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Abstract

Bacterial resistance has become a worldwide concern, particularly after the emergence of

resistant strains overproducing carbapenemases. Among these, the KPC-2 carbapene-

mase represents a significant clinical challenge, being characterized by a broad substrate

spectrum that includes aminothiazoleoxime and cephalosporins such as cefotaxime. More-

over, strains harboring KPC-type β-lactamases are often reported as resistant to available

β-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam). Therefore, the identifi-

cation of novel non β-lactam KPC-2 inhibitors is strongly necessary to maintain treatment

options. This study explored novel, non-covalent inhibitors active against KPC-2, as putative

hit candidates. We performed a structure-based in silico screening of commercially available

compounds for non-β-lactam KPC-2 inhibitors. Thirty-two commercially available high-scor-

ing, fragment-like hits were selected for in vitro validation and their activity and mechanism

of action vs the target was experimentally evaluated using recombinant KPC-2. N-(3-(1H-

tetrazol-5-yl)phenyl)-3-fluorobenzamide (11a), in light of its ligand efficiency (LE = 0.28 kcal/

mol/non-hydrogen atom) and chemistry, was selected as hit to be directed to chemical opti-

mization to improve potency vs the enzyme and explore structural requirement for inhibition

in KPC-2 binding site. Further, the compounds were evaluated against clinical strains over-

expressing KPC-2 and the most promising compound reduced the MIC of the β-lactam anti-

biotic meropenem by four-fold.

Introduction

The emergence of KPC-2 class-A β -Lactamase (BL) carbapenemase, which confers resistance

to last resort carbapenems, poses a serious health threat to the public. KPC-2, a class A BL,
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uses a catalytic serine to hydrolyze the β-lactam ring. Specifically, the hydrolysis reaction pro-

ceeds through a series of steps involving: (i) the formation of a precovalent complex, (ii) the

conversion to a high-energy tetrahedral acylation intermediate, (iii) followed by a low-energy

acyl-enzyme complex, (iv) a high-energy tetrahedral de-acylation intermediate consequent to

catalytic water attack, and (v) finally the release of the hydrolyzed β-lactam ring product from

the enzyme. [1–6].

Notably to treat infections caused by bacteria that produce class A BLs, mechanism-based

inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam) are administered in combination

with β-lactam antibiotics. However, strains harboring KPC-type β-lactamases are reported to

be resistant to available β-lactamase inhibitors. Moreover, because of KPC-2’s broad spectrum

of activity (which includes penicillins, cephalosporins, and carbapenems) treatment options

against KPC-2-producing bacteria are scarce, and “last-resort” carbapenems are ineffective as

well [7]. Therefore, studies directed to the discovery of novel, non β-lactam KPC-2 inhibitors

have multiplied in the last years. Recently, new drugs able to restore susceptibility to β-lactams

i.e. the novel inhibitor avibactam in combination with ceftazidime (CAZ) and RPX7009

(vaborbactam) with meropenem have been approved (Fig 1)[8–10].

As attention on KPC-2 rises, the number of crystal structures of its apo and complexed

form disclosed in the PDB has increased, making KPC-2 a druggable target for structure based

drug design efforts and for the study of novel, non β-lactam like inhibitors of this threatening

carbapenemase [9–12]

Recently, two crystal structures of the hydrolyzed β-lactam antibiotics cefotaxime and faro-

penem in complex with KPC-2 were determined (PDB codes 5UJ3, 5UJ4; Fig 2).[13]

Both ligands form hydrogen-bond interactions with their C4-carboxyl group to Ser130,

Thr235 and Thr237. The dihydrothiazine moiety of cefotaxime and the dihydrothiazole moiety

of faropenem forms π-π-stacking interactions with Trp105. In the apo-enzyme, this side chain

adopts two rotamers, upon binding of a ligand just one. Mutagenesis studies have shown the

importance of Trp105 in substrate recognition [7]. The faropenem ring nitrogen forms a

hydrogen-bond interaction with Ser130, whereas the ring nitrogen of cefotaxime a hydrogen

bond with Ser70. The aminothiazole ring of cefotaxime forms van-der-Waals contacts with

Leu167, Asn170, Cys238 and Gly239, while the oxyimino group and the hydroxyethyl group of

faropenem are solvent exposed (Fig 2).[13]

Fig 1. Chemical structure of avibactam, RPX7009, and compounds 9a and 11a.

https://doi.org/10.1371/journal.pone.0203241.g001
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Based on this and other structural information, we used a hierarchical screening cascade for

the discovery of non β-lactam like KPC-2 inhibitors. The selected 32 candidates, most of them

fragment-like, were then validated as hits against isolated recombinant KPC-2. Among the tested

compounds 9a, a benzothiazole derivative, and 11a, a tetrazole-containing inhibitor, showed the

highest activity against KPC-2 and behaved as competitive inhibitors of the targeted carbapene-

mase (Fig 1). Subsequently, compound 11a, in light of its promising ligand efficiency and chemis-

try, was selected to undergo chemical optimization for potency improvement and to explore

structural requirement for inhibition in KPC-2 binding site. Further, the obtained compounds

were evaluated against clinical strains overexpressing KPC-2 and the most promising compound

reduced the MIC of the β-lactam antibiotic meropenem by four fold.

Materials and methods

Pharmacophore hypothesis

A search for similar binding sites of KPC-2 was carried out using the online tool PoSSuM—

Search K [14,15]. Based on shared ligand interactions in the retrieved structures (Table 1), a

Fig 2. Structures and binding modes of hydrolyzed β-lactam antibiotics in the KPC-2 binding site. Left: binding mode of hydrolyzed cefotaxime (PDB code

5UJ3). Right: binding mode of hydrolyzed faropenem (PDB code 5UJ4). The second rotamer of Trp105 adopted in the apo-enzyme is coloured in beige, protein

side chains in blue and ligands in green. Hydrogen bonds are indicated as black dots.

https://doi.org/10.1371/journal.pone.0203241.g002
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pharmacophore was defined based on a K. pneumoniae KPC-2 protein structure (PDB code

3RXW) [16] and the ligand OJ6 of CTX-M-9 β-lactamase (PDB code 4DE1) [17]. The derived

pharmacophore contained a hydrogen-bond acceptor feature for interaction with Thr237,

Thr235 and Ser130, a hydrophobic feature for π-stacking with Trp105 and a hydrogen bond

acceptor feature for interactions with Asn132 (Fig 3).

Virtual screening

Our in-house MySQL-database of commercially available compounds was used as basis for

virtual screening. This database contains catalogues from the following suppliers: Apollo

Table 1. Result of PoSSuM Search K for similar binding sites. Structures with binding sites similar with structure

3RXW in complex with a non-covalent ligand were reported.

PDB-code Protein name Resolution Ref.

1 4BD0 E. coli β-lactamase TOHO-1 1.21 Å [18]

2 3G30 E. coli β-lactamase CTX-M-9a 1.80 Å [19]

3 4DE1 E. coli β-lactamase CTX-M-9a 1.26 Å [17]

4 4DDY E. coli β-lactamase CTX-M-9a 1.36 Å [17]

5 4DE3 E. coli β-lactamase CTX-M-9a 1.44 Å [17]

6 4DDS E. coli β-lactamase CTX-M-9a 1.36 Å [17]

7 4DE0 E. coli β-lactamase CTX-M-9a 1.12 Å [17]

8 4EUZ S. fonticola β-lactamase SFC-1 1.08 Å [20]

9 4DE2 E. coli β-lactamase CTX-M-9a 1.40 Å [17]

10 3G35 E. coli β-lactamase CTX-M-9a 1.41 Å [19]

11 3G32 E. coli β-lactamase CTX-M-9a 1.31 Å [19]

12 3G2Y E. coli β-lactamase CTX-M-9a 1.31 Å [19]

13 3G31 E. coli β-lactamase CTX-M-9a 1.70 Å [19]

https://doi.org/10.1371/journal.pone.0203241.t001

Fig 3. Pharmacophore hypothesis for KPC-2 ligands. Binding site of KPC-2 (PDB code 3RXW, blue) superimposed

with a fragment of the ligand OJ6 bound to CTX-M-9 β-lactamase (PDB code 4DE1, cyan) and pharmacophore

features (red: hydrogen-bond acceptor, orange: hydrophobic interaction feature, purple: hydrogen-bond donor)

(Ambler numbering) [21].

https://doi.org/10.1371/journal.pone.0203241.g003
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Scientific, Asinex, Chembridge, Chemdiv, Enamine, InterBioScreen, Key Organics, Life

Chemicals, Maybridge, MicroCombiChem, Otava, Peakdale, Sigma-Aldrich, Specs, Timtec,

Vitas-M laboratory, and Zylexa Pharma. The compounds were standardized and filtered for

compounds fulfilling the following lead-like criteria: between 10 and 25 heavy atoms, between

one and six hydrogen-bond acceptors, between one and three hydrogen-bond donors and a

clog P between -3 and 3. In addition, the complexity was limited by only including compounds

with less than 7 rotatable bonds and between 1 and 3 ring systems. Compounds containing

unwanted reactive or toxic functional groups were excluded as well [22].

In-house python scripts based on OpenEye’s OEChem toolkit (OEChem, version 2016.6.1,

OpenEye Scientific Software, Inc., Santa Fe, NM, USA) were used to charge, tautomerize and

stereoisomerize the selected compounds (scripts are available at https://github.com/

ruthbrenk/compound_preparation). Conformers were generated using OpenEye’s OMEGA

toolkit [23]. The pharmacophore filtering was carried out using Molecular Operating Environ-

ment (MOE, Chemical Computing Group). Compounds that passed the pharmacophore filter

were transformed into a format suitable for docking as described previously [24].

The crystal structure of K. pneumoniae KPC-2 (PDB code 3RXW) [16] was used as receptor

for docking. The ’protonate 3D’ tool of MOE was used to add polar hydrogen atoms to the

receptor, energy minimize their positions and to assign partial charges based on the AMBER

force field parameters. Water molecules and ligands (CIT and SR3) were deleted and the posi-

tion of the Ser69 side chain was energy minimized with the same force field parameters. The

structure was aligned with the crystal structure of E.coli CTX-M-9 (PDB code 4DE1) and the

ligand 0J6 was used to define spheres as matching points for docking. Grid-based excluded

volume, van-der-Waals potential and electrostatic potential as well as solvent occlusion maps

were calculated as described earlier [25,26].

The compounds were docked into the binding site of KPC-2 using DOCK3.6 [26–28].

Parameters for sampling ligand orientations were set as follows: bin size of ligand and receptor

were set to 0.4 Å, overlap bins were set to 0.2 Å and the distance tolerance for receptor and

ligand matching spheres was set to 1.5 Å. Each docking pose which did not overlap with the

receptor was scored for electrostatic and van-der-Waals complementarity and penalized

according to its estimated partial desolvation energy. For each compound, only the best-scor-

ing pose out of its tautomers, protonation states or ring alignments was saved in the final dock-

ing hit list. The docking hit list was filtered with the pharmacophore described above, keeping

the ligand positions rigid. Compounds passing this filter were ranked by their calculated ligand

efficiency [29,30] and inspected by eye.

Expression and purification of recombinant KPC-2

The blaKPC-2 gene was kindly provided by Prof. Sergei Vakulenko (University of Notre Dame

du Lac, Indiana, USA) and cloned as already reported [31] and transformed into competent E.

coli BL21 (DE3) cells for protein expression. 50 mL of Tryptic Soy Broth (TSB) (50 mg/L kana-

mycin) were inoculated with fresh colonies and grown at 37˚C. 4 mL of the overnight culture

was used to inoculate 1.3 L of TSB (50 mg/L kanamycin) grown at 37˚C with shaking to an

optical density of 0.5 measured at 600 nm. Then expression of recombinant bla gene was

induced by adding 1.0 mM IPTG (isopropyl-D-thiogalactopyranoside) and the cells were

again allowed to grow at 20˚C overnight. Bacteria were harvested by centrifugation at 4000

rpm for 20 minutes. The pelleted cells were resuspended in Tris-HCl 50 mM pH 7.4–7.5. Peri-

plasmatic proteins were extracted as reported in the pET System Manual (TB055 10th Edition

Rev. B 0403) and subsequently dialyzed in sodium acetate buffer (50 mM, pH 5.0). The protein

was conveniently purified in a single step using a Macro-Prep High S resin and eluted using
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sodium acetate 50 mM pH 5.0 and a sodium chloride (NaCl) linear gradient from 100 to 500

mM. The purified protein was dialyzed overnight in sodium phosphate buffer 50 mM, pH 7.0

[31,32].

Inhibition assays

The hydrolytic activity of KPC-2 was measured using the β-lactam substrates CENTA (100 uM,

KM 70 uM) or nitrocefin (114 uM, KM 36 μM) in reaction buffer consisting of 50 mM of PB at pH

7.0 at 25˚C with 0.01% v/v Triton X-100 to avoid compound aggregation and promiscuous inhibi-

tion.[33] Reactions were monitored using a Beckmann DU640 spectrophotometer at 405nM for

CENTA and 480 nM wavelength for nitrocefin [34]. The test compounds were synthesized as

described below or purchased from Enamine, TimTec, Vitas-M, ChemBridge, Otava, Life Chemi-

cals or Apollo Scientific and assayed without further purification. Compounds were dissolved in

dimethyl sulfoxide (DMSO) to a concentration of 25 mM and stored at -20˚C. The highest con-

centration at which the compounds were tested was up to 1 mM (depending on their solubility).

All experiments were performed in duplicate and the error never exceeded 5%. The reaction was

typically initiated by adding KPC-2 to the reaction buffer last. To control for incubation effects,

protein was added to the reaction buffer first, and the reaction was initiated by the addition of

reporter substrate after 10 minutes of enzyme-compound incubation. The results are reported in

Fig 4 and Fig 5.

Competitive inhibition mechanism and the Ki for compound 9a was determined by Line-

weaver–Burk (LB) and Dixon plots. For compound 11a, already reported as competitive inhib-

itor of the extended spectrum β-lactamase (ESBL) CTX-M15, the Ki was calculated by the

Cheng-Prusoff equation (Ki = IC50/(1+ [S]/KM) assuming competitive inhibition [35].

Synthetic procedures

All commercially available chemicals and solvents were reagent grade and were used without

further purification unless otherwise specified. Reactions were monitored by thin-layer chro-

matography on silica gel plates (60F-254, E. Merck) and visualized with UV light, cerium

ammonium sulfate or alkaline KMnO4 aqueous solution. The following solvents and reagents

have been abbreviated: ethyl ether (Et2O), dimethyl sulfoxide (DMSO), ethyl acetate (EtOAc),

dichloromethane (DCM), methanol (MeOH). All reactions were carried out with standard

techniques. NMR spectra were recorded on a Bruker 400 spectrometer with 1H at 400.134

MHz and 13C at 100.62 MHz. Proton chemical shifts were referenced to the TMS internal stan-

dard. Chemical shifts are reported in parts per million (ppm, δ units). Coupling constants are

reported in units of Hertz (Hz). Splitting patterns are designed as s, singlet; d, doublet; t, triplet;

q quartet; dd, double doublet; m, multiplet; b, broad. Mass spectra were obtained on a 6310A

Ion TrapLC-MS(n).

General procedure for the synthesis of sulfonamides 1-6b. To a solution of 3-(1H-tetra-

zol-5-yl)aniline (1 eq.) in DCM dry (25 mL) at room temperature and under nitrogen atmo-

sphere, pyridine (3 eq.) and the appropriate sulfonyl-chloride (1.2 eq.) were added. The

mixture was reacted at room temperature for 2–12 h. The reaction was quenched with aqueous

saturated solution of NH4Cl and acidified at pH 4 with aqueous 1N HCl. The aqueous phase

was extracted with AcOEt, and the organic phase washed with brine, dried over Na2SO4 and

concentrated. The crude was crystalized from MeOH or Et2O to give the desired product.

N-(3-(1H-tetrazol-5-yl)phenyl)-3-fluorobenzenesulfonamide (1b). Pale yellow solid

(150 mg, yield 47%). 1H NMR (400 MHz, DMSO-d6) δ 7.19 (dd, J = 2.2, 8.1 Hz, 1H), 7.33–

7.45 (m, 2H), 7.47–7.58 (m, 3H), 7.62 (d, J = 7.7 Hz, 1H), 7.76 (t, J = 1.8 Hz, 1H), 10.61 (s, 1H),

the H of tetrazole exchanges. MS m/z [M+H]+ 320.1; [M-1]- 318.0.
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N-(3-(1H-tetrazol-5-yl)phenyl)-3-nitrobenzenesulfonamide (2b). Pink solid (62%

yield). 1H-NMR (400 MHz, DMSO-d6) δ: 7.31 (ddd, J = 1.0, 2.3, 8.2 Hz, 1H), 7.51 (t, J = 8.0

Hz, 1H), 7.74 (dt, J = 1.2, 7.8 Hz, 1H), 7.82–7.96 (m, 2H), 8.18 (dt, J = 1.3, 7.9 Hz, 1H), 8.46

(ddd, J = 1.0, 2.3, 8.2 Hz, 1H), 8.54 (t, J = 2.0 Hz, 1H), 10.90 (s, 1H); the H of tetrazole

exchanges. 13C-NMR (DMSO-d6) δ: 117.35, 120.09, 123.04, 127.35, 129.17, 129.22, 129.69,

133.21, 136.59, 137.99, 139.81, 148.82, 154.28. MS m/z [M+H]+ Calcd for C13H10N6O4S: 346.0

Found: 347.2.

N-(3-(1H-tetrazol-5-yl)phenyl)-5-(dimethylamino)naphthalene-1-sulfonamide (3b).

White solid (31% yield). 1H NMR (400 MHz, DMSO-d6) δ 2.78 (s, 6H), 7.20 (dd, J = 1.5, 7.6 Hz,

1H), 7.24–7.38 (m, 3H), 7.39–7.65 (m, 3H), 8.27 (dd, J = 1.6, 7.5 Hz, 1H), 8.41 (ddd, J = 1.5, 7.5,

19.3 Hz, 2H), the H of tetrazole exchanges. MS m/z [M+H]+ Calcd for C19H18N6O2S: 394.1

Found: 395.1.

N-(4-(N-(3-(1H-tetrazol-5-yl)phenyl)sulfamoyl)phenyl)acetamide (4b). Pink solid

(52% yield). 1H NMR (400 MHz, DMSO-d6) δ 2.12 (s, 3H), 7.31 (ddd, J = 1.0, 2.3, 8.2 Hz, 1H),

7.44 (t, J = 7.9 Hz, 1H), 7.65–7.72 (m, 3H), 7.74–7.79 (m, 2H), 7.86 (t, J = 1.9 Hz, 1H), the H of

tetrazole exchanges. 13C NMR (100 MHz, DMSO-d6) δ 22.58, 118.86, 118.95, 122.60, 123.07,

126.32, 127.96, 128.87, 129.96, 133.69, 139.01, 142.97, 170.57. MS m/z [M+H]+ Calcd for

C15H14N6O3S: 358.1 Found: 359.2.

N-(3-(1H-tetrazol-5-yl)phenyl)quinoline-8-sulfonamide (5b). White solid (88% yield).
1H NMR (400 MHz, Acetone-d6) δ 7.28–7.42 (m, 2H), 7.59–7.90 (m, 4H), 8.03 (dt, J = 1.1, 1.8

Hz, 1H), 8.25 (dd, J = 1.5, 8.2 Hz, 1H), 8.42 (dd, J = 1.4, 7.3 Hz, 1H), 8.52 (dd, J = 1.8, 8.4 Hz, 1H),

9.21 (dd, J = 1.8, 4.3 Hz, 1H), 9.41 (s, 1H), the H of tetrazole exchanges. 13C NMR (100 MHz, Ace-

tone-d6) δ 117.35, 120.09, 123.01, 123.04, 125.55, 128.06, 129.17, 129.69, 129.79, 130.11, 133.27,

139.81, 140.02, 140.84, 149.72, 154.28. MS m/z [M+H]+ Calcd for C16H12N6O2S: 352.1 Found:

353.2.

N-(3-(1H-tetrazol-5-yl)phenyl)-4-chlorobenzenesulfonamide (6b). Light yellow solid

(93% yield). 1H NMR (400 MHz, Methanol-d4) δ 7.57 (t, J = 8.0 Hz, 1H), 7.74 (dt, J = 1.3, 7.9

Hz, 2H), 7.78–7.84 (m, 1H), 7.99 (d, J = 8.6 Hz, 2H), 8.06 (d, J = 8.6 Hz, 2H), 8.41 (t, J = 1.9

Hz, 1H), the H of tetrazole exchanges. 13C NMR (100 MHz, Methanol-d4) δ 117.35, 120.09,

123.01, 123.04, 125.55, 128.06, 129.17, 129.69, 129.79, 130.11, 133.27, 139.81, 140.02, 140.84,

149.72, 154.28. MS m/z [M+H]+ Calcd for C13H10ClN5O2S: 335.0, 337.0 Found: 336.1, 338.2.

Results and discussion

Virtual screening

The binding sites in the available KPC-2 crystal structures were analyzed to select a suitable

receptor for docking. Alignment and superposition of the binding site residues of the seven

available crystal structures of E. coli and K. pneumoniae KpKPC-2 revealed a rather rigid bind-

ing site with only Trp105 adopting two different rotamers, a closed conformation found

6-times and an open one, found two-times. In one structure, both rotamers were present (Fig

6). Thus, for virtual screening, the structure with the highest resolution was selected (K. pneu-
moniae KPC-2 in complex with the covalent inhibitor penamsulfone PSR-3-226 (PDB code

Fig 4. Inhibitory activity of compounds selected from virtual screening. [a]Assays were performed in duplicate

(errors were less than 5%) with CENTA as reporter substrate (100 μM, km 70 μM). Kinetic were monitored at 25˚ by

following the absorbance variation at λ = 405 nm. [b] If no IC50 has been measured, percent inhibition at the highest

tested concentration is given in parentheses. For example,> 0.50 (26%) implies that the highest concentration tested

was 0.50 mM; at this concentration, the enzyme was inhibited by 26%. Therefore, IC50> 0.50 mM. When % Inhibition

was below 10% No Inibition (NI) is reported. [c]Assays were run after 10’ incubation of the inhibitor with KPC-2.

Reaction was started by the addition of CENTA.

https://doi.org/10.1371/journal.pone.0203241.g004
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3RXW), 1.26 Å resolution). This structure contained both rotamers of Trp105. For virtual

screening, the closed conformation was chosen, as this is the most dominant conformation

upon ligand binding.

Only little diversity with respect to bound ligands was found in the KpKPC-2 structures. To

obtain a more detailed picture on key interactions and to derive a pharmacophore hypothesis,

PoSSuM—Search K was used to search for similar binding sites containing non-covalent ligands.

This resulted in thirteen structures (Table 1), all having tetrazoles or carboxylates derivatives

bound in the hydrophilic pocket formed by the amino acids corresponding to Thr235, Thr237,

Ser130 and Ser70 in KpKPC-2 (Fig 6). Seven of the contained ligands were fragment hits for E.coli
CTX-M class A extended spectrum β-lactamase (ESBL), and four were derivatives of the most

potent screening hit. Further, a structure of S. fonticola SFC-1 S70A β-lactamase in a non-covalent

complex with meropenem and one of E.coli Toho-1 R274N: R276N β-lactamase in complex with

a boronic acid were retrieved. Superposition of the binding site residues of KpKPC-2 (PDB code

3RXW) and the CTX-M β-lactamase structures gave rmsd values for the Cα atoms between 0.72

and 0.82 Å, for superposition of KpKPC-2 and S. fonticola SFC-1 (PDB code 4EUZ) 0.28 Å and

for superposition KpKPC-2 and E.coli Toho-1 (PDB code 4BD0) 0.73 Å (Fig 7).

Based on the retrieved structures, a pharmacophore hypothesis was derived. All of the

ligands in these structures as well as the β-lactamase binding protein (PDB code 3E2L, 3E2K)

and the covalent ligand of the structure used as receptor, formed a hydrogen-bond with

Thr235 or Thr237. Accordingly, a hydrogen-bond acceptor at the corresponding ligand posi-

tion was considered to be crucial for binding (Fig 3). Further, in most of the structures the

ligands formed interactions with Trp105 (Ambler numbering) [21]. Therefore, this interaction

was also included in the pharmacophore hypothesis. Hydrogen-bond interactions to Asn130

were found in four structures (PDB codes 3RXW, 3G32, 3G30, 4EUZ) and included as well.

A hierarchical approach was adopted for virtual screening. First, our in-house database of

around five million purchasable compounds was filtered for lead-like molecules [22]. In the

second step, the obtained hits were screened with the above-described pharmacophore result-

ing in 44658 compounds. Out of these, 31122 compounds could be docked into the Kp KPC-2

binding site. Filtering these binding poses again with the pharmacophore resulted in 2894

compounds. These were divided into three clusters, depending on the functional group placed

in the hydrophilic pocket (tetrazoles, carboxylates, sulfonamides) and inspected by eye. Finally,

32 compounds were selected for hit validation (Fig 4).

Most of the selected chemotypes carried an anionic group, mainly a carboxylic group or its

bioisostere, the tetrazole ring. Candidates were predicted to orient the anionic side of their

moiety in the carboxylic acid binding site of KPC-2, delimited by Ser130, Thr235 and Thr237

and present in all serine-based β -lactamases. In the above mentioned site, in fact, binds the C

(3)4’ carboxylate of β-lactams antibiotics as well as the sulfate group of avibactam and the car-

boxylic group of other known BLs inhibitors [12,31,36–38].

Hit evaluation

The large majority of the selected candidates were fragment-like as defined by the “rule of

three” [39]. Dealing with fragments, potencies in the high micromolar to millimolar range

Fig 5. Inhibitory activity of 11a sulphonamide derivatives. [a]Assays were performed in duplicate (errors were less

than 5%) with nitrocefin (114.28 μM, Km 36 μM) as reporter substrate. Kinetic were monitored at 25˚ by following the

absorbance variation at λ = 485 nm. [b] If no IC50 has been measured, percent inhibition at the highest tested

concentration is given in parentheses. For example,> 1.0 (37%) implies that the highest concentration tested was 1.0

mM; at this concentration, the enzyme was inhibited by 37% and IC50> 1.0 mM. When % Inhibition was below 10%

No Inhibition (NI) is reported.

https://doi.org/10.1371/journal.pone.0203241.g005
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were thus expected as well as others important issues such as reaching the solubility limit when

testing the compounds and unpredictable precipitation in the employed assays conditions

[40,41]. In our hands, the required high concentrations for ligand testing could not always be

Fig 6. Binding site of KpKPC-2 (PDB code 3RXW) with ligand meropenem (green, PDB code 4EUZ). The receptor conformation used for docking is coloured in

blue, the rotamer of Trp105 not considered in the docking setup in beige (Ambler numbering) [21].

https://doi.org/10.1371/journal.pone.0203241.g006
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achieved due to solubility which might have resulted in false negatives, but their true incidence

is difficult to establish [42].

However, some of the tested molecules inhibited the hydrolytic activity of KPC-2 with low

millimolar potency and their favorable solubility allowed us to determine full IC50 and/or Ki

values. Among those, compounds 9a and 11a were the most promising compounds with

micromolar affinities (IC50 of 0.15 and 0.036 mM, translating to ligand efficiencies (LE) of 0.38

and 0.28 kcal/mol/non-hydrogen atom, respectively; Fig 4) and were thus further investigated.

Compound 9a was predicted to place its carboxylate group in proximity of the catalytic

Ser70, in the carboxylic acid binding site mentioned above, forming hydrogen bond interac-

tions with the side chains corresponding to amino acids Ser130, Thr235 and Thr237 (Fig 8).

Thr 237 in KPC-2 is known to be necessary for cephalosporinase and carbapenemase activity

and is involved in clavulanic acid, sulbactam and tazobactam recognition.[7] This position in

β-lactamases that do not have carbapenemase or extended-spectrum β-lactamase (ESBL) activ-

ity generally corresponds to an alanine. The side chain hydroxyl groups of Ser130 and Ser70

were predicted to form interactions with the nitrogen of the benzothiazole ring. The predicted

position of the aromatic system is well placed to establish ring-ring interactions with Trp105, a

residue involved, in turn, in the stabilization of β-lactams through mainly hydrophobic and

van der Waals interactions (centroids distances of 4.4 and 4.5 A between Trp105 and the thio-

phene and the benzene rings respectively) The role of Trp105 in substrate and inhibitor inter-

actions in KPC-2 β-lactamase has been deeply investigated being essential for hydrolysis of

substrates.[7] The methoxy group of the molecule is oriented towards a rather open and sol-

vent accessible area of the binging site and does not contact any of the surrounding residues.

Interestingly, the presence of the sulphur atom of the benzothiazole system seems critical for

Fig 7. Analysis of PoSSuM hits. Superposition of the KpKPC-2 binding site residues (PDB code 3RXW, green) with

the E.coli CTX-M-9 β-lactamase (PDB code 4DDS, blue), the S. fonticola SFC-1 β-lactamase (PDB code 4EUZ, beige)

and the E.coli TOHO-1 β-lactamase (PDB code 4BD0, cyan) (Ambler numbering) [21].

https://doi.org/10.1371/journal.pone.0203241.g007
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affinity as the related compound 19a, the benzimidazole analog, resulted 6-fold less active.

Similar, the presence of the carboxylic group appeared to be crucial as compound 32a, without

such a functionality, was 8-fold less active.

Fig 8. Predicted binding mode of compound 9a (beige) in the KpKPC-2 receptor (blue). Putative hydrogen bond interactions are indicated as black dots (Ambler

numbering)[21].

https://doi.org/10.1371/journal.pone.0203241.g008
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For compound 9a binding affinity and mode of inhibition was determined by using gradi-

ent concentrations of CENTA. Fitting of the obtained data showed that compound 9a behaves

as a competitive inhibitor with a determined Ki of 112.0 μM (Fig 9). Its binding affinity was

also determined towards other class A β-lactamases (IC50 vs CTX-M9 160 μM). For this com-

pound aggregating behavior was also excluded by dynamic light scattering experiment (data

not shown) [43]. Compound 9a with its fragment-like characteristic (MW 208.21, determined

Ki 112.0 μM, LE 0.38 kcal/mol/non-hydrogen atom) exerts an interesting activity vs KPC-2

and represents a very promising molecule to be directed to hit to lead optimization.

Among the 32 selected hits evaluated in vitro for their binding affinity vs KPC-2, compound

11a was the most active inhibitor with a micromolar affinity vs KPC-2 (determined IC50

36 μM, calculated Ki 14.8 μM, LE 0.28 kcal/mol/non-hydrogen atom).[35] The tetrazole ring

of compound 11a, a well-known bioisostere of the carboxylic group, was predicted to lie in the

hydrophilic pocket formed by Thr235, Thr237, Ser130 and Ser70, driving the binding of the

inhibitor in KPC-2 active site(Fig 10). The phenyl ring attached to the tetrazole was predicted

to be sandwiched between the Trp105 side with a distance compatible with weak hydrophobic

interactions and the backbone of Thr237. The amide group of 11a was oriented in the canoni-

cal site delimited by Asn132, Asn170 and in a further distance Glu166 where the R1 amide

side chain of β-lactams is known to bind. However, the amine linker and the second phenyl

ring in 11a were not predicted to form any specific interactions with the protein, except for the

amide nitrogen contacting the backbone of Thr237. The distal fluoro-benzene ring was ori-

ented at the entrance of the active site against two hydrophobic patches, one defined by

Leu167, closer, and the other by the backbone of Asn170, a residue critical for carbapenemase

activity.

Hit derivatization and evaluation

Compound 11a appeared to be the most promising compound for optimization. Despite its

small size, it has a potency in the low micromolar range (calculated Ki 14.8 μM) and a suitable

ligand efficiency (0.28 kcal/mol/non-hydrogen atom). Therefore, this compound was selected

to undergo chemical optimization for potency improvement and to investigate target binding

requirements for optimal inhibitor-enzyme interaction. The phenyl-tetrazole moiety, that was

predicted to strongly drive the binding, was retained unaltered, whereas structural modifica-

tions on the linker and on the distal aromatic ring were introduced in order to explore and

maximize the interactions with the pocket formed by Asn132, Asn170 and Leu167 (Fig 10).

Fig 9. Determination of binding affinity and mode of inhibition of compound 9a. (A) Lineweaver–Burk plot (A)

and Dixon slope plot (B).

https://doi.org/10.1371/journal.pone.0203241.g009
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Because the amide linker does not contact efficaciously the protein we chose to replace it with

a sulfonamide (Fig 11). We meant to target residues proximal to the opening of the active site

while investigating the potentiality for sulfonamide derivatives.

Fig 10. Predicted binding mode of compound 11a (beige) in the KpKPC-2 receptor (blue). Putative hydrogen bond interactions are indicated as black dots (Ambler

numbering)[21].

https://doi.org/10.1371/journal.pone.0203241.g010
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Sulfonamides are more stable towards hydrolysis than carboxyamides, possess an additional

hydrogen bonding oxygen atom and their NH is a strong hydrogen bond donor. In addition,

the dihedral angle ‘ω‘ OSNH measures around 90˚ compared with the 180˚ ‘ω‘ OCNH angle of

amide. Sulfonamides, in addition, have a non-planar configuration that could orient the distal

ring towards Leu167 and Asn170 (Fig 12). Therefore, the introduction of a sp3 geometry could

allow a more efficacious spanning of the active site compared to the planar amide [44]. More-

over, modeling suggested that the sulfonamide group could form an additional hydrogen

bond with Asn132 residue actively involved in substrate recognition and hydrolysis.

Further, we explored different substitutions on the sulfonamide linker to probe binding

interactions. Substituents with different electronic and steric properties (i.e. halogens, nitro,

sulfonamide, carboxylic acid, methyl, acetamide, amino groups) were inserted in the different

position of the aromatic ring. In addition, the benzene ring was replaced by heterocyclic or

extended benzofused systems such as benzimidazole, quinazolinone, naphthalene, or quino-

lone ring. Based on the availability of compound or building blocks, 6 compounds (1b-6b)

were synthesized and 8 compounds (7b-14b) were purchased to test our hypothesis (Fig 5).

The fourteen new compounds were tested in vivo vs clinical strains overproducing KPC-2 to

evaluate their ability to restore bacteria susceptibility to carbapenem meropenem (Table 2).

Compounds 1b-6b were synthesized in high yield (75–95% yield) and purity (>95%)

through direct reaction of 3-(1H-tetrazol-5-yl) aniline and the appropriate sulfonyl chloride in

dichloromethane at room temperature for 3 hours (Fig 13).

The derivatives of compound 11a were tested for KPC-2 affinity (Fig 5). However, their sol-

ubility limit in the assay condition was often a limitation in accurate affinity determination.

Overall, the compounds exhibited either weaker activities than 11a or were not active at all at

tested concentration. This data lets us confidentially affirm that the sulfonamide linker is not a

suitable group to optimize the affinity of this compound series.

The antimicrobial activity of the best hits 9a and 11a and their derivatives was studied in

bacterial cell cultures to investigate their ability to cross the outer membrane reaching the peri-

plasmic space, where KPC-2 is secreted and confined in Gram negative bacteria. Compounds

were tested for synergy with the β-lactam antibiotic meropenem against four K. pneumoniae
clinical strains, isolated from different patients at the Hospital Universitario Son Espases,

Palma de Mallorca, Spain. One of the four clinical strains was not a KPC-2 producer and was

susceptible to meropenem (strain Kpn (C-); MIC <0.25 ug/mL). The three additional strains

harbored the blaKPC-2 gene and were resistant to meropenem (Table 2). [32] Noteworthy

none of the tested compounds had intrinsic antibiotic activity (MIC >256 ug/mL), against the

employed strains, included the susceptible one. The results show that in most cases the com-

pounds were not able to reverse antibiotic resistance and did not showed synergism with mer-

openem. However, against strain Kpn 53A8 the MIC value was lowered by a factor of two

when meropenem was combined with compounds 32a, 1b, 2b, 5b and 6b while in combina-

tion with compound 11a the MIC value was reduced by 4 fold.

Fig 11. Design strategy for amide derivatives. Virtual Screening hit 11a (left), amine 1 (black) and the optimized part

of the molecule (red).

https://doi.org/10.1371/journal.pone.0203241.g011
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Conclusions

In this study two novel hits for KPC-2 were identified via an in-silico approach (compound 9

and 11a, Fig 4). Both of them had promising LEs with 0.38 and 0.28 kcal/mol/non-hydrogen

atom, resp. 14 tetrazole derivatives originating from 11a were designed, synthesized and evalu-

ated for their ability to inhibit KPC-2. We introduced chemical diversity on the distal part of

the inhibitor, choosing to keep unchanged the anchor tetrazole ring while modifying the

amide and the distal ring. The results suggest that a sulfonamide linker is neither suitable to

improve the potency of 11a nor the solubility of final compounds. Future optimization work

should instead rather concentrate on exploring secondary binding sites more distal from the

pocket that the screening hits are supposed to address [45]. If the amide functionally found in

Fig 12. Predicted binding mode of a sulfonamide derivative of compound 11a (beige) in the KpKPC-2 receptor (blue). Putative hydrogen bond interactions are

indicated as black dots (Ambler numbering)[21].

https://doi.org/10.1371/journal.pone.0203241.g012
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11a or alternative linkers are best suited remains to be explored. Nevertheless, two promising

hit compounds for KPC-2 were retrieved which can serve as starting points to derive more

potent inhibitors.

Although a decrease of potency in in vitro tests was registered for the designed and synthe-

sized chemical entities, as none of the compounds was able to trigger stronger interactions

with the open region of KPC-2 they were meant to target, this study yielded a better compre-

hension of the catalytic pocket of this enzyme. Our study provided a better understanding of

how challenging the target of additional, superficial, binding pockets is and how it could be

critical in designing inhibitors with improved potency, especially in area proximal to the active

site opening.

The (1H-tetrazol-5-yl)phenyl ring was most frequents among the high scoring candidates

in our in silico study, suggesting that this functionality is well suited to anchor ligands in the in

KPC-2 binding site. The rather weak affinity of the ligands hints that rest of the ligand, i.e. the

Table 2. In vitro interaction between meropenem and synthesized compounds vs K. pneumoniae clinical strains.

MIC[a] meropenem in combination with synthesized compounds (1:1 molar) [a, b, c]

(μg/mL)

Code Kpn (C-) Kpn 99D8 Kpn 53A8 Kpn 53A9

— <0.25 256 256 256

9a <0.25 256 256 256

11a <0.25 256 64 256

32a <0.25 256 128 256

1b <0.25 256 128 256

2b <0.25 256 128 256

4b <0.25 256 256 256

5b <0.25 256 128 256

6b <0.25 256 128 256

[a] Assays were conducted against four K. pneumoniae clinical strains isolated from different patients at the Hospital

Universitario Son Espases, Palma de Mallorca, Spain. MICs were determined according to EUCAST standards and

the presented values are the median of three independent experiments.
[b] Compounds were testes alone and showed no activity (MIC>256) in all cases.
[c] Strain C- is control K. pneumoniae and meropenem susceptible (MIC < 0.25 ug/ml)

https://doi.org/10.1371/journal.pone.0203241.t002

Fig 13. Reagents and conditions. a) aryl-sulfonyl chloride (1.2 eq.), pyridine (3 eq.), dry DCM, N2, r.t, 3 h, 75–95%

yield.

https://doi.org/10.1371/journal.pone.0203241.g013
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functional groups out of the center phenyl ring and the amide liker, need to be optimized to

increase potency. However, introducing a sulfonamide linker was detrimental for potency. We

hypothesize that the presence of a sulfonamide instead of an amide led to a rearrangement of

the ligand in the binding site to minimize steric hindrance, and thus resulted in the loss of key

interactions. These rearrangements can be particularly critical in non-covalent inhibitors like

ours that are not stabilized by a covalent interaction with the catalytic serine, as this type of

inhibitors are supposed to have lower residence times with respect to covalent β-lactamase

inhibitors (Fig 1). In designing larger and more potent inhibitors, additional secondary bind-

ing sites which have been found to be critical for affinity improvement need to be considered

[45].

The difficulties in optimizing the affinity of hit 11a for its target are also caused by the lack

of an accurate 3D structure of the complex. While reliable methods using docking can be

obtained, experimental confirmation of the binding modes is desirable to make sure that no

wrong tracks are followed [46]. In the case of compound 11a, we are more certain about the

position of the tetrazole moiety in the binding site due to the availability of crystal structures of

related targets with similar ligands (Table 1) while the placement of the substituent we

attempted to optimize is more tentative. Further structural work and medicinal chemistry

work is ongoing to significantly increase the potency of the most promising compound 11a in
vitro and in vivo and new chemistry is under evaluation for these derivatives, taking advantage

of other additional recognition sites in KPC-2.
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metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates.

2016; 7: 12406. https://doi.org/10.1038/ncomms12406 PMID: 27499424

9. Santucci M, Spyrakis F, Cross S, Quotadamo A, Farina D, Tondi D, et al. Computational and biological

profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Sci Rep. 2017; 7:

1–15. https://doi.org/10.1038/s41598-016-0028-x

10. Danishuddin M, Khan AU. Structure based virtual screening to discover putative drug candidates: Nec-

essary considerations and successful case studies. Methods. 2015; 71: 135–145. https://doi.org/10.

1016/j.ymeth.2014.10.019 PMID: 25448480

11. Khan A, Faheem M, Danishuddin M, Khan AU. Evaluation of Inhibitory Action of Novel Non β-Lactam

Inhibitor against Klebsiella pneumoniae Carbapenemase (KPC-2). PLoS One. Public Library of Sci-

ence; 2014; 9: e108246. https://doi.org/10.1371/journal.pone.0108246 PMID: 25265157

12. Krishnan NP, Nguyen NQ, Papp-Wallace KM, Bonomo RA, van den Akker F. Inhibition of Klebsiella β-

Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study. PLoS One. Public Library of Sci-

ence; 2015; 10: e0136813. https://doi.org/10.1371/journal.pone.0136813 PMID: 26340563

13. Pemberton OA, Zhang X, Chen Y. Molecular Basis of Substrate Recognition and Product Release by

the Klebsiella pneumoniae Carbapenemase (KPC-2). J Med Chem. United States; 2017; 60: 3525–

3530. https://doi.org/10.1021/acs.jmedchem.7b00158 PMID: 28388065

14. Ito JI, Tabei Y, Shimizu K, Tsuda K, Tomii K. PoSSuM: A database of similar protein-ligand binding and

putative pockets. Nucleic Acids Res. 2012; 40: 541–548. https://doi.org/10.1093/nar/gkr701

15. Ito JI, Ikeda K, Yamada K, Mizuguchi K, Tomii K. PoSSuM v.2.0: Data update and a new function for

investigating ligand analogs and target proteins of small-molecule drugs. Nucleic Acids Res. 2015; 43:

D392–D398. https://doi.org/10.1093/nar/gku1144 PMID: 25404129

16. Ke W, Bethel CR, Papp-Wallace KM, Pagadala SRR, Nottingham M, Fernandez D, et al. Crystal struc-

tures of KPC-2 beta-lactamase in complex with 3-nitrophenyl boronic acid and the penam sulfone PSR-

3-226. Antimicrob Agents Chemother. United States; 2012; 56: 2713–2718. https://doi.org/10.1128/

AAC.06099-11 PMID: 22330909

17. Nichols DA, Jaishankar P, Larson W, Smith E, Liu G, Beyrouthy R, et al. Structure-based design of

potent and ligand-efficient inhibitors of CTX-M class A β-lactamase. J Med Chem. 2012; 55: 2163–

2172. https://doi.org/10.1021/jm2014138 PMID: 22296601

18. Tomanicek SJ, Standaert RF, Weiss KL, Ostermann A, Schrader TE, Ng JD, et al. Neutron and X-ray

Crystal Structures of a Perdeuterated Enzyme Inhibitor Complex Reveal the Catalytic Proton Network

of the Toho-1 β-Lactamase for the Acylation Reaction. J Biol Chem. 9650 Rockville Pike, Bethesda, MD

20814, U.S.A.: American Society for Biochemistry and Molecular Biology; 2013; 288: 4715–4722.

https://doi.org/10.1074/jbc.M112.436238 PMID: 23255594

19. Chen Y, Shoichet BK. Molecular docking and ligand specificity in fragment-based inhibitor discovery.

Nat Chem Biol. 2009; 5: 358–364. https://doi.org/10.1038/nchembio.155 PMID: 19305397

In silico identification and experimental validation of hits active against KPC-2 β-lactamase

PLOS ONE | https://doi.org/10.1371/journal.pone.0203241 November 29, 2018 20 / 22

https://doi.org/10.1128/AAC.00296-11
http://www.ncbi.nlm.nih.gov/pubmed/21859938
http://www.ncbi.nlm.nih.gov/pubmed/26424401
https://doi.org/10.1016/j.tim.2006.07.008
http://www.ncbi.nlm.nih.gov/pubmed/16876996
http://www.ncbi.nlm.nih.gov/pubmed/24180276
http://www.ncbi.nlm.nih.gov/pubmed/26424390
https://doi.org/10.2174/1389450117666160310144501
http://www.ncbi.nlm.nih.gov/pubmed/26960341
https://doi.org/10.1128/AAC.00693-09
http://www.ncbi.nlm.nih.gov/pubmed/20008772
https://doi.org/10.1038/ncomms12406
http://www.ncbi.nlm.nih.gov/pubmed/27499424
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1016/j.ymeth.2014.10.019
https://doi.org/10.1016/j.ymeth.2014.10.019
http://www.ncbi.nlm.nih.gov/pubmed/25448480
https://doi.org/10.1371/journal.pone.0108246
http://www.ncbi.nlm.nih.gov/pubmed/25265157
https://doi.org/10.1371/journal.pone.0136813
http://www.ncbi.nlm.nih.gov/pubmed/26340563
https://doi.org/10.1021/acs.jmedchem.7b00158
http://www.ncbi.nlm.nih.gov/pubmed/28388065
https://doi.org/10.1093/nar/gkr701
https://doi.org/10.1093/nar/gku1144
http://www.ncbi.nlm.nih.gov/pubmed/25404129
https://doi.org/10.1128/AAC.06099-11
https://doi.org/10.1128/AAC.06099-11
http://www.ncbi.nlm.nih.gov/pubmed/22330909
https://doi.org/10.1021/jm2014138
http://www.ncbi.nlm.nih.gov/pubmed/22296601
https://doi.org/10.1074/jbc.M112.436238
http://www.ncbi.nlm.nih.gov/pubmed/23255594
https://doi.org/10.1038/nchembio.155
http://www.ncbi.nlm.nih.gov/pubmed/19305397
https://doi.org/10.1371/journal.pone.0203241


20. Fonseca F, Chudyk EI, van der Kamp MW, Correia A, Mulholland AJ, Spencer J. The Basis for Carba-

penem Hydrolysis by Class A β-Lactamases: A Combined Investigation using Crystallography and Sim-

ulations. J Am Chem Soc. American Chemical Society; 2012; 134: 18275–18285. https://doi.org/10.

1021/ja304460j PMID: 23030300

21. Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering

scheme for the class A beta-lactamases. The Biochemical journal. England; 1991. pp. 269–270.

22. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, et al. Lessons learnt from assem-

bling screening libraries for drug discovery for neglected diseases. ChemMedChem. 2008; 3: 435–444.

https://doi.org/10.1002/cmdc.200700139 PMID: 18064617

23. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer Generation with OMEGA:

Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge

Structural Database. J Chem Inf Model. American Chemical Society; 2010; 50: 572–584. https://doi.

org/10.1021/ci100031x PMID: 20235588

24. Mpamhanga CP, Spinks D, Tulloch LB, Shanks EJ, Robinson DA, Collie IT, et al. One scaffold, three

binding modes: Novel and selective pteridine reductase 1 inhibitors derived from fragment hits discov-

ered by virtual screening. J Med Chem. 2009; 52: 4454–4465. https://doi.org/10.1021/jm900414x

PMID: 19527033

25. Brenk R, Irwin JJ, Shoichet BK. Here Be Dragons: Docking and Screening in an Uncharted Region of

Chemical Space. J Biomol Screen. 2005; 10: 667–674. https://doi.org/10.1177/1087057105281047

PMID: 16170052

26. Mysinger MM, Shoichet BK. Rapid context-dependent ligand desolvation in molecular docking. J Chem

Inf Model. 2010; 50: 1561–1573. https://doi.org/10.1021/ci100214a PMID: 20735049

27. Lorber DM, Shoichet BK. Flexible ligand docking using conformational ensembles. Protein Sci. 1998; 7:

938–950. https://doi.org/10.1002/pro.5560070411 PMID: 9568900

28. Wei BQ, Baase WA, Weaver LH, Matthews BW, Shoichet BK. A Model Binding Site for Testing Scoring

Functions in Molecular Docking. J Mol Biol. 2002; 322: 339–355. https://doi.org/10.1016/S0022-2836

(02)00777-5 PMID: 12217695

29. Kuntz ID, Chen K, Sharp KA, Kollman PA. The maximal affinity of ligands. Proc Natl Acad Sci. 1999; 96:

9997–10002. PMID: 10468550

30. Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discov

Today. 2004; 9: 430–431. https://doi.org/10.1016/S1359-6446(04)03069-7 PMID: 15109945

31. Celenza G, Vicario M, Bellio P, Linciano P, Perilli M, Oliver A, et al. Phenylboronic Acid Derivatives as

Validated Leads Active in Clinical Strains Overexpressing KPC-2: A Step against Bacterial Resistance.

ChemMedChem. 2018; https://doi.org/10.1002/cmdc.201700788 PMID: 29356380

32. Crompton R, Williams H, Ansell D, Campbell L, Holden K, Cruickshank S, et al. Oestrogen promotes

healing in a bacterial LPS model of delayed cutaneous wound repair. Lab Invest. United States; 2016;

96: 439–449. https://doi.org/10.1038/labinvest.2015.160 PMID: 26855364

33. Feng BY, Shoichet BK. A detergent-based assay for the detection of promiscuous inhibitors. Nat Pro-

toc. England; 2006; 1: 550–553. https://doi.org/10.1038/nprot.2006.77 PMID: 17191086

34. Quotadamo A, Linciano P, Davoli P, Tondi D, Costi MP, Venturelli A. An Improved Synthesis of

CENTA, a Chromogenic Substrate for β-Lactamases. Synlett. 2016; 27: 2447–2450. https://doi.org/10.

1055/s-0035-1562454

35. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibi-

tor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. England;

1973; 22: 3099–3108. PMID: 4202581

36. Strynadka NC, Adachi H, Jensen SE, Johns K, Sielecki A, Betzel C, et al. Molecular structure of the

acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Nature. England; 1992; 359:

700–705. https://doi.org/10.1038/359700a0 PMID: 1436034

37. Tondi D, Venturelli A, Bonnet R, Pozzi C, Shoichet BK, Costi MP. Targeting class A and C serine beta-

lactamases with a broad-spectrum boronic acid derivative. J Med Chem. United States; 2014; 57:

5449–5458. https://doi.org/10.1021/jm5006572 PMID: 24882105

38. Genovese F, Lazzari S, Venturi E, Costantino L, Blazquez J, Ibacache-Quiroga C, et al. Design, synthe-

sis and biological evaluation of non-covalent AmpC β-lactamases inhibitors. Med Chem Res. 2017; 26:

975–986. https://doi.org/10.1007/s00044-017-1809-x

39. Congreve M, Carr R, Murray C, Jhoti H. A “rule of three” for fragment-based lead discovery? Drug Dis-

cov Today. England; 2003; 8: 876–877.

40. Popa-Burke I, Russell J. Compound precipitation in high-concentration DMSO solutions. J Biomol

Screen. 2014; 19: 1302–1308. https://doi.org/10.1177/1087057114541146 PMID: 24980595

In silico identification and experimental validation of hits active against KPC-2 β-lactamase

PLOS ONE | https://doi.org/10.1371/journal.pone.0203241 November 29, 2018 21 / 22

https://doi.org/10.1021/ja304460j
https://doi.org/10.1021/ja304460j
http://www.ncbi.nlm.nih.gov/pubmed/23030300
https://doi.org/10.1002/cmdc.200700139
http://www.ncbi.nlm.nih.gov/pubmed/18064617
https://doi.org/10.1021/ci100031x
https://doi.org/10.1021/ci100031x
http://www.ncbi.nlm.nih.gov/pubmed/20235588
https://doi.org/10.1021/jm900414x
http://www.ncbi.nlm.nih.gov/pubmed/19527033
https://doi.org/10.1177/1087057105281047
http://www.ncbi.nlm.nih.gov/pubmed/16170052
https://doi.org/10.1021/ci100214a
http://www.ncbi.nlm.nih.gov/pubmed/20735049
https://doi.org/10.1002/pro.5560070411
http://www.ncbi.nlm.nih.gov/pubmed/9568900
https://doi.org/10.1016/S0022-2836(02)00777-5
https://doi.org/10.1016/S0022-2836(02)00777-5
http://www.ncbi.nlm.nih.gov/pubmed/12217695
http://www.ncbi.nlm.nih.gov/pubmed/10468550
https://doi.org/10.1016/S1359-6446(04)03069-7
http://www.ncbi.nlm.nih.gov/pubmed/15109945
https://doi.org/10.1002/cmdc.201700788
http://www.ncbi.nlm.nih.gov/pubmed/29356380
https://doi.org/10.1038/labinvest.2015.160
http://www.ncbi.nlm.nih.gov/pubmed/26855364
https://doi.org/10.1038/nprot.2006.77
http://www.ncbi.nlm.nih.gov/pubmed/17191086
https://doi.org/10.1055/s-0035-1562454
https://doi.org/10.1055/s-0035-1562454
http://www.ncbi.nlm.nih.gov/pubmed/4202581
https://doi.org/10.1038/359700a0
http://www.ncbi.nlm.nih.gov/pubmed/1436034
https://doi.org/10.1021/jm5006572
http://www.ncbi.nlm.nih.gov/pubmed/24882105
https://doi.org/10.1007/s00044-017-1809-x
https://doi.org/10.1177/1087057114541146
http://www.ncbi.nlm.nih.gov/pubmed/24980595
https://doi.org/10.1371/journal.pone.0203241


41. Bembenek SD, Tounge BA, Reynolds CH. Ligand efficiency and fragment-based drug discovery. Drug

Discov Today. 2009; 14: 278–283. https://doi.org/10.1016/j.drudis.2008.11.007 PMID: 19073276

42. Popa-Burke IG, Issakova O, Arroway JD, Bernasconi P, Chen M, Coudurier L, et al. Streamlined sys-

tem for purifying and quantifying a diverse library of compounds and the effect of compound concentra-

tion measurements on the accurate interpretation of biological assay results. Anal Chem. 2004; 76:

7278–7287. https://doi.org/10.1021/ac0491859 PMID: 15595870

43. Seidler J, McGovern SL, Doman TN, Shoichet BK. Identification and Prediction of Promiscuous Aggre-

gating Inhibitors among Known Drugs. J Med Chem. American Chemical Society; 2003; 46: 4477–

4486. https://doi.org/10.1021/jm030191r PMID: 14521410

44. Vijayadas KN, Davis HC, Kotmale AS, Gawade RL, Puranik VG, Rajamohanan PR, et al. An unusual

conformational similarity of two peptide folds featuring sulfonamide and carboxamide on the backbone.

Chem Commun. The Royal Society of Chemistry; 2012; 48: 9747–9749. https://doi.org/10.1039/

C2CC34533A PMID: 22914747

45. Babaoglu K, Shoichet BK. Deconstructing fragment-based inhibitor discovery. Nature chemical biology.

United States; 2006. pp. 720–723. https://doi.org/10.1038/nchembio831 PMID: 17072304

46. Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson PN, Murray CW. Docking Performance of Frag-

ments and Druglike Compounds. J Med Chem. American Chemical Society; 2011; 54: 5422–5431.

https://doi.org/10.1021/jm200558u PMID: 21692478

In silico identification and experimental validation of hits active against KPC-2 β-lactamase

PLOS ONE | https://doi.org/10.1371/journal.pone.0203241 November 29, 2018 22 / 22

https://doi.org/10.1016/j.drudis.2008.11.007
http://www.ncbi.nlm.nih.gov/pubmed/19073276
https://doi.org/10.1021/ac0491859
http://www.ncbi.nlm.nih.gov/pubmed/15595870
https://doi.org/10.1021/jm030191r
http://www.ncbi.nlm.nih.gov/pubmed/14521410
https://doi.org/10.1039/C2CC34533A
https://doi.org/10.1039/C2CC34533A
http://www.ncbi.nlm.nih.gov/pubmed/22914747
https://doi.org/10.1038/nchembio831
http://www.ncbi.nlm.nih.gov/pubmed/17072304
https://doi.org/10.1021/jm200558u
http://www.ncbi.nlm.nih.gov/pubmed/21692478
https://doi.org/10.1371/journal.pone.0203241

