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Abstract

When communicating using an unconditionally secure protocol, a sender and receiver is
able to transmit secret information over a public, insecure channel without fear of the
secret being intercepted by a third party. The Russian cards problem is an example
of an unconditionally secure protocol where the communication is fully understandable
for everyone listening in. Even though everyone can understand what is being said,
only the sender and receiver are able to uncover the secrets being transmitted. In this
thesis we investigate the interaction among the communicating parties. By extending
existing problem-specific software we are able to more efficiently analyze protocols, and
we are therefore able to provide an answer to an open problem in the literature. We
provide a completely new solution to the Russian cards protocol and show that it fulfills
all requirements by the problem. Discovering this new solution provides the person
initiating the protocol two new strategies to choose from when constructing the initial
announcement of the protocol.
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Chapter 1

Introduction

1 Communication protocols

Using the vast amounts of natural languages we have created to communicate with each
other has been, and still is an essential part of the evolution of our species. It grants the
possibility of discussing ideas, sharing knowledge or experiences and to express ourselves
in ways other people can understand, interpret and apply to their own lives. Transmitting
secret information has been of interest for a long time in many different settings, may that
be secret communication among friends or national secrets being transmitted between
several parties. Since the first use of Caesar’s cipher some thousand years ago [Merkle,
1978], people have been trying to use different codes and ciphers to hide information
transmitted between two parties over an insecure channel.

We can make two distinctions when talking about secure protocols, namely condition-
ally and unconditionally secure protocols. An example of conditionally secure protocols
is the common RSA (Rivest–Shamir–Adleman) encryption schema which is based on pri-
vate/public key encryption [Rivest et al., 1978]. In a private/public key protocol, the
receiver (Anne) has a private and a public key. Anne initiates the protocol by sending
her public key to the person that is sending her a message, in this case we name him
Bob. Bob then encrypts the message using Anne’s public key and sends the encrypted
message back. Anne proceeds to use her private key to decrypt the message Bob sent
and learns its content [Diffie and Hellman, 1976]. If Anne wants to send a message back
to Bob, the protocol would be repeated symmetrically. Anne would need the public key
of Bob, encrypt the message using his public key and Bob would be able to decrypt it
using his private key. The private key is always kept secret as it is used for decryption,
whereas the public key can be sent over public, insecure channels as its function is only
to encrypt a message. The assumed security is due to the computational intractability,
as it requires factoring a large product of primes [van Ditmarsch et al., 2006].

An unconditionally secure protocol does not rely on such assumptions, and an ex-
ample is the one-time pad [Diffie and Hellman, 1976]. The one-time pad is a form of
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2 Introduction

encryption that if executed perfectly is impossible to crack, even with unlimited compu-
tational power. It takes plain text and encrypts it using some key of the same length as
the message. For each message sent using the one-time pad a new key must be generated.
The keys are generated randomly and is secretly kept by the recipient(s) [Bellovin, 2011].
Its use is sub-optimal due to the amount of keys needed, which is why other conditionally
secure protocols are more feasible [Diffie and Hellman, 1976]. The purpose of condition-
ally and unconditionally secure protocols are the same, to transmit some information
across an insecure channel such that only the recipient and sender knows its content.

This thesis explores a different approach to an unconditionally secure protocol than
the one-time pad. The protocol is named ’The Russian Cards Problem’. The problem
was originally posed by Kirkman [1847], but garnered increased interest at the Russian
mathematics olympiad in 2000 [van Ditmarsch, 2003]. Hans van Ditmarsch named it
’The Russian Cards Problem’ in his paper published in 2003, as he thought the problem
originated from the olympiad. After he discovered the origin of the problem he tried to
rename it, but the name had already stuck in the community [van Ditmarsch and Kooi,
2015].

2 The Russian cards problem

The problem posed at the Russian mathematics olympiad in 2000 was as follows:

From a pack of seven known cards, two players each draw three cards and a
third player gets the remaining card. How can the players with three cards
openly (publicly) inform each other about their cards, without the third player
learning from any of their cards who holds it?

In the Russian cards problem, which will sometimes be abbreviated to RCP, the informa-
tion transmitted between the players is modeled as cards. These can be seen as randomly
dealt to the players by some third-party, or secretly drawn from a deck of seven cards
by the players themselves. How the cards are distributed is not discussed in this thesis,
it is rather a case study in the information exchange itself. Originally the cards were
labeled from 0 to 6, which is required for some mathematical solutions [Shen et al., 2001].
However, using numbers is not a requirement with the formalization used in this thesis.

Even though the problem description presented above involves three agents and a deck
of seven cards, the literature have also looked at a generalized version of the Russian
cards problem [Albert et al., 2005, Swanson and Stinson, 2014b]. In the generalized
Russian cards problem we might see more than three agents, and also decks of cards that
are larger than seven cards [Van Ditmarsch and Soler–Toscano, 2011]. We might also
see card distributions that are not equal for Anne and Bob, such as Anne holding an
arbitrary amount of cards and Bob holding two cards [Albert et al., 2005]. We mainly
focus on the classical version of the Russian cards problem in this thesis, but it is worth
noting as there might be mentions of different card distributions throughout the paper.

We first present some attempts at solving the problem, which are not considered
proper solutions to the Russian cards problem, some of which are less trivial than others.
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Finally we present some actual solutions before going on to describe the language used
to study the protocol and the contributions from this thesis.

Default scenario When discussing solutions, non-solutions or the problem at large,
we must consider some concrete scenario where the players have been dealt their share
of the cards. Consider the following naming of players and distribution of cards:

The two players holding three cards are named Anne and Bob. The person holding a
single card is named Eve. Anne will be holding the cards 0, 1 and 2. Bob will be holding
3, 4 and 5. Eve is given the last card, 6.

This scenario will be considered the ”default” scenario, meaning that if no other
scenario is specified this is the card distribution used. It is the easiest to remember, as
the cards are being dealt in ascending order and the players are named in a conventional
manner when discussing secure protocols.

Attempting to solve the Russian cards problem We present three different at-
tempts at solving the original problem, each with their own strategy behind the first
announcement. We then discuss why they are not considered proper solutions.

Attempt 1 Anne announces ”I don’t have card 6”. This might appear as a solution,
Eve is holding card 6 and therefore Bob learns Anne’s cards - Bob knows he has the
cards 345. The remaining cards in the deck from Bob’s perspective are 0, 1, 2 and 6. He
eliminates 6 from Anne’s hand because of her announcement and then concludes that
her hand is 012. However, consider the deal to be Anne: 0, 1, 2, Bob: 3, 4, 6 and Eve:
5. Anne does the same announcement: ”I don’t have card 6”. When Eve hears this, she
knows that Anne does not have card 6. Eve is now holding card 5, and can therefore
conclude that Bob is the person holding card 6. Anne would never announce something
that could potentially inform Eve of what cards Bob might hold - and can subsequently
not announce any announcement similar to the one presented in this first attempt.

Attempt 2 Anne announces ”I have the cards 012 or Bob has the cards 012”. It might
seem that Eve is ignorant after this announcement, does she know after this announce-
ment whether Anne or Bob is the person holding 012? Throughout this thesis, we require
all players to announce truthful announcements - lying is not allowed in this context. A
lie is not informative by nature, and we therefore exclude lies as possible announcements.
As a consequence, for Anne to be able to announce this, she has to know that the an-
nouncement is true. This is also known by Eve, Eve is fully aware that Anne is unable
to lie.

If Anne were to make this announcement she must know that either she is holding
012 or Bob is holding 012. Anne does not know anything about Bob’s cards at this point,
as Anne is the one initiating the protocol and no information regarding Bob’s cards have
been transmitted yet. Eve can therefore conclude that Anne’s hand is 012, otherwise she
would be unable to make the announcement. Anne can only announce something that
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she knows, and her announcements are therefore much more informative than it might
seem because of her restricted amount of knowledge when the protocol is being initiated.

Attempt 3 Anne announces ”I have 012 or 345”. This announcement is slightly differ-
ent from the previous attempt at solving the problem. Here Anne announces two possible
hands that she might have, instead of saying that her or Bob have the cards 012. Eve
can’t eliminate anything in a similar fashion as she could in the previous attempt, as no
part of the announcement is considering Bob’s cards. However, this announcement falls
short in a similar way to the first attempt. Anne doesn’t know that Eve might not hold
3, 4 or 5. Similar to the first announcement, this is Anne hoping that Eve is the one
holding card 6. If Eve were to hold 3, 4 or 5 she could eliminate the second part of the
announcement and conclude with Anne having the cards 0, 1 and 2.

Even though this announcement is not considered a solution, this approach to the
problem yield solutions if we increase the amount of alternative hands. In the next section
we show both the solution they had prepared at the Russian mathematics olympiad, and
an extension of the way Anne constructed her announcement in attempt 3.

Solving the Russian cards problem

Solution 1 When the problem was first posed at the Russian mathematics olympiad,
they had the following solution prepared [Shen et al., 2001].

Each of the players Anne and Bob declares the sum modulo 7 of the three
cards they have, with Anne initiating the protocol and Bob following.

This solution requires the cards to be labeled as integers from 0..6, as the modulo operator
is a mathematical operator. It is not an intuitive solution to the problem, and it is rather
hard to understand and reason around why this solves the problem. This solution is also
not ideal, as it is only proven to work for card distributions where Anne and Bob have
equal amount of cards and Eve has one card [Albert et al., 2011].

Solution 2 If we extend attempt 3 presented earlier, we can show a solution that is
much more intuitive because it bases itself on the elimination principle. Anne announces
a collection of alternative hands that she might have, and Bob can eliminate all hands
except the one Anne is holding. Consider the default scenario. A solution would then
be:

Anne: My hand is one of 012 or 036 or 156 or 246 or 345

In Anne’s announcement we have that one of Bob’s cards is present in all alternative
hands except for 012. Bob can therefore eliminate all the alternative hands Anne are
announcing except for 012, and conclude that Anne holds 012. As Bob learns Anne’s
cards, he also learns Eve’s card, and can therefore announce it to Anne:

Bob: Eve’s card is 6.



2. The Russian cards problem 5

Which results in Anne learning Eve’s card, and therefore Bob’s cards. The protocol is
then said to be terminated, as both communicating players know each others cards and
Eve is completely ignorant of any card the players hold. From Anne’s initial announce-
ment, Eve can eliminate the alternative hands that contain the card that she holds herself.
This means that when Eve holds card 6, she can interpret Anne’s announcement in the
following way:

Anne: My hand is one of 012 or 345

Eve is thus not able to determine whether Anne is holding the cards 012 or 345, and the
announcement is therefore safe.

But how did Anne know what to announce? Seeing as Anne doesn’t know Bob’s
cards, it might seem like Anne got lucky when Bob could eliminate every hand but one.
This is not the case. Anne’s announcement is carefully constructed such that she knows
that Bob can eliminate every hand but one. Notice that every hand in her announcement
except the hand she is actually holding contains at most one card that is in her own hand.
Therefore, each hand except her actual hand has two or more cards that Anne doesn’t
hold. Eve has only one card, and Anne therefore knows that even if a hand she announces
contains Eve’s card, it must also contain one of Bob’s cards as there are at least two cards
she doesn’t hold. This is what guarantees the fact that Bob will learn Anne’s cards after
her announcement. When an announcement is constructed in this way, it is common
knowledge among everyone that Bob is informed after Anne’s announcement.

Contrary to the first solution where each player announces the sum modulo 7 of their
cards, the labeling of the cards is irrelevant in solution 2 granted that the cards are
uniquely identifiable and comparable. The second solution is based on the elimination
principle. If Bob can match and eliminate hands based off the cards he is holding, a
solution can be found. We could have labeled the cards as letters, sentences, or any
other uniquely and comparable construct. Regardless, the convention of labeling the
cards as numbers has stuck within the literature and will be used in this thesis as well.

Problem There exists an open problem within the literature of the Russian cards
problem. It is described in detail in the paper ’The case of the hidden hand’ [van
Ditmarsch, 2005]. In solution 2 described above, we presented an announcement by
Anne that was carefully constructed in such a way that she knew that Bob was going to
be informed of which cards she held. Because of the structure of the announcement it
was in fact common knowledge among everyone that Bob knew which cards Anne held.
van Ditmarsch [2005] explores an announcement where it no longer is common knowledge
among all players that Bob knows Anne’s cards. He investigates an announcement where
it is possible that Eve is unaware of the fact that Bob knows Anne’s cards. Unfortunately,
the protocol studied by van Ditmarsch was not a solution after all, but if the open problem
is solved, we have an unconditionally secure protocol where Anne and Bob knows each
others cards and Eve is unaware of this fact. Hans van Ditmarsch provides the following
description in the introduction to ’The case of the hidden hand’:
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In case it can be proved that longer protocols can be really different, scenarios
are conceivable wherein a sender and receiver have achieved common knowl-
edge of a secret, but where the eavesdropper is uncertain whether this has
been achieved and still considers it possible that the protocols has not been
finished - thus having to waste resources by keeping an eye on the communi-
cating agents, waiting for possible further communications to intercept [van
Ditmarsch, 2005].

The complexity of such a protocol is evident from the fact that van Ditmarsch initially
published the paper in 2004 where he came to the wrong conclusion that it was safe
protocol but that it was identical to a previous solution. He later came to the correct
conclusion that the protocol wasn’t safe after all, and the paper was republished in 2005
with the new conclusion [van Ditmarsch, 2004, 2005]. Finding a protocol that fits the
description above, investigating the open problem from ’The case of the hidden hand’ is
what is tackled in this thesis.

Approach and research questions Most of the previous work on the Russian cards
problem have been purely analytical approaches using various ways of formalizing the
problem. The two most common are combinatorics and formal logic [Albert et al., 2005,
Swanson and Stinson, 2014b, Shen et al., 2001, van Ditmarsch, 2003, 2005, van Ditmarsch
et al., 2007].

Since purely analytical approaches have been sometime unsuccessful and prone to
error, my approach will be to develop a software tool that will augment traditional
analytical methods. The goal of this tool is to (1) be able to exhaustively generate all
possible announcements in various settings and (2) verify their properties. Such a tool
will, if it is computationally efficient, allow us to decide whether or not there exists a
solution to the open problem posed by van Ditmarsch, and to avoid mistakes.

1 Does the open problem in ’The case of the hidden hand’ have a solution or not?

2 If a solution to the open problem exist, what is a concrete example of a protocol
with the desired properties?

3 What is the correspondence between combinatorial axioms and logical formulas?

4 How can a software tool be developed and used to give further insight into the
Russian Cards Problem?

Contribution In this thesis we try to answer and clarify all the preceding research
questions. We provide a concrete solution to the open problem posed by van Ditmarsch
in ’The case of the hidden hand’. This solution inhibits all desired properties, and is
a completely new solution to the Russian cards problem. The correspondence between
combinatorial axioms and logical formulas is important to clarify the connection between
the formal language used in this thesis and combinatorial structures. It is also helpful
in the context of the software tool that has been developed together with this thesis as
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it reduces computational complexity and thus the execution time of the software. The
software presented in this thesis is an extension of existing software, but the existing
software did not have sufficient functionality to uncover the results provided in this
thesis in an effective manner as it only provides the possibility of manually constructing
announcements and validating them [van Ditmarsch et al., 2006]1.

The solution to the open problem would not have been found without the software
provided in this thesis, as it was required to exhaustively validate solutions based off the
different criteria - separating them in the following way:

[..] How can the players with three cards openly (publicly) inform each other
about their cards [..]

This requirement can be separated from:

[..] without the third player learning from any of their cards who holds it?

The extended software presented in this thesis is able to discern these criteria, and
exhaustively generate solutions that only fulfills the first, but not the second and vice
versa.

Motivation The motivation for pursuing this problem is to increase the understand-
ing of the interaction between the communicating agents in an unconditionally secure
protocol. In an unconditionally secure protocol, the communicating agents are able
to exchange secret information with truthful and public announcements even though a
third party is listening. Such a protocol is impossible to decipher, even with unlimited
computational power, and it is therefore very interesting to dig deeper into the interac-
tion among the communicating agents. Analyzing the Russian cards problem involves
complex higher-order epistemic analysis. A framework to analyze and reason around the
knowledge of the involved agents is therefore desired. This ties in with the motivation for
research question 3, where we investigate the correlation between combinatorial axioms
and logical formulas. Logical formulas represent this higher-order knowledge in a way
that is easier to reason around and understand compared to combinatorial structures.

A fascinating aspect of this particular unconditionally secure protocol is that through-
out the protocol the person listening in can understand everything the communicating
agents are saying. This is not the case for the one-time pad. The one-time pad encrypts
messages using one-time keys that are randomly generated. In the Russian cards problem
the messages sent between the players are not even encrypted. They are understandable
for everyone listening in. It is the structure of the messages that hides the true meaning
of the communication between the players.

Another important distinction between the one-time pad and the Russian cards prob-
lem is that the one-time pad requires a pre-arranged set of randomly generated keys to be
distributed to the recipient(s) of the message. This is not the case for the Russian cards

1http://www.cs.otago.ac.nz/staffpriv/hans/aoard/ has an updated version of the RCP software.
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problem. There are no pre-arrangements needed between the two communicating agents,
they are simply dealt their share of the cards and are able to share this information
publicly, and not even encrypted, over an insecure channel.

The Russian cards problem exhibits an undecipherable protocol where all announce-
ments are fully understandable by everyone, and from the contribution of this thesis the
protocol may sometimes have the property that the communicating players have common
knowledge of the card deal, but Eve does not know that and thus Eve does not know
that the protocol has finished. This results in Eve having to continue to listen for an-
nouncements, even though the protocol has ended. The proposed solution of the Russian
cards problem from this thesis therefore has some highly unique properties compared to
other secure protocols.

The rest of the thesis In the next chapter we introduce the formal language and
notation used to describe the problem. In chapter 3 we discuss some of the known results
from existing literature. In chapter 4 we present the software tool and its place within the
analysis of the problem. In chapter 5 we present the main results from this thesis, and
finally in chapter 6 we conclude the thesis and project some future work on the Russian
cards problem.



Chapter 2

Preliminaries

1 General concepts

Consider the problem description:

From a pack of seven known cards, two players each draw three cards and a
third player gets the remaining card. How can the players with three cards
openly (publicly) inform each other about their cards, without the third player
learning from any of their cards who holds it?

From the description there are certain elements of the protocol that are important to
identify and distinguish throughout the thesis. The following list describes and identifies
domain-specific aspects of the problem.

Players The words player(s) and agent(s) will be used interchangeably from here
on out. From the problem description we have that there are three agents. Two
of them holding three cards, and a third holding one card. The agents holding
three cards are named Anne and Bob. The third agent is named Eve, short for
eavesdropper as this is the agent only listening in to the communication between
Anne and Bob. Eve does not engage in any communication herself.

Deck The deck of cards is always publicly known to every player. Each agent knows
how big the deck is as well as what each card is labeled. For the original Russian
cards problem we have a deck of size 7. The deck will always be represented as a
set, denoted by D.

Cards Let |D| be the size of the deck. The cards will in this thesis be labeled
from 0..(|D| − 1). For the original problem description with |D| = 7, we have that
D = {0, 1, 2, 3, 4, 5, 6}.

Card distribution In this thesis I mainly focus on the original card distribution
in the theoretical part of the thesis. However, as the literature have expanded to

9
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generalized versions of the Russian cards problem, there will sometimes be mentions
of other card distributions. A card distribution is represented as an 3-tuple. The
last element of the tuple is always Eve’s amount of cards. Elements prior to Eve are
respectively Anne and Bob’s amount of cards. The card distribution representation
for the original problem description is therefore (3, 3, 1). If we take the 3-tuple
(4, 2, 1), it would indicate that Anne has four cards, Bob has two cards and Eve
has one card.

Lastly, we separate the problem description’s two criteria:

Informative Anne and Bob must know each other’s cards at the end of the pro-
tocol.

Safe For any given card other than her own, Eve must not know whether Anne or
Bob is the one holding it.

Informativity and safety are closely related, but separating them gives more granularity
when describing why a solution is indeed a solution, and why one is not. Bundling
them together is important as they collectively define the postconditions of the protocol,
but when studying a specific information exchange they should be discussed separately
from one another. Safety takes into account Eve’s informativity and what knowledge
the other agents have regarding Eve’s informativity. Informativity only looks at what
the communicating agents know about each other’s cards. These two criteria have been
linked together, saying that informativity is a requirement for safety [Albert et al., 2005].
We investigate this correspondence later, and show results that do not correlate with the
assumption that safety necessarily is dependent on informativity.

2 Public Announcement Logic

2.1 Epistemic models

An epistemic model is a tuple M = 〈A, S,∼, V, PROP 〉. A is the set of all agents in the
epistemic model. S is the set of all possible worlds (states). ∼ is a function giving every
a ∈ A a binary relation ∼a⊆ S × S. More commonly called an ”accessibility relation”.
V is a valuation function, indicating which propositions are true in the different states.
It is defined in the following way: V : PROP → ℘(S). PROP is a finite set of atomic
propositions [van Ditmarsch et al., 2007]. We can then list each of the sets with their
respective description as follows:

A The set of all agents present in the model.

S The set of all states (possible worlds).

∼ The accessibility relation for an agent a (∼a) is a set of relations, where each relation
connect two states. If there exists a relation between two states for an agent, this
means that the agent deem these states as indistinguishable. If a relation among
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two states exist, it is because their valuation of propositions for an agent is equal
in those two states.

PROP The set PROP is a finite set containing every atomic proposition that is present in
the model.

V The valuation function determines in what possible worlds an atomic proposition
is true. This way, we can give an atomic proposition as input, and the function will
return a set of states where this proposition is true.

2.2 Language

Public Announcement Logic uses epistemic models as the foundation for the language.
It specifically uses a strict subset of epistemic models called S5-models. An S5 model
is an epistemic model where ∼ is an equivalence relation. An equivalence relation is a
binary relation R which satisfies the following three properties.

Transitivity: ∀x∀y∀z((x, y) ∈ R ∧ (y, z) ∈ R)⇒ (x, z) ∈ R

Symmetry: ∀x∀y(x, y) ∈ R⇒ (y, x) ∈ R

Reflexivity: ∀x(x, x) ∈ R

Public announcement logic uses modal operators for knowledge and public announce-
ments. We define the syntax of the language using BNF-notation [van Ditmarsch et al.,
2007]. Consider a ∈ A, Kaϕ is then read as ”Agent a knows ϕ to be true. Consider
B ⊆ A, CBϕ is read as ”It is common knowledge among the agents that belong to group
B that ϕ is true.”, [ϕ1]ϕ2 is read as ”After ϕ1 is announced, ϕ2 is true.”

ϕ ::= p|¬ϕ|ϕ ∧ ϕ|Kaϕ|CBϕ|[ϕ1]ϕ2 (2.1)

The semantics of PAL is defined in the following way [van Ditmarsch et al., 2007]. R∗

is the reflexive-transitive closure on the relation R. The relation s ∼B t is short-hand for
(
⋃

a∈B ∼a)
∗. M |ϕ is intuitively interpreted to be the epistemic model M where ϕ has been

announced. [[ϕ]]M is the set of states in model M where ϕ is true. M |ϕ = 〈S ′,∼′, V ′〉 is
defined to be the following:

[[ϕ]]M = {s|s ∈ S ∧M, s |= ϕ}

S ′ = [[ϕ]]M

∼′a=∼a ∩[[ϕ]]M × [[ϕ]]M

V ′(p) = V (p) ∩ [[ϕ]]M × [[ϕ]]M

We now recursively define when M, s |= ϕ holds, for all ϕ:
M, s |= p⇔ s ∈ V (p)
M, s |= ¬ϕ⇔M, s 6|= ϕ
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M, s |= ϕ1 ∧ ϕ2 ⇔M, s |= ϕ1 ∧M, s |= ϕ2

M, s |= Kaϕ⇔ ∀t ∈ S where s ∼a t : M, t |= ϕ
M, s |= CBϕ⇔ ∀t ∈ S where s ∼B t : M, t |= ϕ
M, s |= [ϕ1]ϕ2 ⇔M, s |= ϕ1 ⇒M |ϕ1, s |= ϕ2

All other boolean connectives are defined using different combinations of negation (¬)
and conjunction (∧).

3 PAL and S5 models in RCP

3.1 An RCP S5 model

With the language defined, we can then look at how an RCP S5-model will look like.
This model is equivalent to the one used when implementing the Russian cards problem
in Haskell [van Ditmarsch et al., 2006]. If we take the list describing a generic S5-model
from earlier, and change the description to fit RCP we get the following:

A The set of all agents present in the current problem. In this thesis we look at
the three-agent case. This leaves A to always consist of the following elements:
A = {Anne,Bob, Eve}.

S The set of all states. These will in RCP correspond to different distributions of
cards, such as in state 1 we have that Anne is holding {0, 1, 2} whereas in state 6
she might be holding {2, 3, 4}. The complete description for a specific state will
sometimes be represented in short-hand notation in the following way: 012.345.6.
Here we have that Anne is holding {0, 1, 2}, Bob is holding {3, 4, 5} and Eve is
holding {6}.

∼ The accessibility relation for an agent a (∼a) is a connection between two states
for an agent. A connection between states s and t exists if and only if the cards
that the appropriate agent is holding are the same in both s and t. This way, the
agent cannot discern these states, as the information the agent has is the same in
both.

PROP The set PROP is a finite set containing every atomic proposition that might be
used in the model. In RCP this set consists of (|A| · |D|) amounts of propositions.
This is because for every agent in the model, we have one proposition for every
card in the deck.

The propositions are represented in the following way: 1a indicating that Anne is
holding card 1. The number represents the card, the subscript letter denotes the
first letter in the agents name. 1b represents Bob holding card 1, 1e represents Eve
holding card 1. The numbers might be chained together to describe the full hand
of an agent. In which case, the representation: 012a is used to say that Anne is
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holding the cards 0, 1 and 2. Writing 012a to describe what cards an agent has is
short-hand notation for the following logical formula:

0a ∧ 1a ∧ 2a

V The valuation function determines in what possible worlds an atomic proposition
is true. In RCP this function describes in what states an agent is holding a card.
So for instance, if the proposition is: ”Anne is holding card 0” and you give that
as input to the valuation function it would return the states where Anne is holding
card 0.

The amount of states in the Russian cards problem varies depending on the size of the
deck and how many cards each agent is holding. For the original problem we have a deck
of 7 cards, Anne and Bob holding 3 cards and Eve 1 card. This gives the model 140
states, from the following equation:(

7

3

)(
4

3

)(
1

1

)
= 140

Mathematically, the model looks like this, where M is the Russian cards model with the
card distribution (3,3,1).

M = 〈S,A,∼ V, PROP 〉

S = {012.345.6, 012.346.5, 012.356.4, ...}
A = {Anne, Bob, Eve}
∼a= {(012.345.6,012.346.5), (012.356.4,012.345.6)...}
∼b= {(012.345.6, 016.345.2), (012.345.6, 026.345.1)...}
∼e= {(012.345.6, 013.245.6), (012.345.6, 014.235.6)...}
V (0a) = {012.345.6,013.245.6,014.235.6...}
PROP = { ia | ∀a ∈ A, ∀i ∈ D}
Bold is used in the equivalence relations to clarify why the relation exists, and bold is
also used in the valuation-function example to clarify why the state is included in the
resulting set. In this case it is only used for visual presentation, and it provides no further
syntactic or semantic meaning to the numbers beyond that.

When using epistemic operators that involve the agents such as K, instead of writing
KAnneϕ to indicate that Anne knows ϕ to be true, the shorter version: Kaϕ will be used.
This is true for Bob as well so that KBob is shortened to Kb, and similarly for Eve, using
Keϕ when representing her knowledge.

Common knowledge represents the knowledge of some group of agents B where B ⊆
A. In this thesis there are two different groups of agents used in combination with the
common knowledge operator. Either the group of all agents, or only the communicating
agents Anne and Bob. When representing common knowledge among all agents, we use
CAϕ. When representing it only for Anne and Bob, we use C{ab}ϕ. From here on out
I will omit the curly braces, and use the short-hand notation Cabϕ to indicate common
knowledge among Anne and Bob.
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When representing RCP in PAL, we can view the announcements as a collection of
disjunctions, where each disjunct is a possible hand of cards the announcer can have [van
Ditmarsch, 2003]. These are represented in natural language in the following way:

Anne announces: ”My hand of cards is 012 or 135 or 456”

In PAL we must add the knowledge-operator K before the disjunction of alternative
hands. [van Ditmarsch, 2003, 2005, van Ditmarsch et al., 2006] This is because Anne is
announcing that she knows that her hand of cards is one of the disjuncts. If we were to
represent it in the following way:

(012a ∨ 135 ∨ 456)

It would mean that some ”insider” who has insight into every hand is announcing it.
Anne knows much less than someone who has insight into every agents’ hand. Anne is
only aware of what cards the deck contains, and her own hand of cards in the initial state
of the protocol. Her announcements are therefore much more informative to the other
agents than some agent that has insight into everyone’s hand [van Ditmarsch, 2003].
It is therefore important to include the knowledge operator before every collection of
disjunctions - as it is Anne announcing that her hand is one of the alternative hands.
The above is translated into PAL in the following way:

Ka(012a ∨ 135a ∨ 456a)



Chapter 3

Related work

Representing the protocol has been done in many different ways. There has been built
a geometrical protocol [Cordón-Franco et al., 2015], a colouring protocol [Cordón-Franco
et al., 2013], combinatorial protocols viewing the communication as lines in the fano
plane [Albert et al., 2005] and a formal representation using epistemic logic, which was
first done by van Ditmarsch in his paper ’The Russian Cards Problem’ published in 2003
[van Ditmarsch, 2003]. The representation in PAL has since been used in further research
exploring the Russian cards problem, and its representation has been used together with
the model checker DEMO built by Jan van Eijck [van Ditmarsch et al., 2006]. The
model checker was made for epistemic models, and it can be used to validate whether
announcements are considered to be solutions [van Ditmarsch et al., 2007, van Ditmarsch
and Kooi, 2015, van Ditmarsch et al., 2006]. The main two constructs we focus on in this
thesis is the basic combinatorial protocol, which uses set-theory to describe the protocol,
and public announcement logic as it is the chosen language for this thesis to represent
the problem. Public announcement logic provides a formalization that translates very
well into natural language, and arguably a more intuitive structure for the Russian cards
problem. Below I show an announcement represented in PAL, and its equivalent using
set-theory, which is the construct often seen in the combinatorics literature. [Albert
et al., 2005, Swanson and Stinson, 2014a,b]

PAL: Ka(012a ∨ 034a ∨ 145a ∨ 246a ∨ 056a)

Combinatorics: {{0, 1, 2}, {0, 3, 4}, {1, 4, 5}, {2, 4, 6}, {0, 5, 6}}

When the PAL formula is announced, it is intuitively interpreted as ”Anne knows that her
hand of cards is either 012, 034, 145 or 056”. As mentioned on the previous page, adding
the knowledge operator is important here because of how the other agents interpret the
announcement. This dimension is lost when representing the problem in combinatorics,
as it is just a set of sets. PAL therefore exposes the intricate details of the Russian cards
problem in a superior way compared to the combinatorial structure.

This chapter will discuss some of the known results regarding the Russian cards
problem. It will also look at some of the concepts that are generally important when

15
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discussing the Russian cards problem. Firstly, we will formally define what is considered
a solution to the Russian cards problem in PAL.

Formal solution The epistemic requirement for a solution is described as Anne and
Bob having common knowledge of each others cards. It is also required that it is common
knowledge among all agents that Eve is completely ignorant of any card an agent might
hold - other than the card she is holding herself [van Ditmarsch, 2005]. We define three
different formulae to help model these requirements [van Ditmarsch, 2005]:

aKnowsBs =
∧

i 6=j 6=k∈D

(ijkb → Kaijkb)

bKnowsAs =
∧

i 6=j 6=k∈D

(ijka → Kbijka)

eveIgnorant =
∧
d∈D

∧
n=a,b

(¬Kedn)

aKnowsBs is intuitively interpreted as ”if Bob’s hand is ijk then Anne knows that
Bob’s hand is ijk”. Similarly for bKnowsAs. eveIgnorant is intuitively interpreted as
”For any card in the deck, Eve does not know whether it is Anne or Bob holding that
card.”

We can then formally model the postconditions as the following [van Ditmarsch et al.,
2006]:

postcondition = Cab(aKnowsBs ∧ bKnowsAs) ∧ CabeeveIgnorant

If this requirement is met, we say that a protocol is finished or terminated.

Direct exchanges One of the most central concepts in the Russian cards problem
is a protocol that is considered a direct exchange as a large part of the literature only
considers protocols that are defined to be direct exchanges [van Ditmarsch, 2003, Albert
et al., 2005, van Ditmarsch et al., 2006, Swanson and Stinson, 2014a]. In the original
setting of the Russian cards problem, a protocol is said to be a direct exchange if it
finishes in two steps [van Ditmarsch, 2003]. In the classical setting, a direct exchange
consists of a single announcement by Anne, which informs Bob of what cards Anne are
holding. Bob then announces Eve’s card, and the direct exchange is finished. The direct
exchange property of the protocol is an important one, because it restricts the amount
of possible announcements we need to consider and the complexity of the protocol vastly
[Albert et al., 2005]. Direct exchanges is therefore a central concept of the literature.

If a protocol is to be considered a direct exchange, it must inhibit the following
property:

M |An, s |= CabbKnowsAs (3.1)

This means that after the initial announcement by Anne, it must be true that it is
common knowledge among Anne and Bob that Bob knows Anne’s cards. What this
results in, is the common knowledge that Bob is informed of Anne’s cards and Bob is
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therefore able to identify which card Eve holds. Bob can then announce Eve’s card
to terminate the protocol. We could also look at a direct exchange with the stronger
property:

M |An, s |= CAbKnowsAs (3.2)

Here we require that it is common knowledge among all agents that Bob is informed of
the card deal. We will see later in this thesis that the above formula is actually equivalent
to another important concept of the RCP literature, namely crossing hands.

Crossing hands Crossing hands is another concept introduced by van Ditmarsch in
his original paper on the Russian cards problem in 2003. It was originally presented
as the following, in proposition 31 by van Ditmarsch [2003]. Here hands are different
alternative hands in a single announcement:

We call hands that have a pair of cards in common: crossing hands [van
Ditmarsch, 2003].

An example of an announcement with crossing hands is the following:

Ka(012a ∨ 123a ∨ 245a ∨ 036a) (3.3)

Formula (3.3) is an example of an announcement containing crossing hands, as the two
cards 1 and 2 are present in two different alternative hands, expressed using bold text.
The following is an announcement without crossing hands:

Ka(012a ∨ 245a ∨ 036a ∨ 135a) (3.4)

Mind that van Ditmarsch [2003] only considers the card distribution (3,3,1). However,
as the literature have expanded to other card distributions, it has since been found a
generalized definition of it. Consider a to be Anne’s amount of cards and e to be Eve’s
amount of cards. The generalized definition of crossing hands is then:

Hands that have (a - e) cards in common [Albert et al., 2005].

For (3,3,1) this would be 3 - 1 = 2 (a pair). Crossing hands has strong ties to a direct
exchange. It has even been proven that if Anne makes an announcement without crossing
hands, Bob will always be informed of what cards she hold after her initial announcement
[Albert et al., 2005]. Therefore, after an announcement without crossing hands - Bob is
informed of Anne’s cards. He is therefore able to announce Eve’s card(s), and we have a
direct exchange. We also need to combine this with the requirement of safety, as there
does exist announcements without crossing hands that are not safe announcements. An
example being:

Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 146a)

This announcements does not fulfill Proposition 29 from van Ditmarsch [2003] which
states:

Proposition 29. Every card occurs at least twice in a safe communication.



18 Related work

Seeing as card the card 2 only occurs in the first alternative hand, it is not considered a
safe announcement - it does however satisfy the crossing hands constraint. The crossing
hands constraint is therefore not sufficient for safety. If we combine the crossing hands
constraint with the requirement of safety in the classical RCP setting, we get the 102
direct exchanges that are considered proper solutions to the classical setting [van Dit-
marsch, 2003]. We show later that not allowing crossing hands is equivalent with formula
3.2, which makes all safe announcements without crossing hands known direct exchanges
for all agents.

Albert et al. [2005] describes another complexity of a direct exchange that is not as
thoroughly studied. It describes an announcement by Anne that does include crossing
hands. Even though it contains crossing hands it is a known direct exchange by the
communicating agents in some cases. The slight difference being that it is not known to
be a direct exchange by Eve. The announcement briefly described is the following:

Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 246a ∨ 235a)

However, it is not acceptable as a solution due to the complications expressed by van
Ditmarsch [2005]. If the card deal is 012.345.6 and Anne makes the announcement above,
then it is a direct exchange and it is common knowledge among the communicating
agents that it is. But it is important to note that if the card deal is 135.046.2 then it
is not common knowledge among the communicating agents that it is a direct exchange,
because Bob is uncertain whether or not Anne is holding 135 or 235. In this case, it
must be investigated whether or not there are protocols that eventually satisfies the
postconditions. Albert et al. [2005] also states on the next page that it is not a safe
announcement under an epistemic axiom that is informally defined in natural language.
We will investigate this statement later, and explain why it not necessarily has to be
true.



Chapter 4

Model checking Russian cards

1 Model Checking

Model checking is the practice of using software to model complex state systems [Clarke Jr
et al., 2018]. It can be used to systematically verify formulae and augment traditional
analytical methods of verifying logical formulas. Implementations have been done for
various logical languages, such as Computation Tree Logic or Linear Temporal Logic
[Clarke Jr et al., 2018]. In this thesis we use a model checker suitable for Public An-
nouncement Logic. Model checking the Russian cards problem has previously been done
using three different model checkers, MCK, MCMAS and DEMO [van Ditmarsch et al.,
2006]. MCK and MCMAS are model checkers for temporal epistemic logics, whereas
DEMO is an S5-model checker for dynamic epistemic logics, which is implemented in
Haskell by Jan van Eijck [van Eijck, 2014].

DEMO S5 DEMO is short for Dynamic Epistemic MOdelling. For the purpose of
this thesis we chose to extend the newest version of DEMO with two new functionalities.
Common knowledge was present in the previous version of DEMO1, however, it was
removed in the newest version2, and so it was necessary to extend the newest version with
common knowledge. It was also necessary to add a new way to construct propositions.
As DEMO is written in Haskell, every line of code presented in this thesis is Haskell code.
Propositions were initially defined in the following way:

data Prp = P Int | Q Int | R Int | S Int deriving (Eq,Ord)

This implementation made it impossible to create generic RCP models, as each propo-
sition P, Q, R or S was tied to an agent, and the integer was indicating whether or not
the respective agent held that card. This would put the maximum allowed agents at

1https://homepages.cwi.nl/˜jve/papers/04/demo/
2https://homepages.cwi.nl/˜jve/software/demo s5/
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4, because there were only 4 propositions to choose from. The extended definition of
propositions is the following:

data Prp = P Int | Q Int | R Int | S Int | Prop Agent Int deriving (Eq,Ord)

The added structure of a proposition makes it possible to assign an integer to an agent,
this way it is possible to create any amount of agents in an RCP model, indicating the
cards that the agent holds. This is equivalent to first-order logic with the closed-world
assumption.

The implementation of the RCP by van Ditmarsch et al. [2006] was specific only to
the original problem description. This means that their generation of an RCP S5-model
only supported the card distribution where Anne and Bob has three cards and Eve has
one card. As the literature has expanded to the generalized Russian cards problem, I
created a generic RCP S5-model generator. This model generator is able to generate
any RCP S5-model, where you can have n agents, and each agent can have any amount
x cards. Even though this thesis focuses on the classical setting of the Russian cards
problem, the generation of Russian card models with arbitrary amount of agents and
cards can be beneficial for further research. The function’s signature is as follows:

generateRCPModel :: [Int] -> EpistM Int

Where the list of integers denotes the card distribution. To create the S5-model of the
Russian cards problem as described in the original problem description, the syntax is as
follows.

let model = generateRCPModel [3,3,1]

The resulting model is provided in the appendix. There is one limitation when generating
the RCP model, which is that the list must be of some finite length n. Even though
Haskell supports infinite lists due to lazy valuation, an S5 model requires a finite set of
agents [van Ditmarsch et al., 2007] p.17. Because every element of the list represents
the amount of cards an agent holds, this list cannot be infinite due to the limitation
on S5-models. The following describes two valid uses of the function and one invalid,
respectively.

VALID:

let model = generateRCPModel [5,4,3,2,1]

let model = generateRCPModel [100,100,50]

INVALID:

let model = generateRCPModel [1..]

It is important to note that the actual state of the model is always set to the state
012.345.6 when generating the model.



1. Model Checking 21

Validating single solutions I have implemented the possibility of constructing an-
nouncements. It is a function that takes as arguments a list of list of integers and an
agent. The lists within the list are the alternative hands that are to be announced, the
agent is the one announcing it.

integerAnnouncementToProp :: [[Int]] -> Agent -> Form a

If we wish to check whether an announcement satisfies all postconditions where crossing
hands are not allowed, we can use the following function.

noCrossingHandsSuccess :: EpistM Int -> Form Int -> Bool

We therefore have the following workflow to manually check if one single announcement
satisfies the conditions of the Russian cards problem.

> :l Solutions.hs

> let anne = Ag 0

> let announcement = integerAnnouncementToProp [[0,1,2], [3,4,5]] anne

> let model = generateRCPModel [3,3,1]

> EpistmProt.noCrossingHandsSuccess model announcement

> False

Exhaustively generating solutions To exhaustively generate and validate all possi-
ble solutions to the Russian cards problem have, to the best of my knowledge, not been
done before. The amount of announcements Anne can make is extremely large, but can
be reduced through propositions proven in the existing literature. Consider the card
distribution (3,3,1), and the actual card deal to be 012.345.6. The following lists some
of the restrictions we can make when generating all possible announcements for Anne.

Lower bound If an announcement is to be considered a solution, it must contain
at least five alternative hands [van Ditmarsch, 2003].

Upper bound If an announcement is to be considered a solution it can at most
consist of seven alternative hands. (Under the assumption that it is common knowl-
edge that the protocol is a direct exchange) [van Ditmarsch, 2003].

There are
(
7
3

)
= 35 possible hands Anne can announce. If we are to check every possible

announcement within the bounds of the (3,3,1) distribution, we have the following amount
of announcements to check.(

35

5

)
+

(
35

6

)
+

(
35

7

)
= 8, 672, 312 (4.1)

The reason we use combinations and not permutations is due to the fact that announce-
ments are a collection of disjunctions. As a disjunction holds the commutative property,
the ordering of them is irrelevant. Luckily, public announcement logic restricts us to only
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being able to announce true announcements. Anne’s actual hand must therefore be in
every announcement. This reduces the amount of announcements to the following.(

35

4

)
+

(
35

5

)
+

(
35

6

)
= 2, 000, 152 (4.2)

Validating these 2,000,152 different possible announcements, and generating the 102 so-
lutions that exist within the lower and upper bound of (3,3,1) takes vast amounts of time
using the model checker, but using the combinatorial axioms described in Albert et al.
[2005] is significantly faster due to it being simple boolean checks on the results of set-
operations. We therefore show proof of their equivalence to public announcement logic,
and we also point out a slight imprecision in their proof of the equivalence between the
safety axioms in the next chapter. Proving this gives the possibility of interchangeably us-
ing the safety axioms from either PAL or combinatorics. There are two ways to calculate
all the 102 known solutions to the Russian cards problem using the extended software,
using the epistemic requirements or the combinatorial requirements respectively:

> :l Solutions.hs

> let anne = Ag 0

> let solutions = EpistmSol.solutions_epistm_all_withinBounds [3,3,1] anne

> length solutions

> 102

> :l Solutions.hs

> let anne = Ag 0

> let solutions = CombSol.solutions_comb_all_withinBounds [3,3,1] anne

> length solutions

> 102

The reason we specify the agent when calculating the combinatorial solutions is that
we want the output to be structured as PAL formulae, so that they can be used in
conjunction with the rest of the epistemic part of the software if needed.

It is also possible to specify the bounds explicitly, as done in the following way:

> :l Solutions.hs

> let anne = Ag 0

> let solutions = CombSol.solutions_comb_specifyLower_noCrossing [3,3,1] 5 anne

> length solutions

> 60

> :l Solutions.hs

> let anne = Ag 0

> let solutions = EpistmSol.solutions_epistm_specifyLower_noCrossing [3,3,1] 5 anne

> length solutions

> 60
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Results

1 Crossing Hands in the Russian Cards Problem

Crossing hands was first defined to be: ”Hands that have 2 cards in common” [van Dit-
marsch, 2003]. The following is a formalization of proposition 32 given in van Ditmarsch
[2003], where HAn, GAn are alternative hands in some arbitrary announcement An. The
announcement An is in this case modeled using the combinatorial set of sets structure.

∀HAn∀GAn(HAn 6= GAn ⇒ |HAn ∩GAn| < 2) (5.1)

As the literature extended to the generalized Russian cards problem, so did the definition
of crossing hands. Consider a to be the amount of cards Anne is holding, and e to be
the amount of cards Eve is holding. The generalized version of crossing hands is ”Hands
that have (a - e) cards in common” [Albert et al., 2005]. The negated version of this
formula is described in Theorem 5.1 in Swanson and Stinson [2014a], which is derived
from lemma 1 in Albert et al. [2005]. Theorem 5.1 is defined to be the following:

The announcement An is informative for Bob if and only if there do not exist
two distinct sets HAn, H

′
An ∈ An such that |HAn∩H ′An| ≥ a− c [Swanson and

Stinson, 2014a].

We first prove the equivalence between a formula in public announcement logic and the
definition of crossing hands as it is defined in (5.1). We then go on to discuss its place
in the literature, and whether it is necessary for the safety of the protocol as is claimed
by Albert et al. [2005]. We have the equivalence:

∀HAn∀GAn(HAn 6= GAn ⇒ |HAn ∩GAn| < 2)⇔M, s |= [Ana]CAbKnowsAs (5.2)

But to prove this, we first prove that an announcement without crossing hands results
in strictly singleton equivalence classes for Bob.

23
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Consider the RCP (3,3,1) S5-model M and its updated version with announcement
An respectively:

M = (S,A, V,∼, P rop)

M |An = (S ′, A, V ′,∼′, P rop)

Lemma 1

∀HAn∀GAn(HAn 6= GAn ⇒ |HAn ∩GAn| < 2)⇔ ∀x, y ∈ S ′ : (x, y) ∈∼′b→ x = y

⇒ Proof by contrapositivity:

Assumption: ∃x, y ∈ S ′ s.t. (x, y) ∈∼′b and x 6= y

From our assumption we have that there exists two states, x, y that b deem indistinguish-
able. The valuation in these two states must then be of the following form:

M,x |= ijka ∧ lmnb ∧ oeve

M, y |= ijoa ∧ lmnb ∧ keve

Or some similar permutation of the variables, but lmnb must remain the same for Bob
to consider them indistinguishable. This means that Anne will have two of the same
variables in states x and y, as Bob’s cards must remain the same and Eve can only
differ with the single card she holds. x and y would not be part of M |An unless Anne
had both ijka and ijoa in her announcement, and the antecedent is therefore false as
|{ijk} ∩ {ijo}| = 2. Proof by contrapositivity holds.

⇐ Proof by contradiction. Assumptions:

Assumption 1: ∀x, y ∈ S ′ : (x, y) ∈∼′b→ x = y

Assumption 2: ∃HAn∃GAn(HAn 6= GAn ∧ |HAn ∩GAn|) ≥ 2

From assumption 2 we can instead of ≥ 2 just say = 2. If it is greater than two, namely
3, it will be removed because of idempotent law, as the announcement is a disjunction
of alternative hands. It can never be larger than 3, as Anne’s hand contains three cards
and she can’t announce an alternative hand that is larger than her actual hand as her
announcement must be truthful. We therefore get:

Assumption 1: ∀x, y ∈ S ′ : (x, y) ∈∼′b→ x = y

Assumption 2: ∃HAn∃GAn(HAn 6= GAn ∧ |HAn ∩GAn|) = 2

From assumption 2 we get that in the announcement, there are two alternative hands
that share two of the same cards. And as a consequence, in the resulting updated model,
there will be two states s, t where the following holds:

M |An, s |= ijka ∧ lmnb ∧ oeve
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M |An, t |= ijoa ∧ lmnb ∧ keve

This leads to a contradiction, because of the fact that the states s and t have the same
evaluation for Bob. He can not distinguish those states, and states s and t will be in the
same equivalence class. We then have (s, t) ∈∼′b ∧s 6= t. Assumption 1 is therefore false,
and the contradiction holds.

We can then prove that not allowing crossing hands is equivalent to the fact that
after Anne’s initial announcement, it is common knowledge among all agents that Bob
knows Anne’s cards.

Consider the RCP (3,3,1) S5-model M updated with announcement An.

Lemma 2

M |An, s |= CAbKnowsAs⇔ ∀HAn∀GAn(HAn 6= GAn ⇒ |HAn ∩GAn| < 2)

⇒: Direct proof:

Assumption 1: M |An, s |= CAbKnowsAs

If it is common knowledge among all agents that Bob knows Anne’s cards, then in every
state in the model M |An, Bob must know Anne’s cards. This means that the following
must hold:

∀x, y ∈ S ′ : (x, y) ∈∼′b→ x = y

Applying the truth of the above formula to Lemma 1 gives us:

∀HAn∀GAn(HAn 6= GAn ⇒ |HAn ∩GAn| < 2)

Consequent must be true when assuming the truth of the antecedent, proof by direct
proof holds.
⇐: Proof by contradiction:

Assumption 1: ∀HAn∀GAn(HAn 6= GAn ⇒ |HAn ∩GAn| < 2)

Assumption 2: M |An, s |= ¬CAbKnowsAs

From Assumption 2:
There exists a pair (s, x) ∈

⋃∗
a∈A ∼a s.t. (x, y) ∈∼b and x 6= y. This would mean that in

some state b is unsure of the deal. Essentially meaning that there exists an equivalence
class for b that is not singleton in the updated model. Applying assumption 1 to Lemma
1 gives the contradiction.

1.1 Consequences

As previously mentioned, crossing hands is prevalent throughout the literature of RCP
[van Ditmarsch, 2003, Albert et al., 2005, van Ditmarsch, 2005, Swanson and Stinson,
2014b]. From the equivalence proved in the previous lemma, we can then say that the
assumption M, s |= [Ana]CAbKnowsAs is equally prevalent throughout the literature.
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We can in fact say that in any part of the literature where crossing hands is not allowed,
we have common knowledge among all agents after the initial announcement by Anne
that Bob knows Anne’s cards. This in turn proves that any protocol without crossing
hands in the first announcement is a known direct exchange by all agents. A weaker
assumption is briefly described by van Ditmarsch [2003] as a footnote to the proof of
Proposition 31 regarding the upper bound of an announcement, where they say:

Proposition 31: No direct exchange consists of more than seven hands.

With the footnote:

This assumes that Eve knows that Anne knows that Bill knows her hand of
cards after her announcement.

If we represent this sentence as a formula in PAL we get:

M, s |= [Ana]KeveKabKnowsAs

Which is weaker than the proven equivalence in lemma 2 presented above. Common
knowledge of the fact that Bob knows Anne’s cards after announcement An means that
all of them know that all of them know that all of them know ... to infinity that Bob
knows Anne’s cards [van Ditmarsch et al., 2007]. Albert et al. [2005] describes three
epistemic axioms, and propose three combinatoric axioms that are equivalent to their
corresponding epistemic axioms: (a b-set is a set of b elements, in this case b = 3.) The
first being the axiom regarding the informativity of Bob. EA means ”epistemic axiom”
and CA ”combinatorial axiom”. In the definition of the first combinatorial axioms the
term ”avoids” is used in. Two sets A and B ”avoid” each other if the intersection of A
and B is the empty set, formalized with the following formula:

A ∩B = ∅

EA1. Whenever Anne can announce An, Bob knows Anne’s hand after An

CA1. For every b-set X there is at most one member of An that avoids X.

If we translate EA1 literally from the description, we get:

M, s |= [An]bKnowsAs

If we translate EA1 to the above formula, the equivalence does not hold. Consider the
following card distribution:

A = {0, 1, 2}, B = {3, 4, 5}, C = {6}

EA1 ⇒ CA1 can then be falsified in the following way, taking the announcement they
describe as a footnote in Albert et al. [2005] on the same page:

An = Ka(012a ∨ 034a ∨ 056 ∨ 135a ∨ 246a ∨ 235a)
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We have that EA1 is satisfied, as Bob can exclude all hands that intersect with his, which
leaves 012a as the only remaining possible hand. However, we have that there are two
hands that avoid the b-set {0, 4, 6}, namely 135a and 235a. We therefore see an instance
where EA1 is satisfied, and CA1 is not. However, Albert et al. [2005] notes in the section
’Notation and combinatorial formulation’ that EA1 must be commonly known among all
agents. Which is why I show the proof between crossing hands and [Ana]CAbKnowsAs
and not the literal translation presented above. Consider lemma 1 from Albert et al.
[2005]:

An announcement L satisfies CA1. if and only if for every pair of distinct
lines L1, L2 we have |L1 ∩ L2| < a− c

Meaning that not allowing crossing hands is equivalent to CA1. Using Lemma 2 proven
earlier in this thesis and Lemma 1 in Albert et al. [2005] we get:

M, s |= [Ana]CAbKnowsAs⇔ ∀HAn∀GAn(HAn 6= GAn ⇒ |HAn ∩GAn| < 2)⇔ CA1

Applying transitivity of equivalence, we get:

M, s |= [Ana]CAbKnowsAs⇔ CA1

Which is proof that my translation of EA1 (with the requirement that it is common
knowledge) to PAL is equivalent with CA1.

1.2 Epistemic Safety Axioms and Combinatorial Safety Axioms

Albert et al. [2005] gives descriptions of two epistemic safety-axioms, together with their
respective combinatorial axioms. A c-set is a set with the cardinality of Eve’s hand:

EA2. Whenever Anne can announce An, Eve does not know any of Anne’s cards after
An.

CA2. For every c-set X the members of An avoiding X have empty intersection.

EA3. Whenever Anne can announce An, Eve does not know any of Bob’s cards after An.

CA3. For every c-set X the members of An avoiding X have union consisting of all cards
except those of X.

The definition of eveIgnorant as presented earlier, is a conjunction of EA2 and EA3.
Let Ana = Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 246a ∨ 235a). With this announcement, it is
claimed in Albert et al. [2005] that without the presence of CA1, the epistemic axiom
EA2 is not satisfied. As shown below:

M, s 6|= [Ana]EA2

However, that is not true. We do in fact have:

M, s |= [Ana]EA2
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The only axiom of the three combinatorial axioms that Ana does not satisfy is CA1.
However, it does satisfy the post-protocol informativity condition made by van Ditmarsch
et al. [2006]:

Cab(aKnowsBs ∧ bKnowsAs)

From this we have that Ana does indeed satisfy all safety conditions. It also satisfies the
fact that Bob knows Anne’s cards after the first announcement. Specifically:

M, 012.345.6 |= [Ana]CabbKnowsAs

Bob can therefore truthfully announce Eve’s card - and this is common knowledge among
Anne and Bob. However, this is only true in the cases where Anne is not announcing
crossing hands with her own hand, e.g state 012.345.6 Where this announcement falls
short is the lack of investigation into whether or not the announcement always leads
to a solution at some point. Regardless, CA1 is not required together with CA2 or
CA3 to ensure safety. CA1 is a guarantee that all agents know that the protocol is of
exactly length two, a direct exchange. It can also be viewed as a guarantee that every
initiated protocol has a solution for every alternative hand announced by Anne. This is
an important assumption in the Russian cards problem that has been thoroughly studied
by Hans van Ditmarsch [van Ditmarsch, 2005].

Safety axioms are equivalent

The safety axioms are in fact equivalent without CA1. In their proof of (CA1&)CA2/CA3
they note:

”Eve can exclude, as hands for Anne, those members of the announcement
that intersect with her own, also because of CA1, which implies EA1 these
are the only Anne-hands she can exclude”.

This is somewhat true, but there is a slight imprecision here that is worth noting. If Eve
were to eliminate other hands than those that contain cards she holds, then there are
other assumptions surrounding the protocol that has been done. In the introduction to
their paper they note that they only consider protocols that are commonly known to be
direct exchanges, and that it is commonly known among all agents that the postconditions
are satisfied after the direct exchange. This in turn means that they have assumed CA1
to be true at all times. van Ditmarsch [2005] describes the actual assumption needed for
this equivalence to hold:

We assume that Anne and Bob take no risks: they are only willing to execute
protocols that guarantee success, in the sense that, whatever one says, the
other can make at least one safe reply to that which will bring a solution
closer.

CA1 is a strict subset of this assumption because CA1 is a guarantee that common knowl-
edge of Bob’s informativity is achieved. This means that the informativity requirement
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of the Russian cards problem always hold. CA1 restricts the solutions to only known
direct exchanges for all agents. Combine CA1 with safety and we have 102 proper so-
lutions to the Russian cards problem. However, CA2&3 is not dependent on CA1 for
the equivalence between EA2&3 and CA2&3. The actual requirement for safety is the
weaker assumption by van Ditmarsch. Every initiated protocol must have a solution at
some point for every alternative hand in the announcement [van Ditmarsch, 2005]. This
assumption is needed both for CA2&3 and EA2&3 - but this assumption is not reflected
in EA2&3. The complexities mentioned in this paragraph illustrates even further the
complexities of the Russian cards protocol, and the complexities of comparing epistemic
axioms and combinatorial axioms.

You could even weaken the assumption made in van Ditmarsch [2005]. If the assump-
tion is that some protocols might not terminate at all, then the announcement described
in Albert et al. [2005] is a safe announcement because Eve is not able to remove any
crossing hands if that is the case.

Conclusion If Eve is able to completely remove all crossing hands then the following
three assumptions have been made:

1 CA1

2 Crossing hands is not allowed

3 M |An, s |= CAbKnowsAs

Where 1 and 2 were proven equal by Albert et al. [2005] and the last was proven equal
to 1 and 2 in this thesis.

If Eve can remove some crossing hands, then we have the assumption made by van
Ditmarsch [2005] which states that all protocols must have a solution at some point. We
can then say that Eve can remove the crossing hands that do not lead to a solution at
some point. If the assumption is that some protocols don’t terminate at all, then Eve is
not able to eliminate any crossing hands at all.

We conclude that elimination of crossing hands is not based on the safety of the first
announcement by Anne - elimination of crossing hands by Eve is a choice by those who
are studying the Russian cards problem depending on which assumption they want to
make. In the next section we present an exchange that does contain crossing hands, and
we use the same assumption made in van Ditmarsch [2005], saying that all crossing hands
must have a solution at some point.

2 Crossing hands exchange

To the best of our knowledge, only one protocol containing crossing hands has been
studied extensively [van Ditmarsch, 2005]. The initial announcement by Anne is the
following:

ψa = Ka(012a ∨ 034a ∨ 056 ∨ 135 ∨ 245 ∨ 246) (5.3)
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This announcement contains the pair (2, 4) in the last two disjuncts, and as a consequence
we have:

M |ψa, s 6|= CAbKnowsAs (5.4)

Ditmarsch proves that there exist no announcements that leads to a solution of the
protocol in the state 245.013.6 and 246.013.5. There is an assumption that to the best
of my knowledge has only been discussed thoroughly by van Ditmarsch [2005]. It is
intuitively described in the following way:

”For every hand in Anne’s announcement, there exists some sequence of an-
nouncements that leads to the postconditions of the protocol being satisfied”

This can be represented pseudo-formally in PAL - consider H to be an alternative hand
in Anne’s announcement An, M to be an arbitrary RCP S5-model and s to be the state
where Anne is holding H.

∀H∈An∃ϕ1..i s.t. M, s |= [ϕ1]..[ϕi]postconditions (5.5)

Under this assumption, Eve can remove the alternative hands 245 and 246 from Anne’s
announcement, as these hands have no solutions. The announcement is therefore a 4-hand
announcement, and no solution consists of less than 5 alternative hands [van Ditmarsch,
2003].

Kerckhoff’s Principle All modern cryptography systems adheres to Kerckhoff’s prin-
ciple [Mousa and Hamad, 2006]. Kerckhoff’s principle states that the inner workings of
a cryptographic system should be publicly available [Mousa and Hamad, 2006]. It was
originally a set of principles, but the term now commonly describes the following princi-
ple:

The system must not require secrecy and can be stolen by the enemy without
causing trouble (what is nowadays referred to as Kerckhoffs’ Principle)[Petitcolas,
2011].

This principle is therefore highly appropriate for the Russian cards problem. We must
assume that anyone can know how the Russian cards problem works. One way to break
this principle in the Russian cards problem is by considering the announcement studied
in detail by van Ditmarsch [2005]:

Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 245a ∨ 246a) (5.6)

This announcement contains the crossing hands 245a and 246a. From lemma 2 we have
that Eve is then unsure whether Bob learned the deal or not. It is a safe announcement
without any further reasoning by Eve. Consider the assumption that every alternative
hand must have a solution at some point.

We could say that Anne and Bob knows that every protocol terminates, and that
they collectively know that Anne would not announce this if 245a or 246a was the case.
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If this announcement was considered to be a solution, it would appear to any outsiders
that Anne and Bob allow protocols that might not have a solution for some of the hands.

In this case we have a ”secret” among Anne and Bob, they make it appear to Eve
that they have protocols that could never terminate, even though they know that all
protocols will terminate. If this secret were to be known by Eve at some later point in
the protocol, the announcement discussed by van Ditmarsch [2005] would not be safe
because Eve could go back and remove 245a and 246a from the announcement and learn
the card distribution.

Kerckhoff’s principle is therefore paramount when discussing the assumption that
every alternative hand must have a solution at some point.

7-hand crossing hands solution I present a 7-hand solution that consists of crossing
hands. The initial announcement is the following:

initAn = Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 146a ∨ 236a ∨ 025a) (5.7)

There are two crossing pairs in this announcement. (0, 2) and (0, 5). These are found in
the hands 012a and 025a, and in the hands 056a and 025a respectively. Bob is insecure
of the deal in four states. Bob cannot tell apart the states {012.346.5, 025.346.1}, and he
cannot tell apart the states: {025.134.6, 056.134.2}

As described in van Ditmarsch [2005], we must find solutions to the protocol for each
of these four states. Taking each equivalence class separately:

2.1 012.346.5/025.346.1

012.346.5 Bob can safely respond with ”Eve has 5 or 1” [van Ditmarsch, 2005]. Rep-
resented in PAL as follows:

M |initAn, 012.346.5 |= [Kb(5e ∨ 1e)]CAeveIgnorant (5.8)

As Anne hears this, she understands that she must ’narrow’ down her announcement to
help Bob understand which state we are actually in. Note that this does not remove the
states where Bob knows the deal, he could have announced this even though he knew if
Eve had 5 or Eve had 1, which is an important part of the security of the protocol.

To terminate the protocol, Anne announces a 4-hand announcement, satisfying all
postconditions:

M |initAn|Kb(5e∨1e), 012.346.5 |= [Ka(012a∨034a∨056a∨236a)]CAeveIgnorant (5.9)

M |initAn|Kb(5e∨1e), 012.346.5 |= [Ka(012a∨034a∨056a∨236a)]Cab(aKnowsBs∧bKnowsAs)
(5.10)
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025.346.1 Bob again responds with ”Eve has 5 or 1”:

M |initAn|Kb(5e ∨ 1e), 025.346.1 |= CAeveIgnorant (5.11)

Anne reasons in the same fashion as described above, and announces a 4-hand announce-
ment to terminate the protocol. It satisfies all postconditions:

M |initAn|Kb(5e ∨ 1e)|Ka(025a ∨ 034a ∨ 146a ∨ 236a), 025.346.1 |= postcondition (5.12)

2.2 025.134.6, 056.134.2

025.134.6 In this case, Bob responds with ”Eve has 6 or 2”.

M |initAn|Kb(6e ∨ 2e), 025.134.6 |= CAeveIgnorant (5.13)

As Anne hears this, she again understands that she needs to narrow down her announce-
ment to help Bob understand which state we are in. To terminate the protocol, Anne
announces a 4-hand announcement, satisfying all postconditions:

M |initAn|Kb(6e ∨ 2e)|Ka(025a ∨ 034a ∨ 135a ∨ 146a), 025.134.6 |= postcondition (5.14)

056.134.2 Bob responds in the same manner, ”Eve has 6 or 2”.

M |initAn|Kb(6e ∨ 2e), 056.134.2 |= CAeveIgnorant (5.15)

Anne reasons as she has done in the previous examples, and follows up with a narrowed
down announcement to terminate the protocol:

M |initAn|Kb(6e ∨ 2e)|Ka(056a ∨ 012a ∨ 034a ∨ 135a), 056.134.2 |= postcondition (5.16)

The resulting models from the 4 protocols described here are not found in any other RCP
solution, unless Bob announces Eve’s card to finish it off. This is not necessary, as we
have already established common knowledge among the communicating agents that they
know each others cards.

2.3 Approach

Finding this new solution would not have been possible without the extended software
created for this thesis. The approach to finding this solution was as follows:

First, take the following 6-hand non-crossing solution:

Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 146a ∨ 236a)

Then, extend it with a crossing hand, in this case we used 025 to get the initial an-
nouncement described in the solution above. This particular hand was chosen because it
was crossing with Anne’s own hand in the state 012.345.6. Due to the lack of previous
work on establishing patterns in how these solutions are constructed, the easiest path to
finding such a solution was to extend a previous solution with a crossing hand - attempt-
ing to have the least amount of crossing hands possible in the initial announcement. We
then generate the announcement and the model as follows:
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> :l Solutions.hs

> let model = generateRCPModel [3,3,1]

> let anne = (Ag 0)

> let an = [[0,1,2], [0,3,4], [0,5,6], [1,3,5], [1,4,6], [2,3,6], [0,2,5]]

> let announcement = integerAnnouncementToProp an anne

> let isSafe = commonKnowledgeOfSafety model announcement

> isSafe

> true

commonKnowledgeOfSafety validates whether updating the model with the announce-
ment results in common knowledge of safety. We then update the model with the an-
nouncement, to see in which states Bob is insecure of the deal:

> let updatedModel = upd_pa model announcement

> show updatedModel

The result of showing the updated model is provided in the appendix (Model 2). From
the model we see that all equivalence classes for Bob are singleton except for the two
equivalence classes [1,31], and [28,58]. We then need to go to each of these states, and
continue the protocol by having Bob announce what he believes to be Eve’s cards (5 and
1).

> let updModel1 = changeCurrentStateInModel updatedModel 1

> let bob = (Ag 1)

> let bobAn1 = createDisjunctEveAnnouncement [5,1] bob

> commonKnowledgeOfSafety updModel1 bobAn1

> true

We then continue with the updated model after Bob’s announcement, which is Model 3 in
the appendix. Here is where the exhaustive generation of solutions is the important factor
in solving these complex protocols. We are now able to generate any announcement,
with any amount of alternative hands to find a solution. In this case we show a 4 hand
announcement that solves the protocol.

> let afterBob1 = upd_pa updModel1 bobAn1

> let solutions = solutions_specifyLower_fromModel afterBob1 4 anne

> length solutions

> 1

Here we use the solutions step3 function with the following signature:

solutions_specifyLower_fromModel :: EpistM Int -> Int -> Agent -> [Form Int]

It takes a model, then the amount of hands you want in the announcement and an agent.
It then constructs all non-crossing announcements the agent can make, and validates
that it Anne’s announcement is safe, and that it is safe for Bob to announce Eve’s card
after Anne’s announcement. It returns a list of formulae that satisfies the postconditions.
The resulting formula is the announcement provided in the first solution of subsection
2.1 from this chapter (5.9). We can then view the final model in the following way:
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> let finalAnnouncement1 = head solutions

> let finalModel1 = upd_pa afterBob1 finalAnnouncement1

> show finalModel1

The final model is found in the appendix (Model 4). Observe that Anne’s equivalence
classes are still not all singleton, we have the two equivalence classes [37,39] and [108, 110].
This is what makes this protocol unique. From Lemma 2 we prove that this is never the
case when the initial announcement does not contain crossing hands - and Bob follows
up by announcing Eve’s card. If the protocol follows that structure, we always have
common knowledge among all agents that Anne knows Bob’s cards, Bob knows Anne’s
cards and Eve is ignorant. Here, Eve considers it possible that Anne is not yet aware of
which cards Bob is holding. Regardless, both Anne and Bob have common knowledge
that they know each others cards, because for both Anne and Bob the equivalence class
for state 1 is singleton.

The process described above is subsequently repeated for each of the states that Bob
is insecure of the deal in the following way:

> :l Solutions.hs

> let model = generateRCPModel [3,3,1]

> let anne = Ag 0

> let bob = Ag 1

> let an = [[0,1,2], [0,3,4], [0,5,6], [1,3,5], [1,4,6], [2,3,6], [0,2,5]]

> let announcement = integerAnnouncementToProp an anne

> let updatedModel = upd_pa model announcement

> let updatedModel31 = changeCurrentStateInModel updatedModel 31

> let updatedModel28 = changeCurrentStateInModel updatedModel 28

> let updatedModel58 = changeCurrentStateInModel updatedModel 58

> let bobAn1 = createDisjunctEveAnnouncement [5,1] bob

> let bobAn2 = createDisjunctEveAnnouncement [6,2] bob

> let afterBob31 = upd_pa updatedModel31 bobAn1

> let afterBob28 = upd_pa updatedModel28 bobAn2

> let afterBob58 = upd_pa updatedModel58 bobAn2

> let sols31 = solutions_specifyLower_fromModel afterBob31 4 anne

> let sols28 = solutions_specifyLower_fromModel afterBob28 4 anne

> let sols58 = solutions_specifyLower_fromModel afterBob58 4 anne

> let finalModel31 = upd_pa afterBob31 $ head sols31

> let finalModel28 = upd_pa afterBob28 $ head sols28

> let finalModel58 = upd_pa afterBob58 $ head sols58

The solutions from sols31, sols28 and sols58 are Anne’s final announcement in (5.12),
(5.14) and (5.16) respectively. The updated models updatedModel31, updatedModel28,
updatedModel58 is equivalent with Model 2 in the appendix, as the only difference is
the state being changed. The other models correspond to the following models in the
appendix:
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• afterBob31 = Model 5

• finalModel31 = Model 6

• afterBob28 = Model 7

• finalModel28 = Model 8

• afterBob58 = Model 9

• finalModel58 = Model 10

2.4 Consequences

The four 4-hand announcements described in section 2 that are the solutions to the
different insecurity states of Bob are actually subsets of 5-hand solutions to the Russian
cards problem. Below I give the 4-hand announcement that solves the state 012.346.5,
and its corresponding superset which is a 5-hand (non-crossing) solution to the Russian
cards problem.

012.346.5: Ka(012a ∨ 034a ∨ 056a ∨ 236a)

012.346.5: Ka(012a ∨ 034a ∨ 056a ∨ 145a ∨ 236a)

The reason 145a is not needed in the 4-hand announcement is that 145a is not part of
Anne’s initial announcement, and the state is therefore no longer part of the model, thus
the disjunct is redundant. However, it can serve a very fascinating purpose.

Consider the actual deal to be 146.023.5. Anne can then start the protocol with the
initial crossing hands announcement (5.7):

M, 146.023.5 |= [Ka(012a∨034a∨056a∨135a∨146a∨236a∨025a)]CAeveIgnorant (5.17)

We now have common knowledge among the communicating agents that Bob knows the
deal of cards after the initial announcement! This is because Anne is not announcing any
crossing hands with her own hand. This was not the case for state 012.345.6, because
the pair (0,2) was present in two alternative hands - Anne announced a sequence of
alternative hands that was crossing with her own hand. However, in state 146.023.5 this
is not the case, and as a consequence the following is true:

M, 146.023.5 |= [Ka(012a∨034a∨056a∨135a∨146a∨236a∨025a)]Cab(bKnowsAs) (5.18)

Bob follows it up by announcing ”Eve has 5 or 1”. Bob knows that Anne is holding
146, and is therefore aware that Anne will learn the deal because he knows that Anne
can eliminate the fact that Eve is holding 1. The announcement is both safe and fully
informative for Anne:

M |initAn, 146.023.5 |= [Kb(5e ∨ 1e)]Cab(bKnowsAs ∧ aKnowsBs) (5.19)
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M |initAn, 146.023.5 |= [Kb(5e ∨ 1e)]CAeveIgnorant (5.20)

Now, after this announcement by Bob, all postconditions are satisfied. The communicat-
ing agents know what the card deal is, and the ignorance of Eve is common knowledge.
Eve does not know that the communicating agents know the card deal. She considers it
possible that we are in state 012.346.5, where a second announcement by Anne is required
to terminate the protocol.

After Bob’s announcement, Anne can follow up with the 5-hand superset of the 4-
hand announcement that finishes the protocol. This announcement can be a completely
new protocol, or it can be the termination of the current protocol. This is only known
by the communicating agents, based on the cards they were dealt.

In state 012.346.5 the 5-hand announcement Ka(012a ∨ 034a ∨ 056a ∨ 145a ∨ 236a)
would be the termination of the protocol. In state 146.023.5 it would be the initiation of
a completely new protocol. Eve is not able to discern whether new information is being
transmitted, or whether they are terminating a protocol.



Chapter 6

Conclusions and Future work

1 Conclusion

It was previously only found to be one way to successfully initiate a Russian cards
protocol, namely Anne announcing a sequence of alternative hands where none of them
are crossing. The outcome of that announcement is known by everyone, and the protocol
would always adhere to this structure. Each step of the protocol could be described in
the following way:

1 Anne announces a sequence of alternative hands where none of the hands are cross-
ing.

2 Everyone knows that Bob learns her cards.

3 Bob announces Eve’s card.

4 Everyone knows that Anne and Bob knows each others cards, and Eve is completely
ignorant of the card distribution.

With the findings from this thesis, it is now shown that there are in fact three different
strategies that Anne can choose from when initiating the protocol, and they provide
four different outcomes each described in detail below. The first is the same as the one
described where Anne does not announce any crossing hands. The remaining two are
more interesting however.

Strategy 1 Anne initiates the protocol with an announcement containing a sequence of
alternative hands where some are crossing with her actual hand. This initial announce-
ment has two outcomes:

1 Bob learns which cards Anne are holding.

2 Bob does not know which cards Anne are holding.

37
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Anne is unsure in both cases whether or not Bob learned which cards she is holding.
This is because she announces one crossing with her own, and therefore she can imagine
that Eve is holding the last card in the hand that is crossing with her own. If that is the
case, Bob can’t eliminate that hand and subsequently he considers two hands possible.

In the other case, Bob is the one holding the last card in the hand that is crossing with
Anne’s. He can therefore eliminate all hands except one, and learn the card distribution.
Eve knows that both these cases are possible, and so Bob must announce a disjunction
of two hands that Eve might hold. Finally, Anne learns the card distribution and then
announces a subset of her initial announcement to terminate the protocol. As she is
unsure of whether Bob learned her cards from the initial announcement, this protocol is
known by both communicating agents to be a three-step protocol.

Strategy 2 The other strategy Anne can choose from is announcing a sequence of
alternative hands where some are crossing, but none are crossing with her own hand.
In this case both communicating agents know that Bob learned Anne’s card. When
this is the case, Bob treats the protocol in the same way as in the previous scenario.
However, when Anne initiates the protocol using this construct it is possible to initiate
a new protocol without Eve knowing whether a new protocol is initiated or the previous
is being continued.

Kerckhoff’s principle was discussed earlier, and it might appear as if Anne and Bob
has a secret among them if they are initiating a new protocol without Eve knowing.
This is not the case here, as the inner workings of the system are not secret. It can be
publicly known to everyone that this might happen from time to time, it does not affect
the security of the protocol. For Eve to figure out whether or not a new protocol was
initiated, she must know whether or not Anne’s announcement contained crossing hands
with Anne’s own hand. For this to happen, Eve must know at least two of Anne’s cards.
That information is not given in the protocol, and so for Eve to acquire this knowledge,
she must gain knowledge of Anne’s hand outside of this protocol. The external security
of the Russian cards problem is not discussed in this thesis. This thesis studies the
protocol and its interaction only. Security measures surrounding the protocol is not
relevant when concretely studying the announcements among the communicating agents.
We can therefore say that Kerckhoff’s principle is fulfilled. We have also fulfilled the
requirement that for every hand announced in Anne’s initial announcement, there is a
sequence of announcements that lead to complete information among the communicating
agents. Lastly, we have that the ignorance of Eve is preserved throughout the protocol.

The proof that these two strategies can result in proper solutions to the Russian
cards problem would not have been possible without the extensions of the Russian cards
software created for this thesis. It granted the possibility of generating any alternative
hands announcement and validating them automatically. It has been proved that any
announcement by some agent n in the Russian cards problem is equivalent to an an-
nouncement of alternative hands [van Ditmarsch, 2003]. From this we have that the
exhaustive generation of announcements with alternative hands is in fact a tool that is
capable of validating any possible announcement made by an agent in the Russian cards
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problem. We can therefore use the software from this thesis to model and verify any
protocol in the Russian cards problem, which is incredibly powerful when attempting to
find new solutions to the problem.

Contributions In this thesis we have shed light on the relationship between crossing
hands and common knowledge in the Russian cards protocol. This has, by transitivity,
also shed light on the relationship between common knowledge of informativity modeled
in PAL and a combinatorial axiom of informativity. The most important contribution
from this thesis is the solution to the open problem posed and unsuccessfully attempted
tackled in [van Ditmarsch, 2005] - and that has remained open since. The solution to
this problem would not have been possible without the extended software specifically
created for the Russian cards problem. We hope that this software might be used to find
more protocols that inhibit the desired properties that van Ditmarsch was looking for,
and that were found in this thesis.

2 Future work

Crossing hands exchanges With the proof by example that protocols with crossing
hands exist, a lot of work is still to be done. Finding and proving characteristics of such
protocols could help generating such protocols automatically. As of now, little knowledge
around such protocols exist, and finding them is therefore a somewhat manual task.
Further investigations into them could be done by extending the software presented in this
thesis with automatic generation of these protocols too. The computational complexity
is quite high as there are more than just one announcement by Anne and one by Bob to
uncover a solution. However, it is possible to further build upon the software to generate
these solutions. Further investigations into patterns and characteristics of crossing hands-
solutions, similar to the crossing-hands restriction of a direct exchange would be the most
convenient as it could restrict the generation of announcements before the protocol has
been initiated - thus reducing the validation of common knowledge which is an expensive
calculation compared to simple restrictions on how to generate announcements.

Crossing hands in the generalized Russian cards problem This thesis only
looked at the classical setting of the Russian cards problem with the card distribution
(3,3,1). Further investigation into crossing hands in the generalized Russian cards prob-
lem would be interesting as well, but establishing other proofs regarding the classical
setting might be needed before this is possible.
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Appendix

Initial model (Model 1):

Non-changing parts of the models:

c = eve.

Prop = {a0, b0, c0 .. a6,b6,c6}

Ag = {a,b,c}

V = [(0,[a0,a1,a2,b3,b4,b5,c6]),(1,[a0,a1,a2,b3,b4,b6,c5]),

(2,[a0,a1,a2,b3,b5,b6,c4]),(3,[a0,a1,a2,b4,b5,b6,c3]),

(4,[a0,a1,a3,b2,b4,b5,c6]),(5,[a0,a1,a3,b2,b4,b6,c5]),

(6,[a0,a1,a3,b2,b5,b6,c4]),(7,[a0,a1,a3,b4,b5,b6,c2]),

(8,[a0,a1,a4,b2,b3,b5,c6]),(9,[a0,a1,a4,b2,b3,b6,c5]),

(10,[a0,a1,a4,b2,b5,b6,c3]),(11,[a0,a1,a4,b3,b5,b6,c2]),

(12,[a0,a1,a5,b2,b3,b4,c6]),(13,[a0,a1,a5,b2,b3,b6,c4]),

(14,[a0,a1,a5,b2,b4,b6,c3]),(15,[a0,a1,a5,b3,b4,b6,c2]),

(16,[a0,a1,a6,b2,b3,b4,c5]),(17,[a0,a1,a6,b2,b3,b5,c4]),

(18,[a0,a1,a6,b2,b4,b5,c3]),(19,[a0,a1,a6,b3,b4,b5,c2]),

(20,[a0,a2,a3,b1,b4,b5,c6]),(21,[a0,a2,a3,b1,b4,b6,c5]),

(22,[a0,a2,a3,b1,b5,b6,c4]),(23,[a0,a2,a3,b4,b5,b6,c1]),

(24,[a0,a2,a4,b1,b3,b5,c6]),(25,[a0,a2,a4,b1,b3,b6,c5]),

(26,[a0,a2,a4,b1,b5,b6,c3]),(27,[a0,a2,a4,b3,b5,b6,c1]),

(28,[a0,a2,a5,b1,b3,b4,c6]),(29,[a0,a2,a5,b1,b3,b6,c4]),

(30,[a0,a2,a5,b1,b4,b6,c3]),(31,[a0,a2,a5,b3,b4,b6,c1]),

(32,[a0,a2,a6,b1,b3,b4,c5]),(33,[a0,a2,a6,b1,b3,b5,c4]),

(34,[a0,a2,a6,b1,b4,b5,c3]),(35,[a0,a2,a6,b3,b4,b5,c1]),

(36,[a0,a3,a4,b1,b2,b5,c6]),(37,[a0,a3,a4,b1,b2,b6,c5]),

(38,[a0,a3,a4,b1,b5,b6,c2]),(39,[a0,a3,a4,b2,b5,b6,c1]),

(40,[a0,a3,a5,b1,b2,b4,c6]),(41,[a0,a3,a5,b1,b2,b6,c4]),

(42,[a0,a3,a5,b1,b4,b6,c2]),(43,[a0,a3,a5,b2,b4,b6,c1]),

(44,[a0,a3,a6,b1,b2,b4,c5]),(45,[a0,a3,a6,b1,b2,b5,c4]),

41
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(46,[a0,a3,a6,b1,b4,b5,c2]),(47,[a0,a3,a6,b2,b4,b5,c1]),

(48,[a0,a4,a5,b1,b2,b3,c6]),(49,[a0,a4,a5,b1,b2,b6,c3]),

(50,[a0,a4,a5,b1,b3,b6,c2]),(51,[a0,a4,a5,b2,b3,b6,c1]),

(52,[a0,a4,a6,b1,b2,b3,c5]),(53,[a0,a4,a6,b1,b2,b5,c3]),

(54,[a0,a4,a6,b1,b3,b5,c2]),(55,[a0,a4,a6,b2,b3,b5,c1]),

(56,[a0,a5,a6,b1,b2,b3,c4]),(57,[a0,a5,a6,b1,b2,b4,c3]),

(58,[a0,a5,a6,b1,b3,b4,c2]),(59,[a0,a5,a6,b2,b3,b4,c1]),

(60,[a1,a2,a3,b0,b4,b5,c6]),(61,[a1,a2,a3,b0,b4,b6,c5]),

(62,[a1,a2,a3,b0,b5,b6,c4]),(63,[a1,a2,a3,b4,b5,b6,c0]),

(64,[a1,a2,a4,b0,b3,b5,c6]),(65,[a1,a2,a4,b0,b3,b6,c5]),

(66,[a1,a2,a4,b0,b5,b6,c3]),(67,[a1,a2,a4,b3,b5,b6,c0]),

(68,[a1,a2,a5,b0,b3,b4,c6]),(69,[a1,a2,a5,b0,b3,b6,c4]),

(70,[a1,a2,a5,b0,b4,b6,c3]),(71,[a1,a2,a5,b3,b4,b6,c0]),

(72,[a1,a2,a6,b0,b3,b4,c5]),(73,[a1,a2,a6,b0,b3,b5,c4]),

(74,[a1,a2,a6,b0,b4,b5,c3]),(75,[a1,a2,a6,b3,b4,b5,c0]),

(76,[a1,a3,a4,b0,b2,b5,c6]),(77,[a1,a3,a4,b0,b2,b6,c5]),

(78,[a1,a3,a4,b0,b5,b6,c2]),(79,[a1,a3,a4,b2,b5,b6,c0]),

(80,[a1,a3,a5,b0,b2,b4,c6]),(81,[a1,a3,a5,b0,b2,b6,c4]),

(82,[a1,a3,a5,b0,b4,b6,c2]),(83,[a1,a3,a5,b2,b4,b6,c0]),

(84,[a1,a3,a6,b0,b2,b4,c5]),(85,[a1,a3,a6,b0,b2,b5,c4]),

(86,[a1,a3,a6,b0,b4,b5,c2]),(87,[a1,a3,a6,b2,b4,b5,c0]),

(88,[a1,a4,a5,b0,b2,b3,c6]),(89,[a1,a4,a5,b0,b2,b6,c3]),

(90,[a1,a4,a5,b0,b3,b6,c2]),(91,[a1,a4,a5,b2,b3,b6,c0]),

(92,[a1,a4,a6,b0,b2,b3,c5]),(93,[a1,a4,a6,b0,b2,b5,c3]),

(94,[a1,a4,a6,b0,b3,b5,c2]),(95,[a1,a4,a6,b2,b3,b5,c0]),

(96,[a1,a5,a6,b0,b2,b3,c4]),(97,[a1,a5,a6,b0,b2,b4,c3]),

(98,[a1,a5,a6,b0,b3,b4,c2]),(99,[a1,a5,a6,b2,b3,b4,c0]),

(100,[a2,a3,a4,b0,b1,b5,c6]),(101,[a2,a3,a4,b0,b1,b6,c5]),

(102,[a2,a3,a4,b0,b5,b6,c1]),(103,[a2,a3,a4,b1,b5,b6,c0]),

(104,[a2,a3,a5,b0,b1,b4,c6]),(105,[a2,a3,a5,b0,b1,b6,c4]),

(106,[a2,a3,a5,b0,b4,b6,c1]),(107,[a2,a3,a5,b1,b4,b6,c0]),

(108,[a2,a3,a6,b0,b1,b4,c5]),(109,[a2,a3,a6,b0,b1,b5,c4]),

(110,[a2,a3,a6,b0,b4,b5,c1]),(111,[a2,a3,a6,b1,b4,b5,c0]),

(112,[a2,a4,a5,b0,b1,b3,c6]),(113,[a2,a4,a5,b0,b1,b6,c3]),

(114,[a2,a4,a5,b0,b3,b6,c1]),(115,[a2,a4,a5,b1,b3,b6,c0]),

(116,[a2,a4,a6,b0,b1,b3,c5]),(117,[a2,a4,a6,b0,b1,b5,c3]),

(118,[a2,a4,a6,b0,b3,b5,c1]),(119,[a2,a4,a6,b1,b3,b5,c0]),

(120,[a2,a5,a6,b0,b1,b3,c4]),(121,[a2,a5,a6,b0,b1,b4,c3]),

(122,[a2,a5,a6,b0,b3,b4,c1]),(123,[a2,a5,a6,b1,b3,b4,c0]),

(124,[a3,a4,a5,b0,b1,b2,c6]),(125,[a3,a4,a5,b0,b1,b6,c2]),

(126,[a3,a4,a5,b0,b2,b6,c1]),(127,[a3,a4,a5,b1,b2,b6,c0]),

(128,[a3,a4,a6,b0,b1,b2,c5]),(129,[a3,a4,a6,b0,b1,b5,c2]),

(130,[a3,a4,a6,b0,b2,b5,c1]),(131,[a3,a4,a6,b1,b2,b5,c0]),
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(132,[a3,a5,a6,b0,b1,b2,c4]),(133,[a3,a5,a6,b0,b1,b4,c2]),

(134,[a3,a5,a6,b0,b2,b4,c1]),(135,[a3,a5,a6,b1,b2,b4,c0]),

(136,[a4,a5,a6,b0,b1,b2,c3]),(137,[a4,a5,a6,b0,b1,b3,c2]),

(138,[a4,a5,a6,b0,b2,b3,c1]),(139,[a4,a5,a6,b1,b2,b3,c0])])

----------------------------------------------------------------------------

M =

S = [0..139]

Equivalence Classes:

a:

{[0,1,2,3],[4,5,6,7],[8,9,10,11],[12,13,14,15],[16,17,18,19],[20,21,22,23],

[24,25,26,27],[28,29,30,31],[32,33,34,35],[36,37,38,39],[40,41,42,43],

[44,45,46,47],[48,49,50,51],[52,53,54,55],[56,57,58,59],[60,61,62,63],

[64,65,66,67],[68,69,70,71],[72,73,74,75],[76,77,78,79],[80,81,82,83],

[84,85,86,87],[88,89,90,91],[92,93,94,95],[96,97,98,99],[100,101,102,103],

[104,105,106,107],[108,109,110,111],[112,113,114,115],[116,117,118,119],

[120,121,122,123],[124,125,126,127],[128,129,130,131],[132,133,134,135],

[136,137,138,139]}

b:

{[0,19,35,75],[1,15,31,71],[2,11,27,67],[3,7,23,63],[4,18,47,87],[5,14,43,83],

[6,10,39,79],[8,17,55,95],[9,13,51,91],[12,16,59,99],[20,34,46,111],[21,30,42,107],

[22,26,38,103],[24,33,54,119],[25,29,50,115],[28,32,58,123],[36,45,53,131],

[37,41,49,127],[40,44,57,135],[48,52,56,139],[60,74,86,110],[61,70,82,106],

[62,66,78,102],[64,73,94,118],[65,69,90,114],[68,72,98,122],[76,85,93,130],

[77,81,89,126],[80,84,97,134],[88,92,96,138],[100,109,117,129],[101,105,113,125],

[104,108,121,133],[112,116,120,137],[124,128,132,136]}

c:

{[0,4,8,12,20,24,28,36,40,48,60,64,68,76,80,88,100,104,112,124],

[1,5,9,16,21,25,32,37,44,52,61,65,72,77,84,92,101,108,116,128],

[2,6,13,17,22,29,33,41,45,56,62,69,73,81,85,96,105,109,120,132],

[3,10,14,18,26,30,34,49,53,57,66,70,74,89,93,97,113,117,121,136],

[7,11,15,19,38,42,46,50,54,58,78,82,86,90,94,98,125,129,133,137],

[23,27,31,35,39,43,47,51,55,59,102,106,110,114,118,122,126,130,134,138],

[63,67,71,75,79,83,87,91,95,99,103,107,111,115,119,123,127,131,135,139]}

Updated model when solving the crossing hands exchange in state 1 (Model 2):

S = [0,1,2,3,28,29,30,31,36,37,38,39,56,57,58,

59,80,81,82,83,92,93,94,95,108,109,110,111]

A = [a,b,c]

V = [(0,[a0,a1,a2,b3,b4,b5,c6]),(1,[a0,a1,a2,b3,b4,b6,c5]),

(2,[a0,a1,a2,b3,b5,b6,c4]),(3,[a0,a1,a2,b4,b5,b6,c3]),

(28,[a0,a2,a5,b1,b3,b4,c6]),(29,[a0,a2,a5,b1,b3,b6,c4]),
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(30,[a0,a2,a5,b1,b4,b6,c3]),(31,[a0,a2,a5,b3,b4,b6,c1]),

(36,[a0,a3,a4,b1,b2,b5,c6]),(37,[a0,a3,a4,b1,b2,b6,c5]),

(38,[a0,a3,a4,b1,b5,b6,c2]),(39,[a0,a3,a4,b2,b5,b6,c1]),

(56,[a0,a5,a6,b1,b2,b3,c4]),(57,[a0,a5,a6,b1,b2,b4,c3]),

(58,[a0,a5,a6,b1,b3,b4,c2]),(59,[a0,a5,a6,b2,b3,b4,c1]),

(80,[a1,a3,a5,b0,b2,b4,c6]),(81,[a1,a3,a5,b0,b2,b6,c4]),

(82,[a1,a3,a5,b0,b4,b6,c2]),(83,[a1,a3,a5,b2,b4,b6,c0]),

(92,[a1,a4,a6,b0,b2,b3,c5]),(93,[a1,a4,a6,b0,b2,b5,c3]),

(94,[a1,a4,a6,b0,b3,b5,c2]),(95,[a1,a4,a6,b2,b3,b5,c0]),

(108,[a2,a3,a6,b0,b1,b4,c5]),(109,[a2,a3,a6,b0,b1,b5,c4]),

(110,[a2,a3,a6,b0,b4,b5,c1]),(111,[a2,a3,a6,b1,b4,b5,c0])])

Equivalence classes:

a:

{[0,1,2,3],[28,29,30,31],[36,37,38,39],[56,57,58,59],

[80,81,82,83],[92,93,94,95],[108,109,110,111]},

b:

{[0],[1,31],[2],[3],[28,58],[29],[30],[36],[37],[38],[39],[56],[57],

[59],[80],[81],[82],[83],[92],[93],[94],[95],[108],[109],[110],[111]},

c:

{[0,28,36,80],[1,37,92,108],[2,29,56,81,109],

[3,30,57,93],[31,39,59,110],[38,58,82,94],[83,95,111]}

Model after Bob’s announcement of Eve’s possible cards when solving the crossing hands
exchange (Model 3):

S = [1,31,37,39,59,92,108,110]

A = [a,b,c]

V = [(1,[a0,a1,a2,b3,b4,b6,c5]),(31,[a0,a2,a5,b3,b4,b6,c1]),(37,[a0,a3,a4,b1,b2,b6,c5]),

(39,[a0,a3,a4,b2,b5,b6,c1]),(59,[a0,a5,a6,b2,b3,b4,c1]),(92,[a1,a4,a6,b0,b2,b3,c5]),

(108,[a2,a3,a6,b0,b1,b4,c5]),(110,[a2,a3,a6,b0,b4,b5,c1])])

Equivalence classes:

a: {[1],[31],[37,39],[59],[92],[108,110]}

b: {[1,31],[37],[39],[59],[92],[108],[110]}

c: {[1,37,92,108],[31,39,59,110]}

Final model when solving the crossing hands exchange in state 1. (Model 4):

S = [1,37,39,59,108,110]

A = [a,b,c]

V = (1,[a0,a1,a2,b3,b4,b6,c5]),(37,[a0,a3,a4,b1,b2,b6,c5]),(39,[a0,a3,a4,b2,b5,b6,c1]),

(59,[a0,a5,a6,b2,b3,b4,c1]),(108,[a2,a3,a6,b0,b1,b4,c5]),(110,[a2,a3,a6,b0,b4,b5,c1])]

Equivalence classes:

a:

{[1],[37,39],[59],[108,110]}

b:



45

{[1],[37],[39],[59],[108],[110]}

c:

{[1,37,108],[39,59,110]}

After Bob’s announcement in state 31 (Model 5):

S = [1,31,37,39,59,92,108,110]

A = [a,b,c]

V = (1,[a0,a1,a2,b3,b4,b6,c5]),(31,[a0,a2,a5,b3,b4,b6,c1]),

(37,[a0,a3,a4,b1,b2,b6,c5]),(39,[a0,a3,a4,b2,b5,b6,c1]),

(59,[a0,a5,a6,b2,b3,b4,c1]),(92,[a1,a4,a6,b0,b2,b3,c5]),

(108,[a2,a3,a6,b0,b1,b4,c5]),(110,[a2,a3,a6,b0,b4,b5,c1])

Equivalence classes:

a:

{[1],[31],[37,39],[59],[92],[108,110]}

b:,

{[1,31],[37],[39],[59],[92],[108],[110]}

c:

{[1,37,92,108],[31,39,59,110]}

After Anne’s final announcement in state 31 (Model 6):

S = [31,37,39,92,108,110]

A = [a,b,c] (

V = (31,[a0,a2,a5,b3,b4,b6,c1]),(37,[a0,a3,a4,b1,b2,b6,c5]),

(39,[a0,a3,a4,b2,b5,b6,c1]),(92,[a1,a4,a6,b0,b2,b3,c5]),

(108,[a2,a3,a6,b0,b1,b4,c5]),(110,[a2,a3,a6,b0,b4,b5,c1])

Equivalence classes:

a:

{[31],[37,39],[92],[108,110]}

b:

{[31],[37],[39],[92],[108],[110]}

c:

{[31,39,110],[37,92,108]}

After Bob’s announcement in state 28 (Model 7):

S = [0,28,36,38,58,80,82,94]

A = [a,b,c]

V = (0,[a0,a1,a2,b3,b4,b5,c6]),(28,[a0,a2,a5,b1,b3,b4,c6]),

(36,[a0,a3,a4,b1,b2,b5,c6]),(38,[a0,a3,a4,b1,b5,b6,c2]),

(58,[a0,a5,a6,b1,b3,b4,c2]),(80,[a1,a3,a5,b0,b2,b4,c6]),

(82,[a1,a3,a5,b0,b4,b6,c2]),(94,[a1,a4,a6,b0,b3,b5,c2])

Equivalence classes:

a:

{[0],[28],[36,38],[58],[80,82],[94]}
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b:

{[0],[28,58],[36],[38],[80],[82],[94]}

c:

{[0,28,36,80],[38,58,82,94]}

After Anne’s final announcement in state 28 (Model 8):

S = [28,36,38,80,82,94]

A = [a,b,c]

V = (28,[a0,a2,a5,b1,b3,b4,c6]),(36,[a0,a3,a4,b1,b2,b5,c6]),

(38,[a0,a3,a4,b1,b5,b6,c2]),(80,[a1,a3,a5,b0,b2,b4,c6]),

(82,[a1,a3,a5,b0,b4,b6,c2]),(94,[a1,a4,a6,b0,b3,b5,c2])

a:

{[28],[36,38],[80,82],[94]}

b:

{[28],[36],[38],[80],[82],[94]}

c:

{[28,36,80],[38,82,94]}

After Bob’s announcement in state 58 (Model 9):

S = [0,28,36,38,58,80,82,94]

A = [a,b,c]

V = (0,[a0,a1,a2,b3,b4,b5,c6]),(28,[a0,a2,a5,b1,b3,b4,c6]),

(36,[a0,a3,a4,b1,b2,b5,c6]),(38,[a0,a3,a4,b1,b5,b6,c2]),

(58,[a0,a5,a6,b1,b3,b4,c2]),(80,[a1,a3,a5,b0,b2,b4,c6]),

(82,[a1,a3,a5,b0,b4,b6,c2]),(94,[a1,a4,a6,b0,b3,b5,c2])

Equivalence classes:

a:

{[0],[28],[36,38],[58],[80,82],[94]}

b:

{[0],[28,58],[36],[38],[80],[82],[94]}

c:

{[0,28,36,80],[38,58,82,94]}

After Anne’s final announcement in state 58 (Model 10):

S = [0,36,38,58,80,82]

A = [a,b,c]

V = (0,[a0,a1,a2,b3,b4,b5,c6]),(36,[a0,a3,a4,b1,b2,b5,c6]),

(38,[a0,a3,a4,b1,b5,b6,c2]),(58,[a0,a5,a6,b1,b3,b4,c2]),

(80,[a1,a3,a5,b0,b2,b4,c6]),(82,[a1,a3,a5,b0,b4,b6,c2])

Equivalence classes:

a:

{[0],[36,38],[58],[80,82]}

b:
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{[0],[36],[38],[58],[80],[82]}

c:

{[0,36,80],[38,58,82]}
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