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Abstract

Sensitivity analysis is often used to judge the sensitivity of model behaviour to

uncertain assumptions about model formulations and parameter values. Since the

ultimate goal of modelling is typically policy recommendation, one may suspect that it

is even more useful to test the sensitivity of policy recommendations. A major reason

for this is that behaviour sensitivity is not necessarily a reliable predictor of policy

sensitivity. Policy sensitivity analysis is greatly simplified if one can find optimal

policies. Then one can simply see how the optimal policy changes when the model

assumptions are altered. Our case is a fishery model. We investigate how (near-to)

optimal policies change when we correct for a typical estimation bias in an aggregate

model, when we substitute the aggregate model with a cohort representation of the

same fishery, and when we switch from assuming variable to assuming constant fish

prices and per unit variable costs. Normally these assumptions follow from the

analyst’s school of thought without testing. The most  surprising result is that while

assumptions about the fish price and the per unit variable costs matter a lot, the choice

between an aggregate and a cohort model is of little importance.
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1. Introduction

When building simulation models, there is always uncertainty regarding model

formulations and parameter assumptions. Two questions follow naturally: can policy

recommendations based on such models be trusted, and if necessary, what assumptions

should one try to get better information about? To answer these questions, behaviour

sensitivity analysis is typically used. However, while such tests quantify the effect of

assumptions on model behaviour over time, they do not answer the question about

policy sensitivity. Does the fact that model behaviour is sensitive to an assumption

mean that the policy is also sensitive? Does the fact that the model is insensitive imply

that the policy is insensitive? When policy recommendations represent the ultimate

goal of a model analysis, the question about policy sensitivity seems more important

than the question about behaviour sensitivity.

In this paper we present a method that can be used to study policy sensitivity in

complex, dynamic models. The case is the Northeast Arctic cod fishery in the Barents

Sea, and the policy in focus is the quota strategy. We identify three important

assumptions for which we explore the policy sensitivity. First, using an aggregate

biological model we observe a potential bias in the model’s parameter estimates and

explore the sensitivity of the quota policy to this bias. Second, current practise differ

with respect to the level of aggregation in biological models, we investigate how the

quota policy changes when we replace the aggregate biological model with a more

complex age-class (or cohort) model. Third, the economic mechanisms in our model

(the fish price and the per unit variable costs depend on the harvesting rate) are often

ignored in analyses of quota policies. We investigate the policy sensitivity to these

assumptions.

In the next section we define what we mean by policy sensitivity and we consider under

what conditions policy sensitivity should be preferred to traditional behaviour sensiti-

vity analysis. Then the fishery models with their assumptions are presented. In the

fourth section we discuss the method used to find optimal or near-to-optimal policies.

Then we present the results. Quota policies are surprisingly insensitive to aggregate

model parameters and to the choice between an aggregate and a cohort model. Quota
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strategies are much more sensitive to the assumptions about the economics. Finally, we

conclude.

2. Policy sensitivity analysis

The traditional and frequently used form of sensitivity analysis has been to vary model

parameters and to observe how behaviour changes. This is a very useful procedure for

model testing, learning, and validation. Using optimisation, one can in addition observe

how the optimal policy changes due to variations in model parameters. This is what we

do here, and what we refer to as policy sensitivity analysis. Below we give a motivation

for the use of policy sensitivity testing and we discuss limitations of the approach.

The main purpose of modelling is problem solving. In the light of double-loop learning

models, Argyris and Schön (1978), problem solving can take quite different forms. At

one level, the main challenge is to convince managers, politicians or their electorate,

that a problem exists and that improvements are possible. Once the problem is acknow-

ledged and proper institutions are in place, the problem is often dealt with at another

level where more detailed and advanced policy analysis may be appropriate.

For these two modes of problem solving, different types of sensitivity analysis are

needed. To convince that a problem exists, sensitivity analysis could be used to show

that basic (problem) behaviour modes are insensitive to large variations in model

parameters. This is for instance the type of sensitivity analysis Jay W. Forrester refers

to when discussing his world dynamics model, Senge (1973) p.5-18. The underlying

assumption is that as long as the basic problem behaviours persist, proper policies stay

approximately the same. For example, regarding the management of most renewable

resources, it is crucial that decision makers have a basic grasp of the underlying

resource dynamics, Moxnes (2000), and of the commons problem, Gordon (1954) and

Hardin (1968).

At the level of more detailed and fine-tuned policy analysis, the assumption that

policies stay the same becomes more questionable. The fact that model behaviour is

sensitive to parameter change, may or may not imply that appropriate (optimal) policies

are sensitive to the same parameters. This can be a difficult question to answer because
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it may be even harder to intuitively identify proper policies than to intuitively predict

behaviour in complex dynamic models.

A complex case illustrates. When non-linear dynamics are combined with stochasticity

and measurement error, it is both intuitively and analytically very difficult to identify

optimal policies. In such an environment, Moxnes (2003) uses traditional sensitivity

analysis, keeping the harvesting policy constant, to find that the total payoff from the

fishery is very sensitive to the amount of measurement error. The apparent policy

conclusion is that first priority should be to increase measurement accuracy, even if this

may be costly. However, this conclusion relies heavily on the assumption that the quota

policy remains fixed. When the policy is allowed to vary with the error level,

performing a policy sensitivity analysis, around ¾ of the earlier estimate of the value of

accuracy disappears. Still accuracy is valuable, however, for a start, it is a cheaper

option to produce an estimate of the error level and to adapt the harvesting policy to

this error level.

As already indicated, it is preferable to use optimisation when testing the sensitivity of

policies to model assumptions. First consider policies found without optimisation,

using some manual calibration scheme. Then one would make comparisons of the type

f1(x,a1,ε1) versus f0(x,a0,ε0)

where x represents the state variables of the system, f1 is the policy found for assump-

tion a1 and f0 is the policy found for the reference assumption a0. The manual and

presumably imprecise calibration procedure, however, leads to policy errors of

respectively ε1 and ε0 in the two cases. Since there is no guarantee that ε1 is equal to ε0,

one cannot conclude firmly that a difference between policy f1 and f0 is due to the

change in model assumptions, a0 to a1. There is room for conscious or unconscious

manipulation of the results by modellers, and consequently reason for uneasy feelings

and outright accusations among readers that results have been manipulated.

Using optimisation, there will be no random element when comparing policies,

ε1=ε0=0. Thus, the comparison will be “fair”, showing truly optimal policies for all

model assumptions.
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Since this type of policy sensitivity test requires that optimal policies can be found, the

direct application of the method breaks down in complex models. One possibility is to

resort to near-to-optimal policies. Such policies will have an element of error since they

represent simplifications. While subjective, random errors due to an imprecise manual

procedure are removed, one cannot rule out that the remaining systematic error is a

function of the tested model assumption, ει=f(ai). If this is the case, one will get a

biased estimate of the policy sensitivity, a bias that cannot be removed without a better

knowledge about the truly optimal policy.

From a more practical viewpoint, if the simplified policy is the best one can do, and it

is the policy one will use in practical management, the bias is of less concern. Then it is

interesting to see how the practical policy varies with changes in the model assump-

tions. Still the comparison is “fair” with no room for manipulation. In Section 4 we

present an optimisation method that can be used to find both truly optimal solutions and

near-to-optimal solutions.

One can also think of types of policy sensitivity analyses where optimisation is not

needed by definition. An examples is presented in Andersen (1980). In two cases,

policies resulting from two different models were compared. Andersen found that the

policy conclusions were sensitive to the choice of modelling paradigm. When compar-

ing the models, Andersen did not compare optimal policies. Rather, he took for granted

the policies suggested by those who performed the original studies. Comparing

modelling paradigms it seems fair to include potential shortcomings of the analysts.

However, if one compares a small number of studies from each modelling paradigm,

comparisons could be biased if the analysts are not representative of their own schools

of thought.

Finally, policy sensitivity analysis can be a useful tool for model simplification in order

to produce transparent, understandable models which are still highly useful. In order to

improve on traditional behaviour sensitivity analysis, Eberlein (1989) conducts an

eigenvalue-based linear analysis. This method helps identify and select the subset of

feedback loops in a complex model that explain most of the model’s behaviour.

Eberline points out that: “To allow understanding, the variables in the simplified model

must be easy to interpret relative to those in the original model.” This is, however, not
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easy to do when we will compare an aggregate and a cohort model of the same fishery.

Not only does the aggregate model collapse all the age classes of the cohort model, it

also combines recruitment, growth, and mortality into one single variable for surplus

growth. Using policy sensitivity analysis we can see how the optimal policy varies with

the choice of modelling concept.

3. The fishery models

Figure 1 gives an overview of the fishery model in terms of a stock and flow diagram.

The goal is to maximise the expected future value of bank deposits, which in this case

is equivalent to maximising the expected net present value of future profits1. Profits are

made up by revenues minus costs. Costs depend on the effort spent, which in turn

depends on both the harvest and the catch per unit effort. The latter depends on the size

of the fish stock. The revenue depends on the harvest and the fish price. The latter

declines when the supply of fish in the market (the harvest) increases. The Barents Sea

cod fishery is managed by yearly quotas. Therefore the decision variable is the yearly

harvest, which depends on the fish stock and is guided by a quota policy2. Figure 1

shows the fish stock and the growth rate as they are described in the aggregate model.

Note the randomness influencing the net fish growth, implying that stochastic rather

than deterministic optimisation is needed. Alternatively the biological part of the model

is described by a cohort model. The cohort model and the aggregate model are des-

cribed in the following subsections. However, first we describe the common economic

structure.

The common economic part is characterised by the following equations, first, the

expected net present value3

V E p p H H c c c
e
e

e c et
t t

t
t

t
= − − + − −

=

∞

∑ ρ α{ }( ) ( )( ( ) )0 1 0 1 0
00

2 0 (1)

                                                
1 This is correct if the discount factor ρ is determined by the interest rate r, ρ=1/(1+r).
2 A function and not just a constant as Figure 1 may suggest.
3 Since we operate with an infinite horizon, it is more intuitive to focus on the net present value than

on the bank deposits which tend towards infinity. The latter is probably the more intuitive
representation in the stock and flow diagram.
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The discount factor is denoted by ρ, et is the applied fishing effort, and e0  reflects the

fishing capacity. The price of fish is a linear function of harvest tH  with parameters p0

and p1. Unit variable costs equal c0 at zero effort, and they equal c1 when effort equals

capacity e0. Increasing per unit variable costs are ensured by assuming α>0. The per

unit leasing cost of capacity is c2. We explicitly avoid maximising a social welfare

function for the fishing nation. Most of the harvest is exported and domestic prices

reflect export prices.

Interest_rate

Interest

Bank_deposits

Revenue

Fish_price

Fish_stock

HarvestGrowth

Profits

Costs

Effort

Capacity

Quota_policy

Randomness

Figure 1: Overview of the fishery model, with the aggregate representation of the biological part.

The assumption that the price of fish depends on the harvest rate and the assumption

that per unit variable costs increase with capacity utilisation are only infrequently made

in economic models of fisheries, and they are of course never part of purely biological

models. Increasing per unit variable costs are probably left out of many early fishery

models because they complicate the search for an optimal harvesting policy. Overcapa-

city in most fisheries in most years also imply that it is difficult to get data that verify

increasing per unit variable costs empirically. The assumption about a flexible price

does not reflect the domestic demand curve for cod. Since most of the cod is exported,

there is a modest effect of domestic harvests on international prices and a probably

much larger effect on prices paid by the domestic fish processing industry. Also this

industry has increasing per unit variable costs, such that the fishing industry’s profit
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margin decreases with increasing harvests if the fish price is held constant. Both these

assumptions will be subjected to a policy sensitivity analysis.

In the following we use capital letters to denote fish in biomass terms (million tons),

while lower case letters are used to denote numbers (billion fish). The instantaneous

harvest is given as h e X X= ( / )0
β , where β)/( 0XX  denotes the catch per unit effort

relationship. X X= 0  is the biomass for which instantaneous harvest is equal to

instantaneous effort. To get an expression for total yearly effort

e X
X
X

X H
Xt

t t t= −
−

−− −
0

0

1

0

1 1{( ) ( ) } / ( )β β β (2)

we rearrange the harvest equation to find an expression for e and by integrating over X

from the post catch stock size X Ht t−  to the pre catch stock size X t , see Clark

(1985).4

3.1. The cohort model

Cohort models used to find optimal fishing strategies, e.g. Mendelssohn (1978), Naqib

and Stollery (1982), Spulber (1983), and Spulber (1985), typically limit themselves to

rather simple representations since according to Mendelssohn: “The large increase in

analytic complexity caused by the addition of even the simplest interaction term is

cause for both consternation and challenge.” Since our optimisation method allows for

greater model complexity, we introduce “interaction” terms to capture vital feedback

mechanisms, e.g. recruitment and weight dynamics. On the other hand, we will,

different from the above papers, make the simplifying assumption that harvesters do

not target specific age-classes. This is largely consistent with current fishery policies,

which do not change restrictions on gear and which do not make major changes in

allocations between fishing grounds and vessel segments, from year to year, depending

on the stock size.

                                                
4 Ideally, there should have been a stochastic variable in this equation since the effort needed to catch

a given quota is likely to vary from year to year. However, a test shows that such an extra random
variable is of little importance for the optimal harvesting policy. The catch per unit effort
relationship should also be expected to be related to the selectivity of the gear. This is no problem
as long as we keep the selectivity constant.
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Figure 2: Illustration of cohort representation of the biological part of model, not showing harvest rates
going out of each age class.

The cohort model is illustrated in Figure 2. To increase the speed of computation the

model is formulated in discrete time with a time step of one year. The fish moves

through cohorts as it ages. Different from the aggregate model, net growth consists of

recruitment (depends on spawning stock and juvenile predation), weight growth (a

vector of cod weights depend on food available and food required) and natural

mortality (denoted by the outflows ni in the figure). Harvestable biomass and catch per

unit effort link up to the economic model. Harvest rates from each of the age classes are

not shown in the figure. The number of fish in the different age classes are given by the

following equations:

x S r r S r J v rt t t t r t s3 3 0 1 3 2, ,exp( )= + + + <− − (3)

x x m v h m vi t i t i i t i t i i t+ + = − − −1 1 2, , , , ,exp( ) exp( / )           i=3,4,...,13 (4)

x x m v h m vt t t t t15 1 14 14 14 14 14 14 2, , , , ,exp( ) exp( / )+ = − − − +

  x m v h m vt t t t15 15 15 15 15 15 2, , , ,exp( ) exp( / )− − − (5)
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where x t3,  represents recruitment of three year old cod. St −3  is the biomass of the

spawning stock at the appropriate point in time, tJ  is a measure of cannibalistic cod

juveniles, vr t, ~ N r( , )0 σ  represents random recruitment variability and rs  is the

maximum recruitment. Yearclass harvest is denoted by hi t, , mi  is the natural mortality

for yearclass i, and vi t, ~ N m( , )1 σ  represents random variations in natural mortality.

Even though one might expect natural mortalities for age classes to be influenced by

some of the same environmental forces, we disregard this possibility here and assume

independence. Suitability matrices (based on stomach content analyses) indicate that

there is a certain cannibalism on three year old cod. We ignore this direct relationship

since the bulk of cannibalism is captured by the recruitment function.

Due to the choice of total harvest as the decision variable, it is most practical to use

age-class harvests and not fishing mortalities in these equations. To facilitate this, we

have made use of Pope’s approximation, i.e. harvest is assumed to take place in the

middle of the year. This approximation is thought to yield good results for cod5.

Equation 5 shows that the survivors of age class 15 are re-entered into this age class.

This is not a perfect way to represent fish older than 15 years of age since fish weight

does not increase with further ageing. With normal fishing activity, however, there are

very few fish in the upper age classes such that this approximation should be of little

concern.

The spawning stock biomass is given by ogives (maturity coefficients) oi , age class

body weights wi t, , and age class numbers xi t, .

S o w xt i i t i t
i

=
=
∑ , ,

3

15

(6)

The total biomass of harvestable fish (3 years and older) is

                                                
5 Personal communication with Bjarte Bogstad at the Institute of Marine Research, IMR, Bergen.
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X w xt i t i t
i

=
=
∑ , ,

3

15

(7)

Juveniles Jt  represent a weighted average of biomass in lower age classes

J s w xt i i t i t
i

=
=
∑ , ,

4

15

(8)

The weights si  reflect suitability of pre-recruitment cod for these age groups. The

harvest from each age class

h
H q x

q x w
i t

t i i t

i i t i ti

,
,

, ,

=
=∑ 3

12 (9)

is derived from the total harvest Ht , i.e. the policy variable. Here qi  represents the

selectivity of the fishing gear. One can easily see that the sum of harvests from indivi-

dual age classes equals in Ht  (multiply by tiw ,  on each side of the equation and sum

over all i) .6 Based on observed patterns seen in VPA (virtual population analysis) data,

harvesting selectivities are given by a logistic function:

( )q e q ii
u

h
q

i t e= +, / { / }1               i=3,4,...,15 (10)

For older age classes, qi  tends towards 1.0, qh denotes the age at which qi  equals 0.5,

and the exponent qe  influences the steepness of the function. Selectivities are also

influenced by natural variation, uq t, ~ N q( , )0 σ .

                                                
6 When the selectivity varies over age classes, Equation 9 does not ensure that harvests will be less

than population numbers in all of the age classes. This problem is most easily seen in the case that

tt XH = . In this case all age classes should be harvested completely. However, harvests in age
classes with higher than normal values of qi will be greater than the corresponding population
numbers xi. The problem is caused by discretization in time. In a continuous world the qi ’s could
stay constant while the population numbers gradually decrease. In turn the declining populations
numbers would serve to limit harvests to what is available. Fortunately this is only a problem when
Ht  is close to tX . Since any reasonable harvesting policy will keep a good distance, the weakness
of the formulation usually presents no problem.
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Nearly all model studies we have come across ignore the effect of intraspecies competi-

tion in terms of the effect of own stock biomass on own weight. One exception is Ault

and Olson (1996). We assume that the weight of each age class is given by a reference

weight for this age class wi ,0  times a weight index wt :

w w wi t i t, ,= 0 (11)

where the weight index

w B e wt t
v

s
w t= <−ϕ ϕ/( ) ,1 (12)

depends on the cod biomass and a random variable vw t, ~ N w( , )0 σ . To avoid simul-

taneous equations, we have replaced the actual cod biomass X t  by an approximation

based on the reference weights for each weight class, B w xt i i ti
=

=∑ , ,03

15
. This is not a

problem because we need a measure of the food requirement, and not the actual

biomass. Weight is assumed to stay below an upper limit ws  in case cod biomass

becomes very low. Using one common weight index implies that we ignore possible

differences between age classes. We also ignore time delays in the effect of intraspecies

competition. It seems however that the delays are short and of rather little importance.

Tables 1 and 2 give a summary of the parameter values used in the cohort model. The

parameter values have been found by a variety of methods, e.g. catch-at-age analysis,

OLS and direct observation, see Moxnes (1999).
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Table 1: Parameter values in cohort model.
Parameter Symbol Value Unit
Discount factor ρ 0.95
Price at zero harvest p0 10.0 NOK/kg
Price reduction with harvest p1 2.0
Lower unit variable cost c0 3.7 NOK/kg
Unit variable cost when e et = 0 c1 4.5 NOK/kg
Leasing cost of capital c2 1.8 NOK/kg
Exponent for variable costs α 2.0
Biomass where effort equals harvest X0 1.0 Mill.tons
Exponent for catch per unit effort β 0.6
Recruitment, constant r0 0.85
Recruitment, effect of spawning stock r1 0.7 per mill.tons
Recruitment, effect of juveniles r2 -0.25 per mill.tons
Recruitment, maximum rs 2.0 Billion
Recruitment, standard deviation σ r 0.64
Mortality m 0.2
Mortality, standard deviation σ m 0.35
Selectivity, half value qh 4.75
Selectivity, exponent q e 6.25
Selectivity, standard deviation σ q 0.25
Weight, elasticity w.r.t. biomass ϕ -0.2
Weight, standard deviation σ w 0.34
Maximum weight index ws 1.3

Table 2: Parameters that are distributed over age classes.
Reference  fish Spawning stock Juvenile Expected initial popu-
weights  [kg] ogives distribution lations  [Billions]

Age class wi ,0 oi si xi ,00

3 0.8 0.00 0.30 0.500
4 1.3 0.02 0.80 0.403
5 1.9 0.08 1.00 0.305
6 2.7 0.28 1.00 0.207
7 3.8 0.57 1.00 0.129
8 5.2 0.79 0.63 0.077
9 6.8 0.90 0.26 0.045

10 8.3 0.96 0.00 0.026
11 9.8 1.00 0.00 0.015
12 11.5 1.00 0.00 0.009
13 12.7 1.00 0.00 0.005
14 13.5 1.00 0.00 0.003
15 16.8 1.00 0.00 0.002

3.2. The aggregate model

A stock and flow diagram of the aggregate model is shown in Figure 1. We use a

discrete version of the aggregate surplus growth model, Schaefer (1954):
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tttttttt HXbHXaHXX ξ+−+−=−−+
2

1 )()()( (13)

where X t  denotes total biomass and Ht  is total harvest measured in biomass.

Parameter estimates for Equation 13, based on 51 year long historical time-series, are

shown in Table 3, see Moxnes (1999) for details. As can be seen, the estimates are

highly significant with large t-ratios.

As a preliminary test of the similarity of the models, we use the cohort model to pro-

duce synthetic time-series data from which we can also estimate aggregate model

parameters. Actually, we produce two sets of synthetic data because it turns out that the

estimates obtained are sensitive to the choice of fishing policy in the cohort model.

Parameter estimates are shown in Table 3 for a historical policy ( H Xt t= 0 28. * ) and

for the best possible proportional policy ( H Xt t= 0 21. * ). To get precise results we

used 1000 years of synthetic data, which explains the very high t-ratios. Figure 3 shows

all the three surplus growth models.

Table 3: OLS estimates for aggregate models (t-ratios in parentheses).
Data used a b σA
Historical data (51 years of VPA data from IMR) 0.89 -0.25 0.30
(later referred to as aggregate-historical) (11.1) (-7.5)
Cohort model output (1000 years, H Xt t= 0 28. * ) 0.94 -0.27 0.71

(26.1) (-18.9)
Cohort model output (1000 years, H Xt t= 0 21. * ) 1.03 -0.23 1.08
(later referred to as aggregate-simulated) (28.4) (-24.6)

The model obtained from historical data (solid line) is nearly identical to the one

obtained from synthetic data with the historical policy (dotted line). The close fit is

somewhat arbitrary since there is some uncertainty in the estimated parameters for the

historical curve. Clearly, the two curves are not statistically different. We do note

however that the estimates of the residuals σA are significantly different (Chi square

test). One possibility is that there is too much natural variation in the cohort model.

Another possibility is that the cohort model produces data that are less consistent with

the surplus growth model than what the real system does. Both explanations indicate a

certain improvement potential for the cohort model.7

                                                
7 These possible explanations are strengthened by the fact that we have underestimated another

source of variation by using a fixed policy when simulating the cohort model. If we had used a
policy with a certain element of randomness (observations of historical policies always deviate
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Figure 3: Surplus growth: Historical data: solid line, simulated data with historical policy: dotted line,
and simulated data with the best proportional policy: dashed line.

It is interesting to observe that the estimate of the aggregate model from synthetic data

is sensitive to assumptions made about the harvesting policy in the cohort model. The

best possible proportional harvesting policy, which implies more careful harvesting and

higher average fish stocks, leads to a higher estimate of the surplus growth curve

(dashed line). This is an unfortunate feature of the aggregate model, at least when its

parameters are based on data from historical periods with over- or underfishing

compared to a desirable future policy. Thus, in the remaining part of this paper we will

consider both the aggregate model based on historical data, and the one based on

synthetic data from the cohort model using the best possible proportional policy,

referred to as respectively “aggregate-historical” and “aggregate-simulated”.

Comparing optimal policies for these two models, we will get a sense of the policy

sensitivity to this estimation bias.

4. Stochastic optimisation in policy space, SOPS

Cohort models are characterised by a large number of states. Hence, a direct application

of stochastic dynamic programming, SDP, is ruled out by the ‘curse of dimensionality’.

SDP could still be used after some sort of model reduction. However, while such

simplifications are conceivable, they would lead to less transparent models and to

models that are not familiar to the decision makers. To maintain familiarity and to

ensure that important effects are captured by the model, we rely on a method termed

                                                                                                                                             
somewhat from what is predicted by an estimated policy), the aggregate model estimates of σA
would have been even higher.
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“stochastic optimisation in policy space”, SOPS. In this case it is primarily the policy

that is simplified in order to obtain solutions and not the model.

Optimisation in policy space has been proposed, used, and implemented in various

settings, e.g. Walters (1986), Bertsekas and Tsitsiklis (1996),  Ermoliev and Wets

(1988), and Polyak (1987). For deterministic problems with simple policy functions,

optimisation in policy space can be performed by simulation programs like Powersim

and Vensim with an optimisation option. Here we rely on a practical adaptation to

stochastic problems presented in Moxnes (2003).

The basic idea is that one proposes a harvesting policy, see illustration in Figure 4, and

simulates the fishery model into a future with unknown, random events. Because the

random events cannot be predicted, the model must be simulated over many possible

futures, where the goodness of the policy is expressed by the average net present value

over many futures. Then one makes systematic changes in the harvesting policy (for

example by changing θ3’ to θ3 in Figure 4) to search for the policy that yields the

θ1

θ2

θ3  

0         1        2        3        4 X
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θ4  H
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0         1        2        3        4 X
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Figure 4: Illustration of policy function with policy parameters θi.

highest average net present value. Thus, the stochastic, dynamic optimisation problem

is transformed into a problem of non-linear, static optimisation, where there is a

deterministic relationship between the policy parameters and the average net present

value. More precisely, we want to maximise
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were the average net present value W is an estimate of the expected net present value V

(Equation 1), and where θ  is the vector of policy parameters in the harvesting strategy8

( ) 0, ≥= θtt XfH (15)

where Xt represents the biomass of the fish. W is produced by M Monte Carlo simula-

tions of the fishery model with the proposed fishing strategy implemented. The rest of

the fishery model is as described earlier except that the random variables with

subscripts t, now appear with subscripts tmn, e.g. vr t,  becomes vr tmn, . Thus besides

varying with time t, the random variables also vary over Monte Carlo runs m=1, 2, ..M

and over n=1, 2, ..N separate searches for the policy parameters θ . Each new parameter

search n starts with different initial policy parameters, n0,θθ = , which are drawn from

uniform distributions. We use M=100 Monte Carlo runs, a time horizon of T=50 years,

and N=20 independent searches.

When using the cohort model each Monte Carlo run starts out with randomly chosen

initial age class populations

0,
00,0,

xv
ii exx = (16)

where vx ,0 ~ N x( , )0 σ  and 4.0=xσ . Initial conditions vary similarly for the aggregate

model.

0,
000

XveXX = (17)

where 0,Xv ~ ),0( XN σ  and 4.0=Xσ .

To find the parameter vector θ  that maximises W, a hill-climbing search procedure is

used (Fletcher-Powell variable metric). The search routine provides accurate parameter

values judged by variations between repeated searches with different starting points for

the parameter set 0θ  (if necessary ignoring occasional solutions that are not close to the

                                                
8 Note that the policy parameter vector θ  also includes the fixed harvesting capacity e0.
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global optimum). Naturally, accurate parameters are only found in subsets of the state

space that are visited and where the policy is of importance for the criterion.

Since we do not know what function characterises the optimal solution, we rely on a

flexible policy function, which does not restrict the solution very much, see illustration

in Figure 4. For the one dimensional policies to be used here, a good numerical

approximation can be obtained by interpolating between five grid points and extra-

polating beyond the end grid points. Mathematically, the policy tH  is given by

lttktkt XXkXXkH −≤−−−+−−=≤ + ))1(/)(()/)((0 1 δϕθδϕθ (18)

where ϕ is the location of the first grid point, δ is the distance between grid points, and

the policy parameter kθ  denotes harvest at grid point k determined by

41)/)int((1 ≤+−=≤ δϕtXk (19)

Compared to the discrete representation in dynamic programming, we note that the fish

stock tX  and the policy tH  are continuous variables. The grid points denote the kinks

in the piecewise linearized policy. Moxnes (2003) shows how linear interpolation can

be extended into higher order policy surfaces.

The more complex the model, the greater the need to seek simplifications of the policy.

By restricting ourselves to infinite horizon problems, time is left out of the policy

function. When all states are measured perfectly, the ideal optimal policy is a function

of all states. Since the aggregate model has only one state, its policy will be one-

dimensional. The cohort model has many states and the ideal policy is very compli-

cated. However, as shown in Moxnes (1999), a one-dimensional policy gives a nearly

perfect result compared to higher order policies. The main reason for this is that the

fishing selectivities are fixed. In models with targeted harvesting of all age classes, one

dimensional policies would not suffice, see Mendelssohn (1978) and Spulber (1983).

By repeated searches and by varying the initial policy parameters, we increase the

probability that a global rather than some local optimum is found. The confidence in
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the method is also increased whenever the method identifies global solutions known

apriori.

Finally we note that SOPS is an interesting method also from a more practical point of

view. The method allows for the use of simulation models and assumptions familiar to

decision makers. This is an advantage to the extent that decision makers distrust overly

simplified models, Gulland (1991). On the other hand, large models may require that

policy functions are simplified. However, this may also be perceived as desirable.

According to Walters (1986): “..we will have to find ways to visualise [policy]

functions when there are many [state] variables, since it would be silly to expect any

real decision maker or manager to blindly plug numbers into such a function and then

follow its prescription”, p.243. SOPS could be used to find the best possible simplified

and “visualizable” policies. This approach may also provide an attractive alternative to

the intuitive blending of two or more exact results from simplified models to come up

with a best possible policy for a more complex reality. That this can be a complicated

task is exemplified by the at times surprising effects of adding new nonlinearities,

stochastic variables, and feedbacks to existing models. Empirical evidence of this

difficulty is presented in Brekke and Moxnes (2003). If decision makers are not able to

untangle complexity, they are left with uncertainty about received results. Such uncer-

tainty is believed to be the major obstacle to diffusion of technologies and policies,

Rogers (1995). In this regard, it may also be an advantage of the method that it does not

require knowledge of more sophisticated techniques than simulation and search.

By pointing to potential advantages of the method, we do not claim that SOPS is a

panacea. For instance, other methods are needed to guide efficient problem

formulation, to judge the likelihood that proper solutions are obtained, and to help

explain why policies turn out the way they do. In highly complex cases SOPS will only

provide improvement, which is also the rationale behind various related methods to

tackle highly complex problems, e.g. neuro-dynamic programming and reinforcement

learning, Bertsekas and Tsitsiklis (1996).
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5. Results

We start by considering the sensitivity of the harvesting or quota policy to a possible

estimation bias in the estimate of the aggregate surplus growth curve. Figure 5 and the

upper half of Table 4 show the resulting policies. The thin solid line in the figure shows

the optimal policy for the aggregate model with parameters based on historical time-

series data (aggregate-historical). This policy is very close to the one for aggregate-

simulated (thin dashed line), i.e. the policy for the aggregate model based on synthetic

data from a cohort model with a near-to-optimal harvesting policy. Hence the likely

bias in the estimate of the aggregate model’s growth curve has a limited effect on

harvesting policies. Looking at the optimal harvesting capacities, e0 in Table 4, we see

that aggregate-simulated has a 15 percent higher capacity than aggregate-historical.

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6

Mill.tonnes/year

Xt

Figure 5: Policies for models with variable price and unit costs. Thick line: Cohort model. Thin solid
line: aggregate-historical. Thin dashed line: aggregate-simulated.

Looking at the estimates of expected net present values W, differences are large.

However, this difference is primarily explained by the different growth curves and not

by the policies. To get an estimate of the economic value of the two policies9, we plug

the policies for the two aggregate models into one and the same cohort model. This is

not done because we implicitly consider the cohort model superior, but because we see

it as a testing ground. It turns out that the policy for aggregate-simulated yields an

expected net present value that is 2.6 percent higher than the one for the policy from

aggregate-historical. The main impression is that the policy and value sensitivity is

limited.

                                                
9 Policies for both harvesting strategy and capacity.
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Table 4: One-dimensional policies for cohort and aggregate models (averages of 20 searches).
Model/policy θ1 θ2 θ3 θ4 θ5 e0 W
Variable price and unit costs
Cohort -0.14 0.30 0.61 0.88 1.05 0.37 73.8
Aggregate-historical -0.04 0.43 0.81 1.14 1.41 0.40 55.2
Aggregate-simulated -0.34 0.34 0.76 1.13 1.40 0.46 70.5
Constant price and unit costs
Cohort* -2.00 -2.00 -1.50 0.52 1.89 0.5 86.0
Aggregate-historical -0.84 0.20 1.20 2.19 3.18 0.5 48.3
Aggregate-simulated -1.75 -0.39 0.59 1.58 2.59 0.5 90.8
* Additional grid point, θ6=2.88.

Next we turn to the sensitivity of the policy to the choice between the cohort model and

the aggregate models. Table 4 and the thick line in Figure 5 show the policy for the

cohort model. The main impression is that the policy sensitivity to the choice of model

concept is limited. The cohort model policy is somewhat less aggressive than the

policies for the aggregate models as the stock increases. The optimal capacity is 7.5

percent lower than in the case with aggregate-historical, and 20 percent lower than in

the aggregate-simulated case.

To get a measure of the value sensitivity, we take another look at the above results

when the cohort model was used as a testing ground for the aggregate model policies.

Using the aggregate-historical policy, rather than the optimal cohort policy, in the

cohort model, the expected net present value drops by 7.7 percent. Using the aggregate-

simulated policy the value drops by 5.3 percent. To put these numbers in perspective,

the expected net present value drops by 13 percent if an estimate of the historical policy

( H Xt t= 0 28. * ) is used in the cohort model. Hence, if the cohort model had been an

exact replication of reality, aggregate model policies would have done better than the

historical policy. Losses implied by the historical policy would be reduced by between

40 and 60 percent depending on the degree of estimation bias in the aggregate model.

In this example, it is intriguing that the simple, low cost aggregate model policies

perform better than the historical policy.

If we leave the unwarranted assumption that the cohort model represents reality, the

apparent difference between the aggregate and the cohort model is likely to diminish.

In fact, our analysis can not be used to rule out the possibility that the aggregate model

is the one closest to reality. True, the estimation bias is a problem with the aggregate

model. On the other hand, while the cohort model builds on more correct knowledge
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about the structure, there are also a larger number of places where errors could sneak

in, and the entire cohort model has not been subjected to a thorough and complete test

against time-series data. In this connection recall the observed inconsistency in

residuals when estimating the aggregate model from synthetic data and from historical

data.

Then we proceed by testing the policy sensitivity to the assumptions in Equation 1 that

the fish price declines and the per unit variable costs increase with the harvest rate. The

two assumptions have similar effects on policies. They both make it less advantageous

to catch large harvests and more advantageous to catch small ones. In the sensitivity

test we set the fish price constant10 (p1=0 and p0=8.0) and we disallow unit variable

costs to vary with capacity utilisation (α=0). When α=0 it is no longer meaningful to

search for the optimal fishing capacity, hence we simply set e0 equal to 0.5 million tons

per year. The resulting policies are shown in Table 4 and Figure 6.

Both aggregate models (thin lines) now show the well known constant target escape-

ment policy, Reed (1979). When the stock biomass is above the target, harvest is set

such that the biomass is reduced exactly to the target. Compared to the policies shown

in Figure 5, we see that at low stock levels less is harvested, and at high stock levels

more is harvested, as expected. While the policies in Figure 5 show clear tendencies

towards saturation, there is no such tendency in Figure 6.
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Figure 6: Policies for models with constant price and unit costs: Thick line: policy for cohort model.
Thin solid line: policy for aggregate-historical. Thin dashed line: policy for aggregate-

simulated.

                                                
10 The constant price level is close to the average price observed in earlier tests.
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The difference between the policies for aggregate-historical (thin solid) and aggregate-

simulated (thin dashed) is more pronounced than when fish prices and unit costs are

allowed to vary. The distance between the lines is 0.58 million tons at high stock levels.

The horizontal distance between the two curves reflects the horizontal distance between

the peaks for the respective surplus growth curves in Figure 2. To indicate value differ-

ences, we use the cohort model (now with constant price and constant unit costs) as our

testing ground. We find that the policy for aggregate-simulated yields an expected net

present value that is 16.1 percent higher than the one for aggregate-historical. This is a

much larger value difference than the one found for these policies in the case of

variable price/costs (2.6 percent). Thus both the aggregate model policies and the

implied values become more sensitive as prices and per unit variable costs are not

allowed to vary.

The policy for the cohort model (thick line) portrays the “pulse-fishing” property found

in studies of cohort models, Spulber (1983). No fishing takes place for biomasses

below 3.7 million tons. For higher biomasses, the harvest increases somewhat faster

than the biomass, such that harvests reduce the biomass to levels somewhat below 3.7

million tons. Then it is likely that a period with no fishing is needed before stocks again

exceed 3.7 million tons and harvesting again takes place.

Figure 6 and Table 4 show that the harvest can be more than 1.5 million tons higher

with aggregate-historical than with the cohort model policy. To approach an explana-

tion, note that the pulse-fishing strategy, with a target stock size around 3.7 million

tons, would give a very low average growth rate in the aggregate model, see Figure 3.

This can not be the case in the cohort model, the pulse-like harvesting strategy can not

be very detrimental to the average growth rate at high and varying stock levels. Thus,

the cohort model is allowed to benefit from a high catch per unit effort at high stock

levels. This advantage is lost again if the fish price decreases and the per unit variable

costs increase at high stock levels due to high harvest rates.

Again using the cohort model (now with constant price and unit costs) as our testing

ground, we find that the aggregate-historical policy gives an expected net present value

which is 22.3 percent below the value obtained with the optimal policy for this cohort

model. The aggregate-simulated policy yields a value reduction of 7.4 percent. These
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differences are larger than what was found earlier for the models with variable

price/costs, respectively 7.7 and 5.3 percent.

Finally, great and important policy sensitivities are found when comparing policies for

the cases with constant price/unit costs and cases where price/unit costs are allowed to

vary. To get a measure of the value sensitivity, we use the cohort model (with variable

price/unit costs) as a testing ground, now for all the policies found for the case with

fixed price/unit costs. Since capacity was not optimised in the case with fixed

price/costs, it does not seem fair to use an arbitrarily chosen capacity when comparing.

Therefore we find capacities that maximise the expected net present value (in the

cohort model with variable price/costs) for each of the harvesting strategies found in

the case of fixed price/costs. It turns out that in all three cases the maximising capacity

is around 0.8 million tons per year, somewhat higher than the assumed 0.5 million tons

per year.11 We find that the pulse-fishing strategy leads to a value loss of 93 percent.

The target-escapement policy for aggregate-historical leads to a loss of 66 percent,

while the target-escapement policy for aggregate-simulated leads to a similar loss of 66

percent. Clearly, both policies and net present values are highly sensitive to the

assumptions about price formation and unit variable costs.

6. Conclusions

By the use of stochastic optimisation in policy space we have been able to find optimal

or near-to-optimal policies for dynamic, non-linear fishery models. Thereby, we have

been able to perform policy sensitivity analyses, where the sensitivity of policies to

changes in model parameters or model structures have been found. Without optimisa-

tion the policy sensitivity analysis would have included an element of judgmental error.

The case has been a cod fishery, for which we have compared three important

assumptions.

With the most complete economic model, we find that the harvesting (or quota) policy

is not very sensitive to the choice between an aggregate and a cohort model. This is

somewhat surprising because the cheap, aggregate model is often viewed as deficient

                                                
11 This makes sense since higher harvesting rates require higher fishing capacities.
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compared to the cohort model when it comes to precise policy recommendation. We

also find that aggregate model policies are not very sensitive to variations in the

estimated surplus growth curve, variations that could be caused by a systematic bias in

the estimation of the aggregate model.

Assuming a simplified economic model, with a fixed fish price and fixed per unit

variable costs, policies become more sensitive to the choice of biological model

(aggregate or cohort) and to the potential estimation bias in the surplus growth curve. If

one has this economic model in mind (or no economic model in mind), these choices

will seem more important than they actually are.

Harvesting policies are found to be highly sensitive to the assumptions about fish price

and per unit variable costs. In the cod fishery at hand, and in general, it seems more

realistic to assume that the fish price and the unit costs depend on the harvest rate than

to assume that they stay constant. Interestingly, the more realistic assumption is only

rarely found in economic fishery models and of course never in purely biological

models.

Thus, for analysts and modellers, there seems to be a larger improvement potential in

including equations for fish price and per unit variable costs and in obtaining precise

estimates of the involved parameters, than to extend the biological model from an

aggregate one to a more complex design with cohorts. In fact, the “insignificant”

difference between the policies for the two biological models suggests that it would

take much further research (validation effort) to find out which biological model is in

fact the more appropriate one to use. There is also a certain potential for cheap

improvement in the aggregate model. The effect of the estimation bias could be reduced

by using data from historical time periods with near-optimal policies in place or by

adjusting for suspected over- or underfishing.

Model development costs favour the aggregate model. Fisheries with large potential

incomes favour the cohort model, if that is deemed the better model. The choice will

move in the direction of the cohort model if one wants to make explicit investigations

of policies that change the fishing selectivity over age classes, e.g. by changing the

minimum allowable fish size. Regarding knowledge dissemination, the aggregate

model seems more potent in terms of its simplicity.
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Finally, a few words about the use of policy sensitivity analysis as compared to the

more traditional behaviour sensitivity analysis. We have argued that behaviour

sensitivity analysis is preferable if one wants to build confidence in the existence of a

problem mode, i.e. that over-harvesting leads to stock depletion and lost economic

opportunity. In the fishery investigated here, the need for quota control is generally

accepted. The challenge is to find a quota or harvesting strategy. The search for such a

strategy is not much helped by behaviour sensitivity analysis. Although we have not

explicitly used behaviour sensitivity here, we think that it is of limited use because it

leaves out the last and complex step of identifying harvesting strategies. By using

stochastic optimisation in policy space we are able to carry out this last step.

Even for analysts who do not want to perform optimisation or policy sensitivity

analysis, the mere concept of policy sensitivity analysis may be useful. It may help

modellers focus on what matters for the choice of policy, leaving out structures of little

importance and that complicate the communication of the policy recommendations.

Behaviour sensitivity analysis on the other hand may shift the focus towards replicating

observed behaviour with high accuracy. To reach this goal it is often tempting to

include much detail. In turn this complicates the analysis and the communication of the

results. Only if the policy recommendations are also sensitive to these details, the extra

detail seems warranted. For these reasons it seems worthwhile to reflect on policy

sensitivity already in the conceptualisation phase of a modelling project.
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