempts have been made to create algorithms powerful enough to analyze
the visual style of an image, copying it over to target images that previously did not have
that style. By doing this a third image is produced were the result of the appearance
transfer from source to target is a new image that is recognizably similar to the old target,
but with the added visual style of the source (see Figure 1.13). This effect is possible
through a class of neural networks called Convolutional Neural Networks. According to
the paper published on this subject, Convolutional Neural Networks ”consist of layers
of small computational units that process visual information hierarchically in a feed-
forward manner”.[33] These computational networks take the source and target images
as input, outputting the resulting third image.

Figure 1.13: Results from applying different artistic styles from a source image, and applying
them to a target image (image A). [33](Page 5.)

Chapter 2

Background

Central for being able to display 3D objects is how to store them inside computer mem-
ory, and how we use these representations to render modern graphical scenes. The work
in this thesis relies heavily on the tools and environment provided by a game engine,
therefore an explanation as to why these tools are used is provided. Virtual reality is at
the center of our thesis, therefore the basics of virtual reality development and hardware
components are explained.

2.1 Meshes

When looking at any objects in the real world, our eyes usually see them as solid objects
with texture and color. If we were to look at an apple as an example, our eyes would
see its round shape, and green color. As the apple moves closer and the object grows
we start noticing more detail. An apple might look smooth from a distance, but if we
close in on the object, we reveal complex detail such as bumps and texture. In theory
an apple has near infinite detail, depending on the proximity of observation. If we were
to make an attempt at representing this apple inside a finite array of numeric memory
we would face a challenge. Infinite detail inside finite memory is virtually impossible, so
instead we are forced to construct an approximation of the object. This approximation
will represent the real world object at a certain level of detail. There are many ways to
represent three dimensional objects, but we want a method that is memory efficient and
quick to render. The triangle mesh method of representing objects is by far the most
efficient and widely used method in modern day graphical computing. This comes down
to the properties of triangles, and how these properties makes them easy for computers
to render efficiently.

15

CHAPTER 2. BACKGROUND 16

2.1.1 Triangles

A very useful property of triangles are their coplanarity. Coplanarity simply explained
is the fact that a triangles three vertices always exist in the same plane. The instant
you add a vertex, you do not have guaranteed coplanarity, which is unwanted when
rendering computer graphics. This coplanarity is wanted because it defines an enclosed
space inside a plane, in contrast to a non planar polygon, that can exist in multiple
planes. This single plane enclosed space is used when attempting to render and sort the
geometry.

Surface Definition

If we want to draw the surface of a triangle, we need to first define it’s surface area. This
can be achieved by using the barycentric coordinate system[34]. In this coordinate sys-
tem, any point inside a triangles area can be defined by placing weights on the vertices of
the triangle. The center of gravity of these weights then decide the position of the point.
By changing the weights, the positions of the points inside the area are shifted. Shifting
these weights along a certain range allows us to parametrically define the entire surface
area of the triangle. This makes it possible to quickly rasterize a triangle using built in
Graphics Processing Unit (GPU) support. (or to calculate ray-triangle intersections for
the case of ray tracing)

2.1.2 Triangle Mesh Representation

The way meshes are defined in game engines is as a set of indexed positions that all
connect together to form a number of triangles. These points are called vertices, and
together form a set of triangles that form the mesh shape. (see Figure:2.1). Each of these
triangles then, via their barycentric parameterization, define a surface representation.
By defining enough triangles in the mesh, any shape in three dimensional space can be
approximated. Most modern graphical applications require more than just positional
and triangle data. Normals, and texture coordinates are required for mesh texturing
and light calculations. This means a proper mesh used in games and media requires
normal, and texture coordinates in addition to position.

2.2 Rendering a Graphical Scene

The basics for how a graphical scene is rendered has remained mostly unchanged for
many years. This is most likely due to how effective the method initially was, and how
well optimized it has become over the years. Except from physically based rendering
e.g. ray tracing, which is outside of our scope, most 3D graphics rendering is done
through a standardized rendering pipeline (see Figure:2.2). A computer, having the

CHAPTER 2. BACKGROUND 17

Figure 2.1: Representing a simple rectangle using points and a triangle list.

triangle mesh in memory, needs a way to convert the mesh representation into pixels
on the screen. This job is performed by a computer GPU component, instead of the
more general purpose computing unit, the Central Processing Unity (CPU). The GPU
is designed first and foremost as a massively parallel computing unit targeted towards
processing triangle mesh data and shader fragments. The data will go through several
processing steps inside the GPU, each step utilizing the output of the previous step. This
way of rendering meshes can be visualized as an ’assembly line’ of processes, where each
process is either programmable or implemented on a hardware level. The instructions
of the programmable steps are provided through smaller programs called shaders, that
are each compiled from source, on the CPU, and then executed inside the GPU cores.
The individual steps are unaffected by each-other, allowing for the steps to be run in
hundreds of parallel threads. This parallelization is key to the efficiency of modern
graphical rendering.

CHAPTER 2. BACKGROUND 18

Figure 2.2: Diagram of a standard OpenGL rendering pipeline, containing both programmable
and non-programmable steps.[35]

2.2.1 Geometry Instancing

One of the bigger bottlenecks developers meet when trying to render a large amount of
meshes at once, is the number of draw calls involved in the process. When a mesh is
to be rendered by the GPU, several operations are involved, such as loading the mesh
data, sending data parameters to programmable shaders, and actually making a call
to the GPU to start rendering our mesh. This is called a ”draw call”, and is sendt
every time we want the computer to render a new object. Every draw call sent to the
GPU consumes time on the CPU, if we want to draw many thousand instances of the
same mesh on the screen, we would have to send several thousand draw calls, this would
quickly form a bottleneck in our application, slowing down the entire program. Instead
of sending a draw call for each mesh, we send the mesh data once, and supply only
the data that changes between instances (e.g position, color, texture). This way several
thousand copies of a single mesh can be rendered using only a single draw call. Geometry
instancing is optimized towards drawing multiple instances of the same mesh, and as
such is suitable when attempting to render a large amount of uniform objects in a scene.
Examples of this could be an asteroid field in space, or foliage in a densely packed forest.

CHAPTER 2. BACKGROUND 19

Figure 2.3: Example of geometry instancing used to render a large amount of objects. The
performance impact of rendering this amount of object is drastically reduced by utilizing this
method. The scene was created using the solution developed in this thesis.

2.2.2 Level of Detail

Some meshes, like meshes used in games or visualizations are very detailed, with a
high triangle count. These meshes require more computational power for the GPU to
render, but in return have a high level of fidelity. The time it takes to render a mesh,
is not affected by the distance of the mesh from the camera. As a mesh is rendered
further away, because of perspective projection, it also grows smaller on the screen.
This effectively wastes computational power, as a detailed mesh is rendered far away,
and detail is lost. To improve rendering efficiency, a mesh can have multiple levels of
detail associated with it. When a mesh is far enough away from a camera, a different
version with lower detail is rendered instead. With this method, less computational
power is wasted on rendering meshes that are far away, while keeping the more detailed
versions for times when the mesh is viewed closer to the camera. This technique of
loading in different meshes of different detail, while still representing the same object,
is called Level of Detail (LOD). LOD is used commonly in graphical applications where
runtime performance is important, e.g video games. Figure: 2.4 shows an example of
how a high polygon mesh can be represented through different levels of detail. The model
itself is used in a resulting scene further into the thesis, where the model is instantiated
many thousand times into the scene (see Figure:4.2). The LOD method is crucial for
that scene to perform well. The model was created and exported from an open source

CHAPTER 2. BACKGROUND 20

Figure 2.4: A mesh depicting a human, at different levels of detail.

software program, as described in section 3.5.1.

2.3 Game Engines

The modern game industry has now become a billion dollar industry [36]. Large compa-
nies are spending millions of dollars to release the next big industry title. In addition to
these large companies there have been an uprising of smaller developer groups. These
independent developers publish titles that sometimes rival the ones published by larger
companies. Much of the reason some of these developers are able to develop these high
quality titles, while having less manpower or funding, is through the power of game
engines. When developing a commercial video game for the computer or standalone
console, there are a multiple of elements that have to come together. Physics calcula-
tions, advanced graphics rendering, and runtime behavior, are all components needed to
create a game. Developing all of this from scratch demands a lot of time and resources
from even the largest company. It’s this complexity in developing commercial games that
have made the idea of a licensed game engine so appealing. A simple way to describe
a game engine, is as an environment of tools and Application Programming Interfaces
(APIs) that all are focused towards developing video games easier. Just like how a 3D
modeling program is a suite of tools to create and edit 3D models, and a word processor
helps you write papers, a game engine is fully designed to offload a lot of complexity
from the developers side, over to the game engine’s tools. It’s however important to
note, that a game engine is not designed to replace advanced 3D modeling programs, or
music sequencing tools. A game engine will only make the process of integrating such
produced content into the project easier. A large list of available game engines[37] exist

CHAPTER 2. BACKGROUND 21

for developers. When it comes to popularity, the top of this list is dominated by two
engines, Unity[38], and Unreal Engine[39]. These two are frequently used engines in the
modern game development scene, and each have their strengths and weaknesses.

2.3.1 Should a commercial game engine be used?

Game engines are large complex environments designed to create games within their own
systems and tools. In certain scenarios, this fact can work against the developers. If a
developer wants to create a feature or operation that is non-standard or very complex,
the engine might not facilitate this as well as one might wish. This sacrifice of absolute
flexibility and control is a trade-off one must pay to use a game engine. Some developers
choose to create their own custom engines, usually to gain full control over the game’s
logic and behavior. These developers then build tools and features from scratch, usually
starting with basic OpenGL or similar low-level APIs. These developers often spend
significant time and resources developing these solutions, but in return has an engine
that is custom made for their purposes that also costs nothing in licensing fees. Payment
and licensing is another point some have against using commercial game engines. The
payment and licensing type is different from engine to engine. Some engines require
on only a one time payment, some are monthly subscriptions, and some even require
percentile of revenue payments that can quickly scale to thousands of dollars. The
commercial game engine Unreal Engine[1] was chosen as the engine for this project.
Epic Games take a cut of the revenue earned through applications built using their
software. This project is not monetized, and as such, Epic Games monetization model
does not incur any cost.

2.3.2 Unity

Unity Technologies develops and maintains the Unity Engine. Unity has become a major
part of modern independent game development. Unity focuses on making applications
scalable and efficient. This focus has made the Unity engine popular among many
mobile developers. Unity, like most modern game engines, allow for a multi platform
release. This means that a developer can develop once, and then release towards multiple
target platforms. Unity utilizes CSharp[40] and JavaScript[41] as a scripting languages.
These scripts are used in Unity’s modular entity system, enabling fast prototyping and
development. Unity also allows aspiring developers to reuse pre-made modules and
templates, included in Unity. This makes Unity an excellent platform for developers
with less experience in software development.

CHAPTER 2. BACKGROUND 22

2.3.3 Unreal Engine

The Unreal Engine is a well known engine that has been around since the 90s. The
engine has been utilized by many successful games. For years Unreal Engine (UE) was
recognized as the more graphically capable game engine. This reputation came from it’s
feature rich rendering system. The implementations of deferred shading, global illumi-
nation, translucency and post-processing were all superior to it’s competitors. Recently
with the release of Unity 5.0[42], many of these differences have been evened out.

The Blueprint System

The blueprint system is widely utilized within the UE development community for quick
prototyping or general game behavior scripting. Epic Games presents the Blueprint
system as a fully fledged visual scripting language. The tool is made for the purpose of
defining Object Oriented (OO) classes or objects for use inside the engine. Blueprint is
designed to be flexible and powerful enough that it can give game designers access to
tools and concepts that usually is only available to programmers. Blueprint bases itself
on connecting nodes using wires (see Figure:2.5). These nodes that are connected can
represent a wide variety of features, anything from events, functions, in-game objects,
or variables. This blueprint system can also exist alongside regular code written in
C. A programmer can, using C, develop frameworks (e.g functions and objects) for
others to then use inside blueprint. Blueprints are made inside Unreal Engine’s own

Figure 2.5: A small snippet of a blueprint graph showcasing how nodes are connected together
with wires. Differently colored wires represent different variable types

CHAPTER 2. BACKGROUND 23

blueprint editor. In the editor all nodes and wires are visualized as seen in figure 2.5.
Differently colored wires represent different data structures being sent from node to
node. Nodes are multi-purpose, in that they can represent different functionality, e.g
conditional operations, functions, even other blueprint graphs can be condensed together
into a node. Nodes have slots for attaching wires on either side, the left accepts input,
the right connects to output. A Blueprint script will run at different times during
the applications lifetime, either during application start, or as triggered responses from
events, e.g a collision event or player death. The Blueprints execution flow is decided
by the top wire that is always present for all function nodes. This gray colored wire
decides which function in the node network is to be executed first, and which functions
comes after. Nodes for branching execution, for-loops, and while-loops exist to help with
program flow control. In addition to the Blueprint graph, each Blueprint can define any
number of local or public variables for use in the graph.

2.3.4 Choosing Unreal Engine

Because both engines have a similar feature set in most areas, when choosing between
the two game engines the small details is what makes the difference. Our project does
not require very advanced and realistic light calculation. Re-creating artistic styles inside
3D is one of our goals in this thesis. Unity have no way of producing shaders outside
of coding it manually, without paying money for third-party extensions. Unreal Engine
comes packaged with their own visual node based shader building tool[43], that makes
producing advanced shaders easier and faster than Unity. Unreal Engine has Blueprint
(see section:2.3.3), this visual language makes prototyping ideas fast, while retaining the
power of coding with C++ if desired. Unity only has C# scripts available for producing
in-game code. It is possible that Blueprint in UE will also make it easier for other
individuals with less technical knowledge to produce their own scenes. Weighing Unreal
Engine and Unity against each-other, Unreal Engine 4.0 was chosen as the game engine
for this thesis.

2.4 Virtual Reality

The ’virtual’ in virtual reality comes from the 14th century, and entails something ”being
something in essence, though not actually”.[44] This makes a virtual reality something
that in essence is very close to reality, but not actually really there. If a digital display
produces an image of something that looks to be there, but in reality is just a 2D image
projected in such a way to convey ’realism’, then that could be virtual reality. This idea
of tricking a viewer into believing a constructed environment is actually ’real’, has been
around for decades. Modern technology, through digital displays and high-definition
audio, has made constructed virtual realities more believable than before. Attempts at
creating virtual realities using computers and displays started as early as the 70s (see

CHAPTER 2. BACKGROUND 24

section:1.6.2), In these early stages, the technology surrounding virtual reality was crude,
and did a poor job of providing a believable immersive view to the user. As technology
advanced the industry was mainly focused on training simulations such as military flight
simulators. It is only now in modern times that technology has been able to produce
results that are convincing enough, due to realistic renderings, high frame-rates and
wide field of views. More than before, large companies within health and product design
are picking up virtual reality as a possible tool that can supplement or enhance their
products.

2.4.1 Virtual Reality Headsets

Providing the VR experience through a multi functional headset is a popular solution.
Companies like Valve[45] and Oculus VR[46] have succeeded in distributing their re-
spective HMD units to many countries in the world. These headset solutions vary in
both size and available functionality, some are expensive units requiring a powerful ded-
icated computer, and some are cheaper, but rely on weaker mobile processing power.
The tracking, and freedom of movement also changes significantly from unit to unit.
The relatively inexpensive hardware requirements and higher portability has made VR
headsets more commercially widespread than the older CAVE systems.

Figure 2.6: The Oculus Rift head-mounted display in use.[47]

High End

A high end configuration is popular due to the better quality VR experience such a
unit is supposed to deliver. Such units usually provide two high resolution monitors,
each monitor set behind a Fresnel lens. The headset is mounted on the front of the
head, usually with straps (see Figure:2.6). Audio is provided through either headphones
or earplugs that are plugged into the HMD. When the head position (3 values) and
orientation (3 values) are tracked, this is called 6 Degrees Of Freedom (6-DOF) tracking

CHAPTER 2. BACKGROUND 25

and is used to update the rendering according to the viewpoint. Some tracking systems
only track the viewing angles. The most significant difference between configurations,
is their tracking capabilities. Arrays of usually two to four Infrared Radiation (IR)
trackers, track the positions of multiple light emitting diodes (see Figure:2.7), mounted
on the headset. These trackers provides ultra-low latency on responses to movement. In
addition, they allow for full 6-DOF within the tracking area. Extra controllers designed
for hand tracking (see Figure:2.8) are also usually included. IR tracked hand controllers
with finger triggers and buttons allow for better interaction with the virtual world. It is
also possible to buy leg and waist trackers, and integrate them into their setup.

Figure 2.7: The Oculus Rift head-mounted display, with light emitting diodes showing, due to
infrared sensitive camera imaging.[48]

Figure 2.8: Positionally tracked hand controllers for the Oculus Rift(right), and HTC Vive
(left).[49]

CHAPTER 2. BACKGROUND 26

Mobile and Standalone

A high end HMD unit is costly, many VR developers focus on providing an affordable
VR experience to as many people as possible. For this reason, mobile VR was developed,
since many consumers on the market already own a high end smart-phone. These smart-
phones are usually also capable of playing lighter games with both 2D and 3D graphics.
There is then nothing preventing us from running optimized VR applications on mobile
units, as long as the developers make sure the application performs well enough on
the restricted hardware. Mobile VR devices are usually non-expensive products, that
are designed to utilize the users phone to display visuals, sound, and perform view
tracking. In most cases the phone is fitted into the unit in a front compartment. The
stereoscopic view is achieved by splitting the phone monitor into two parts. Each part
is then viewed through a lens, much like in the high-end versions of VR. Assuming
the consumer already has a high-end mobile unit, these VR configurations can be quite
inexpensive. A great example is the Google cardboard.[50] Made out of normal cardboard
(see Figure:2.9), the unit provides two lenses, and a space for the mobile unit to rest
while in use. Tracking and movement in mobile VR is usually done through the sensor

Figure 2.9: Showing an assembled Google cardboard unit. The Google cardboard is designed for
the phone to be fitted into the front compartment.[51]

package provided by the phone. Magnetic sensors and accelerometers in the mobile
phone take care of tracking viewing angles. This dependence of phone sensors means
that most mobile VR applications only allow for 360 degree rotational movement, and
does not support positional tracking.

2.4.2 Virtual Reality Challenges

The major challenge with VR is presenting a believable world to the user, in a way
that does not incur any discomfort or nausea. The brain is very easily confused by
mismatching sensory input. If the users body is physically at a standstill, but the scene
is moving, the brain receives contradictory sensory input which can result in nausea.

CHAPTER 2. BACKGROUND 27

This is the same effect that causes car sickness, more commonly referred to as motion
sickness, or kinetosis[52]. This motion induced sickness is a large challenge in VR. To
reduce the discomfort using a virtual reality headset, the system needs to fulfill a set of
minimum requirements. These were first set by Oculus at the release of their prototype
HMD. The headset is now considered a guideline for how to provide a passable VR
experience. These hardware specifications are listed as such.

• 2160x1200 pixels with 90Hz display refresh rate

• Horizontal field of view above 90 degrees

• A one millisecond maximum display latency

The specifications listed above come from an official Oculus blog[53], and a teardown of
the HMD specifications[54]. As stated on the oculus website, a Oculus Rift Consumer
Version 1 (CV1) headset will require roughly three times the power of more conventional
1080p rendering. The higher performance requirements needed to run VR is a challenge
for developers new to VR. Refresh rate and motion-to-photon latency are important
when attempting to develop a well performing VR application. These two concepts
represent the visual update frequency of the images displayed to the user, and how
quickly a users real world movement is represented visually inside the application.

Refresh Rate The refresh rate of a monitor dictates how many new images it can
show every second. This becomes very important for virtual reality, as the human eye
is very close to the monitor. Since the monitor is so close, even minor faults in the
image rate will appear harsh to the user. A virtual reality user that uses an application
that has a very varying frame rate, or too low frame rate all together, will most likely
experience discomfort.

Motion-to-Photon Latency The motion-to-photon latency reefers to the time it
takes for the computer to recognize that the user has moved. That means the time it
takes from when the user makes a motion in reality, to when the application has finished
recognizing the movement, and represents it with a new frame[55].

2.5 Parametric Design

In this thesis, works of art are described through parametrization, both in geometry and
in visual style. The motivation behind this is the compact descriptions of artworks that
can be made by parameterizing them. Instead of storing the color-value of every pixel
(assuming the art is digitized), the art could be described through parametric values,
defining lines, shapes, and color for the entire work. From a parametric description. A
re-production of the art work could then be created through a process, reading the para-
metric description. This form of describing an artistic image or scene with parameters

CHAPTER 2. BACKGROUND 28

works better when the work has a higher degree of regularity. Regularity comes in the
form of repeated elements that are present in the artwork. Repeating patterns, like a
checkerboard pattern, are good examples of something with high regularity. A work of
art with high regularity is easier to parametrize, as the regular part is described once,
and then repeated when needed. If the artwork has low regularity, with more complex
details that don’t repeat often, then parametrization becomes more difficult. The rea-
sons behind choosing some of Pushwagners works described in section 1.5, are partly due
to their high degree of regularity. Instead of relying on a existing work of art, we can
also produce our own art. If we create these works of art from scratch, we can introduce
regular elements that are more suited for parametrization.

2.5.1 Parametric Equation

The simple explanation of a parametric equation, is that of a function of one or more
independent variables. These variables are called parameters. Parametric equations are
mostly used to express geometric surfaces and curves. Parametrization is the representa-
tion of such an object or surface described by one or multiple functions. An example of
a simple parametric function is a sinusoidal function (see Figure:2.10) with some input
parameters:

f(x, a, b) = a ∗ sin(x) + x/b

Depending on the parameters a and b, the curve changes. The interval of x is also part
of defining the curve. In this example, the interval is [-5,5]

Figure 2.10: A sinus curve plotted from a parametric sinus function. Here the function is on the
form f(x,a,b)=a*sin(x)+ x/b where a = b = 2.

Chapter 3

Solution

To attempt to answer the research questions, a working solution is needed. The solution
should generate scenes in a way that is relatively quick and not too cumbersome to work
with. The intent is to see if a scene can be produced, that has a likeness to the original
art, and then create an original scene without reference material. The method should
ideally have a parametric aspect to it, this way if the parametric variables are changed,
that change will be reflected in real-time. Re-reacting a work of art for 3D is split into
two separate parts for this thesis: The shape of the scene(geometries), and the visual
style(shaders).

3.1 Project Setup

This thesis focuses specifically on the development of VR applications inside the UE
framework. (UE) already comes pre-packaged with a project template for VR devel-
opment. The template will customize the settings for the development environment
towards VR, to enhance stability and performance. To realize the idea of generating
artistic scenes through visual scripting, we started by testing the capabilities of Unreal
Engine. There is a minimum of functionality that needs to exist in Unreal Engine for us
to be able to succeed in our implementation:

1. Implementation of custom runtime-editable mesh structures.

2. Support for low-level shader customization.

3. Enough flexibility in the engine to implement our descriptive meta-language.

The reasons behind these demands are connected to the goal of the thesis. Run-time
editable meshes allow for animation and movement, while also allowing the application
to generate the scene from a description (meta-language). Modern shaders program the
graphical rendering pipeline of meshes to the screen (see Section:2.2). A way to program

29

CHAPTER 3. SOLUTION 30

these shaders in a quick and detailed manner is needed if the visual styles are to be
replicated inside a 3D scene. Finally, a way to implement the meta-language is required,
as to make it possible to describe the scene both in shape and visual style.

3.1.1 Program Flow

Some quick context is given as to what states the UE program is in, to avoid any
confusion. There are two main stages of our application: the editor stage, and the
runtime stage. The editor stage is where all code production, scene description, and
scene editing is done. In this stage the UE application can be simulated inside the editor.
The code and blueprints (see Section:2.3.3) are editable, and also available for simulation
individually. When a simulation is started the state of the application transfers over to
run-time, where all the code and Blueprint functionality is run continuously. In the
run-time stage, it is not possible to edit any code, or descriptions of any scenes that
have been made, however procedural meshes can still be edited and animated. When
creating a new 3D scene, the scene itself is designed and edited during the editing stage,
but can only be experienced inside VR during run-time. The scene descriptions can
not be edited while the user is inside VR. It is possible to achieve this capability, but a
different approach would have to be implemented (see Section:7.2).

3.2 Procedural Mesh Support

Most meshes and model data in UE are represented using the static mesh component.
A static mesh component stores a models polygon data. Since the data is static, the
model can be cached in GPU memory, allowing for more efficient rendering. This thesis
requires the production of custom meshes from parameters at runtime. The static mesh
component does not support run-time mesh modification. This makes it inadequate for
this project, since we will produce meshes and edit them when the application starts,
and while it is running. Unreal Engine 4 includes an alternative to the static mesh, called
procedural mesh. By using a procedural mesh, all aspects of the mesh can be manually
defined, even during run-time. The procedural mesh is empty at first. Specific access
functions allows us to extract and add sections of mesh during runtime. In addition
to building meshes while the application is running, the polygon vertices can also be
animated, this will become useful later.

3.2.1 Runtime Mesh Component

The procedural mesh component provided by Unreal Engine fits well with our require-
ments (generate and edit meshes at runtime), but still poses a problem in that the
component is still under development, and as such lacks efficiency. If large meshes with
several hundred thousand vertices are to be edited, the procedural component might

CHAPTER 3. SOLUTION 31

not be able to achieve this at an acceptable rate of 60 to 90 frames per second. This
performance weakness is addressed by a third-party component designed to replace the
procedural mesh component. This component is named The Runtime Mesh Component
(RMC)[56] and is created by a third party component developer called Conway[57]. The
RMC claims to have higher performance than the original procedural mesh component,
while keeping full compatibility with existing code. This component is downloaded and
compiled together with the rest of the project.

3.3 Building Scenes

Since the project now has support for custom runtime editable meshes, a way to create
scenes for the application needs to be found. The method that the scene is built through
needs a certain level of flexibility and customization for us to be able to create scenes
that are complex enough. Some options have been tested in how geometry is defined,
and then displayed inside the engine.

3.3.1 Using External Modeling Tools

A way to construct a scene is to first utilize modeling software to create the desired
geometry. In the modeling software, meshes can be created and edited easily, because
of the access to complex and powerful meshing tools and mesh-editing features. An
export-import pipeline could then be formed, from the model tool, to unreal engine.
This is easily done, as most modern modeling tools support exporting to Filmbox or
Wavefront .obj formats. These formats are supported in UE and importing them is
straight forward. After importing, the scene is assembled using these custom models. If
the scene requires complex shapes that are difficult to produce through parametric or
procedural means, then this would be a good solution. One problem with this approach
is the rigidity of the creative pipeline. If we want to change a part of the scene, we
would have to go all the way back to the modeling program. The asset would have to
be re-modeled, exported, and then imported again. This strides against our original
intentions of creating art-like graphical scenes through parametrization. It also makes
it impossible to have dynamically changing scenes during runtime. Much of the work
to produce a scene is done in the modeling program. By using this method the idea of
utilize a visual language to compose the scenes is undermined.

3.3.2 Scene as a Function of Input

The second way that the thesis goal could be achieved, is more dynamic and easy to
edit than the previous one. Instead of importing scene objects as assets, the scene is
defined procedurally. We attempt to carefully construct the graphical scene as a function
of several inputs. Altering the input parameters will alter the scene accordingly. By

CHAPTER 3. SOLUTION 32

doing it this way a higher level of flexibility is gained, since everything is constructed
at runtime. If we want to change something in the scene, it is fast and easy to change
of the parameters. With this method every scene is generated by a function call, where
the only possible change to the scene after implementing it, is through changing the
parameters. The negative side of this solution lies in the fact that every new scene has to
be implemented from scratch. This promotes very little code re-use, and re-implementing
code for each scene can be very time consuming. In addition, if a developer wanted to
change a part of a scene that is not covered by the parameters (defined in the function),
the entire function would have to be changed in the code. This somewhat defeats the
purpose of implementing graphical scenes through parametric input, as this solution is
still cumbersome and time consuming. To help this fact one could create a library or set
of functions to re-use cross scenes.

3.3.3 Parametric Function Nodes

The third solution and final solution is based on implementing a library of individual
nodes, in the Unreal visual programming environment. This creates an expressive lan-
guage for producing ”parametric” scenes. And makes it possible for non-programmers
to make scenes too. Each node represents an action or statement made of the scene. For
example, to create a circular path of red cubes, only a few nodes would be needed. (see
Figure:3.1). Each of the nodes are implemented by short C++ functions that take one

Figure 3.1: An example of a very simple scenes described by a node flowchart.

Figure 3.2: An example of the circle of cubes that would be produced by the configuration
depicted in Figure 3.1

CHAPTER 3. SOLUTION 33

or several parametric inputs. In addition to parameters some nodes takes mesh data as
input and outputs modified data. This way we can chain together nodes and their ef-
fects. An advantage of this solution is the re-usability of the code. Very different scenes
can be produced simply by altering the composition of nodes, or changing the input
parameters such as the circle-paths radius or positioning. Adding and removing nodes
and changing their parameters is done in the editor. The editor detects any changes,
and automatically re-compiles the scene descriptions, built through blueprint. This way,
changes can almost instantly be reflected in the in-editor scene view. The function li-
brary of nodes can easily be expanded after need. The more functionality is added to
the library, the more powerful it becomes.

3.4 Using Unreal Blueprints

Unreal Engines Blueprint system is important for our work. Blueprint allows us to
represent our function library as nodes. Unreal Engine uses a dynamic component based
actor system to represents the in-game objects and their behavior. Every actor derives
said features from a template. These templates, called blueprints, serve as a description
of a possible in-game entity. The blueprint can be used to spawn this entity as many
times as required. A very important part of every blueprint, are the graphs that define
runtime behavior. These graphs are composed of a set of connected nodes. The nodes
and how the are connected, decide the blueprint behavior. This visual scripting language
will be used to execute our function library.

3.4.1 Creating our Blueprint

The first step is to create the blueprint itself. Unreal Engine Blueprints and how they
work are explained in section2.3.3. An empty blueprint starts as a blank canvas. After
creating the class, the developer is free to add pre-made components, like static mesh
components, or collision components. In the event that third-party components have
been imported and compiled, these can be included as well. In our case two specific
components are required, The RMC, and the Hierarchical Instanced Static Mesh Com-
ponent (HISMC). Without these components we will not be able to display any meshes,
or edit any of our mesh data. The HISMC is specifically needed to apply instancing
for heavily repeated meshes. With the components ready and set up, we can create our
code for generating scenes.

3.4.2 Creating Graph Nodes

As mentioned before in this thesis, the blueprint graphs are used as a way to describe the
scenes. To do this we need to expand the pre-existing set of nodes with a custom node-
set. Creating new functionality for an in-game object is as easy as creating a C++ class,

CHAPTER 3. SOLUTION 34

and have it inherit from unreal engines AActor class (see Listing:3.1). After creating
the class UE allows us to expose the C++ functions using annotations.

1 UCLASS()

2 class PARAMETRICART18_API AComposer_Scene : public AActor

3 {

4 GENERATED_BODY()

5 public:

6 UPROPERTY(EditAnywhere, BlueprintReadOnly)

7 URuntimeMeshComponent* RMC;

8

9 UPROPERTY(EditAnywhere, BlueprintReadOnly)

10 UHierarchicalInstancedStaticMeshComponent* HISMC;

11

12 UFUNCTION(BlueprintCallable, Category = "Composer-Mesh")

13 void Colored(FMeshData mesh, FColor color, FMeshData& outMeshData);

14

15 UFUNCTION(BlueprintCallable, Category = "Composer-Mesh")

16 void Snap(FMeshData target, FMeshData mesh, EFacingEnum facing,

FMeshData& outMesh);

17 }

Listing 3.1: Example of a basic class for use within the Unreal Engine. Written in C++ it also
makes use of UE specific annotations such as UCLASS and GENERATED BODY, to mark the
class and its variables with metadata. The metadata is used by the engine during compilation.
It contains a sample of our function library.

CHAPTER 3. SOLUTION 35

By letting our blueprint inherit from the C++ class, it will automatically gain access
to all functionality that has been annotated for use within the Blueprint editor. This
means every UFUNCTION will show up as callable nodes inside the blueprint graphs.
An example: the function definition Colored(see Listing:3.2) will be available as a node
when compiled with the UE annotations. (see Figure:3.3)

1 UFUNCTION(BlueprintCallable, Category = "Composer-Mesh")

2 void Colored(FMeshData mesh, FColor color, FMeshData& outMeshData);

Listing 3.2: The colored function, with the UFUNCTION annotation

Figure 3.3: The UFUNCTION from lst:3.2, exposed inside the blueprint editor

3.4.3 Generating Meshes in Code

The RMC allows us complete control over the mesh data at runtime. This can be
considered both positive and negative in our case. The cost of full control, is that some
support functionality is lost. We get very little help for actually creating the shapes
and geometries we want to display. Any data that should be put into the RMC needs
to be created manually. Unreal Engine 4.0 does not provide any method for generating
geometries, any of this functionality must be produced from scratch in code for the
solution to work. Producing all of the code manually would take more time than is
affordable, so two extra libraries are added into the project.

GaussianLib: A basic linear algebra library for C++. GaussianLib is required as
a dependency of GeometronLib. This library is also used when performing linear
algebra operations on meshes produced in our code.

GeometronLib: Library for generating basic geometric shapes, with some added
functionality for collision checking and mesh processing.

These two libraries are open-source and written in C++. The code source files are
added to the project directory, and are compiled together with the rest of the code.

CHAPTER 3. SOLUTION 36

Their functionality is accessed by importing any needed header-files. Blueprint nodes
that generate geometric shapes for the scenes (see Listing:3.3) can now be created in the
code.

1 UFUNCTION(BlueprintCallable, Category = "Composer-Mesh")

2 void AComposer_Scene::Cuboid(const FVector diagonal, const FVector

segments, bool winding, FMeshData& outMeshData)

3 {

4 Gm::MeshGenerator::CuboidDescriptor description;

5 description.alternateGrid = false;

6 description.size = { diagonal.X, diagonal.Y, diagonal.Z };

7 description.segments =

8 {

9 (uint32)segments.X,

10 (uint32)segments.Y,

11 (uint32)segments.Z

12 };

13

14 Gm::TriangleMesh mesh =

15 Gm::MeshGenerator::GenerateCuboid(description);

16

17 if (winding) FlipGmMeshWinding(mesh);

18 outMeshData.GmMesh = mesh;

19 CopyGmTriangleMeshToBuffers(outMeshData);

20 }

Listing 3.3: Code for generating a cuboid using GeometronLib.

Figure 3.4: The cuboid mesh generator from the code above, as a node.

CHAPTER 3. SOLUTION 37

The FMeshData Structure

Every function in the library that work on, or generates meshes, has the FMeshData
structure either as input or output. FMeshData is exposed to blueprint, which means
it can be passed around as a variable from one node to another. Without this struc-
ture it would become difficult to keep track of the mesh data. FMeshData works as a
wrapper around the Gm::TriangleMesh structure that is included from GeometronLib.
The reason the preexisting structure is wrapped inside an overlaying structure, is to
gain compatibility with the RMC, as the component can not process and render the
GeometronLib mesh structure directly. Instead, the data is stored in the FMeshData,
and then converted over to a RMC compatible format at the end of the scene creation
process. This FMeshData structure is available inside the Blueprint editor, and can be
used to transfer mesh data between function nodes, as seen in Figure:3.5.

Figure 3.5: Example graph of the flow mesh data between nodes. The mesh data is represented
by the blue wires connected to the nodes through input and output slots. The example graph
produces a colored cube, and an un-colored cylinder, then merges them together into a single
mesh.

CHAPTER 3. SOLUTION 38

3.4.4 Using the Runtime Mesh Component

It is not enough to just define and implement functions, we also have to make sure the
RMC gets access to the scene data so it can be rendered in the scene. The RMC treats a
single mesh as different sections. When loading in new mesh data, the section ID needs
to be specified, and the data is either inserted or overwritten in the slot according to
the ID (see Figure:3.6). Each section can be configured independently from the others,
as if it was a separate mesh.

Figure 3.6: Meshes are sectioned off into specified section slots. Sections are referenced through
a numeric ID, and can be individually retrieved or overwritten.

3.5 Creating a Scene

How one of the resulting scenes were built is explained, as to give an example of how
our function library is used in practice. The reference for this scene is Pushwagners
Selvportrett (see Figure: 1.1a). How a scene is constructed can be described with 5
steps:

1. Find parameters that define the scene.

2. Identify the geometries that could be used to represent our scene.

3. Construct description of the scene using meta-language (function library).

4. Apply desired visual style.

There is more to creating a scene than just these five steps, but they provide a general
overview of how a scene, with or without reference material, is constructed. The first

CHAPTER 3. SOLUTION 39

Table 3.1: My caption

Variable Detail

Radius The total radius of the entire scene geometry
Floor Height Height of the floor that is repeated on every level of our scene
Pillar Width Width of the pillars that are repeated.
Floors How many floors the structure will have in total
Sections How many circle sections the scene will have

step is to decide the parameters for the scene (see Figure:3.7). The parameters that

Figure 3.7: Selvportrett with an overlay of parameters that can be utilized to define the scene
desired 3D scene.

are identified could be any part of the scene found to be suitable for parametrization.
Suitable parameters are often scalar, such as length, height, ”amount of”, or frequency
(if the scene has a random element). The number of parameters identified could be any,
but for this scene five specific parameters are identified. The parameters from figure
3.7 are described in table 3.1. After the parameters are identified, a clean blueprint is
created. All of the scenes start out as clean Blueprints. Newly created Blueprints have
no pre-existing functions, graphs, or variables defined, and only have access to a default
set of nodes from the engine. The blueprint is then set to inherit functions and variables
defined in our C++ class. When a blueprint inherits from a C++ class it gains access to
all functions and variables that have been annotated (see Section:3.4.2). The design of
a scene starts with adding parameters in the form of variables inside the blueprint (see

CHAPTER 3. SOLUTION 40

Figure:3.8). Variables can be made public or private by the creator. A public variable

Figure 3.8: Variables for our scene. Some variables are public, and allow us to change parts of
the scene during runtime. Variables with P preceding the name are private variables that help
us store calculations while generating the scene.

can be changed from outside the editor when the Blueprint is instantiated inside a scene.
A private variable is locked, and hidden from outside of the editor. In this scene private
variables only store calculations that are done while generating the scene, and are only
there to reduce visual clutter inside the blueprint graph. The next step is to identify
the geometry that can best fit as ”building blocks” for the scene. If a viewer ignores
the many humanoid shapes in the artwork, the viewer will see that the artwork consists
mostly of straight angular shapes and large surfaces. This makes rectangular cubes a
good fit for attempting to approximate the scenes shape. In addition, the curved nature
of the scene can be approximated through curved pipes. The third step is to design the
blueprint graph that will describe our desired scene. The Blueprint graph in it’s entirety
is shown in appendix C. The graph is sectioned into different areas, that each construct
specific parts of our finished scene, step by step. After the graph is finished the resulting
scene is visible inside the editor. The parameters set from before can be changed, and
the scene is rebuilt accordingly.

3.5.1 Populating the Scene

Selvportrett depicts what looks like several thousand people populating the scene. To
approximate this inside the 3D scene, a human model was first created, and then copied
into the scene through geometry instancing. The model itself was created inside an
open source software, called MakeHuman[58]. MakeHuman consists of an editor where a
human model can be generated from different parameters (see Figure:3.10). An example
of some parameters that affect the final outcome are age, height, gender, muscularity,
etc. By changing these parameters the model is rebuilt according to the changes.

CHAPTER 3. SOLUTION 41

Figure 3.9: The Blueprint graph describing Selvportrett. The graph is zoomed out to get an
overview of the complexity of the graph.

Figure 3.10: MakeHuman model editor, where an array of parameters are used to define a human
model. A larger version can be viewed in Appendix C

CHAPTER 3. SOLUTION 42

3.5.2 Recreating the Visual Style

Generating the visual style of the 3D scene is done through Unreal Engine’s own Material
Editor, where the styles of different meshes can be designed. The original artwork has
been studied, to identify how best to replicate the visual style inside a 3D scene. The
original artwork only utilizes different tones of black and white to color the lines of the
work. It is likely that a graphite pen or a similar tool was used to produce the style. To
replicate this style in 3D, the geometry would have to be painted an even white color,
with only the edges highlighted in black. This poses a problem, as detecting geometry
edges inside a standard shader, just from reading geometry data is not feasible. The
reason for this is the fact that each potential pixel of the resulting image painted on
our screen, is processed in isolation, without knowledge of surrounding pixels. When
no information is available from neighboring pixels, it becomes impossible to determine
wherever the pixel represents an edge or not.

A workaround to this problem is through adding a post-processing step to our rendering
technique. To post-process is to add additional processing of an image, after it has
been fully rendered by the graphics pipeline. This post-process step will instead of
geometry (vertices), take a fully rendered image (pixels) as input to work on. When
working on an image or texture in a shader, every pixel is accessible at any time, making
it possible to determine if a pixel in the image is an edge or not. There are several
methods that can be used to determine edges in an image. In this thesis two of these
methods are used in tandem to increase the accuracy of the edge detection. After the
scene is rendered through a basic renderer (no lighting, special effects etc.) the depth
texture and normal texture (see Figure:3.11) is sent to the post-processing step. In this

Figure 3.11: Left: The depth information of the rendered scene (the orange highlight is a selection
highlight from the editor, and can be ignored). Right: The surface orientation(world normals)
information of geometry.)

step edges are detected based on the changes in color from pixel to pixel. The resulting
edge pixels identified by analyzing the two images is multiplied together and then used
to color the scene either white or black (see Figure:3.12). The specific UE material
implementation of the edge detection algorithm is detailed on the official Unreal Engine
forum[59]. The method and material code described in the forum was adapted for use
in this thesis.

CHAPTER 3. SOLUTION 43

Figure 3.12: Left: Unshaded view of the scene before post-processing. Right: After using depth
and normal textures to highlight edges on the scene.

Often when an artists draws by hand, small imperfections in the lines drawn are present
from either the tool creating uneven lines, or the artists hands being unsteady. Humans
have trouble drawing perfectly straight lines, while computers do this trivially. To
introduce an extra layer of realism to the artistic style, and to further replicate the
style of Pushwagner, some noise is added to the lines output by the post-processing step
(see Figure:3.13). This noise disturbs the lines slightly both vertically and horizontally,

Figure 3.13: Disturbing the lines slightly based on a deterministic source of noise.

creating lines that seem slightly imperfect. The noise is sampled from a high resolution

CHAPTER 3. SOLUTION 44

image colored with random values. This image serves the purpose of a deterministic
source of noise. Since the source of the random values never change, the perturbing of
the lines will stay constant from image to image. If true random values were used, then
the lines would change between images, producing lines that move erratically, which is
unwanted. It is worth noting that appearance transfer (see Section:1.8) could be used
to replicate the visual style, as opposed to a manually created shader material. This
would require implementing the appearance transfer method inside a shader, which is
outside the scope of this thesis. Applying appearance transfer would also cause the lines
of the image to change erratically, as the appearance transfer algorithm is calculated for
every single (image) frame of the running application, and the algorithm output is not
guaranteed to be consistent. Applying appearance transfer on a scene inside VR would
most likely result in inconsistent visuals, and as such is not used in this thesis.

3.6 Re-creating The Persistence of Memory

In section 1.3 it was mentioned that a secondary solution should be attempted towards
projecting Dali’s painting “The Persistence of Memory” into VR. The art-work “The
Persistence of Memory” (see Figure:1.2) is geometrically and stylistically different from
the previous artworks from Pushwagner. Instead of utilizing the previously described
method in this chapter, a completely different approach is taken in attempting to re-
create this art inside VR. The Persistence of Memory is a surrealist[60] piece of art.
Surrealism is a movement within the art world, where artists attempted to create illogical
and disconcerting scenes that still had a sense of photorealism. Dalis art-work introduces
soft or melting objects, when in reality, they should be hard and un-yielding. We attempt
to recreate part of the artwork in VR. As Dali does not have the structural regularity
as Pushwagner, we instead try to reinterpret the work and add ”parametric” behaviour
by realtime physics based simulation of the melted watches. The simulation technique
developed by NVIDIA, called NVIDIA FleX[61] is incorporated into the Unreal Engine.
To be able to utilize FleX, a completely separate version of Unreal Engine has to be
utilized, as the FleX framework is complex, and needs integration into a system before
it’s available for use. NVIDIA corporation has already provided a version of the Unreal
Engine, where FleX is integrated into the system, allowing users to make use of the
simulation technique together with the other functionality given by the engine.[62] A
scene is built, and populated with geometry to mimic the work of art by Salvador Dali.
First a very simple model of a wall clock was produced inside a 3D modeling application
(see Figure:3.14).

CHAPTER 3. SOLUTION 45

Figure 3.14: Simple mesh of a clock. Left: without texture inside modeling application. Right:
textured mesh inside Unreal Engine.

After the model is imported and textured, work was put into configuring the FleX
framework to ”attach” soft-body physics to the mesh. All physics calculations inside
the FleX simulation is done through calculations done on small particles, attached to
meshes. The mesh itself is allowed to deform according to the movement and position
of the attached particles. A container for these particles is configured and attached to
the mesh, shown in Figure 3.15. The physics simulation of the particles is configurable,

Figure 3.15: The previously solid and non-deformable mesh has hundreds of FleX particles
attached to the geometry, allowing it to twist and deform according to calculations performed
on the particles.

and are configured in this thesis to be slow-moving, have high friction, and to be non-
rigid. Other options include hard and rigid configurations, cloth simulations, and liquid
simulations if required. The clock model is brought out into our scene, and the attempt

CHAPTER 3. SOLUTION 46

at projecting The Persistence of Memory into VR is completed by adding support for
VR headsets and controllers. The final scene result is seen in Figure: 3.16.

Figure 3.16: Image of the scene inside the Unreal Engine Editor, where some objects are made
soft and malleable through physics simulation.

Chapter 4

Results

This thesis has looked at two different parts of creating artistic scenes. One is the
geometric aspect, where the artwork is broken down into its constituent geometric shapes.
We then try to reproduce this geometry using the final solution from section 3.3.3. The
second part is the visual aspect of a work of art. All artworks follow a certain visual
style. This style is dictated by both what colors the artist has chosen, and what tools
have been used. A graphite pen and a painter brush produce drastically different visual
outcomes. In essence we have attempted to imitate the artists style using modern shader
language. It’s not enough to simply break down a scene into geometries, and replicate
visual styles. Most artworks also need a 3D interpretation of the scene. As such some
freedom have been taken in interpreting the scenes and how they should be constructed.
How this interpretation has affected the end result is detailed for each work. The results
of our work are split into three attempted scenes. Two are inspired by the works of
Hariton Pushwagner, and one is an original scene without any reference material. The
fourth work is Dali’s work The Persistence of Memory, developed through a different
solution.

4.1 ”Selvportrett”(Selfportrait) by Hariton Pushwagner

Likely the most geometrically complex work that we attempt translating into VR is
Pushwagners Selvportrett. It’s scene includes a huge crowd of humanoid onlookers, all
standing in a domed area reminiscent of a stadium. Selvportrett gives off a strong sense
of space and scale due to the depicted surroundings. The bottom of the scene seems
to stretch downwards endlessly. The result of the generated scene can be seen in the
figures, 4.1, 4.2, and 4.3.

47

CHAPTER 4. RESULTS 48

Figure 4.1: Close up of a single floor of the scene

Figure 4.2: Same area seen from the side

CHAPTER 4. RESULTS 49

Figure 4.3: Looking down the middle of the scene, with the spiral of humans going down. Note
how details get lost in the distance due to the nature of the shading style.

In Figure: 4.3 some of the lines are not drawn near the bottom. Looking far down into
the scene, the distance and viewing angle is such, that the depth texture and world
normal texture becomes too uniform in depth and color, making it increasingly difficult
for the shader to discern edges. It is possible that a completely different approach to
recreating the visual style would be needed to eliminate the problem.

CHAPTER 4. RESULTS 50

4.2 Manhattan by Hariton Pushwagner

The second work Manhattan is simpler in geometry and style. The artwork was inter-
preted to convey a wavy movement which is incorporated into the scene by dynamically
changing the geometry. The scene mostly consists of incredibly tall square shaped build-
ings. “Manhattan”, much like “Selvportrett” does not depict or indicate any end to the
scene, as the entire picture stretches endlessly upwards and downwards and forwards.
When translating this to a 3D scene we can not represent this infinity, as it would re-
quire us to create an infinite amount of geometry. Despite this problem we still want
give the sense of scale and height from the original work. In the artwork Manhattan
(see Figure:1.1a) the buildings depicted seem to sway and bend as if they were made
of a softer material. This was translated into a swaying motion over time, adding a
temporal dimension to the scene. The movement of the buildings was represented by a
simple wave function (sinusoidal) based on the time passed inside the application. This
movement was applied through accessing the mesh of each building, and moving each
vertex slightly over time. The visual style of this scene was produced through standard
shading with shadows and light calculations. This means no special post-process effect
was applied to achieve this style. It was decided that standard UE rendering was suffi-
cient for the scene, and that most of the style transfer could be achieved by setting the
colors on the buildings, and applying shadows.

Figure 4.4: A birds eye view of the Manhattan scene, seeing how it is constructed.

Figure 4.4 shows how walls where placed on either side of the scene, this is done to

CHAPTER 4. RESULTS 51

prevent the viewer breaking immersion, by looking between buildings. Without anything
blocking the view, the user would look out into a completely empty field, breaking the
attempt at conveying the idea of the viewer being enclosed in a maze of buildings.

Figure 4.5: Looking up into the sky.

CHAPTER 4. RESULTS 52

4.3 Original Scene - Reactor

Creating a scene without referring to an external work of art allows us to test the
frameworks ability to produce scenes. The created scene was intended to be reminiscent
of some futuristic construction. The entire scene rotates around it’s own axis, together
with the bands of light each rotating along their axis.

Figure 4.6: Two different viewing angles of our original scene. The smaller cube is where the
viewer stands and looks at the surrounding structure.

Figure 4.7: An outside view of the scene from further away.

CHAPTER 4. RESULTS 53

4.4 The Persistence of Memory

For this scene a different method was attempted. The original work of art contains
surrealistic and illogical shapes, where clocks, expected to be rigid and hard, appear
to be soft and malleable. By using soft-body physics simulation in real-time through
NVIDIA FleX, a re-creation is made for use inside VR. The scene performs well in

Figure 4.8: The Persistence of Memory scene inside Unreal Engine is intractable using controllers,
where the controllers are represented as hands inside the scene.

real-time, and the clocks fastened on different surfaces are all intractable through hand
controllers. For this scene, no special visual style was incorporated, other than a standard
shader with lighting, and textures of grass and water. The original artwork by Salvador
Dali has a more simplistic and flat visual style, however this was not pursued in this
thesis due to time constraints.

Chapter 5

Evaluation

A solution used to answer our research questions has been provided through a function
library, that can create geometry, this library can be used to compose geometry in
various ways to generate a scene that can be viewed in VR. This thesis does not solve
a well defined concrete problem, but is more an exploration of VR in new domains.
Therefore an split evaluation is done, to get subjective points of view on our work. Our
evaluation is divided into two sections. One section is objectively evaluating the method
and solution itself, while the other is separated from the solution, focusing on analyzing
the feedback provided by a public showing of our results. By evaluating these two parts
of the work, an answer to the research questions from section 1.4 is given.

5.1 Evaluating our Method

The first part of the evaluation solely focuses on our solution, and how well it serves
to reproduce the artistic scenes, together with our own original scene. It might be
difficult to assess and evaluate our solution, as we are not solving a specific problem,
but instead exploring the possibilities VR has a an artistic medium. The ease of use
when a new scene is created is evaluated, and what limits the solution has when it comes
to portraying scenes is discussed. The performance of our solution and the produced
results is analyzed. We measure how long it takes to create a scene at startup, and how
well that scene performs during runtime. The latter is particularly important to achieve
a good VR experience.

54

CHAPTER 5. EVALUATION 55

Table 5.1: Hardware specifications

Hardware

Processor Intel Core i7 7700K 4.20GHz
Graphical Processor NVIDIA GeForce GTX 1080 8GB
RAM 32 GB DDR4 2400 MHz
Motherboard ASUSTeK PRIME Z270-A
Storage 500 GB NVMe SAMSUNG MZVLW512 SCSI

5.1.1 Measuring Numerical Performance

As mentioned in subsection 2.4.2, the numerical performance of a VR application is
important for the experience of the user. This means if our scenes do not perform well
enough, the quality of the experience might diminish as a result. The computer hardware
that was used to both develop and run the solution is noted in Table:5.1. To help us
measure the performance of our scenes we use an external tool called Performance Head-
Up Display (HUD) [63]. This tool is part of the Oculus Debug Tool (IDT)[64] package.

Figure 5.1: The performance head-up display showing performance numbers inside our Selv-
portrett scene. The runtime performance in this instance stays around a steady 90 frames-per-
second.

While we are running the scenes in real-time, the Head-Up display gives us a visual
summary of different performance numbers (see Figure:5.1). We care mostly about two
specific numbers: Frames Per Second (FPS), and Motion to Photon Latency (MTPL).
The meaning behind these numbers are detailed in 2.4.2. The other data in the HMD
HUD that is not FPS or MTPL are discarded, as they do not directly affect the user
experience. The performance values for each scene is noted down.

CHAPTER 5. EVALUATION 56

Table 5.2: Runtime Performance

Scene FPS MTP Latency

Selvportrett 90fps - 35fps 23ms - 80ms
Manhattan 90fps - 89fps 29ms - 33ms
Original scene 90fps - 87fps 22ms - 23ms

The numbers in table 5.2 represent the frame-per-second and motion-to-photon latency
of each scene, as recorded while manually testing the scenes. As a basis of reference we
know that the official recommended FPS for VR is 90 FPS (see section 2.4.2), anything
below this should be considered non-optimal, but is still passable. When we go below
60 FPS the low frame-rate becomes very noticeable, and can quickly lead to discomfort
and nausea. MTPL is different, in that lower numbers are better. A optimal MTPL
number for good VR presence is stated to be below 20ms[65]. Anything above this
target up to 60ms is considered passable. If the MTPL rises above the upper bound, it
might lead to discomfort or sense of presence being lost for the user. The data in table
5.2 show that both Manhattan and our original scene have optimal FPS, with a steady
frame-rate of approximately 90. The MTPL is also well within acceptable range, with
Manhattan having the high latency most likely due to it’s heavier CPU usage from the
animated motion. This was expected, as neither Manhattan or our own scene are very
complex or demanding on the hardware. The numbers in Table:5.3 show the triangle
count for each scene attempted. Despite Selvportrett having a very high triangle count,
it performs well, most likely due to the use of LOD and geometry instancing. In total for
Selvportrett, 5400 individual human meshes were instanced around the scene. Note that

Table 5.3: Triangle count for each scene

Scene Triangle Count

Selvportrett 51 651 304
Manhattan 186 472
Original Scene 17 276

with our parametrized scenes we can easily change our scenes to be much more taxing
on the hardware, bringing the performance numbers down drastically. We have however
chosen the scenes (in this case only Manhattan) to be as close to the original, without
sacrificing performance. Selvportrett as a scene is very different, as the heavy use of
instancing brings our performance down drastically. Instantiating thousands of models
in the scene makes it difficult for the hardware to keep up with the 90 FPS target number.
Depending on where the user looks, the amount of instances in view changes, making the
frame-rate vary wildly from 90 to 35 FPS. The drop in performance depending on viewing
angle is noticeable within VR, but has not incurred any great amount of discomfort or
nausea. The only scene where the MTPL exceeds 60ms is Selvportrett. This increase

CHAPTER 5. EVALUATION 57

Figure 5.2: When looking out into the center of the scene, the frame-rate drops significantly,
down to roughly 35 frames-per-second. The MTPL latency also increases drastically.

in lag is not very noticeable, likely due to the low amount of hand interactions in the
scene.

5.1.2 Creating and Altering Scenes

Creating 3D scenes using parametric function nodes is fast and allows for the creator
to be experimental as the scene is being created. The ability to view a scene as it is
constructed, helps the creator evaluate changes made to the scene, as any change is
represented immediately in the editor. By constructing the scene through a node-graph,
it is possible to change any part of the creation process, making possibly drastic changes
to the scene in a short span of time. As a practical example, the resulting scenes
were re-designed many times during this thesis. The process of creating a new scene
became shorter and more efficient as the function library grew more powerful. The final
resulting scenes shown in chapter 4 did not take more than a few hours to create each.
The negative part of function nodes is the fact that all scenes must be constructed with
the provided nodes and geometries as building blocks for the scene. This is potentially
limiting, as it is difficult to cover every possible user scenario with a limited function
library. This problem can be fixed partly by giving users the ability to define their own
custom nodes, but this solution does not eliminate the problem entirely.

As the complexity of a scene grows, the amount of nodes and wires needed to repre-
sent it grows with it. This increase of nodes produces visual clutter where it becomes
increasingly difficult to maintain the graph.

Careful structuring of the graph and use of sub-graphs is effective in reducing visual
clutter, as seen in Figure: 5.4, and Figure: 5.5.

CHAPTER 5. EVALUATION 58

Figure 5.3: A large amount of nodes, making it more difficult to get an overview of the graph.

Figure 5.4: Using sub-graphs to reduce clutter in the scene. Each node represents multiple nodes
organized into a sub-graph.

Figure 5.5: Expanded view of one of the sub-graphs from Figure 5.4.

CHAPTER 5. EVALUATION 59

5.2 Evaluating our Feedback

We do not focus solely on the numerical evaluation of this solution. Our goals and
questions are also focused on the perceived experiences that users have when viewing
our scenes compared to the original. To acquire some usable data on this matter we
conducted a public demo session, where any person interested could come and test
our scenes inside VR (see Figure:5.6). The demo was located at the Faculty of Fine
Art, Music and Design [66]. The reason for choosing this location was wanting to have
qualified respondents from the local art community. Since our thesis is partly art related,
gaining some extra insight from people that study or teach art related subjects would
be valuable.

Figure 5.6: Art student viewing one of our scenes from our demo booth. Behind the projector
is the original Selvportrett image, and on the wall behind is projected the scene that the user is
looking at.

5.3 Public Demo

A suitable location at the faculty was allocated, and a small booth was erected. Anyone
among the faculty could come over, put on the headset, and would be walked through the
two scenes that were available at the time. Some context surrounding our work would
be provided, including showing a original print of selvportrett so they could directly
compare the artwork with the VR version. After being presented with the original work
they would be allowed to view the scenes. First the selvportrett (see Figure:1.1a) scene,
then the Manhattan (see Figure:1.1b) scene. After the demo the participant would be
prompted to answer a sheet of seven questions. The questions are listed as such:

CHAPTER 5. EVALUATION 60

1. Are you a student or do you have higher academic rank?

2. What are your initial impressions of the scenes?

3. How do you think the scenes work, compared to the original art?

4. Do you think the scenes capture the spatial experience of the original scenes?

5. What do you think my role is in this production, am I an artist?

6. Do you think virtual reality changes the possibilities in artistic expression?

7. Do you use, or do you think you will use VR tools to create art? If so, why?

The seven questions were prepared to be related to our research questions posed at the
start of our thesis. This way, by analyzing the response, we could start to answer some
of our research questions. The reason we ask for initial impressions is to create a picture
of their more immediate reactions. If they respond that the scene is underwhelming or
fail to impress them in any-way, then we would have failed in trying to create a passable
VR experience. Here the users have the opportunity to voice any possible issues they
could have with the experience. We also ask them to compare the VR scene to the
original artworks, giving us some insight into how viewing the work of art in 3D changes
the experience, as opposed to viewing it on a 2D surface.

5.3.1 Response

Most of the response from the demo session was positive, and we acquired some insight
into what opinions people from the art-community have surrounding VR as an artistic
medium. Since our questions were answered in free-text and not on a numerical scale,
it becomes difficult to present the results with graphs our figures. Instead an analysis
of the response was made, and then condensed down into a trend for each question
asked.

5.3.2 Oral Feedback

In addition to the written question response, we also take note of the immediate response
of the users. Some of the most genuine and un-altered response one can gather from
these demos are the initial impressions viewers have, in the instant they see the scene
inside VR. Some of these oral responses have been noted down.

• ”Yes, now I really am inside it.”

• ”Woa, I don’t dare look down.”

• ”With the movement (in the scene) I could look at this for a long time.”

• ”Are there only two scenes?”

CHAPTER 5. EVALUATION 61

• ”Freaky! So you’ve made this in 3D? That must have taken a lot of time!”

It’s clear from the oral response that our scenes invoked a feeling of immersion and
presence in the scene immediately. This is positive, mostly because many artists look
after ways to deliver a message, or invoke a feeling in the viewer. If our VR manage to
invoke a stronger reaction, then it would indicate that our solution have been successful
in translating these traditional works of art over to VR.

5.3.3 Written Feedback

The question answers are summarized, and a trend for each question asked is provided.
When examples or quotes are given from the list of answers, these will be abridged
and translated. All written feedback is also provided un-abridged and un-altered, in
appendix A.

Question 1: Are you a student or do you have higher academic rank?

Overall 4 out of 17 answers to this question stated they had higher academic rank. 12
out of 18 respondents stated they were students at the faculty.

Question 2: What are your initial impressions of the scenes?

This question got a generally positive response. Eight of the fourteen responders men-
tioned the immense sense of scale and height they got from the scenes. Comments were
made on the detail and execution of the scene, and how it is impressively constructed.
One respondent commented how the scene appeared out of focus or slightly blurred out.
This is likely due to the loss of detail that happens at distant parts of the scene as a result
of our method of replicating the originals visual style. (See section:) Three respondents
mentioned how they initially felt disconcerted emotionally by the scenes, as they had a
scary or eerie atmosphere. Three respondents reported they felt small or insignificant
when viewing the scenes.

Trend Impressed by the sense of large scale and the detail of the scene. Certain
respondents felt disconcerted or insignificant.

Examples

• ”Huge, large, space”.

• ”Well thought out and executed”

• ”Spacious interesting, spooky”

CHAPTER 5. EVALUATION 62

Question 3: How do you think the scenes work, compared to the original
art?

Here we get a sense of how the artistic scene changes when translated from a 2D canvas
over to a 3D scene in VR. Most response talks of how it enhances what the artist
probably tried to convey, that of scale in both space and number. Both Selvportrett
and Manhattan have massively repeating elements, and this element is preserved in our
digital scene. According to the response, the viewer is transported from a passive viewing
positing from outside the work, to a more active position, where they can move and see
the work from different angles. Many stated that this effect heightens the experience of
the work. Both question one and three had a respondent mention that the VR scenes
appeared blurry, this could either result from the monitor resolution from our HMD not
being high enough, or the visual effect placed on our scenes.

Trend What was portrayed by the original 2D artwork is transferred and for many
enhanced beyond the original work.

Examples

• ”It’s much more vivid than it’s original work.”

• ”It definitely adds a dimension to the original art that should have been there all
along.”

• ”You immediately realize what artwork it is, and you feel you have truly entered
the artworks.”

Question 4: Do you think the scenes capture the spatial experience of the
original scenes?

The response to this question was almost uniformly positive. 11 out of the 13 answered
the question with some form of ”yes”. Four out of 15 respondents expressed that the VR
scene enhanced the experience, beyond the original. One answer argued the perspec-
tive of the scene was not captured due to the original having a ”fish eye perspective”.
By changing the viewers perspective inside the application this effect could be repli-
cated.

Trend Keeps the experience, and for many viewers, enhances it.

Examples

• ”Yes definitively.”

CHAPTER 5. EVALUATION 63

• ”Yes - feel even larger”

• ”Not quite. In the original it seems like the viewer has a lot more in a fish eye
perspective. To get this experience I think the camera ”lens” should have a lower
focal length.”

Question 5: What do you think my role is in this production, am I an
artist?

Five out of Fifteen answers expressed disbelief towards me, the creator of the scenes,
being an artist. Translating a work into a different medium is not enough to make oneself
an artist. According to some of response, we are people who have enough knowledge
about this technology to perform this translation, however, that is not to say that one
is an artist. In the event that something original was created in VR, then we could
allow ourselves to be the artists. Three out of Fifteen meant that i am an artist, and
one answer in particular, from a respondent with higher academic rank, argues towards
me having the role of an artist. Art is about imitation, and ”giving form to an shape
where there was none”. This is in contrast to many other answers, that argued simply
imitating a style and translating it over to a different medium is not enough to set my
role as an artist. Other respondents argued that instead of an artists role, i had the role
of a translator (from medium to medium), or a facilitator of translating the art. The
divide between answers makes it difficult to state with confidence that i am an artist,
however a discussion around the topic can be made.

Trend Arguments for and against me being an artist is made. Translating a work
from 2D to 3D might not be enough for me to be considered an artist. Different roles
are suggested, such as translator or facilitator.

Examples

• ”In this context, adapter.”

• ”No, you are facilitator.”

• ”Well yeah, is not all art about imitation? To give form to an shape where there
was none? To create is to be a creator and that is to be an artist, coding or not.”

CHAPTER 5. EVALUATION 64

Question 6: Do you think virtual reality changes the possibilities in artistic
expression?

Mostly answers in the positive. A few comment how, while VR gives new experiences,
it also makes users dependent on more hardware than before. The biggest effect of VR
is the ability to transport the viewer into a different role in the scene, from static to
active. VR as a medium will not replace any other medium according to respondents,
but will stand as a new medium with entirely new possibilities.

Trend Expands the possibility of what is possible for artistic expression.

Examples

• ”Yes. & new mode of expression.”

• ”Yes. Definitively. It opens up new worlds of opportunities never ever imagined
before.”

• ”Definitively, but also makes you depend on more tools like cables, glasses, pc etc.”

Question 7: Do you use, or do you think you will use VR tools to create art?
If so, why?

This question gave a more mixed response. Many would like to attempt using VR tools,
but not on a full time basis. Most mention VRs ability to give the viewer a increased
feeling of presence in the scene. This makes VR a good tool to leave more lasting
impressions. Others who did not want to utilize VR in their work mentioned how they
prefer their traditional tools.

Trend Both yes and no. VR is still under development, and needs to be advanced fur-
ther for it to become more viable for users that are used to more traditional tools.

Examples

• ”It will depend on the context, but it’s a possibility.”

• ”No. I don’t like making digital art. And i got dizzy.”

• ”Yes. Architecture projects.”

CHAPTER 5. EVALUATION 65

Question Summary

We have shown our result to qualified respondents and they provided answers to our
questions. Their initial impressions of our scenes were varied, with many stating they
were impressed by the detail, and answered the experience was immersive. Most of the
respondents answered that our scenes captured the original artworks well, and that the
feeling of massive scale and size that the original art attempted to portray was kept
intact, if not enhanced. Some respondents commented that the active viewing angle
provided by VR gave them a feeling of their own insignificance or uneasiness. This
suggests that our scenes might have something added to them that was not present in
the original 2D works. Many respondents meant that VR is a new medium suitable for
artistic expression. The ability to much more strongly involve the viewer inside a work
of art or virtual scene makes VR into a valuable tool for future artists. The willingness
of the respondents to use VR as an artistic tool in the future were mixed. Some state
their preference for non-digital art as their reason for not choosing VR as their medium.
Others felt that VR as a technology was very interesting, and could see it as a tool for
expressing art and design. When asked if I, the producer of the scene was an artists, the
response was mostly ”No”. Several arguments were made towards us not being artists
because we merely translated the work over to a different medium. In this sense I was
adapting art, not creating it. One answer argued that simply creating the scenes put
me in a creator role, and this would qualify me as artists.

5.4 Feedback Related to Research Questions

The research questions posed in section 1.4, are re-iterated here:

1. How can a two dimensional work of art be interpreted through virtual reality?

2. What happens when a two dimensional work of art is transformed through these
processes?

An attempt at answering these questions can be made, as we have evaluated our solution
and the public response from our demo.

How can a two dimensional work of art be interpreted through virtual reality?
We have iterated through three solutions (see section: 3.3) towards creating artistic
scenes inside VR. This directly relates to the first research question, of how we can
interpret from two dimensions to three dimensions. Our first solution described in section
3.3.1, is closer to other previous attempts at interpreting a know work of art, an example
of this is (...) detailed in section: (...). Here modeling tools are used to create the scene
in a manual process. Our third solution from section: 3.3.3 produced our results, and
utilizes parametrization with a visual language to describe the produced scenes. Our
solution distinguishes itself from other attempts, as they are different in their methods

CHAPTER 5. EVALUATION 66

and tools used in the production. The evaluation of the performance, comfort, and
ease-of-use of our solution stated that the scenes produced are fully viewable in VR, and
represent the original artworks to a sufficient degree. The analysis of collected response
from the public demo (described in 5.3) supports this statement. The solution is also
generic enough that it is not limited to a small set of artworks with a specific style. This
solution could be applied to other works of art, and would still be able to reproduce a
scene of sufficient quality.

What happens when a two dimensional work of art is transformed through
these processes? How a known work of art might change depending on the medium
it is represented in, could be particularly interesting for artists. By asking questions
and gathering answers from qualified respondents, we have gained some insight into how
our scenes might have changed when adapted to a 3D medium, viewed inside virtual
reality. It is evident from both immediate oral response, and written response, that a
viewer of our scene in VR is transported to an active viewing position inside the artwork.
This active viewing position brings a different perspective on the art, and can help an
artist invoke emotions that might have been more difficult to achieve on a traditional
2D medium. Feelings of space, scale, and movement are transmitted well in particular
through VR as is suggested by the response from users that viewed our scenes.

Chapter 6

Conclusion

In my work I have successfully attempted to find a solution towards translating 2D
works of art into a temporal and navigable 3D space, viewable in VR. In addition to
this goal, I wanted the solution to be powerful and flexible enough to create my own
original scenes, without using reference artwork. I wanted to reconstruct the artworks by
parametrization, which would allow us to describe our scenes with function parameters,
and have the computer interpret these descriptions and construct the scene for us. By
altering the description, changes to the scene could be made quickly with minimal effort.
The translation from 2D to 3D is split into two parts. One part focused on geometry re-
construction, and the second part focusing on keeping the visual style of the artwork as
it was translated over from 2D. A solution that fulfills the goal of creating parametrized
artistic scenes in VR is proposed.

Creating a new scene starts with creating a blank blueprint that inherits the functions
from our function library. From this blank blueprint we can start inserting and connect-
ing nodes to form our desired geometry. By changing the input to the nodes or their
composition, we alter the resulting output. The changes in our description is represented
in the model as we make them. This makes prototyping scenes easier, as we can see the
output of our description as we construct it.

6.1 Geometry and Visual Style

For this thesis the method focused on splitting a work of art into two separate parts.
One part looks at the geometry of the original artwork, and attempts to recreate this
geometry in 3D space. The second part focuses on the visual style of the art, and how
the art style of something projected from 2D to 3D can be kept intact between mediums.
This way of splitting the focus of an artwork into two separate parts, to make it easier
to translate it to a different medium, is effective. It is possible that this method could
be applied to a wide range of differing art-works with different styles.

67

CHAPTER 6. CONCLUSION 68

6.1.1 Geometry

Our solution depends on visual scripting using nodes and parameter inputs to describe
a scene and it’s constituent geometry. We used the Blueprint system of Unreal Engine
4.0 to prototype a library of function nodes designed towards constructing geometry
and placing them in our scene. Using this method we constructed the geometry of three
scenes, viewable in VR.

6.1.2 Visual Style

Utilizing the power of modern shaders we attempted to transfer the visual style of the
works of art into a 3D context. The result of this was a graphical style that resembled
the original to a high degree. It’s clear that modern shader technology is powerful
enough, that with some effort we can imitate the style of at-least the stylistically simple
(flat-coloring, black-and-white) work of art we chose as reference material.

6.2 Performance and Comfort

Using tools provided by Oculus VR[63], we tested our scenes in VR, and gathered per-
formance data during the tests. Our most complex and demanding scene was the scene
translated from Selvportrett (See Figure:1.1a). This scene required several thousand
individual humans to be shown in frame at any given time. With the use of hardware
instancing and LOD, we managed to populate the scene with 5400 individual human
models (90 models per floor times 60 floors total), totaling to an average of 39 million
triangles in view at any given time. Depending on the view of the user in VR the
FPS would change drastically, but would never reach a level that was un-acceptable
(see Section:5.1.1). Even though some scenes were demanding on our hardware, we still
achieved a passable VR experience that could be safely displayed to a public audience.
We observe that modern hardware instancing and LOD techniques are capable of ren-
dering very geometrically detailed scenes in VR, without diminishing the experience to
an un-acceptable level.

6.3 Reception of Results

We held a public demo at University of Bergen, Faculty of Art, Design and Music[66].
Where we asked viewers a set of questions related to our thesis. The reception was
positive overall, with more than one respondent wanting to see more scenes produced by
our solution. When describing their impression of our scenes compared to the original
works they were based on, they described feeling a greater sense of presence and sense of
scale. The original works of art contained heavily repeated elements, and large spacious

CHAPTER 6. CONCLUSION 69

environments. This large scale in both the size of the scene and amount of visible
elements was fully present in our 3D scenes, according to respondents. Many had the
opinion that the more active viewing position gained from actually viewing the scene
from the inside through VR, changed their look on the artistic works. Some respondents
described feeling small and insignificant in the scene, or being disconcerted by the works.
These are things that were not present when viewing the original works on a 2D surface.
VR is an excellent medium for conveying space, distance, and scale. This shows that it’s
possible when using VR as an artistic medium, for viewers to gain a sense of presence
in the artwork, which in turn could give viewers new perspectives on the art.

Chapter 7

Further Work

7.1 Expanding Function Library

We produce the geometry of our scenes from a function library that we developed as
part of our solution (see Section:3.3.3). The complexity limit of the scenes we make is
directly related to the limits of our function library. Splines, axis-symmetry, and nodes
for Constructive Solid Geometry (CSG), are all ideas for ways to expand the power and
flexibility of our library. By adding more functions for geometry we help eliminate some
of the problems currently present in our solution surrounding the production of scenes
with less regularity present.

7.2 Custom Scene Editor

One possible expansion of our solution would be the creation of a custom editor for
composing the scenes produced. This editor would be designed so users without previous
knowledge of computer graphics or computer science could use it. If VR is to become
a suitable platform for artists to express themselves, then the tools created for them
also need to be designed with artists in mind. Artists could have different needs than a
architect or game designer, these needs have to be identified and accounted for. In our
solution we utilize Unreal Engine Blueprints as a node editor, but it is possible that with
a custom solution, we could achieve less visual clutter for complex scenes. A much more
extensive solution for a custom editor would be an editor that worked inside VR. If a
user could put on a HMD, and start our the editor, he/she would be able to view the
scene inside VR as it is being constructed. The advantages of viewing a 3D scene inside
VR while you construct it, is the ease of creating the scene at a correct scale. When
editing a scene on a 2D monitor, it is not immediately apparent to the creator how the
scene will look and feel inside VR. By viewing it in VR while we construct the scene,
we immediately get a sense of how the scene is going to appear when other users view

70

CHAPTER 7. FURTHER WORK 71

it. To achieve this we would have to construct a tool that integrates virtual reality from
the start, where a user can create, edit, and connect nodes using interactive controls in
our application. This would give creators a 3D space to place their nodes inside, which
could possibly help eliminate visual clutter, and make the tool more intuitive for users
with less experience in 3D design, and VR.

Bibliography

[1] Epic Games. Unreal Engine Home Page. 2018. url: https://www.unrealengine.
com/en-US/what-is-unreal-engine-4 (visited on 02/27/2018).

[2] Pushwagner. 2018. url: https://www.pushwagner.no/ (visited on 04/25/2018).

[3] The Editors of Encyclopaedia Britannica. Salvador Dali. 2018. url: https://www.
britannica.com/biography/Salvador-Dali (visited on 05/28/2018).

[4] Tilman Osterwold. Pop art. Taschen, 2003.

[5] SELVPORTRETT. 2018. url: https://www.pushwagner.no/galleri/kunst/
SELVPORTRETT-MONOKROM_1_1_1_1_1_1 (visited on 04/25/2018).

[6] Manhattan. 2018. url: https://www.pushwagner.no/galleri/kunst/MANHATTAN_
1_2_1 (visited on 04/25/2018).

[7] Phaidon. Salvador Dali’s The Persistence of Memory explained. 2018. url: http:
//uk.phaidon.com/agenda/art/articles/2016/may/10/salvador-dalis-

the-persistence-of-memory-explained/ (visited on 05/22/2018).

[8] Wikisource. A Compendium of Irish Biography/Barker, Robert — Wikisource.
[Online; accessed 30-January-2018]. 2011. url: %5Curl % 7B % 20https : / / en .

wikisource.org/w/index.php?title=A_Compendium_of_Irish_Biography/

Barker,_Robert&oldid=2553696%20%7D.

[9] Panorama Cross Section. 2018. url: https://lh4.googleusercontent.com/
vjSYy7kzNmhTBID-UaW3mXwTu0TTIbWocMfR9mIzQRV_qakspcEIRWEhg6HWuAgUMpf52jHlTvjspjOKDbeWWd_

ohWzjnFqCY9nGgh-9JmVUEpYr2zjwENaeRPGQx4UNj6xrFGn2tCA (visited on 05/31/2018).

[10] H.M. L. Sensorama simulator. US Patent 3,050,870. 1962. url: https://www.
google.com/patents/US3050870.

[11] Eunji Oh, Minkyoung Lee, and Sujin Lee. “How 4D Effects Cause Different Types
of Presence Experience?” In: Proceedings of the 10th International Conference on
Virtual Reality Continuum and Its Applications in Industry. VRCAI ’11. Hong
Kong, China: ACM, 2011, pp. 375–378. isbn: 978-1-4503-1060-4. doi: 10.1145/
2087756.2087819. url: http://doi.acm.org/10.1145/2087756.2087819.

[12] Nikita Fedorov. The History of Virtual Reality. 2018. url: https://www.avadirect.
com/blog/the-history-of-virtual-reality/ (visited on 05/31/2018).

72

https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.pushwagner.no/
https://www.britannica.com/biography/Salvador-Dali
https://www.britannica.com/biography/Salvador-Dali
https://www.pushwagner.no/galleri/kunst/SELVPORTRETT-MONOKROM_1_1_1_1_1_1
https://www.pushwagner.no/galleri/kunst/SELVPORTRETT-MONOKROM_1_1_1_1_1_1
https://www.pushwagner.no/galleri/kunst/MANHATTAN_1_2_1
https://www.pushwagner.no/galleri/kunst/MANHATTAN_1_2_1
http://uk.phaidon.com/agenda/art/articles/2016/may/10/salvador-dalis-the-persistence-of-memory-explained/
http://uk.phaidon.com/agenda/art/articles/2016/may/10/salvador-dalis-the-persistence-of-memory-explained/
http://uk.phaidon.com/agenda/art/articles/2016/may/10/salvador-dalis-the-persistence-of-memory-explained/
%5Curl%7B%20https://en.wikisource.org/w/index.php?title=A_Compendium_of_Irish_Biography/Barker,_Robert&oldid=2553696%20%7D
%5Curl%7B%20https://en.wikisource.org/w/index.php?title=A_Compendium_of_Irish_Biography/Barker,_Robert&oldid=2553696%20%7D
%5Curl%7B%20https://en.wikisource.org/w/index.php?title=A_Compendium_of_Irish_Biography/Barker,_Robert&oldid=2553696%20%7D
https://lh4.googleusercontent.com/vjSYy7kzNmhTBID-UaW3mXwTu0TTIbWocMfR9mIzQRV_qakspcEIRWEhg6HWuAgUMpf52jHlTvjspjOKDbeWWd_ohWzjnFqCY9nGgh-9JmVUEpYr2zjwENaeRPGQx4UNj6xrFGn2tCA
https://lh4.googleusercontent.com/vjSYy7kzNmhTBID-UaW3mXwTu0TTIbWocMfR9mIzQRV_qakspcEIRWEhg6HWuAgUMpf52jHlTvjspjOKDbeWWd_ohWzjnFqCY9nGgh-9JmVUEpYr2zjwENaeRPGQx4UNj6xrFGn2tCA
https://lh4.googleusercontent.com/vjSYy7kzNmhTBID-UaW3mXwTu0TTIbWocMfR9mIzQRV_qakspcEIRWEhg6HWuAgUMpf52jHlTvjspjOKDbeWWd_ohWzjnFqCY9nGgh-9JmVUEpYr2zjwENaeRPGQx4UNj6xrFGn2tCA
https://www.google.com/patents/US3050870
https://www.google.com/patents/US3050870
https://doi.org/10.1145/2087756.2087819
https://doi.org/10.1145/2087756.2087819
http://doi.acm.org/10.1145/2087756.2087819
https://www.avadirect.com/blog/the-history-of-virtual-reality/
https://www.avadirect.com/blog/the-history-of-virtual-reality/

BIBLIOGRAPHY 73

[13] Ivan E. Sutherland. 2017. url: http://www.invent.org/honor/inductees/
inductee-detail/?IID=530 (visited on 05/10/2018).

[14] Ivan E. Sutherland. “A Head-mounted Three Dimensional Display”. In: Proceed-
ings of the December 9-11, 1968, Fall Joint Computer Conference, Part I. AFIPS
’68 (Fall, part I). San Francisco, California: ACM, 1968, pp. 757–764. doi: 10.
1145/1476589.1476686. url: http://doi.acm.org/10.1145/1476589.1476686.

[15] The CCCU Psychology Programme Blog. IvanSutherland-sword-of-damocles. 2018.
url: http://cccupsychology.com/blog/2017/08/17/virtual-reality-a-
brief-history-current-trends-and-future-directions/ivansutherland-

sword-of-damocles/ (visited on 05/31/2018).

[16] E. M. Lidal et al. “A Decade of Increased Oil Recovery in Virtual Reality”. In:
IEEE Computer Graphics and Applications 27.6 (Nov. 2007), pp. 94–97. issn:
0272-1716. doi: 10.1109/MCG.2007.141.

[17] The VR Museum of Fine Art. 2016. url: http://store.steampowered.com/
app/515020/The_VR_Museum_of_Fine_Art/ (visited on 01/16/2018).

[18] Dr. Thomas Girst. Cao Fei - BMW M6 GT3, 2017. 2017. url: http://www.

artcar.bmwgroup.com/en/art- car/text/Cao- Fei- BMW- M6- GT3- 2017-

10063.html (visited on 05/22/2018).

[19] Cao Fei. Cao Fei. 2018. url: http://www.caofei.com/about.aspx (visited on
05/22/2018).

[20] Tilt Brush. 2018. url: https://www.oculus.com/experiences/rift/1111640318951750/
(visited on 01/16/2018).

[21] Oculus Medium. 2018. url: https://www.oculus.com/experiences/rift/

1336762299669605/ (visited on 01/16/2018).

[22] Google. Tilt Brush. 2018. url: https://www.viveport.com/apps/bbbc73fc-
b018-42ce-a049-439ab378dbc6 (visited on 05/31/2018).

[23] Motion Magic VR. The Starry Night VR. 2018. url: https://samsungvr.com/
view/4cS0iSadKdm (visited on 05/23/2018).

[24] Motion Magic VR. Motion Magic VR. 2018. url: https://samsungvr.com/

channel/57de2e01b62eb1001ae12e43 (visited on 05/23/2018).

[25] Goodby Silverstein & Partners. Dreams of Dali. 2018. url: http://thedali.org/
exhibit/dreams-vr/ (visited on 05/23/2018).

[26] Goodby & Silverstein. We Are GS&P. 2018. url: https://goodbysilverstein.
com/about/we-are-gsandp-3 (visited on 05/23/2018).

[27] Philip Galanter. “What is generative art? Complexity theory as a context for art
theory”. In: In GA2003–6th Generative Art Conference. Citeseer. 2003.

[28] Casey Edwin Barker Reas. Information. 2018. url: http://reas.com/information
(visited on 05/28/2018).

http://www.invent.org/honor/inductees/inductee-detail/?IID=530
http://www.invent.org/honor/inductees/inductee-detail/?IID=530
https://doi.org/10.1145/1476589.1476686
https://doi.org/10.1145/1476589.1476686
http://doi.acm.org/10.1145/1476589.1476686
http://cccupsychology.com/blog/2017/08/17/virtual-reality-a-brief-history-current-trends-and-future-directions/ivansutherland-sword-of-damocles/
http://cccupsychology.com/blog/2017/08/17/virtual-reality-a-brief-history-current-trends-and-future-directions/ivansutherland-sword-of-damocles/
http://cccupsychology.com/blog/2017/08/17/virtual-reality-a-brief-history-current-trends-and-future-directions/ivansutherland-sword-of-damocles/
https://doi.org/10.1109/MCG.2007.141
http://store.steampowered.com/app/515020/The_VR_Museum_of_Fine_Art/
http://store.steampowered.com/app/515020/The_VR_Museum_of_Fine_Art/
http://www.artcar.bmwgroup.com/en/art-car/text/Cao-Fei-BMW-M6-GT3-2017-10063.html
http://www.artcar.bmwgroup.com/en/art-car/text/Cao-Fei-BMW-M6-GT3-2017-10063.html
http://www.artcar.bmwgroup.com/en/art-car/text/Cao-Fei-BMW-M6-GT3-2017-10063.html
http://www.caofei.com/about.aspx
https://www.oculus.com/experiences/rift/1111640318951750/
https://www.oculus.com/experiences/rift/1336762299669605/
https://www.oculus.com/experiences/rift/1336762299669605/
https://www.viveport.com/apps/bbbc73fc-b018-42ce-a049-439ab378dbc6
https://www.viveport.com/apps/bbbc73fc-b018-42ce-a049-439ab378dbc6
https://samsungvr.com/view/4cS0iSadKdm
https://samsungvr.com/view/4cS0iSadKdm
https://samsungvr.com/channel/57de2e01b62eb1001ae12e43
https://samsungvr.com/channel/57de2e01b62eb1001ae12e43
http://thedali.org/exhibit/dreams-vr/
http://thedali.org/exhibit/dreams-vr/
https://goodbysilverstein.com/about/we-are-gsandp-3
https://goodbysilverstein.com/about/we-are-gsandp-3
http://reas.com/information

BIBLIOGRAPHY 74

[29] Processing. 2018. url: https://processing.org/ (visited on 02/13/2018).

[30] Casey Reas. Network D. 2018. url: http://reas.com/network%5C_d%5C_p1/
(visited on 05/31/2018).

[31] Roaring Tide Productions. What is Archimatix? 2018. url: http://www.archimatix.
com/ (visited on 05/21/2018).

[32] Roaring Tide Productions. Gallery. 2018. url: http://www.archimatix.com/
gallery (visited on 05/21/2018).

[33] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “A Neural Algorithm
of Artistic Style”. In: CoRR abs/1508.06576 (2015). arXiv: 1508.06576. url:
http://arxiv.org/abs/1508.06576.

[34] Barycentric Coordinates. 2018. url: http://mathworld.wolfram.com/BarycentricCoordinates.
html (visited on 04/24/2018).

[35] Song Ho Ahn. OpenGL Rendering Pipeline. 2018. url: http://www.songho.ca/
opengl/gl_pipeline.html (visited on 05/31/2018).

[36] Emma McDonald. The Global Games Market Will Reach 108.9 Billion Dollars in
2017 With Mobile Taking 42 Percent. 2017. url: https://newzoo.com/insights/
articles/the-global-games-market-will-reach-108-9-billion-in-2017-

with-mobile-taking-42/ (visited on 10/25/2017).

[37] List of game engines. 2018. url: https://en.wikipedia.org/wiki/List_of_
game_engines (visited on 04/20/2018).

[38] Unity Product Page. 2018. url: https://unity3d.com/unity (visited on 04/19/2018).

[39] What is Unreal Engine 4. 2018. url: https://www.unrealengine.com/en-

US/what-is-unreal-engine-4 (visited on 04/19/2018).

[40] Microsoft. Introduction to the CSharp Language and the .NET Framework. 2017.
url: https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/
introduction-to-the-csharp-language-and-the-net-framework (visited on
12/06/2017).

[41] Mozilla. JavaScript. 2018. url: https://developer.mozilla.org/bm/docs/
Web/JavaScript (visited on 05/10/2018).

[42] Unity 5.0 Release Notes. 2015. url: https : / / unity3d . com / unity / whats -

new/unity-5.0 (visited on 01/15/2018).

[43] Epic Games. Essential Material Concepts. 2018. url: https://docs.unrealengine.
com/en-US/Engine/Rendering/Materials/IntroductionToMaterials (visited
on 05/15/2018).

[44] Online Emythology Dictionary. virtual (adj.) 2018. url: https://www.etymonline.
com/word/virtual (visited on 05/15/2018).

[45] Valve Corporation. Welcome to Valve. 2018. url: http://www.valvesoftware.
com/company/ (visited on 05/11/2018).

https://processing.org/
http://reas.com/network%5C_d%5C_p1/
http://www.archimatix.com/
http://www.archimatix.com/
http://www.archimatix.com/gallery
http://www.archimatix.com/gallery
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://www.songho.ca/opengl/gl_pipeline.html
http://www.songho.ca/opengl/gl_pipeline.html
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://en.wikipedia.org/wiki/List_of_game_engines
https://en.wikipedia.org/wiki/List_of_game_engines
https://unity3d.com/unity
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://unity3d.com/unity/whats-new/unity-5.0
https://unity3d.com/unity/whats-new/unity-5.0
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://www.etymonline.com/word/virtual
https://www.etymonline.com/word/virtual
http://www.valvesoftware.com/company/
http://www.valvesoftware.com/company/

BIBLIOGRAPHY 75

[46] Oculus Rift. 2018. url: https://www.oculus.com/rift (visited on 04/23/2018).

[47] Nick Pino. Oculus Rift review. 2018. url: https://www.techradar.com/reviews/
gaming/gaming-accessories/oculus-rift-1123963/review (visited on 05/31/2018).

[48] Qiaozhi (George) Wang. An Overview of Tracking Technologies for Virtual Re-
ality. 2018. url: https://www.linkedin.com/pulse/overview- tracking-

technologies-virtual-reality-qiaozhi-george-wang/ (visited on 05/31/2018).

[49] Ben Lang. Including Controllers, Vive and Rift Could be Evenly Matched on Price.
2018. url: https://www.roadtovr.com/including-controllers-htc-vive-
and-oculus-rift-could-be-evenly-matched-on-price-touch/ (visited on
05/31/2018).

[50] Google Cardboard. 2018. url: https://vr.google.com/cardboard/ (visited on
04/23/2018).

[51] Aleks Buczkowski. Google Cardboard-paper Virtual Reality set now supports Street
View. 2018. url: http://geoawesomeness.com/google- cardboard- paper-

virtual-reality-set-now-supports-street-view-app/ (visited on 05/31/2018).

[52] Stephane Bouchard et al. “Exploring new dimensions in the assessment of virtual
reality induced side effects”. In: Journal of computer and information technology
1.3 (2011), pp. 20–32.

[53] Powering The Rift. 2015. url: https://www.oculus.com/blog/powering-the-
rift/ (visited on 01/16/2018).

[54] Oculus Rift CV1 Teardown. 2018. url: https://www.ifixit.com/Teardown/
Oculus+Rift+CV1+Teardown/60612 (visited on 01/16/2018).

[55] Jingbo Zhao et al. “Estimating the motion-to-photon latency in head mounted
displays”. In: Virtual Reality (VR), 2017 IEEE. IEEE. 2017, pp. 313–314.

[56] Runtime Mesh Component. Github repository. url: https://github.com/Koderz/
RuntimeMeshComponent.

[57] Conway. Chris Conway Koderz Github Page. 2018. url: https://github.com/
Koderz (visited on 03/05/2018).

[58] MakeHuman community. MakeHuman. 2018. url: https://bitbucket.org/

MakeHuman/makehuman/overview (visited on 05/23/2018).

[59] Guthmann. Edge Detection PostProcess Feedbacks. 2018. url: https://forums.
unrealengine.com/development-discussion/rendering/121539-edge-detection-

postprocess-feedbacks (visited on 05/30/2018).

[60] André Breton. “Manifesto of surrealism”. In: Manifestoes of surrealism 15 (1924).

[61] NVIDIA Corporation. NVIDIA FleX. 2018. url: https://developer.nvidia.
com/flex (visited on 05/22/2018).

[62] NVIDIA Corporation. NVIDIA GameWorks and UE4. 2018. url: https : / /

developer.nvidia.com/nvidia-gameworks-and-ue4 (visited on 05/22/2018).

https://www.oculus.com/rift
https://www.techradar.com/reviews/gaming/gaming-accessories/oculus-rift-1123963/review
https://www.techradar.com/reviews/gaming/gaming-accessories/oculus-rift-1123963/review
https://www.linkedin.com/pulse/overview-tracking-technologies-virtual-reality-qiaozhi-george-wang/
https://www.linkedin.com/pulse/overview-tracking-technologies-virtual-reality-qiaozhi-george-wang/
https://www.roadtovr.com/including-controllers-htc-vive-and-oculus-rift-could-be-evenly-matched-on-price-touch/
https://www.roadtovr.com/including-controllers-htc-vive-and-oculus-rift-could-be-evenly-matched-on-price-touch/
https://vr.google.com/cardboard/
http://geoawesomeness.com/google-cardboard-paper-virtual-reality-set-now-supports-street-view-app/
http://geoawesomeness.com/google-cardboard-paper-virtual-reality-set-now-supports-street-view-app/
https://www.oculus.com/blog/powering-the-rift/
https://www.oculus.com/blog/powering-the-rift/
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612
https://github.com/Koderz/RuntimeMeshComponent
https://github.com/Koderz/RuntimeMeshComponent
https://github.com/Koderz
https://github.com/Koderz
https://bitbucket.org/MakeHuman/makehuman/overview
https://bitbucket.org/MakeHuman/makehuman/overview
https://forums.unrealengine.com/development-discussion/rendering/121539-edge-detection-postprocess-feedbacks
https://forums.unrealengine.com/development-discussion/rendering/121539-edge-detection-postprocess-feedbacks
https://forums.unrealengine.com/development-discussion/rendering/121539-edge-detection-postprocess-feedbacks
https://developer.nvidia.com/flex
https://developer.nvidia.com/flex
https://developer.nvidia.com/nvidia-gameworks-and-ue4
https://developer.nvidia.com/nvidia-gameworks-and-ue4

BIBLIOGRAPHY 76

[63] Performance HeadUp Display. 2018. url: https://developer.oculus.com/

documentation/pcsdk/latest/concepts/dg-hud/ (visited on 05/06/2018).

[64] Oculus Debug Tool. 2018. url: https://developer.oculus.com/documentation/
pcsdk/latest/concepts/dg-hud/ (visited on 05/06/2018).

[65] J. Zhao et al. “Estimating the motion-to-photon latency in head mounted dis-
plays”. In: 2017 IEEE Virtual Reality (VR). Mar. 2017, pp. 313–314. doi: 10.
1109/VR.2017.7892302.

[66] Faculty of Fine Art, Music and Design. 2018. url: https://kmd.uib.no/en/
about-the-faculty-of-fine-art-music-and-design (visited on 05/04/2018).

https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-hud/
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-hud/
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-hud/
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-hud/
https://doi.org/10.1109/VR.2017.7892302
https://doi.org/10.1109/VR.2017.7892302
https://kmd.uib.no/en/about-the-faculty-of-fine-art-music-and-design
https://kmd.uib.no/en/about-the-faculty-of-fine-art-music-and-design

QUESTION 2: WHAT ARE YOUR INITIAL IMPRESSIONS OF THE SCENES?

1: Interesant og fasinerende

2: That they are very realistic despite the simplicity of the design

3: Huge, large, space

4: Well thought out and executed

5: Proper depth, Sc 1: slightly blurry but fascinating, Sc 2: calming, sharp

6: Vertigo in a good way. Very impressive. I liked it. Just another for expression.

7: Fullført skikkelig. Ble transportert dit med en gang. Bevegelse og følelse.

8: Very vertigo? It was a new thing for me so very exiting.

9: Massive, kinda scary. It feels like I'm being part of a cell.

10: BIG! Environments deep and high

11: The scene's is a bit creepy, makes me feel small but also makes me curious.

12: Space, height and after that i realized I'm one of those people standing. (in first picture). it felt like
being in some futuristic movie. I felt small.

13: Begge scenene fokuserer på ein slags evighet og det uendelige. Med høgdeskrekk so var eg litt
satt ut, men eg føler at scenene fokuserer på at eg berre er ein liten del i eit uendelig stort
univers.

14: Imponerende og beskrivende

15: Spacious, interesting, spooky

Appendix A

QUESTION 3: HOW DO YOU THINK THE SCENES WORK, COMPARED TO THE ORIGINAL ART?

1: Et sterkt utrykk som gir en god merverdi til orginalverket. Denne form for kunstformidling har et
stort potensiale i å formidle kunst til et nytt publikum.

2: Yes. But they are something entirely different. I think sound could and should be further explored
as an element to enhance the experience.

3: Gives a feeling of hight, space

4: It definitely adds a dimension to the original art that should have been there all along

5: You immediately realize what artwork it is, and you feel you have truly entered the artworks.

6: It gives and brings other dimensions. We are integrated in the work. Maybe another way to enjoy
art.

7: 2D ---> 3D, going from reading the art to being apart of it.

8: Added a new layer but kinda blurry

9: It's much more vivid than It's original work

10: Better representation of depth and multiplictron(unreadable)

11: The scene's work good compared to the original. Because it makes you feel small and not
important.
You are just a small piece of a big pie.

12: Well you get much better 3D feeling because you look at it from a different perspective (from
inside of a scene)

13: Det å dra inn betrakter som ein del av verket forsterker noe det fokuset kunstverket vil vise.

14: Komplimenterer kverandre veldig

15: Compared to the artwork it gave a different perspective. You look upon the scene and the
animation, you're part of it, one of the many (people there).

QUESTION 4: DO YOU THINK THE SCENES CAPTURE THE SPATIAL EXPERIENCE OF THE
ORIGINAL SCENES?

1: Ja

2: Not quite. In the original it seems like the viewer has a lot more in a fish eye perspective. To get
this experience I think the camera "lens" should have a lower focal length.

3: Yes - feel even larger

4: Yes definitely

5: Yes

6: Definitely. Hope to see more in the future.

7: Yes =)

8: Yes

9: Yes!

10: Yes in my opinion "better".

11: Yes I do.

12: Yes and even better. I actually were afraid to fall :)

13: da, og eg føler også at det forsterker det i høg grad!

14: Ja

15: It impacts the body differently. You feel the space by experiencing it compared to just viewing it.

QUESTION 5: WHAT DO YOU THINK MY ROLE IS IN THIS PRODUCTION, AM I AN ARTIST?

1: Din rolle er lener seg på et eksisterende verk og er av kunstnerisk karakter.
Dette kan: 1. sees på å ha en formiddlingsrolle for det eksisterende verk. 2. Eller være en
kommentar som refererer til verket.

2: No. You are the tech wizard

3: In this context, adapter

4: (blank)

5: You are not of the art, but the creator of the world, so yes and no.

6: No, you are facilitator.

7: Learning technique skills needed to take a 2D term and translate it to 3D. Agitating atmosphere

8: Kinda the artist re-imagining another one? kinda half way an artist.

9: Not sure. The image cave vividly when you turn it into VR. but it would be nicer if you had more
opinion in this scene.

10: Yes. Interesting to use someone else's work. But would be nice to see you "own" visions as well

11: Your role would be to make the people feel the impression pushwagner wants to show.

12: If you make something your own, but now you just copied so you have skills to communicate
visually but can you express yourself as an artist?

13: På sett og vis. Detter er jo basert på eit ferdig kunstverk og nesten kopiert, men som betraktar,
skapte denne produksjonen noko anna og verket fekk ein anna betydning, derfor meiner eg at du
fungerer som ein kunstnar.

14: Ikke når scenene er basert på en annes kunstverk. Hadde du lagd noe "original", så ja!

15: Well yeah, isn't all art about imitation? To give form to an shape where there was none? To
create is to be a creator and that is to be an artist, coding or not.

QUESTION 6: DO YOU THINK VIRTUAL REALITY CHANGES THE POSSIBILITIES IN ARTISTIC
EXPRESSION?

1: Ja så absolutt. Tror vi går en spennende tid i møte.

2: Yes. Definitely. It opens up new worlds of opportunities never ever imagined before.

3: Yes indeed

4: (blank)

5: Yes

6: Maybe

7: Yes. & new mode of expression

8: Yes

9: Yes. It will come to people directly and it can give us a lot of confusion, for example sensory, etc.

10: Yes.

11: I don't know maybe. It will give a new dimension and experience so that you can find new ways.

12: Definitely, but also makes you depend on more tools like cables, glasses, pc etc.

13: VR gjer nettop dette med å forflytte betraker frå ei statisk stilling til ei nesten aktiv rolle i verket.
Dette gjer at ein får ei heilt anna rolle som publikum, så ja! Eg trur VR endrar uttrykka ganske så
voldsomt

14: Ja du kan gjøre ting som vanligvis ville vært umulig. (Hadde blitt enda kulere med lyd.)

15: Yep! It will not replace anything but creates a different kind of artistic expression

QUESTION 7: DO YOU USE, OR DO YOU THINK YOU WILL USE VR TOOLS TO CREATE ART? IF SO,
WHY?

1: Ja. Med tiden vil dette være verktøy og et medie som fler og fler vil ta i bruk. Ennå er dette relativt nytt
og for en spesiellt interesert gruppe. Etter min mening kommer mulighetene og bruken at VR til å
eksplodere og bli en naturlig del i hvordan vi kommer til å komunisere og sammhandle med
hverandre.

2: Yes. Because it as a medium visualizes presence and challenges scale at a new level. Some people
even call VR the empathy machine Look here:
https://www.ted.com/talks/chris_milk_how_virtual_reality_can_create_the_ultimate_empathy_machine

3: Not me, but my students try out, present space surfaces / light

4: (blank)

5: Yes. Because it's fun and the future.

6: It will depend on the context. but it's a possibility.

7: Yes. Architecture projects

8: It would add a new layer so definitely an possibility

9: Yes, but it's hard to answer. I can say that it widens possibility. So why shouldn't i try it!

10: No. Maybe, who knows!

11: No. i Don't like making digital art. And i got dizzy.

12: Unfortunately I don't think so.

13: Sjølv studerer eg møbeldesign og romarkitektur, men også her er mulighetene mange for å oppleve
rommet rundt oss. Eg kjem nok til å vere innom VR men at eg jobber med det på kvart prosjekt trur eg
ikkje.

14: Nei, fordi eg ikke er kunstner, men kansje for å vise frem et designobjekt.

15: Personally, no, I neither have the tools or the knowledge or the motivation to.

GEOMETRIES

CUBOID Generates cuboid mesh
ELLIPSOID Generates ellipsoid mesh
CYLINDER Generates cylinder mesh
PIPE Generates pipe mesh
CAPSULE Generates Capsule mesh
TORUS Generates Torus mesh
TORUS KNOT Generates Torus Knot mesh

POINT FUNCTIONS

CIRCLE Points in a circle
RAY Points along a finite ray
WAVE Points in a wave pattern
SQUARE Points in a square shape
SPIRAL Points along a spiral
NOISE Points with randomized positions
ROTATED Rotation of points in 3D space

MESH MODIFIERS

CLIPPED Clips a mesh into two separate parts along any given plane
TRANSFORMED Transforms a mesh (translation, rotation, scaling)
STAPLE Moves target mesh onto a destination mesh surface, and performs a merge
SNAP Performs a staple but without merging the mesh
INSTANTIATED Geometry instantiates a mesh at a given list of points.
MERGED Merges two meshes into a single mesh
REPEATED Input mesh is repeated a given number along the [X Y Z] axes
SECTIONED Inserts a mesh into an available RMC section.
COLORED Set color values for a mesh
MIRRORED Mirrors a mesh around a given point
CENTERED Centers a mesh to a given point
COPIED Copies a mesh to a list of points
ROTATING Rotates a mesh (Realtime)
WAVING Applies a wave movement to a mesh.

MISCELLANEOUS

MAKE MESH DATA Creates empty mesh data structure
BOUNDING BOX Calculates and returns bounding box of mesh
CENTER AND EXTENT Calculates mesh center and outermost point

SECTION FUNCTIONS

REPEATED SECTION Repeates a mesh section a given number along x, y ,z axes
SECTION BOUNDING BOX Calculates and returns bounding box of entire section
SECTION DATA Returns mesdata for a section

Appendix B

Selvp
o

rtrett
Appendix C

M
an

h
attan

M
an

h
attan

 W
ave

 Fu
n

ctio
n

R
eacto

r (O
rigin

al Scen
e

) + Su
b

grap
h

s

Appendix D

	Contents
	List of Figures
	List of Listings
	Glossaries
	Introduction
	Thesis Outline
	Motivation
	Goal
	Research Questions
	Art
	Hariton Pushwagner
	Salvador Dali
	Artworks Used in Thesis

	Related Work
	Before the Computer Age
	The Sword of Damocles
	CAVE
	Virtual Reality And Modern Art
	Use of Virtual Reality Tools for Artists
	Generative Art

	Node Based Parametric Modeling using Archimatix
	Appearance Transfer

	Background
	Meshes
	Triangles
	Triangle Mesh Representation

	Rendering a Graphical Scene
	Geometry Instancing
	Level of Detail

	Game Engines
	Should a commercial game engine be used?
	Unity
	Unreal Engine
	Choosing Unreal Engine

	Virtual Reality
	Virtual Reality Headsets
	Virtual Reality Challenges

	Parametric Design
	Parametric Equation

	Solution
	Project Setup
	Program Flow

	Procedural Mesh Support
	Runtime Mesh Component

	Building Scenes
	Using External Modeling Tools
	Scene as a Function of Input
	Parametric Function Nodes

	Using Unreal Blueprints
	Creating our Blueprint
	Creating Graph Nodes
	Generating Meshes in Code
	Using the Runtime Mesh Component

	Creating a Scene
	Populating the Scene
	Recreating the Visual Style

	Re-creating The Persistence of Memory

	Results
	"Selvportrett"(Selfportrait) by Hariton Pushwagner
	Manhattan by Hariton Pushwagner
	Original Scene - Reactor
	The Persistence of Memory

	Evaluation
	Evaluating our Method
	Measuring Numerical Performance
	Creating and Altering Scenes

	Evaluating our Feedback
	Public Demo
	Response
	Oral Feedback
	Written Feedback

	Feedback Related to Research Questions

	Conclusion
	Geometry and Visual Style
	Geometry
	Visual Style

	Performance and Comfort
	Reception of Results

	Further Work
	Expanding Function Library
	Custom Scene Editor

	Appendix Demo Response
	Appendix Node List
	Appendix Node Graphs
	Appendix Images

