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Summary 

My aim with this dissertation is to enhance our knowledge of food availability and 

foraging opportunities for planktivorous fish over the Barents Sea bathymetry.  

The Barents Sea is a highly productive sub-Arcic shelf sea supporting some of the 

largest fish stocks in the world. Lipid-rich calanoid copepods are key prey for fish 

and other planktivore predators in northern latitude ecosystems. Visual detection of 

individual prey is the dominant foraging mode in planktivorous fish, and prey 

detection is arguably the most limiting phase in the predation process. Light is a 

prerequisite for visual foraging and decreases exponentially with depth in aquatic 

systems. Furthermore, vertical movement has become a widespread strategy among 

Calanus and other zooplankton for avoiding visual predation. The bathymetry may, 

however, constrain vertical distributions and force zooplankton into more illuminated 

parts of the water column. Environmental constraints on distributions may be 

important for fish searching for zooplankton and affect predator-prey dynamics in 

pelagic ecosystems.   

In Paper I, we focus on Calanus spp. and use an extensive (30-year period) dataset 

on zooplankton biomass and species-specific abundance to show that calanoid 

copepods are a major driver of variation in zooplankton biomass in this ecosystem. 

Calanus finmarchicus, C. glacialis and C. hyperboreus constitute on average 80 % of 

the total biomass, and older copepodites (stages CIV and CV) make the largest 

contribution. The Calanus species co-occur in all areas, and interspecific variation in 

spatial biomass distribution may be related to the distribution of water masses. 

Biomass of Calanus spp. increases with bottom depth, but does this mean that prey is 

more available to fish in deeper parts of the Barents Sea?  

In Paper II, we utilize a unique dataset on vertical zooplankton distributions to 

determine the weighted mean depth (WMD) of zooplankton in three size fractions 

and assess the effect of topography and light on the depth distributions. The vertical 

dimension of the prey field is important for fish that are constrained by light in their 

search for prey. We show that the bathymetry constrains the zooplankton depth 
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distribution; all size fractions have deeper distributions with increasing bottom depth. 

Distributions are shallower when the water is less clear, however the effect of water 

clarity is secondary compared to the effect of topography, and most pronounced in 

deeper (> 300 m) areas. Furthermore, zooplankton over banks are exposed to several 

orders of magnitude more light compared to zooplankton in deeper areas where 

distributions are less constrained by the bathymetry. This has a large effect on the 

theoretical visual range of fish, which declines as zooplankton WMD deepens. 

Zooplankton WMD does, however, only indicate where the weight of zooplankton is 

standing in the water column. To further investigate how the bathymetry structures 

foraging opportunities for fish, we use the vertical zooplankton biomass profiles as 

input to a visual foraging model and quantify the integrated prey encounter rate for 

fish over the bathymetry (Paper III). Our results demonstrate that fish may encounter 

significantly more large zooplankton (> 2 mm) in areas shallower than 200 m, even 

though the abundance is higher in deeper areas. Banks in the northern Barents Sea 

appear to be particularly attractive foraging habitats, as prey here is forced into 

greater light exposure. Furthermore, analyses of copepod filling in capelin stomachs 

support these predictions and suggest that capelin foraging on copepods have been 

more successful over shallow bathymetries < 200 m. Due to visual constraints on 

prey detection, the fish’ ability to utilize the zooplankton biomass m-2 is non-linearly 

related to the zooplankton WMD, and greater in shallow areas.  

Evaluating food availability for planktivorous fish using vertical zooplankton 

distributions presents a different picture than the spatial patterns in prey abundance. 

Results in my dissertation highlight the importance of bathymetry for fish foraging 

efficiency and predator-prey dynamics in pelagic ecosystems. Furthermore, my 

results convey a new perspective on capelin feeding migrations and regional variation 

in trophic control, which may increase our general understanding of ecosystem 

structure and function. 
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Introduction 

Spatial structures in the environment shape habitats and outline the space where 

species interact through reproduction, competition and predation (Tilman 1994). In 

the ocean, space below the surface is defined by the topography. The vertical size of 

this space, that is the distance from the surface to the sea floor, affects physical 

processes like advection, mixing and sinking time of organic matter, and it can also 

structure biological interactions. Bottom depth alters for instance the strength of the 

biological coupling between benthic and pelagic parts of the ecosystem, thereby 

modifying predator-prey interactions and food-web structure (Schindler and 

Scheuerell 2002). Depth shapes trophic structure gradients in shallow continental 

seas, where the degree of benthic versus pelagic prey in the diet of fish changes along 

the depth slope. Benthic and pelagic fish can access both prey sources and have a 

more variable diet in shallow waters, and the strength of the benthic-pelagic coupling 

weakens as depth increases (Kopp et al. 2015; Giraldo et al. 2017). In deeper waters 

off the continental slope, interactions between the bathymetry and vertically 

migrating prey species may structure the functional composition of demersal fish 

communities. Benthic feeding fish have access to vertically migrating prey sources 

only down to depths where the migrators reach the sea floor. In contrast, bentho-

pelagic feeders who are also able to consume prey above the sea floor have a 

competitive advantage and dominate in biomass at greater depths (Trueman et al. 

2014).  

Few studies have investigated how bottom depth affects biological interactions 

between species associated with the upper part of the ocean, i.e. in the pelagic zone. 

Marine pelagic ecosystems are possibly the largest ecosystems on earth measured by 

area (Verity et al. 2002), and host a variety of zooplankton and planktivorous fish. 

Both zooplankton and pelagic fish are often considered key species in marine 

ecosystems, feeding many species at higher trophic levels and supporting 

economically important fisheries (e.g. Pikitch et al. 2014; Record et al. 2018). Life in 

pelagic ecosystems is highly influenced by the properties and flow of water masses 

(Manderson 2016), but can it also be structured by the topography? 
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Pelagic organisms must choose where to position themselves within the water 

column, as it will determine both access to food and susceptibility to predation. Many 

species have evolved vertical migration strategies, adapting to the trade-off between 

maximizing growth and survival in dynamic environments (Pearre 2003; Ji 2011). 

Vertical migrations represent an active flux of carbon out of the productive surface 

and down to deeper waters, which contributes to the “biological pump” (Isla et al. 

2015), supports mesopelagic species (Steinberg et al. 2008) and affects biological 

interactions in the upper ocean (Hays 2003; Brierley 2014). However, environmental 

barriers such as subsurface oxygen minimum zones (Ekau et al. 2018) or bottom 

topography (Genin 2004; Krumhansl et al. 2018) may constrain migrations and 

potentially force species to inhabit sub-optimal vertical distributions. These 

constraints are likely important for predator-prey dynamics in pelagic ecosystems.  

Enhanced knowledge of how spatial structures in the environment affect vertical 

zooplankton distributions is central for our understanding of predator-prey dynamics 

between zooplankton and pelagic fish. It may also serve to improve our general 

understanding of marine ecosystems with respect to fish stock productivity and 

biomass distributions. In the following, I will describe vertical migration strategies in 

zooplankton and key aspects of planktivore foraging, before I introduce the 

ecosystem at focus (the Barents Sea). Finally, I present key findings from my 3 

papers with a discussion aimed at putting my results into both a system-specific and a 

more general context. 
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Vertical migration strategies in zooplankton 

Vertical migrations of zooplankton have been studied since the late-19th century 

(review in Russell 1927; Banse 1964), and possibly represents the largest movements 

of biomass on earth (Hays 2003). Diel vertical migration (DVM) is principally 

viewed as a predator avoidance mechanism (reviewed in Hays 2003), where the 

normal pattern of DVM is to occupy deeper waters in the day and migrate to 

shallower depths at night. Migration patterns may also be in the opposite direction, 

i.e. reverse DVM, and some species can alter migration behaviour or cease 

migrations altogether based on the presence of different types of predators (Ohman 

1990).  

Seasonal vertical migrations are common among zooplankton species at northern 

latitudes, where calanoid copepods undertake ontogenetic descents and overwinter at 

great depths for several months each year (Conover 1988). During overwintering they 

reduce their metabolic activity and enter a phase of diapause, before they ascend to 

the surface again for feeding and reproduction the following spring (Hirche 1983). 

Factors like temperature (Hirche 1991; Heath and Jónasdóttir 1999), light (Miller et 

al. 1991), food availability (Bandara et al. 2016), presence of predators (Kaartvedt 

1996) and endogenous clock genes (Häfker et al. 2018) have been suggested as 

proximate cues for triggering these migrations.  

Common for both DVM and seasonal migrations is that deep distributions have lower 

mortality risk from visual predation, due to the exponential decay of light in the water 

column (Aksnes and Giske 1990). Considering that migrations are related to fitness 

and survival, environmental barriers (e.g. oxygen minimum zones or bathymetry) 

restricting organisms from migrating to deeper, darker waters may i) amplify 

mortality risks of the migrators, and ii) provide important food sources to their 

predators.  
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Visual foraging in planktivorous fish 

Planktivorous fish can feed on zooplankton using different modes of filtering and 

visual search (Eggers 1977; Batty et al. 1990). Particulate feeding, i.e. visually 

selecting individual prey, is considered the common feeding mode in these fish, due 

to the large size of prey in their stomachs and since filtering requires a certain amount 

of prey in the environment for it to be efficient (Blaxter and Hunter 1982; Batty et al. 

1990).  

In visual foraging, ambient light is important for success. Studies have shown that 

fish react to prey at greater distance under high light intensity (Link and Edsall 1996; 

Aksnes and Utne 1997), and that water clarity affects both the choice of prey and the 

amount consumed. Fish select large prey more frequently when the water is turbid, 

and consumption rates decline with increasing turbidity (Helenius et al. 2013). This 

may be related to prey visibility. Large prey are detected at greater distances by the 

fish (O’Brien 1979), and increasing turbidity shortens the visual range (Aksnes and 

Giske 1993) and reduces the clearance rate (Huse and Fiksen 2010). Observations of 

fish abundance and zooplankton size distributions have indeed been related to the 

degree of light absorption in the water column when comparing different fjord 

systems (Eiane et al. 1999; Aksnes et al. 2004).  

Since zooplankton visibility is a function of body size, large individuals must go 

deeper to reduce their visibility (Giske et al. 1994). Water clarity affects how deep 

surface irradiance penetrates the water column, and consequently how deep the 

zooplankton must go to reduce the visual predation risk. Zooplankton observations 

have shown that large sizes tend to occupy deeper waters (Fortier et al. 2001; Ohman 

and Romagnan 2016; Paper II), and that water clarity can account for variations in 

depth distributions (Dupont and Aksnes 2012; Ohman and Romagnan 2016; Paper 

II). The vertical dimension of the (size-structured) prey community and optical 

properties of the water column is therefore important to consider when assessing food 

availability for planktivorous fish.  
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Aim 

The scope of this dissertation is to enhance our knowledge of how zooplankton 

distributions in a three-dimensional space structures foraging opportunities for 

planktivorous fish across a large, sub-Arctic ecosystem. Extra emphasis is put on the 

lipid-rich Calanus species which are considered key zooplankton in high-latitude 

ecosystems. Paper I is therefore devoted to C. finmarchicus, C. glacialis and C. 

hyperboreus, and aims to establish a better understanding of their relative 

contribution to the zooplankton community in the Barents Sea, and describe 

interspecific differences with regards to spatial distributions and key environmental 

drivers. In Paper II I look more closely at the vertical dimension and aim to assess 

the effect of topography and light on vertical zooplankton distributions in this 

ecosystem. I also evaluate size-related differences in the vertical distributions, and 

how the observed patterns may impact the visual range of planktivorous fish over the 

topography. The fish predator perspective is elaborated further in Paper III, where 

the objective is to examine how the observed vertical zooplankton distributions and 

interactions with the bathymetry structures foraging opportunities for planktivorous 

fish over the seascape.  
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The Barents Sea ecosystem 

Physical properties 

The Barents Sea is a large marine ecosystem (~1.6 million km2) (Carmack et al. 

2006) on the Arctic continental shelf bordering the northern Norwegian and Russian 

coasts in the south. It is a relatively shallow sea with a mean depth of 230 m, and the 

500 m depth contour is frequently used to delimit its borders to the surrounding 

Norwegian and Greenland Seas and the polar basins (Ingvaldsen and Loeng 2009). 

Complex bathymetry characterizes the Barents Sea, and large oceanic banks (< 200 m 

depth) are mainly found in the central and northern areas (Svalbard Bank, Central 

Bank, Great Bank and Novaya Zemlya Bank, Fig. 1). One of the deepest areas is the 

Bear Island Trench (400–500 m depth), located at the western entrance where 

Atlantic water flows into the system.  

The Barents Sea is a flow-through shelf system (Carmack et al. 2006) dominated by 

water masses of both Atlantic and Arctic origin (Fig. 1). Warm, saline Atlantic water 

originates from the Norwegian Atlantic Current in the south, while cold (< 0° C) and 

less saline Arctic water enters the system from the polar basins in the north and north 

east (Ingvaldsen and Loeng 2009). Atlantic and Arctic water masses meet at the 

topographically steered Polar Front (Loeng 1991; Gawarkiewicz and Plueddemann 

1995). Coastal water from the Norwegian Coastal Current is found in the southern 

parts of the sea, influenced by low-saline water from the North Sea and fresh water 

river runoffs along the Norwegian coast (Ingvaldsen and Loeng 2009). The strength 

and properties of Atlantic inflow coupled with local atmospheric conditions affects 

climatic conditions in the Barents Sea, and there have been large interannual trends in 

ocean temperature and ice cover (Smedsrud et al. 2010; Boitsov et al. 2012). 

Northern parts of the sea where Arctic water is present are covered by ice during 

several months each year, and the minimum sea ice extent is usually found in mid-

September (Kvingedal 2005). Increased heat transport of warmer Atlantic water has 

caused a substantial warming trend over the past decades (Årthun et al. 2012), and the 

seasonal ice extent has been reduced since the 1950s (Onarheim et al. 2018). 
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Figure 1: Map of the Barents Sea, showing main pathways for the major currents and 

location of the Polar Front. More detailed bathymetry maps are given in Papers II 

and III. Land areas and major banks have been labelled by the PhD candidate. 

Courtesy: R. Ingvaldsen and K. Gjertsen, Institute of Marine Research. 

  

Central Bank 

Great Bank 

Svalbard 

Bank 

Novaya 

Zemlya 

Bank 

Norway 

Russia 

Svalbard 



 15 

Planktivorous fish  

The Barents Sea is a highly productive ecosystem hosting some of the largest fish 

stocks in the world (Eriksen et al. 2017). Capelin (Mallotus villosus) is a key, 

planktivorous fish species here, and several species at higher trophic levels depend on 

capelin as their main prey (Dolgov 2002). Other planktivorous fish are the Norwegian 

Spring-Spawning herring (Clupea harengus harengus), which use the southern parts 

of the sea as nursery area for young fish (Dragesund 1970), and polar cod 

(Boreogadus saida) commonly found in eastern and northern areas (Eriksen et al. 

2017). Stomach analyses have shown that calanoid copepods are key prey items for 

capelin, herring and polar cod in the Barents Sea (Ajiad and Gjøsæter 1990; Huse and 

Toresen 1996; Prokopchuk 2009). Krill (and to some degree amphipods) become 

progressively important for capelin with increasing fish size (Orlova et al. 2002; 

Dalpadado and Mowbray 2013). I have largely focused on capelin in this dissertation, 

due to its key ecological role in the Barents Sea ecosystem (Wassmann et al. 2006; 

Gjøsæter et al. 2009). Some of the key findings do, however, apply to planktivorous 

fish in general. 

 

Calanoid copepods 

Zooplankton in the Barents Sea are both produced locally and advected into the sea 

with Arctic and Atlantic water masses (Wassmann et al. 2006; Kvile et al. 2017). The 

zooplankton community is diverse, with copepods and krill being the most important 

prey for fish (references above). Calanoid copepods dominate in abundance 

(Wassmann et al. 2006) and biomass (Arashkevich et al. 2002; Paper I), and three 

Calanus species with different sizes and life cycles are common here. Calanus 

finmarchicus is the smallest and most abundant, generally associated with Atlantic 

water masses (Tande 1991; Paper I) and characterized by a 1-year life cycle 

producing one new generation per year (Melle and Skjoldal 1998). Calanoid 

copepods are recognized for their high plasticity in diapause influenced by local 
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environmental conditions (Conover 1988; Baumgartner and Tarrant 2017), and recent 

studies suggest that C. finmarchicus may produce two generations per year at these 

latitudes with continued ocean warming (Paper I; Weydmann et al. 2018). Its Arctic 

congener, C. glacialis, has primarily been associated with Arctic water masses in the 

Barents Sea, where it displays a 1–2 years life cycle overwintering both at copepodite 

stages IV and V (Tande 1991; Melle and Skjoldal 1998; Paper I). The largest Calanus 

species in the Barents Sea, C. hyperboreus, is also of Artic origin but displays a 3–4 

years life cycle (Conover 1988). It generally occurs in low numbers in the Barents 

Sea compared to the other two Calanus species (Hirche and Kosobokova 2003; Paper 

I), and has its center of origin in the deep Greenland Sea (Hirche 1997). 
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Methods 

Data 

Two zooplankton datasets collected by the IMR during monitoring surveys in the 

Barents Sea have been central in this dissertation. One was a joint dataset of 

mesozooplankton biomass and abundance identified to species and copepodite stage, 

with a high seasonal resolution over a 30-year sampling period (Paper I). This 

combined dataset provided a unique opportunity to quantify which contribution 

Calanus species make in the total mesozooplankton biomass, and to evaluate Calanus 

spp. distribution in relation to key environmental drivers (Paper I). Furthermore, 

continuous sampling from the “Fugløya-Bear Island transect” (western entrance to 

the sea) facilitated analyses of temporal changes in the Calanus community between 

1995–2016. Results from Paper I also provided better grounds for interpreting the 

zooplankton data utilized in Papers II and III.  

In Papers II and III, I worked with an extensive dataset of vertical zooplankton 

distributions collected with MOCNESS sampling gear during ecosystem monitoring 

surveys in autumn (Eriksen et al. 2018). Accumulation of MOCNESS data over a 25-

year period enabled us to analyse vertical zooplankton data over a wide spatial scale 

in the Barents Sea (Figure 1 in Paper II). Samples had been sorted into three 

different size fractions (> 2 mm, 1–2 mm and 0.18–1 mm) but did not include 

information on species in the samples, apart from large zooplankton like krill and 

amphipods which are measured separately (see Methods Paper II). During the 

Barents Sea ecosystem survey in 2016, eight samples from different sampling 

locations were processed for species identification after sorting into the three size 

fractions (unpublished data). Despite a low sample size, this gives some insight to 

what we expect to find in the three fractions and is added here as additional 

information (Fig. 2).  

Sampling net avoidance of krill is influenced by ambient light (Wiebe et al. 1982), 

and since we largely focused on daytime samples in Papers II and III, we excluded 
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krill and other macrozooplankton from the analysis where possible (Methods Paper 

II). The majority of the data utilized in Paper I came from WP2 plankton nets which 

are not efficient in capturing krill and other large zooplankton due to their swimming 

(avoidance) capabilities (e.g. Eriksen et al. 2016). I therefore consider the 

contribution of macrozooplankton to be insignificant also in analyses presented in 

Paper I. 

In addition to the zooplankton data, I have used data on temperature (Paper I), 

salinity (Papers I and II), chlorophyll a (Paper II) and capelin stomachs (Paper III) 

collected during the same monitoring surveys in the Barents Sea. Metadata on spatial 

position (longitude, latitude) and bottom depth were employed in analyses in Papers 

I and III. Since irradiance is not routinely measured during these surveys, I employed 

an algorithm from the HYCOM model (Bleck 2002) as a proxy for surface irradiance 

in Paper II. 
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Figure 2: Appearance of copepodite stages from Calanus spp. and other copepod 

species sorted into the three size fractions large (> 2 mm), intermediate (1–2 mm) and 

small (0.18–1 mm). Samples originate from the Barents Sea ecosystem survey in 

2016, where eight samples were processed for species identification after sorting into 

the three size fractions. Due to the low sample size, the data is likely not 

representative for all copepodite stages shown here. 
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Statistical analyses 

I have used a combination of linear and non-linear statistical models when analysing 

data in this dissertation, the models are described and justified in the respective 

papers.  

In Paper I, I employed linear modelling techniques to evaluate i) the relationship 

between total mesozooplankton biomass sampled and the estimated biomass of 

Calanus species in the respective samples, and ii) the relationship between Calanus 

species biomass and key environmental drivers. Temporal changes in the Calanus 

complex at the Fugløya-Bear Island transect were, however, assessed using General 

additive modelling (GAM). This is a more flexible statistical approach useful for 

capturing non-linear trends in the data (Wood et al. 2016).  

In Paper II, I used linear models to test a priori defined hypotheses regarding the 

effect of bathymetry, light absorption and individual size on the vertical zooplankton 

distributions, and to assess whether the vertical distributions changed between day 

and night.  

GAM was used in Paper III to evaluate stomach filling of copepods in capelin as a 

function of bottom depth. Considering that the MOCNESS data were employed as 

input in the theoretical foraging model, further statistical analyses in this paper was 

considered inappropriate.  

 

Theoretical foraging model 

Prey abundance is not necessarily a good measure of how much food a predator has 

access to (Gawlik 2002). Since planktivore fish are searching for small prey relative 

to their own body size, locating prey is presumably the most limiting phase in the 

foraging process (O’Brien et al. 1990). Ambient light is necessary for prey detection, 

and may be an important top-down constraint on fish foraging (Aksnes and Giske 

1993). Combining the vertical zooplankton observations with a theoretical foraging 
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model of a fish that is limited by light in its search for prey (Aksnes and Giske 1993; 

Aksnes and Utne 1997) enabled me to theoretically assess how the prey detection 

distance (Paper II) and encounter rates (Paper III) for the fish are structured by 

actual observations of vertical zooplankton distributions. A similar modelling 

framework has previously been employed to investigate how fish abundance and 

zooplankton body size varies between fjord systems with different water clarity 

(Aksnes et al. 2004), seasonality in fish growth in relation to prey abundance and 

solar irradiance (Varpe and Fiksen 2010) and the relationship between prey size and 

growth of planktivorous fish (van Deurs et al. 2015).  

As with all modelling exercises, assumptions needed to be made, here concerning e.g. 

prey size and contrast against the background, fish visual capabilities and the ambient 

light environment (see Supplementary material Paper II and Methods Paper III). 

Furthermore, I did not include processes like prey handling time or capture success 

(Discussion Paper III), these would have required more assumptions of unknown 

parameters and the goal was not to quantify realistic ingestion rates for the fish. My 

results do, however, bring new insight to the foraging opportunities (or prey 

availability) for planktivorous fish in an ecosystem where zooplankton are both 

forced into the light and allowed to stand in darker parts of the water column.  
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Results and discussion 

System-specific perspectives 

Previous studies from the Barents Sea have analysed the interaction between 

zooplankton and planktivorous fish mainly based on data of stomach content in fish 

and biomass (m-2) fluctuations within the two trophic levels (an exception is Hassel et 

al. 1991). Results from my dissertation bring additional insight to this interaction and 

can shed new light on previous observations from the ecosystem. Furthermore, results 

presented here are also important from a fisheries management and monitoring 

perspective. 

 

Calanus in the Barents Sea ecosystem 

Copepods of the genus Calanus are a central part of pelagic food webs in high 

latitude ecosystems, where they concentrate lipid-poor energy from primary 

production into a lipid-rich food source for higher trophic levels (Conover 1988; 

Kattner and Hagen 2009). With an individual lipid content up to 50–60 % of their 

body weight (Scott et al. 2000), these copepods are valuable prey for their predators. 

Earlier studies have described Calanus as key zooplankton in the Barents Sea 

ecosystem due to their large size and abundance (e.g. Hassel 1986; Melle and 

Skjoldal 1998; Wassmann et al. 2006), though few have quantified the overall 

contribution of Calanus species in terms of biomass. In Paper I, we demonstrated 

that the joint contribution of Calanus species to the zooplankton biomass may be as 

large as 80 % or higher, though varying at spatial and seasonal scales. This is in 

accordance with a study by Arashkevich et al. (2002) conducted over a smaller spatial 

and temporal scale than ours. Older copepodites (stages CIV and CV) make the 

largest contribution to biomass (Paper I), and are also the most important calanoid 

prey for capelin in this ecosystem (Hassel et al. 1991; Huse and Toresen 1996).  
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There has been a discussion during the recent decade on whether one can reliably 

separate between the Calanus species when visually examining specimens in the 

laboratory (see Discussion Paper I). In one of the most recent studies examining this 

question, Choquet et al. (2018) showed that misidentifications may occur also when 

examining the curvature of the fifth thoracic pair of legs of the copepodites. This 

morphological trait has traditionally been used by the IMR for separating between the 

species in addition to size (see Methods Paper I). Thus, it is difficult to assess the 

possible uncertainties associated with the IMR dataset on Calanus species abundance. 

However, considering the clear association we found between Calanus species in 

different water masses, I am confident that our results in Paper I are representative 

though there may be misidentifications in individual samples. The potential for 

misidentification (and hybridization) is probably greatest in the mixed water masses 

where the largest co-occurrence of C. finmarchicus and C. glacialis was observed 

(Paper I). A general trend is that large Calanus copepodites tend to dominate in 

colder waters associated with northern, central and eastern areas of the Barents Sea 

(Paper I). This fits well with our analyses of copepods in capelin stomachs (Paper 

III), which is elaborated further below.  

Daase et al. (2008) demonstrated that surface waters around Svalbard were dominated 

by young stages of Calanus spp., while larger calanoid copepodites had deeper 

distributions. We also found significant differences in depth distributions of the three 

size fractions (Paper II), and the smallest fraction which contains most of the young 

C. finmarchicus copepodites (Fig. 2) had the shallowest distributions. Variation in the 

depth distributions may have been caused by the presence of different species with 

different vertical strategies (Paper II, Fig. 2), e.g. the omnivorous Metridia longa 

which has been associated with a wider distribution (Daase et al. 2008). The presence 

of M. longa in the Barents Sea appears to be more variable than the Calanus species 

(Arashkevich et al. 2002).  

In Paper II we presumed that the large size fraction had descended for 

overwintering, considering the strong (and similar) effect of bottom depth on 

distributions in both day and night. Bandara et al. (2016) described vertical descents 
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of older copepodites between August and October in a zooplankton community 

around Svalbard, which corresponds to the time-period for our own observations. 

Comparison of day- and night-time distributions did, however, suggest a pattern of 

inverse DVM for the small and intermediate size fraction (Paper II), which most 

stages of the dominant C. finmarchicus (Paper I) sort into due to its size (Fig. 2). 

Inverse DVM may be a response to the presence of other vertically migrating 

predators (e.g. Ohman 1990). Previous studies have described midnight sinking 

behaviour of C. finmarchicus corresponding to the arrival of krill (Meganyctiphanes 

norvegica and Thysanoessa raschii) in surface layers at night time (Tarling et al. 

2002). In the Barents Sea, Thysanoessa longicaudata and M. norvegica are known to 

feed on copepods, while the dominant Thysanoessa inermis is regarded a 

predominantly herbivore species (Falk-Petersen et al. 2000; Dalpadado et al. 2008). 

However, the patterns we observed were relatively week and may have been 

confounded by the presence of different species in the individual samples (e.g. Hays 

et al. 1997).  

 

Greater prey availability for fish over banks  

The spatial distribution of capelin in the Barents Sea varies with stock size and ocean 

temperature (Ingvaldsen and Gjøsæter 2013), and it undertakes large seasonal 

migrations each year. Northwards feeding migrations from overwintering areas in the 

central Barents Sea take place when the ice melts in summer and early autumn 

(Gjøsæter 1998; Carscadden et al. 2013). These migrations are potentially costly in 

terms of energy (e.g. Nøttestad et al. 1999) and should be associated with clear gains 

for capelin itself. Trailing plankton blooms following the receding ice edge can be 

advantageous for capelin that possibly migrate into previously unpredated areas 

(Sakshaug and Skjoldal 1989; Hassel et al. 1991). Migrations can also be a response 

to greater mortality risk from cod in the south (Fiksen et al. 1995) or longer day 

lengths enhancing feeding opportunities in the north (Nøttestad et al. 1999).  
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A new perspective on capelin migrations is that zooplankton is more available in the 

areas where capelin migrates to feed, not due to higher biomass but arising from the 

vertical zooplankton distributions and interactions with the bathymetry. Deep areas 

have more zooplankton biomass m-2 (Papers I and III), however zooplankton have 

access to darker parts of the water column and are less available to the fish (Papers II 

and III). Topographic constraints on depth distributions creates attractive foraging 

habitats for planktivorous fish over banks in the central and northern parts of the 

Barents Sea (Paper III). Since zooplankton are forced into more illuminated parts of 

the water column in shallow areas (Paper II), fish that forage over these topographies 

have presumably greater probability of encountering prey and may utilize a larger 

part of the available prey population m-2 (Paper III). Predicted autumn distributions 

of capelin based on acoustic data (Fall et al. 2018) correspond well with our 

theoretical predictions of attractive foraging habitats for capelin. Furthermore, our 

theoretical predictions were supported by capelin stomach data analyses. Capelin 

caught over banks had greater probability of having copepods in their stomachs, and 

the ones who had fed on copepods had more copepods in their stomachs when caught 

over banks compared to capelin sampled from deeper areas (Paper III). Greater 

stomach filling of copepods in fish sampled from shallow areas may, however, also 

reflect greater availability of large Calanus in Arctic water domains (Paper I).  

Capelin are in general believed to exert a significant predation pressure on 

zooplankton in the Barents Sea, and are frequently described as the most important 

planktivorous fish in this ecosystem (e.g. Gjøsæter 1998; Wassmann et al. 2006). 

Interactions between the bathymetry and prey depth distributions will potentially 

affect the strength of the top-down and/or bottom-up regulation between zooplankton 

and fish. In areas shallower than 200 m, we found a tight relationship between 

zooplankton density and the theoretical prey encounter potential for fish, which was 

more variable for deeper areas (Paper III). Top-down control of fish on zooplankton 

has been demonstrated for the central and northern parts of the Barents Sea (Stige et 

al. 2014), where we predicted that the fish will be able to utilize a larger part of the 

available prey population (Figure 3 in Paper III). The strength of this relationship is 
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weaker in the southwest (Stige et al. 2014), where the topography allows deeper 

zooplankton distributions and they are less available to the fish (Papers II and III). 

 

Are banks risky habitats for capelin? 

In addition to greater foraging opportunities, shallow areas may also represent 

elevated predation risk for capelin. Fall et al. (2018) did not find a strong relationship 

between capelin density and bottom depth, though McGowan et al. (2018) observed 

higher densities of capelin over banks in the Gulf of Alaska. Atlantic cod (Gadus 

morhua) is a key predator on capelin in the Barents Sea, and the abundance of cod is 

negatively associated with bottom depth (Johannesen et al. 2012). Furthermore, 

studies from Newfoundland have demonstrated a negative association between 

bottom depth and the amount of capelin measured in cod stomachs (Fahrig et al. 

1993). A similar association is also found in cod stomach analyses from the Barents 

Sea (Johanna Fall, unpublished data). Banks might therefore be risky habitats for 

capelin which is faced with a trade-off between greater foraging opportunities and 

elevated risk of predation. Habitat use by another mesopredator fish species 

(Gasterosteus aculeatus) has been associated with habitat complexity providing 

varying degrees of shelter from predation (Gagnon et al. 2019). Local scale processes 

and structures at the banks may be important also for capelin foraging in shallow 

areas.  

 

Calanus in a changing Barents Sea 

Climatic conditions in the Barents Sea are changing dramatically, and the sea is 

getting warmer (Lind et al. 2018). Both the minimum (September) and maximum 

(March) ice extent has decreased since 1950, and the sea is predicted to become ice 

free all year round within the next 30-40 years (Onarheim et al. 2018). Fish 

communities are already responding to these changes by transitioning towards 

dominance of Atlantic (boreal) species also in northern areas traditionally hosting 
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Arctic associates (Frainer et al. 2017). Changes in zooplankton communities may 

propagate through the ecosystem (e.g. Beaugrand et al. 2003), so revealing ongoing 

changes in the Calanus community is key for assessing the future state of this 

ecosystem.   

Calanus glacialis has its core distribution in seasonally ice-covered areas on the 

Arctic shelves (Conover 1988; Falk-Petersen et al. 2009), where ice algae is 

considered important for its success. Early egg production is fuelled by ice algae 

blooms, so that offspring may utilize the phytoplankton bloom occurring a couple of 

months later (Hirche and Kosobokova 2003; Søreide et al. 2010). Changes in the 

primary production regime caused by earlier break up of sea ice in the northern 

Barents Sea might lead to a mis-match between spring bloom conditions and C. 

glacialis phenology (Søreide et al. 2010). It is, however, uncertain if C. glacialis can 

adapt to a warmer climate with no ice algae. Recent molecular studies do suggest that 

this species has a wider distribution than previously reported (Choquet et al. 2017).   

Sea ice may be important for C. glacialis for another reason than food supply, namely 

survival through the overwintering stage. According to our theoretical predictions, 

planktivorous fish can utilize a larger part of the water column in the core distribution 

areas of C. glacialis areas in the Barents Sea (Papers I and III). Topographic 

constraints forcing vertical distributions into the light (Paper II) presumably makes 

C. glacialis and other large copepodites more vulnerable to visual predation in these 

areas (Paper III). Since ice reduces the amount of light entering the water column 

(Grenfell and Maykut 1977; Varpe et al. 2015), it is likely critical for the winter 

survival of zooplankton in areas with shallow bathymetries. Reduced sea-ice extent 

may lead to a tremendous increase in the search efficiency of fish (Langbehn and 

Varpe 2017), and can be a serious threat to the future persistence of large 

zooplankton in historically ice-covered areas of the Barents Sea. 

Increasing temperatures may shift the size-structure of zooplankton communities 

through temperature-size relationships (Daufresne et al. 2009) and visual predation 

(Varpe et al. 2015), both leading to a dominance of smaller sized individuals. We 
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observed indications that this type of change is already occurring in the Barents Sea 

(Paper I), though our data only covered the western area (Fugløya-Bear Island 

transect). Potential changes in the zooplankton size-structure give rise for concern. 

Large zooplankton are important for fish since they support higher growth rates (van 

Deurs et al. 2015), and because their visibility makes the fish able to sustain high 

encounter rates at lower densities of prey (Paper III). Changes in the zooplankton 

size-structure may also bring negative consequences for other planktivores than fish 

in the ecosystem (e.g. Karnovsky et al. 2003; Steen et al. 2007).  

 

General perspectives on fish-zooplankton trophic dynamics 

Research on the structure and dynamics of pelagic ecosystems has traditionally taken 

a resource-driven view (Verity and Smetacek 1996), and it was recently argued that 

properties (e.g. temperature) and dynamics (e.g. current velocity) of seawater are the 

primary factors controlling ecological dynamics in the ocean (Manderson 2016). 

However, considering the results in Paper II and Paper III of my dissertation, it is 

intriguing to reflect upon which role the bathymetry and light might have played in 

shaping the patterns we observe in marine ecosystems.  

 

Ocean banks as hotspots for fish 

Physical structures in habitats creates patches where predators are more successful 

foragers, and areas where prey have a greater chance of survival (e.g. Crowder and 

Cooper 1982; Carter et al. 2018). The subsurface topography may have this kind of 

role in the predator-prey dynamics between zooplankton and visually orienting 

planktivore predators (Papers II and III). Banks and shelves are often productive 

zones of the ocean (Simpson and Sharples 2012) where fish tend to aggregate. Fish 

aggregation over shallow topographies has traditionally been viewed as a result of 

enhanced prey availability due to increased primary production from upwelling over 



 29 

the topography. However, evidence for bottom-up effects on zooplankton and fish 

caused by increased primary production has rarely been demonstrated in the literature 

(Rogers 1994).  

When zooplankton are advected onto shelves and banks, they are forced to occupy 

shallower parts of the water column. Increased light exposure makes them more 

vulnerable to predation (Paper II) and can create attractive foraging opportunities for 

visually orienting predators (Paper III). Topographic blockage of vertically 

migrating zooplankton was first described by Isaacs and Schwartzlose (1965), who 

suggested that this mechanism could be important for sustaining resident fish 

populations over these topographies (illustrated in Fig. 3). Later studies have 

suggested that topographic blockage of vertically migrating zooplankton is important 

for both demersal fish (e.g. Genin et al. 1988), seabirds (Hunt et al. 1996) and 

penguins (Perissinotto and McQuaid 1992) foraging over shallow topographies.  

Environmental constraints on Daphnia depth distributions caused by hypolimnetic 

anoxia in freshwater lakes (e.g. Sakwińska and Dawidowicz 2005) is a parallel 

mechanism forcing zooplankton to remain in more illuminated parts of the water 

column. Similarly, the oxygen minimum zone may constrain vertical zooplankton 

distributions in oceanic habitats (Ekau et al. 2018). Constraints on distributions by 

shallow oxygen minimum zones has recently been suggested to benefit predators 

feeding on vertically migrating myctophid fish species (Stewart et al. 2018). 

Since light attenuates exponentially with depth in the ocean, the fish’ ability to utilize 

the available prey population m-2 becomes a non-linear relationship of the weighted 

mean depth (WMD) of the zooplankton population (Figure 3 in Paper III). With 

similar densities of prey, shallow and deep topographies may differ by several orders 

of magnitude with regards to foraging opportunities (prey detection potential) for 

planktivores (Paper II). The prey encounter potential may also be significantly 

greater over shallow topographies even at lower zooplankton biomass m-2 compared 

to deeper areas (Paper III). Advection of water masses (Genin 2004) and vertical 

strategies of zooplankton will of course also structure feeding opportunities for 
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planktivores over these topographies (see Discussions Papers II and III). 

Nevertheless, topographic blockage of zooplankton may be an important mechanism 

attracting fish to shallow topographies in oceanic ecosystems.  

 

 

Figure 3: Illustration of topographic blockage of zooplankton and consequences for 

visual foraging in fish. 
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Does the bottom topography shape larger scale ecosystem structures? 

Which role has the topography played in the evolutionary arms race between 

zooplankton and their visual foraging planktivore predators? Different life history 

strategies of Calanus species in the northern hemisphere is often explained as 

adaptations to different types of environmental conditions (e.g. Falk-Petersen et al. 

2009). However, the patterns we observe may also have been shaped by predation 

(Berge et al. 2012). Bottom depth is important to consider in this regard, as it may be 

key for the survival of seasonally migrating zooplankton throughout the 

overwintering stage. Core overwintering areas of C. finmarchicus and C. hyperboreus 

allows descents down to 1000 m depth or deeper in the Norwegian and Greenland 

Sea (Østvedt 1955; Hirche 1991), well out of reach for both pelagic and mesopelagic 

fish (Kaartvedt 2000). Calanus finmarchicus also occupies shallower overwintering 

habitats in the North Atlantic, though mainly below 200 m depth where the 

bathymetry allows it (Heath et al. 2000). Variation in overwintering depth of C. 

finmarchicus may be related to different types of predators present in the environment 

(Kaartvedt 1996). It may also be affected by optical properties in the water column 

(Dupont and Aksnes 2012; Paper II), since high light attenuation provides reduced 

light exposure at shallower depths.  

The combined effects of bathymetry and optical water properties on predator-prey 

interactions between zooplankton and planktivorous fish can potentially explain 

variation in both zooplankton size-structure and abundance (survival). Calanus 

hyperboreus is, for instance, presumably more constrained by the bathymetry in the 

Barents Sea than smaller Calanus species (Paper II), making it difficult to survive 

during multiple overwintering stages in this ecosystem. This is reflected in the low 

abundance of C. hyperboreus here, compared to other Calanus species with smaller 

body size and shorter life spans (Arashkevich et al. 2002; Hirche and Kosobokova 

2003; Paper I). 

The bathymetry constrains the overwintering distribution of Calanus species over 

shelves in the North Atlantic (Krumhansl et al. 2018; Paper II), and possibly also in 

the North Sea (see Discussion Paper II). Fish feeding on seasonally migrating 
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zooplankton must adapt to seasonally fluctuating foraging opportunities, when key 

prey become absent from the illuminated parts of the water column during large parts 

of the year. Occupying areas where seasonal migrators become constrained by the 

bathymetry in their vertical descents (Paper II) may be successful adaptations to the 

predator-avoidance strategies carried out by their prey. Indeed, small pelagic fish are 

often associated with continental shelves or shelf seas, such as capelin in the North 

Atlantic (Carscadden 2002).  

 

Future perspectives 

Evaluating how life is structured through predation is important to enhance our 

knowledge of pelagic ecosystems (Verity and Smetacek 1996). Results in my 

dissertation have demonstrated that the bottom topography likely plays a key role in 

the predator-prey dynamics between zooplankton and fish in the pelagic zone. 

Consumption of zooplankton by pelagic fish channels a large part of the energy flow 

from primary production to both commercially and non-commercially important 

species in marine ecosystems (Pikitch et al. 2014; Robinson et al. 2014). Including 

bottom depth as a variable in analyses of trophic control between fish and 

zooplankton populations may reveal regional differences in predator-prey dynamics 

between the two, and further our understanding of ecosystem function and 

productivity. In general, one may expect a tighter coupling between fish and 

zooplankton in areas with shallow bathymetry, where fish are able to utilize a larger 

part of the zooplankton population due to topographic constraints on vertical 

zooplankton distributions (Paper III).  

Advection of zooplankton is important for sustaining profitable foraging habitats for 

fish over shallow topographies (Genin 2004). Without advection, it is likely that 

zooplankton over shallow topographies will be quickly depleted due to lack of 

refugee from visual predation (Paper II). Variation in advective transport of 

zooplankton over these topographies may cause variation in food availability and 
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growth rates of fish. The vertical distribution of zooplankton affects their advection 

rates within different water masses, creating additional variation in zooplankton 

transport (Basedow et al. 2018). Studies combining particle tracking and 

hydrodynamics (e.g. Harms et al. 2000) with vertical zooplankton strategies might be 

useful to further identify important foraging habitats and variations in food supply for 

planktivorous fish. 

Krill is an important prey item for planktivorous fish that has not been considered in 

my dissertation. I do, however, expect that the bathymetry is important also for 

predator-prey interactions between planktivorous fish and krill (see Discussion Paper 

III). Use of other sampling techniques such as broadband acoustics are promising 

tools for obtaining finer scale measurements of vertical krill distributions and 

interactions with pelagic fish (e.g. Skaret et al., submitted), and may be important to 

further our understanding of pelagic ecosystem dynamics. 

Using a mechanistic foraging model in combination with vertical zooplankton 

observations, we have demonstrated how the prey availability for fish is structured by 

the vertical zooplankton distribution and interactions with the bathymetry. Due to 

visual constraints on fish foraging, two areas with similar zooplankton biomass m-2 

may represent significantly different foraging opportunities. Zooplankton biomass m-2 

is therefore a poor measure of food availability for fish. Our results (Papers II and 

III) have shown that topography may be a useful proxy for assessing food availability 

for planktivores when vertical zooplankton data is lacking.  

Arctic ecosystems are warming faster than the global average (Hoegh-Guldberg and 

Bruno 2010), and predictions for the Barents Sea give cause for concern (e.g. 

Onarheim et al. 2018; Lind et al. 2018). Continued warming may become serious for 

zooplankton like C. glacialis which for various reasons may be dependent on sea ice 

for their persistence in Arctic systems. Changes in zooplankton size-structures may 

be difficult to detect with the existing zooplankton data from the Barents Sea, as these 

contain only limited information (3 size fractions) on individual size. Novel 

observation methods such as plankton-imaging-systems (Benfield et al. 2007) are 
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promising tools for future monitoring of zooplankton-size structure in this ecosystem. 

Changes in the zooplankton size-structure may propagate to higher trophic levels and 

should be given high priority in future research and monitoring of the Barents Sea 

and other Arctic ecosystem.   
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Copepods from the genus Calanus are crucial prey for fish, seabirds and mammals in the Nordic and Barents Sea ecosystems. The objective of
this study is to determine the contribution of Calanus species to the mesozooplankton biomass in the Barents Sea. We analyse an extensive
dataset of Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus, collected at various research surveys over a 30-year period. Our
results show that the Calanus species are a main driver of variation in the mesozooplankton biomass in the Barents Sea, and constitutes
around 80% of the total. The proportion of Calanus decreases at low zooplankton biomass, possibly due to a combination of advective proc-
esses (low C. finmarchicus in winter) and size selective foraging. Though the Calanus species co-occur in most regions, C. glacialis dominates in
the Arctic water masses, while C. finmarchicus dominates in Atlantic waters. The larger C. hyperboreus has considerably lower biomass in the
Barents Sea than the other Calanus species. Stages CIV and CV have the largest contribution to Calanus species biomass, whereas stages
CI-CIII have an overall low impact on the biomass. In the western area of the Barents Sea, we observe indications of an ongoing borealization
of the zooplankton community, with a decreasing proportion of the Arctic C. glacialis over the past 20 years. Atlantic C. finmarchicus have
increased during the same period.

Keywords: C. finmarchicus, C. glacialis, Fugløya-Bear Island transect, key drivers, mesozooplankton, temperature effects.

Introduction
Herbivorous zooplankton plays an important role in the marine

pelagic food web converting energy from primary production to

food for higher trophic levels in the ecosystem. Copepods of the

genus Calanus are predominantly herbivores and the most impor-

tant zooplankton in the Nordic and Barents Sea ecosystems, largely

due to their high abundances and lipid contents (Jaschnov, 1970;

Tande, 1991; Melle and Skjoldal, 1998; Søreide et al., 2008;

Falk-Petersen et al., 2009). Being a high latitude ecosystem, the

Barents Sea is characterized by strong seasonality in light and

sea-ice conditions, with large impact on the marine biota. Three

Calanus species are common here; Calanus finmarchicus is an

Atlantic boreal species, while Calanus glacialis and Calanus hyper-

boreus are of Arctic origin (Conover, 1988; Tande, 1991; Melle and

Skjoldal, 1998). Calanoid copepods are particularly well adapted to

fluctuating environmental conditions due to reduced metabolic

activity (diapause-like state) in winter when food is low, and capa-

bilities of building large lipid reserves during the growing season.

The individual lipid content in these species may be as large as

50–70% of the body weight (Lee, 1975; Scott et al., 2000), which

make them valuable food sources for higher trophic levels in the

system. Indeed, the calanoid copepods constitute a key part of the

diet for many ecologically and economically important fish species

in the Barents Sea (Wassmann et al. 2006; Orlova et al., 2011;

Dalpadado and Mowbray, 2013).

Calanus finmarchicus overwinters in deep waters (>500 m) of

the Norwegian Sea, and is advected into the Barents Sea with the

Atlantic current when it ascends to surface layers in spring
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(Skjoldal et al., 1992; Torgersen and Huse, 2005). Advection from

the Norwegian Sea is vital for sustaining the population in the

Barents Sea (Torgersen and Huse, 2005; Skaret et al., 2014),

though local reproduction within the Barents Sea is also impor-

tant (Kvile et al., 2017). This species generally has a predomi-

nantly 1-year life cycle in these waters, with the new generation

produced at the onset of the phytoplankton spring bloom (Tande

et al., 1985; Melle and Skjoldal, 1998). Calanus glacialis is a shelf

species largely associated with Arctic water masses in the Barents

Sea, and can have both 1- and 2-year life-cycles (Conover 1988;

Tande, 1991; Melle and Skjoldal, 1998). The larger congener

C. hyperboreus has in general low abundances in the Barents Sea

(Hirche and Mumm, 1992; Melle and Skjoldal, 1998; Arashkevich

et al., 2002), with its centre of origin in the deep basins of the

Greenland Sea and Baffin Bay where it can have up to a 4-year life

cycle (Conover, 1988; Hirche, 1997).

Since around 1980, the Barents Sea has experienced a warming

trend which has been particularly pronounced during the last two

decades (Boitsov et al., 2012; Smedsrud et al., 2013). Warming

has led to a northward shift in the spatial distribution of fish

communities (Fossheim et al., 2015) and to a marked increase in

the amount of krill and cumulative biomass of pelagic species

(Eriksen et al., 2016, 2017b). Continued warming has increased

the dominance of Atlantic species and negatively impacted the

Arctic communities (Hirche and Kosobokova, 2007; Kjellerup

et al., 2012; Dalpadado et al., 2014; Fossheim et al., 2015; Frainer

et al., 2017). Short-lived species like plankton are expected to

show rapid responses to a changing climate (Hays et al., 2005),

and changes at the base of the marine food chain may propagate

through the system with consequences at an ecosystem scale

(Beaugrand et al., 2003; Helaouët and Beaugrand, 2007).

Revealing ongoing changes in marine plankton (e.g. Beaugrand

et al., 2002) is therefore vital for predicting the future of marine

ecosystems in a warmer climate.

The Barents Sea zooplankton community has been studied

extensively (e.g. Hassel, 1986; Tande, 1991; Unstad and Tande,

1991; Melle and Skjoldal, 1998; Arashkevich et al., 2002). Many

studies point to the importance of the Calanus species due

to their size, abundance and lipid contents, though few have

quantified their contribution to the total mesozooplankton bio-

mass. Furthermore, most studies have analysed samples from a

restricted time-period of one or a few years with low seasonal res-

olution. We explored an extensive dataset of species abundance

for C. finmarchicus, C. glacialis, and C. hyperboreus, originating

from various research and monitoring surveys in the Barents Sea,

conducted by the Institute of Marine Research (IMR), Norway,

over a 30-year period. IMR has used a standard method of split-

ting each zooplankton sample in two halves: one for determina-

tion of dry weight (dw) biomass, and the other preserved for

species counts (Melle et al., 2004). Our aim was to quantify the

relationship between sampled mesozooplankton biomass and

estimated biomass of Calanus species in the Barents Sea using the

pair-wise samples. We further investigated the spatial patterns of

the three species in relation to water masses and bottom topogra-

phy, and evaluated whether there has been a change in the cope-

pod community concurrent with the recent warming in the area.

A transition towards dominance of smaller-sized, Atlantic cope-

pods could affect the lipid structure and energy flow in the eco-

system with consequences for many trophic levels in the food

web.

Material and methods
Zooplankton sampling and analyses
The standard procedure for zooplankton sampling at the IMR,

Norway, is described in detail in Melle et al. (2004) and Skjoldal

et al. (2013). Briefly, samples are divided in two halves with a

Motoda plankton splitter, one part for determining the biomass

(g dw per m2 or m3), and the other half for species identification

and abundance estimation. The biomass subsample is separated

into three size fractions using mesh gauzes of 2000, 1000, and

180 mm (for details, see Skjoldal et al., 2013). The second subsam-

ple is preserved with buffered 4% formalin solution and stored

for later processing. The three Calanus species are identified based

on size limits (Supplementary Table S1) and morphological char-

acteristics including shape of the curvature of the coxopodite of

the fifth leg (P5) (Knutsen and Dalpadado, 2009), and counted

separately for each copepodite stage (CI–CV and CVI females

and males). Consistent size-limits have been used throughout the

period of the samples used in our study (see Hassel, 1986; Melle

and Skjoldal, 1998). The size frequency data typically follow nor-

mal distributions for each of the species, with some (and variable)

overlap between them, particularly for C. finmarchicus and

C. glacialis (Hassel, 1986; Unstad and Tande, 1991; Melle and

Skjoldal, 1998; Parent et al., 2011; Gabrielsen et al., 2012). Use

of fixed size limits to separate the species is therefore an approxi-

mation, and the potential for misidentifications is present,

particularly in areas where the species co-occur. Individuals of

intermediate size are therefore routinely examined for curvature

of the coxopodite to reduce the degree of misidentification from

the use of fixed size limits.

Data description
Sample processing for species identification is labour-intensive,

and only a fraction of the samples collected by the IMR are proc-

essed (all samples are stored in a long-term repository). Over the

years, there has still been an accumulation of processed samples

originating from various researches and monitoring surveys. We

extracted all samples in the IMR database with data on both meso-

zooplankton biomass and species abundance from the same sam-

pling stations in the Barents Sea (Tables 1 and 2). When multiple

samples had been taken at a station, only one (WP2 gear, bottom

to surface haul) was included in this study. In total, we analysed

616 samples covering an extensive geographical area (Figure 1).

Samples were grouped into five oceanographic regions based on

bathymetry and advection (Table 2), and aggregated into the

following seasons: winter (November–March), spring (April–

May), summer (June–July), and autumn (August–October). The

Fugløya-Bear Island transect (FB transect, grey line in Figure 1) is a

standard oceanographic transect in the western region, hereafter

called “West”, covered by IMR five to eight times each year.

Samples from this transect are regularly processed for species iden-

tification, and have consistent seasonal coverage since 1995. Region

West therefore contributed a large part (�70%) to the data ana-

lysed in this study. Samples from the 1980s (the Pro Mare pro-

gramme; Sakshaug et al., 2009) were mainly from the spring and

summer period.

Most of the samples were from near-bottom to surface hauls,

though � 10% had shallower sampling depths (Table 1). Samples

with a unit of abundance or biomass m�3 were converted to m�2

by integrating over the water column down to the lowest
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sampling depth. Differences in sampling gear and depth were

accounted for in the statistical analyses.

Biomass estimation of Calanus species
Copepodite abundances of C. finmarchicus, C. glacialis, and

C. hyperboreus were converted to biomass estimates using indi-

vidual weight-at-stage data from the literature (Table 3). The

individual weight can vary considerably, by up to an order of

magnitude within a copepodite stage (Figure 2). Part of this var-

iation is due to weight increase as individuals grow through a

stage between successive moults. There is also systematic varia-

tion in relation to thermal habitat, where individuals tend to

become larger when they grow at low compared with higher tem-

perature (Campbell et al., 2001; Melle et al., 2014). Mean weights

from studies in or near the Barents Sea were considered represen-

tative of those for our study region (Table 3). We also performed

length measurements on individuals of C. finmarchicus and

C. glacialis stages CIV, CV and adult females, to evaluate the pro-

priety of the weight-data employed for estimating species bio-

mass. Based on these measurements we were confident that the

weight-data (Table 3) were reasonable (results are available in the

Supplementary Material).

Table 1. Gear characteristics of the sampling equipment in the dataset.

Sampling gear Net opening (cm) Mesh size (mm) Lower sampling depth (m) Sample unit Samples (n)

WP2 56 180 100, bottom m�2 569
Juday 80 250, 375 40, 50 m�2 14
Hufsa – 180, 375 30, 40, 50, 100 m�3 28
MOCNESS 100 180, 333 bottom m�3 5

For detailed gear descriptions, see Sameoto et al. (2000), Wiebe and Benfield (2003), and Skjoldal et al. (2013). Upper sampling depth for all gears is surface
(0 m).

Table 2. Overview of regions as defined in this study, and number of samples analysed per region.

Region Latitude (�N) Longitude (�E) Bottom depth (m)a Dominating water massb Main sampling periodc Samples (n) per season

West 70–75 15.5–21 266 Atlantic 1994–2016 Summer 65
Autumn 170
Winter 177
Spring 89

South 70–73.5 21–40 317 Atlantic 1983–2016 Summer 9
Autumn 7
Winter 0
Spring 3

Central 74–78 21–38 221 Arctic/mixed 1983–2009 Summer 33
Autumn 15
Winter 2
Spring 6

North 78–82 25–36 211 Arctic/mixed 2005–2016 Summer 1
Autumn 22
Winter 0
Spring 0

East 71–80 41–61 234 Arctic/mixed 1983–1994 Summer 5
Autumn 11
Winter 1
Spring 0

Samples were aggregated into the seasons winter (November–March), spring (April–May), summer (June–July), and autumn (August–October).
aMean of sampling stations.
bDominating water mass in samples analysed: Atlantic (T> 3 �C), Arctic (T< 0 �C), mixed (0 �C < T< 3 �C) based on temperature at 50-m depth.
c>90 % of samples taken during this period.

Figure 1. Geographical distribution of samples analysed in this
study (n ¼ 616). The Barents Sea was divided into five
oceanographic regions as defined in Table 2. Outer bounds of the
polygons are included as a visual aid. Samples were defined as
Arctic (T< 0 �C), Atlantic (T> 3 �C), or mixed (0 �C < T< 3 �C)
based on temperature data from 50 m depth. The FB transect,
where a large part of the data originates from, is marked with
a line.
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Physical environment
Temperature and salinity profiles from CTD casts from the

respective sampling stations were available for most of the

dataset. Samples were classified as Atlantic (T > 3 �C), Arctic

(T < 0 �C), or mixed (0 �C<T< 3 �C) based on temperature at

50 m, where the core of Arctic water is usually found (Lind and

Ingvaldsen, 2012; Lind et al., 2016). Temperature and salinity at

50 m were used as continuous variables in the statistical analyses

explaining variance in Calanus sp. biomass (see ii below), and

sampling depth as a proxy for bottom depth since some samples

were not taken from bottom to surface.

Data analyses
Statistical analyses were performed to:

(i) Estimate the relationship between Calanus biomass (sum of

the three species) and the mesozooplankton biomass in the

pair-wise samples.

(ii) Evaluate interspecific differences in biomass between the

three Calanus species with regard to key environmental

drivers.

(iii) Analyse inter-annual changes in the Calanus species group

regarding species biomass and % contribution to total

biomass.

For (i) and (ii), we employed the complete dataset with 616 sam-

ples (613 samples in (ii) due to missing temperature data from

three stations). For (iii), we used summer and autumn data from

region West (mainly FB transect) where we had annual observa-

tions since 1995. Analyses were performed on log-transformed

estimated dw biomass plus a constant (0.01) to enable log-

transformation of samples with species absence (zero biomass).

Total Calanus vs. mesozooplankton biomass
We used Major Axis regression (MA) to estimate the relationship

between the observed (log-transformed) mesozooplankton

biomass and the estimated total biomass of Calanus spp. This

regression technique is suitable for describing the functional rela-

tionship between two variables of the same units of measurement

when both are subject to observation error (Helsel and Hirsch,

1992; Sokal and Rohlf, 2012). We also performed an ordinary

least squares (OLS) regression for comparison with the MA, to

evaluate how results would change by the choice of regression

model.

Calanus biomass at species level
OLS regressions with species biomass as response variable was

used to evaluate interspecific differences between the Calanus

species with regard to environmental factors (temperature,

salinity and sampling depth as continuous variables, season as

Figure 2. Mean weight (lg ind�1, points in figure) for copepodite stage CV and adult females of (a) C. finmarchicus, and (b) C. glacialis, as
reported by the scientific literature (x-axis). (i) Carlotti et al. (1993), (ii) Tande (1982), (iii) Ikeda and Skjoldal (1989), (iv) Scott et al. (2000), (v)
Diel (1991), (vi) Hirche et al. (2001), (vii) Gislason (2005), (viii) Båmstedt and Ervik (1984), (ix) Jónasdóttir (1999) (*deep water), (x) Heath and
Jónasdóttir (1999), (xi) Runge et al. (2006), (xii) Kjellerup et al. (2012), (xiii) Båmstedt and Tande (1985), (xiv) Hirche (1987), (xv) Hirche and
Kattner (1993), (xvi) Hirche et al. (1994), (xvii) Hirche and Kwasniewski (1997), (xviii) Hirche and Kosobokova (2003), (xix) Tourangeau and
Runge (1991). Vertical lines show the range of weights, or mean6 SD, when this information has been available. Horizontal lines show the
values employed in this study when estimating species biomass for stage CV (dotted) and females (dashed).

Table 3. Dry weight (mg) per copepodite stage (CI–CVI female and male) for Calanus spp. used to estimate biomass in this study.

Species CI CII CIII CIV CV CVIf CVIm References

C. finmarchicus 1.5 4 13 70 250 235 235 Tande (1982), Tande and Slagstad (1992)
C. glacialis 8 16 40 185 600 810 600 Hanssen (1997), Hirche and Kosobokova (2003)
C. hyperboreus 10 40 140 500 2000 3500 3500 Hirche (1997)

See also Figure 2 for an overview of dry weight measurements of C. finmarchicus and C. glacialis from the literature.
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categorical). Data on C. glacialis and C. hyperboreus had consider-

able zero-inflations as a large portion of the data came from the

Atlantic sector of the Barents Sea, so analyses for these species

were performed on all samples as well as only presence-data. We

also ran separate analyses with presence/absence as a response,

using Generalized Linear Models with a binomial distribution.

Model selection (i.e. deciding on the optimal models describ-

ing estimated biomass at species level) was based on the Akaike

information criterion (AIC; Akaike, 1974) which considers the

trade-off between model fit and model complexity, and back-

wards selection (stepwise removal of the least significant term).

All analyses were run both on the complete dataset and on

data only including samples taken from bottom to surface. To

account for differences in sampling gear characteristics like mesh

size and net opening, equipment was included as a fixed covariate

in the analyses. Due to an overweight of samples from the WP2

sampling gear, this dataset was not suitable for concluding on dif-

ferences in sampling gear performance.

Temporal changes in region West
Changes in biomass at species level and changes in the proportion

of C. finmarchicus, C. glacialis, and C. hyperboreus in the total

mesozooplankton biomass over the period (1995–2016) were

analysed with generalized additive models (GAMs) to catch

potential non-linear trends in temporal variation. We used a

spline based smoother with four degrees of freedom. In analyses

of proportions, estimates >1 were set to 1, and analyses were run

on arcsine transformed values.

All analyses were done in the statistical software packageR

(R Core Team, 2016), using the mgcv library for GAMs (Wood,

2017).

Results
Correlation between Calanus spp. and total
mesozooplankton biomass
There was a strong correlation between the observed mesozoo-

plankton biomass and the estimated biomass of Calanus species

in the samples (r2 ¼ 0.79, p¼ 0.005) (Figure 3). Results were simi-

lar both with the complete dataset and when excluding samples

that did not cover the entire water column. The observed biomass

spanned a range of about three orders of magnitude, from 0.01 to

48 g dw m�2, with a similar range also for the estimated biomass

of Calanus species (0.003–50 g dw m�2). On average, the Calanus

species comprised 78% of the mesozooplankton biomass, though

this varied between the different regions (see below).

The scatter around the regression line in Figure 3 was approxi-

mately one order of magnitude (corresponding to one unit on

the log scale). The estimated dw of the three Calanus spp. sur-

passed the observed mesozooplankton dw sampled at the station

(i.e. observations above the 1:1 dotted line in Figure 3) in 19% of

the cases. Overestimations occurred in all seasons, both at high

and low biomass levels.

The MA regression slope was steeper than unity (1.24 on the

log-log scale), which means that the % contribution of Calanus

species to the observed biomass increased with increasing bio-

mass values. In fact, the regression line crossed the 1:1 line at a

log value about 1.5 (32 g dw m�2). The OLS regression had a

lower slope (1.1) and did not cross the 1:1 line. OLS in bivariate

regressions tends to underestimate the slope of the regression

line when both variables are subject to observation error not

controlled by the researcher (Sokal and Rohlf, 2012), which may

be reflected in our data as well (Figure 3). We therefore conclude

that predictions from the MA regression more accurately

described the relationship between Calanus spp. and mesozoo-

plankton biomass in the Barents Sea.

Hydrographic and spatial differences between Calanus
spp.
There was considerable variation in the estimated % contribution

of each species to mesozooplankton biomass in the water masses

defined as Arctic, Atlantic and mixed (large interquartile ranges,

Figure 4). However, the water masses were distinctively different

regarding which of the three Calanus species that contributed to

the mesozooplankton biomass. In Atlantic water, C. finmarchicus

constituted a large part of the mesozooplankton biomass whereas

C. glacialis had a low contribution to the total. In Arctic water

C. glacialis prevailed, with low contribution by C. finmarchicus.

Both C. finmarchicus and C. glacialis contributed to the total in

mixed water masses. Calanus hyperboreus was generally a small

part of the mesozooplankton biomass in all water masses, though

relatively more abundant in the Arctic than the other two.

A summary of biomass estimates and estimated proportions of

the three Calanus species in the five regions shown in Figure 1 is

available in the Supplementary Material (Supplementary Table

S2). The total contribution by the three Calanus species to the

mesozooplankton biomass differed across the regions, from

�50% in the East to >90% in the South. On species level, the %

contribution in each area reflected differences between the water

masses as illustrated in Figure 4. The West and South regions

where Atlantic water prevails was dominated by C. finmarchicus,

while C. glacialis was a larger fraction of the total in the North

and East regions where Arctic water is present (Figure 5). Both

species had a similar contribution to the biomass in the Central

Figure 3. Observed mesozooplankton biomass and estimated total
biomass of three Calanus species in the samples. Samples are shown
with symbols by season; winter (November–March), spring (April–
May), summer (June–July), and autumn (August–October). The
dotted line shows a 1:1 relationship between mesozooplankton and
Calanus spp. biomass. Regression results (MA and OLS) are plotted
with 95% confidence bands, r2 ¼ 0.79 and p ¼ 0.005 for both
regressions.
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region which contains the oceanographic polar front with cooled

Atlantic and mixed water masses. Species other than Calanus

appeared to have a larger contribution to the mesozooplankton

biomass in the North, Central and East regions than in the West

and South (Figure 5). The “other” category is usually dominated

by species like Metridia spp., Pseudocalanus spp., Microcalanus

spp., Oithona spp., Oncaea spp., and Clione limacina (IMR

database).

The total variation in estimated biomass within the pooled

datasets was large, with coefficient of variation (CV) typically

greater than one (Supplementary Table S2). CV values tended to

be higher at low estimated biomass values and were generally

higher for Calanus biomass estimates than for the total mesozoo-

plankton biomass. High CV values suggest a skewed distribution

(relative to normal) which is reflected in median values being

lower than arithmetic means (by 5–40% for total mesozooplank-

ton biomass, and 20–60% for estimated biomass of C. finmarchi-

cus and C. glacialis).

Environmental drivers of Calanus biomass
Selected linear regressions based on the AIC and backwards selection,

showed that the best model for describing the estimated biomass at

species level included season, sampling depth, equipment and tem-

perature (50 m) for all three species (r2¼ 0.38 for C. finmarchicus,

0.51 for C. glacialis and 0.31 for C. hyperboreus). Model coefficients

with standard errors are available in the Supplementary Table S3.

Among the predictors, temperature revealed clear differences

between the species (Figure 6a). Calanus finmarchicus had a positive

relationship with temperature (p< 0.001), while it was negative for

C. glacialis (p< 0.001). Also C. hyperboreus had a negative relation-

ship with temperature (p< 0.001), though weaker than for

C. glacialis. Sampling depth was positively related to estimated

biomass for all three species (Figure 6b), giving higher Calanus spp.

biomass in deep vs. shallow water. The model for C. finmarchicus

predicted a higher mean biomass in summer compared with

autumn, and lower for winter and spring. For C. glacialis and

C. hyperboreus, the models predicted lower mean biomass in winter,

spring and summer compared with autumn. Salinity had no signifi-

cant effect for neither species. These trends were consistent across all

datasets (complete, bottom to surface and presence-only data for

C. glacialis and C. hyperboreus). Further, binomial models on pres-

ence/absence for C. glacialis and C. hyperboreus confirmed the nega-

tive relationship of these species with temperature.

Temporal changes in region West
The total mesozooplankton biomass in June and August in region

West showed an increasing trend in recent years (Figure 7a). This

coincided with an increase in the medium (1000–2000 mm) and

small (180–1000 mm) mesozooplankton size fractions, while the

large (>2000 mm) size fraction has decreased since around 2002.

GAM analyses on the estimated proportion of the three Calanus

species in the corresponding samples revealed a linear decrease in

the % contribution to total biomass of C. glacialis over the period

(Figure 7b, p¼ 0.04). Meanwhile, the proportion of C. finmarchi-

cus has increased since the early 2000s (p¼ 0.003). C. hyperboreus

constituted a very small part of the mesozooplankton biomass in

region West. Its contribution to the total was generally below 5%

except between the years 2002 and 2004 when it had a “peak”

contribution (Figure 7b, p¼ 0.002). Model outputs are available

in the Supplementary Figure S1.

GAM analyses on estimated species biomass over the same

period showed increasing biomass of C. finmarchicus since

around 2005 (p¼ 0.05) (see Figure 8b). At the same time,

the biomass of C. glacialis decreased (apart from the most

Figure 4. Estimated proportions of total mesozooplankton biomass
for C. finmarchicus, C. glacialis, and C. hyperboreus in different water
masses defined as Atlantic (T> 3 �C), Arctic (T< 0 �C), and mixed
(0 �C < T< 3 �C). Number of samples (n) from each water mass is
indicated in the x-axis labels. The graph presented excludes 12
observations with estimated proportions >200 %. The boxes are
divided by the median value, and framed by the upper and lower
quartile. The whiskers extend to the first outlier in each direction;
other outliers are shown by separate points. Outliers are defined as
data points >1.5 times the upper quartile.

Figure 5. Estimated proportion of C. finmarchicus, C. glacialis, and C.
hyperboreus biomass to total mesozooplankton biomass in different
regions of the Barents Sea, based on arithmetic means (g dw m�2)
per region. The size of the cakes is proportional to the total
mesozooplankton biomass. “Other” represents the total minus the
estimated mean biomass of the Calanus species. Winter samples
from region West are not included in the figure.
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recent years), though the trend was not significant at the 0.05

level (p¼ 0.07).

Stage specific contribution to biomass
Calanus finmarchicus was a consistently large part of the

mesozooplankton biomass in region West, where Atlantic

water dominates. Samples from this region revealed that

copepodite stages CIV and CV dominated the total species

biomass for C. finmarchicus (Figure 8). The new generation

consisting of younger copepodites (CI–CIII) appeared in May.

However, they comprised a very small part of the estimated

total biomass in all months analysed. Stages CIV and CV of

the new generation created a seasonal maximum biomass in

June–August. Samples from winter months (January, March)

indicated that C. finmarchicus overwinters mainly as stage CV

in this area.

Stages CIV and CV dominated the biomass also for C. glacialis

in regions Central, North and East (Figure 9) where this species

was a large fraction of the mesozooplankton biomass. Winter

samples for C. glacialis indicated overwintering mainly as stage

CIV and adults. The younger stages, particularly CIII, had a larger

contribution to the total species biomass for C. glacialis during

summer and autumn than with C. finmarchicus. The maximum

mean monthly estimated biomass of C. glacialis of about 3.6 g dw

m�2 was comparable to (but slightly lower than) the maximum

biomass of C. finmarchicus apart from the higher values for the

latter species after 2005 (Figure 8b).

Figure 6. Estimated biomass of the three Calanus species against (a) temperature and (b) sampling depth, with data from equipment WP2
and season autumn. Predictions (straight lines with 95 % confidence bands) are from the linear models log(Calanus sp. dw) � temperature þ
season þ depth þ equipment (r2 ¼ 0.38 for C. finmarchicus, 0.52 for C. glacialis, and 0.31 for C. hyperboreus), with mean levels of depth (a)
and temperature (b).

Figure 7. (a) Mean sampled June and August mesozooplankton biomass (g dw m�2) in the Barents Sea, region West, from 1995 to 2016.
Figure shows total biomass and biomass divided into three size fractions. (b) Mean estimated proportion (%) of C. finmarchicus, C. glacialis,
and C. hyperboreus in the corresponding samples. Error bars show6 the SEM proportion. One potential outlier with estimated proportion of
C. finmarchicus >500 % was removed in the figure. The trend lines are results from GAM models with species proportions as response and
year as explanatory variable; p ¼ 0.003, 0.04, and 0.002 for C. finmarchicus, C. glacialis and C. hyperboreus, and deviance explained is 10, 4.2,
and 12%, respectively.
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Discussion
Estimated biomass of Calanus species
Calanus spp. are key species at high latitudes spanning from

boreal to Arctic ecosystems (Jaschnov, 1970; Conover, 1988; Falk-

Petersen et al., 2009). Yet, few studies have quantified the contri-

bution of Calanus species to the total zooplankton biomass.

Biomass of Calanus is typically estimated by combining stage-

abundance data with mean individual body weights of the respec-

tive stages (e.g. Tande, 1991; Hirche and Kosobokova, 2003;

Søreide et al., 2008). Using this method, we found a mean bio-

mass of C. finmarchicus around 5 g dw m�2 in June and August

(1995–2005) in the western region of the Barents Sea dominated

by Atlantic water. After 2005, the biomass of C. finmarchicus has

increased. Our estimates for the later years (2005–2016) are in the

high end of the range of values reported from other areas.

A detailed sampling at Station M in the Norwegian Sea gave a

mean biomass of 1.7 g dw m�2 with a temporary maximum of

12.5 g dw m�2 (Hirche et al., 2001). Simulations with a coupled

physical–biological model system (NORWECOM) gave a sea-

sonal maximum biomass of C. finmarchicus of 4–5 g dw m�2 in

the Norwegian Sea and the Atlantic part of the Barents Sea

(Hjøllo et al., 2012; Skaret et al., 2014, see review of estimated

biomass of the three Calanus species provided in the

Supplementary Table S4). Our estimates for the colder waters of

the central, eastern and northern Barents Sea were lower, and

similar to values obtained in the same region by Hirche and

Kosobokova (2003).

Estimated biomass of C. glacialis in the North, Central and

East regions was slightly lower than the biomass of C. finmarchi-

cus in the West, with a seasonal maximum around 3.6 g dw m�2.

This is comparable to studies of C. glacialis both from the Barents

Sea and other areas (Tande, 1991; Madsen et al., 2001; Hirche

and Kosobokova, 2003; Daase et al., 2013). Our biomass estimates

for C. hyperboreus were 0.1–0.7 g dw m�2 as means for the differ-

ent areas. These are similar to values reported from the Barents

Sea by Tande (1991) and Hirche and Kosobokova (2003). Higher

values of up to 4–6 g dw m�2 have been reported from the

Greenland Sea (Hirche, 1991; Møller et al., 2006) and Disco Bay

(Madsen et al., 2001).

Misidentification of Calanus species from the use of fixed size

limits (see “Materials and methods” section) may have influenced

the results. The most frequent cases of misidentifications are

small individuals of C. glacialis wrongly identified as C. finmarchi-

cus (Gabrielsen et al. 2012). A hybrid species is expected to have

intermediate prosome lengths (Parent et al., 2012). Species distri-

butions were in our study highly related to water masses; and in

Atlantic water where C. finmarchicus dominated, the overall

contribution by C. glacialis was low. Co-occurrence between

C. finmarchicus and C. glacialis was more prominent in the mixed

water masses, and here the potential for misidentification (and

possible hybridization) may have been greater.

One could expect that increasing water temperatures in the

Barents Sea would lead to decreasing size of C. finmarchicus cope-

podites (Campbell et al., 2001). Albeit a small sample size, the

length measurements we performed as part of this study did in

fact indicate that C. finmarchicus have become smaller between

1997 and 2010 (Supplementary Table S5). Smaller C. finmarchicus

reduces the probability of overlapping in size with its congener

C. glacialis. It is also reasonable to expect that warmer conditions

would favour the dominance of C. finmarchicus (Kjellerup et al.,

2012). We therefore believe that the general trends we observe in

Figure 8. Mean biomass (g dw m�2) per stage (CI to CV and CVI female and male) for C. finmarchicus in the western region of the Barents
Sea between (a) 1995–2004 and (b) 2005–2016. The figure only displays months which have been consistently sampled over the period.

Figure 9. Mean biomass (g dw m�2) per stage (CI to CV and CVI
female and male) for C. glacialis, with data from the Central, North
and East regions considered as most representative for this species.
Months with no observations are indicated by NA.

8 J. M. Aarflot et al.

Downloaded from https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsx221/4748804
by Institute of Marine Research user
on 18 December 2017



this study would be consistent despite the possibilities of species

misidentification (due to size overlap and possible hybridization)

in our data.

Variation in weights of Calanus copepodites
Variation in size (weight) can be a considerable source of error

and uncertainty in Calanus biomass estimates from species

counts. Our Calanus biomass estimates surpassed the observed

total biomass in one out of five samples. Responding to the over-

estimations, we repeated species counts on a selection of samples

(formalin preserved) from years with large discrepancies between

estimated dw of C. finmarchicus and observed mesozooplankton

biomass. The new measurements did, however, not reveal any

abundance estimation errors that could explain the biomass over-

estimations. We believe the overestimations reflect uncertainties

in the weight-at-stage data employed when estimating species

biomass, as well as variance introduced by subsampling when

estimating species abundances (see e.g. Skjoldal et al., 2013).

Most studies where Calanus spp. biomass is estimated have

used mean weights of copepodite stages from the literature. It is

difficult to quantify the uncertainty, but from the variation in

mean weights of the older copepodite stages shown in Figure 2 it

may be of order 20–30% for C. finmarchicus and C. glacialis, or

even larger. In some studies (e.g. Hirche et al., 1991) the weights

of individuals have been determined as part of the study, thereby

reducing this uncertainty. Size measurements performed on rep-

resentative material to reveal changes in mean weights over space

and time would greatly improve the precision of biomass esti-

mates from zooplankton species abundance data. This may, how-

ever, induce a considerable increase in the effort spent on sample

analysis. Using some form of plankton-imaging-system (Benfield

et al., 2007) may facilitate the approach to make it more practical

in routine studies.

Calanus spp. as drivers of the mesozooplankton biomass
in the Barents Sea
Calanus finmarchicus, C. glacialis, and C. hyperboreus are major

players in the herbivore zooplankton community of the Barents

Sea ecosystem. Our study has shown that Calanus species consti-

tute a major part of the mesozooplankton biomass in all regions

of the Barents Sea, and on average around 80% of the total. Large

mesozooplankton biomass samples (>16 g dw m�2) were associ-

ated with correspondingly large estimated biomass of Calanus

species, indicating that biomass “peaks” in the Barents Sea are

mainly driven by Calanus spp. The combined biomass of these

species explained a major part of the variation in the observed

mesozooplankton biomass. Though the total biomass of Calanus

spp. contributed in similar proportion to the mesozooplankton

biomass across the regions, the highest contribution was observed

in regions West and South where there is a high abundance of

C. finmarchicus. The proportional contribution of C. glacialis to

the zooplankton biomass in its core Arctic water area was lower

than the contribution of C. finmarchicus in Atlantic water, and

other species than Calanus seem to comprise a larger part of the

mesozooplankton biomass here. The larger species C. hyperboreus

had a rather low contribution to the mesozooplankton biomass

(< 10% in all regions), similar to earlier observations (Melle and

Skjoldal, 1998; Arashkevich et al., 2002; Hirche and Kosobokova,

2003). Calanus hyperboreus generally overwinters below 500–1000

m in its core areas (Hirche, 1997), and has probably difficulties in

completing a generation cycle in the (relatively shallow) Barents

Sea due to its large size and longer life-span making it more vul-

nerable to predation (e.g. Falk-Petersen et al., 2009; Berge et al.,

2012).

Our data showed that the contribution of Calanus to the mes-

ozooplankton biomass is lower when the total zooplankton bio-

mass is low (see regression in Figure 3). Considering that a major

part of our data was from Atlantic water areas, we believe part of

this result can be explained by a seasonal/advective effect of

C. finmarchicus. During winter when the mesozooplankton bio-

mass is low, there will be lower concentrations of C. finmarchicus

in the inflowing Atlantic water when it has descended (over-win-

ter in deep Norwegian Sea basins) from the surface layers of the

advective Atlantic current (Skjoldal et al., 1992). Hence, there will

be a lower contribution of Calanus spp. to the total in winter vs.

summer periods. A biological explanation is selective foraging by

predators. The little auk Alle alle actively selects larger stages of

C. glacialis when feeding in the Arctic, and avoids the smaller

C. finmarchicus (Karnovsky et al., 2003). Baltic herring has shown

size-selective preferences when feeding on copepods (Sandström,

1980), and planktivore fish in the Barents Sea can exert a signifi-

cant top-down control on their zooplankton prey (Hassel et al.,

1991; Stige et al., 2014).).

Calanus spp. biomass and hydrography
Both this and previous studies (Tande, 1991; Melle and Skjoldal,

1998; Hirche and Kosobokova, 2003) have demonstrated that the

contribution of C. finmarchicus and C. glacialis to the zooplank-

ton biomass in the Barents Sea is highly related to which water

mass dominates. Weydmann et al. (2014) described temperature

and bottom depth as the main drivers for zooplankton variability

in the West Spitsbergen Current. Daase et al. (2007) demon-

strated similar temperature-relationships as our study for the

Calanus species in waters off Svalbard, and related the findings to

advective processes. The steep, negative biomass-temperature

relationship of C. glacialis in our study reflected large difference

in biomass of C. glacialis in Arctic vs. Atlantic water masses.

The area of Arctic water in the Barents Sea has been declining

over the last few decades (ICES, 2017). This could possibly be

associated with a reduction in the habitat (extent and conditions)

of C. glacialis in the northern Barents Sea. It has been suggested

that C. glacialis will decrease in Arctic areas of the Barents Sea if

continuous warming leads to a greater mismatch between phyto-

plankton production and C. glacialis development due to earlier

break-up of the winter ice (Hirche and Kosobokova, 2007;

Søreide et al., 2010). The decrease of this species at the southwest-

ern entrance (region West) could reflect a general decline in the

core area further north. However, our data from the northern

Barents Sea are limited (n¼ 23; Tables 2) and too heterogenous

in time to allow us to examine if this has been the case. This is an

important issue from an ecosystem perspective which we plan to

address in a future study, using archived samples dating back to

the 1980s.

Calanus finmarchicus is an expatriate in Arctic water masses,

and its reproductive cycle is limited by the low temperature envi-

ronment (Melle and Skjoldal, 1998; Hirche and Kosobokova,

2007; Ji et al., 2012). Previous studies have also established a posi-

tive relationship between C. finmarchicus biomass and tempera-

ture (Dalpadado et al., 2003; Daase et al. 2007; Dvoretsky, 2011).

High temperatures may indicate higher inflow of Atlantic water
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and thus larger concentrations of advective organisms like C. fin-

marchicus (Dalpadado et al., 2003). Furthermore, C. finmarchicus

has higher growth rates (Campbell et al., 2001) and augmented

egg production (Kjellerup et al., 2012) at increasing temperatures.

The optimum temperature for this species appears to be about

6–10 �C based on abundance data over its geographical

range (Helaouët and Beaugrand, 2007; Helaouët et al., 2011;

Reygondeau and Beaugrand, 2011; Melle et al., 2014). The tem-

perature of the inflowing Atlantic water at the FB transect has

been increasing by about 1.5 �C since around 1980 to an annual

mean level of about 6–6.5 �C after 2004 (Eriksen et al., 2017b).

This may have improved the conditions and expanded the opti-

mal habitat for C. finmarchicus in the southern Barents Sea.

The number of generations produced per year by boreal

Calanus decreases with increasing latitude (Conover, 1988).

Though previous studies have suggested that C. finmarchicus pro-

duces one generation per year in the Barents Sea (e.g. Tande

et al., 1985; Melle and Skjoldal, 1998), there are indications for a

second generation of C. finmarchicus, particularly related to warm

periods (Timofeev, 2000; Skaret et al., 2014). A second generation

of C. finmarchicus may have contributed to the marked increase

in biomass of C. finmarchicus in region West during the most

recent period analysed here (after 2005).

Coupled with the decrease in Arctic water masses in the

Barents Sea is an increase of mixed water with intermediate tem-

peratures of 0–3 �C (Eriksen et al. 2017b). Related to the issue of

whether C. glacialis has declined as a response to the ongoing

warming is therefore also a question of how the Calanus species

are coping with the conditions in the mixed water masses.

Temperature-driven stage-duration coupled with food availability

and the length of the growth season in these waters, will largely

determine the ability of C. finmarchicus to reach diapausing stage

over the season (e.g. Ji et al., 2012). Calanus glacialis should per-

sist physiologically at these cool temperatures, as suggested by its

dominance in the White Sea (Kosobokova, 1999), though it is an

open question as to how changes in ice conditions and water

masses will affect the species in the mixed waters. Model predic-

tions by Slagstad et al. (2011) have suggested that the secondary

production by C. glacialis and C. finmarchicus combined will

decrease in a future warmer climate in the northern Barents Sea,

due to a temperature regime that is too warm for C. glacialis and

sub-optimal for C. finmarchicus.

Concluding remarks
Plankton are good indicators of climate change occurring in the

oceans (Hays et al., 2005). We have shown that the recent warm-

ing in the Barents Sea is likely affecting the composition of the

mesozooplankton community, increasing the abundance of

Atlantic C. finmarchicus in the west. With increased inflow of

Atlantic water into the system, we would not expect these changes

to be restricted only to the western area, as both fish species and

macrozooplankton have shown responses to the warming in

extended areas of the Barents Sea (Fossheim et al., 2015; Eriksen

et al., 2017b, Frainer et al. 2017). A transition in the mesozoo-

plankton community in certain areas from dominance of C. gla-

cialis towards the smaller C. finmarchicus could be detrimental for

higher trophic levels, particularly the size-selective particulate

feeders (e.g. Karnovsky et al., 2003; Hirche and Kosobokova,

2007). Consistent time-series like ours from the FB transect and

from the joint Norwegian-Russian ecosystem survey in autumn

(Eriksen et al. 2017a) are crucial for revealing ongoing changes in

zooplankton communities. Progress of the Calanus species in a

future, warmer Barents Sea, particularly changes towards domi-

nance of smaller sized individuals over a larger geographical area,

deserves high priority in future research considering the key role

of these species in the ecosystem.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the article.
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Beszczynska-Möller, A. 2003. Foraging behavior of little auks in a
heterogeneous environment. Marine Ecology Progress Series, 253:
289–303.

Kjellerup, S., Dunweber, M., Swalethorp, R., Nielsen, T. G., Møller, E.
F., Markager, S., and Hansen, B. W. 2012. Effects of a future
warmer ocean on the coexisting copepods Calanus finmarchicus
and C. glacialis in Disko Bay, western Greenland. Marine Ecology
Progress Series, 447: 87–108.

Kosobokova, K. N. 1999. The reproductive cycle and life history of
the Arctic copepod Calanus glacialis in the White Sea. Polar
Biology, 22: 254–263.

Knutsen, T., and Dalpadado, P. 2009. Økosystem barentshavet.
In Havets ressurser og miljø 2009, pp 185. Ed. by H. Gjøsæter.
Institute of Marine Research, Bergen.http://hdl.handle.net/11250/
116992.

Kvile, K. O., Fiksen, O., Prokopchuk, I., and Opdal, A. F. 2017.
Coupling survey data with drift model results suggests that local
spawning is important for Calanus finmarchicus production in the
Barents Sea. Journal of Marine Systems, 165: 69–76.

Lee, R. F. 1975. Lipids of Arctic zooplankton. Comparative
Biochemistry and Physiology Part B: Biochemistry and Molecular
Biology, 51: 263–266.

Lind, S., and Ingvaldsen, R. B. 2012. Variability and impacts of
Atlantic Water entering the Barents Sea from the north. Deep-Sea
Research Part I: Oceanographic Research Papers, 62: 70–88.

Lind, S., Ingvaldsen, R. B., and Furevik, T. 2016. Arctic layer salinity
controls heat loss from deep Atlantic layer in seasonally
ice-covered areas of the Barents Sea. Geophysical Research
Letters, 43: 5233–5242.

Madsen, S. D., Nielsen, T. G., and Hansen, B. W. 2001. Annual popu-
lation development and production by Calanus finmarchicus,
C. glacialis and C. hyperboreus in Disko Bay, western Greenland.
Marine Biology, 139: 75–93.

Melle, W., and Skjoldal, H. R. 1998. Reproduction and development
of Calanus finmarchicus, C. glacialis and C. hyperboreus in the
Barents Sea. Marine Ecology Progress Series, 169: 211–228.

Melle, W., Ellertsen, B., and Skjoldal, H. R. 2004. Zooplankton: the
link to higher trophic levels. In The Norwegian Sea Ecosystem,
pp. 137–202. Ed. by H. R. Skjoldal. Tapir Academic Press,
Trondheim.

Melle, W., Runge, J., Head, E., Plourde, S., Castellani, C., Licandro,
P., Pierson, J. et al. 2014. The North Atlantic Ocean as habitat for
Calanus finmarchicus: Environmental factors and life history
traits. Progress in Oceanography 129: 244–284.

Møller, E. F., Nielsen, T. G., and Richardson, K. 2006. The zooplank-
ton community in the Greenland Sea: Composition and role in
carbon turnover. Deep Sea Research Part I: Oceanographic
Research Papers, 53: 76–93.

Orlova, E., Dalpadado, P., Knutsen, T., Nesterova, V. N., and
Prokopchuk, I. P. 2011. Zooplankton. In The Barents Sea -
Ecosystem, Resources, Management. Half a Century of
Russian-Norwegian Cooperation, pp. 91–119. Ed. by T. Jakobsen
and V. K. O�zigin. Tapir Academic Press, Trondheim.

Parent, G. J., Plourde, S., and Turgeon, J. 2011. Overlapping size
ranges of Calanus spp. off the Canadian Arctic and Atlantic
Coasts: impact on species’ abundances. Journal of Plankton
Research, 33: 1654–1665.

Parent, G. J., Plourde, S., and Turgeon, J. 2012. Natural hybridization
between Calanus finmarchicus and C. glacialis (Copepoda) in the
Arctic and Northwest Atlantic. Limnology and Oceanography, 57:
1057–1066.

R Core Team. 2016. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/.

Reygondeau, G., and Beaugrand, G. 2011. Future climate-driven
shifts in distribution of Calanus finmarchicus. Global Change
Biology, 17: 756–766.

Runge, J. A., Plourde, S., Joly, P., Niehoff, B., and Durbin, E. 2006.
Characteristics of egg production of the planktonic copepod,
Calanus finmarchicus, on Georges Bank: 1994–1999. Deep Sea
Research Part II: Topical Studies in Oceanography, 53:
2618–2631.

Sakshaug, E., Johnsen, G., and Kovacs, K. 2009. Ecosystem Barents
Sea. Tapir Academic Press, Trondheim.

Sameoto, D., Wiebe, P. H., Runge, J., Postel, L., Dunn, J., Miller, C.,
and Coombs, S. 2000. Collecting zooplankton. In ICES
Zooplankton Methodology Manual, pp. 55–82. Ed. by R. Harris,
P. H. Wiebe, J. Lenz, H. R. Skjoldal, and M. Huntley. Academic
Press, San Diego.

Scott, C. L., Kwasniewski, S., Falk-Petersen, S., and Sargent, J. R.
2000. Lipids and life strategies of Calanus finmarchicus, Calanus
glacialis and Calanus hyperboreus in late autumn, Kongsfjorden,
Svalbard. Polar Biology, 23: 510–516.

Skaret, G., Dalpadado, P., Hjøllo, S. S., Skogen, M. D., and Strand, E.
2014. Calanus finmarchicus abundance, production and popula-
tion dynamics in the Barents Sea in a future climate. Progress in
Oceanography, 125: 26–39.

Skjoldal, H. R., Gjøsæter, H., and Loeng, H. 1992. The Barents Sea
ecosystem in the 1980s: ocean climate, plankton, and capelin
growth. ICES Marine Science Symposium, 195: 278–290.

Skjoldal, H. R., Wiebe, P. H., Postel, L., Knutsen, T., Kaartvedt, S.,
and Sameoto, D. D. 2013. Intercomparison of zooplankton (net)
sampling systems: Results from the ICES/GLOBEC sea-going
workshop. Progress in Oceanography, 108: 1–42.

Slagstad, D., Ellingsen, I. H., and Wassmann, P. 2011. Evaluating pri-
mary and secondary production in an Arctic Ocean void of
summer sea ice: An experimental simulation approach. Progress
in Oceanography, 90: 117–131.

Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P.
M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., et al.
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Supplementary Material Tables, figures and analyses not included in main article 

Table S1: Prosome length (mm) of copepodid stages CI–CV and adult females, used for separation between the Calanus species at 

the Institute of Marine Research (IMR), Norway. Separating C. finmarchicus and C. glacialis stage CV and females is, in addition to 

size, also based on morphological characteristics of the coxopodite of the 5th leg, visualized in Knutsen and Dalpadado (2009) page 

34. 

 

Stage C. finmarchicus C. glacialis C. hyperboreus 

CI <0.75 0.75–1.0 >1.0 

CII <1.1 1.1–1.4 >1.4 

CIII ≤1.6  1.6–2.0 >2.0 

CIV <2.2 2.2–2.9 >2.9, acute spine on 5th 
thoracic segment 

CV <2.9 2.9–4.0 >4.1, acute spine on 5th 
thoracic segment 

CVI female <3.1 3.1–4.1 >4.3, acute spine on 5th 
thoracic segment 

   



Table S2: Estimated dry weight (dw, g m-2) for Calanus finmarchicus, C. glacialis, C. hyperboreus, total Calanus (sum of the three) and 
total observed mesozooplankton biomass in five areas of the Barents Sea. The table shows arithmetic mean, median, standard 
deviation (SD), coefficient of variation (CV), inverse of the logarithmic mean (10 log.dw), and estimated proportion of the total biomass 
based on the mean, median and inverse of the logarithmic mean. Statistics from area West is shown both for all samples, and 
excluding samples from winter (January–March). 

 

Area Samples 
(n) 

Species Mean 
dw 

Median 
dw 

SD CV 10log.dw Prop. 
(mean) 

Prop. 
(median) 

Prop  
(10log.dw) 

Central 56 C. 
finmarchicus 

1.07 0.49 1.53 1.43 0.46 0.24 0.14 0.19 

C. glacialis 1.16 0.51 1.48 1.27 0.45 0.26 0.14 0.19 

C. 
hyperboreus 

0.32 0.19 0.38 1.22 0.12 0.07 0.05 0.05 

Total 
Calanus 

2.54 1.85 2.79 1.10 1.17 0.57 0.52 0.49 

Total 
zooplankton 

4.45 3.52 5.16 1.16 2.40 
   

East 17 C. 
finmarchicus 

0.47 0.17 0.70 1.51 0.22 0.13 0.06 0.08 

C. glacialis 1.11 0.66 1.44 1.30 0.42 0.31 0.24 0.15 

C. 
hyperboreus 

0.33 0.06 0.39 1.18 0.11 0.09 0.02 0.04 

Total 
Calanus 

1.91 1.29 2.12 1.11 0.94 0.53 0.48 0.34 

Total 
zooplankton 

3.59 2.71 2.87 0.80 2.73 
   

North 23 C. 
finmarchicus 

0.99 0.81 0.81 0.82 0.68 0.10 0.13 0.10 

C. glacialis 3.44 2.32 2.98 0.87 1.98 0.36 0.37 0.30 

C. 
hyperboreus 

0.69 0.54 0.65 0.95 0.42 0.07 0.09 0.06 

Total 
Calanus 

5.11 4.04 3.64 0.71 3.52 0.54 0.65 0.54 

Total 
zooplankton 

9.53 6.25 7.27 0.76 6.54 
   

South 19 C. 
finmarchicus 

9.27 6.64 8.56 0.92 5.69 0.89 0.67 0.66 

C. glacialis 0.41 0.00 1.13 2.73 0.05 0.04 0.00 0.01 

C. 
hyperboreus 

0.32 0.17 0.44 1.38 0.11 0.03 0.02 0.01 

Total 
Calanus 

10.00 7.15 8.41 0.84 6.90 0.96 0.72 0.79 

Total 
zooplankton 

10.44 9.91 6.37 0.61 8.69 
   

West 501 C. 
finmarchicus 

3.63 1.43 6.33 1.74 1.18 0.73 0.48 0.49 

C. glacialis 0.30 0.00 1.07 3.53 0.04 0.06 0.00 0.02 

C. 
hyperboreus 

0.11 0.00 0.29 2.68 0.03 0.02 0.00 0.01 

Total 
Calanus 

4.04 1.69 6.68 1.65 1.33 0.81 0.57 0.55 



Total 
zooplankton 

5.00 2.98 6.18 1.23 2.42 
   

West  
(÷ 

winter) 

325 C. 
finmarchicus 4.99 2.26 7.42 1.49 2.00 0.74 0.49 0.49 
C. glacialis 0.40 0.00 1.29 3.23 0.04 0.06 0.00 0.01 
C. 
hyperboreus 0.14 0.00 0.35 2.52 0.04 0.02 0.00 0.01 
Total 
Calanus 5.53 2.71 7.79 1.41 2.31 0.82 0.59 0.56 
Total 
zooplankton 6.72 4.57 6.92 1.03 4.09    

 

 

  



Table S3: Coefficient estimates with standard error for models explaining estimated dry weight (log dw) of Calanus finmarchicus, C. 
glacialis and C. hyperboreus. Optimal models have been selected by AIC values and backwards model selection. P-values are shown 
for each model term (temperature, season, depth and equipment), and r2 for the models. 

Model Term Estimate Std error p-value r2 

log(C. finmarchicus, dw) ~ temperature + season + depth + equipment 0.38 

 (Intercept) -0.38 0.13   

 Temperature 
(continuous) 

0.05 0.01 <0.001  

 Season   <0.001  

  spring -0.39 0.07   

  summer 0.17 0.07   

  winter -0.65 0.06   

 Depth (continuous) 0.0018 0.0002 <0.001  

 Equipment   <0.001  

  Juday -0.9 0.2   

  MOCNESS 0.5 0.3   

  WP2 -0.01 0.13   

log(C. glacialis, dw) ~ temperature + season + depth + equipment 0.52 

 (Intercept) 0.18 0.14   

 Temperature 
(continuous) 

-0.22 0.01 <0.001  

 Season     

  spring -0.78 0.08 <0.001  

  summer -0.33 0.08 <0.001  

  winter -0.57 0.06 <0.001  

 Depth (continuous) 0.0016 0.0002 <0.001  

 Equipment   0.01  

  Juday -0.5 0.2   

  MOCNESS -0.16 0.3   

  WP2 -0.44 0.14   

log(C. hyperboreus, dw) ~ temperature + season + depth + equipment 0.31 

 (Intercept) -0.71 0.13   

 Temperature 
(continuous) 

-0.09 0.01 <0.001 
 

 Season   <0.001  

  spring -0.18 0.07   

  summer -0.02 0.08   

  winter -0.37 0.06   

 Depth (continuous) 0.0024 0.0002   

 Equipment   <0.001  

  Juday -0.69 0.19   

  MOCNESS -0.07 0.3   

  WP2 -0.71 0.14   

 

 



Table S4: Biomass of Calanus species (g dw m-2) from the Barents Sea and other regions. The table shows mean dw, range of dw and 
standard deviation (SD) as presented in the study of reference. A ratio of 0.45 carbon content of total dw has been used when 
converting carbon weight to dw. 

Area Time Calanus 
finmarchicus 

Calanus 
glacialis 

Calanus 
hyperboreus 

Sum 
Calanus 

Reference 

Barents Sea 
      

Central 75-76°N July (1987) 0.1-0.6 0.5-4.3 0.1 0.6-4.8 Tande (1991) 

N Svalbard 79-
82°N 

July (1984) 
 

4.3-4.7 1.7-2.9 6.4-7.2 Tande (1991) 

Central 76-78°N May (1997) 0.2-0.7 0.1-1.8 0-0.6 0.4-2.9 Hirche and 
Kosobokova 
(2003) 

Central 76-78°N June (1997) 0.2-0.7/5.5* 0.5-2.0 0.1-0.5 1.0-6.5 Hirche and 
Kosobokova 
(2003) 

W and N 
Svalbard 77-
82°N 

May-Dec 
(2003, 
2004) 

1-8 0.5-29 0-2 0.5-30.6 Søreide et al. 
(2008) 

Rijpfjorden 
81°N 

  
0.7-27 

  
Daase et al. 
(2013) 

Kongsfjorden 
  

0.4-7.5 
  

Daase et al. 
(2013) 

Kongsfjorden Sept (1997) 3.5 2 1.6 7.1 Scott et al. 
(2000) 

Barents Sea, 
Western 10-
20°E 

June-July 
(2001-
2009) 

0.5-4.5 0.2-0.8 0.0-0.1 
 

Carstensen et 
al. (2012) 

Greenland Sea 
      

Fram Strait 
(MIZEX) 

June-July 
(1984) 

0.1-3.7 0-0.05 0.1-1.4 2.3**  
SD 1.9 

Hirche et al. 
(1991) 

Fram Strait (ARK 
V/2) 

June (1988) 0.5-6 0-0.5 0.4-6 5.0**  
SD 2.5 

Hirche et al. 
(1991) 

Greenland Sea 
Gyre 73-78°N 

Nov-Dec 
(1988) 

1 
 

5 6.4** 
SD 0.8 

Hirche (1991) 

Fram Strait Sept (2006, 
2007) 

   
0.4-18 Svensen et al. 

(2011) 

Greenland Sea 
73.5-77.5°N 

June (1999) 0.2-5 
 

0.6-4.4 1.6-6 Møller et al. 
(2006) 

Norwegian Sea 
      

Lofoten Basin 
71-75°N 

Nov-Dec 
(1988) 

   
7.0-
9.2** 

Hirche (1991) 

Station 'M' March-June 
(1997) 

1.7; 0.1-12.5 
   

Hirche et al. 
(2001) 

Lofoten Basin, 
Greenland Sea 
69-81°N 

June-July 
(2001-
2009) 

1.0-3.3 0.0-0.2 0.0-0.4 
 

Carstensen et 
al. (2012) 

Iceland Sea 
      

East Icelandic 
Current 

April-June 
(1995) 

0.8-1.4 <0.03 7-13 8-14 Astthorsson 
and Gislason 
(2003) 

Baffin Bay 
      



Disco Bay June-July 
(1996, 97) 

ca 5 ca 5 ca 5 15 Madsen et al. 
(2001) 

Disco Bay April-May 
(2005) 

2.5 0.4 0.4 3.4 Madsen et al. 
(2008) 

Disco Bay 
  

4.4-15.6 
  

Daase et al. 
(2013) 

Labrador Sea 
      

Labrador Sea Spring 
(1996, 97, 
2000) 

0.3-4.6 0.0-0.7 0.2-3.7 0.7-7.2 Head et al. 
(2003) 

Labrador Sea Summer 
(1995, 98, 
99) 

0.6-8.1 0.0-1.4 0.1-2.5 2.8-8.6 Head et al. 
(2003) 

Beaufort Sea 
      

Franklin Bay 
  

0.1-3.3 
  

Daase et al. 
(2013) 

Amundsen Gulf 
  

0.5-6 
  

Daase et al. 
(2013) 

*One high value in Atlantic water in the south 

**Includes Metridia spp. 
  



 

Figure S1: Output from GAM models on estimated proportion of Calanus finmarchicus, C. glacialis and C. hyperboreus in the total 

mesozooplankton biomass in the western area of the Barents Sea, with year as explanatory variable. Models were run with a spline-

based smoother using 4 degrees of freedom. P = 0.003, 0.04 and 0.002 for C. finmarchicus, C. glacialis and C. hyperboreus, and 

deviance explained = 10 %, 4.2 % and 12 % respectively. GAM models on changes in estimated biomass for the respective species 

showed similar trends, yet the model for C. glacialis was not significant on a 0.05 level (p = 0.07, see main text). 

  



Length measurements of Calanus finmarchicus and C. glacialis 

Length measurements on individuals of C. finmarchicus and C. glacialis stages CIV, CV and adult females were 

made from stored samples from one station at the Fugløya-Bear Island transect (73.5°N, 19°E) where both species 

are regularly present. Measurements were performed on June and August samples from 1997, 1998, 2004 and 

2010. The length measurements were utilized with two different length-weight regressions from Hirche and 

Mumm (Hirche and Mumm, 1992) and Madsen et al. (2001), assuming a carbon content of 45 % of the individual 

dry mass (Postel et al., 2000), to determine the expected weight distribution of these individuals. Results are 

presented in Tables S4 and S5 and Figures S2 and S3. 

C. hyperboreus was not included due to few specimens in the samples.  

  



 

Table S5: Measurements of prosome length (mean and SD in mm for n individuals) from individuals stored in formalin using samples 

from one station (73.5°N, 19°E) at the Fugløya-Bear Island transect in the Barents Sea. One-way ANOVA analyses with year as 

explanatory variable indicated a decrease in prosome length of stages CIV and CV C. finmarchicus between 1997 and 2010 (p < 0.001 

for both stages and r2 = 0.16 and 0.17 for CIV and CV, respectively). For C. glacialis a decline in prosome length was indicated for CV 

copepodites in 2004, though this was not statistically significant at the 0.05 level (p = 0.07). 

Species Stage Measure 1997 1998 2004 2010 

Calanus 
finmarchicus 

CIV Mean  2.04 - 1.94 1.92 

SD 0.10 - 0.12 0.13 

n  50 0 50 50 

CV Mean  2.71 2.52 2.59 2.45 

SD 0.15 0.21 0.16 0.21 

n  50 101 50 50 

CVI 
female 

Mean  2.68 - 2.79 - 

SD 0.17 - 0.19 - 

n  7 0 30 0 
Calanus 
glacialis 

CIV Mean  2.36 - 2.36 2.32 

SD 0.11 - 0.05 0.04 

n  50 0 3 3 

CV Mean  3.19 3.26 3.12 3.12 
SD 0.13 0.19 0.16 - 

n  50 101 26 1 

CVI 
female 

Mean  3.56 - - - 
SD 0.00 - - - 

n  2 0 0 0 

 

 

 

  



Table S6: Individual dry weight (dw, µg) of copepods and adult females employed for estimating species biomass in this study, and mean 

dw derived from new length measurements (Table S5) using length-weight regressions from Hirche and Mumm (1992) and Madsen et 

al. (2001). 

Developmental stage This study Hirche and Mumm (1992) Madsen et al. (2001) 

C. finmarchicus CIV 70 96 122  
CV 250 233 312  
females 235 305 414 

C. glacialis CV 600 502 700  
females 810 698 990 

 

  



 

 

Figure S2: Individual dry weight of Calanus finmarchicus stage CV estimated from length measurements combined with length-weight 
regression equations from Hirche and Mumm (1992) (orange bars and mean in orange vertical line) and Madsen et al. (2001) (grey 
bars, red outline, mean in vertical red line). The blue vertical line shows the weight for stage CV employed in this study.  

  



 

 

Figure S3: Observed mean June and August mesozooplankton biomass (grey bars) and mean estimated biomass of C. finmarchicus 
using three sets of weight data: weight-at-stage data employed in this study (blue), new weights of stage CIV to adults based on 
regression from Hirche and Mumm 1992 (orange) and new weights of CIV to adults based on regression from Madsen et al. 2001 
(red). Mesozooplankton biomass and C. finmarchicus abundance data are from the western region of the Barents Sea. 
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Abstract
For visual predators, sufficient light is critical for prey detection and capture. Because light decays exponen-

tially with depth in aquatic systems, vertical movement has become a widespread strategy among zooplankton
for avoiding visual predation. However, topographical features such as seamounts have been shown to block
their descent, trapping them in illuminated waters with potential feeding benefits for visually searching fish.
Here, we present an extensive and previously unpublished dataset on the vertical distribution of zooplankton in
the topographically rugged Barents Sea, a continental shelf region hosting some of the largest fish stocks in the
world. By modeling the ambient light exposure of zooplankton in relation to the bathymetry, we find support
for a similar blockage mechanism. During daytime, zooplankton are exposed to four orders of magnitude more
light above shallow banks than in the deeper water surrounding the banks. We show that zooplankton depth
distributions are highly related to zooplankton size and that the bottom constrains the vertical distributions.
Consequently, zooplankton remain in the planktivores’ visual feeding habitat over the banks but not in deeper
areas. Bottom topography and light absorbance are significant determinants of the seascape ecology across con-
tinental shelves with heterogeneous bathymetry.

Space is the stage for ecology. Spatial structures and gradi-
ents form the landscape where organisms compete, predate
and reproduce. In terrestrial systems, the study of ecology
with spatial structures and patterns is known as landscape
ecology, while the concept of seascape ecology is still debated
(Manderson 2016; Bell and Furman 2017; Manderson 2017).
How do spatial gradients in the environment, such as fading
light, seamounts, or bottom depth and topography, structure
marine pelagic communities of small organisms drifting with
the currents?

Interactions between vertically migrating pelagic species and
ocean bathymetry may influence ecosystem structures. True-
man et al. (2014) demonstrated that the diel vertical migrating
(DVM) community is accessible to bottom feeding fish only at
depths < 1000 m. Demersal fish that consume prey above the
seafloor (benthopelagic feeders) therefore have a competitive
advantage at greater depths and proliferate between 1000 and
1800 m. Interactions between the bathymetry and vertically

migrating prey may be important for pelagic feeding plankti-
vores as well. Visual detection of individual prey is the com-
mon foraging mode in planktivorous fish (Eggers 1977), and
the prey detection distance for a fish is sensitive to ambient
light levels (Aksnes and Utne 1997). As light decreases expo-
nentially in water, the vertical position of zooplankton prey is
important for their foraging success. Zooplankton display a
range of vertical migration strategies related to diurnal (Bollens
and Frost 1991; Ohman and Romagnan 2016) and seasonal
(Bandara et al. 2016) rhythms, which is an evolutionary adapta-
tion to the trade-off between growth and survival in dynamic
environments (Pearre 2003; Bandara et al. 2018). Zooplankton
over shallow banks and shelves are prevented from migrating
into deeper and darker waters, which increases their vulnerabil-
ity to predation from fish. Advection of zooplankton onto sea-
mounts and banks, where they are trapped and unable to seek
safety in deep water, has been termed “the topographic block-
age mechanism” (Isaacs and Schwartzlose 1965; Genin 2004)
and is possibly an important driver of fish habitat choice.

Fish aggregation over bottom topographies such as sea-
mounts, shelves, and banks can be linked to increased prey
availability due to either enhanced productivity caused by
upwelling of nutrients (Rogers 1994) or horizontal advection
of resources from surrounding areas. Based on the topographic
blockage mechanism, we hypothesize that the bathymetry
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influences foraging opportunities for fish that feed on verti-
cally migrating zooplankton in the pelagic because of topo-
graphic constraints on zooplankton depth distributions.
Previous studies have demonstrated topographic blockage of
zooplankton performing DVM (reviewed in Genin [2004]),
where individuals ascending to surface layers at night are
advected onto shallow topographies that block their morning
descent to deeper waters. Seasonal migraters such as Calanus
spp., the key herbivores in North-Atlantic ecosystems (Melle
et al. 2014), will also be blocked by the topography if occupy-
ing shallow areas in periods of diapause (e.g., Krumhansl
et al. 2018). Survival of Calanus spp. during overwintering has
earlier been related to access darkness for avoiding predation
(Kaartvedt 1996; Dale et al. 1999).

Our study area, the Barents Sea, is a relatively deep shelf sea
(bottom depth up to 500 m) situated on the Arctic continental
shelf adjacent to the deep Norwegian Sea to the west. Atlantic
water flows through the system from the shelf edge in the south-
west to the northern Kara Sea and the Arctic Ocean in the north-
east (Smedsrud et al. 2013). We use an extensive dataset on the
vertical distribution of zooplankton in three size classes, to exam-
ine whether their depth distributions are constrained by the
bathymetry and evaluate if this improves the foraging potential
for visually searching planktivorous fish. Planktivorous fish are
size selective (Brooks and Dodson 1965), and large-sized prey are
easier to see (Eggers 1977; Aksnes and Giske 1993) and require
deeper habitats to avoid visual predators (e.g., Ohman and
Romagnan 2016). We therefore expect pronounced differences
between the size classes and predict that the bathymetry limits
the depth distribution particularly for the large zooplankton in
our data. Water clarity alters the vertical light gradient, and we
expect to find zooplankton deeper in clear relative to less trans-
parent water (Dupont and Aksnes 2012; Ohman and Romagnan
2016). The ambient light exposure of prey is important for the
foraging efficiency of planktivorous fish—and here we quantify
zooplankton light exposure from vertical distributions, vertical
light attenuation and the bathymetry.

Materials and methods
Data

The Barents Sea is a large marine ecosystem (1.6 × 106 km2)
on the Arctic continental shelf and hosts economically and eco-
logically important fish stocks (Gjøsæter 1998; Eriksen
et al. 2017a). It is monitored extensively each year through a
joint Norwegian/Russian monitoring program by the Institute of
Marine Research (IMR) and Knipovich Polar Research Institute of
Marine Fisheries and Oceanography (Eriksen et al. 2018). The
annual ecosystem survey takes place in autumn and covers key
physical and biological components of the ecosystem using dif-
ferent sampling equipment. Our study is based on zooplankton
data from Multiple Opening/Closing Net and Environmental
Sensing System (MOCNESS) sampling gear (Wiebe et al. 1985),
with 1 m2 opening and 180 μm mesh size. The samples have

been collected at Norwegian vessels during ecosystem surveys in
the period 1992–2016 and span day of year 214–280 (early
August to early October). We also used salinity and chlorophyll
a (Chl a) data from the same cruises and sampling stations as
the zooplankton data (see below).

The MOCNESS samples zooplankton in up to eight depth
strata in the water column. Samples have routinely been split in
two, with one half used to determine dry weight biomass (g
dw m−3) in three size fractions using mesh gauzes of 2000, 1000,
and 180 μm (Melle et al. 2004). Krill have been measured sepa-
rately over the period and are not considered in this study, while
amphipods and chaetognaths have been measured separately
since 2008 and may comprise a smaller part of the > 2000 μm size
fraction in samples from before 2008. Copepods, particularly of
the genus Calanus, dominate the mesozooplankton (> 0.2 mm)
biomass in the Barents Sea (Aarflot et al. 2017) and likely com-
prise the larger part of the data analyzed here.

Zooplankton-weighted mean depth
Only samples covering > 75% of the water column were

considered suitable for our purpose of determining zooplank-
ton depth distributions and included in the analyses, and the
upper and lower depth strata were extrapolated to the surface
and bottom. Similar to Daase et al. (2008), we estimated the
weighted mean depth (WMD, m) and the standard deviation
(SD, m), which is a measure of the compactness, of the depth
distribution (Manly 1977) for each sample and size fraction (j):

WMDj ¼
Xk

i¼1

ΔZibj, iZm, i

Bj
ð1Þ

SDj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

ΔZibj, iZm, i
2

Bj
−WMDj

2

s
ð2Þ

Here, ΔZi is the thickness (m) and bj,i the zooplankton bio-
mass (g dw m−3) of size class j in stratum i, Zm,i is the stratum
mean depth, k is the total number of strata sampled, and Bj is
the depth integrated biomass (g dw m−2) of the size class

(
Pk

i¼1ΔZibj, i). The size classes will hereafter be denoted L, M,
and S, referring to the large (> 2000 μm), intermediate
(1000–2000 μm), and small (180–1000 μm) size fraction. Sur-
face irradiance was modeled with an algorithm from the
HYbrid Coordinate Ocean model (HYCOM) (Bleck 2002) based
on sampling time (day of year and hour at the onset of sam-
pling) and latitude assuming 50% loss at and through the sur-
face, and we sorted samples as day/night presuming
day = surface irradiance > 1 μmol m−2 s−1.

Light attenuation
Light absorption and scattering determine light attenuation

and how deep surface irradiance penetrates the water column.
In oceanic water, attenuation is largely influenced by the pres-
ence of algae (Morel and Maritorena 2001) and chromophoric
dissolved organic matter (CDOM) (Bricaud et al. 1981). Many
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studies have shown that the CDOM concentration of marine
waters is a strong function of the observed freshwater fraction or
its salinity (reviewed by Nelson and Siegel 2013). This is particu-
larly true for the Baltic Sea, the North Sea, and the Norwegian
Coastal Water (NCW), which contain large amounts of CDOM
of terrestrial origin (Højerslev et al. 1996; Stedmon et al. 2000;
Kowalczuk et al. 2005; Aksnes 2015). NCW is transported into
the Barents Sea with the Norwegian Coastal Current; and here,
we have used data on Chl a and salinity from CTD casts at the
MOCNESS stations, to approximate the water column light atten-
uation (K, m−1) where the zooplankton was sampled (note that
13% of the stations lacked Chl a and salinity measurements).

Chl a has regularly been measured down to 100 m depth in
the Barents Sea, though some samples had deeper measure-
ments (Supporting Information Fig. S1). We used data from 10
m depth intervals between 0–50 m, 25 m intervals between
50–150 m, and additional 50 m intervals below 150 m when
data were available. Chl a and salinity were interpolated
between the depth intervals, and light attenuation was
approximated down to the maximum depth where we had
measurements for both variables. Few Chl a measurements
below 100 m might have led to an underestimation of light
attenuation at deeper stations.

Light attenuation by algae (Kchl) was here approximated for
440 nm wavelength, using the relationship of Morel and Mari-
torena (2001):

KChl 440ð Þ¼0:10963ðChlÞ0:67175 ð3Þ

Light attenuation by CDOM (KCDOM) was estimated from
the empirical relationship for nonchlorophyll light attenuation

in mixtures of North Atlantic Water and NCW given by
Aksnes (2015):

KCDOM 440ð Þ¼1:47−0:041S ð4Þ

where S is salinity. Total light attenuation (K) is the sum of
Eqs. 3 and 4.

It is uncertain how well Eq. 4 relates to absorption by
CDOM in the Barents Sea, as the freshwater component in
this water also has other origins (melting of sea ice) than the
water masses studied by Aksnes (2015). We therefore tested
the effect of both total K and Kchl as predictors for the zoo-
plankton WMD (see Statistics section below).

Statistics
Our main focus was samples collected during daylight

(n = 604), when fish are able to detect their prey by vision.
Resembling Dupont and Aksnes (2012), we used linear regres-
sion techniques to evaluate the WMD for zooplankton size
class j as a function of bottom depth (Zb) and optical depth
(K−1) at the sampling station:

WMDj ¼ aj + bjZb + cjK−1 ð5Þ

We used ANCOVA to estimate the coefficients aj, bj, and cj
and ANOVA to test whether the coefficients were significantly
different between the size classes. Taking SDj instead of WMDj

as response variable, we also applied Eq. 5 to assess variation
in the compactness of zooplankton distributions with bottom
depth and optical depth.

Table 1. Results from regression analyses of daytime occurrences, with zooplankton WMD (WMDj, m) and distribution compactness (SDj, m)
as functions of bottom depth (Zb, m) and optical depth (K−1, m). Both Zb and K−1 were significant predictors for WMDj (p < 0.001 and
p = 0.004, respectively), but only Zb was significant for SDj (p < 0.001). The size classes (j = L, M, and S) had significantly different slopes for
WMDj and SDj as functions of Zb (p < 0.001 for both), whereas slopes were not significantly different between the size classes for WMDj as a
function of K−1(not shown). The table shows parameters with 95% confidence levels (CL), degrees of freedom (df ), and variance explained
(R2). Thirteen percentage of the stations lacked Chl a and salinity measurements used to approximate K (hence different df in the two models),
and there were missing values for the large, intermediate, and small size fraction in n = 8, 2, and 2 samples, respectively.

Weighted mean depth (WMDj = aj + bjZb + cK−1)

aj (intercept) bj (Zb) Lower CL Upper CL c (K−1) Lower CL Upper CL df R2

Large (L) −40.1 0.75 0.70 0.79 n.s.

Intermediate (M) −1.8 0.59 0.55 0.63 n.s.

Small (S) −2.7 0.40 0.36 0.44 n.s.

All 1.13 0.38 1.88 1563 0.657

Distribution compactness (SDj = aj + bjZb + cK−1)

Large (L) −4.5 0.23 0.22 0.25 n.s.

Intermediate (M) −16.4 0.29 0.28 0.31 n.s.

Small (S) −10.9 0.32 0.31 0.34 n.s.

All n.s. n.s. n.s. 1794 0.663

n.s., not significant.
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In addition, we analyzed the complete dataset (i.e., includ-
ing samples collected at night, n = 258) to check for a diel
migration pattern in the data, or if WMD changed between
day and night. These analyses were run individually for each
size class, using day/night (l) as categorical covariate:

WMDj, l ¼ aj, l + bj, lZb ð6Þ

All analyses and figures were made in the statistical soft-
ware package R version 3.4.0 (R Core Team 2016).

Expectations from topographic constraints of daytime
occurrences

We hypothesized that zooplankton have deep daytime
distributions to avoid depths where planktivorous fish can
forage efficiently by sight and that the bathymetry limits
their preferred depth distribution without a bottom con-
straint. This implies the expectation of a positive statistical

effect of bottom depth on the weighted mean zooplankton
depth. Given that larger zooplankton need to go deeper
than smaller zooplankton to reduce their visibility to fish,
we expected a significant interaction between Zb and j and
that bL > bM > bS. Note that if all zooplankton biomass is
caught in the deepest stratum, WMDj is equal to the mean
depth Zm of that stratum (Eq. 1) rather than to the bottom
depth Zb, so the coefficient bj of Eq. 5 becomes less than
1. Therefore, the closer bj is to 1, the stronger the effect of
Zb on WMDj. Less transparent water (high K) allow zoo-
plankton to remain closer to the surface at the same light
exposure (Ohman and Romagnan 2016). We therefore
expected the WMD to be deeper in clear water and to find a
positive effect of optical depth (K−1) on WMDj (cj of Eq. 5
larger than 0). Yet, if distributions are limited by the
bathymetry, the effect of K should be small in areas where
the zooplankton are forced to occupy depths with unfavor-
able light levels despite low water clarity.

Fig. 1. Barents Sea study area and distribution of samples from MOCNESS sampling gear, providing data on the vertical distribution of zooplankton in
the period 1992–2016. The map shows samples collected during daylight (yellow, n = 604) and at night (pink, n = 258), based on our definition of day
vs. night described in Materials and Methods section. Bathymetry data from the ETOPO1 database (1 -min resolution) are plotted on a darkening blue
scale for increasing bottom depth. Major banks with depth < 200 m are labeled in the map.
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Results
Bottom constrains zooplankton daytime depth
distributions

Bottom depth had a significant effect on the zooplankton
WMD (p < 0.001), and slopes (bj) were different between the size
classes (p < 0.001). The slopes confirmed our prior expectation
of bL > bM > bS (Table 1), that is, that larger zooplankton are
more constrained by topography than smaller zooplankton.
Large zooplankton resided primarily close to the bottom, with a
strong effect of bottom depth on WMDL (bL = 0.75; see Table 1;
Fig. 2a). Including only samples collected after the change in
sampling procedures in 2008 (see Data above) did not change
this finding. Intermediate-sized zooplankton (j = M) also had the
weight of their distribution close to the bottom in a large frac-
tion of the observations (Fig. 2a) and a strong effect of bottom
depth on WMDM (bM = 0.59). The small size class (j = S) had the
weight of their distribution closer to the surface (Fig. 2a),
although distributions were deeper in deeper areas also for this
size class (bS = 0.40). The vertical extension of the zooplankton
distributions (as given by SDj) increased with bottom depth
(p < 0.001), that is, distributions were more compact in areas
where the bathymetry was limiting the depth distributions.
Slopes were significantly different between the size classes
(p < 0.001), and the small size class had the strongest statistical
effect of bottom depth on SD (Table 1).

Large, intermediate, and small zooplankton above deep
topographies experienced several orders of magnitude reduc-
tion in light exposure compared to zooplankton at shallow

banks (Fig. 2b). In deep regions, large zooplankton had about
10,000 times lower light exposure than small zooplankton.
The ecological consequence of this difference in light expo-
sure is that a hypothetical fish can visually detect a large prey
at about 20 cm distance at 100 m, but hardly at all below
300 m (Fig. 2c). The prey detection distance is the radius of
the visual sphere and consequently scales to the power of two
in terms of how much water a fish can scan for prey per time
unit (see Supporting Information) (Eggers 1977). The prey
encounter rate for the fish is therefore about 25 (proportional
to 52) and 400 (proportional to 202) times larger for the small
and large zooplankton, respectively, above (100 m) and off a
bank edge (300 m) for any given prey concentration at the
WMD of the zooplankton distributions.

Water clarity is a second-order factor in the Barents Sea
The optical depth, given as the reciprocal water column

light attenuation (K−1), had a significant, positive effect on
the zooplankton WMD (p = 0.004), that is, the zooplankton
had deeper distributions in clear water, but it did not signifi-
cantly affect distribution compactness (SD) (Table 1). The
effect of K−1 (c) was not significantly different between the size
classes (j), although only the small size class had in fact a con-
fidence interval for c excluding zero. We therefore ran individ-
ual analyses for the WMD of each size class (Eq. 5) and
discovered that while K−1 had a significant effect on the WMD
for the small size class in all areas (p < 0.001), it only affected
the WMD for the large size class in areas > 300 m (p = 0.03).

Table 2. Results from linear regressions evaluating WMDj and SDj as functions of Zb in day and night samples (l = day or night), j indi-
cates size class (L, M, and S). The table shows parameters with 95% confidence levels (CL), degrees of freedom (df ), and variance
explained (R2).

Weighted mean depth: WMDj,l = aj,l + bj,lZb

aj (intercept) bj (Zb) Lower CL Upper CL df R2

Large (L) Day −29.8 0.73 0.69 0.77 850* 0.69

Night −40.5 0.75 0.68 0.80

Intermediate (M)† Day 20.9 0.55 0.51 0.59 856‡ 0.56

Night −13.7 0.66 0.60 0.73

Small (S)† Day 18.8 0.36 0.32 0.40 856‡ 0.41

Night −17.1 0.52 0.45 0.58

Distribution compactness: SDj,l = aj,l + bj,lZb

Large (L)§ Day −4.5 0.23 0.21 0.25 850* 0.53

Night −7.7 0.27 0.24 0.3

Intermediate

(M)

Day −16.4 0.29 0.28 0.31 856‡ 0.63

Night −15.1 0.31 0.28 0.34

Small (S) Day −10.9 0.32 0.31 0.34 856‡ 0.77

Night −15.1 0.35 0.33 0.37

* Missing values in eight samples.
†Significant difference in slopes for day and night (p < 0.01).
‡Missing values in two samples.
§Significant difference in slopes for day and night (p = 0.02).
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Moreover, we found no significant effect of water clarity on
the WMD for the intermediate size class, both in the total
dataset and in samples from deeper areas, when examined
individually. The effect of water clarity on WMDL only in dee-
per areas implies that large zooplankton are forced to occupy
depths with suboptimal light levels regardless of water clarity
in areas < 300 m, in line with our prior expectations. Using
only Kchl

−1 instead of K−1 (Kchl
−1 + KCDOM

−1), we found a sig-
nificant effect of water clarity on the WMD (all sizes) only in
areas > 300 m.

Overall, light attenuation had a second-order effect on the
WMD of the zooplankton distributions, which we believe is
partly due to low variation in the approximated K from our
data on Chl a and salinity (Supporting Information Fig. S2).
Including K did, however, improve the explanatory power (R2)
of the statistical model compared to a simpler model with
only bottom depth and size as predictors (models compared
with ANOVA, p = 0.003).

Zooplankton biomass depth profiles
Vertical profiles of mean zooplankton biomass (g dw m−3)

by depth confirmed that large zooplankton had the bulk of
their biomass close to the bottom, particularly in areas
> 200 m (Fig. 3). Intermediate sizes also had a large part of
their biomass close to the bottom, although in areas > 200 m,
they displayed a bimodal distribution pattern with more bio-
mass in surface waters and low biomass between 50 and
200 m. This bimodality was most pronounced in areas with
400–500 m depth, which covers the western entrance where
Atlantic water flows into the Barents Sea (Fig. 1). The interme-
diate size class had the largest variation in sampled biomass,
both in the surface and deeper waters (shown as 95% confi-
dence intervals in Fig. 3). Small zooplankton had greater bio-
mass in surface waters (0–50 m), also showing tendencies of a
bimodal vertical distribution in areas > 200 m. Zooplankton
appeared to be more evenly spread throughout the water col-
umn in areas < 200 m.

Night-time occurrences indicate overwintering and
inverse DVM

For large zooplankton, we found a similar, strong effect of
bottom depth on WMDL during both day and night (Table 2),
and bL was not significantly different in day vs. night samples.
This indicates that the majority in this size class had ceased
feeding in surface waters and migrated downward for overwin-
tering (samples were from mid-August to mid-October). Bottom
depth had a stronger effect on the spread in distributions (SDL)
in night-time samples (bL,day = 0.23 vs. bL,night = 0.27, p = 0.02),
that is, distributions were more compact (closer to the bottom)
during the day.

Both intermediate and small sizes had significantly differ-
ent slopes (bj) for day and night (p < 0.01), with deeper distri-
butions at night than during the day (Table 2). This suggests
an inverse diel vertical migration (DVM) behavior; however,

Fig. 2. (a) Estimated WMD (WMDj) for daytime occurrences of large
(> 2000 μm), intermediate (1000–2000 μm), and small (180–1000 μm)
zooplankton in the Barents Sea, and linear models with 95% confidence
bands of WMDj as a function of bottom depth and light attenuation
(K−1) (Table 1), j indicates size class. Predictions have been plotted using
the mean K of all samples (0.08 m−1). Beige area illustrates the bottom
depth. (b) Deeper distributed zooplankton achieve several orders of
magnitude reduction in light exposure relative to the surface irradiance.
Relative light exposure was here estimated for the WMDj based on mean
K at the sampling station: Exp(−K × WMDj). Note that light exposure is
plotted on a log10 scale. Lines are linear regressions with 95% confi-
dence bands. (c) Approximated prey detection distance for a fish at the
predicted depth of the zooplankton size class from the linear models
described in (a). Reaction distance has here been approximated for a
13 cm fish foraging on prey with body lengths of 5, 3, and 1 mm, based
on Aksnes and Utne (1997). We used a light attenuation coefficient of
0.08 m−1 (mean K for the Barents Sea dataset). All parameters and equa-
tions are provided in the Supporting Information (“Elaboration on fish
reaction distance” and Table S1).
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the difference was not very pronounced (bM = 0.55 for day
vs. 0.66 for night, and bS = 0.36 for day vs. 0.52 for night),
making it difficult to draw any firm conclusions. It can also
suggest that distributions are more spread out through the
water column at night, yet the spread in the distributions
(SDj) was not significantly different between day and night
samples (Table 2; see also Supporting Information Fig. S3). We
cannot exclude that this is also due to a sampling bias, with
more night-time samples collected later in the period when
there is fewer hours of daylight and when more zooplankton
likely have migrated out of the surface for overwintering.

Note that coefficients for bj,day in Table 2 are slightly differ-
ent than bj in Table 1, as analyses shown in Table 1 include
the effect of K and were run on a smaller dataset (13% of the
samples lacked data for approximating K).

Discussion
The Barents Sea is a continental shelf with a varied topogra-

phy consisting of banks with trenches in between. It is also an
important fishery area supporting some of the world’s largest
fish stocks (Eriksen et al. 2017a). Our results provide observa-
tional evidence for topographic constraints of zooplankton
vertical distributions in this fish-rich continental shelf ecosys-
tem. The uniqueness of our dataset stems from the magnitude

of samples, covering the large and varied bathymetry of the
Barents Sea seascape (Fig. 1). Topographic constraints limit the
depth distribution for large and intermediate-sized zooplank-
ton in particular, resulting in increased light exposure at the
banks. Consequently, planktivores presumably have higher
probability of detecting zooplankton prey in areas with bot-
tom depth < 200 m (Fig. 2).

The blockage mechanism has previously been shown for
seamounts (e.g., Isaacs and Schwartzlose 1965; Genin
et al. 1994) and shelf breaks (Simard and Mackas 1989; Robin-
son and Goómez-Gutieérrez 1998), and parallels can be drawn
with depth constraints on Daphnia populations by hypolim-
netic anoxia in freshwater lakes (Sakwi�nska and Dawidowicz
2005). Advection is key in the blockage mechanism; with no
replenishment of zooplankton by advection, it is likely that
the zooplankton standing stocks over banks are quickly pre-
dated due to lack of refuge from visual foraging. Genin
et al. (1994) observed patches devoid of zooplankton (gaps)
formed on a daily basis over a seamount in California and
attributed this to predation by planktivores on topographi-
cally blocked zooplankton. Lower biomass of zooplankton in
areas shallower than 100 m in our study may have been an
effect of predation (Fig. 3). The strength of the blockage mech-
anism in terms of providing foraging opportunities for visually
feeding fish would in general depend on the topographic

Fig. 3. Vertical biomass profiles (average of all stations, samples collected by day) for the three sizes of zooplankton, panel titles specifies bottom depth
at the sampling station. Samples have been sorted according to the mean strata depth (y-axis, Zm,i), and the figure shows mean biomass (g dw m−3)
with 95% confidence intervals (� 1.96 × SEM). Small zooplankton were largely caught in the surface waters in all areas, whereas the intermediate and
large size fraction had greater biomass closer to the bottom. Intermediate zooplankton constituted the largest biomass of the three and showed a
bimodal distribution pattern in deeper areas (> 200 m).
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configuration and the exchange of water and plankton
between deep and shallow waters (Genin 2004). Variation in
advection of zooplankton over shallow topographies will cre-
ate additional variation in the food availability and foraging
success for the fish. The major banks in the Barents Sea, for
example, the Central Bank, Great Bank, and Spitsbergen Bank
(see Fig. 1), are large structures (100–200 km) with complex
hydrography and circulation features associated with the
topographically steered oceanographic polar front (Ingvaldsen
and Loeng 2009). We have merged data from a large ecosystem
with both Arctic and Atlantic characteristics (e.g., Johannesen
et al. 2012b), and there can be spatial variation that we have not
unveiled. Studies combining hydrodynamic and particle-tracking
models (e.g., Harms et al. 2000) will be useful to further identify
important feeding grounds where there is both topographic
blockage and zooplankton replenishment by advection.

Results from our study are likely transferrable to other
regions with a rugged bathymetry. The topographic blockage
mechanism has been suggested to sustain fish populations
above steep oceanic topographies like seamounts and shelf
breaks (Isaacs and Schwartzlose 1965; Mauchline and Gordon
1991; Genin et al. 1994; Seki and Somerton 1994; Fock
et al. 2002), and large remains of dead copepods (carcasses)
indicate elevated predation over these topographies (Haury
et al. 1995). Topographic blockage of zooplankton may also
have contributed to denser capelin concentrations at banks than
over deeper troughs in the central Gulf of Alaska (McGowan
et al. 2018). In the North Sea, predation from herring has been
identified as a major driver of Calanus finmarchicus mortality
(Papworth et al. 2016), and topographic blockage resulting in
increased visibility is a likely explanation for the low abundance
of C. finmarchicus during winter. The stock is replenished in
spring by C. finmarchicus advected with Norwegian Sea deep
water through the Faroe-Shetland Channel (Heath et al. 1999).
Reduced deep-water inflow is thus suggested to explain the long-
term (1950–present) decline in abundance (Heath et al. 1999),
with a negative effect on the recruitment of cod (Beaugrand and
Kirby 2010) and also potentially on the growth rate of plankti-
vorous fish (van Deurs et al. 2015).

The type of migration pattern exhibited by zooplankton
will determine if their depth distribution limits fish in its
search for prey. Shallow topographies may, for instance, be
more important for fish during autumn and winter, if their
prey here is unable to seek deeper waters for overwintering.
Transport of Calanus from the deep basins of the Norwegian
Sea onto the Barents Sea shelf as well as the Norwegian Shelf
(Samuelsen et al. 2009; Opdal and Vikebø 2015) is in some
respects a part of the topographic blockage mechanism on a
seasonal basis (although it is rarely called so in the literature).
In our autumn dataset from the Barents Sea, C. finmarchicus
has for the most part entered the overwintering dormant state
(Hirche 1996) or is descending to overwintering depths which
in the adjacent Norwegian Sea is below 500 m (Edvardsen
et al. 2006). Our data suggest that C. finmarchicus and other

overwintering species are seeking the deeper part of the water
column in concert with the deepening water depth. Zooplankton
can also display daily migration patterns, although it is debated
whether DVM is present in Arctic zooplankton during summer
(e.g., Blachowiak-Samolyk et al. 2006; Berge et al. 2009).

Capelin (Mallotus villosus) is a key planktivore in the Barents
Sea ecosystem (Gjøsæter et al. 2009) and exerts a significant
top–down control on zooplankton in the central and northern
areas where the major banks are found (Fig. 1) (Stige et al. 2014).
Capelin can possibly consume all the zooplankton biomass in
the upper, illuminated part of the water column in a matter of
days when the seasonally migrating “capelin front” moves into
a new and previously unpredated area (Hassel et al. 1991).
Baleen whales (minke whale Balaenoptera acutorostrata, fin
whale Balaenoptera physalus, and humpback whale Megaptera
novaeangliae), which forage on both zooplankton and pelagic
fish, were found to remain at banks in the northern Barents Sea
even in years with low capelin abundance, instead of migrating
southward to feed on abundant herring (Clupea harengus)
(Skern-Mauritzen et al. 2011). Atlantic cod (Gadus morhua), a
key predator on capelin, is also largely associated with shallow
areas of the Barents Sea (Johannesen et al. 2012aa). For capelin,
these areas therefore represent not only potentially increased
prey availability but also higher risk of predation for capelin
itself. Due to this trade-off, it is not evident that there is more
planktivorous fish in shallow areas in the Barents Sea although
their prey are more visible there.

Conclusion
Exponential decay of light in water means that zooplank-

ton can reduce their light exposure considerably by shifting
their vertical position by only tens of meters (Fig. 2b). Over a
seascape varying in bottom depth from 100 to 500 m, the
shallower bathymetry force zooplankton into more illumi-
nated habitats and increase the feeding potential for plankti-
vorous fish. For fish feeding on Calanus and other seasonal
migrators, the bathymetry effectively prevents prey from deep
descends for safer overwintering. This is likely to affect fish
distributions and an important factor for pelagic predator–
prey interactions and seascape ecology.
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Supplementary figures 

 

Figure S1: Maximum depth down to which chlorophyll a has been sampled in our dataset of 

daytime samples from the Barents Sea. This defines the maximum depth to which light 

attenuation (K) has been approximated for the stations with zooplankton data.  
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Figure S2: Frequency distribution of the approximated K (m-1) used to examine the relationship 

between zooplankton weighted mean depth and optical depth (K-1).  
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Figure S3: Spread in zooplankton distributions estimated from samples taken during daylight 

and at night, plotted as a kernel density estimate from all samples (y-axis). Panel titles denotes 

the large (>2000 µm), intermediate (1000-2000 µm) and small (180-1000 µm) size fractions. 
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Elaboration on fish reaction distance 

A theoretical model of a visual feeding fish (Aksnes and Giske 1993; Aksnes and Utne 1997) 

was used to illustrate how the prey detection distance for a fish changes with prey size and 

vertical position in the water column. In the model, the distance at which the fish will detect a 

zooplankton (reaction distance, R) is a function of prey size (image area, A) and contrast against 

the background (C), visual capabilities of the fish (eye sensitivity, E, and adaptation to specific 

light levels, kI), and ambient light (I). Here, we used the approximation for R given in Huse and 

Fiksen (2010): 

𝑅 = √𝐶 × 𝐴 × 𝐸 ×
𝐼

(𝑘𝐼+𝐼)
  

This is a reasonable approximation for small prey, low light levels or clear water (low turbidity). 

Parameters used to estimate R (main text Fig. 2c) are given in Table S1. R is the radius of the 

visual sphere, hence scales to the power of two in terms of how much water a fish can scan for 

prey (clearance rate, β) per time unit (Eggers 1977): 

𝛽 = 𝜋𝑅2𝑉    

where V is the fish’ swimming velocity (m s-1). 
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Supplementary table 

 

Table S1: Parameters employed for approximating the prey detection distance (R) for a fish 

(main text Fig. 2c).   

Model 

component 

Symbol Description Value Unit 

Fish BL Body length 0.13 m 

 E Eye sensitivity† BL2/9 x 10-7  

 kI Light satiation (half 

saturation coefficient for R 

to I) 

1 µmol m-2 s-1 

Large 

zooplankton 

PL Prey length 0.005 m 

PW Prey width PL/2 m 

Intermediate 

zooplankton 

PL Prey length 0.003 m 

PW Prey width PL/2 m 

Small 

zooplankton 

PL Prey length 0.001 m 

PW Prey width PL/2 m 

Zooplankton C Contrast against the 

background‡ 

0.3 dimensionless 

 A Image area§ PL x PW x 0.75 m2 

Light Is Surface irradiance 200 µmol m-2 s-1 

 K Diffuse attenuation 

coefficient 

0.08 m-1 

 I Ambient light Isexp(-K×WMD) µmol m-2 s-1 

Depth, large 

size fraction 

WMD Predicted weighted mean 

depth (Eq. 5/Table 1 in 

main text) 

WMD = -40.1 + 0.75Zb + 14.9¶ m 

Depth, 

intermediate 

size fraction 

WMD Predicted weighted mean 

depth  

WMD = -1.8 + 0.59Zb + 14.9¶ m 

Depth, small 

size fraction 

WMD Predicted weighted mean 

depth  

WMD = -2.7 + 0.40Zb + 14.9 m 

† Here used as a constant for fish length, see (Aksnes and Utne 1997) 

‡ Same for both prey sizes, see Utne-Palm (1999) 

§ Small, elongated prey 

¶ Zb is bottom depth, here modelled in the range of our data (60–500 m). 14.9 is the effect of 

mean K (0.08 m-1) on the WMD. 
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Supplementary references – modelling fish reaction distance 
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