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Abstract

Numerical methods for solving partial differential equations is an important field of
study, as it helps us to describe many different processes in the world. An impor-
tant property of a numerical method, is that it should be a stable approximation
of the governing differential equation. For numerical approximations that satisfy a
summation-by-parts rule, and that are combined with the simultaneous approxima-
tion term technique at the boundaries, energy estimates can be derived to prove
stability. The Summation-By-Parts Simultaneous Approximation Term (SBP-SAT)
technique was first developed in the context of the finite difference method. More
recently, it has been shown that other numerical methods, such as the finite volume

method, also can be formulated in the SBP framework.

The finite volume method is a popular numerical method, as it can be formulated
on unstructured grids. However, Svird et al. showed in [SGNO7] that some approx-
imations of the second derivative are in fact inconsistent on such grids. Consistency
is another key feature of a numerical method. The method should be consistent in

order for us to know that we are solving the correct equation.

In this thesis, we study the extension of the SBP-SAT technique to the finite vol-
ume method. We introduce a methodology for implementing a second derivative
approximation on general unstructured grids by including a transformation to a
computational domain, where accuracy is expected to be recovered. The numerical
experiments demonstrate that full accuracy is not obtained when including the trans-
formation. There are still nodes along and near the boundary that are inconsistent.

However, numerical experiments indicate that we have convergence.
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Notation

The following notation will be used throughout the thesis.

Capital letters (A): Matrices (if not otherwise stated)
Bold letters (u): Vectors
uén): nth derivative of v with respect to variable p

O: Big O notation

Abbreviations

PDE - Partial Differential Equation
CFD - Computational Fluid Dynamics
IBVP - Initial-Boundary-Value Problem
FDM - Finite Difference Method

FVM - Finite Volume Method

SBP - Summation-By-Parts

SAT - Simultaneous Approximation Term
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Chapter 1

Introduction

1.1 Introduction

Partial Differential Equations (PDEs) are of great importance in several fields of
research, among which Computational Fluid Dynamics (CFD) is one. Since a large
class of these equations cannot be solved analytically, numerical methods are re-
quired to obtain solutions to the PDEs. The foundation of a numerical method is
the discretisation of the given domain, which can be either structured or unstruc-
tured. Thereafter, a numerical method is formulated on the discrete grid. One such
numerical method that will be used in this thesis, is the Finite Difference Method
(FDM). This method starts with the given equation in differential form, and the
derivatives in the governing equations are approximated by finite differences, usu-
ally obtained using Taylor series expansions. Its simplicity, and the ease at which
it is to obtain higher-order approximations, are advantages of this method. The
finite difference method is often used in the CFD community, and for problems
that are to be solved over long time intervals or that require small errors in the
solutions, high-order approximations are favoured. However, the treatment of the
boundaries for such approximations can be complicated, and they must be handled
in a way that leads to stable schemes. (For more information about the FDM, see
e.g. [Bla07, [FP99, KCDT16, [GKO95, [Gus08]). Stability in the numerical analysis

is the analogous concept to well-posedness in the continuous setting. If the problem



is well-posed, and the numerical method is a consistent and stable approximation of
it, then the Lax-Richtmyer Equivalence Theorem (|[LR56]) guarantees that the nu-
merical solution will converge to the true solution. However, demonstrating that the
numerical scheme is in fact stable, need not be a trivial task, especially for high-order
finite difference methods. This changed with the introduction of the Summation-
By-Parts Simultaneous Approximation Term (SBP-SAT) schemes, which are finite
difference schemes combined with a weak enforcement of the boundary conditions.
The SBP operators were first derived by Kreiss and Scherer in [KS74]. These op-
erators mimic the continuous integration-by-parts rule, which plays a central role
in the derivation of energy estimates, and are constructed in a way that resembles
the energy loss at outflow boundaries for the equation (see [GusO§|). Nevertheless,
the operators alone only allow for stability proofs for simple problems, but with
the establishment of the SAT technique near the boundaries, one can now prove
stability for more complicated problems. The SAT procedure was first developed in
[CGA94] by Carpenter, Gottlieb and Abarbanel. The SAT enforces the boundary
conditions in a weak way, by introducing a penalty term to the scheme. For a more
comprehensive summary of the history of the SBP-SAT technique, see [SN14] and
[DRFHZ14].

Even though the SBP operators were constructed in the framework of the finite
difference method, these operators have more recently been formulated in the context
of other numerical methods as well. Examples here are the Finite Volume Method
(FVM) (see e.g. [NBO1, NFAEO3, [SN04]) and the spectral collocation methods (see
e.g. [Gasl3, DRFBZ14, [CENFE14]). In this thesis, our main focus will be the SBP-
SAT technique formulated using the finite volume method. An advantage of this
method, is that it, in contrast to the finite difference method, can be formulated
on unstructured grids. Another distinction between the finite difference and the
finite volume method, is that the latter is based on the integral form of the given
PDE. After the domain is discretised into a set of non-overlapping sub-domains,
called dual volumes (or grid cells), the equation is integrated over each such volume.
From here, we derive discrete approximations of the average value of the solution
in each grid cell. Some of the integrals are converted into line (or surface) integrals
(using for example Green’s theorem or the divergence theorem). These integrals

represents fluxes that can be approximated as the sum of fluxes over each edge in



a dual volume. The fluxes are often assumed to be constant along a grid face, and
evaluated at the midpoint of the edge (for a more complete introduction to the FVM,
see for example [DB16, [FP99, Lev02, Bla07, KCDT16]). As it can be formulated
on unstructured grids, the finite volume method is also a popular method in the
CFD community. Nevertheless, it has been shown in [SGNQT7| that care must be
taken when approximating the second derivative using this method. In this article,
it was demonstrated that two commonly used approximations of the Laplacian are

inconsistent on general meshes.

As a demonstration of the SBP-SAT technique, we will in this thesis first discretise
the second-order wave equation (in one space dimension) using a high order SBP fi-
nite difference operator, where the boundaries are treated using the SAT procedure.
Next, the SBP-SAT technique is formulated in the context of the finite volume
method. We consider a first-derivative approximation from [NFAEQ3], and investi-
gate if second-order accuracy is obtained by transforming the physical domain into
equilateral triangles. We propose stable schemes for the advection equation on both
single-block and multi-block domains. Lastly, we discretise the second-order wave
equation in two space dimensions using the first-derivative approximation twice, and
investigate if the transformation of the physical domain leads to a consistent scheme.
One immediate advantage of including the transformation, is that the implementa-
tion makes mesh refinement an easy task, as a number of grid points along the
boundary is specified for refinement within the elements. In the interest of solving
CFD problems using higher (than one) order approximations on complex geome-
tries, the overall goal of the project is to derive a methodology for implementing the
considered second-derivative approximation on general unstructured grids. Then we
can supplement high-order finite difference approximations with the finite volume
method to handle the complex geometries of the mesh. In order to obtain a more
structured derivation, this thesis considers simpler problems than those often solved
in CFD.



1.2 Thesis outline

In the next chapter, some preliminary theory regarding well-posedness of initial-
boundary-value problems, and the basic idea of the SBP-SAT technique, are intro-
duced. In Chapter [3] we analyse the second-order wave equation in one space di-
mension and discretise it using a high-order finite difference SBP operator combined
with the SAT procedure at the boundaries. We investigate stability of the scheme
and discuss convergence. Chapter [4| presents an extension of the SBP-SAT theory in
the framework of the finite volume method. We verify an approximation for the first
derivative, and introduce stable schemes for domains with and without interfaces.
Furthermore, we investigate if the first-derivative approximation applied twice yields
a consistent second-derivative approximation, and propose a stable scheme for the
implementation of the second-order wave equation in two space dimension. We also
discuss the expected covergence rates, and present the results obtained from the nu-
merical experiments. Lastly, Chapter |5| provides conclusions of this work and some

possible directions of further work.

All numerical schemes that are proposed in this thesis were coded from scratch in
MATLAB (except the SBP operator used in Chapter (3)).



Chapter 2
Preliminaries

Before proceeding to the main topics, we introduce some definitions that will be
used throughout the thesis. Since all parts of this project have been twofold, one
part concerning the continuous problem and the other the semi-discrete problem,

we will divide this chapter in the same way.

2.1 Preliminaries for the continuous analysis

The starting point of every section in this project will be to demonstrate that the
given problem is well-posed. We now introduce some theory concerning this prop-

erty.

Consider the following general Initial-Boundary-Value Problem (IBVP)

= P2, 0, t)u+ Flz,t), 0<z<1,1>0,
LO(a:mt)u(Oﬂt) = gO(t)v (2.1)
L1 (0p, t)u(1,t) = g1(2),

u(z,0) = f(z),

where P is a differential operator; F'(z,t) is a forcing function; Ly and L; are



differential operators acting on the boundary, and go(t), ¢1(t) and f(z) are the
boundary and initial data ([SN14]). We introduce the following definition.

Definition 2.1 ([Gus08]). The IBVP is well-posed if for F =0, go =0 and

g1 = 0, there is a unique solution that satisfies the estimate

lu( Ol < Ke* | £l
where K and o are constants independent of f. J

The norm appearing in Definition is the L?-norm induced by the L2-inner prod-

uct, defined as

1 1
{(u,v) :/ uv dz, lull® = (u, w) :/ u? du.
0 0
For problems with nonzero forcing function, F' # 0, the following definition from
[KL89] applies.

Definition 2.2. The IBVP 1s well-posed if for gy = 0 and gy = 0, there is a

unique smooth solution that satisfies the estimate

t
lu(- 6)]* < K(t) (Hf(')H2 +/0 1F Gl dT) :
where K is a function of t, but does not depend on the problem data. g

This means that the forcing function can be neglected to simplify the analysis, since
both the problem with and without this term is well-posed ([Gus0§]).

Both the above definitions require zero boundary data, but we would like to consider

problems with inhomogeneous boundary data as well. This is possible if we make a



transformation @ = u — 1 that yields homogeneous boundary data (see e.g. [SN14]).
The forthcoming proposition demonstrates that the problem with inhomogeneous

data is indeed well-posed.

Proposition 2.3. The IBVP is well-posed for F(x,t) # 0, go(t) # 0 and
g1(t) # 0, with go and g, differentiable, if the corresponding problem with homoge-
neous data is well-posed.

Proof. We make the transformation mentioned above, & = u — v, where v is suffi-
ciently smooth and bounded, and is chosen such that it satisfies

t), (2.2)

By inserting u = @ 4 ¢ in Equation ({2.1]), we obtain

up = (U4 1)e = Uy + Yy,
Pu+ F(z,t) = P(a+ ) + F(z,t) = Pu+ Py + F(x,t),
i = Pu+ Py + F(z,t) — ¢ = Pu+ Fi(z,1),

where Fi(z,t) = F(x,t) + Py — 1. However, we know from Definition [2.2| that the
forcing function can be disregarded in the analysis, so for simplicity we neglect Fj.
We then obtain the following problem

If this problem is well-posed, it satisfies the estimate in Definition [2.1} i.e.,



la( Ol < Ke* L)l

and since f(z) = 0, it follows that ||a(-,¢)|| = 0. We now make use of the fact that

@ = u — ¢ to obtain an estimate for u. Using the triangle inequality yields

[u(- Ol = llal-, ) + ¢ Ol < llat Ol + [l ¢ ol

which implies

luC- )l < (D)

This estimate holds as long as the data go(t) and g;(¢) is sufficiently differentiable
in time such that the conditions ([2.2)) hold. Hence, well-posedness of the problem
(2.3) with homogeneous data implies well-posedness for the problem (2.1)) with in-

homogeneous data. [

The above proposition together with the fact that any forcing function can be ne-
glected, allows us to simplify the analysis of problems with inhomogeneous data, by

setting boundary and forcing data to zero.

For some problems, it is possible to obtain a stronger estimate for the solution. This
is the case when the estimate also involves the boundary data. Problems for which

the following estimate holds, are called strongly well-posed in [Gus08].

Definition 2.4 ([Gus08]). The IBVP is strongly well-posed if there is a

unique solution that satisfies the estimate

lu(, O] < Ke <Hf(-)!!2 +/0 IEC I + lgo(m)F + g1 ()] dT) ,



where K and a are constants independent of f, F, gy and g;. g

Throughout this thesis, we will derive estimates such as the ones above for demon-
strating well-posedness for every problem considered. These estimates can be ob-
tained by using the energy method. We will demonstrate this method in Example
2.9 below.

Remark. The above definitions involve the condition that there exists a solution. In
[GKOJ93] the authors provide an explanation of how to prove existence of solutions
gwen that we can obtain an energy estimate. We will not discuss this any further,

since it is well-known that every problem considered in this project has a solution.

2.2 Preliminaries for the discrete analysis

We now turn to the case of semi-discrete approximations of the general initial-
boundary-value problem . Throughout this project, we will not consider fully-
discrete approximations in the analyses of the problems. This is of course needed
for the implementation of the schemes. However, Kreiss and Wu demonstrated in
[KW93] that if the semi-discrete approximation is stable, then, given that certain
conditions are met, the fully-discrete approximation is stable if we discretise time
using an appropriate Runge-Kutta method. We therefore focus our attention on the

analyses of the semi-discrete approximations.

To introduce the approximation of the general problem , we first divide the
spatial domain into n 4 1 grid points with equal distance h. The ith grid point is
denoted x; = th, where ¢ = 0,1,...,n. Then the semi-discretisation of the IBVP
(2.1) can be written

u; = D(z, t)u + F(x,1),

Bo(t)uo(t) = go(t), (2.4)
By (t)un(t) = g1(t),
u(0) = f,
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where D is an approximation of the differential operator P; By and By are approx-
imations of the differential operators Lo and Ly, and F(x,t), go, g1 and f are the
forcing, boundary and initial data, respectively. & = (zg, x1, ..., ;) is a vector with

the grid points as its elements.

The corresponding concept of well-posedness in the semi-discrete analysis is stability.

We now introduce the analogous definitions to the continuous case.

Definition 2.5 ([Gus08|). The approzimation of the IBVP is stable if
for F =0, go =0 and g1 = 0, the solution satisfies the estimate

lw(@)ll, < Ke™ || £l

where K and « are constants independent of f and h. J

The constants K and « appearing in Definition [2.5|are generally different from the re-
spective constants in the continuous case. The norm |||, is a discrete L?-equivalent
norm. As shown in Proposition for the continuous case, we can extend the
stability definition to problems with inhomogeneous data by a transformation of
the problem into one with homogeneous data ([SN14]). However, for some approx-
imations, it is possible to obtain a stronger estimate that includes the forcing and
boundary data. Such approximations are called strongly stable, which is defined in
[Gus08] as follows.

Definition 2.6 ([Gus08]). The approzimation of the IBVP is strongly

stable if there is a unique solution that satisfies the estimate

lu(@)ll, < Ke (Hflli +/0 I ()1 + oM + 1ga(7)]° dT) :

where K and o are constants independent of f, F', go, g1 and h. J
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In a similar manner as the continuous case, such estimates can be obtained by using
the discrete energy method, as will be demonstrated in Example [2.9] below.

SBP operators

The approximations of the differential operators used in this thesis are so-called
Summation-By-Parts (SBP) operators. These are operators that mimic the contin-
uous integration-by-parts rule, which is an essential part in the derivation of energy
estimates. In this chapter, some general definitions of these operators are introduced,
while their specific form will be explained in more detail in Chapter |4/ and Appendix
Bl We use the definitions found in [SNI7] (for similar definitions, see for example
[SN14]).

Definition 2.7 ([SN17]). An SBP-operator for the first derivative is defined by
Diu = P7'Qu,

where Q+ QT = B = diag(—1,0,...,0,1). P is a symmetric positive-definite matrix
with elements of size O(h), where h is the grid spacing. P also defines an inner
product (w,v) = uT Pv, and an L*-equivalent norm ||u||> = (u,u). P is diagonal

in the interior, but can have blocks of elements near the boundary. J

Definition 2.8 ([SN17]). An SBP-operator for the second derivative is defined by
Dyu = P! (—=A+ BS)u,

where A is a symmetric positive semi-definite matrix and Sw is a first derivative

approximation. J

For the finite volume method in two space dimensions, the relation Q + QT =
diag(—1,0,...,0,1) will not hold. However, a similar property applies in this case,
as will be demonstrated in Chapter [4]

To illustrate how the analyses of the continuous and semi-discrete problems are

handled in a similar manner, we consider an example with a first derivative SBP-
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operator for the advection equation in one space dimension, as is often done in the
literature. Stability directly from the use of SBP-operators is only possible to obtain
for simple problems, and therefore they are often coupled with the Simultaneous
Approximation Term (SAT). These are penalty terms that impose the boundary
conditions weakly (see [SN14] and [DREFHZ14] for further discussion). The example

below will also include a demonstration of the SAT procedure.
Example 2.9. Consider the advection equation in one space dimension

Uy + au, = 0, 0<z<1, t>0,

2.5
u(z,0) = f(x). (25)

If @ > 0, we have the boundary condition u(0,t) = g(¢), and if a < 0, we have the
boundary condition u(1,t) = g(t).

We now demonstrate that the problem is well-posed. Using the energy method,
multiply Equation (2.5 by u, and integrate over the domain.

1 1
/ uuy de = — / aul, dx.
0 0

The integrand on the left-hand side can be written 14

2dt
the integral on the right-hand side into two equal parts and applying the integration-

|u(-,t)||?, and by splitting

by-parts rule on one of them, we obtain

1d 1 .
S & u(-, t)|* = —561“2(907” i
d
% ||U(,t)||2 = _a(uz(lvt) - uz(Oat))

Depending on the sign of a, either —au?(1,t) > 0 or au?(0,t) > 0. However, the
term that will contribute to a growth in the norm is the one with the boundary
condition. We let a > 0 for the rest of the derivation (the case with a < 0 could be
treated in the same way). From Proposition , we can set boundary data to zero
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without loss of well-posedness. By doing this, the estimate reads

D )] = —au?(L,8).

Since a > 0, —au?(1,t) < 0, and we get < |[u(-,)|| < 0. Integration in time yields
the final estimate

lu(- O < IFOI

which proves well-posedness of problem ([2.5)) in the sense of Definition .

We now consider the following approximation of problem (2.5))

u; +aP'Qu = 7P (up — go(t)), a>0, t>0,

w(0) = f 20

where P71(Q is an SBP operator with diagonal P. The term on the right-hand side
of the equation is the SAT, where 7 is a parameter to be determined for stability

reasons, and we have defined v = (1,0,...,0)7.

Using the discrete energy method, multiply Equation (2.6) by u’ P and add the
transpose to obtain

u” Puy + ul Pu = —au’ Qu — au" QT u + 7u” (up — go(t))v + 70" (ug — go(t))u,
d

2 @) = —au™(Q + Q") + 27w’ (uy — go (1)) .

Recall from Definition [2.7|that Q + QT = B = diag(—1,0, ...,0,1). Using this yields
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d
g7 lw(t)||” = —a(u? — ul) 4+ 27u2 — 2ruggo(t).
We see that the SBP operator produces boundary terms analogous to the continuous

integration-by-parts rule.

In the same way as for the continuous case, we can set the boundary data to zero
without loosing stability. The estimate then becomes & u|? = —aud + (a + 27)ud.
The parameter 7 must be chosen such that 7 < —% holds, in order for the scheme to

be stable. We then have 4 lu||* < 0. Integration in time yields the final estimate

[u®)]} < [lw(0)]| = [I£]]-

Remark. In the above deriwation of stability of the numerical scheme, we could
2

have shown strong stability by adding the terms (a;—;)g%t) — (afr—zT)gQ(t) =0, which
would have resulted in the estimate ||ul|* < ||f]|* — asz Oth(T) dT. This requires

a stronger restriction on T, namely that it should satisfy T < —35.

The example concludes this chapter. In the following two chapters, numerical

schemes such as the one above will be further introduced.
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Chapter 3

Finite differences and the
SBP-SAT technique

As an introduction for the main investigations to be carried out in this project, we
consider a finite difference SBP operator to discretise the wave equation in one space

dimension.

3.1 Continuous analysis for the wave equation

Consider the second-order wave equation in one space dimension with homogeneous

Dirichlet boundary conditions.

(3.1)

Using the energy method, multiply the equation in problem (3.1]) by u; and integrate
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over the domain to obtain

1 1
/ Ul AT = / UpUgy AL
0 0

We recognize the left-hand side as a time derivative of the norm |ju||]. We can

therefore write the above equation as

1d ) !
—— ||lw||” = / Uy AT
2 dt ;

If we now apply the integration-by-parts rule on the right-hand side of the equation,

we have

1
~ L el = g 7=) — / ooty de.

'10
= —/0 55(%)2@?,

d
(el + lesl?) = 0.

Integration in time results in

e O + llua ()1 = llgON + 1L£C)I1

To obtain a bound on w itself, we use a technique proposed in [WKI17].

q d

Ll = 2 ull & .

d ) 1 1 (32)

< Jul :/ u2dx:/ sty dz = 2(u, ) < 2 ul ]
0 0
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Consequently, we have

d
—llll < Nluell S Tuell” + el
dt

which leads to

%IIUII < g + 1£0)11% -

Integration in time yields the final result

GO < IFOI + /Ot lgOI” + 1)1 dr,

which demonstrates well-posedness of the problem ({3.1)) in the sense of Definition
24

3.2 Discrete analysis for the wave equation

We consider the following semi-discretisation of problem (3.1) from [SN17] (also
found in [WKI17]), where we also include the right boundary.

wy = Dy + P! (—STEO - %E()) u+ P! (STEN - %EN> u. (3.3)

Here, Fy and Ey are matrices with zero elements everywhere except in the upper
left and lower right corner, respectively; P is a diagonal matrix and 7 and 75 are
parameters to be determined for stability reasons. Recall that the second-derivative
operator has the form Dy = P! (—A + BS).
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Before demonstrating stability of the above scheme, we introduce a lemma from
[MHIOS] that will be used in the analysis. This lemma applies to our problem, since
according to the paper, our operator Ds is a narrow-diagonal second derivative SBP

operator, which is defined as follows.

Definition 3.1 ([MHIOS8]). An ezplicit pth-order accurate finite difference scheme
with minimal stencil width of a Cauchy problem, is called a pth-order accurate narrow

stencil. J

Lemma 3.2 ([MHIO8|). The dissipative part A of a narrow-diagonal second deriva-
tive SBP operator has the property

u? Au = ha(BSu)? + ha(BSu)3 + u” Au,

where A is a symmetric and positive semi-definite matrix, and « is a positive constant

independent of h.

For the proof, see [MHIOS|, where also the different values of « are listed for the

second, fourth and sixth-order accurate second derivative SBP operators.

We now turn to the demonstration of stability. We begin by multiplying Equation
(3.3) by u! P and adding the transpose. We then have

u!l Puy +ul,Pu, = u] (—A+ BS)u +u’ (—=A+ BS) u,

T T Ty T T 71 T
+ uy, <—S Ey — ﬁEo> u—+u (-S Ey — EE()) Ut (3.4)

T
+ ’U,z (STEN - %EN> u + ’U,T (STEN - %EN> Uy .

The left-hand side can be recognized as 4 ||, ||*. For convenience, we split the right-

hand side into three components and consider them separately.
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Component 1: The terms from the second derivative approxrimation

These are the first two terms on the right-hand side in the above equation. By

rearranging terms, we obtain

ul (—A+ BS)u +u’ (—A+ BS) u; = —u! Au — u" ATu; + ul BSu + u” (BS) uy,

= —% (u"Au — " (BSu)).

We now apply Lemma [3.2] which yields

ul (A + BS)u+u'(—A+ BS) u, =

—% (qulu + ha(BSu); + ha(BSu)3 — uT(BSu)>.

Component 2: The left SAT

These are the terms u? (—STEy — 2 Fy) u + u” (—STEy — 2 E,)" u, in Equation
¢ h h
(3.4). Writing them out, we obtain after some manipulations

T
’U,? <—STE0 — %E{)) u + 'U,T (-STEO — %E{)) Uy =
—u!l STEyu — %utTEou —u’ (STEy) uy — %uTEoTut = (3.6)

T
—2(S’U,t)g'u,0 - 2% (’U,t)()'u,().

The resulting terms can be recognized as time derivatives, and we have

T
'l.l/g1 (—STEO — %Eo) u + ’U/T (-STEO — %E@) Uy =
d

= ((Su)oug + %ug) .
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Component 3: The right SAT

We consider now the two last terms of Equation (3.4). In the same fashion as for
the left SAT, we obtain the following.

T
’U,? <STEN — %EN> u + UT <STEN — %EN> U = Q(S’U,t)N’U,N — 2%(@%)]\]“]\],

d

= q ((SU)NUN - %UQ ) :

Combining the three components (3.5))-(3.7)), Equation (3.4]) reads

4
dt

d ~
T <uTAu + ha(Su)? + ha(Su)% + 2uo(Su)o — 2un(Su)y + %ug + %u?\[) :

luel® =

By rearranging terms and writing the resulting right-hand side on matrix form, we

obtain

d 2 2 d (Su)o ! ha 1 (Suy)
< (el + uly) = & ( o ) (1 —)( w )
N ((Su)N> <ha —1) <(Su)N>
un —1 %2 uN
We define vy — <(Su)0),MO _ (ha 1>7vN _ ((Su)N> and My — (ha —1)'
Uo L3 uy -1

Consequently, the above equation can be written as

d d
77 (el + J[l5) = = (v5 Mowo + v Myvn)
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Integration in time leads to

(D) + [[u(®)]| 5 = —vf Mowols — vi Mywwlh + [l (0)]* + [w(0)]5,
= 'Ug(O)M()’U()(O) + 'UIA}(O)MN’UN(O) — ’l)g(t)Mo’Uo(t)
— vy () Myon(t) + llgl* + 1 £115 -

For the scheme to be stable, we require that M, and My are positive semi-definite.

This yields the conditions 7y, 75 > % We then have

eI + ()15 < 05 (0)Movo(0) + w3 (0) Myvw (0) + llgll” + [1F15

The two first terms on the right-hand side above is some known constant C' obtained

from the initial data, hence we can write

eI + [l < €+ llgl” + 1 £1%-

Using the same relations (3.2)) as for the continuous case, we can obtain a bound on

|u||, and we therefore conclude that the scheme is stable.

3.2.1 Accuracy and convergence rates

Even though it is quite straightforward to obtain high-order approximations in the
interior of the domain, more care must be taken near the boundaries. To obtain
optimal convergence rates, boundary conditions must be approximated to at most
one order less than the interior points (see e.g. [Gus08, [Gus75l, [Gus81]). In [Str94],
Strand investigated SBP operators approximating the first derivative. Among them,
operators using a diagonal norm, with accuracy in the interior of the domain 2p,
and accuracy p < 4 at the boundary. This will according to [Gus75, [Gus81| yield

a convergence rate of p + 1. For second derivative approximations satisfying a
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summation-by-parts rule, Svird and Nordstrom proved in [SNO6] that for schemes
with boundary accuracy p, the convergence rate is raised to p + 2, i.e., two orders
are gained. In fact, for PDEs with a nth-order spatial derivative, the accuracy at
and near the boundary can be lowered n orders to obtain the convergence rate of

the inner scheme.

When analysing numerical schemes such as the one introduced in this chapter, it is
possible to obtain an a priori estimate of the convergence rate by deriving an energy
estimate for the error between the exact and the numerical solution. To see how
this procedure is carried out, see for instance |Gus08]. Here, it is explained that
the energy method sometimes demonstrates that the convergence rate is one order
higher than the accuracy at the boundary. For other cases, however, only a factor
of O(h'/?) is gained by the use of the energy method. From the theory discussed
above, it is clear that the observed convergence rate is often higher than what is

expected from the analysis based on the energy method.

3.3 Numerical results

In this section, we present the results obtained when implementing the above nu-
merical scheme with an SBP operator that is 6th-order accurate in the interior and
3rd-order accurate near the boundary (see Appendix [B| for its specific form). The
analytical solution is u(x,t) = sin(27x) cos(27t), which yields no forcing function,

and the scheme is run until ¢ = 1.

Table 3.1: Table showing the L2 errors and convergence using the (6, 3) scheme

Grid points L?-error L?-convergence
100 1.39153e-08 -

200 3.22325e-10 5.39

300 3.72387e-11 5.30

400 7.52297e-12 5.54

500 2.16224e-12 5.58

600 7.99859¢-13 5.44
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The results listed in Table [3.1] indicate that the convergence rate of the scheme is
around 5.5. In Figure [3.1, we see the numerical solution when the number of grid
points is 600. The exact solution is not included here, since it looks identical to the
numerical solution in the plot. However, Figure shows the error between the
calculated and the exact solution (notice the scale of the axes). We see from this
figure that the biggest errors are along the boundaries, which agrees with the fact

that the scheme is three orders less accurate here.

Figure 3.1: Plot of the numerical solution using 600 Figure 3.2: Plot of the error between the exact and
grid points. the numerical solution using 600 grid points.
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Chapter 4

Finite volumes and the SBP-SAT

technique

For the second part of this project, we consider the finite volume method in two space
dimensions. In [SGNO7], Svéird et al., showed that two common approximations
of the second derivative are inconsistent on unstructured grids. However, if the
grid is constructed by equilateral polygons, both approximations are consistent in
the interior. The idea of this project is to take an unstructured triangular grid,
and transform every triangle to a standard equilateral triangle (see Figure |4.1)).
Afterwards, we refine the mesh by adding grid points in such a manner that the
standard triangle is consisting of only equilateral triangles. In this way, we might

recover the accuracy of the second-derivative approximation.

In this chapter, we consider one of the approximations discussed in the paper
[SGNOT], namely the application of the first-derivative approximation twice. We
derive a finite volume method with operators that satisfy a summation-by-parts
rule. We begin by discretising the advection equation using these operators and
verify by numerical experiments what convergence rates we obtain by including the
transformation. Next, we discretise the second-order wave equation using the same

operators, and investigate consistency and convergence rates.



26

4.1 The transformation

Before proceeding to the finite volume method, we start this chapter by introduc-
ing the transformation from the physical domain to the standard triangle. The

transformation we have used is linear and of the form

r = a; + ax + asn,
y = by + b€ + bsn.

Here, (z,y) are the coordinates in the physical domain, while (£,7) are the coor-
dinates in the computational domain (the standard triangle). Each triangle in the

unstructured mesh will be transformed into a standard triangle with fixed vertices

(see Figure [1.1)).

A

fn

[
s

7]

L.

Figure 4.1: Every triangle in the unstructured mesh is transformed into a standard triangle with vertices at (0,0),

(1,0) and (3, ¥3).

(0,0) (1,0)

Later in this chapter, we will see how the transformation influences the problems

we are investigating.

4.2 The finite volume method

In [NFAEQ3], Nordstrom et al. analysed the unstructured node-centred finite volume

method, and showed that it can be regarded in an SBP framework. The following
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derivation was originally found in this article. For the purpose of this thesis, it was

verified and we will present it here for the reader’s convenience.

Figure 4.2: Example of a grid on the standard triangle. The dashed lines are the boundaries of the dual volumes,
the dots are the centroids and the squares are the nodes.

Consider the advection equation in two space dimensions

u + aug +buy, =0, (z,y) € N (4.1)

where € is the standard triangle, and the domain is divided into equilateral triangles.
Unlike the finite difference method, the finite volume method is based on the integral
form of the given PDE. We start by dividing the spatial domain into a number of
non-overlapping dual volumes. Then we integrate Equation over each such
volume, which in this case is defined as as the area inside the polygon with vertices
at the centroids of the triangles surrounding node i (see Figure .

// utda:dy—i-// aug + buy drdy = 0.
Vi Vi

By using Green’s theorem, we obtain
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// ut—l—]{ —bu dx + au dy = 0. (4.2)
Vi av;

K3

ne6 n1

Figure 4.3: An interior point ¢ of the grid with its dual volume V; and surrounding neighbours n; — ng. The
differences in the coordinates of the centroids are the Az and Ay in the approximations of the derivatives.

We want to approximate the volume average of u, which can be expressed as u =
% / fv wdxdy. This means that the first term on the left-hand side of Equation (4.2)

can be written V;(u;);. Hence, the equation now reads

Vi(u;)s + 7{ —bu dx + 7{ au dy = 0. (4.3)
ov; Vi

The line integrals (fluxes) above are equal to the sum of the line integrals over each
edge in the dual volume. We approximate these line integrals by the mean value of
the solution at node ¢ and the neighbouring node n, times the difference between the
coordinates in the two centroids constituting the corresponding volume side. The
orientation of the line integrals is in the counter-clockwise direction. Let N; be the
set of all neighbouring nodes to node 7. Then the line integrals in Equation (4.3))

can be written as
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~buds = ~b) Azip dy=a Ayin
éw U AT 5 T éwau y=a 9 Y

neN; neN;
If we now divide Equation (4.3]) by V;, we obtain
b U; + Uy, a Uj + Uy,
)= gy g+ 3y (4.4

which is a discretised version of the original equation (4.1). This means that the x-

and y-derivatives are approximated as

1 ui—i—unA 1 ui—i—unA
Uz |2,y ~ Vz Z 9 Yins Uyle;y; ~ — 1, Z Tin-

neN; neN;

Hence, the following is a semi-discrete version of Equation (4.1))

u+aP 'Quu+bP'Quu =0 (4.5)

Here, P~! is a matrix with % on the diagonal, and the specific form of @), and @,

will be described below.

First, we rewrite the sums in Equation (4.4)) as

Zu QUAyin:ZUi g + ), g

TLGNi TLGNi nGNi

—Zu 2quin:_Zui ;C —Zun ;C

neN; neN; neN;
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Next, consider all interior points of the grid.

We have that

neN; neN;

since we are summing over a closed loop. This means that in the interior, ), and
(), will have zeros along the diagonals. Further, we have that the contribution from
a neighbouring node n to node ¢ has equal size but opposite sign of the contribution
from node i to the neighbouring node n (see Figure , ie.,

= _Qyni .

This means that ), and @), are skew-symmetric in the interior.

Let us now consider the nodes along the boundaries. We denote these nodes by b

instead of 7 to clarify that they are indeed boundary nodes.

n3 n2

Figure 4.4: The grid around a boundary node b with neighbouring nodes n1 - na. The dashed lines together with
the boundary defines the dual volume Vj,.

The flux through the boundary is approximated by the value of u at node b times the
Axy, or Ay, (depending on which integral we are considering) along the boundary
(see Figure . This means that for boundary nodes, we have
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Up + Up Up + Uy
flux = Z b Ay, + upAyp — (Z L Axy, + UbA$b> .

2 2
neNy neNy

From Figure 4.4} we have that

Z AZL’(m = —Al’b, Z Aybn = —Ayb,

neNy neNy

which implies that the flux at a boundary node is given by

Ay, A Axy, A
ﬂux:Zun 1211; + up be—<2un ;Eb -I—ub%).

nENb nENb

This means that

Ayb A.CEb

T beb =75 -

Ql‘bb = 9

As for the interior points, the contribution from a neighbouring node n to the bound-
ary node b has the same size but opposite sign of the contribution from the boundary
node b to the neighbouring node n. Thus,

Aylm A:I:‘bn

Q$bn = 2 = _Ql‘nw ben == 2 = _Qynb'

Remark. The property that Q, and @, are almost skew-symmetric means that the
sums Qz + QL and Qy + Q) satisfy
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Qx‘i‘Qg:Bxa Qy‘i_ngBya

where B, and B, are diagonal matrices with the boundary elements of Q, and @,
respectively. That is, B, contains the elements Ay,, and B, the elements —Aux;.
This means that the SBP operators in two space dimensions have the same property
as the ones in one space dimension, and the above result corresponds to the SBP
property Q + QT = diag(—1,0,...,0,1) presented in Chapter @

We conclude this section by summing up the main results: the matrix P is a diagonal

matrix with elements V;, and @), and @), are almost skew-symmetric matrices.

4.3 The advection equation

In this section we analyse the advection equation in two space dimensions. To reduce
notation, we first consider the equation on a single domain. Thereafter, we show
that the problem is well-posed also if we consider blocks that are coupled together

by an interface.

4.3.1 The advection equation in the computational domain

The equation must be transformed so that it can be solved in the computational

domain. Inserting the transformation presented in Section yields

uy((€,m),y(&,n),t) + aug(x(&,m),y(& n),t) + buy(x(&,n),y(&,n),t) =0,
u(§,1,t) + (a&y + 0Ey )ue(§,1, 1) + (an, + bny)uy(€,n,t) = 0.

As is seen from the above equation, the linear transformation results in a constant
coefficient problem in the computational domain that is analogous to the one in

the physical domain. The constants a&, + 0§, and an, + bn, corresponds to the a
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and b in the original problem, respectively. Hence, proving well-posedness in the
computational domain will be equivalent to proving well-posedness in the physical
domain. For this reason, we only consider the analysis in the computational domain.
Furthermore, for a cleaner presentation in the forthcoming sections, we denote the
coordinates in the computational domain (z, y) instead of (£, 7). We also let a denote
aé; + b&, and b denote an, + bn,.

4.3.2 Analysis of the continuous problem without interfaces

We first analyse the continuous problem on a single triangle and prescribe boundary

conditions so that the problem is well-posed.

Consider again the advection equation in two space dimensions.

u + auy +bu, =0, (z,y) € Q. (4.7)

To demonstrate well-posedness using the energy method, multiply Equation (4.7)

by u and integrate over the domain (2.

// uuy dedy = — // auu, + buu, dxdy
Q Q

We define v = (au, bu), such that the right-hand side of the above equation can be

written

//uutdxdy:—//Vu-vdmdy.
Q Q

Here, we take the nabla operator to mean V = (2, 2

8z’ dy
on the right-hand side into two equal parts, and use the integration-by-parts rule

). We now split the integral
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on one of them.

1d 9 //
——|u||” = — Vu-vdxdy
sl =— [/

1 1 1
:__//Vu.vdg;dy_—]{ u(v-n)ds—{——//uv-vda:dy.
2/ /g 2 Jao 2JJa

The first and last term of the right-hand side cancel, and we obtain

1 1
—fwmﬁz——f’wvww@
2 dt 2 Jon

1

(4.8)
= ——j(I{ u*(ae, + be,) -n ds
2 Jon

where e, and e, are the unit vectors, nds = (dy, —dx) and [n| = 1. Let ((ae,+be,)-
n)~ denote the part of the boundary where (ae,+be,)-n < 0, and ((ae, +be,) -n)*
the part where (ae, + be,) - > 0. Then Equation (4.8) can be written

1d 1

ld, o1 2 - __?{ 2 +
5 llu||” = 2£Qu((aex+bey) n)” ds 5 Bgu((aew—i—bey) n)" ds.

The term (ae, + be,) - n > 0, does not contribute to any growth in the norm of the

solution, hence this part of the boundary can be disregarded, and we obtain

d
— |lul? < —7{ u*((ae, + be,) -m)~ ds.
dt 99

Following the procedure done in [SN04], we add the penalty term §,, u(u— g)(ae, +
be, -m)~ ds = 0 (where g is the boundary data), which yields
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d
— lu|? = - %dgu ((aez +bey) -m)~ ds +j{ u(u — g)(aey + bey - )~ ds

dt o9
_ _7§ (u*((ae, + bey) - 1)~ —*((aes + be,) - n)”
onN

+ ug((aey + bey) -n)7) ds

_ 75,0 ug((aeq + bey) - 1) ds

By setting the boundary data to zero, and integrating in time, we obtain the follow-

ing estimate

G- O = llul, - 0)F = ¢

which proves well-posedness of problem (4.7) in the sense of Definition with
u = g along the boundary where (ae, + be,) - n < 0.

4.3.3 Analysis of the discrete problem without interfaces

We now introduce the scheme for the advection equation on a single triangle. Based
on the operators derived in Section [4.2, we propose the following semi-discrete

scheme.

Proposition 4.1. The scheme
u +aP'Quu +bP'Q,u = P7'SAT, (4.9)

with
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SAT — (aAyy, — bAzy)(up — g), for boundary nodes b with boundary conditions

0, otherwise

is a stable semi-discretisation of Equation (4.7)) with w = g on the boundaries with

boundary conditions.

Proof. The goal is to derive an energy estimate. A similar derivation can be found
in [NFAEQ3]. Using the discrete energy method, multiply Equation (4.9) by u” P
and add the transpose.

u’ Pu, +u!l Pu= —au’ Q,u — au’ Q1 u — buTQyu — b’u,Tqu + 2uTSAT,
= —au"(Q, + Q)u — bu” (Q, + Q) Ju + 2u” SAT
We recognize the left-hand side as a time derivative, and utilize the fact that @, +

QZ = Ba:a Qy+Q§ = By-

d 2 u? u?

dt , ; ;
i€B i€EB i€EB
= — Z ui (aly; — bAz;) + 2 Z u; SAT;.
i€EB i€B

Here, B denotes the set of all boundary nodes. In the same fashion as for the

continuous case, we divide the sum — Y, 5 uf(aAy; — bAx;) into two parts.

d
pr || = — E ui (aly; — bAx;) — E ui(aAy; — bAz;) + 2 E w;SAT;.
¢ 1€B s.t. 1€B s.t. icB
(aAy;—bAxz;)>0 (aAy; —bAz;)<0

The first term on the right-hand side is less than or equal to zero, and will therefore



37

not contribute to any growth. The estimate can therefore be written

d

- ull> < = " ul(aAy; — bAz;) +2  u;SAT;.

i€B s.t. i€B
(aAy;—bAz;)<0

Next, we insert the specific SAT-term from the proposition to prove that the scheme
is stable.

d
it HuH2 < - ZU?(@A%‘ — bAz;) + QZW(@A%‘ — bAz;)(u; — gi),

1€EB s.t. 1€B
(aAy;—bAz;)<0

= Z —u(aly; — bAz;) + 2ui(aAy; — bAz;) — 2u;g;(aly; — bAT;),
1€B s.t.
(aAy; —bAxz;)<0
= Z ui(aly; — bAz;) — 2u;g:(aly; — bA;).

1€EB s.t.
(aAy; —bAxz;)<0

The first term on the right-hand side is less than or equal to zero, which means we
have

d
pr |w||> < —2u;g;(aly; — bAL;). (4.10)

From Chapter [2| we can set boundary data to zero in the stability analysis, without
loss of stability, hence the estimate reads

d .o
— <0.
=l <

Integration in time yields the final estimate
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2 2
[w(®)[I” < [luw(0)[,
which proves stability of the scheme in the sense of Definition m

4.3.4 Analysis of the continuous problem with interfaces

The theory about the interface treatment can be found in |[LN14], [SN14] and
[CNG99].

Figure 4.5: Example of a grid with an interface (dashed line).

For simplicity, we consider a physical domain with only one interface, like the one
in Figure [£.5] The extension of the analysis to several interfaces is straightforward
as they are handled in the same way. We let u denote the solution in the left
sub-domain €27, and v the solution in the right sub-domain €2z. We have to show
that the problem is well-posed, even with the coupling of the two blocks along the
interface. We still let (x,y) denote the coordinates in the computational domain.
We let also from now €2, and {2z denote the respective computational domains of
the triangles in Figure |4.5|

First, we split the equation into two parts
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s+ auy +buy, =0, (z,y) € Qf
v+ av, +bu, =0, (z,y) € Qp

Next, we apply the energy method to both parts, and then add the two equations.
We refer the reader to Section for the derivation of the energy estimate for the
advection equation. We skip to the part of the derivation where the intergration-by-

parts rule has been applied. We then have

d

7 (-, -,t)||?2L = —/ u*(ae, + be,) -ny ds — / u*(ae, + be,) - ny, ds,
8QLB BQL[

d

dt [o(-,- ), = —/ v*(ae, + be,) - mp ds — / v?(ae, + be,) - np ds.
R, R,

In the above equations, the subscripts L and R denote the left and right part of the
domain, respectively, B denotes the parts of the sub-domains that are outer bound-
aries, while I denotes the parts of the sub-domains that are interfaces. We have
already seen that the problem with only outer boundaries is well-posed, so we will
disregard this part and focus only on the interface. We now add the two equations
and use the short-hand notation £ ||w(-, P = Lu(-, -,t)||522L + 4 o, -,t)||522R to

obtain

d
y w(-, - t)|]> = —/ u*(ae, + be,) -y ds — / v’ (ae, + be,) - g ds.
o9, 095,

We have that 0€Q;,, = 0Qr, and nr = —n;. Using this, yields

d
Gl == [ (= o?)(ae, + be,) -y ds.
12197
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We follow again the procedure in [SNO4] and add the term fm] nu(u — v)(ae, +

be,) - ny — nv(v — u)(ae, + bey) - ny, ds = 0 to obtain

d

g7 |lw(-, -,t)||2 = — /ag (u? — v?)(ae, + be,) - ny ds

+/ (ru(u — v)(ae, + bey) - ny,
80
—1v(v — u)(ae, + bey) -ny) ds,

= / ((71 — Du? — ruv + (1 — m)v? + TQ’IMJ) (ae, + bey) - ny, ds.
9y

Depending on the sign of (ae,+be,) -1y, we get different criteria for the parameters
7 and 7. If (ae, + bey) -my < 0, then 7 > 1, 7y + 7o = 2 is required for well-
posedness. If (ae, + be,) - ny, > 0, then we require that < 1 and 7 + 7 = 2.
When (ae, + be,) -, = 0, the integral over the interface will vanish, and hence not

contribute to any growth in the solution.

4.3.5 Analysis of the discrete problem with interfaces

We now turn to the semi-discretisation of the advection equation on a grid consisting
of two blocks with an interface. Also here, we can extend the theory to include

several interfaces, but for a cleaner presentation, we consider only one.

We proceed in the same way as for the continuous case. We divide the equation
into two parts - one for each block, then we impose the interface conditions weakly
using the SAT technique in a similar manner as for the boundary conditions. Let
now u and v denote the solutions in the left and right sub-domains, respectively.

We propose the following scheme.
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Proposition 4.2. The scheme

w+ap Py Qp,u+ b Pl Qy,u = P 'SATR + P 'SAT, (4.11a)
v + apPr Qv + brPr'Q, v = PR SATp + P, 'SAT; (4.11b)

with SATp as in Proposition and

wl(ui — Uz‘) ((aLeIL -+ bLeyL) . nL) , 1€ 8QL1
SAT; = € wa(v; — w;) ((agresr + breyr) - mg), i€ 0N,

0, otherwise

1s stable.

Proof. Using the discrete energy method, multiply Equation (4.11a]) by w” P and
Equation (4.11b]) by T Pg, and add the transposes to obtain

d
7 ||u||?2L = —aru’ (Qu, + QL Ju —bu” (Qy, + Q;)u + 2u”SATp + 2u”SAT;,
i€B i€ly, i€B i€ly,
1€B iely,
d 9 v? v? v? v?
E ||U||QR = —2CLR (Z ?Ayl -+ Z §Ay1> + 2bR (Z ?Al’l -+ Z 3AIZ
i€B i€l i€B i€lR
1€B i€l

From the proof of Proposition [4.1], we know that the boundary nodes are not causing
any instabilities, hence we disregard these nodes in the rest of the analysis, and focus
only on the interface nodes.
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We now add the two equations and use the short-hand notation 4 |w|* = 4 HuHéL +

4 |lv]|3, . This yields

d ) u? u;

iEIL iEIL iEIL
v v
i€lR i€lR i€l

For simplicity, we consider now only one interface node k. Since this node is arbitrary,
stability of the whole scheme follows if we are able to prove stability for this node.

For the rest of the proof, we write only the right-hand side of the above equation.

— aLuiAykL + bLuiAJ:kL + 2u,SAT,,, — aRv,%AykR + va,%Aa:kR + 2u,SATy, ,

= —ui(aLexL + bLeyL) “ny, + QUkSAT[kL — Ulz(CLRGIR —+ bReyR) ‘Nngr+ QUkSAT[kR,

where n, = (Ayy,, —Axy, ) and ng = (Ayk,, —Azg,). We insert the respective
SAT-terms to obtain

— Ui(aLemL +breyr) -y + 2wiug(u, — vg) ((apegr +breyr) - nyp)
- UZ(QRBIR + breyr) - N + 2wk (v — ui) ((ar€zr + breyr) - MR)
= _Ui(aLemL + bLeyL) “ny + 2w1ui(aLezL +brey) np — 2wiugvg(apesr + bLeyL) “nyr,

2 2
— vi(aresr + breyr) - nr + 2wovi(ageyr + breyr) - np — 2woviur(aresr + breyr) - NR.

We now utilize the fact that (ageyr + breyr) - nr = —(are,r + breyr) - ny, which
yields

((le — Dui — 2(w; — wo)upvp + (1 — ng)vi) (areyr +brey) - np.
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As for the continuous case, we get different criteria on the parameters w; and wy
depending on the sign of (are,r +breyr) -np. If (are,, +breyr) -ny <0, then we
require w; > % and wy +wy =1, and if (ape,; + breyr) - ny > 0, then wy < % and
wy + we = 1. The case when (ape,; + bre,r) - ny = 0 yields no restrictions on the

parameter as the above terms vanish. O

The restrictions on w; and w, given in the proposition above, proves stability for
the numerical scheme. In addition to the scheme being stable, we also want it to
be conservative, since the governing equations are conservation laws. The following
theory applied to our problem can be found in for example [EANTI], [SN14], [LN14]
and [CNG99].

The weak form of the advection equation (4.7) can be obtained by multiplying by
a smooth test function ® with compact support (which in this case means that it

vanishes at the boundaries) and integrating over the spatial domain and in time.

t
/<I>u|6d§2—// Ou + aPyu + 0Py u dt dS2 = 0.
Q aJo

Here, we have used the integration-by-parts rule to move the spatial derivatives
from the solution u to the test function ®. We want the numerical scheme to mimic
the above equation. To demonstrate that the conservation property indeed applies
to the numerical scheme, multiply equation by ¢} Pp, and equation (4. 11D))
by ¢ Pr. Here, (¢ z)i(t) = ®(z;,i,t). Since ® has compact support, all outer
boundary terms will vanish, and we therefore neglect the boundary SAT in the

derivation.

SLPruy + apdt Qo u + bt Q, u = GLSAT),
GhPRv: + ardhQuyv + brdhQyv = PRSAT,.

We now add the two equations, and utilize the fact that ¢' Pw; = 4 (¢" Pw) —
¢; Pw and Q, + QT = B,, Q, + Q' = B,. We then obtain
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R N (T
0

+ar(Dy, ¢) Pru+br(Dy, ¢)" PLu
+ ap(Dypdr)" Pro + br(Dy,dr)" Pro
+ag, Z GiuiAy;, +ag Z OV AY;

i€l icl
_ bL Z gzﬁluzszL — bR Z ¢iviA$iR
iel iel
—w Z oi(u; — v;) ((ae, + bey) 1)
i€l
— Wo Z ¢i(vi — ;) ((ae, + bey) - nR)> dt = 0.
i€l

For the semi-discretization to be conservative, we need the last four lines in the
integral above to cancel. We consider now only one interface node k, and rearrange

the terms in question. This gives us

or(ae, + bey) - np(u, — v — wy (g — vg) — waug — vi)),

which cancels due to the stability condition w; + ws = 1. Hence, the numerical

scheme is conservative.

Before presenting the numerical results, we briefly investigate what convergence
rates the scheme will generate, theoretically. For finite difference methods, better
rates are often observed in the numerical experiments, and there is a chance we have
the same case for the finite volume method. However, the analysis provides an idea

of what rates we could at least expect.
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4.3.6 Convergence analysis

According to [SGNO7], it is possible to show that the approximations for the first
derivatives are first-order accurate in the interior of the domain on unstructured
grids. We therefore expect at least first-order accuracy on the standard triangle as
well. In fact, it can be shown (see Appendix that the x-derivative is second-order
accurate in the interior of this domain. Numerical experiments corroborate this
result, and show that we have a similar case for the y-derivative. The truncation
errors can be summed up as follows for the first derivatives. For interior nodes, we
have T' = O(h?), for boundary nodes T'= O(h) and for corner nodes T' = O(1).

The theory for convergence rates for the finite difference methods does not apply
for the finite volume method formulated on unstructured grids. However, we can
estimate the convergence rate by determining an energy estimate for the error of
the solution. See for example [Gus08] or [GKO95|] for more about the following

procedure.

To distinguish the true solution from the numerical solution, we denote them by
u and v, respectively. The error at a point (x;,y;,t) is then expressed as e¢; =

(i, yi, t) — vi(t). The error will satisfy the scheme

e +aP'Q.e +bP Qe + T = P, '(aAy, — bAxy)ep. (4.12)

Where T is the vector containing the truncation errors. In the above equation, we
have allowed for a slight abuse of notation. The boundary term Pb_l(aAyb —bAxyp)ey
should naturally be written in vector form as well, but since it does not play a big
role in the derivation of the convergence rate, we let it represent its corresponding
term in vector form. We now derive an energy estimate for Equation to obtain
a bound for the error.

e’ Pe, + el Pe +ae’ (Q, + Qe + beT(Qy + Qg)e
—2¢l (aAy, — bAmy)e, + " PT + T Pe = 0.
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From the earlier analysis of the advection equation, we obtain

% lell” < 2(e,T) < 2|le|||T]l,
% lell> =2 |le| % lell < 2|lell [T,
Clell < 1T
We now integrate in time and utilize the fact that ||e(0)|| = 0. Let N denote the

number of grid points along each boundary. Then we have O(N) = O(1/h). The

dual volume is of order h?, i.e., V = Ch?, where C is some constant. This yields

el < /Ot VCR2-O(h?)2-O(N2)+Ch2-O(h)2- O(N) +Ch2-O(1)2- O(1) dt,

< /t O(h?) + O(h**) + O(h) dt.

This means that we expect a convergence rate of at least one for the numerical

schemes proposed in this section.

4.3.7 Numerical results

The Advection Equation without Interfaces

In this section we look at the results obtained when implementing the scheme pro-
posed in Proposition We show two different cases.

Case 1:

We consider the problem on the physical domain showed in Figure with the prob-
lem data a = 2.0, b = 0.5 and the analytical solution u(z,y,t) = e 3E=0)’=3=b)*
which results in a zero forcing function. The scheme is run until ¢ = 1. The results
are presented in Table The results listed here, show that the convergence rate
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is higher than what was expected from the analysis. However, we notice that it is
deteriorating, which indicates that we cannot draw the conclusion that a full order

is gained.

0 0.5 1 15 2

Figure 4.6: The physical domain for the implementation of the advection equation on a single block with the data
a=2.0,b=0.5, u(z,y,t) = e—3(@—at)®=3(y=b)%  Here displayed with a refinement number of 9.

Table 4.1: Table showing the L2 errors and convergence for the advection equation on a single block with the data
a=2.0,b=0.5, u(z,y,t) = 673(17‘”)2’3@*“)2, on the grid displayed in Figure

Grid points along each boundary L?-error L?-convergence
9 0.01913 -

17 0.00427 2.16

33 9.84074e-04 2.12

65 2.43164e-04 2.02

129 6.19436e-05 1.97

257 1.61835e-05 1.94

Case 2:

We now consider the problem on the physical domain displayed in Figure {4.7] with
the problem data a = 2.0, b = —1.0 and the analytical solution w(z,y,t) =
e~3@—at)*=3(y=b1)* © The gcheme is run until ¢ = 1. The results are presented in
Table The results listed here, also show that the convergence rate is higher

than what was expected from the analysis. However, they are not as high as for
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case 1, which gives an even stronger indication that we do not gain one order of

convergence.

0.2

-02+ . .

>-04|

-0.6

-0.8

Figure 4.7: The physical domain for the implementation of the advection equation with data a = 2.0, b = —1.0,
2 2
u(x,y, t) = e~ 3@—at)"=3(y=bt)"  Here displayed with a refinement number of 9.

Table 4.2: Table showing the L2 errors and convergence for the advection equation on a single block with data
a=2.0,b=-10, u(z,y,t) = 673(17‘”)273(7/7“)2, on the grid displayed in Figure

Grid points along each boundary L?-error L?-convergence
9 0.04026 -

17 0.01180 1.77

33 0.00355 1.73

65 0.00115 1.63

129 3.82936e-04 1.58

257 1.31285e-04 1.54

The Advection Equation with Interfaces

We implemented the scheme proposed in Proposition 4.2| on a mesh consisting of
six triangles (see Figure and Figure . Due to long run times, the highest
refinement number for the grids in these cases is 129. For both cases below, the
parameters w; and wy was chosen such that if (ee, + be,) - n < 0, then w; =1 and

wy = 0, where n is the outward pointing unit vector of each triangle. This means
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that if triangle I and II are neighbours, and (ae, + be,) - n; < 0, then the interface
SAT is applied to triangle I, and not to triangle II.

Case 1:

We consider the problem on the physical domain displayed in Figure with the
problem data a = 2, b = 0.5, and the analytical solution u(z, y, t) = e~ 2@=a)*~2(=b0)*
The code is run until ¢ = 1. The L? errors and convergence rates are listed in Table

3l

0.9

0.8

/W" e \
/ N\ \ \
N/ > AN /( \
\/\/ V4 N
07 7 NN NN\ N

/
0.6/
V

04|

031

0.2

0.1}

Figure 4.8: The physical domain for the implementation of the advection equation on a grid with multiple blocks,

with problem data a = 2.0, b = 0.5, u(z,y,t) = e—2@=at)?=2(y=01)%  Here displayed with a refinement number of
9.

Table 4.3: Table showing the L2 errors and convergence for the advection equation with the data a = 2.0 and
b=0.5, u(z,y,t) = 672(170‘”272(2”7“)2, on the mesh displayed in Figure

Grid points along each boundary L?-error L?-convergence
9 0.02247 -

17 0.00557 2.01

33 0.00141 1.99

65 3.612e-04 1.96

129 9.499e-05 1.93

Also for this case, the results demonstrates a better convergence rate than predicted
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by the analysis. However, we see a similar deterioration as in the cases on a single-
block domain.

Case 2:

We now consider the problem on the physical domain shown in Figure 4.9 with

the problem data a = 1.0, b = —1.0, and the analytical solution u(z,y,t) =

e~3@=at)*=3(w—b1)*  The code is run until ¢ = 1. The L? errors and convergence

rated are listed in Table [4.4]

%
/
/]
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0.2\ NN N\ N ~ NANRN
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Figure 4.9: The physical domain for the implementation of the advection equation on a grid with multiple blocks,

with problem data a = 1.0, b = —1.0, u(z,y,t) = e—3@=at)?=3(y—1)? fere displayed with a refinement number of
9.

Table 4.4: Table showing the L? errors and convergence for the advection equation with the data a = 1.0, b= —1.0,
u(z,y,t) = 6_3(1_‘”)2_3(?’_“)2, on the mesh displayed in Figure

Grid points along each boundary L2-error L?-convergence
9 0.06175 -

17 0.01547 2.00

33 0.00393 1.98

65 0.00104 1.92

129 2.8709e-04 1.85

We see that the convergence rate in this case is dropping faster than for the previous
case. In addition, as is seen in the figures 4.10d| there is a jump in the solution
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along an edge between two of the triangles in the mesh. The reason for this is that
the direction of the wave is parallel to the interface, and therefore, there is no
exchange in data here. However, the plots indicate that the solutions from the two
triangles that share this interface, converge towards each other. Table shows the
obtained convergence rates for each triangle to the true solution and also the rate
at which they are converging towards each other. The results demonstrates that
the numerical solutions along this interface is converging towards the true solution

at the rate 1, which is expected since the truncation error along the boundary is of

o(h).

1.2+
1.2 4

4.10a: Plot of the numerical solution with refinement 4.10b: Plot of the numerical solution with refinement
number 9. number 17.
12+ 1.2

4.10c: Plot of the numerical solution with refinement 4.10d: Plot of the numerical solution with refinement
number 33. number 65.
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Table 4.5: Table showing the L2 errors and convergence for the interface in the upper right corner. Subscript L
denotes the data from the leftmost triangle, and subscript R the data from the rightmost triangle. ue, denotes the
exact solution.

Grid points along L?-convergence L?-convergence L?-convergence

each boundary (Uey — ur) (Uez — UR) (ur —ur)

9 - - -

17 0.98 1.07 0.96

33 0.97 1.04 0.99

65 0.98 1.03 1.00

129 0.99 1.01 1.00
Summary

The results presented in this section for the advection equation clearly demonstrates
that the convergence rates are higher than what was predicted by the theoretical
convergence analysis. However, different tests show different rates, and it is therefore
unclear what the actual convergence rate is. For both the single-block and multi-
block domains, we ran a test where the direction of the wave is parallel to a boundary
or an interface. The obtained convergence rates in these cases are lower than for the

cases where the wave is not parallel to any boundary or interface.

4.4 'The wave equation

In this section, we analyse the second-order wave equation in two space dimensions
with Neumann boundary conditions on a single-block domain. Due to time limits

of the project, we do not consider meshes with interfaces.

The analysis for this equation differs from the one of the advection equation. We
explained in Section [4.3] that the transformation of the advection equation to the
standard triangle results in a problem analogous to the one in the physical domain.

This is not the case for the wave equation, and we therefore deal with the transfor-
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mation of this equation in a slightly different way. In this section, the coordinates

in the physical and computational domain is denoted (x,y) and (£, n), respectively.

4.4.1 Analysis for the continuous problem in the physical

domain

Since the resulting problem when transforming the wave equation to the standard
triangle is not analogous to the one in physical space (we obtain cross derivatives),
we first analyse the problem in the physical domain, and afterwards show that the

analysis in the computational domain corresponds to the one in the physical domain.

Consider the second-order wave equation in two space dimensions

Upt = Ugy + Uyy = Vi, (z,y) € Qu, (4.13)

2
where V? = <%, a%) is the Laplacian operator and €, is an arbitrary triangle. To

obtain an energy estimate for this equation, we proceed as usual by multiplying the
equation by u; and integrating over the domain 2.

/ UpUgy dxdy:/ u, V2 dxdy,

1d

5@”7%”?22 :l{m UtVU-nds—/ Vu; - Vudzdy.

Here, we have applied the integration-by-parts rule on the right-hand side of the

equation. Rewriting the last integral yields

1d .
—— ||| :7{ uVu-nds—/
2dt "% fog, .

2 2 2
(luellZ, + il + ) = é WV -nds,

0 2
B (Vu)* dzdy,

DO | =
Q.l&
N | —

t
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Now, if we add to the right-hand side the penalty term — fmm w(Vu-n—g)ds=0

in accordance with the procedure in [SN04], we obtain

d 2 2 2
=7 Uluelle, + luallg, +lluyllo,) = ¢ wgds,

T

N | —

which demonstrates well-posedness if we set g = 0.

4.4.2 Transformation to the standard triangle

Next, we introduce some general theory that will be applied in the demonstration

of well-posedness of the problem. This theory can be found in [NS05].

The transformation from the physical domain to the standard triangle is on the form
(=<¢(z,y), n=nzy),

and is given by the inverse of the transformation introduced in Section

b3z —azy — arbs + bias

§ ,
agbg — bgCLg
4.14
. agy — b2$ + a1b2 ( )
N a2b3 — b2a3 .

Denote € = (§,n) and © = (z,y). The Jacobian of & is defined as

J= <I£ x”) . (415)
Ye UYny

Let V¢ = (8%, 8%), such that J = (Vex)?. We have that the identity matrix,
v

I = (Vex)T(Vz€)". This means that the inverse of the Jacobian can be expressed
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as

I (V)T = (51 §y> .

Ne Ty

J~! can also be found by inverting J. By doing so, we obtain

I 1 Yn — —In
det(J) \ —ye ¢ )

The two different expressions must be equal, and so must their derivatives, hence

we obtain the following relations

(J&)e + () = (Wn)e — (Ye)y =0,

4.16
(J&)e + (Iny)y = —(xy)e + (26)y = 0, ( )

where, J = det(J).

4.4.3 Analysis for the continuous problem in the computa-

tional domain

We now turn to the analysis of the transformed problem. We refer the readers to
the papers [NS05], [AN19] and [NCOI] for the theory applied in this section.

Consider again the second-order wave equation in two space dimensions

Ut = Ugg + Uyy = Ky + 1y, (r,y) € Qp (4.17)
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Here, €2, is the physical domain which is an arbitrary triangle, and k& = u, and
| = u,. Since u(z,y,t) = u(z(&,n),y(€,n),t), we have that u, = ue&, + u,n, and
uy = ue&y + u,n,. By multiplying Equation (4.17) by J and using these relations,

we obtain

Juy = J(ky + 1) = Tkl + Jhyny + J1&y + Jlyn,.

We now recognize that each of the terms on the right-hand side can be written as
Jkely = (JEok)e — (J&y )¢k, due to the chain rule. Then the above equation can be

written

JUtt = (ngm& - (J§x>£k + (Jnxk>n - (Jnx)nk + (Jéyl)ﬁ - (ng)ﬁl + (Jnyl)n - (Jny)nla
= (J&k + J&E D e + (Ingk + Inyl), — Ry — Ra,

where Ry = (J&)ck + (J&y)el and Ry = (Jn,)pk + (Jny),l. By using (4.16]), we get
R+ Ry = 0. Hence, the above equation now reads

Juy = (J&k + JEe + (Ink + Inyl), = Ke + Ly, (4.18)

where K = (J&,k + J&,1) and L = (Jn.k + Jn,l).

We now turn to the derivation of the energy estimate. As usual, multiply Equation
(4.18)) by u; and integrate over the domain (which is now the standard triangle, as

we have transformed the equation).

/ upJuy dédn = / Ut(K§ + Ln) d€dn,
e e (4.19)

= / (K )e — we K + (L), — ugy L d€dn.
Q¢
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Here, we have used the chain rule once again to obtain the last equality. We first
look at the left-hand side of the above equation. We have the following

10
[ wduadgan = [ 52 w)? gacan
e e (4.20)
= [ 5t dody = 52 il
= Jo, 20t YT gy Mles

We now divide the integral on the right-hand side of Equation (4.19)) into two parts.
Let

I = —/ Ue K 4 Uy L d€dn,
3

I = / (K )e + (ueL),, dédn.
Q¢

We consider first the integral ;. Inserting K and L and rearranging terms yields

I = —/ J (e + wina)uz) + J (e, + umny,)u,) dédn,
Qe

where (we&y + umny) = Wy and (weéy + uny) = Uy, which means we have

Il = — Jumux + Jutyuy dde],
Q¢
B 10, , 9
- _ /Q‘5 282f(ugﬁ + u,) Jd&dn,

1d 5 o
=57 o uy + u, drdy,

1d
— 5 (el + sy 2,) (421)
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Next, we turn to the integral I5. By applying Green’s theorem, the integral can be

written

]2 = % —utL dg + utK dT],
082

= ]{ u (K, L) - g dse,
EIoh

where nedse = (dn, —d€), and ng is the outward pointing unit normal vector in
the transformed space. Since the boundaries of the standard triangle are piecewise
linear, we have that d§ = & — & and dn = ne — ny, where (&1, 1) and (&, 1) are
two points along the boundary in question. These normal vector components can be
expressed in terms of the corresponding x- and y-coordinates because of the inverse

transformation (4.14)).

b a
d§ = 5(3?2 —11) — f(y2 — 1),
b
= Z2dz — %dy,
c c
a b
dn = f(@h —y1) — — (22 — 11),
b
= %dy— Zd
c c

Here we have defined ¢ = asbs — boas to reduce notation. The constants appearing
in the above expressions can be recognized as derivatives of ¢ and 7. Substitution

of these constants gives the following expressions

d§ = gzdx + §ydy,

(4.22)
dn = n.dz + nydy.

We now turn back to the integral Io. After inserting the above expressions, we have
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[2 - 7{ Jut(gxk + Syl7 nxk + nyl) : (del" + Uydf% —fdeB - gydy)
0

Writing the above integrand out, we obtain after some manipulations

I, = % JUt(&mny - 53;”95) ((Uzauy) ’ (dyv —d:L’)) )
0Ng

where we recognize that &, — &n, = det(J™!) = #(JH' The resulting integral
therefore reads
I = f U (Ug, Uy) - Mg dSq. (4.23)
0%

Combining the three parts (4.20)), (4.21]) and (4.23]), we obtain

1d

2 2 2
35 (ll + el + ) = ¢ 0V nads,,
101978

which we know from the analysis in the physical domain, proves well-posedness.

4.4.4 Analysis for the discrete problem

The scheme for the wave equation was derived by mimicking the continuous case,
by applying the theory found in for example [AN19] or [NCOI]. We refer the reader
to these articles for additional information about the following concept.

Proposition 4.3. The approximation

Juy = JD¢K + JD,L + JP; 'SAT,



60

of the problem (4.13)) with Neumann boundary conditions and

— <(I~(, L) — (G4, G’g)) -mng, for boundary nodes

0, otherwise,

SAT =

and

& (&aDew + 0o Dyu) + &(§y Dew + 1y Dyu),

Nz (& Dew + 1y Dyw) + 1y (§y Dew + 0y Dyu),
§(§eDeg + 1 Dng) + &, (& Deg + ny Dyyg),

= 12§ Deg + 12 Dyg) + 1y(§y Deg + 0y Dy g),

K =
L

is stable. Here, g is the boundary data in the physical domain, and D¢ = Pngg,
D, = Pngn.

Proof. The goal is to derive an energy estimate. Following the usual procedure,
multiply the above equation by u] P¢ and add the transpose.

uf PeJuy + uly,PeJu, = Ju! PeDeK + Ju] PeD,L + K" D{ PeJu, + LD PeJu,
+ 2Jul SAT,
d

7 lluillo, = ul JBeK —ul JQF K + K" BeJu, — K" Q¢ Ju, +uf JB, L
—ul JQIL + L" B, Ju, — LQ,Ju, + 2Ju] SAT.

Here, we have defined P, = JFP,. Now, consider first all interior nodes of €.

J <utTQETf( + f(Tqut + utTQnE + iTQnut) .
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By inserting the specific form of K and L, we obtain after some tedious manipula-

tions
(Daig)tT (Do u)e
— J (&(Dew) + na(Dyu);) PeDpw — J(Dyu)' Pe (£2(Dew)/ + n.(Dyu);)
(Dyu)? (Dyu)t

~ ™~ ~

—J (§y(D5u)tT + ny(Dnu)tT) PeDyu — J(Dyu)Tpﬁ (fy(D§u>tT + ny(Dnu)tT)a
= —J(Dyu)! PeDyu — J(Dyu)' Pe(Dyw); — J(Dyu)f Pe(Dyu) — J(Dyu)” Pe(Dyu);,

2 2
||Um||9m + ||uy||9m) :

d
_a(

Next, we turn to the boundary nodes.

2J(ul BeK + ul B, L 4+ ul' SAT).

We now insert the specific form of K and L and consider only one boundary node

b for simplicity. We then have

2J (w)p(&o(Dgpw)y + £y (Dyw)y, N (Dyw)y + 1y (Dy)y) - (An, —AE) + 2J (uy)SATS,.

Relations analogous to hold for A¢ and An. Using these and inserting the SAT

term, yields

2(we)p (Do), (Dyw)s) - (Ay, —Az) = 2(uy)(((Daw)s, (Dyw)s) - (Ay, —Az) — gy),
= 2(ut)bgs,

i.e., the scheme is stable. O

We have proved that the scheme for the problem in the computational space is
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stable, and we will now investigate at which rate the scheme is at least expected to

converge at.

4.4.5 Convergence analysis

According to [SGNO7| the application of the first derivative approximation twice
yields a truncation error of O(h) in the interior of the domain on grids where the
first derivative approximation has an error of O(h?). However, it was observed by
numerical experiments that the truncation error at these points is O(h?). In Ap-
pendix [A] we provide an explanation for this. Corner- and boundary points are
not discussed in the article, but it is shown that if the first derivative approxima-
tion contains an O(h) error, then the second derivative approximation will possibly
have an error of O(1). Boundary nodes for the first-derivative approximation have
such an error, and therefore, we would expect a truncation error of O(1) along the
boundary and along the second outer “layer” for the second-derivative approxima-
tion. Extending this argumentation to corner points that have an error of O(1) (for
the first-derivative approximation), we would expect an error of O(1/h) in these
points for the second derivative. Indeed, this is what is observed in the numerical
experiments. See Figure for description of the truncation errors for the second

derivatives. This figure shows the worst case scenario.

Remark. In the numerical experiments, it was observed that the truncation error
for the second derivative with respect to x along the boundary parallel to the x-axis

(in the computational domain) was of O(h).

Also for the wave equation, we derive an estimate for the convergence rate. We use
the truncation errors displayed in Figure In the same fashion as for the advec-
tion equation, we let v and v denote the true and numerical solutions, respectively.

The error is then defined as e; = u(x;, y;,t) — v;(t), and will satisfy the scheme

Jey = JD¢Ey + JDyEy — P I((Ky, Ly) — (Ka, Ly)) - ne + JT,
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Figure 4.11: Figure showing the pattern of the truncation errors. The orange nodes have T' = O(1/h), the dark
blue nodes have T'= O(1), and the light blue nodes have T' = O(h?2).

where By = Ky — Ky, By = Ly — Lo, and K 9, L; 2 corresponds to K and L in the
original scheme but with the exact (K3, L;) and numerical solution (K3, Ly). T is

a vector containing the truncation errors.

Following the same procedure as usual for deriving an energy estimate and using

the results of the earlier discrete analysis for the wave equation, yields

d 2 2
— (ledlls, + llesla, + lleylla,) < 2ledlg, 1T, -

dt
Define now £? = ||et||?zm + ”emH?z:c + ||ey\|éz. Then we have
dE2—2EdE<2 T <9 2 2 2
G E =28 B <2]elg, [ Tla, < 2y/ledlo, +lleallo, +lesllo, I Tlq,
d
—FE < ||Tq. -
L p <z,

Let again N denote the number of nodes along each boundary, such that O(N) =

O(1/h). Let now V = (&, 2, 8%). By making use of the fact that |le;||” + |le.||* +

le,|I> = [[ Ve, we can, due to conservation, apply the Poincaré inequality to obtain

the following estimate
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t
le@)lg. < / T, d.

< /t VO /R)2-Ch2-O(1)+ O(1)2-Ch2 - O(N) + O(h2)2 - Ch? - O(N?) dt,

< O(1).

This suggest that as a worst case scenario, the proposed scheme will not converge.

4.4.6 Numerical results

We ran the proposed scheme on the physical domain displayed in Figure [4.12

18]
16
|.4>
1.2/
> 1}
08|
06
oal | | | | | ‘
02f T T T T T ]

Figure 4.12: Figure showing the triangle used as the physical domain. Here, it is displayed with refinement number
9.

The exact solution is u(z,y,t) = sin(mz) cos(my) cos(v/2nt), which yields no forcing
function. The code was run until ¢+ = 0.5. Table [4.6] shows the obtained L? errors

and convergence rates.
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Table 4.6: Table showing the L? errors and convergence using the first derivative approximation twice.

Grid points along each boundary L?-error L?-convergence
9 0.28798 -

17 0.11476 1.33

33 0.04831 1.25

65 0.02203 1.13

129 0.01052 1.07

257 0.00514 1.03

As is seen from this table, even though there are many inconsistent nodes compared
to the total number of nodes (especially for lower refinement numbers), the scheme
seems to converge with first order. Hence, we obtain better convergence rates than

expected from the convergence analysis.

Investigations of the resulting plots indicate that the numerical solution along the
boundary x = 0 (where the solution is u = 0) is converging to the true solution
(see the figures . Figure corroborates this indication. We also
investigated the boundary y = 0, to see if we have the same case here. Figure 4.15
demonstrates that we have convergence along this boundary as well. This indicates

that the boundaries are converging, even though they are inconsistent.
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4.13a: Plot of the numerical solution with refinement 4.13b: Plot of the numerical solution with refinement
number 9. The black line represents the boundary number 17.The black line represents the boundary
along x = 0. along x = 0.
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4.13c: Plot of the numerical solution with refinement 4.13d: Plot of the numerical solution with refinement
number 33. number 65.
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4.13e: Plot of the numerical solution with refinement 4.13f: Plot of the numerical solution with refinement

number 129. number 257.
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4.13g: Plot of the exact solution with 257 as the
number of grid points along each boundary.
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Figure 4.14: Plot of the numerical solutions along Figure 4.15: Plot of the difference between the exact
the boundary = 0. N denotes the number of grid and numerical solution along the boundary y = 0. N
points along the boundary. denotes the number of grid points along the bound-

ary.
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Chapter 5

Conclusions and further work

In this thesis, we have studied the extension of the SBP-SAT technique to the
finite volume method. The goal of this project was to introduce a methodology
for implementing both first and second derivatives on general unstructured grids,
where the higher accuracy of the approximations on structured grids is utilized by

introducing a transformation to a computational domain.

The results presented in Chapter 4 demonstrate that the introduction of this trans-
formation indeed raises the accuracy of the approximations. However, none of them
are fully consistent, and the case for the second derivative is especially unfavourable.
At least for lower refinement numbers, the number of inconsistent points is too high
to conclude that it is a good approximation. However, if such an approximation
is to be used on an unstructured grid, this methodology can be used to recover
some accuracy. For the first derivative approximation, the procedure introduced in
this thesis can be utilized to obtain higher convergence rates if the desired mesh is

unstructured.

Although full accuracy is not recovered, the results presented in this work clearly
demonstrates that the numerical schemes are convergent. We also noticed that the
observed convergence rates were higher than what was predicted by the theoretical
analysis. However, as discussed in Section and [4.4.6] it is not clear what
convergence rates the schemes are producing, and we are missing the theory for

determining sharp estimates for the convergence rates.
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Based on the results of this thesis, possible future work could include further nu-
merical experiments to investigate the convergence rates of the schemes. Another
desirable matter is the derivation of a consistent second derivative approximation
formulated by the finite volume method that satisfy a summation-by-parts rule.
Lastly, it would be satisfactory to derive a methodology for transforming curved

boundaries, in order to allow for even more general grids.
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