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The Wilhelmøya Subgroup (Norian–Bathonian) is considered as the prime storage unit for locally produced CO2 in Longyearbyen on the Arctic 
archipelago of Svalbard. We here present new drillcore and outcrop data and refined sedimentological and sequence-stratigraphic interpretations 
from western central Spitsbergen in and around the main potential CO2-storage area. The Wilhelmøya Subgroup encompasses a relatively thin 
(15–24 m) siliciclastic succession of mudstones, sandstones and conglomerates and represents an unconventional potential reservoir unit due to its 
relatively poor reservoir properties, i.e., low-moderate porosity and low permeability. Thirteen sedimentary facies were identified in the succession 
and subsequently grouped into five facies associations, reflecting deposition in various marginal marine to partly sediment-starved, shallow shelf 
environments. Palynological analysis was performed to determine the age and aid in the correlation between outcrop and subsurface sections. 
The palynological data allow identification of three unconformity-bounded sequences (sequence 1–3). These sequences record intermittent 
deposition in the Early Norian, Early–Middle Toarcian, and Late Toarcian–Aalenian, interrupted by extended periods of erosion, bypass and/or 
non-deposition. The stratigraphically condensed development of the Wilhelmøya Subgroup in western central Spitsbergen is interpreted to be 
the result of very low subsidence rates coupled with a physiographic setting characterised by a very gentle depositional gradient. This facilitated 
rapid shoreline shifts in response to even relatively modest variations in relative sea level with considerable influence on the resulting depositional 
patterns. We present a revised depositional model for the regionally distinct Brentskardhaugen Bed at the top of the Wilhelmøya Subgroup 
involving condensation and partial reworking of a series of Upper Toarcian–Aalenian, high-frequency sequences. Coarse-grained extraformational 
fractions observed within conglomerates of the Wilhelmøya Subgroup are suggested to have been supplied from uplifted and exposed margins to 
the west (northern Greenland) and north (northern Svalbard).  
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Facies, palynostratigraphy and sequence stratigraphy 
of the Wilhelmøya Subgroup (Upper Triassic–Middle 
Jurassic) in western central Spitsbergen, Svalbard

Introduction

The Longyearbyen CO2 Lab (LYB CO2) project is a joint 
ongoing effort by academic and industry partners to 
establish a test facility for the underground storage of 
CO2 in the vicinity of Longyearbyen on the Norwegian 
Arctic archipelago of Svalbard (e.g., Braathen et al., 2012; 

Senger et al., 2015). The prime source for the CO2 is the 
coal-fuelled power plant in Longyearbyen, emitting 
c. 70,000 tons of CO2 annually, and a suitable target 
formation has been identified in the siliciclastic Kapp 
Toscana Group at c. 670–970 m depth. To date, a diverse 
collection of subsurface and field data have been acquired 
and analysed as part of the project, including more than 
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Figure 1. Regional, geological and stratigraphic setting of Svalbard. (A) Simplified geological map of the Svalbard archipelago with the  study 
area marked by a rectangle. Inset map shows the geographic location of Svalbard. Geological map modified from ©Norwegian Polar Institute, 
npolar.no. (B) Simplified stratigraphic column of Svalbard, drilled formations in the CO2 wells and overview of main tectonic phases since 
the Precambrian. Adapted from Nøttvedt et al. (1993b). (C) Close-up of study area with location of drill sites and investigated outcrop 
sections. Dashed line shows correlation line used in Fig. 11. Map modified from ©Norwegian Polar Institute, npolar.no. (D) Geological cross-
section of the study area with projected position of wells and the Festningen outcrop section. Redrawn and modified from Dallmann (2015). 
Abbreviations: WSFTB – West Spitsbergen Fold and Thrust Belt, CSB – Central Spitsbergen Basin, LYB – Longyearbyen, TD – total depth.
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the most promising reservoir interval (Braathen et al., 
2012). Since both diagenetic effects and the intensity, 
distribution and orientation of natural fractures have 
been shown to vary considerably with lithology and 
sedimentary facies (Ogata et al., 2012, 2014; Mørk, 2013), 
determination of the internal facies distribution within 
the Wilhelmøya Subgroup is therefore of significant 
importance. This can subsequently be used as input into 
increasingly more detailed reservoir models (Mulrooney 
et al., in press), volumetric calculations and storage 
resource estimates (Senger et al., 2015), and contribute 
to improved predictions of CO2 injection behaviour and 
subsequent migration trends. 

In this contribution, we refine the facies and sequence-
stratigraphic interpretations of the Wilhelmøya Subgroup 
in and around the CO2 storage area based on extensive 
new field and drillcore data. This was accomplished 
through detailed facies analysis of drillcores and outcrop 
material, with new palynological data from core samples 
providing a framework for sequence delineation and 

4 km of drillcore from 8 onshore slimhole wells drilled 
near Longyearbyen (Fig. 1). Previous studies have shown 
that the targeted storage unit is underpressured and 
compartmentalised (Braathen et al., 2012; Senger et al., 
2015; Mulrooney et al., in press), and characterised by 
moderate porosities and low matrix permeabilities (i.e., 
unconventional reservoir) due to extensive mechanical 
and chemical compaction (Farokhpoor et al., 2010; 
Mørk, 2013). Water injection tests and numerical 
simulations, however, indicate relatively good lateral 
fluid flow facilitated by an extensive network of natural 
fractures (Braathen et al., 2012; Ogata et al., 2012, 2014; 
Van Stappen et al., 2014; Mulrooney et al., in press) which 
also contribute to the overall storage capacity (Senger et 
al., 2015). 

The upper part of the Kapp Toscana Group, comprising 
conglomerates, sandstones and mudstones of the 
stratigraphically condensed, Early Norian–Bathonian, 
Wilhelmøya Subgroup (Figs. 1B & 2; Mørk et al., 1999), 
offers the best reservoir properties and is considered 
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Figure 2. Overview of the stratigraphy penetrated by the initial four wells drilled as part of the Longyearbyen CO2 Lab project drilling 
campaign. The reservoir interval is formed by the Kapp Toscana Group, which includes deltaic, paralic and shallow-marine deposits of the 
De Geerdalen Formation, and condensed shallow-marine deposits of the Wilhelmøya Subgroup. A thick caprock succession, consisting of shelf, 
prodelta and distal delta-front deposits of the Agardhfjellet and Rurikfjellet formations, overlies the reservoir interval. The location of wells and 
drillsites is shown in Fig. 1. Redrawn and modified from Ogata et al. (2012).
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 correlation between subsurface and nearby outcrop 
sections. The unique core material also offers new data 
points and further insight into the regional development 
of the Wilhelmøya Subgroup, which may ultimately 
also be relevant for hydrocarbon-bearing deposits of 
the time-equivalent Realgrunnen Subgroup in the 
southwestern Barents Sea (e.g., Henriksen et al., 2011b).

Geological setting

The Svalbard archipelago, with Spitsbergen as its largest 
island, is part of the Eurasian continental plate and is 
located on the uplifted and exhumed northwestern 
corner of the present-day Barents shelf (Fig. 1; e.g., 
Nøttvedt et al., 1993b; Worsley, 2008). Geologically, the 
Barents shelf represents an intracratonic basin bounded 
by passive margins on its western and northern flanks 
that developed in response to the Cenozoic opening of 
the Norwegian–Greenland Sea and the Eurasia Basin, 
respectively (Faleide et al., 2015). 

During the Mesozoic, the Barents shelf area was part of 
a large epicontinental sea surrounded by the Pangaea 
supercontinent to the west, south and east, and with 
an open connection towards the Boreal part of the 
Panthalassa Ocean towards the northwest (Riis et al., 
2008). Sag basin subsidence characterised the region 
through most of the Triassic, and a thick siliciclastic 
succession was deposited recording delta progradation 
towards the north and northwest following influx of 
large volumes of sediments sourced from the Uralides to 
the southeast and east (Riis et al., 2008; Glørstad-Clark 
et al., 2010). In Svalbard, the Lower–Middle Triassic 
strata record intermittent sediment input from a westerly 
Laurentian (North Greenland) source (Steel & Worsley, 
1984; Bue & Andresen, 2013), but a shift occurred in the 
Late Triassic as the Uralide-sourced systems eventually 
reached Svalbard. By the end of the Carnian an extensive 
low-gradient coastal/delta plain covered most of the 
Barents shelf (Riis et al., 2008; Høy & Lundschien, 2011; 
Klausen et al., 2015). 

Following a major flooding event in the Early Norian, 
open marine environments re-established throughout 
the region. The transgression was accompanied by a 
significant decrease in subsidence rates, changes in 
provenance areas and drainage patterns in the latest 
Triassic–Early Jurassic (Steel & Worsley, 1984; Bergan 
& Knarud, 1993; Henriksen et al., 2011b; Ryseth, 2014; 
Fleming et al., 2016). This was probably the result of 
subhorizontal compressional forces and forebulge 
development in the central Barents shelf area in response 
to the Novaya Zemlya protrusion of the Uralide–Taimyr 
fold-and-thrust belt in the Late Triassic–Early Jurassic 
(Buiter & Torsvik, 2007; Petrov et al., 2008; Ritzmann & 
Faleide, 2009; Klausen et al., 2017), as well as uplift and 

possible rejuvenation of more proximal areas and basin 
margins in the southwest (Hendriks & Andriessen, 2002; 
Ryseth, 2014), northwest (Nøttvedt et al., 1993b; Grogan 
et al., 1999; Bue & Andresen, 2013) and north-northeast 
(Buiter & Torsvik, 2007; Dörr et al., 2012). The resulting 
Upper Triassic–Middle Jurassic succession records 
deposition of compositionally mature (Mørk et al., 1982; 
Bergan & Knarud, 1993; Mørk, 1999) shallow-marine 
to coastal sediments within local basins (Olaussen et 
al., 1984; Gjelberg et al., 1987; Henriksen et al., 2011b) 
and becomes thinner, stratigraphically condensed 
and characterised by several internal disconformities 
towards the basin margins and over regional platforms 
and highs (Steel & Worsley, 1984; Johannessen & 
Embry, 1989; Nøttvedt et al., 1993a; Smelror et al., 2009; 
Henriksen et al., 2011b; Ryseth, 2014; Klausen et al., 
2017, 2018), indicating important lateral variations in 
accommodation space. 

A late Middle Jurassic unconformity and renewed 
regional transgression marks the onset of rifting in the 
western Barents shelf (Faleide et al., 2015). Previously 
exposed platforms and highs became submerged and 
restricted bottom circulation led to the accumulation 
of anoxic black shales in Svalbard and the southwestern 
Barents shelf in the Late Jurassic (e.g., Koevoets et al., 
2018). The subsequent geological development of the 
region was characterised by several phases of uplift and 
erosion, as well as extensional and strike-slip movements 
along the western margin of the Barents shelf which 
culminated with the opening of the Norwegian–
Greenland Sea in the Cenozoic (Faleide et al., 1993). 
Circum-Arctic basaltic magmatic activity during the 
Early Cretaceous, i.e., the High Arctic Large Igneous 
Province (HALIP), resulted in the emplacement of 
numerous sills and dykes in the study area (e.g., Senger 
et al., 2014). The associated thermal uplift led to a major 
shift in depositional direction, with the Cretaceous 
units reflecting a northerly source area (e.g., Grundvåg 
et al., 2017). In Svalbard, the development of the West 
Spitsbergen Fold-and-Thrust Belt (WSFTB) and the 
associated Central Spitsbergen Basin (CSB) in the 
Palaeocene–Eocene (Steel et al., 1985; Bergh et al., 1997), 
as well as uplift and erosion during the latest Palaeogene–
Quaternary (e.g., Dimakis et al., 1998; Henriksen et 
al., 2011a) all represent notable events which had a 
significant impact on the properties and orientation of 
Mesozoic strata within the study area.

Stratigraphy of the study area

The two Longyearbyen CO2 Lab well sites are situated 
on the eastern limb of the narrow, NNW–SSE-elongated 
Central Spitsbergen Basin (Fig. 1). The strata of the Kapp 
Toscana Group dip gently (1–3°) towards the southwest 
(Bælum et al., 2012) and are encountered at depths below 



NORWEGIAN JOURNAL OF GEOLOGY Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup in Spitsbergen, Svalbard 39

Lithostratigraphic remarks

According to the current lithostratigraphic scheme 
for the Mesozoic in Svalbard (Mørk et al., 1999), the 
Wilhelmøya Subgroup comprises the Knorringfjellet 
Formation and two informally named subunits, the 
Tverrbekken and Teistberget members, within the study 
area. Some inconsistencies with this subdivision have led 
us to use the superior term (i.e., Wilhelmøya Subgroup), 
and instead employ a provisional subdivision based 
on generic sequences (sequences 1–3) separated by 
lithologically and/or biostratigraphically well-defined 
disconformities. The inconsistencies in the prevailing 
scheme will not be addressed in excessive detail here, 
but the following two remarks are made: (1) Although 
showing a considerably thinner development, the 
Tverrbekken member consists of deposits of comparable 
facies and age as the Early Norian Flatsalen Formation 
in eastern Svalbard (Mørk et al., 1999; Lord et al., 2017), 
and the latter could therefore have priority; (2) The 
Teistberget member has its type section at Teistberget, 
eastern Spitsbergen, but the term has not traditionally 
been applied to deposits outside central and western 
Spitsbergen. Since the Flatsalen, Svenskøya (Norian–
Toarcian) and Kongsøya formations (Toarcian–
Bathonian) all appear to be recognisable throughout 
eastern Spitsbergen (e.g., Lord et al., 2017) based on their 
current lithostratigraphic definitions (Mørk et al., 1999), 
the Teistberget member may be superfluous as a separate 
unit within its own defined type area.

The stratigraphic affiliation of the Brentskardhaugen Bed 
has been disputed (see Mørk et al., 1999, and references 
therein). In this study, it is regarded as an integral part of 
the Wilhelmøya Subgroup in line with Mørk et al. (1999). 
Phosphate and siderite-cemented glauconitic deposits 
observed immediately above the uppermost phosphorite 
conglomerates of the Wilhelmøya Subgroup in the 
Longyearbyen CO2 Lab wells are considered to represent 
lateral equivalents to the Marhøgda Bed (Bäckström 
& Nagy, 1985; Mørk et al., 1999) and are included in 
the Agardhfjellet Formation in line with Koevoets et al. 
(2018) (cf., Mørk et al., 1999). Previous contributions 
from the Longyearbyen CO2 Lab project (e.g., Braathen 
et al., 2012; Mørk, 2013; Van Stappen et al., 2014) have 
placed these deposits within the Brentskardhaugen Bed. 

Data and methods

The study area in western central Spitsbergen covers 
an area of approximately 1750 km2 (Fig. 1C). Detailed 
sedimentary logging was undertaken on drillcores from 
the four Longyearbyen CO2 Lab wells with complete 
coverage of the Wilhelmøya Subgroup (DH2, DH4, 
DH5R and DH7A; Figs. 1 & 2). Complementary studies 
were conducted at outcrops exposing the targeted 

c. 670 m at the proposed CO2 storage site in Adventdalen. 
Towards the northeast the upper part of the Kapp 
Toscana Group is exposed in a series of small valleys (e.g., 
Konusdalen and ‘Criocerasdalen’) and in mountainsides 
(e.g., Marhøgda) at the southern margin of Sassenfjorden 
(Fig. 1C). At Festningen, in the western part of Isfjorden 
(Fig. 1C, D), the succession is involved in the WSFTB and 
is exposed at sea level in strata dipping steeply eastwards. 

The Kapp Toscana Group attains a total thickness of 300–
350 m in western central Spitsbergen and encompasses 
the Tschermakfjellet Formation (early Carnian), the De 
Geerdalen Formation (Carnian–?earliest Norian) and the 
Wilhelmøya Subgroup (early Norian–Bathonian; Figs. 1 
& 2). The nearly 300 m-thick De Geerdalen Formation 
makes up the dominant part of the Kapp Toscana Group 
and comprises repeated upward-coarsening units from 
shales to sandstones (Mørk et al., 1999), reflecting delta 
progradation mainly from the southeast (Rød et al., 2014; 
Klausen et al., 2015; Lord et al., 2017). The uppermost 70 
m of the De Geerdalen Formation comprise the Isfjorden 
Member (Mørk et al., 1999), which is characterised 
by red- and green-weathering mudstones alternating 
with thin siltstones, sandstones, and occasional bivalve 
coquinas and calcrete palaeosol horizons. The Isfjorden 
Member records deposition in shallow shelf, lagoonal 
and delta-plain environments (Rød et al., 2014; Haugen, 
2016; Lord et al., 2017). 

The Wilhelmøya Subgroup sits disconformably on the 
De Geerdalen Formation and is only 15–24 m thick 
within the study area, which is in sharp contrast to the 
considerably thicker development observed in eastern 
Svalbard and in the correlative Realgrunnen Subgroup 
in the southwestern Barents shelf (e.g., Johannesen 
& Embry, 1989; Mørk et al., 1999; Henriksen et al., 
2011b). It is bounded above and below by phosphorite 
conglomerates and calcareous sandstones of two 
regionally distinct marker beds, the Slottet Bed and 
the Brentskardhaugen Bed (Bäckström & Nagy, 1985; 
Mørk et al., 1999), at the base and top of the succession, 
respectively. Internally, the Wilhelmøya Subgroup in 
western central Spitsbergen includes shallow-marine 
mudstones, siltstones and sandstones (e.g., Mørk et al., 
1982; Nagy & Berge, 2008) which are currently included 
in the Norian–Bathonian Knorringfjellet Formation 
(Mørk et al., 1999). 

The caprock is formed by a 500 m-thick succession of 
offshore mudstones (locally organic rich) and siltstones 
of the Agardhfjellet Formation (Late Bathonian–
Late Ryazanian/Early Valanginian), and prodelta 
and shoreface/delta-front deposits of the Rurikfjellet 
Formation (Valanginian–Early Barremian; Dypvik et al., 
1991; Koevoets et al., 2018). These are in turn overlain by 
fluvio-deltaic to paralic sediments of the Helvetiafjellet 
Formation (Barremian) and prodelta and distal marine 
deposits of the Aptian–Albian Carolinefjellet Formation 
(Grundvåg et al., 2017).
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 strata at the southern shore of Sassenfjorden 15 km 
to the northeast, and at Festningen 40–45 km west of 
the drill sites, respectively (Fig. 1). Observations and 
measurements included lithology, thickness, grain size, 
sorting, sedimentary structures, trace fossils and bed 
boundaries, and formed the basis for identification of 
sedimentary facies. Genetically related sedimentary 
facies were grouped into facies associations, interpreted 
to represent distinct depositional environments. A 
suite of wireline logs from DH4, including natural 
gamma, caliper, velocity, resistivity and qualitative 
density (Elvebakk, 2010), was used to further constrain 
the interpretations and as an aid in the recognition of 
sequence-stratigraphic surfaces. 

Palynological analysis

A total of 33 samples from DH2 and DH4, and one 
sample from Festningen were analysed for palynomorphs 
to support dating and to provide a framework for 
sequence delineation and correlation between subsurface 
and outcrop sections. Preparation of samples was 
carried out by APT (Applied Petroleum Technology 
AS, Kjeller, Norway) using standard palynological 
processing techniques involving hydrochloric acid (HCl), 
hydrofluoric acid (HF), potassium hydroxide (KOH) 
treatment and sieving. Qualitative analysis recorded 
all identifiable species, and quantitative assemblage 
composition was considered for samples producing 
counts of 100 or more specimens. Thirteen samples 
proved barren or too poor to offer any stratigraphic 
control. Samples which proved productive were referred 
to palynological composite assemblage zones described 
below. Interpretations of age and stratigraphy were based 
on comparison with results from other localities in 
Svalbard (e.g., Bjærke & Dypvik, 1977; Bjærke & Manum, 
1977; Bjærke, 1980a, b; Dypvik et al., 1985; Vigran et al., 
2014; Paterson & Mangerud, 2015). 

Palynological composite assemblage zones

Based on observations made during this study, 
ongoing studies in eastern Spitsbergen (Rismyhr et 
al., unpublished data), and a series of previous studies 
(Orbell, 1973; Smith, 1974; Smith et al., 1975; Bjærke, 
1977; Bjærke & Dypvik, 1977; Bjærke & Manum, 1977; 
Lund, 1977; Bjærke, 1980a, b; Smith, 1982; Below, 1987a, 
b; Fiksdal, 1988; Smelror, 1988; Hochuli et al., 1989; 
Smelror & Below, 1992; Nagy et al., 2011; Ask, 2013; Lord 
et al., 2014; Vigran et al., 2014; Paterson & Mangerud, 
2015), ten composite assemblage zones (CAZ) covering 
the Late Carnian–Callovian interval in Svalbard have 
been defined (Fig. 3), of which 7 relevant for this study 
are described below in ascending order.

Leschikisporis aduncus CAZ (Late Carnian): The L. 
aduncus CAZ is characterised by the dominance of 

Leschikisporis aduncus, Dictyophyllidites mortonii and 
occasionally Schizaeoisporites worsleyi. Other elements 
produced by the local vegetation include Deltoidospora 
spp., Calamospora spp., Camarozonosporites rudis, 
Conbaculatisporites spp., Duplexisporites problematicus, 
Annulispora folliculosa and Zebrasporites interscriptus. 
Increased diversity and representation of bisaccate pollen 
and Ovalipollis spp. may occur where palynomorphs 
were brought in by rivers, sourced by upland vegetation. 
In places, the freshwater alga Botryococcus may dominate, 
representing back barrier lagoonal facies or delta plain 
lakes. Rare acritarchs, represented by Micrhystridium 
spp. and Veryhachium spp., may also occur in these 
environments. The L. aduncus CAZ is equivalent to the 
L. aduncus assemblage described from the De Geerdalen 
Formation on Hopen by Paterson & Mangerud (2015) 
and suggested to be of Late Carnian age.

Protodiploxipinus ornatus CAZ (latest Carnian–
?earliest Norian): Most of the species present in the 
underlying L. aduncus CAZ continue up into the P. 
ornatus CAZ. L. aduncus is, however, strongly reduced, 
whereas the representation of the more regional 
vegetation is increased with consistently higher diversity. 
The increased occurrence of conifer pollen, especially 
Protodiploxipinus spp. (P. ornatus, P. minor) is distinct 
(Hochuli et al., 1989; Lord et al., 2014; Paterson & 
Mangerud, 2015). Rare, but persistent Micrhystridium 
spp. and Veryhachium spp. are present, and the green alga 
Plaesiodictyon moesellaneum locally becomes abundant 
(e.g., Lord et al., 2014; Paterson & Mangerud, 2015). The 
P. ornatus CAZ is equivalent to the Protodiploxipinus spp. 
assemblage described by Paterson & Mangerud (2015) 
from the Hopen Member of the De Geerdalen Formation 
on Hopen and was suggested to be of latest Carnian–
earliest Norian age. 

Rhaetogonyaulax arctica CAZ (Early Norian): The 
R. arctica CAZ is characterised by small dinoflagellates 
referred to the Rhaetogonyaulax arctica (previously 
Shublikodinium armatum) and abundant Micrhystridium 
spp. Some of the spore and pollen species characteristic 
of underlying units are absent, whereas spores which 
become typical for zones above make their first 
appearance (Paterson & Mangerud, 2015). The R. arctica 
CAZ compares with the Early Norian Classopollis torosus 
assemblage of Paterson & Mangerud (2015) recognised 
at the base of the Flatsalen Formation (Wilhelmøya 
Subgroup) on Hopen, which is characterised by the first 
occurrence of Classopollis torosus and the first common 
occurrence of microforaminiferal test linings, and based 
on a change in terrestrial species across the boundary 
between the De Geerdalen Formation and the Flatsalen 
Formation of the Wilhelmøya Subgroup.

Heibergella CAZ (Early Norian): Samples attributed 
to the Heibergella CAZ commonly show rich and 
diverse palynomorph assemblages (Bjærke & Manum, 
1977; Vigran et al., 2014; Paterson & Mangerud, 2015). 
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 The marine component is represented by rare to 
superabundant occurrences of dinoflagellates belonging 
to the Heibergella/Sverdrupiella/Rhaetogonyaulax 
complex and the acritarch Veryhachium reductum. The 
most characteristic spore species are Kyrtomisporis 
speciosus and Annulispora folliculosa. In addition, 
common Deltoidospora spp. and many distinct spore 
and pollen species are present. The Heibergella CAZ 
is equivalent to the R. rhaetica assemblage of Paterson 
& Mangerud (2015) recognised in deposits of the 
Flatsalen Formation on Hopen. An early Norian age for 
this assemblage is well constrained by the presence of 
bivalves and sirenitid ammonoids assigned to the kerri 
ammonoid Zone (Korčinskaya, 1980; Smith, 1982) and 
further corroborated by geomagnetic polarity data (Lord 
et al., 2014).

Nannoceratopsis senex CAZ (Early–Middle 
Toarcian): This composite assemblage zone is defined 
by abundant to superabundant occurrences of the 
dinoflagellates Nannoceratopsis senex, N. gracilis and 
Mancodinium semitabulatum. A low diversity spore 

and pollen assemblage – locally including occurrences 
of Ischyosporites variegatus and Sestrosporites 
pseudoalveolatus – is associated with these species. 
On the Norwegian Continental Shelf (NCS) and 
adjacent areas, abundant N. gracilis, N. senex and M. 
semitabulatum are known to appear at the start of a 
Late Pliensbachian transgression which led up to a 
regional Early Toarcian flooding event. This flooding 
event carries a characteristic sphaeromorph acritarch 
assemblage (e.g., Pedersen et al., 1989; Riding & Thomas, 
1992; Sawyer & Keegan, 1996; Koppelhus & Dam, 2003) 
which has not been observed in Svalbard. A second 
additional transgressive pulse is recognised within 
Lower Toarcian deposits on the NCS, also carrying 
similar assemblages. In eastern Spitsbergen, the N. senex 
CAZ have been independently dated by ammonites 
(Zygodactylioceras braunianus, Porpoceras polare; 
Rismyhr et al., unpublished data) with ranges spanning 
the bifrons to thouarsense ammonite biozones, indicating 
an Early–Middle Toarcian age for the N. senex CAZ. This 
corresponds to the second transgressive pulse in the 
Toarcian when comparing with the NCS stratigraphy. 

B. Rismyhr et al.
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Figure 4. Facies of the Wilhelmøya Subgroup in cores and outcrops in western and central Spitsbergen. Depths and thicknesses in metres. The 
Marhøgda section is redrawn from Bäckström & Nagy (1985). Abbreviations: HCS – Hummocky cross-stratified, ppl – plane-parallel laminated, 
sst – sandstone.
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Phallocysta eumekes CAZ (Late Toarcian–Early 
Aalenian): The P. eumekes CAZ is defined by the 
appearance of a number of characteristic dinoflagellate 
species including P. eumekes, Parvocysta spp. (e.g., P. 
bullula, P. barbata, P. nasuta), Ovalicysta hiata, Microcysta 
erugata and Susadinium spp., and Scriniocassis weberi. N. 
gracilis, N. senex and M. semitabulatum continue to be 
common throughout this zone. The assemblage is known 
from phosphate nodules of the Brentskardhaugen Bed 
in Spitsbergen (Bjærke, 1980a; Below, 1987a, b) where it 
occurs together with mid-Toarcian–Aalenian ammonites 
(e.g., Birkenmajer & Pugaczewska, 1975; Pčelina, 1980; 
Wierzbowski et al., 1981; Bäckström & Nagy, 1985). 
Comparable palynomorph assemblages have also been 
recorded from the Kongsøya Formation (Wilhelmøya 
Subgroup) on Kong Karls Land (Fiksdal, 1988; 
Smelror, 1988). The P. eumekes CAZ compares with 
the Microcysta erugata taxa range-zone and Dodekovia 
bullula–Nannoceratopsis senex concurrent range-zone of 
Smelror & Below (1992) which were suggested to be of 
?Middle to Late Toarcian and Aalenian–Early Bajocian 
age, respectively. The presence of P. eumekes together 
with species of the ‘Parvocysta-suite’ of Riding (1984) 
indicates a Late Toarcian–Early Aalenian age for the P. 
eumekes CAZ (e.g., Riding & Thomas, 1992; Poulsen & 
Riding, 2003). 

Nannoceratopsis pellucida CAZ (Late Bathonian–
Callovian): In the lowermost part of the Agardhfjellet 
Formation on Spitsbergen diverse dinoflagellate 
cyst assemblages appear including N. pellucida, 
Dissiliodinium spp., Tubotuberella eisenackii, Korystocysta 
spp., Pareodinia ceratophora, P. evittii, Sirmiodinium 
grossii, Sentusidinium spp. and G. jurassica subsp. 
adecta var. longicornis (Bjærke, 1980b; Dypvik et al., 
1985). Ammonites of the Arcticoceras, Cadoceras and 
Kepplerites genera which have been reported from the 
same stratigraphic levels indicate a Late Bathonian–
Callovian age for the lowermost Agardhfjellet Formation 
(e.g., Løfaldi & Nagy, 1980; Kopik & Wierzbowski, 1988; 
Koevoets et al., 2016). According to Smelror & Below 
(1992), G. jurassica subsp. adecta var. longicornis and 
T. eisenackii first occur in upper Callovian deposits 
in the Barents shelf region and the N. pellucida CAZ is 
suggested to span the Late Bathonian–Callovian.

Results

Sedimentary facies and facies associations

From the analysis of core and outcrop data, 13 
sedimentary facies were defined within the Wilhelmøya 
Subgroup and the lowermost Agardhfjellet Formation 
(Fig. 4). These were subsequently grouped into five 
facies associations (FA 1–5). Sedimentary facies, facies 
associations and their characteristics are summarised 

in Table 1. More comprehensive description and 
interpretation are presented in the following paragraphs. 
The facies interpretations are largely consistent with 
previous studies from western and central Spitsbergen 
(Bjærke & Dypvik, 1977; Pčelina, 1980; Dypvik et al., 
1985; Nagy & Berge, 2008; Nagy et al., 2011). 

Lag deposits (FA 1)

Description: FA 1 (Fig. 5) includes two conglomeratic 
facies (Facies 1.1. and 1.2; Table 1) observed at the base 
of the Slottet Bed, Sequence 2 (see below), and within 
the Brentskardhaugen Bed where it locally forms distinct 
strata separating sandstones of FA 5. Individual beds 
of FA 1 have erosional bases and sharp or gradational 
upper boundaries towards FA 2, FA 3 and FA 5. Facies 1.1 
consists of monomictic clast-supported conglomerates 
with well-rounded phosphate nodules. The nodules are 
up to 5 cm in diameter and form tabular or lenticular 
beds up to 25 cm thick. Facies 1.2 consists of cm-scale 
to 1 m-thick beds of polymictic conglomerates with 
well-rounded chert, quartz, quartzite, and occasional 
siderite pebbles and subangular to rounded sandstone 
clasts and phosphate nodules in an intensely bioturbated 
(Rhizocorallium and Diplocraterion) fine- to coarse-
grained sandstone matrix with scattered glauconite. 
The matrix weathers distinctly yellow, orange and rusty 
red in outcrop, but is more commonly grey in freshly 
exposed surfaces and in core. The phosphate nodules of 
the Brentskardhaugen Bed are rich in macrofossils (e.g., 
ammonites, bivalves, brachiopods, belemnites, etc.) which 
span several faunal zones of the Toarcian–Aalenian 
(Birkenmajer & Pugaczewska, 1975; Wierzbowski et al., 
1981; Bäckström & Nagy, 1985).

Interpretation: The presence of marine trace fossils 
and scattered (?parautochthonous) glauconite with the 
conglomerate matrix suggests a marine depositional 
environment. The stratigraphic position of FA 1, resting 
on distinct erosion surfaces and below marine mudstones 
and sandstones, suggests that FA 1 accumulated mainly 
as lags formed by wave reworking and winnowing of 
underlying substrates during relative sea-level rise and 
shoreline transgression (e.g., Cattaneo & Steel, 2003). 
The clast composition of the polymictic conglomerates 
indicates a mix of both intra- and extraformational 
components. The phosphate nodules probably formed by 
phosphatisation of biogenic skeletal remains and infilling 
of pore spaces between detrital grains in near-surface 
offshore environments during periods of low clastic 
sediment influx (Bäckström & Nagy, 1985; Krajewski, 
1990; Glenn et al., 1994; Föllmi, 1996). The quartzite and 
chert pebbles are extraformational in origin and were 
probably eroded from uplifted Precambrian metamorphic 
and crystalline basement rocks and Upper Permian 
cherts, respectively (Birkenmajer, 1972; Wierzbowski et 
al., 1981; Bäckström & Nagy, 1985) and introduced into 
the basin during preceding relative sea-level falls.
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Figure 5. Examples of lag deposits (FA 1) as seen in outcrop and cores. (A) Monomictic phosphorite conglomerate (facies 1.1) at the base of the 
Slottet Bed at Festningen. Hammer for scale. (B) Polymictic matrix-supported conglomerate in the upper part (sequence 2) of the Wilhelmøya 
Subgroup in DH2. Pencil for scale. (C) FA 1 interbedded with FA 5 in the Brentskardhaugen Bed in DH4. The Brentskardhaugen Bed with 
sharp lower and upper boundaries towards deposits of FA 5 and FA 2, respectively. Way up from lower left to upper right. (D) Thin phosphorite 
conglomerate of FA 1 (above lens cap) between deposits of FA 3 below and FA 5 above in Konusdalen. Lens cap for scale. (E) Close up of 
(C) showing polymictic matrix-supported phosphorite conglomerates of the Brentskardhaugen Bed in DH4. The matrix is formed by fine- to 
medium-grained sandstones. (F) and (G) The Brentskardhaugen Bed in Konusdalen and Marhøgda. Hammer and lens cap for scale. Facies 2.2 
and 2.3 of FA 2 are observed in (F) where they form part of the Marhøgda Bed. 
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Table 1. Summary of sedimentary facies and facies associations in the Wilhelmøya Subgroup in central and western Spitsbergen as observed in 
drillcores and outcrops. Abbreviations: BI – Bioturbation index.

Facies 
association Interpretation Facies Lithology Sedimentary structures, trace 

fossils and macrofossils BI Geometry, thickness, 
boundaries Figures

FA1 Lag deposits 1.1 Clast-supported monomictic 
phosphorite conglomerate.  
Well sorted. Spherical, rounded to 
well-rounded phosphate nodules 
(MPS 5 cm).

Ammonites, bivalves, 
belemnites and wood 
fragments present in some 
phosphate nodules

0 Tabular and lenticular 
beds up to 25 cm thick 
with erosional lower 
boundaries

5A, F

1.2 Polymictic matrix- and clast-
supported conglomerate. Poorly 
to moderately sorted. Subangular 
to well-rounded, subspherical to 
oblong chert, quartz, quartzite, 
phosphate, and siderite pebbles 
(MPS 10 cm) within fine- to 
coarse-grained sandstone matrix.  
Scattered glauconite. Normal 
graded or massive.

Locally low-angle cross-
stratification. Rhizocorallium 
and Diplocraterion trace 
fossils. Ammonites, bivalves, 
belemnites and wood 
fragments present in some 
phosphate nodules.

0-4 Tabular beds up to  
40 cm thick, with 
erosional lower 
boundaries.

5B–E, G

FA2 Sediment-
starved shelf 
deposits

2.1 Brown, red and grey sandy 
mudstone with scattered 
glauconite and fine- to coarse-
grained quartz grains. Poorly 
sorted. Siderite and phosphate 
cemented.

Primary sedimentary 
structures obliterated by 
bioturbation.

4–6 Sharp lower boundary. 
Up to 7 m thick.

6A–D

2.2 Glauconitic microsparitic 
mudstone and limestone. Rare 
quartz and chert grains, scattered 
chamosite and phosphatic ooids. 
Weathers red, light grey and white 
in outcrop.

Structureless 0–1 Tabular with relatively 
sharp lower and upper 
boundaries. 0.2–1.5 m 
thick.

5F

2.3 Green, unconsolidated glauconite. Structureless 0 Apparently tabular 
0.1–0.3 m-thick beds, 
indistinct boundaries.

5F

FA 3 Offshore 
deposits

3.1 Grey and dark grey mudstone 
and siltstone. Red and yellow-
weathering carbonate (siderite) 
concretions. Rare pyrite 
concretions.

Diffuse horizontal lamination. 
Cone-in-cone structures.

2–5 Laterally extensive. 7B,  
E–G

3.2 Grey and reddish-purple fine- 
and very fine-grained sandstone. 
Normal-graded or massive.

Wave ripples and low-angle 
cross-lamination. Intense 
bioturbation with Chondrites, 
Palaeophycus, Phoebichnus 
trochoides, Rhizocorallium 
and Thalassinoides. Rare 
bone-fragments.

4–6 Tabular beds up to 
0.05–0.8 m thick with 
sharp lower and abrupt 
or gradational upper 
boundaries.

7A,  
C–F,  

H

FA 4 Prodelta and 
distal delta 
front deposits

4.1 Mudstone, siltstone and 
very fine-grained sandstone. 
Upward-coarsening.

Lenticular, wavy and flaser 
lamination. Wave- and current 
ripples observed in sandstones. 
Rare Planolites traces.

1–3 Gradational lower and 
upper boundaries.

8A,  
B

4.2 Pale yellow and light grey very 
fine- to fine-grained sandstone.

Wave- and current ripples. 
Plane-parallel lamination.  
Rare Skolithos.

1–5 Tabular. Gradational 
lower and sharp upper 
boundaries.

8A

FA 5 Shoreface 
deposits

5.1 Gravel, very coarse- and coarse-
grained sandstone. Poorly to 
moderately sorted. Massive or 
upward-fining.

Structureless 0 Laterally discontinuous, 
lenticular to apparently 
tabular beds up to 
20–25 cm thick. Erosive 
lower boundaries.

9A,  
B, E

5.2 Fine-grained sandstone.  
Weathers yellow.

Planar cross-stratification. 1–3 Laterally extensive. 
Gradational or sharp 
boundaries.

5.3 Very fine- and fine-grained,  
light grey sandstone.

Diffuse to well-defined plane-
parallel and low-angle cross-
lamination locally resembling 
hummocky cross-stratification.

1–2 Gradational or sharp 
boundaries.

9A, E, G

5.4 Medium- to very fine-grained 
sandstones with scattered 
glauconite and variable amounts 
of dispersed mud. Well-sorted. 
Rare phosphate nodules.

Intensely bioturbated 
containing Asterosoma, 
Chondrites, Cylindrichnus, 
Diplocraterion, ?Ophiomorpha, 
Palaeophycus, Phycosiphon, 
Planolites, Rhizocorallium, 
Schaubcylindrichnus, Skolithos 
and Teichichnus.

4–6 Tabular. Up to 8 m 
thick. Gradational or 
sharp boundaries.

9A–F
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Sediment-starved shelf deposits (FA 2)

Description: Deposits of FA 2 (Figs. 5F & 6) are 
ubiquitous at the base of the Agardhfjellet Formation and 
are locally observed in the lower part of the Wilhelmøya 
Subgroup above the Slottet Bed. Three facies are included 
in FA 2 (Facies 2.1–2.3; Table 1), all characterised by 
relatively high, but varying amounts of green and dark 
green glauconitic grains. Deposits of Facies 2.1 sharply 
overlie the Brentskardhaugen Bed in all investigated 
drillcores and form composite bodies up to 7 m thick 
which grade upward into dark grey mudstones. They 
consist of phosphate- and siderite-cemented (Mørk, 
2013) grey, brown and red, poorly sorted, glauconitic 
muddy sandstones/sandy mudstones with scattered fine- 
to coarse-grained quartz grains. Internal stratification 
is poorly defined due to the intense bioturbation, but 
individual beds locally appear to fine slightly upward. 
Facies 2.2 occurs at the same stratigraphic level in 
outcrops at Festningen, Konusdalen and Marhøgda and 
consists of 0.2–1.5 m-thick tabular beds of partially 
sideritised and dolomitised microsparitic limestone, 
locally containing scattered belemnites, ferruginous 
ooids, quartz, chert and phosphate grains. These deposits 
correspond to the Marhøgda Bed as originally defined 
by Bäckström & Nagy (1985). Facies 2.3 is encountered 
above the Slottet Bed and at the interface between 
the Brentskardhaugen Bed and the Marhøgda Bed in 
Konusdalen and ‘Criocerasdalen’, and consists of 0.1 
to 0.3 m-thick poorly consolidated beds apparently 
composed entirely of glauconitic grains (i.e., glaucony 
sensu Odin & Matter, 1981).

Interpretation: Based on the abundance of glauconite, the 
stratigraphic affiliation with FA 1 and FA 3, and intense 
bioturbation, FA 2 is interpreted to have accumulated 
on a sediment-starved offshore shelf. This is supported 

by the presence of carbonate- and iron-rich deposits 
which similarly point toward a relatively low clastic 
sediment influx (Macquaker et al., 1996). Autochthonous 
glauconite is generally regarded as a good indicator of 
low sedimentation rates in marine deposits and is most 
commonly developed during transgressive stages (Odin 
& Matter, 1981; Amorosi, 2012). Periodic storms and 
elevated energy levels may be indicated by the intermixed 
fine to coarse quartz grains observed in Facies 2.1. 

Offshore deposits (FA 3)

Description: FA 3 (Fig. 7) is observed above the Slottet 
Bed in the Wilhelmøya Subgroup and above the 
Marhøgda Bed in the Agardhfjellet Formation in all 
drillcores and outcrops. Two facies (Facies 3.1 and 
3.2; Table 1) are defined in FA 3, together forming 
successions up to 15 m thick within the studied interval. 
Facies 3.1 consists of massive to diffusely laminated, grey 
and dark grey silty mudstones. Moderate bioturbation is 
observed in the siltier horizons. Lenticular, yellow- and 
red-weathering carbonate (e.g., siderite) nodules are 
common and concentrate in discrete horizons, locally 
coalescing to form nearly continuous beds. Cone-in-cone 
structures are locally observed. 

Facies 3.2 consists of sharp-based, 0.05–0.8 m-thick, 
tabular very fine- to fine-grained sandstones. The 
sandstones are massive or fine upward into mudstones 
of Facies 3.1. The sandstones are commonly grey to 
dark grey in colour but may weather distinctly reddish-
purple in outcrop when cemented by siderite. The degree 
of bioturbation is persistently high with ichnofossils 
including Chondrites, Palaeophycus, Thalassinoides and 
Skolithos. Relatively large Phoebichnus trochoides (see also 
Bromley & Mørk, 2000) and Rhizocorallium irregulare 

2 cm

A B C

20 cm

C D

2 cm 2 cm

Figure 6. Siderite and phosphate-cemented, poorly sorted, sandy mudstones of facies 2.1 with scattered glauconite and quartz grains in DH4. 
Note the increasing degree of cementation upward from (A) (lowest) to (D) (highest).
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Figure 7. Representative photos of FA 3 in core and outcrop. (A) Thin-bedded sandstones of Facies 3.2 with massive to low-angle cross-
laminated, possibly hummocky cross-stratified bases and bioturbated silty tops, DH2. Pencil for scale. (B) Structureless mudstone (Facies 3.1) 
with siderite concretions, DH2. Pencil for scale. (C) Bioturbated silty sandstone (Facies 3.2) in DH4. (D) Rhizocorallium on bed surface of facies 
3.2, Festningen. Pencil for scale. (E) and (F) FA 3 at Festningen showing massive to diffusely laminated mudstones and siltstones (Facies 3.1) 
interbedded with thin, heavily cemented sandstones (Facies 3.2). (G) Cone-in-cone structure in carbonate bed, Festningen. (H) Top surface of 
sandstone bed of Facies 3.2 with well-defined wave-ripples and large Phoebichnus trochoides trace at Festningen. Rifle for scale. Abbreviations: 
HCS – Hummocky cross-stratification.
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traces are observed on some of the bed surfaces at 
Festningen. Primary sedimentary structures within the 
sandstones are scarce due to the intense bioturbation, 
but wave ripples and plane-parallel to low-angle cross-
lamination are locally observed. A single bone fragment 
was encountered in DH4.

Interpretation: Based on the dominance of mudstones 
and siltstones, the presence of wave ripples and a marine 
trace fossil assemblage which compares with a proximal 
expression of the Cruziana ichnofacies (Maceachern 
et al., 2007), deposits of FA 3 are interpreted to have 
accumulated below fair-weather wave base in an offshore 
environment. The mudstones and siltstones of Facies 3.1 
were probably deposited as suspension fallout during 
fair-weather sedimentation. The sandstones of Facies 
3.2 are interpreted as storm beds formed by redeposition 
of sand delivered offshore by flooding rivers or scour of 
an adjacent shoreface or delta front by storm waves. The 
upward-fining character of some of these sandstones 
reflects waning of storm waves followed by fair-
weather sedimentation and intense burrowing (Dott & 
Bourgeois, 1982). The local presence of carbonates may 
indicate relatively low rates of clastic sedimentation. 
This is supported by the occurrence of the trace fossil 
Phoebichnus trochoides which is thought to require 
extended periods of slow sedimentation in low-energy 
marine environments to form its large and complicated 
structure (Heinberg & Birkelund, 1984; Bromley & Mørk, 
2000).
 

Prodelta and distal delta-front deposits (FA 4)

Description: FA 4 (Fig. 8) features deposits observed 
locally in the lower part of the Wilhelmøya Subgroup 
in Konusdalen and ‘Criocerasdalen’, where they form 
1–3 m-thick, sheet-like, coarsening-upward (CU) units 
with gradational bases and abrupt tops towards FA 3. 
Two facies (Facies 4.1 and 4.2; Table 1) are included in 
FA 4. Facies 4.1 forms the lower part of the CU-units 
and comprises lenticular-, wavy- and flaser-laminated 
heterolithic deposits. Current- and wave-ripples are 
observed in some of the interbedded sandstones. The 
degree of bioturbation is low to moderate and only 
Planolites is observed. Facies 4.1 grades upward into 
Facies 4.2 consisting of tabular very fine- to fine-grained 
sandstones up to 20 cm thick. The sandstones are pale 
yellow to light grey in colour and contain plane-parallel 
lamination and common wave- and current ripples, 
locally with flattened ripple crests. Skolithos traces are 
locally observed.

Interpretation: Based on the vertical association with 
fully marine offshore deposits of FA 3, the heterolithic 
upward-coarsening motif, and the co-occurrence of 
wave- and current ripples, FA 4 is interpreted as a 
progradational prodelta to distal lower delta-front 
succession. This is supported by the absence of similar 
units within drillcores and nearby outcrops which 
suggests that FA 4 is of restricted areal extent consistent 
with a sediment point source. Plane-parallel and rippled 
sandstones are interpreted to reflect fair-weather wave-
reworking of distal river-fed hyperpycnal flows (Mulder 

A B

1m
10 cm

Facies 4.2

Facies 4.2

Facies 4.1

Facies 4.1

Facies 3.1

Figure 8. Examples of FA 4 in outcrop. (A) Upward-coarsening unit consisting of interbedded heterolithics (Facies 4.1) at the base grading 
upward into wave ripple-, current ripple- and plane-parallel laminated sandstones (Facies 4.2) in Konusdalen. (B) Current ripple-laminated 
sandstone (Facies 4.1) within the lower heterolithic part of an upward-coarsening unit in ‘Criocerasdalen’.
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Figure 9. Examples of shoreface deposits (FA 5) in outcrop and core. (A) Coarse- to very coarse-grained sandstone (Facies 5.1) overlain by 
low-angle cross-stratified (Facies 5.3) and bioturbated very fine-grained sandstone (Facies 5.4), Slottet Bed in DH2. (B) Bioturbated sandstone 
(Facies 5.4) with pockets of coarse-grained sandstone (Facies 5.1), Slottet Bed in DH2. (C) Bioturbated sandstone (Facies 5.4) in the upper 
part (Sequence 2) of the Wilhelmøya Subgroup in DH4. (D) Cylindrichnus (Cy) in bioturbated sandstone (Facies 5.4), Slottet Bed in DH2. (E) 
Alternating Facies 5.1, 5.3 and 5.4 in the Slottet Bed in DH2. (F) Bioturbated sandstone with scattered phosphate nodules (arrows) in the Slottet 
Bed at Festningen. Hammer for scale. (G) and (H) Deposits of FA 5 in the Slottet Bed in Konusdalen. Abbreviations: As – Asterosoma, Cy – 
Cylindrichnus, Ph – Phycosiphon, Rh – Rhizocorallium, Sb – Schaubcylindrichnus, Sk – Skolithos, Te – Teichichnus.
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 et al., 2003), whereas the limited bioturbation points 
toward environmental stress due to high freshwater input 
(i.e., reduced salinity levels) or increased depositional 
rates (Maceachern et al., 2007; Nagy & Berge, 2008). 

Shoreface deposits (FA 5)

Description: FA 5 (Fig. 9) is present in the Slottet Bed, 
in the upper part of the Wilhelmøya Subgroup in DH4, 
DH5R and DH7A, and locally interbedded with FA 1 
in the Brentskardhaugen Bed. FA 5 includes four facies 
(Facies 5.1–5.4; Table 1) which form composite sandstone 
bodies up to 9 m thick. Facies 5.1 consists of poorly to 
well-sorted gravel, and very coarse and coarse-grained 
sandstones observed in the Slottet Bed. The sandstones 
have sharp and erosional bases, are generally up to a few 
cms thick and laterally discontinuous, but may locally 
reach more than 20 cm in thickness. They commonly 
grade upward into Facies 5.3. Facies 5.2 is locally observed 
near the base of the Slottet Bed in Konusdalen and 
consists of scarcely bioturbated, planar cross-stratified, 
sandstone beds up to 20 cm thick. Facies 5.3 is developed 
in the Slottet Bed in the drillcores and commonly occurs 
in vertical series between Facies 5.1 and 5.4. It includes 
light grey, very fine- to fine-grained sandstones with 
diffuse to well-defined plane-parallel and low-angle 
cross-lamination with an affinity to hummocky cross-
stratification. Facies 5.4 consists of intensely bioturbated 
medium- to very fine-grained sandstones with scattered 
glauconite. The sandstones are relatively well sorted with 
minor amounts of dispersed mud, accentuated by the 
bioturbation. A high diversity ichnofossil assemblage 
is observed in this facies comprising Asterosoma, 
Chondrites, Cylindrichnus, Diplocraterion, Ophiomorpha, 
Palaeophycus, Phycosiphon, Planolites, Rhizocorallium, 
Schaubcylindrichnus, Skolithos and Teichichnus. 

Interpretation: The high diversity/high intensity 
ichnofossil assemblage compares with distal expressions 
of the Skolithos ichnofacies or proximal expressions 
of the Cruziana ichnofacies (Maceachern et al., 2007). 
These ichnofossil assemblages are indicative of relatively 
high levels of wave or current energy, and are especially 
common in sand-prone, marine, lower shoreface 
environments. The presence of possible hummocky 
cross-stratification supports this interpretation and 
suggests periodic storm influence with deposition of 
bedload and suspended sediment during oscillatory-
dominant combined flows (Dumas & Arnott, 2006). 
Facies 5.1, 5.3 and 5.4 when present in a continuous 
vertical succession are suggested to reflect (1) rapid 
deposition of coarse-grained lags in scour troughs 
following strong storm wave erosion (Clifton, 2006), 
(2) waning storm phase with deposition of hummocky 
cross-stratified sandstones, and (3) re-establishment 
of fair-weather conditions allowing extensive biogenic 
reworking of recently emplaced storm deposits. The local 
presence of planar cross-stratification (Facies 5.2) reflects 

migration of straight-crested 2D dunes by longshore 
or shore-normal currents (Clifton et al., 1971; Reading 
and Collinson, 1996) and may represent deposition in 
a somewhat more proximal part of the shoreface (i.e., 
middle to upper shoreface). 

Palynological analysis

The palynological assemblages observed in the 
investigated samples are referred to composite 
assemblage zones (CAZ) described in the Data and 
methods section. Interpreted ages and characteristic 
palynomorphs of these CAZs are listed in Fig. 3.

Festningen

A single sample from the lower part of the Wilhelmøya 
Subgroup at Festningen (5.5 m above the base of the 
Subgroup; Fig. 4) was examined in the present study. 
The sample produced a rich assemblage dominated 
by dinocysts of the Heibergella/Sverdrupiella group, 
with abundant Veryhachium reductum and common 
Annulispora folliculosa. Additional palynomorphs 
observed include Kyrtomisporis speciosus, Camarozono-
sporites rudis, Classopollis harrisii, Dictyophyllidites 
mortonii, Stereisporites antiquasporites, Schizosporis sp. 
and Micrhystridium sp. The dominance of dinocysts of 
the Heibergella/Sverdrupiella group in association with 
common to abundant V. reductum and A. folliculosa, and 
rare K. speciosus indicate a reference to the Heibergella 
CAZ (Fig. 3).

DH2

Nineteen samples were analysed from the interval 
731.5 to 757.8 m MD in DH2 (Fig. 10). The samples 
from 731.5 to 732.5 m produced poorly preserved 
dinoflagellates including Dissiliodinium willei, Pareodinia 
“radiata” (informal species), Chytroeisphaeridia hyalina, 
Korystocysta spp., Sentusidinium spp. and Crussolia 
perireticulata. This assemblage is tentatively referred to 
the N. pellucida CAZ (Fig. 3). 

Samples from the Brentskardhaugen Bed proved barren 
of palynomorphs. In samples immediately below (739.9 
to 741.55 m MD), however, Nannoceratopsis senex 
occurs abundantly together with rare Mancodinium 
semitabulatum and Sestrosporites pseudoalveolatus. 
Sphaeromorphs are observed locally. These samples are 
referred to the N. senex CAZ (Fig. 3).

At 742.4 m MD the first markers of the Heibergella 
CAZ appear with abundant Veryhachium reductum and 
Annulispora folliculosa, and rare Kyrtomisporis speciosus. 
Heibergella/Rhaetogonyaulax spp. are present from 744.4 
m MD and continue down to 751.1 m MD together with 



NORWEGIAN JOURNAL OF GEOLOGY Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup in Spitsbergen, Svalbard 51

common V. reductum. A distinct change in assemblage 
is noted at 755.2 m MD where marine elements become 
strongly reduced or absent. The samples at 755.2–757.8 
m MD are characterised by Leschikisporis aduncus, 
Protodiploxipinus ornatus and Anapiculati sporites 
spiniger. Additional palynomorphs present include P. 
minor, Kyrtomisporis niger, Aratrisporites macro cavatus, 
Ovalipollis ovalis, Colpectopollis ellipsoideus, Dictyo-
phyllidites mortonii and Eucommiidites cf. intrareticulatus. 
The common occurrence of P. ornatus at 757.8 m MD may 
indicate a reference to the P. ornatus CAZ.

DH4

Fourteen samples were taken from DH4 (Fig. 10). 
Samples from the Agardhfjellet Formation, the 
Brentskardhaugen Bed and Sequence 2 as defined below 
(670.8 to 681.9 m MD) all proved barren or consisted 
only of non-diagnostic elements. At 682.9 to 689.1 m MD 
the appearance of rich and characteristic assemblages 
of the Heibergella CAZ is noted with abundant 
Heibergella/Sverdrupiella spp. and Deltoidospora spp., 
and common to abundant V. reductum. A. folliculosa and 
K. speciosus occur persistently throughout. Aratrisporites 
spp., Chasmatosporites sp., Dictyophyllidites spp. and 
Protodiploxipinus spp. may be common in some samples.

Samples from the Slottet Bed (692.0 to 695.4 m MD) 
were barren of palynomorphs. A sample collected imme-
diately below the Slottet Bed (697.0 m MD) was domi-
nated by Deltoido spora spp., with common P. ornatus and 
rare Aratri sporites spp., A. spiniger, C. ellipsoideus, Dictyo-
phyllidites spp., K. niger, Taeniasporites rhaeticus and 
Schizosporis sp.. The common occurrence of P. ornatus 
together with several characteristic Upper Triassic palyno-
morphs may indicate a reference to the P. ornatus CAZ.

Discussion

Palynostratigraphic correlation

The palynological data from DH2 and DH4 presented 
above have been compared with assemblages reported 
from other localities in Svalbard (Fig. 3; Bjærke & 
Dypvik, 1977; Bjærke & Manum, 1977; Bjærke, 1980a, 
b; Dypvik et al., 1985; Vigran et al., 2014; Paterson & 
Mangerud, 2015). 

Assemblages observed in samples from the De Geerdalen 
Formation in DH2 and DH4 are referred to the P. ornatus 
CAZ. Similar assemblages have been reported from the 
uppermost few metres of the Isfjorden Member of the De 
Geerdalen Formation at Festningen (Vigran et al.,2014) 
and from the Hopen Member of the De Geerdalen 
Formation on Hopen (Paterson & Mangerud, 2015). 

The R. arctica CAZ, associated with the Slottet Bed at 
the base of the Wilhelmøya Subgroup (Fig. 3) was not 
recognised in this study, probably due to non-productive 
samples from this sandstone-dominated stratigraphic 
level. Bjærke & Dypvik (1977), however, reported rich 
assemblages dominated by acritarchs and dinoflagellates, 
including Micrhystridium spp., Veryhachium spp., 
Balti sphaeridium spp., Cymatiosphaera spp., Ptero-
spermopsis sp. and Rhaetogonyaulax spp. (reported as 
Shublikodinium spp.) from phosphate nodules of the 
Slottet Bed (their Unit B) at Marhøgda. This suggests that 
the R. arctica CAZ is probably developed and present 
throughout the study area.

The Heibergella CAZ assemblage is recognised in 
both DH2 and DH4, and at Festningen. Comparable 
assemblages have been reported from Syltoppen (Dypvik 
et al., 1985; Assemblage 2), Sassenfjorden (Bjærke & 
Dypvik, 1977, Unit D) and Festningen (Vigran et al., 2014). 
Nagy et al. (2011) presented palynomorphs from two 
samples collected from the lower Wilhelmøya Subgroup 
at the Juvdalskampen section, some 20 kilometres 
east of the study area. These samples were dominated 
by the terrestrial palynomorphs Deltoidospora minor, 
Chasmatosporites apertus and Kyrtomisporis speciosus 
but also included abundant Rhaetogonyaulax spp. and 
Veryhachium reductum. The same samples were reanalysed 
as part of a palynofacies study by Mueller et al. (2014), 
who also noted the presence of Heibergella asymmetrica, 
indicating a reference to the Heibergella CAZ. 

An extensive range chart from the Festningen section 
covering the entire Wilhelmøya Subgroup was presented 
in Vigran et al. (2014, p. 84–85, tables A1.2.1 and A1.2.2). 
They recorded assemblages comparable with the 
Heibergella CAZ throughout most of the Wilhelmøya 
Subgroup. The boundary between the proposed 
Tverrbekken and Teistberget members was placed 
approximately in the middle of the succession (Vigran 
et al., 2014, p. 30, fig. 22a) in accordance with Mørk et 
al. (1999) and Nagy & Berge (2008). The Tverrbekken 
member was dated as Norian (their Limbosporites 
lundbladii CAZ), while an undifferentiated Early–Middle 
Jurassic age was indicated for the proposed Teistberget 
member. This interpretation was based on the presence 
of rare Cleistosphaeridium sp. (observed in 5 samples) 
and rare Cerebropollenites thiergartii (observed in 2 
samples). Cleistosphaeridium sp. has not previously been 
used as a marker for the Early Jurassic. C. thiergartii, 
however, has traditionally been regarded to have its first 
appearance in the Early Jurassic (e.g., Suneby & Hills, 
1988; Von Hillebrandt et al., 2007), although occurrences 
within the Rhaetian have also been documented (e.g., 
Bonis et al., 2009). The proposed Teistberget member at 
Festningen is otherwise completely dominated by diverse 
and characteristic Late Triassic elements, including 
the Norian dinocysts Hebecysta spp., Heibergella spp., 
Noricysta spp., Rhaetogonyaulax spp. and Sverdrupiella 
spp. (Bujak & Fisher, 1976), terrestrial palynomorphs 
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including the important marker Limbosporites 
lundbladii and typical Late Triassic palynomorphs 
including Aratrisporites spp., Camarozonosporites 
spp., Kyrtomisporis spp., Protodiploxipinus spp., 
Rogalskaisporites barentzii. These were all interpreted as 
reworked by Vigran et al. (2014) and relative abundances 
were not given. A potential diagnostic feature of the 
assemblages at Festningen is the occurrence of abundant 
Veryhachium spp. throughout both the proposed 
Tverrbekken and Teistberget members. Veryhachium 
spp. is known to occur abundantly in Norian deposits in 
Svalbard (Bjærke, 1977; Bjærke & Dypvik, 1977; Dypvik 
et al., 1985; Vigran et al., 2014; Paterson & Mangerud, 
2015), but has not been recorded as a dominating element 
in Lower Jurassic deposits in the region. Elements 
characteristic of the Toarcian N. senex CAZ were not 
present in any of the samples from the Festningen 
section and it is therefore suggested that the entire 
section (excluding the Brentskardhaugen Bed) should 
be referred to the Early Norian R. arctica/Heibergella 
CAZs. This is supported by Pčelina (1980) and Dypvik 
et al. (1985) who indicated that the Brentskardhaugen 
Bed rests unconformably on Upper Triassic deposits in 
western parts of Spitsbergen.

Assemblages referred to the N. senex CAZ were 
encountered only in DH2 in this study. Comparable 
assemblages, however, were also reported from 
mudstones immediately below the Brentskardhaugen 
Bed in the Sassenfjorden area by Bjærke & Dypvik 
(1977). The assemblages recorded from their 
Unit E were dominated by the dinoflagellate cyst 
Nannoceratopsis gracilis, with rare Susadinium sp. and 
terrestrial palynomorphs Ischyosporites variegatus 
and Contignisporites dunrobinensis. A sandstone unit 
developed at the same stratigraphic level in DH4 (681.9–
678.2 m MD) produced only barren samples but is here 
tentatively suggested to correlate with the N. senex CAZ 
in DH2 along with equivalent strata in DH5R and DH7A. 
Smelror & Below (1992) correlated Unit E of Bjærke & 
Dypvik (1977) with their Mikrocysta erugata taxa range-
zone. Unit E of Bjærke & Dypvik (1977), and deposits in 
DH2 here referred to the N. senex CAZ, however, lack 
the marker species and several characteristic taxa of the 
M. erugata taxa range-zone of Smelror & Below (1992) 
(including M. erugata, Phallocysta spp. and Parvocysta 
spp.). and the M. erugata taxa range-zone appears to 
compare more closely with the P. eumekes CAZ.

The P. eumekes CAZ was not observed in any of the 
samples analysed in this study, and in western central 
Spitsbergen has only been reported from phosphate 
nodules of the Brentskardhaugen Bed (Bjærke, 1980a; 
Below, 1987a, b). In situ occurrences of P. eumekes CAZ 
and associated deposits in western central Spitsbergen 
may therefore remain undocumented either due to 
unproductive samples or because it occurs only in a 
reworked position within the Brentskardhaugen Bed in 
western central Spitsbergen. 

Assemblages tentatively referred to the N. pellucida 
CAZ were observed in the uppermost samples in DH2, 
and the identified species are consistent with a Late 
Bathonian–Callovian age. Comparable assemblages have 
been reported from the lower part of the Agardhfjellet 
Formation at Syltoppen and Sassenfjorden by Dypvik 
et al. (1985; Assemblage 3) and Bjærke (1980b; Zone 
1), respectively. The age of the samples referred to 
the N. pellucida CAZ in DH2 is constrained upward 
by ammonites identified a few metres higher up by 
Koevoets et al. (2016). They reported finds of Kepplerites 
(Toricellites) aff. zortmanensis at 717.7 m MD in DH2 
and Kepplerites (Seymourites) svalbardensis at 663.8 
m mD in DH5R. These species were indicated to be of 
latest Bathonian–earliest Callovian age by Kopik & 
Wierzbowski (1988). The uppermost sample (341.5 
m) in the Festningen range chart of Vigran et al. (2014) 
included several dinoflagellate cysts characteristic 
of Middle–Upper Jurassic assemblages including N. 
pellucida, Ctenidodinium ornatum, Chytroeisphaeridia 
chytroeides and Gonyaulacysta jurassica, but were 
nevertheless placed within the Wilhelmøya Subgroup. 
This sample was probably contaminated or misplaced. 

Sequence stratigraphy

Based on the sedimentological and palynological 
framework established above, three sequences, sequences 
1–3, have been defined within the Wilhelmøya 
Subgroup in western central Spitsbergen (Figs. 10 & 
11). Due to the thin and stratigraphically condensed 
development of the succession, however, recognition of 
parasequences, systematic shoreline trends and systems 
tracts of individual sequences is problematic and mostly 
beyond the resolution offered by the available data. The 
sequence boundaries separating individual sequences 
appear to have relatively limited erosional relief and 
are interpreted as polygenetic erosion surfaces formed 
by subaerial erosion during relative sea-level fall and 
subsequently modified during erosional transgression 
and submarine scour (i.e., ravinement; Demarest & Kraft, 
1987) during relative sea-level rise (e.g., Cattaneo & Steel, 
2003), thereby removing any unequivocal evidence of 
former subaerial exposure. The sequence boundaries 
are typically overlain by conglomeratic lag deposits (FA 
1). Such deposits are considered common features of 
transgressive surfaces which coincide with subaerial 
unconformities (Van Wagoner et al., 1990; Kidwell, 1993). 

Sequence 1 (Early Norian)

Sequence 1 (Figs. 3, 11 & 12) features deposits of the 
R. arctica CAZ and Heibergella CAZ in the study area, 
including the Slottet Bed at the base of the Wilhelmøya 
Subgroup. The sequence disconformably overlies the De 
Geerdalen Formation, and the basal sequence boundary 
is interpreted to coincide with a regional Early Norian 



B. Rismyhr et al.54

 

disconformity and/or transgressive surface documented 
at the base of correlative successions in the southwestern 
Barents shelf and adjacent Arctic basins (Johannessen 
& Embry, 1989; Mørk & Smelror, 2001; Henriksen 
et al., 2011b). No associated hiatus has so far been 
documented at the base of this sequence by the available 
biostratigraphic data (Vigran et al., 2014; Paterson & 
Mangerud, 2015), but the boundary is unconformable 
at least locally (Pčelina, 1980; Krajewski, 1992; Nagy & 
Berge, 2008) and probably throughout Spitsbergen (e.g., 
Mørk et al., 1989). In Konusdalen, the irregular and 
erosional nature is evident when traced a short distance 
down-valley. The uppermost Isfjorden Member here 
includes 2 m of dark grey lagoonal mudstones overlain 
by a 2 m-thick interval of red- and green-weathering 
mudstones with vertically elongated, irregularly shaped 
calcareous nodules, interpreted as rhizoliths (Fig. 12B). 
Approximately 50 m down-valley, the red- and green-
weathering mudstones are absent and instead the Slottet 
Bed directly overlies the lagoonal mudstones below 
suggesting at least 2 m of erosion. Similar rhizolith 
horizons have also been observed in the uppermost De 
Geerdalen Formation in eastern Spitsbergen (Lord et al., 
2017), suggesting periods of emergence and subaerial 
exposure prior to the Early Norian flooding event.

The lower part of Sequence 1 displays an upward-
fining transgressive development (Figs. 11 & 12; see also 
Bjærke & Dypvik, 1977). A phosphatic conglomerate lag 
(FA 1) at the base of the Slottet Bed grades upward into 
shoreface sandstones (FA 5) and is subsequently overlain 
by offshore mudstones (FA 3) and glauconitic deposits 
(FA 2) suggesting upward-deepening and potentially a 
temporal decrease in sedimentation rates. The authigenic 
glauconite indicates development of a condensed section 
during maximum transgression (Loutit et al., 1988; 
Kidwell, 1989), and a maximum flooding surface (MFS) 
is placed at this level. In DH4, the position of this MFS 
is indicated by a distinct peak in the gamma ray (Fig. 
12) whereas in Konusdalen the MFS is placed at a partly 
unconsolidated glauconitic bed (facies 2.3) approximately 
1 m above the Slottet Bed (Fig. 12). The deposits overlying 
the MFS in sequence 1 are dominated by mudstones of 
FA 3. Correlative deposits in eastern Svalbard (Worsley, 
1973; Mørk et al., 1999) and the southwestern Barents 
shelf (Henriksen et al., 2011b; Ryseth, 2014) form part of 
a much thicker and overall upward-coarsening regressive 
succession. A comparable but considerably thinner 
development is also likely to have occurred within 
the present study area but may have been removed by 
subsequent erosion. A notable exception is the presence of 
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thin upward-coarsening units (FA 4) in Konusdalen and 
‘Criocerasdalen’. These are interpreted to correlate with 
subtle upward-coarsening units identified at Syltoppen by 
Dypvik et al. (1985). Accordingly, Sequence 1 is interpreted 
to form a top-truncated transgressive-regressive (T–R) 
sequence with no or only limited preservation of its 
regressive portion.

Sequence 2 (Early–Middle Toarcian)

Sequence 2 (Figs. 3, 11 & 12) encompasses deposits 
referred to the N. senex CAZ of probable Early–Middle 
Toarcian age. Maximum thicknesses are observed in the 
Adventdalen wells (4–9 m), and the sequence subsequently 
thins towards the north and west and is absent at both 
Syltoppen and Festningen. The sequence features 
sandstones of FA 5 in Adventdalen and Konusdalen which 
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 grade laterally into mudstones of FA 3 in DH2 and at 
Marhøgda. According to the palynological data, the base 
records a lacuna spanning the ?Middle Norian–earliest 
Toarcian (Fig. 3), probably reflecting extended periods 
of subaerial exposure, erosion and/or non-deposition. 
The lithological expression of this unconformity changes 
laterally within the study area but is commonly marked 
by a thin polymictic conglomerate (FA 1). At Marhøgda, 
the sequence boundary is inconspicuous visually and 
only recorded by a distinct change in palynomorph 
assemblages between under- and overlying mudstones 
of FA 3 (Bjærke & Dypvik, 1977). Observations of 
increasing plant debris, and a subtle upward-coarsening 
trend at Marhøgda led Bjærke & Dypvik (1977) to 
propose a regressive development for sequence 2 (their 
Unit E) at Marhøgda. Correlative strata of the Svenskøya 
Formation (Wilhelmøya Subgroup) on the eastern coast of 
Spitsbergen, however, form an overall transgressive Lower–
Middle Toarcian sequence, interrupted by regressive 
pulses and higher-frequency breaks in sedimentation 
(Rismyhr et al., unpublished data). This indicates that the 
development and preservation of different components 
of individual sequences (e.g., transgressive or regressive) 
may have varied markedly across Spitsbergen, probably 
as a result of lateral variations in subsidence rates (i.e., 
accommodation space).

Sequence 3 (Late Toarcian–Aalenian)

Sequence 3 (Figs. 3 & 11) includes deposits of the 0.2 to 4 
m-thick Brentskardhaugen Bed, which is observed at the 
top of the Wilhelmøya Subgroup in all studied drillcores 
and outcrop sections. The lower and upper boundaries 
represent important unconformities which are recognised 
throughout Svalbard (Pčelina, 1980; Wierzbowski et 
al., 1981; Bäckström & Nagy, 1985; Mørk et al., 1999; 
Nagy & Berge, 2008), but the timing is relatively poorly 
constrained by the available biostratigraphic data. 
Ammonites and bivalves observed within phosphate 
nodules of the Brentskardhaugen Bed indicate a Middle 
or Late Toarcian–Aalenian age, possibly extending into 
the Bajocian (Birkenmajer & Pugaczewska, 1975; Pčelina, 
1980; Wierzbowski et al., 1981; Bäckström & Nagy, 
1985), but may subsequently have been reworked and 
redeposited at a later stage. Well-preserved palynomorphs 
observed within the same phosphate nodules also point 
toward a Late Toarcian–Aalenian age (i.e., P. eumekes CAZ; 
Bjærke, 1980a; Below, 1987a, b; Smelror & Below, 1992), 
whereas shales at the base of the Agardhfjellet Formation 
have been dated as Late Bathonian–Callovian based 
on ammonites (Kopik & Wierzbowski, 1988; Koevoets 
et al., 2016), foraminifera (Nagy & Basov, 1998) and 
palynomorph assemblages (Bjærke, 1980b). 

Interpretations of the Brentskardhaugen Bed have 
differed widely both in terms of its depositional age, 
development and stratigraphic affiliation (Mørk et al., 
1999, and references therein). Several authors have 

regarded the Brentskardhaugen Bed as a transgressive 
lag deposited at the start of a late Middle Jurassic 
transgression and consequently placed it at the base of 
the Agardhfjellet Formation (e.g., Birkenmajer, 1972; 
Birkenmajer & Pugaczewska, 1975; Bäckström & Nagy, 
1985; Dypvik et al., 1985, 1991; Nagy & Berge, 2008; 
Nagy et al., 2011). In contrast, others have considered 
the Brentskardhaugen Bed to be an integral part of the 
Wilhelmøya Subgroup (e.g., Worsley, 1973; Pčelina, 1980; 
Mørk et al., 1982; Maher, 1989; Krajewski, 1990, 1992; 
Mørk et al., 1999; this study) although with various 
interpretations with regard to depositional mechanisms. 
Maher (1989) suggested the Brentskardhaugen Bed 
formed as a mega-storm deposit following a single or 
a series of short-lived storm events on a shallow shelf. 
This interpretation was based on various observations 
which he argued were more consistent with storm 
deposition rather than a transgressive lag origin, 
including its poor sorting, local grading (normal and 
reverse), and an apparent lack of lateral and internal 
discontinuities. A firm distinction between storm and 
transgressive lag deposits, however, seems somewhat 
artificial considering that storm and wave processes 
which act during erosional shoreline retreat and the 
development of a transgressive ravinement surface 
will also likely influence contemporaneous deposition 
of transgressive lags farther seaward (Demarest & 
Kraft, 1987; Nummedal & Swift, 1987; Cattaneo & 
Steel, 2003). Sedimentary features indicating wave and 
storm influence could therefore be expected within 
transgressive lag deposits (e.g., Hwang & Heller, 2002). 

Phosphorite conglomerates comparable to those 
observed within the Brentskardhaugen Bed have been 
widely documented in the southwestern Barents shelf 
within and at the top of the Pliensbachian–Bajocian 
Stø Formation (Gjelberg et al., 1987; Bugge et al., 2002; 
Klausen et al., 2018) where they commonly occur on 
transgressive ravinement surfaces separating shallowing-
upward shoreline successions (Gjelberg et al., 1987). In 
eastern and southern Spitsbergen phosphate nodules 
and phosphorite conglomerates have also been reported 
from Toarcian–Aalenian shallow and marginal marine 
sandstone beds below the Brentskardhaugen Bed (sensu 
stricto) in the upper part of the Wilhelmøya Subgroup 
(Worsley, 1973; Smith, 1975; Bjærke, 1980a; Bäckström 
& Nagy, 1985; Krajewski, 1992). These sandstones 
were suggested by Pčelina (1980) and Krajewski (1990, 
1992) to represent less stratigraphically condensed 
lateral equivalents of the Brentskardhaugen Bed 
in central Spitsbergen, and the phosphate nodules 
apparently yield ammonite faunas similar to those of the 
Brentskardhaugen Bed (Bjærke, 1980a; Pčelina, 1980). 
Pčelina (1980) distinguished 3–7 phosphoritic horizons 
within the Brentskardhaugen Bed and correlative 
strata and argued that each represented deposits of 
discrete depositional episodes during the Toarcian–
Bathonian. In southern Spitsbergen, Krajewski (1992) 
identified at least four such phosphorite horizons 
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within Toarcian–Aalenian sandstones. In the present 
study area, a comparable development is observed in 
DH4 where several phosphorite conglomerate horizons 
occur interbedded with sandstones of FA 5 within the 
Brentskardhaugen Bed (Fig. 11). 

Krajewski (1992) presented a model for the development 
of the Brenskardhaugen Bed and correlative deposits in 
southern Spitsbergen which involved repeated regressive 
phases with deposition of marginal and shallow-marine 

sediments punctuated by rapid transgressive episodes 
characterised by sediment starvation, phosphate nodule 
growth, and sediment winnowing and reworking. A 
similar model was presented by Gjelberg et al. (1987) 
to explain the mechanisms for the development of 
widespread sheet-sands in the Stø Formation in the 
southwestern Barents shelf. The model of Krajewski 
(1992) is generally supported in this study, though 
with some minor modifications. Krajewski (1992) 
proposed that the thin Brentskardhaugen Bed in 

Continental deposits Shoreface sandstones Offshore mudstones Transgressive lag conglomerates

SB

MFS

TS

T
S

T

HST FS
S
T

LS
T

relative
sea-level

low

high

Extraformational 
Qz/Ch-pebbles

Intraformational
P-pebbles/nodules

Subaerial 
unconformity Transgressive ravinement surface

Forced regression (relative sea-level fall)

Normal regression

Normal regression

Forced regression (relative sea-level fall)

Transgression with erosional reworking (i.e. ravinement)

Bypass and erosion

Bypass and erosion

Normal regression

Forced regression (relative sea-level fall)

Transgression with erosional reworking (i.e. ravinement)

Subaerial unconformity

Subaerial unconformityInflux of extraformational pebbles

Influx of extraformational pebbles

Shoreline trajectory

Sediment starvation, authigenic 
mineral and phosphate nodule growth

Transgressive lag

Ravinement surface

Ravinement surface Sediment starvation, authigenic 
mineral and phosphate nodule growth

Transgressive lag

Bypass and erosion
Influx of extraformational pebbles Subaerial unconformity

Transgression with erosional reworking (i.e. ravinement)

Transgressive lag Ravinement surface

Marhøgda Bed

Sediment starvation, 
authigenic mineral growth

la
te

 A
a

le
n

ia
n

–
e

a
rl
y
 B

a
th

o
n

ia
n

la
te

 B
a

th
o

n
ia

n
–

e
a

rl
y
 C

a
llo

v
ia

n
la

te
 T

o
a

rc
ia

n
–

e
a

rl
y 

A
a

le
n

ia
n
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 central Spitsbergen compared to correlative deposits 
in southern Spitsbergen was the result of minimal 
sediment input and remoteness from a coeval 
southwestern shoreline. We conversely propose that 
western central Spitsbergen was located in a more 
proximal position to the coeval shoreline than southern 
Spitsbergen, and that limited accommodation space 
and not sediment input was the main factor limiting 
the thickness of the preserved deposits. Using this 
model, the increased stratigraphic condensation of 
the Brentskardhaugen Bed and correlative deposits 
in western central Spitsbergen can be explained by a 
higher degree of sequence amalgamation, erosion and/
or reworking than in areas farther to the south and 
east on Spitsbergen. Accordingly, sequence 3 (and the 
Brentskardhaugen Bed) is interpreted to record repeated 
deposition, partial erosion, reworking and condensation 
of a series of high-frequency Upper Toarcian–Aalenian 
sequences (Fig. 13). Locally, the Brentskardhaugen Bed, 
or parts of it, may subsequently have been reworked 
and redeposited as a basal transgressive lag during 
a regional Bathonian transgression. In a sequence-
stratigraphic sense the Brentskardhaugen Bed may 
therefore encompass deposits from at least two different 
low-frequency sequences, including sequence 3 (Late 
Toarcian–Aalenian) and the overlying Bathonian–Lower 
Oxfordian T–R sequence defined at the base of the 
Agardhfjellet Formation (TR1; Koevoets et al., 2018). 
This T–R sequence includes deposits of FA 2 referred 
to the Marhøgda Bed, and the base records an abrupt 
shut-off of coarse-grained clastic sediment supply. These 
deposits grade upward into dark grey organic-rich shales 
(FA 3) of the Agardhfjellet Formation, with an MFS 
indicated by a distinct peak in the gamma-ray curve at 
671 m MD in DH4 (Figs. 11 & 12).

Palaeogeographic development and controls

The sedimentological and sequence-stratigraphic 
analyses above have established that the Wilhelmøya 
Subgroup in western central Spitsbergen comprises wave-
influenced marginal marine and shallow shelf sediments 
deposited during three distinct depositional episodes 
(sequences 1–3) interrupted by extended periods 
of erosion, sediment bypass and/or non-deposition. 
Following the Early Norian flooding event, recorded as 
a transgressive succession starting with the Slottet Bed at 
the base of sequence 1, open marine shelf environments 
prevailed throughout the study area. The presence of 
small-scale upward-coarsening units containing prodelta 
and distal delta-front deposits suggests that point sources 
may have facilitated local progradation of relatively small 
deltaic tongues into central western Spitsbergen during 
the Early Norian. 

A relative sea-level fall in the Late Norian–Rhaetian, 
probably amplified by uplift of Spitsbergen in the Late 
Triassic–Early Jurassic (e.g., Nøttvedt et al., 1993b; 
Grogan et al., 1999), led the study area to become 

subaerially exposed and subject to erosion and sediment 
bypass. Sedimentation probably did not recommence 
until accommodation space, albeit limited, again became 
available following a regional relative sea-level rise which 
culminated in the Early–Middle Toarcian. Limited 
accommodation space coupled with repeated fluctuations 
in relative sea level in the Late Toarcian–Aalenian led 
to the development of a thin and condensed succession 
comprising compositionally mature shoreface sandstones 
locally interbedded with transgressive lag conglomerates 
(Fig. 13). Following a relative sea-level fall in the late 
Aalenian–Bajocian (Fig. 13; e.g., Pčelina, 1980; Bäckström 
& Nagy, 1985; Smelror et al., 2009), the study area again 
became subaerially exposed leaving no depositional 
records from the Late Aalenian–Early Bathonian. A 
regional Bathonian transgression terminated deposition 
of the Wilhelmøya Subgroup and established offshore 
shelf environments throughout the region.

The thin Wilhelmøya Subgroup in the study area and its 
closely spaced unconformities are consistent with very 
limited accommodation space (i.e., subsidence rates) 
and low sedimentation rates during the latest Triassic–
Middle Jurassic interval in Spitsbergen (e.g., Johannessen 
& Embry, 1989). The epicontinental setting inferred 
for the Barents shelf during the Late Triassic–Middle 
Jurassic (e.g., Petrov et al., 2008; Anell et al., 2014) also 
points toward a basin physiography characterised by very 
gentle depositional gradients (e.g., Johnson & Baldwin, 
1996; Suter, 2006). This is supported by the relatively 
small variations in total thickness of the Wilhelmøya 
Subgroup throughout the study area as well as the limited 
erosional relief associated with the unconformities, 
both suggesting the amount of fluvial incision during 
relative sea-level lowstands was minimal. This is a typical 
feature of low-gradient ramp-type shelves which lack 
a distinct shelf edge (Posamentier & Allen, 1999). Low-
gradient shelves are also highly sensitive to relative 
sea-level fluctuations, and even small variations may 
cause rapid and significant relocations of the shoreline 
(Posamentier & Allen, 1999). A rise in relative sea level 
in this type of physiographic setting would lead to rapid 
landward migration of the shoreline, causing sediments 
to be trapped within the coastal zone. More distal parts 
of the shelf would consequently become starved of 
clastic sediment and thereby sites prone to precipitation 
of authigenic minerals (i.e., glauconite and phosphate). 
A fall in relative sea level, on the other hand, would 
allow river systems to rapidly extend far out onto the 
subaerially exposed shelf forming a widespread zone of 
sediment bypass and erosion. 

The extraformational pebbles (i.e., quartz, quartzite and 
chert) which are observed in conglomerates at several 
levels in the Wilhelmøya Subgroup may originally have 
been brought into the study area through such river 
systems. The pebbles were probably deposited as fluvial 
conglomerates which were subsequently subjected 
to transgressive erosion and reworking, mixed with 
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phosphate nodules and ultimately redeposited as coarse-
grained transgressive lags during ensuing relative rises 
in sea level. Potential sources for the extraformational 
pebbles were probably located to the west and/or 
north of the study area. In the Wandel Sea Basin in 
northeastern Greenland, a Middle Triassic–Late Jurassic 
hiatus is documented (e.g., Håkansson & Stemmerik, 
1989) suggesting that this area was exposed and eroded 
contemporaneously with deposition of the Wilhelmøya 
Subgroup in Svalbard. This is corroborated by zircon 
age signatures documented within the Wilhelmøya 
Subgroup (Bue & Andresen, 2013) which indicate 
renewed sediment influx from the west in the latest 
Triassic–Middle Jurassic. An alternative, or additional 
potential source area may have been located in northern 
Spitsbergen or areas immediately north of Svalbard. 
Based on apatite fission track analysis from northern 
Spitsbergen, Dörr et al. (2012) concluded that these 
areas were exhumed and eroded in the Early Jurassic 
and interpreted this as a response to rift-shoulder uplift 
associated with the opening of the proto–Amerasia 
Basin. Buiter & Torsvik (2007) also indicated uplift of 
areas north of Svalbard during the latest Triassic–Early 
Jurassic, but in response to compressional forces caused 
by a collision between the Lomonosov Ridge and the 
northern Barents shelf margin. 

Additional tectonic movements in the region which may 
have influenced the development of the Wilhelmøya 
Subgroup in Svalbard include the westward protrusion 
of the Novaya Zemlya fold-and-thrust belt in the Late 
Triassic to Early Jurassic (Buiter & Torsvik, 2007; Petrov 
et al., 2008). These particular movements may have 
contributed to the western parts of the Barents shelf 
becoming areas characterised by low accommodation 
due to regional forebulge development (Klausen et al., 
2017).

Conclusions

Through an integrated characterisation of the 
Wilhelmøya Subgroup in drillcores and outcrops in 
western central Spitsbergen we conclude that:

• The succession reflects deposition in marginal and 
shallow-marine, periodically sediment-starved, 
offshore shelf environments. 

• Palynological analysis suggests that the Wilhelmøya 
Subgroup in central western Spitsbergen can be 
subdivided into three unconformity-bounded 
sequences. Sequence 1 (early Norian) and sequence 
3 (?late Toarcian–Aalenian) are present throughout 
the study area, whereas sequence 2 (early–middle 
Toarcian) thins gradually and becomes absent towards 
the west and north. The sequence boundaries are 
interpreted to represent polygenetic erosion surfaces 

reflecting extended periods of subaerial erosion 
followed by erosional transgression (i.e., ravinement).

• A physiographic setting characterised by gentle 
depositional gradients (i.e., epicontinental ramp-
type shelf) facilitated rapid shoreline movements in 
response to relatively modest variations in relative sea 
level during deposition of the Wilhelmøya Subgroup. 
This, coupled with very low subsidence rates 
especially during the Early–Middle Jurassic, caused 
partial erosion, reworking and condensation of a 
series of high-frequency sequences, exemplified by the 
interbedding of polymictic phosphorite conglomerates 
and shoreface deposits in the Brentskardhaugen Bed. 

• The extraformational pebbles observed within the 
Brentskardhaugen Bed and other conglomerates of 
the Wilhelmøya Subgroup are suggested to have been 
supplied from uplifted and exposed margins to the 
west and/or north of the study area.
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