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Abstract: Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy where the
immature leukemia cells communicate with neighboring cells through constitutive cytokine release
and through their cell surface adhesion molecules. The primary AML cells express various integrins.
These heterodimeric molecules containing an α and a β chain are cell surface molecules that bind
extracellular matrix molecules, cell surface molecules and soluble mediators. The β3 integrin (ITGB3)
chain can form heterodimers only with the two α chains αIIb and αV. These integrins are among the
most promiscuous and bind to a large number of ligands, including extracellular matrix molecules,
cell surface molecules and soluble mediators. Recent studies suggest that the two β3 integrins are
important for leukemogenesis and chemosensitivity in human AML. Firstly, αIIb and β3 are both
important for adhesion of AML cells to vitronectin and fibronectin. Secondly, β3 is important for
the development of murine AML and also for the homing and maintenance of the proliferation for
xenografted primary human AML cells, and for maintaining a stem cell transcriptional program.
These last effects seem to be mediated through Syk kinase. The β3 expression seems to be regulated
by HomeboxA9 (HoxA9) and HoxA10, and the increased β3 expression then activates spleen
tyrosine kinase (Syk) and thereby contributes to cytokine hypersensitivity and activation of β2
integrins. Finally, high integrin αV/β3 expression is associated with an adverse prognosis in AML
and decreased sensitivity to the kinase inhibitor sorafenib; this integrin can also be essential for
osteopontin-induced sorafenib resistance in AML. In the present article, we review the experimental
and clinical evidence for a role of β3 integrins for leukemogenesis and chemosensitivity in AML.
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1. Introduction

Acute myeloid leukemia (AML) is an aggressive malignancy characterized by the bone marrow
infiltration of immature leukemia cells [1,2]. The median age at the time of first diagnosis is 65–70 years,
and the only possibility for cure is intensive chemotherapy that may be followed by allogeneic stem
cell transplantation [3]. However, even for patients receiving intensive treatment, there is a relatively
high risk of chemoresistant relapse, and this treatment is not possible for unfit and elderly patients
due to the unacceptable risk of treatment-related mortality. The acute promyelocytic leukemia (APL)
variant is an exception, and has a much better prognosis. In this review, the term AML refers to the
non-APL variants; for these patients, there is a need for new therapeutic strategies both for the younger
and elderly patients.
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The bone marrow stromal elements, i.e., extracellular molecules and nonleukemic stromal cells,
support leukemogenesis in human AML [4–7]. The integrins are one of the major families of cell
adhesion receptors [8], and may be important for these AML-supporting effects. In the present review,
we focus on the β3 integrin subset and their possible role in human AML.

2. The Integrin Family

The integrins are non-covalently linked heterodimers containing an α and a β chain, and
the dimers function as receptors for extracellular stromal molecules or cell surface molecules
(Figure 1) [8–12]. Both subunits are transmembrane proteins containing large extracellular domains,
a single transmembrane domain and a small cytoplasmic tail. Mammalian genomes contain 18 α

and 8 β subunits, and 24 αβ-dimers have been identified at the protein level. Integrins coordinate
the assembly of both cytoskeletal polymers and intracellular signaling complexes, and, on the cell
surface, the integrins bind to extracellular matrix molecules or counter-receptors on neighboring
cells. These linkages thereby integrate cells with their microenvironment, e.g., AML cells with the
extracellular matrix or neighboring nonleukemic cells.
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Figure 1. The integrin heterodimer consisting of one α and one β chain. In its activated state,
the heterodimer interacts with the extracellular matrix through binding to large structural proteins such
as collagen or fibrinogen, or with receptors on neighboring cells. The short cytoplasmic tail interacts
with a vast variety of ligands, with members of the cytoskeleton comprising the largest subgroup.
The main classification of ligands is shown at the top of the figure (for details see Table 1).
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Table 1. Classification of β3 integrin ligands and an overview of the importance ligands, their important
functions and their integrin binding; for additional details see [9] and the Gene database [13–40].

Ligand Integri
Binding Function of the Ligand in Human Acute Myeloid Leukemia (AML) Key

References

ADAM family
members αVβ3 ADAMTS-13, see von Willebrand factor (vWF) below.

Androgens αVβ3
A recent study described improved survival of elderly patients when
androgens maintenance treatment was combined with intensive
chemotherapy.

[14]

BSP αVβ3 Bone sialo protein (BSP). No known effect in AML.

Collagen α10β3

Collagen IV promotes the migration and adhesion of primary human
AML cells, MMP-9 is also increased. Collagen and collagen IV is present
in human bone marrow. It is not known whether binding to integrins
contributes to these effects or whether other receptors are responsible
(e.g., the diskoid domain receptor 1).

[15]

COMP αVβ3
Cartilage oligomeric matrix protein(COMP)
This mediator is synthesized by osteoblasts and may thus be expressed in
the bone marrow niches.

[16]

Connective tissue
growth factor αVβ3, αIIbβ3

Connective tissue growth factor (CTGF) is expressed in bone marrow
stromal cells; it is regarded as a regulator of adipocyte differentiation and
may influence leukemogenesis both through direct effects on the AML
cells and through indirect effects on AML-supporting stromal cells. AML
cells induce its expression in bone marrow mesenchymal cells.

[17,18]

Cyr61 αIIbβ3, αVβ3
Cystein-rich 61(Cyr61) is released by stromal cells, it is released as a
matricellular protein and it increases the proapoptotic effects of
mitoxantrone in AML-stromal cell cocultures.

[19]

Del-1 αVβ3

The secreted glycoprotein Developmental endothelial locus-1 (Del-1) is
expressed endothelial cell, becomes associated with extracellular matrix
or cell surfaces and regulates hematopoiesis in the bone marrow stem cell
niche.

[20]

Fibrillin αVβ3
Murine studies have demonstrated that the extracellular matrix protein,
fibrillin, is expressed in the bone marrow and functions as a regulator of
normal hematopoiesis.

[21]

Fibrinogen αIIbβ3, αVβ3

The plasma fibrinogen levels at the time of diagnosis seem to have a
prognostic impact and are associated with an adverse outcome in AML
patients. This impact is not caused by increased early mortality, but it is
not known whether this long-term effect is caused by a direct effect of
fibrinogen on the AML cells. Both soluble and solid-phase fibrinogen
induces Syk signaling in human megakaryoblastic cell lines.

[13,22]

Fibronectin αIIbβ3, αVβ3

Experimental studies suggest that AML cell adhesion to fibronectin
increase leukemia cell proliferation, accelerate S-phase entry and cause
accumulation of the cell cycle inhibitor CDC25A. This CDC25A
accumulation was caused by decreased degradation. Activation of
PI3K-Akt-mTOR seemed to be important for this adhesion-dependent
growth enhancement. Fibronectin adhesion inhibited the proliferation of
normal CD34+ bone hematopoietic cells.

[23]

ICAM-4 αVβ3, αIIbβ3
Intercellular adhesion molecule-4 (ICAM-4) is expressed by erythroid
cells and seems important in erythropoiesis, but it is not known whether
it is important in AML.

[24]

L1 αVβ3, αIIbβ3 L1 is expressed by human monocytes and may thus be expressed in the
bone marrow stem cell niches. [25]

MFG-E8 αVβ3, αVβ5
The Milk fat globule-EGF-factor 8 protein (MFG-E8) is expressed and
released by bone marrow macrophages and is thus present in the AML
cell microenvironment.

[26]

MMP-2 αVβ3

Matrix metalloprotease 2 (MMP-2) is constitutively released by primary
human AML cells for most patients and is involved in AML cell
migration; it may even be important for the extracellular migration of
leukemic cells. An adverse prognostic impact of constitutive MMP-2
release has been suggested.

[27–29]

Osteopontin αVβ3

Monocytic differentiation in human AML cells seems to be associated
with increased expression of both ITGαV and osteopontin. High
osteopontin serum levels seem to be associated with an adverse
prognosis in human AML, but this impact differs among patients and is
most clearly seen for patients with intermediate risk factors.

[30–32]
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Table 1. Classification of β3 integrin ligands and an overview of the importance ligands, their important
functions and their integrin binding; for additional details see [9] and the Gene database [13–40].

Ligand Integri
Binding Function of the Ligand in Human Acute Myeloid Leukemia (AML) Key

References

PCAM αVβ3
Mesenchymal stem cells express Platelet cell adhesion molecule (PCAM);
this ligand is thus expressed in the bone marrow stem cell niches where
leukemic stem cells locate.

[33]

SPARC αVβ3? Secreted-Protein-Acidic-Cysteine Rich (SPARC)
Seems to induce β3-catenin signaling at least in subsets of human AML. [34]

Thyroid
hormones αVβ3

A matched case-control study with 28 children/patients with AML
showed that extreme Thyroid stimulating hormone (TSH) levels, both
high and low at neonatal screening, were associated with decreased risk
of AML

[35]

Trombospondin αVβ3, αIIbβ3

Thrombospondin induces apoptosis in AML cell lines and also in
primary human AML cells, but this effect may be due to ligation of CD36.
The effect is antagonized by thrombopoietin, a mediator that is often
increased in AML patients receiving intensive chemotherapy.

[36,37]

Vitronectin αIIbβ3, αVβ3
Adhesion of Mixed lineage leukemia-Eleven-nineteen lysine-rich
leukemia (MLL-ELL) murine myeloid progenitor cells to vitronectin
activates/phosphorylates β3 integrins and Syk kinase.

[38]

vWf αVβ3, αIIbβ3

ADAMTS-13 is essential for maintaining the keeping normal sized of the
vWF; it cleaves the multimer into smaller forms. Low plasma levels of
ADAMTS-13 seems to be associated with an adverse outcome in human
AML, but it is not known whether this is due to an effect of
ADAMTS-13/vWF directly on the AML cells or whether it represents a
secondary reactive mechanism.

[39,40]

Adhesion mediated by integrins comprises a diverse family of cellular contacts essential for the
organization of individual cells into tissues. The integrin adhesome includes 232 scaffold, cytoskeletal
and signaling proteins [41]; 148 of these molecules are referred to as intrinsic proteins that reside
within the adhesion site, whereas the remaining 84 components associate transiently with the integrins.
A classification of the involved molecules is given in Table 2; it can be seen that the downstream
signaling from integrins involves a large number of intracellular molecules with various functions.
Several of these molecules can also be involved in carcinogenesis/leukemogenesis, including the
guanosine triphosphatase (GTPase) activating proteins and the GTPases.

Table 2. The integrin adhesome.

Actin and Actin Regulators (18 Members)

Closely related to the cytoskeleton
Adaptor proteins contain a variety of protein-binding modules that link protein-binding partners
together and facilitate formation of larger complexes.
The integrins are the largest subset of proteins in this group
Channel proteins (5 members)
Chaperones (3 members)
E3 ligases
GTPase activating proteins (14 members)
Guanine nucleotide exchange factor (16 members)
GTPases (6 members)
Proteases (4 members)
Phosphatidyl inositol (PtdIns) kinases (2 members)
PtdIns phosphatases (3 members)
RNA or DNA regulation (4 members)
Serine/Threonine (Ser/Thr) kinases (10 members)
Ser/Thr phosphatases (5 members)
Tyrosine (Tyr) kinases (10 members)
Tyr phosphatases
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3. The β3 Integrin (ITGB3) Associations with Clinico-Pathological Features in AML

3.1. Regulation of ITGB3 Expression in AML Cells; the Importance of Troponin, PI3K and Monocytic
Differentiation

Experimental studies suggest that thrombopoietin increases the activation of αIIbβ3 integrin,
and the adhesion of leukemic cells to fibrinogen is thereby increased [13]. This increased binding is
caused by recognition of the Arg–Gly–Asp (RGD) sequence on the fibrinogen ligand. The effect is only
seen for αIIbβ3, but not for αVβ3 integrins, and signaling through phosphatidylinositol-3-kinases
(PI3K) is important for the increased integrin expression/binding. The number of receptors per
AML cell seems to be comparable with the expression in carcinoma and endothelial cells, and the
leukemia cell levels of both αV and β3 chains seem to increase further in response to induction of
monocytic differentiation [42]. Finally, there seems to be a variation in the expression within AML cell
populations and a two-fold variation of αIIbβ3 protein expression has been detected even within more
homogeneous AML cell line populations [43].

3.2. Associations between ITGB3 Expression and Clinico-Pathological Features

A high expression of ITGB3 at the mRNA level is associated with higher age and chemoresistance,
i.e., a higher fraction of these patients with high ITGB3 expression had cytogenetic abnormalities
or Fms-like receptor tyrosine kinase 3 (FLT3)-internal tandem duplications (ITD) associated with
adverse prognosis [44]. However, these patients had, in addition, lower peripheral blood blast counts,
lower blast percentage in the bone marrow and higher peripheral blood platelet counts. Taken together,
these observations suggest that high ITGB3 expression is part of a high-risk AML cell phenotype, also
characterized by differences with regard to AML cell trafficking (i.e., lower peripheral blood blast
count) as well as a different influence on the persisting normal hematopoiesis (i.e., higher levels of
circulating platelets) compared with other patients.

αIIbβ3 dimers (i.e., CD41 and CD61) are regarded as markers of megakaryocytic differentiation,
as these dimers are expressed by megakaryocytes and platelets [45,46]. This integrin seems to
have an increased expression in the uncommon acute megakaryoblastic variant of AML. However,
the functional importance of αIIbβ3 may not be limited to the megakaryoblastic variant because αIIb
together with α5, β1 and β3 are all important for adhesion of the erythroleukemia cell line (HEL) to
vitronectin and fibronectin [47].

4. The Promiscuity of β3 Integrin Ligand Binding

A characteristic of most integrins is their ability to bind a wide variety of ligands; at the same time,
many matrix molecules and cell surface adhesion molecules can bind multiple integrin receptors [48].
A classification of the various integrins based on their binding characteristics has been described in
detail in a previous review [9], and integrins can be classified into four subsets based on their ligand
binding. Both β3 integrins belong to the subgroup of RGD binding integrins, i.e., integrins recognizing
ligands containing an RGD tripeptide sequence. These integrins are among the most promiscuous and
bind to a large number of ligands, including extracellular matrix and soluble vascular ligands [13–40].
Important ligands for the β3 integrins are given in Table 1. It can be seen from the table that many of
these ligands are expressed in the bone marrow by various AML-supporting stromal cells, including
cells in the stem cell niches. Many of these ligands are known to affect AML cells, but for several
of them it is not known whether these effects are mediated through ligation of β3 integrins, other
integrins or different receptors.
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5. β3 Integrins and Spleen Tyrosine Kinase (SYK) Activation in Murine Models of AML

5.1. ITGB3 Shows High Expression in the MLL-AF9 Mouse Model of AML

Several MLL translocations transform committed hematopoietic progenitors; one of them,
MLL-AF9, is the basis for the MLL-AF9 mouse model of AML (Figure 2A). This leukemia variant
depends on Wnt-β-catenin; the negative β-catenin regulator Apc is decreased [49] and at the same
time this leukemia is also characterized by high expression of ITGB3 as well as β-catenin (Ctnnb1)
and High mobility group box 3 (Hmgb3) [50]. Studies of the intracellular signaling downstream to β3
integrins suggest that Syk, Vav1, Rac2 and CD47 are all activated. However, Syk activation seems to be
of particular importance for the effects of ITGB3 on AML cell homing, transcriptional regulation in
leukemic stem cells and differentiation induction of the leukemic cells.
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As described above, this leukemia is based on an MLL-translocation and is dependent on
Wnt-β-catenin signaling. However, several studies have demonstrated that Wnt-β-catenin is important
also in AML with other genetic abnormalities, including del(5) [51], t(8;21) [52], normal karyotype
AML [53], as well as FLT3-driven AML [52]. This pathway seems important for the survival of AML
stem cells, and overexpression of this pathway has been associated with a poor prognosis in human
AML [54]. Targeting of Wnt-β-catenin has also been suggested as a possible therapeutic strategy in
human AML [55]. Thus, the Wnt-β-catenin pathway seems important for various subsets of AML
and not only patients with MLL-translocations, and the possible role of ITGB3 suggested by the
observations in this murine AML models may therefore be relevant also for several other AML subsets
and not only this specific MLL-variant.

5.2. Myeloid Ectopic (Viral) Insertion Site-1 (Meis1)/Hoxa9 Driven AML Cells Depend on Meis1-Induced Syk
Expression and ITGAV/ITGB3 Induced Syk Activation

The importance of Syk was also investigated in another murine AML model where the
transcription factor Meis1 drives myeloid leukemogenesis in the context of HomeboxA9 (HoxA9)
overexpression (Figure 2B) [56]. In this model Meis1, increased Syk overexpression through a Meis1
dependent feed-back loop: Meis1 acts through downregulation of transcription factor PU1 to increase
the expression of mirR-146a that directly increases Syk expression. Syk signaling then induces Meis1
and thereby recapitulates leukemogenic features of the HoxA9/Meis1 driven leukemia. Syk inhibition
with disruption of the Meis1/PU1/miR-146a/Syk loop has antileukemic effects and prolongs survival
of these mice, even though activation of Wnt is also involved in the cell transformation, and Meis1 also
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enhances signaling through PI3K/Akt and Mitogen activated protein/extracellular signal-regulated
kinase (Erk/MAP) kinase pathways in addition to Syk activation. Finally, additional studies showed
that Meis1 increased the expression of both ITGB3 and integrin αV (ITGAV) and thereby upregulates
the cell surface levels of this integrin heterodimer [56]. Knock-out studies suggested that the Syk
activation was at least partly dependent on ITGB3 also in this model. Thus, a combined action of
ITGB3 expression, Wnt signaling and Syk activation seems to be important both in MLL-AF9 and
Meis1/HoxA9 driven disease.

Several studies suggest that Meis1/HoxA9 are also important in human AML. Overexpression of
HoxA9 is associated with an adverse prognosis and high expression is associated with a variety of
genetic abnormalities not only including MLL translocations, but also Nucleoporin98 (NUP98) fusion,
Nucleophosmin 1 (NPM1) mutations isocitrate dehydrogenaseIDH mutations, CDX deregulation,
MYST translocations, c-AMP response element-binding protein (CREBBP) involving abnormalities and
monocytic leukemia zinc finger protein (MOZ) fusions [57–60]. Meis1/HoxA9 then seem to belong to
a set of homeodomain transcription factors associated with adverse prognosis [58,61]. Taken together,
these observations suggest that Meis1/HoxA9 are important for various subsets of human AML;
the observations in this animal model of AML suggesting a role of β3 integrins in the pathogenesis
and in the development of clinical chemoresistance, may therefore be relevant also for human AML.

5.3. Proliferation of AML Cells Expressing the MLL-ELL Fusion Protein is Increased by Cooperation between
Fibroblast Growth Factor (FGF) 2 and ITGAV/ITGB3 Integrins

In another experimental murine AML model, the MLL-ELL fusion protein activates aberrant
expression of HOX genes (Figure 2C) [38,62]. HoxA9 and HoxA10 then increase the expression
of the FGF2 gene, and the autocrine stimulation by FGF2 stabilizes β-catenin that increases the
expression of CDX4; this last mediator targets HoxA9 and HoxA10 and thereby augments the
effect of the MLL-ELL fusion protein. Thus, the autocrine FGF2 stimulation is a part of a MLL-ELL
initiated loop including MLL-ELL, HoxA9 and HoxA10/FGF2/β-catenin/CDX4 and then back to
HoxA9 and HoxA10. The MLL-ELL fusion protein also increased ITGB3 expression and activation
of the αVβ3 integrin that caused integrin-mediated Syk activation leading to increased proliferative
responsiveness to Granulocyte macrophage colony stimulating factor (GM-CSF). Taken together,
the observations in this experimental model also support a role of the αVβ3 integrin and its activation
of Syk in leukemogenesis.

6. The Role of αVβ3 Integrins Human AML

6.1. HOX Genes and β-Catenin

The M9 cells are a human model of MLL-AML; these cells were derived from umbilical cord blood
cells transduced with the MLL-ELL oncogene [56]. These cells express β3 integrins, and transplantation
of these cells into immunocompromised mice showed that β3 integrins were important for later
development of leukemia. Furthermore, ITGB3/ITGAV is also expressed by primary human AML
cells both with and without MLL-rearrangement [56], and xenografting experiments suggest that the
β3 integrins were then important for engraftment and thereby disease development both in patients
with and without MLL rearrangements. These observations suggest that β3 integrins are important
also for human disease development both in MLL and non-MLL variants of AML.

Previous studies of murine AML suggest that HoxA9/HoxA10 are involved in leukemogeneisis
through their effects on the expression/activation of αVβ3 integrins and Syk (Figure 2B,C) [38].
Furthermore, studies of human AML suggest that HOX genes can be important in human
leukemogenesis, and high HOX expression seems to identify a distinct subset of patients [63,64].
Similar to the murine AML models described above [38], HOX expression seems to be associated
with increased expression of FGF2, αVβ3 integrins and CDX4 compared with normal hematopoietic
cells. The AML patients showing the highest HOX expression also show the highest levels of FGF2,



Int. J. Mol. Sci. 2018, 19, 251 8 of 17

αVβ3 and CDX4, and this subset of patients with the highest expression are also characterized by a
higher proliferative response to exogenous GM-CSF and a stronger antiproliferative effect of FGF2/Syk
inhibition [38]. Thus, the HOX/FGF2/β-catenin/CDX4 and the HOX/αVβ3/Syk cooperation first
identified in murine models of AML seems important also in human leukemogenesis at least for a
subset of AML patients that mainly includes patients with intermediate cytogenetics [63].

The role of β-catenin was further investigated in a recent study [44] describing an association
between ITGB3 expression and survival in human AML (see Figure 2A,B). This association was
seen especially for patients with normal cytogenetics and FLT3-ITD. The authors also presented
experimental evidence for a role of αVβ3 in osteopontin-induced chemoresistance in FLT3-ITD
AML, and this seemed to be caused by activation of the αVβ3/PI3K/Akt/glycogen synthase
kinase-3 β (GSK3-β)/β-catenin pathway. These observations further support that the cooperation
between HOX/FGF2/β-catenin/CDX4, HOX/αVβ3/Syk and αVβ3/PI3K/Akt/GSK3-β/β-catenin is
important for leukemogenesis and probably also chemosensitivity in human AML.

6.2. Modulation of Syk and Focal Adhesion Kinase (FAK) Activation by β3 Ligation

The two β3 integrins can bind a wide range of ligands, and the downstream activation
of the nonreceptor protein tyrosine kinases Syk and FAK is in addition dependent on how
the ligand is presented to the integrin [13]. This has been clearly demonstrated by fibrinogen;
an experimental study of a megakaryoblastic leukemic cell line showed that soluble fibrinogen caused
tyrosine-phosphorylation of Syk but a dephosphorylation of FAK whereas solid-phase fibrinogen
caused immediate FAK phosphorylation followed by delayed Syk phosphorylation. A combined
soluble and solid phase fibrinogen exposure caused tyrosine phosphorylation of the β3 and at the
same time complex formation with Syk; the further translocation of Syk to the cytoskeleton seems to
be a two-step process and one of these later steps is also β3 dependent [65].

The importance of FAK in human AML is summarized in Table 3. Several studies have described
a role of FAK in the regulation of proliferation, chemoresistance and migration of human AML
cells [66–70]. Even though these studies suggest that the functional interactions between upstream
β3 integrins and FAK has a clinical relevance, additional studies are definitely needed to clarify the
possible importance of β3 integrins initiated signaling for the role of FAK expression and activation in
human AML. However, the observed association between FAK activation and β3 integrin expression
suggest that these integrins contribute involved in FAK activation.

Table 3. The role of the non-receptor tyrosine kinase, focal adhesion kinase (FAK), in human AML.

• FAK expression is significantly higher in MDS that later transform to AML [66].
• FAK expression is detected only for a subset of patients; FAK was then activated at Tyr-397 and this was

associated with increased blast migration, increased marrow cellularity and adverse prognosis [67].
• High FAK expression is associated with unfavorable cytogenetics and an increased risk of AML relapse,

and this expression correlates with integrin β3 expression [68].
• FAK splice variants are abnormally expressed in leukemic stem cells from patients with adverse

prognosis, and these abnormal variants cause activation of β-catenin and thus replace the Wnt-controlled
β-catenin activation [66].

• Constitutive activation of FAK activation has an essential role in nuclear translocation of Signal
transducer and activator of transcription (STAT5) in AML with FLT3 and KIT mutations [69].

• Integrin α4β1 expression, CXC chemokine receptor 4 (CXCR4) expression and FAK activation seem to
have additive adverse prognostic impacts [70].

6.3. Clinical Evidence for a Role of β3 Integrins in Human AML; the Stories of SPARC and TRIM62

The secreted-protein-acidic-cysteine-rich (SPARC) encodes the matricellular protein osteonectin
that has both intracellular and extracellular functions including regulation of the growth factor
families transforming growth factor β (TGFβ), FGF, vascular endothelial growth factor (VEGF)
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and platelet-derived growth factor (PDGF); a recent study described that the overexpression of
this protein independently predicted an adverse outcome in patients with normal karyotype
AML [34]. However, its prognostic impact may depend on the biological or genetic context
because AML with MLL rearrangements is also associated with an adverse prognosis, but shows
downregulated SPARC, and increased levels have been described for the favorable AML variants
with t(8;21) and inv(16) (for references see [34]). Experimental studies suggested that the increased
SPARC expression was mediated by SP1/NFκB/miR-29b, and the secreted SPARC activated the
integrin-linked kinase-Akt-GSK3β pathway. GSK3β will induce degradation of β-catenin, and GSK3β
inactivation through the Akt-mediated phosphorylation will thereby increase β-catenin levels. Thus,
these observations also support the hypothesis that integrin/β-catenin signaling is important for
leukemogenesis and/or chemosensitivity at least in subsets of AML patients.

Tripartite motif-62 (TRIM62) is a putative tumor suppressor gene, and low expression of this
mediator has been associated with adverse prognosis and shorter remission duration, event-free
survival and overall survival in patients with intermediate-risk cytogenetics [71]. In this study, age and
TRIM62 levels were the most powerful independent prognostic factors. However, among the proteins
that were most strongly downregulated in patients with low TRIM62 (i.e., adverse prognosis) were both
the integrin-β3 dimers (associated with adverse prognosis previously [44]) and their ligand fibronectin.

Taken together these two studies suggest that β3 integrin expression has a prognostic impact in
AML patients receiving intensive therapy, but this impact seems to differ between patient subsets.

7. β3-Integrins, Intracellular Signaling and Transcriptional Regulation—A Summary of Our
Current Evidence

The present evidence from animal models as well as human studies described above suggest that
β3-integrin initiates downstream signaling that alters transcriptional regulation. Several pathways
seem to be involved, and the most important observations are summarized below:

1. The extracellular SPARC molecule may be important for regulation of cytokine responses (e.g.,
FGF2 and possibly GM-CSF responses) and thereby interact with the functional effects of
β3-integrin signaling.

2. Several cell surface molecules seem to be important for the signaling, including CD47 and
β-catenin; this last protein has a dual function and is important both for cell adhesion and
transcriptional regulation. Another cell surface proteins being important for the signaling is CD47.

3. Syk seems to be an important downstream mediator, possibly the most important.
4. However, several pathways seem to be involved, including Wnt-signaling, PI3K-Akt, and

Erk-MAP. The importance of Vav1 (guanine nucleotide exchange factor) and Rac2 (a GTPase) in
the MLL-AF9 model also suggest that G-protein dependent signaling may be involved.

5. Several transcriptional regulators also seem to be involved, including β-catenin, Meis1, miR-146a,
PU1, HoxA9, HoxA10 and CDX4.

Thus, several cell surface molecules, intracellular pathways and transcriptional regulators are
important for the function of β3 integrins in human AML. The contribution of each molecule/mediator
seems to depend on the biological context/experimental model, and this last observation suggests that
their importance may also differ between biologically heterogeneous AML patients.

8. The Soluble Isoform of β3 Integrins

Alternative splicing is an important mechanism to increase the functional diversity of integrins,
and a soluble β3 (sβ3) variant has been detected in the serum for a subset of AML patients [72].
This variant represents an alternatively spliced and truncated variant. Additional studies showed that
this sβ3 integrin increased natural killer (NK) cell proliferation, interleukin-2 (IL2)-induced NK cell
release of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), NK cell expression of granzyme
B and Fas ligand and NK cell cytotoxicity. This included increased cytotoxicity against AML cells



Int. J. Mol. Sci. 2018, 19, 251 10 of 17

that was probably caused by a combined effect of the cytokine release, Fas-induced apoptosis and
increased cytotoxic capacity.

Antileukemic immune reactivity is especially important in AML patients treated with allogeneic
stem cell transplantation, and the NK cells seem to contribute to this reactivity [73]. The capacity
of primary AML cells to release sβ3 integrins may therefore be important for the posttransplant
antileukemic effects mediated by the graft or donor NK cells, and it may also contribute to patient
heterogeneity with regard to the efficiency of the posttransplant antileukemic immune reactivity.

9. The Possible Importance of Cooperation between Different Integrins

Experimental studies of normal leukocytes suggest that the function of one integrin can be
regulated by another integrin. Several examples are known: α5β2 ligation activates α2β1 integrins in
monocytes and β3 ligation can activate the function of αMβ2 integrin. However, αVβ3 can also inhibit
the function of α5β1 in the human AML cell line K562 [74–76] and this last αVβ3 effect does not seem
to be a direct interaction between the two types of integrins but rather a crosstalk at the intracellular
signaling level. Most studies of integrins in human AML have focused on one or only a few integrins,
and future studies should probably further address the question whether the integrin profile is more
important than single integrin expression. Previous studies suggest that β1 integrins are important
in human AML, and it will therefore be particularly important to investigate the possible crosstalk
between β3 and β1 integrins in human AML [77–80].

10. Summarizing and Concluding Comments

Several integrins are expressed by primary human AML cells, and previous studies have shown
that they can be used together with other molecules as markers for leukemia cell differentiation and
thereby as markers for identification of patient subsets. More recent studies have lately shown that at
least certain integrins or their downstream mediators are potential therapeutic targets in AML.

The integrin family consists of 24 heterodimers that can bind to a wide range of ligands expressed
on the surface of neighboring cells or by extracellular matrix molecules. Many of them are expressed
by primary human AML cells, including the two β3 integrins αIIbβ3 and αVβ3 integrins. β3 integrins
and especially αVβ3 seem to be important for disease development and chemosensitivity in human
AML at least for certain subsets of patients, including patients with MLL translocations. Furthermore,
the integrin interactome consists of a large number of intracellular mediators, but especially β-catenin,
the Syk kinase and several HoxA genes seem to be important together with the FGF2 receptor for the
downstream signaling of β3 integrins in human AML cells. Thus, Syk inhibition as well as β3-specific
antibody blocking may be a possible strategy for inhibition of AML-supporting signaling circuits.

The β3 integrins show downstream crosstalk with other integrins as well as other intracellular
signaling pathways. This includes both PI3K-Akt and NFκB signaling as well as certain β1 integrins.
Thus, combination of β3-inhibition and other targeted therapies may become possible. There may
also be a crosstalk with the chemokine system and intracellular signaling initiated by chemokine
receptors [70,78].

Integrins seem to be important for the development of chemoresistance in human AML. Firstly,
galectin 1 seems to induce sorafenib-resistance in hepatocellular carcinoma through induction of αvβ3
integrin expression and activation of PI3K-Akt signaling [81]. Galectin-1 is also expressed in human
AML bone marrow both by the leukemic cells and by stromal cells in the stem cell niches [82,83].
A recent study could not find any association between galectin expression in primary human AML
cells and prognosis after conventional chemotherapy, but further studies are needed to clarify whether
galectin-1 dependent chemoresistance is important for subsets of patients or for kinase inhibitory
strategies. Secondly, α3 integrins as well as expression of the downstream FAK seem to be important
for development of sorafenib resistance in hepatocellular carcinomas and mantle cell lymphoma [84,85];
αvβ3 integrin may then influence these mechanisms through the crosstalk between various integrin
heterodimers (see above).
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The possibility of using inhibition of β3 integrins in future AML treatment should thus be
considered. However, a further characterization especially of patient heterogeneity with regard to
integrin expression profile and integrin crosstalk is needed to clarify whether this therapeutic strategy
will be effective only in certain patients. The β3 integrins are very promiscuous with regard to binding
of various ligands (Table 1), and future studies have to address whether the binding of certain ligands is
especially important in AML. Finally, it will be necessary to further investigate whether this therapeutic
approach can be combined with conventional cytotoxic therapy or other targeted therapies before an
optimal design of future clinical studies will be possible.
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Abbervations

AML Acute myelogen leukemia
APL Acute promyelocytic leukemia
COMP Cartilage oligomeric matrix protein
CREBBP CREB binding protein
CTGF Connective tissue growth factor
Cyr61 Cystein-rich61
Ctnnb1 β–catenin
CXCR4 CXC chemokine receptor 4
Del-1 Developmental endothelial locus-1
ELL Eleven-nineteen lysine-rich leukemia
FAK Focal adhesion kinase
FLT3 Fms-like receptor tyrosin kinase 3
GSK3-β Glycogen synthase kinase-3 β

GTPase Guanosine triphosphatase
GM-CSF Granulocyte-macrophage colony-stimulatingfactor
HEL Erythroleukemia cell line
HoxA9 Homebox A9
Hmgb3 High mobility group box 3
ICAM-4 Intercellular adhesion molecule-4
IL2 Interleukin-2
IFN-γ Interferon-γ
ITD Internal tandem duplications
ITGAV Integrin αV
ITGB3 Beta3 intergrin
MAP/ERK Mitogen activated protein/extracellular signal-regulated kinase
MEIS1 Myeloid ectopic (viral) insertion site-1
MFG-E8 Milk fat globule-EGF-factor 8 protein
MLL Mixed lineage leukemia
MMP-2 Matrixmetalloprotease 2
MOZ Monocytic leukaemia zinc finger protein
NK Natural killer (cell)
NPM1 Nucleophosmin 1
NUP98 Nucleoporin98
PDGF Platelet derived growth factor
PCAM Platelet cell adhesion molecule
PtdIns Phosphatidyl inositol
PI3K Phosphatidylinositol-3-kinases
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RGD Arg-Gly-Asp
Ser/Thr Serine/Threonine
S β3 Soluble β3
SPARC Secreted-Protein-Acidic-Cysteine Rich
STAT5 Signal transducer and activator of transcription-5
SYK Spleen tyrosin kinase
TGF-β Transforming growth factor-β
TNF-α Tumor necrosis factor-α
TRIM62 Tripartite motif-62
TSH Thyroid stimulating hormon
Tyr Tyrosine
VEGF Vascular endothelial growth factor
vWF Von Willebrand Factor
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