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ABSTRACT

Limbal stem cell deficiency (LSCD) can result from a variety of corneal disorders, including chemical
and thermal burns, infections, and autoimmune diseases. The symptoms of LSCD may include irritation,
epiphora, blepharospasms, photophobia, pain, and decreased vision. There are a number of treatment
options, ranging from nonsurgical treatments for mild LSCD to various forms of surgery that involve dif-
ferent cell types cultured on various substrates. Ex vivo expansion of limbal epithelial cells (LEC)
involves the culture of LEC harvested either from the patient, a living relative, or a cadaver on a sub-
strate in the laboratory. Following the transfer of the cultured cell sheet onto the cornea of patients
suffering from LSCD, a successful outcome can be expected in approximately three out of four patients.
The phenotype of the cultured cells has proven to be a key predictor of success. The choice of culture
substrate is known to affect the phenotype. Several studies have shown that amniotic membrane
(AM) can be used as a substrate for expansion of LEC for subsequent transplantation in the treatment
of LSCD. There is currently a debate over whether AM should be denuded (i.e., de-epithelialized) prior
to LEC culture, or whether this substrate should remain intact. In addition, crosslinking of the AM has
been used to increase the thermal and mechanical stability, optical transparency, and resistance to col-
lagenase digestion of AM. In the present review, we discuss the rationale for using altered versus unal-
tered AM as a culture substrate for LEC. STEM CELLS TRANSLATIONAL MEDICINE 2018;7:415–427

SIGNIFICANCE STATEMENT

Limbal stem cell deficiency (LSCD) can result from a variety of corneal disorders, including
chemical and thermal burns, infections, and autoimmune diseases. There are a number of treat-
ment options, ranging from nonsurgical treatments for mild LSCD to various forms of surgery
that involve different cell types cultured on various substrates. Ex vivo expansion of limbal epi-
thelial cells (LEC) involves the culture of LEC harvested either from the patient, a living relative,
or a cadaver on a substrate in the laboratory. Several studies have shown that amniotic mem-
brane (AM) can be used as a substrate for expansion of LEC for subsequent transplantation in
the treatment of LSCD. There is currently a debate over whether AM should be denuded (i.e.,
de-epithelialized) prior to LEC culture, or whether this substrate should remain intact. In addi-
tion, crosslinking of the AM has been used to increase the thermal and mechanical stability,
optical transparency, and resistance to collagenase digestion of AM. The present review dis-
cusses the rationale for using altered versus unaltered AM as a culture substrate for LEC.

INTRODUCTION

In the early 1900s, Davies was the first to report
the therapeutic use of human amniotic membrane
(AM) in skin transplantation to treat burned and
ulcerated skin surfaces [1]. A considerable decrease
in pain and improved rate of skin-surface healing
was reported. Subsequently, there was a lag period
of more than 2 decades before any additional use
of AM was reported in the literature. In the 1930s,
AM was applied in surgical reconstruction of vagi-
nas [2]. Thereafter, AM has been used following
head injury to prevent meningocerebral adhesions
[3], in repair of abdominal herniation [4], in closure

of pericardium [5], for treatment of nonhealing

wounds in diabetic patients [6], to aid head and

neck surgery [7], as a biological dressing in correc-
tion of abdominal birth defects [8], for surgical

repair of refractory labial adhesions [9], in wounds

as a biologic dressing [10], and after total removal

of the tongue [11].
In the 1940s, several authors reported the

beneficial role of AM in treating a variety of ocular

surface disorders [12–15]. It was first used as a

substitute for rabbit peritoneum in the manage-

ment of chemical burns of the eye. Successful out-
comes were reported with dried amniotic tissue,
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termed “amnioplastin” [12, 13]. Following these initial proce-
dures, there was no report on the use of AM in ophthalmology
until the early 1990s, when AM experienced a renaissance with
reference to treatment of ocular surface disorders. In 1993, Batle
and Perdomo introduced AM preserved in 95% ethyl alcohol as a
substitute for conjunctival membranes in fornix reconstruction
and in the treatment of recurrent pterygia and alkali burns [16].
Two years later, Tseng and Kim performed AM transplantation in
rabbits for ocular surface reconstruction [17]. Subsequently, vari-
ous authors have reported the beneficial effects of human AM
transplantation in ever-expanding ocular indications [18].

Numerous studies have demonstrated that AM also can be
used as a substrate for expanding limbal epithelial stem cells (LEC)
for subsequent transplantation in the treatment of limbal stem cell
deficiency (LSCD) [19]. Tsai et al. were the first to report the use of
AM to culture LEC [20]. The choice of culture substrate for LEC is of
key importance for growth characteristics and phenotype preserva-
tion. However, so far there is no standardized culture method for
LEC on the AM. Various culture techniques are used are used to
culture LEC on AM. They differ regarding the composition of AM
(e.g., AM with or without the epithelium), air-lifting prior to trans-
plantation, and the use of an additional 3T3 feeder layer. Further-
more, there are challenges with human AM that still are
undetermined, for example, the thinness of membrane affecting
the suture strength, crushing while transplanting, early detach-
ment, and considerable dissolution of the membrane after trans-
plantation [21]. In order to improve these characteristics,
researchers have focused on different methods to alter the AM
and increase the mechanical and thermal stability, optical transpar-
ency, and resistance to collagenases. It has been proposed that the
devitalized epithelium on preserved AM may be of significant
importance to promote expanded human LEC maintain a less dif-
ferentiated phenotype compared with the limbal basal epithelium
in vivo [22]. On the other hand, studies have shown that the intact
AM (with the amniotic epithelium) exhibits higher levels of growth
factors compared with epithelially denuded AM [23]. The growth
factors are implicated in epithelium–stroma interactions of the
human ocular surface [24]; therefore, the amniotic epithelium may
have a substantial role in the microenvironment niche of limbal
progenitor cells. More research is warranted to explore this poten-
tial mechanism of action in order to control LEC behavior. Addition-
ally, further research on alteration of AM may improve its
properties and thereby increase the therapeutic efficacies.

The present review is also timely as AM has recently been
used as a culture substrate for simple limbal epithelial transplanta-
tion (SLET) [25]. This is a new clinical procedure for the treatment
of unilateral LSCD. In SLET, a small piece of limbal tissue (e.g., 2 3

2 mm) is divided into smaller pieces and distributed over an AM
placed on the cornea. Although long-term results are not available,
the results so far are promising. The influence of AM preparation
method on short- and long-term clinical outcome following SLET is
unknown, but laboratory and clinical data based on LEC cultured
on altered and unaltered AM ex vivo are clearly relevant to con-
sider when designing future SLET studies where the culture is per-
formed in vivo instead of ex vivo.

MECHANICAL PROPERTIES AND POSSIBLE MECHANISMS OF ACTION

The AM is the innermost layer of the fetal membranes, and is nor-
mally 0.02–0.5 mm in thickness [26, 27]. The AM consists of five

layers, from the innermost outward: (a) epithelium, (b) basement
membrane, (c) compact layer, (d) fibroblast layer, and (e) spongy
layer (Fig. 1) [26]. The monolayer of cells in the epithelial layer
varies from columnar over the placenta to cuboidal or flat away
from the placenta [26]. The basement membrane is a thin layer
composed of reticular fibers. It adheres closely to the amniotic
epithelium from which multiple processes interdigitate into it. The
remaining three layers are collectively termed the stroma. The
compact layer is a dense layer almost totally devoid of cells and
consists mainly of a complex reticular network. The fibroblastic
layer is the thickest layer of the AM and consists of fibroblasts
embedded in a loose network of reticulum. The outermost spongy
layer forms the interface between the AM and chorion and con-
sists of wavy bundles of reticulum covered with mucin [27]. The
AM supports the homeostasis of amniotic fluid [28]; however, its
precise function is still elusive. During pregnancy, the amniotic epi-
thelium is metabolically active [28, 29]. It lacks a blood supply of
its own; oxygen and nutrients are derived from the amniotic fluid,
surrounding chorionic fluid, and fetal surface blood vessels. It is
suggested that energy is derived through an anaerobic glycolytic
process due to this limited oxygen supply [30].

The AM exhibits several properties that makes it suitable for
use in tissue engineering [31]. Cells in the epithelial layer of the
AM have significant similarities to stem cells. They express pluripo-
tent markers of stem cells, have the ability to be differentiated into
all three germ layers, and have no need for a feeder layer through-
out their cultivation [31]. Other important characterizations of AM
crucial for use in tissue engineering are its antitumourigenic, antifi-
brotic, anti-inflammatory, antimicrobial, antiscaring, low immuno-
genicity, and useful mechanical properties [31].

There are, however, some challenges with the use of AM in
tissue engineering. The AM has a thin structure and exhibits tech-
nical limitations when suturing. It has been suggested that the use
of glues as a substitute for suturing may be promising [32]. Fur-
thermore, the AM shows a viscoelastic mechanical response [31].
In a majority of tissues, viscoelasticity is crucial for scaffolding, for
example, stiff scaffolds of the arteries that may encourage hyper-
plasia and occlusion [33]. It has been demonstrated that preterm
AM exhibits greater mechanical integrity compared with term
AM. However, the stiffness of term AM is more applicable for a
majority of protocols in tissue engineering [34]. It has been sug-
gested that this may be related to the collagen content, although
there are contradictory studies showing that the content of amn-
ion collagen decreases with gestational age [35]. Moreover, it is

Figure 1. Schematic representation of the five-layered human
amniotic membrane.
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also proposed that elastin, which is detected in the fetal amnion,
provides the molecular basis for elasticity in the AM [36].

There are differences concerning AM location, that is, samples
of AM taken from locations distal and proximal to the placental
disc. It has been demonstrated that proximal human samples of
AM are thicker and stronger, however, with poorer optical proper-
ties compared with distal samples [37]. Furthermore, AM may be
used in surgical procedures either fresh or modified through dif-
ferent preservation methods such as cryopreservation, freezing,
or lyophilization [38]. Cryopreservation, compared to freezing,
seeks to reach very low temperatures without causing additional
damage by the formation of ice during freezing. It has been
reported that cryopreservation better preserves growth factors
compared to freezing [38]. When comparing cryopreserved and
fresh AM, it is shown that epithelial cells do not survive cryopre-
servation and they exhibit poor proliferative capacity. No morpho-
logical differences were detected between fresh and
cryopreserved AM [39]. Recently, studies have shown that the
combination of AM preservation and sterilization by gamma-
irradiation, paracetic acid, and/or trehalose reduces the risk of
infections that may be transmitted by AM [38].

The AM secretes several growth factors such as epidermal
growth factor (EGF), hepatocyte growth factor (HGF), basic fibro-
blast growth factor, platelet-derived growth factor (PDGF), and
transforming growth factor b (TGFb) [40, 41]. EGF is a powerful
mitogen for the growth of epithelial cells and its high level of
expression following transplantation may explain improved wound
healing of the ocular surface [23]. It has been shown that EGF is
mainly found in the amniotic epithelium [38]. PDGF participates in
cellular responses including proliferation, migration, survival, and
the deposition of extracellular matrix and tissue remodeling fac-
tors [42]. Koizumi et al. reported that the amniotic epithelium
secretes HGF and keratinocyte growth factor (KGF), which are also
produced by mesenchymal cells such as fibroblasts in corneal
stroma [23]. Growth factors transferred in the epithelium of AM
may affect wound healing of cornea through paracrine action [43,
44]. It may therefore be suggested that ocular surface re-
epithelialization may be accelerated by HGF and KGF secreted by
the amniotic epithelium following transplantation of AM.

Studies have also shown an anti-inflammatory effect associ-
ated with AM [19, 45, 46]. Expression of IL-1a and IL-1b by human
LEC was significantly suppressed when cultured on the stromal
matrix of the AM, even when challenged by application of
bacterial derived lipopolysaccharides [46]. In a study in which the
corneas of rabbits were covered by human AM after photothera-
peutic keratectomy, acute inflammatory reaction was significantly
reduced by apoptosis of polymorphonuclear neutrophils [47]. This
finding was also supported in patients with acute burns where
CD201 lymphocytes were trapped by the AM and exhibited cell
death [48]. Upon inoculation of rat corneas with herpes simplex
virus type 1 to induce necrotizing keratitis, inflammation
decreased when the cornea was covered with preserved human
AM [49]. Chronic inflammation in the limbal region can cause
LSCD. Furthermore, inflammation can negatively affect integration
of transplanted conjunctival-limbal auto-grafts in the treatment of
LSCD [50]. Thus, the anti-inflammatory property of AM may be a
considerable benefit. Furthermore, numerous factors participate
in the antifibrotic effect of the AM [24, 51]. Tseng et al. have
shown that it induces a downregulation of TGFb signaling, which
is responsible for activation of fibroblasts in wound healing [51].

CULTURE TECHNIQUES AND USE OF INTACT AND DENUDED AM

Currently, there is no standardized method for ex vivo expansion
of LEC. Culture of LEC can follow the explant or cell suspension
method. In the explant method, cells grow out from a small
biopsy attached to the base of the culture dish. Cell suspension
means that cells are first enzymatically released from the tissue.
Once attached to the base of a culture dish the single cells divide
and grow to form a confluent layer. Some culture methods use
air-lifting to encourage differentiation of the superficial layer. This
is achieved via lowering the medium until it is just at the level of
the superficial cell layer. The use of irradiated or Myotomicin C
treated mouse embryonic fibroblasts was originally developed to
enable culture of skin epidermal cells [52]. It is now a culture tech-
nique often used for culture of all types of epithelial cells to supply
cytokines and growth factors that promote proliferation.

In Vitro Experiments with Intact and Denuded AM

The precise role of the devitalized amniotic epithelium is not yet
fully understood. It is suggested that the devitalized epithelium
covering the amniotic basement membrane may be important to
help expanded human LEC assume a less differentiated epithelial
phenotype [22]. Native intact AM has been found to comprise
higher levels of growth factors compared to denuded AM [23],
suggesting that they are primarily present in the amniotic epithe-
lium. These growth factors are believed to be involved in epithe-
lium–stroma interactions of the human ocular surface [24].

Several studies have shown that LEC cultured on an intact AM
maintain a more stem cell-like phenotype compared with LEC cul-
tured on a denuded AM [22, 53, 54]. Expression of slow cycling
and label-retaining cells that do not express the differentiation-
associated markers K3, K12 [22, 55], or Cx43 [22] has been dem-
onstrated in limbal epithelial sheets cultured on intact AM.
Krishnan et al. compared the expression of DNp63a, a marker for
nondifferentiated cells, in LEC cultured on intact human AM with
denuded human AM [56]. Interestingly, only LEC cultured on
intact AM gave rise to DNp63a expression [56]. The expression of
p63-isotypes DNp63 [57] and DNp63a [58] has been confirmed in
other studies in which LEC has been cultured on intact AM.

The nerve growth factor signaling pathway, which is known to
be involved in stem cell survival, was preserved in the intact AM
culture system [22]. Furthermore, cultured LEC on intact human
AM has been found to maintain high proliferative potential when
compared to denuded human AM [56]. However, contrary results
have also been demonstrated [22, 59]. Koizumi et al. showed that
LEC cultured on a denuded AM formed a more stratified and dif-
ferentiated epithelium and exhibited a higher number of desmo-
somes and hemi-desmosomes compared to culture on intact AM
[59, 60]. The authors concluded that for purposes of transplanta-
tion of differentiated epithelial sheets, denuded AM is probably
the more suitable carrier for human LEC cultures when using the
cell-suspension culture system. However, denuded AM did not
improve the structural integrity of cultured human LEC following 1
week of eye bank storage [61]. Moreover, the highest levels of K3
and Cx43 were observed when denuded AM was used without an
additional 3T3 feeder layer (fibroblasts synthesizing the extracellu-
lar layer and collagen) [22]. Addition of a 3T3 feeder layer to
denuded AM increased the level of Cx43 but decreased that of
Cx50, reflecting a less differentiated phenotype compared with
denuded AM without 3T3 fibroblasts.
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Clinical Studies Using Intact and Denuded AM

Only seven clinical studies (substudies excluded) involving trans-
plantation of ex vivo cultured LEC have applied intact AM [20,
62–68] (Table 1) as a culture substrate, whereas 29 clinical studies
used denuded AM to culture LEC [69–97] (Table 2).

In 2000, Tsai et al. were the first to report the use of intact AM
to culture LEC to treat patients with unilateral partial or total
LSCD [20]. The authors used autologous limbal tissue obtained
from a biopsy of the contralateral eye for explant cultures on cryo-
preserved intact AM. The results showed a success rate of 83%
with reference to visual acuity and a 100% success rate regarding
reconstruction of a stable ocular surface. During the follow-up
time of 15 months, no conjunctivalization was observed in the
treated eyes (Table 1). The remaining six studies all performed
transplantation of ex vivo cultured limbal epithelium on intact AM
without the use of a 3T3 fibroblast feeder layer or air-lifting (Table
1).With a mean follow-up time of 22 months (range: 14 [67] to 48
[68] months), visual acuity improved, ranging from 56% [68] to
83% [20, 67]. Immunosuppression was used in four studies [62,
64, 65, 68] and conjunctivalization was reported in one study [68].

The first clinical trial using denuded AM as a culture substrate
for LEC in treating LSCD was published in 2000 by Schwab et al.
[90]. LEC were expanded on an inactivated 3T3 fibroblast feeder
layer and subsequently seeded onto denuded AM.Ten of fourteen
patients with allogeneic and 6 of 10 patients with autologous
transplants maintained a stable corneal surface after a follow-up
period of between 6 and 19 months. A year later, two cases of

acute Stevens–Johnson syndrome with large persistent epithelial
defects were treated with the same technique [79]. The authors
expanded allogeneic limbal tissue from donor corneal buttons on
denuded AM, taking advantage of an inactivated 3T3 fibroblast
feeder layer. The renewed epithelium was stable and without
defects after a follow-up time of 6 months. Koizumi et al. there-
after used the same approach to treat 13 patients with total LSCD.
Ten of thirteen eyes exhibited visual improvement and a stable
ocular surface without epithelial breakdown after a mean follow-
up period of 11.2 months [78].

In 2002, Shimazaki et al., using denuded AM, reported on the
transplantation of ex vivo expanded LEC from allogeneic (n 5 7) and
living related (n 5 7) donors to 13 eyes with total LSCD [93]. They
showed that corneal epithelial restoration was achieved in 46.2% of
cases. One eye did not show epithelialization at all, five eyes failed
with recurrent conjunctivalization, and one eye failed with dermal
epithelialization. Following transplantation of cultivated allogeneic
LEC on AM, improved visual acuity was observed in 77% of patients.

The remaining studies using denuded AM as a culture substrate
for LEC used both allogeneic [69, 74, 77, 80, 82, 86, 91, 92, 95–97]
and autologous [70–73, 75–77, 80, 81, 83–87, 89–92, 94–97]
explants, with and without the use of a 3T3 fibroblast feeder layer
or air-lifting (Table 2). Immunosuppression was used in all studies
using allogeneic limbal explants except for one [88], and in some
studies using autologous explants (Table 2). The reported follow-up
period was up to 66 months. Following transplantation of cultured
LEC on denuded AM, visual acuity ranged from 53% to 100%. More-
over, 100% clinical success was reported in 7 of 29 studies (Table 2).

Table 1. Clinical studies using ex vivo expansion of LEC on intact amniotic membrane

Author, year Culture system Air-lifting 3T3 Immunosuppression

Follow-up

time (months) Clinical success

Tsai et al. (2000) Autologous explant No No No Mean: 15 (12–18) Stable ocular surface: 100%

Visual acuity: Improved in 83%

Conjunctivalization: No

Grueterich
et al. (2002)

Autologous explant No No No 21 Stable ocular surface: 100%

Visual acuity: Improved

Conjunctivalization: No

Tseng et al. (2002) Autologous and
allogeneic explant

No No No 14 Stable ocular surface: 100%

Visual acuity: Improved in 83%

Conjunctivalization: No

Fatima et al. (2007) Autologous explant No No Topical steroids 37 Stable ocular surface: 100%

Visual acuity: Improved

Conjunctivalization: No

Kolli et al. (2010) Autologous explant No No Topical steroids Mean: 19 (12–30) Stable ocular surface: 100%

Visual acuity: Improved in 62%

Conjunctivalization: No

Pauklin et al. (2010) Allogeneic explant No No Cyclosporin A Mean: 28.56 14.9 Stable ocular surface: 68%

Visual acuity: Improved in 73%

Conjunctivalization: No

Pathak et al. (2013) Autologous explant No No Topical steroids 11–48 Stable ocular surface: 56%

Visual acuity: Improved in 22%

Conjunctivalization: 440025;

Abbreviation: LEC, limbal epithelial cells.
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CROSSLINKING OF AM

The topography of the underlying substrate affects the cells, and
it has been shown that physical cues control cell morphology,
migration, and embryonic development [98]. Studies using photo-
lithography showed that surfaces with single 5-lm-tall steps was
sufficient to selectively slow the migration rate of baby hamster
kidney and fibroblast cell types, but not of neutrophils [99]. Micro-
array analysis of cells seeded onto substrates with hexagonal pits
compared with flat surfaces demonstrated significant changes in
expression of hundreds of genes that were associated with extrac-
ellular matrix protein production and regulation of cell-cycle
[100]. These results clearly show how small features can exhibit
an important impact on development, regulation, and homeosta-
sis of cells and tissues.

It is known that structural changes in the molecules that are
the constituents of the matrix will likely result in changes in cell
signaling [101]. Collagen undergoes many post-translational modi-
fications that are important for its structural and mechanical prop-
erties, and the interruption of some of these processes leads to
severe dysfunction of the cells. The final steps in the formation of
collagen include the cleavage of the N and C pro-peptides, self-
assembly of the resulting collagen molecules into fibrils, and for-
mation of covalent crosslinks [102]. Optimal crosslinking of colla-
gen is essential for collagen binding to its receptors; however, it is
also important for regulation of the availability of growth factors
and for the mechanical characteristics of the extracellular matrix
[103]. Previous studies have shown that the inhibition of collagen
crosslinking in the mouse preosteoblast cell line weakens the
osteogenic program [104]. Furthermore, impairing the crosslinking
of collagen is associated with exposure of cryptic nucleation sites,
resulting in enhanced mineralization [105]. Insufficient collagen
crosslinking makes the collagen more prone to proteolytic degra-
dation [106].

Collagen nanofibers, an essential structural component of the
AM, exhibit significant degradation after being exposed to endog-
enous collagenases in vivo. The collagenase activity is enhanced in
many diseases affecting the cornea and may therefore lead to
accelerated degradation of AM transplants [107]. Spoerl et al.
demonstrated that insufficient biological stability of an AM graft
may be a significant cause of early AM detachment during corneal
wound healing [108]. As enzymatic degradation of the AM matrix
is considered a major cause of failure after surgical transplanta-
tion, the development of strategies for improvement of the
molecular biostability of AM is warranted. Since it is desirable that
the collagen in the AM serves as a limbal stem cell niche, several
researchers have tried to modify it to a crosslinked molecular bio-
polymer chain network. Different crosslinking strategies have
been used in order to increase the stability of AM for culture of
LEC, including glutaraldehyde- [108–111], carbodiimide-
[112–117], radiation- [111], photo- [118], and Al2(SO4)3- [21]
crosslinking (Table 3).

Glutaraldehyde Crosslinking

Glutaraldehyde is a widely used, highly effective, chemical cross-
linking substrate used for the stabilization of collagenous biomate-
rials. Fujisato et al. have demonstrated that glutaraldehyde
crosslinked AM is more resistant to degradation from collagenases
[111]. It has also been demonstrated that the effect of glutaralde-
hyde crosslinking on the nanostructure of AM material is critical
to maintenance of LEC stemness [109]. Furthermore,

glutaraldehyde crosslinking of collagenous materials affects cor-
neal epithelial characteristics of stem cell culture [109]. After
modification with glutaraldehyde using a variable crosslinking acti-
vation time, the AM samples were investigated by determining
the degree of crosslinking, nanofibrous structure, in vitro degrad-
ability, cytocompatibility, anti-inflammatory activity, and stemness
gene expression. After a 6-hour reaction time, the crosslinking
degree and in vitro degradability of glutaraldehyde treated sam-
ples were much lower than those of the carbodiimide crosslinked
counterparts. Furthermore, the increased biostability of collagen
within crosslinked AM was positively correlated with the amount
of crosslinker in the reaction system. Nevertheless, a method
involving chemical modification of AM with glutaraldehyde likely
reduces the level of safety, especially when the extent of crosslink-
ing reaches high levels [119]. Various studies have reported that
using glutaraldehyde as a crosslinking agent is not advisable due
to its toxic nature [120, 121].

Carbodiimide Crosslinking

The modification of AM with 1-ethyl-3-(3-dimethyl aminopropyl)
carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS)
does not introduce foreign structures into the biomaterial net-
work and is therefore considered a more biocompatible technique
[122]. The EDC/NHS carbodiimide method of crosslinking has
been previously used for the development of chemically cross-
linked AM materials [117]. However, with carbodiimide treatment
for a longer duration (i.e., 4 hours), the AM samples showed sig-
nificant weight loss after 4 weeks of incubation with matrix metal-
loproteinases, suggesting low crosslinking efficiency of biological
tissues [115]. With an optimum concentration of 0.05 mmol EDC/
NHS per mg AM, chemical crosslinking can significantly enhance
mechanical stability and retard enzymatic degradation [117]. It is
expected that the increased stability introduced by crosslinking
could be useful in an inflammatory wound. However, in vitro cell
culture studies demonstrate that EDC crosslinked AM can support
human LEC proliferation and preserve epithelial progenitor cells in
vivo and in vitro [117]. Enhanced expression of p63 and ABCG2
and increased LEC growth were also significantly associated with
the greater crosslinking degree of AM samples [115]. The expres-
sion of K3 and ABCG2 suggests that both differentiated and pro-
genitor phenotype can be preserved by crosslinking AM.

Radiation and Photo Crosslinking

In a study by Lai, it was demonstrated that UV radiation physically
crosslinks AM [118]. Results of crosslinking density measurements
and in vitro degradation tests showed that the biostability of these
biological tissues strongly depended on the number of crosslinked
structures, which was affected by the duration of exposure to UV
radiation. The number of crosslinks per unit mass of photo-
crosslinked AM played an important role in determination of
matrix permeability. In vitro biocompatibility studies, including
cell viability and pro-inflammatory gene expression analyses, dem-
onstrated that the physically crosslinked biological materials did
not cause harm to the corneal epithelial cells, irrespective of UV
radiation time. It was found that undifferentiated precursor cell
phenotype was significantly improved with an increase in cross-
linking density [123]. Therefore, both duration of UV radiation and
riboflavin may be important for the generation of AM matrices for
cultivation of LEC.
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Aluminum Sulfate Crosslinking

A recent study showed that aluminum sulfate (Al2 (SO4)3) may be
used as a crosslinking agent to improve the mechanical properties
of AM. Crosslinking with Al2(SO4)3 supported improved attach-
ment and proliferation of corneal LEC [21]. Using infrared spec-
troscopy to confirm the crosslinking of AM with Al2(SO4)3, it has
been demonstrated that there is an approximate 125% increase in
tensile strength in the crosslinked AM. Importantly, the crosslinked
AM was found to be sterile for up to 1 year and the morphology
of confluent sheets of epithelial cells resembled in vivo morpho-
logical features of LEC. Based on these results, the Al2(SO4)3 cross-
linked AM should be further investigated as a candidate substrate
for ocular surface reconstruction.

Crosslinking and the Limbal Stem Cell Niche

Stability and biocompatibility are both important factors that
need to be taken into consideration when studying biomaterial
crosslinking and its applications. Using l-lysine as an additional
amino acid bridge the stabilization of an EDC/NHS crosslinked AM
collagen matrix for potential use as a limbal stem cell niche was
investigated [114]. The results showed that the number of posi-
tively charged amino acid residues incorporated into the tissue
collagen nanofibers was highly correlated with the l-lysine-
pretreatment concentration, thereby influencing the crosslinked
structure and hydrophilicity of the resulting scaffold. The variation
in thermal and biological stability was correlated with the number
of crosslinks per unit mass of AM. It is noteworthy that the sam-
ples prepared using a relatively high l-lysine-pretreated concentra-
tion (i.e., 30 mM) appeared to have decreased light transmittance
and cell viability. This was likely due to the effects of an increase in
nanofiber size and subsequent higher charge density. However, in
the 1–30 mM range of l-lysine pretreatment, expression of p63
and ABCG2 in LEC were upregulated. This corresponded with an
increased number of amino acid bridges in the chemically cross-
linked AM scaffolds. Therefore, mild to moderate l-lysine pretreat-
ment appears to be a useful strategy to assist in the construction
of a stable LEC niche using EDC/NHS crosslinked AM.

FUTURE PERSPECTIVES AND CONCLUSIONS

Data from in vitro experiments indicate that intact AM supports
expansion of cells with a partly undifferentiated limbal phenotype,
while the denuded AM culture system encourages differentiation.
The results obtained so far suggest that the addition of 3T3 feeder
cells decreases but does not prevent differentiation of LEC on
denuded AM.

Currently, the progenitor cell marker p63 is the only known
predictor of clinical outcome following transplantation in the

treatment of LSCD [124]. Rama et al. showed that successful
transplantation was achieved in 78% of patients when using cell
cultures in which p63-bright cells constituted more than 3% of the
total number of clonogenic cells. In contrast, successful transplan-
tation was only seen in 11% of patients when p63-bright cells
made up 3% or less of the total number of cells.

Quantitative expression of p63 in cultured LEC on intact and
denuded AM has been rarely reported. Expression of p63 [54,
125] and DNp63a [56] has been found to be higher following cul-
ture of LEC on intact AM compared to denuded AM. In light of the
seminal work by Rama et al. [124], it can be speculated that the
use of intact AM may be more effective than denuded AM in
treating LSCD. However, prospective clinical studies comparing
the use of cultured LEC on intact and denuded AM are warranted
before a conclusion can be reached. More studies to quantify phe-
notypic data of cultured LEC would be of high value to advance
regenerative medicine in the cornea.

Crosslinking of AM has been investigated as a method of
increasing the thermal and mechanical stability, optical transpar-
ency, and resistance to collagenase digestion of AM following
transplantation. It has been shown that the addition of l-lysine
molecules to the crosslinking system can increase crosslinking effi-
ciency [114]. Further research should be directed toward more
fully exploring the role of lysine concentration on stabilization of
the crosslinked AM. Moreover, quantification of phenotypic data
with particular emphasis on stemness-associated markers of LEC
cultured on AM using various crosslinking systems should be given
emphasis. At present, the routine of using intact, noncrosslinked
AM remains the standard for treating patients with SLET and for in
vitro culture of LEC on amnion.
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