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Abstract 

During the recent years, the composition of salmonids diets has changed from the use 

of mainly marine-based ingredients (e.g. fish meal and fish oil) to an increased use of 

plant-based ingredients (e.g. soybean meal and vegetable oil). These changes in diet 

composition have an impact on the mineral concentration and mineral availability. For 

instance, zinc (Zn) is naturally present in both fish meal and plant-based ingredients, 

but in different concentrations. The Zn concentration is usually higher in fish meal than 

in plant-based ingredients so, with the increased use of plant-based ingredients the Zn 

concentration tends to decrease in the basal mixes. In addition, compounds from plant-

based ingredients can reduce mineral availability. For instance, phytic acid, which is 

typically found in plant-based ingredients, can decrease mineral availability due to its 

high binding affinity for metal ions. Therefore, minerals such as Zn, selenium (Se) and 

manganese (Mn) are supplemented to diets to cover the nutritional requirement of 

farmed fish. These minerals may be added as organic or inorganic forms. Taken all of 

this information into consideration, there is a need to study mineral availability in the 

current salmon feed composition which is formulated mainly using plant-based 

ingredients. Further knowledge in this area will provide a better understanding 

regarding mineral availability and necessary strategies to increase mineral availability 

in Atlantic salmon. Increasing mineral availability will promote fish health and 

robustness, but also decrease the environmental load via faeces.  

Considering that several chemical species of minerals can be present in a fish feed, it 

was hypothesised that availability is affected by the chemical species. For that purpose, 

analytical methods were optimized for extraction, quantification and identification of 

Zn chemical species in fish feed. This included method optimization by fractional 

factorial design and evaluation of sample extracts by size exclusion chromatography 

coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS) (Paper I). 

The impact of freshwater or seawater media ion composition and methionine chelation 

on Zn uptake was evaluated using a rainbow trout intestinal epithelial cell line 

(RTgutGC) (Paper II). This PhD work also compared the availability of Zn, Se and 
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Mn from inorganic metal salts and their organic forms in Atlantic salmon diets. Sixteen 

experimental diets were prepared based on a two-level full factorial design for four 

factors. The tested factors were Zn additive source, Se additive source, Mn additive 

source and phytic acid level. The Zn, Se, Mn and yttrium concentration in diets and 

faeces were determined using inductively coupled plasma mass spectrometry (ICP-

MS) and the apparent availability of Zn, Se and Mn were estimated (Paper III). The 

availability of a nutrient depends on several factors, including solubility. An in vitro 

digestion method was developed to evaluate solubility of dietary Zn, Se and Mn in two 

diets for Atlantic salmon. The soluble fractions obtained were then evaluated as a 

measure to predict availability of Zn, Se and Mn (Paper IV). A summary of the work 

done in the PhD is described by the graphical abstract shown in Figure 1. 

 

 

Figure 1 – Graphical abstract summarizing the PhD work. 

 

The procedure to extract the Zn species from the diet included extraction conditions to 

keep the Zn species intact. The highest recovery of Zn (9.9±0.2%) was obtained using 

100 mM Tris-HCl, pH 8.5 at a temperature of 4°C for 24 h. The same soluble fraction 

was further evaluated for Zn species by SEC-ICP-MS. Four Zn containing peaks were 

found, each peak with different molecular weights: peak 1 (high molecular weight), 

peak 2 and peak 3 (medium molecular weight) were the least abundant peaks (1-6%), 

while peak 4 (low molecular weight) was the most abundant peaks (84-95%) (Paper 

I). In RTgutGC, Zn uptake was not different between freshwater and seawater media 

ion composition. Conversely, in the presence of methionine, Zn uptake in seawater 
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media ion composition was lower compared to freshwater media ion composition, but 

only at high Zn concentrations (12 and 25 μM) (Paper II). The apparent availability of 

Zn was not affected by the Zn additive source. However, the Se and Mn additive 

sources affected their apparent availability. The apparent availability of Se was higher 

for selenomethionine than for selenite, and Mn sulphate was more available than Mn 

chelate of glycine. Several interactions between mineral additive sources and the phytic 

acid level affected the apparent availability of Zn, Se and Mn (Paper III). The 

solubility of Zn was similar in both diets tested. The amount of soluble Zn was low in 

the acidic hydrolysis (3-8%) and lower in the alkaline hydrolysis (0.4-2%). The 

solubility of Se was higher in the diet supplemented with organic mineral sources (7-

34%) when compared with diet supplemented with inorganic mineral sources (3-12%). 

Regarding Mn, during the acidic hydrolysis the solubility was higher in the diet 

supplemented with inorganic mineral sources (6-25%) than in the diet supplemented 

with organic mineral sources (4-17%) (Paper IV). 

Several Zn species were found in the soluble fraction of the Atlantic salmon diet studied 

but further work is needed to evaluate the effect of the different Zn species on 

availability (Paper I). Zinc uptake in RTgutGC cell line was influenced by the ionic 

concentration in the media, indicating that the intestinal ionic composition in a 

freshwater or in a seawater environment can influence Zn availability (Paper II). 

Regarding the apparent availability of Zn, Se and Mn in Atlantic salmon, it was 

demonstrated that the availability of Zn, Se and Mn depended on both the chemical 

form of the mineral supplemented to diets and on several interactions between Zn, Se 

and Mn and phytic acid level (Paper III). The solubility of Zn, Se and Mn was 

influenced both by the mineral chemical form supplemented in diet and by the 

gastrointestinal environment (Paper IV). Moreover, solubility and apparent 

availability of Mn showed a strong positive correlation, but a week positive correlation 

was seen for Zn and Se (Paper IV). Consequently, more work needs to be done for 

improving the in vitro digestion method. 
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1. Introduction 

The continuous growth of the world population leads to an increasing demand for food, 

including fish and other seafood. The natural fish stocks of some of the most important 

commercial species are decreasing, thus, aquaculture is a promising approach to meet 

the demand for fish and other seafood [1]. In 2017, global aquaculture production 

included around 79.2 million tonnes of fish and seafood (i.e. fish, molluscs and 

crustaceans) [2]. China is by far the major producer followed by other major producers 

such as India, Indonesia, Vietnam, Bangladesh, Egypt and Norway [1]. In Norway, the 

most important species is the Atlantic salmon (Salmo salar), which, accounted for 

94.5% of the total Norwegian aquaculture production in 2017 [3]. Other species like 

rainbow trout (Oncorhynchus mykiss), Atlantic halibut (Hippoglossus hippoglossus), 

Arctic char (Salvelinus alpinus), blue mussel (Mytilus edulis), great Atlantic scallop 

(Pecten maximus) and flat oyster (Ostrea edulis) are also being farmed in Norway [3].  

For many years, fish meal was used as the main protein source in aquaculture diet 

formulation. However, high demand for and high prices of fish meal led the industry 

to explore and to increase the use of other protein sources [4]. There are several protein 

sources that have the potential of replacing fish meal in diets for many fish species 

without compromising their health or performance. Research has shown that it is 

possible to partially or fully replace fish meal with proteins from other sources [5,6]. 

These alternative protein sources include animal proteins from rendering or slaughter 

(e.g. poultry by-product meal, feather meal, blood meal from non-ruminants), plant 

proteins (e.g. soybean meal, maize gluten meal, wheat gluten) and novel proteins (e.g. 

algae, yeast, insect meal) [7]. 

Over the past decades, the composition of salmonid feeds has changed from the use of 

mainly marine-based ingredients to an increased use of plant-based ingredients. 

Nowadays, most commercial salmonid feeds contain around 70% of plant-based 

ingredients and around 30% of marine-based ingredients [8]. This change has an impact 

on nutrient composition of and mineral concentration in feeds. Minerals are naturally 

present in fish meal and in plant-based ingredients [9,10]. However, the amount of 
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mineral present is not always enough to cover requirements, the minerals chemical 

forms in plant-based ingredients may have low availability and compounds in plant-

based ingredients can reduce mineral availability [11]. Thus, minerals are usually 

supplemented to feeds as inorganic or organic mineral sources to ensure that the 

nutritional requirements of fish are met. Therefore, choosing mineral sources with 

higher availability can reduce the needed amount of minerals supplemented to feeds 

and subsequently decrease environmental mineral load arising from salmon farming. 

Consequently, there is an increasing interest of investigating the availability of 

inorganic mineral sources and their respective organic forms [11].  

In fish, the availability of minerals in a diet is dependent on dietary source and chemical 

form, and on possible interactions with other dietary components and nutrients present 

in the gastrointestinal tract [12,13]. Hence, to gain knowledge of concentration and 

chemical forms of a mineral present in ingredients and fish feeds is very important for 

fish nutrition purposes. Usually, the physicochemical properties of minerals are used 

to distinguish between them, with the most effective method for mineral determination 

being atomic spectroscopic techniques [14].  

Overall, the use of plant-based ingredients led to a change in the mineral concentration 

and dietary components. Thus, there is a need for more knowledge to determine optimal 

mineral levels, avoiding deficiency or excess of minerals in salmon feeds. 

Understanding mineral availability is central to achieve this goal. At the Institute of 

Marine Research, there is a project with the goal of studying the apparent availability 

and requirement of minerals in Atlantic salmon (APREMIA). The project aims to 

expand the knowledge on the availability and requirement of minerals such as zinc 

(Zn), selenium (Se) and manganese (Mn) in plant-based diets for Atlantic salmon 

(Salmo salar). As part of this project, this PhD work evaluated the availability of Zn, 

Se and Mn in Atlantic salmon. 
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2. Background 

2.1 Digestive system in Atlantic salmon 

In Atlantic salmon, the digestive system can be divided in three parts: the pre-gastric, 

gastric, and post-gastric sections. The pre-gastric section comprises the mouth, pharynx 

and oesophagus. The gastric section comprises the stomach (Figure 2). The stomach 

mechanically digests the feed with the help of muscle contractions and relaxation 

movements. Also, the stomach chemically digests the feed by secreting hydrochloric 

acid (HCl) and pepsinogen. The pH of the stomach becomes acid due to secretion of 

HCl. The HCl denatures proteins present in the feed and converts the pepsinogen into 

its active form, pepsin [15]. The post-gastric section includes the pyloric caeca, the mid 

intestine, the distal intestine and anus (Figure 2).  

 

 

 

Figure 2 – Scheme of the gastrointestinal tract in Atlantic salmon; after being mechanically 

and chemically digested in the stomach (1), the feed enters the pyloric caeca (2) and then the 

mid intestine (3) and distal intestine (4) for absorption; adapted from Moldal et al., 2014 [16]. 

 

After passing the stomach, the semi-digested feed comes into the pyloric caeca. The 

pyloric caeca are blind extensions of the intestine that both secrete digestive enzymes 

and absorb nutrients [17]. In the intestine, nutrients are further digested with the help 

of digestive enzymes and bile salts secreted by the pancreas (e.g. trypsin, 

chymotrypsin, and elastase) [17]. The pH in the intestine becomes alkaline, mainly due 
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to secretion of bicarbonate from the pancreas, and this makes the pH optimal for the 

digestive enzymes. In the intestine, a layer of enterocytes line the intestinal walls 

forming a brush border. The enterocytes are key cells to the function of the digestive 

system as they have both digestive and absorptive functions [17]. Overall, digestion 

and absorption of nutrients may take place along most of the gastrointestinal tract 

(Figure 2). The main purpose of the gastrointestinal tract is to make the nutrients 

available for absorption [15]. Moreover, the fish gastrointestinal tract also has a number 

of other functions, including osmoregulation and regulation of the immune system [18].  

2.2 Factors affecting nutrient bioavailability 

The term bioavailability or biological availability has been defined several times over 

the last years. An overview of definitions for nutrient bioavailability is presented in 

Table 1.  

 

Table 1 – An overview of proposed definitions for nutrient bioavailability.  

Definition Reference 

A quantitative measure of utilisation of a nutrient under specific 

conditions to support the organism’s normal structure and 

physiological processes. 

Fox et al., 1981 

[19] 

The proportion of a nutrient in food which is absorbed and 

utilised. 

O`Dell, 1984 

[20] 

The fraction of the dietary element which becomes biologically 

active. 

Mutanen, 1986 

[21] 

A measure of the proportion of the total amount of a nutrient that 

is utilised for normal body functions. 

Fairweather-Tait, 1992 

[22] 

The degree to which an ingested nutrient in a particular source is 

absorbed in a form that can be utilized in the metabolism by the 

animal. 

Ammerman et al., 1995 

[23] 

The fraction of the ingested nutrient that is utilised for normal 

functions and storage. 

Jackson, 1997 

[24] 
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According to Fairweather-Tait, bioavailability is a measure of the proportion of the 

total amount of a nutrient that is utilised for normal body functions, and it involves 

various factors, each of which is affected by different dietary and physiological factors 

(Figure 3) [22]. In this work, the definition from Fairweather-Tait was used as it 

considers several factors affecting nutrient bioavailability. 

 

 

Figure 3 – Flowchart showing the different factors affecting nutrient bioavailability; adapted 

from Fairweather-Tait, 1992 [22]. Bioavailability is the amount of a nutrient that is utilised 

for normal body functions, and it involves various factors, each of which is affected by 

different dietary and physiological factors. The amount of a nutrient in diet which become 

available for absorption and the amount of a nutrient in diet which is absorbed are factors 

influencing bioavailability.  
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2.3 Mineral availability 

Mineral availability is generally considered as the proportion of mineral that is 

absorbed from the diet [22]. As shown in Figure 3, the proportion of mineral that is 

absorbed from the diet can depend on dietary components, chemical form of the 

mineral, gastrointestinal secretions, solubility, developmental stage of the fish, 

nutritional status, mucosal cell regulation and gut microflora [22]. Moreover, mineral 

availability can be influenced by interactions with other nutrients and dietary 

components coexisting in the gastrointestinal tract [12,13]. Several factors can 

influence mineral availability simultaneously, which makes the evaluation of mineral 

availability challenging. In addition, it is important to take into account that fish have 

a close interaction with the aquatic environment. Indeed, fish take up minerals from the 

diet and from the water [25]. Moreover, Atlantic salmon is an anadromous fish, 

spending parts of their lives in both freshwater and seawater. Therefore, the 

osmoregulation in freshwater or seawater environment is one more factor to consider 

in mineral availability in Atlantic salmon [26]. 

The minerals need to be released from the dietary matrix and dissolved in the 

gastrointestinal fluids before becoming available for absorption [22,27]. The 

International Union of Pure and Applied Chemistry (IUPAC) defined solubility as “the 

analytical composition of a saturated solution expressed as a proportion of a designated 

solute in a designated solvent” [28]. Regardless of in which chemical form the minerals 

are ingested, their absorption depends on their solubility and chemical form at the point 

of contact with the absorbing membranes. In general, the availability of minerals is 

positively related to the aqueous solubility of the mineral. This principle has been 

demonstrated by Weerasinghe and co-workers who showed a good correlation between 

soluble phosphorous (P) in different feed ingredients and in vivo availability of P from 

these ingredients in feed [26]. For a nutrient to reach the apical membrane domain of 

the enterocyte, it must pass an unstirred water layer, emphasizing the necessity of 

solubility in transport across biologic interfaces. Although solubility is important for 
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absorption, it is important not to equate solubility of a mineral with absorption of that 

mineral, which also depends on other factors (Figure 3). 

 

The mineral solubility can be determined in vitro using a ratio between the 

concentration of mineral which is soluble (i.e. [M] in soluble fraction) and the mineral 

concentration in diet (i.e. [M] in diet) [29], as described in Equation 1: 

Equation 1 

Solubility (%) =
[M] in soluble fraction

[M] in diet
∗ 100 

 

where [M] is the concentration of the mineral. 

 

The use of in vitro methods has been used to study iron (Fe), P and Zn solubility in fish 

[30-32]. Also, the use of in vitro methods can be applied to study mineral uptake. For 

instance, a fish intestinal epithelial model established from a rainbow trout cell line 

(RTgutGC) was successfully used to study intestinal uptake of silver and Zn [33,34]. 

These cells possess an intestinal epithelial-like morphology, providing an excellent tool 

for assessing intestinal mineral uptake. A more conventional assessment of mineral 

availability in fish is measuring it in vivo by collecting faeces from water, by stripping 

faeces from the fish, dissecting the fish gut after sacrificing the fish, or collecting faeces 

directly from fish using anal suctioning [35]. The apparent availability of a mineral can 

be determined using a ratio between the concentrations of the mineral in diet and in 

faeces and the concentrations of an inert marker (e.g. chromium oxide or yttrium oxide) 

in diet and faeces, as described in Equation 2: 

 

Equation 2  

App. availability (%) =  100 − (100
[IM] in diet

[IM] in faeces
∗

[M] in faeces

[M] in diet
) 

 

where [M] is the concentration of the mineral, and [IM] the concentration of the inert 

marker. 
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The term apparent availability acknowledges the fact that the measured concentrations 

are not only related to the unabsorbed minerals from the diet but also to gastrointestinal 

secretions. Faeces from the fish are composed of undigested material, but also 

endogenous secretions, such as digestive enzymes, bile secretions, sloughed epithelium 

and mucus [36]. 

As described above, dietary components (e.g. proteins, carbohydrates, vitamins, 

minerals, lipids) may influence mineral availability. There is a range of possible dietary 

interactions influencing mineral availability, as reviewed by Hilton (1989) [37]. These 

interactions are divided into three groups; i) vitamin-mineral interactions, ii) mineral-

mineral interactions and iii) mineral-other dietary component interactions [37]. 

However, the effect of the different interactions is not fully understood as several 

interactions can act simultaneously. Modern commercial salmonid feeds contain 

mostly plant-based ingredients (~70%) and marine-based ingredients (~30%) [8]. The 

different ingredients contribute with different dietary components. In addition to 

naturally occurring dietary components, different dietary components can also be 

supplemented to the feeds. This increases the level of complexity on understanding the 

effect of dietary components on mineral availability.  

2.4 Minerals in feed ingredients 

The shift from the use of mainly marine-based ingredients to increased use of plant-

based ingredients changed the proximate composition of feeds [5]. At the Institute of 

Marine Research, determination of mineral concentrations are performed routinely at 

the inorganic chemistry laboratory. Between 2015 and 2018, data were collected 

regarding the mineral concentrations in several commercially used ingredients as 

summarized in Table 2. Minerals such as Fe, Zn, copper (Cu), Mn, cobalt (Co) and Se 

are naturally present in fish meal and in plant-based ingredients in different 

concentrations [10,38,39]. The mineral concentrations present in each type of 

ingredient differ greatly. For instance, Zn in fish meal ranged from 30 to 1365 mg kg -

1 and Zn in plant-based ingredients ranged from 18 to 93 mg kg -1. In fish meal, the 
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mineral concentrations depend on the source of raw materials and the processing 

method used. In plant-based ingredients, the mineral concentrations depend on 

fertilisation, genetic differences in plant species, and soil concentration and soil 

conditions (e.g. pH, ion exchange capacity) which influence mineral uptake in plants 

[40,41]. Also, the processing method will affect the mineral concentration in plant-

based ingredients. The concentration of Fe, Zn, Cu, Mn, Co and Se found in fish meal 

(n=40) were 205 ± 169 mg of Fe kg -1, 181 ± 315 mg of Zn kg -1, 14 ± 21 mg of Cu kg 

-1, 12 ± 14 mg of Mn kg -1, 0.02 ± 0.04 mg of Co kg -1 and 1.9 ± 1.0 mg of Se kg -1, 

respectively The concentration of Fe, Zn, Cu, Mn, Co and Se in plant-based ingredients 

(n=76) were 146 ± 101 mg of Fe kg -1, 46 ± 21 mg of Zn kg -1, 8 ± 6 mg of Cu kg -1, 28 

± 13 mg of Mn kg -1, 0.01 ± 0.04 mg of Co kg -1 and 0.1 ± 0.4 mg of Se kg -1, 

respectively. The average mineral concentration of Fe, Zn, Cu, Co and Se was higher 

in fish meal than in plant-based ingredients. Moreover, the average concentration of 

Mn was higher in plant-based ingredients when compared with the average mineral 

concentration in fish meal.  

 

Table 2 – Concentrations of some of the minerals found in fish meal (n=40) and plant-based 

ingredients (e.g. soybean concentrates, corn gluten meal, soybean meal, wheat gluten meal) 

(n=76); iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co) and selenium (Se) are 

naturally present in fish meal and in plant-based ingredients; data shown were collected 

between 2015 and 2018 at the Institute of Marine Research; average concentration ± standard 

deviation are presented in the first line as mg kg -1; minimum and maximum concentration are 

presented in brackets as mg kg -1. 

 
Fe 

mg kg -1 

Zn 

mg kg -1 

Cu 

mg kg -1 

Mn 

mg kg -1 

Co 

mg kg -1 

Se 

mg kg -1 

Fish meal 

(n=40) 

205 ± 169 

(13-839) 

181 ± 315 

(30-1365) 

14 ± 21 

(2-77) 

12 ± 14 

(1-49) 

0.02 ± 0.04 

(0-0.10) 

1.9 ± 1.0 

(0-3.0) 

Plant-based 

ingredients 

(n=76) 

146 ± 101 

(11-512) 

46 ± 21 

(18-93) 

8 ± 6 

(2-31) 

28 ± 13 

(2-47) 

0.01 ± 0.04 

(0-0.34) 

0.1 ± 0.4 

(0-3.1) 



21 

2.5 Compounds in plant-based ingredients influencing mineral 

availability 

Compounds in plant-based ingredients influencing mineral availability are phytic acid, 

saponins, tannins, lectins, oligosaccharides and non-starch polysaccharides, 

phytoestrogens and alkaloids [42]. For instance, non-starch polysaccharides (e.g. 

fibres) impair mineral availability by increasing cell (e.g. enterocytes) sloughing in the 

intestine or through the formation of insoluble chelates [43]. Phytic acid  forms 

complexes with divalent cations (e.g. Zn2+, Fe2+, Ca2+, Mg2+, Mn2+, and Cu2+) rendering 

them poorly available to the fish [12,44].  

Phytic acid (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate, InsP6) is 

naturally present in most cereals in concentrations ranging from 0.5 to 2.0% [45]. Its 

molecular formula is C6H18O24P6 and its molecular weight is 660.03 g mol -1. The 

phytic acid molecule is very reactive due to the presence of phosphate groups that are 

highly negatively charged (Figure 4). At moderate acid conditions (pH ≥ 5.2), six of 

these phosphate groups will be negatively charged, while the remaining six phosphate 

groups will be charged in more acidic conditions (pH < 3.2) [46]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – A phytic acid molecule; the negatively charged phosphate groups can bind to 

divalent cations. 
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The hydrolysis of InsP6 occur by nonenzymatic or enzymatic processes. The 

nonenzymatic hydrolysis usually takes place when the feed is exposed to high 

temperatures and pressure (e.g. during feed production), or after treatment with strong 

acids. The enzymatic hydrolysis is mediated by phytases [47]. These enzymes catalyse 

the hydrolytic cleavage of InsP6 via several phosphorylated intermediary products (i.e. 

myo-inositol pentakis-, tetrakis-, tris-, bis- and monophosphate) down to myo-inositol 

[48]. Phytic acid and phosphorylated intermediary products are considered as anti-

nutrients due to their high affinity for mineral polyvalent cations which hinders mineral 

absorption in the animal gastrointestinal tract [49].  

2.6 Zinc, selenium and manganese additives in feed 

In addition to the native sources found in feed ingredients, Zn, Se and Mn are often 

supplemented to feed as inorganic salts or as their organic forms to meet the nutritional 

requirements of fish [36,50], being categorised as feed additives. These feed additives 

must be authorised before being sold on the European market. The authorisations are 

valid for 10 years throughout the European Union (EU) and the European Economic 

Area. Applications for authorisation are submitted to the European Commission (EC). 

The applicant submits a dossier which includes: 1) name of the applicant; 2) 

identification of the additive; 3) method of production and method of analysis; 4) 

studies on safety and efficacy of the additive; 5) proposed conditions for use and animal 

species for which the additive is intended; 6) proposal for post market monitoring [51]. 

The European Food Safety Authority (EFSA) evaluates the safety and efficacy of the 

additive and assesses possible adverse effects on human and animal health and on the 

environment. Subsequently, the EC may approve feed additives, which are considered 

safe to use and establishes upper limits for the different minerals in complete diets. In 

the EU, the current upper limit for total Zn in complete feed of all fish, except 

salmonids, is 150 mg kg -1 and for salmonids feed it is 180 mg kg -1 [52,53]. The current 

upper limit for total Se in fish feed is 0.5 mg kg -1 [52], while supplementation of 

organic Se must not exceed 0.2 mg kg -1 in complete feed [54-57]. The upper limit for 

Mn in feed is 100 mg kg -1 [52,57]. Currently, the Zn additives approved are zinc acetate 
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dihydrate, zinc chloride anhydrous, zinc oxide, zinc sulphate heptahydrate, zinc 

sulphate monohydrate, zinc chelate of amino acids hydrate, zinc chelate of protein 

hydrolysates, zinc chelate of glycine hydrate (solid) and zinc chelate of glycine hydrate 

(liquid) [52,53]. The Se additives approved are sodium selenite, hydroxy-analogue of 

selenomethionine, L-selenomethionine, DL-selenomethionine and selenomethionine 

produced by Saccharomyces cerevisiae [52,54-57]. The Mn additives approved are 

manganous chloride tetrahydrate, manganese (II) oxide, manganous sulphate 

monohydrate, manganese chelate of amino acids hydrate, manganese chelate of protein 

hydrolysates, manganese chelate of glycine hydrate and dimanganese chloride 

trihydroxide [52,57]. Table 3 summarizes the list of approved feed additives by the EC 

and the respective current upper limit in EU for Zn, Se and Mn (information obtained 

in December 2018). 

 

Table 3 – List of approved feed additives by the European Commission and the respective 

current upper limit in European Union for Zn, Se and Mn (information obtained in December 

2018). 

 List of approved feed additives Upper limit in EU 

Zn(a) - zinc acetate dehydrate 

- zinc chloride anhydrous 

- zinc oxide 

- zinc sulphate heptahydrate  

- zinc sulphate monohydrate 

- zinc chelate of amino acids hydrate  

- zinc chelate of protein hydrolysates 

- zinc chelate of glycine hydrate (solid)  

- zinc chelate of glycine hydrate (liquid) 

- all fish except salmonids: 

150 mg kg -1 

- salmonids: 180 mg kg -1 

Se(b) - sodium selenite 

- hydroxy-analogue of selenomethionine 

- L-selenomethionine 

- DL-selenomethionine 

- selenomethionine produced by 

Saccharomyces cerevisiae 

- 0.5 mg kg -1 

- the organic Se must not 

exceed 0.2 mg kg -1 in 

complete feed 
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 List of approved feed additives Upper limit in EU 

Mn(c) - manganous chloride tetrahydrate 

- manganese (II) oxide 

- manganous sulphate monohydrate 

- manganese chelate of amino acids hydrate 

- manganese chelate of protein hydrolysates 

- manganese chelate of glycine hydrate 

- dimanganese chloride trihydroxide 

- 100 mg kg -1 

(a) Reg. (EC) No. 2003/1831 and amendments [52,53] 

(b) Reg. (EC) No. 2003/1831 and amendments [52,54-57] 

(c) Reg. (EC) No. 2003/1831 and amendments [52,57] 

 

Currently, the Zn additives approved are zinc acetate dihydrate, zinc chloride 

anhydrous, zinc oxide, zinc sulphate heptahydrate, zinc sulphate monohydrate, zinc 

chelate of amino acids hydrate, zinc chelate of protein hydrolysates, zinc chelate of 

glycine hydrate (solid) and zinc chelate of glycine hydrate (liquid) [52,53]. The Se 

additives approved are sodium selenite, hydroxy-analogue of selenomethionine, L-

selenomethionine, DL-selenomethionine and selenomethionine produced by 

Saccharomyces cerevisiae [52,54-57]. The Mn additives approved are manganous 

chloride tetrahydrate, manganese (II) oxide, manganous sulphate monohydrate, 

manganese chelate of amino acids hydrate, manganese chelate of protein hydrolysates, 

manganese chelate of glycine hydrate and dimanganese chloride trihydroxide [52,57].  

2.7 Speciation analysis 

Determination of total mineral concentration is commonly used in mineral availability 

studies. However, speciation analysis can provide valuable data, as specific 

information for each individual chemical species is provided [58]. As illustrated in 

Figure 3, the mineral availability is influenced by the chemical form of the mineral, 

which is again influenced by the ionic concentration, temperature and pH of the fluids 

in the gastrointestinal tract environment [22]. Information regarding speciation of a 

mineral is important since the biological role of any mineral depends on its chemical 
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form [59]. As defined by IUPAC, in analytical chemistry speciation analysis is “the 

analytical activities of identifying and/or measuring the quantities of one or more 

individual chemical species in a sample” [60]. In addition, IUPAC defined speciation 

of an element as “the distribution of an element amongst defined chemical species in a 

system” [60].  

Speciation analysis comprises typically of three steps; 1) sample extraction, 2) 

separation and 3) detection of chemical species. Sample extraction is commonly 

achieved by hydrolysis procedures (e.g. acid, alkaline and enzymatic hydrolysis) or by 

using aqueous or organic solvents to solubilise the different compounds depending on 

their physicochemical properties [61]. In terms of separation, liquid chromatography 

(LC), gas chromatography (GC) and capillary electrophoresis (CE) are the most 

commonly used techniques [59]. It is common to couple these techniques to element-

specific detection techniques with high sensitivity, such as inductively coupled plasma 

mass spectrometry (ICP-MS) [59]. A challenge in speciation analysis is often the 

identification and characterization of the chemical structure of unknown species due to 

lack of analytical standards. To overcome this challenge, complementary techniques 

such as electrospray ionisation mass spectrometry (ESI-MS), time-of-flight mass 

spectrometry (TOF-MS) and other high resolution mass spectrometry (HR-MS) can be 

used [59,62]. As can be seen in Figure 5, between 1991 and 2019, a large number of 

peer-reviewed scientific publications (n=3308) reported the use of ICP-MS in 

speciation analysis (shown as grey bars). In addition, a large number of peer-reviewed 

scientific publications (n=1727) combined LC with ICP-MS (shown as white bars) in 

speciation analysis underlining that LC-ICP-MS is the most commonly applied 

methodology in speciation analysis. 
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Figure 5 – Number of peer-reviewed scientific publications between 1991 and 2019 on 

speciation analysis and LC-ICP-MS (shown as white bars), and speciation analysis and ICP-

MS (shown as grey bars) (data obtained in March 2019 using as keywords “speciation and 

liquid chromatography and inductively coupled plasma mass spectrometry” and “speciation 

and inductively coupled plasma mass spectrometry” in the Web of Science™ database). 

 

Liquid chromatography is a separation technique in which the mobile phase is a liquid. 

The liquid mobile phase passes through the column and is used to elute the sample 

through the stationary phase. The components of the mobile phase and the sample can 

interact with the solid stationary phase, which is usually packed in a column support 

[63]. Currently, LC is mainly performed using high performance liquid 

chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) 

columns [64]. In LC, some of the most common techniques used for speciation analysis 

are reversed phase chromatography (RPC), ion exchange chromatography (IEC) and 

size exclusion chromatography (SEC) [65]. An overview of column type, separation 

type, mobile phase and examples of applications in speciation analysis using RPC, IEC 

and SEC techniques is given in Table 4. 
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Table 4 – An overview of the some of the most common techniques used for mineral 

speciation analysis: reversed phase chromatography (RPC), ion exchange chromatography 

(IEC) and size exclusion chromatography (SEC); this table contains information concerning 

column type, separation type, mobile phase and examples of applications in speciation 

analysis; adapted from Pereira et al., 2012 [66]. 

 Chromatographic technique 

 RPC IEC SEC 

Column type 

- Hydrophobic 

stationary phase 

(e.g. C8 or C18) 

- Stationary phase 

with charged 

groups binding 

ions with opposite 

charge 

- Inert 

Separation 

type 

- Separates 

molecules based 

on hydrophobic 

interactions 

- Separates charged 

molecules based 

on their ionic 

strength 

- Separates 

molecules based 

on their molecular 

weight 

Mobile 

phase 

- Mixture of 

water/organic 

solvent (e.g. 

acetonitrile or 

methanol) 

- Aqueous solution 

of a salt buffer 

- Aqueous or 

organic or 

mixtures thereof 

Applications 

in speciation 

analysis 

- Metal porphyrins 

[67,68] 

- Species separation: 

platinum [69] 

iodine [70,71] 

chromium [72,73]  

mercury [74] 

thallium [75] 

lead [76] 

gold [77] 

selenium [78,79] 

- Charged element-  

-containing 

species: bromine 

[71] 

arsenic [80,81] 

iodine [71] 

antimony [82]  

chromium [83]  

zinc [84] 

selenium [79] 

- Metalloproteins 

[85,86] 

- Metal-containing 

compounds 

[84,87] 
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Reversed phase chromatography is the most widely used mode of LC. In RPC, the 

separation of the molecules happens due to hydrophobic interactions. The stationary 

phase is often silica covalently bound to carbon chains of varying length (e.g. C8 and 

C18). The stationary phase is usually hydrophobic and consequently more hydrophobic 

molecules will have stronger interactions with the stationary phase resulting in longer 

retention times while, the less hydrophobic ones will have weaker interactions resulting 

in shorter retention times [64]. Several speciation studies used RPC and some examples 

are the separations of metal porphyrins [67,68], platinum [69], iodine [70,71], 

chromium [72,73], mercury [74], thallium [75], lead [76], gold [77] and Se [78,79] 

species. 

In IEC, the separation of the molecules is based on interactions between charged 

functional groups in the stationary phase and ions in the sample. The stationary phase 

can be charged positively and interact with negatively charged molecules (anion 

exchange chromatography) or the stationary phase can be charged negatively and 

interact with positively charged molecules (cation exchange chromatography). The 

elution of molecules is controlled by adjusting the pH or ionic strength of the mobile 

phase. This type of chromatography is commonly used to separate proteins and 

peptides. However, it can be used to separate any kind of charged molecule [64]. As 

example, the IEC has been used to separate species of bromine [71], arsenic [80,81], 

iodine [71], antimony [82], chromium [83], Zn [84] and Se [79]. 

In SEC, the molecules are separated according to their sizes relative to the pores in the 

stationary phase. Porous silica beads are usually used as stationary phase in SEC. The 

separation of the molecules happens as the molecules travel through the stationary 

phase of the column. The larger the size of the molecule is, the less possibility they 

have to penetrate the pores of stationary phase beads and will elute earlier, while 

smaller molecules will travel slower and elute later [64]. Contrary to the 

chromatographic methods described above, in SEC the separation of molecules does 

not rely on any interaction between the sample molecule and the stationary phase or 

mobile phase [64]. The SEC has been used, for example, to study metalloproteins 

[85,86] and metal-containing compounds [84,87]. 
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Inductively coupled plasma mass spectrometry is capable of detecting most of the 

elements in the periodic table. The use of ICP-MS has several advantages such as 

multielement detection capabilities, high sensitivity, use of small sample volumes, 

short time analysis and its possible hyphenation with other instruments such as HPLC, 

CE, GC, field-flow fractionation (FFF) or laser ablation (LA) systems [88]. As such, 

ICP-MS cannot be used in speciation analysis as all the molecules introduced will be 

broken down in the argon plasma of the ICP. Consequently, for speciation analysis, 

species of interest need to be separated before reaching the ICP-MS [88]. As can be 

seen in Figure 6, an ICP-MS includes several components such as a sample 

introduction port, plasma torch, radio frequency (RF) power supply, mass analyser and 

mass detector [89]. The detection by ICP-MS comprises several steps, briefly, a sample 

solution is converted in droplets by a nebuliser, droplets are desolvated, the sample 

molecules are broken down by a plasma flame into atoms and subsequently ionised, 

the ions are sorted based on their mass to charge and introduced into the mass detector.  

 

 

 

 

Figure 6 – An inductively coupled plasma mass spectrometry scheme (ICP-MS); the sample 

solution will travel from the sample port (3) to the mass detector (11); a sample solution is 

converted in droplets by a nebuliser (2), droplets are desolvated, the sample molecules are 

broken down by a plasma flame (6) into atoms and subsequently ionised, the ions are sorted 

based on their mass to charge and introduced into the mass detector (11); adapted from Ha et 

al. 2011 [89]. 
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2.8 Multivariate statistical data analysis in chemometrics 

Multivariate statistical data analysis may be used to solve problems involving large 

amounts of data. Large amounts of data are generated in fields such as method 

development, process monitoring control and laboratory routine analysis. In these 

fields, the use of single variables is often inadequate to describe or classify samples. 

Multivariate data analysis allows the simultaneous evaluation of several variables, 

which ensures that interactions, patterns and correlations are taken into consideration  

[90]. Chemometrics include the so-called Design of Experiments (DOE) and the 

analysis of the obtained data [91]. Traditionally, method development is performed 

using the one-factor-at-a-time (OFAT) strategy, which is a labour-intensive and 

material consuming approach when compared to the DOE approach [92]. One of the 

most important advantages of using DOE is the estimation of the effect of each factor 

individually and the study of interaction effects simultaneously. The DOE includes a 

wide range of designs such as Box-Behnken, Latin square, randomized complete block 

design, central composite and factorial design [92].  

In a factorial design, the influence of all experimental variables, factors, and interaction 

effects on the response or responses are investigated. If the combinations of k factors 

are investigated at two levels, a factorial design will consist of 2k experiments. For 

example, if the number of factors is 5, then the number of experiments is 32. The levels 

of the factors are denoted by “-” (minus) for low level and “+” (plus) for high level. 

Care should be taken when defining the low and high levels to ensure sufficient and 

reasonable variation in the response. Furthermore, replication allows for the estimation 

of variance. A factorial design can be either full or fractional design [92]. 

A full factorial designed experiment consists of all the possible combinations of levels 

for all factors. An example of a full factorial design is described in Figure 7. A 23 design 

can be used to study the effect of three factors at two levels by performing eight 

experiments (Figure 7). When the number of factors is equal to 5 or greater, a full 

factorial design requires a large number of experiments. For instance, if the number of 
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factors is 5, 6 or 7 then the number of experiments is 32, 64 and 128, respectively. 

Therefore, choosing a fractional factorial design can be a better choice. 

 

Exp. No. Factors 

 

 X1 X2 X3 

1 − − − 

2 + − − 

3 − + − 

4 + + − 

5 − − + 

6 + − + 

7 − + + 

8 + + + 

 

Figure 7 – An example of a two-level full factorial design scheme (23); this design can be 

used to study the effect of three factors at two levels by performing eight experiments; the 

factors are represented as X1, X2 and X3; factor level codes are shown as “−” or “+”. 

 

A fractional factorial design is a design where the experiments conducted are only a 

subset of the experiments required in the full factorial design. A fractional factorial 

design is a good option for screening purposes. One drawback of this type of design is 

that some of the effects of the factors and interactions are confounded. This makes the 

interpretation of the results more difficult. However, one can always expand a 

fractional factorial design if needed, thereby increasing the resolution of the design 

[92]. Fractional factorial designs are defined according to their resolution (e.g 

resolution III, IV, and V), which states the effects of the factors which are confounded. 

An example of a fractional factorial design is shown in Table 5. A 26-3 design can be 

used to study the effect of six factors at two levels by performing only eight 

experiments. This design has resolution III and the effects X4, X5 and X6 are 

confounded as described in Table 5.  
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Table 5 – An example of a two-level full factorial design (26-3); this design can be used to 

study the effect of six factors at two levels by performing eight experiments; the factors are 

represented as X1, X2, X3, X4, X5 and X6; the effect of X4 is confounded with the effect of X1X2 

and similarly, X5 is confounded with X1X3 and X6 confounded with X2X3, respectively;  factor 

level codes are shown as “−” or “+”. 

Exp. No. Factors 

 X1 X2 X3 X4 = X1X2 X5 = X1X3 X6 = X2X3 

1 − − − + + + 

2 + − − − − + 

3 − + − − + − 

4 + + − + − − 

5 − − + + − − 

6 + − + − + − 

7 − + + − − + 

8 + + + + + + 
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3. Aims of the PhD work 

The main aim of the PhD work was to evaluate the availability of Zn, Se and Mn in 

Atlantic salmon. The PhD work was divided in five tasks as follows: 

1) Development of analytical methods for Zn speciation 

The aim of this task was to develop analytical methods for extraction, quantification 

and identification of different chemical Zn forms in fish diets.  

2) Evaluation of Zn intestinal uptake using the RTgutGC cell line 

The aim of this task was to evaluate Zn intestinal uptake in different ionic media 

composition representing the intestine of freshwater and seawater salmonids using the 

RTgutGC cell line.  

3) Evaluation of solubility of Zn, Se and Mn in Atlantic salmon  

The aim of this task was to develop an in vitro digestion method to evaluate solubility 

of dietary Zn, Se and Mn in Atlantic salmon. 

4) Evaluation of apparent availability of Zn, Se and Mn in Atlantic salmon  

The aim of this task was to study apparent availability of Zn, Se and Mn in Atlantic 

salmon. 

5) Evaluation of correlation between solubility and apparent availability of Zn, 

Se and Mn  

The aim of this task was to evaluate if solubility and apparent availability of Zn, Se and 

Mn correlates. Therefore, solubility data obtained in task 3 were compared to apparent 

availability data in task 4. 
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4. General discussion  

4.1 Challenges in development of analytical methods for zinc 

speciation  

A method using SEC-ICP-MS was developed for Zn speciation analysis and several 

challenges were encountered during method development; i) low solubility of Zn-

containing compounds under mild extraction conditions; ii) possible loss of Zn species 

or species transformation during sample preparation and the chromatographic run; iii) 

lack of standards and certified reference materials making method validation, 

identification and quantification of Zn-containing compounds difficult (Paper I). 

These challenges are further discussed below. 

i) Low solubility of Zn-containing compounds under mild extraction conditions. 

In speciation analysis, a common approach is to solubilise the sample before analysis 

[61]. Several mild extraction conditions were tested to extract Zn, but the Zn recovery 

was low (~10%) (Paper I). Mild extraction conditions were applied to keep the 

integrity of the Zn chemical species intact, which may have compromised the 

extraction efficiency (Paper I). Furthermore, Zn ions (Zn+2) can easily bind to other 

compounds which are less soluble in water (i.e. phytic acid, sulphides). The lower 

solubility could be related to Zn binding to other compounds present in the fish feed 

and thereby forming water insoluble Zn species (Paper I). Indeed, the feed analysed 

was supplemented with 66.9 mg of Zn kg -1 as Zn oxide and the average Zn 

concentration was 110 ± 8 mg kg−1 of feed (n= 10). As Zn oxide was ~61% of the Zn 

concentration, it was expected to have higher Zn recovery than was actually found. 

However, Zn oxide has very low solubility in water but dissolves in most acids and 

form soluble Zn compounds in alkalis [93]. The narrow pH range tested (i.e. pH 6.5 

and 8.5) may partly explain why the soluble fraction did not contain more than 10% of 

the total Zn (Paper I). A screening of the effect of six factors (extraction solution, 

molar concentration of the extraction solution, pH, addition of 4% sodium dodecyl 

sulphate solution, temperature, and extraction time) on Zn extraction was performed 
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(Paper I). However, several other extraction conditions could have been selected (i.e. 

the use of other buffers, temperature, pH) possibly leading to higher Zn extraction 

efficiency but then potentially at the cost of species integrity. In addition, there are a 

number of speciation protocols, which include the use of microwave and ultrasound-

assisted extraction for enhancing the extraction efficiency [94,95]. The effect of the 

ultrasound-assisted extraction was examined in preliminary tests. However, the results 

obtained did not show any improvement of Zn recovery when using ultrasound-assisted 

extraction. Furthermore, microwave and ultrasound-assisted extraction could affect the 

species integrity [94,95]. Consequently, in the present study emphasis was put on the 

use of mild extraction conditions to keep the chemical species intact, and microwave 

and ultrasound-assisted extraction were not included (Paper I).  

ii) Possible loss of Zn species or species transformation during sample preparation 

and chromatographic run. To obtain reliable speciation data, it is important to 

preserve species integrity during sample preparation and chromatographic run. Zinc 

standards could be useful tools to evaluate the possible loss of Zn species or species 

transformation during the sample preparation and/or the chromatographic run, however 

such standards are not available. Chemical synthesis and custom-made standards could 

overcome this, but this process is costly and it would require knowledge on the 

compounds to be synthesised. 

Techniques like RPC, IEC and SEC are some of the most commonly used 

chromatographic methods for speciation studies [65]. In this work, IEC and RPC were 

disregarded for the analysis of Zn species as the chromatograms obtained by anion 

exchange and RPC showed poor resolution and severe peak broadening. The poor 

resolution and severe peak broadening can be indicators of loss of Zn species integrity 

during the chromatographic run. When applying SEC, the chromatograms obtained did 

not show poor resolution and severe peak broadening, which indicate higher stability 

of the Zn species. Therefore, SEC was chosen as the chromatographic method for Zn 

speciation (Paper I). 
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iii) Lack of standards and certified reference materials making method validation, 

and identification and quantification of Zn-containing compounds difficult. 

According to international guidelines for the validation of analytical methods, the 

confirmation of the identity of an analyte in a sample is achieved, for instance, by 

comparison of retention time of the analyte to retention time of a reference standard 

[96]. The SEC-ICP-MS method provided qualitative and semi-quantitative information 

regarding Zn species present in the soluble fractions of the feed (Paper I). A full 

validation of the SEC-ICP-MS method was not possible due to the lack of standards 

and certified reference materials. Four Zn-containing compounds with different 

molecular weights were found in the soluble fraction of the fish feed studied (Paper 

I). However, due to a lack of standards the identification and quantification of the 

unknown Zn-containing compounds were challenging. In SEC, the separation of 

molecules is based on the molecular sizes. Therefore, each Zn-containing peak might 

contain several compounds with similar molecular weight [97], which also contributes 

to the challenge of identifying  Zn compounds. A quick method was used to investigate 

the nature of the Zn species in the soluble fraction. The different ingredients sources 

and the molecular weight range of the Zn peaks suggest that the observed Zn peaks 

could be metalloproteins. One of the most studied metalloproteins are metallothioneins 

(MTs). As MTs are thermally stable proteins, a heating step is a commonly used 

procedure to confirm MTs presence. The soluble fraction of the fish feed was heated 

and data obtained suggested that the observed Zn-containing compounds could be 

MTs. 

4.2 Intestinal epithelium uptake: example of zinc 

There is limited knowledge about the intestinal uptake of Zn in fish [25]. However, it 

is acknowledged that the uptake of Zn across the intestinal epithelium includes 

different stages [25]. First, Zn species released from a fish feed reach the absorption 

sites of the intestinal epithelium. Secondly, Zn is absorbed across the epithelial cells 

by means of diffusion (paracellular uptake) or by means of transporters (intracellular 

uptake). Transporters from the Zrt- and Irt-like protein (ZIP) family and amino acid 
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transporters (AAT) are examples of active transporters acting at the brush border 

membrane of the intestine [25]. A hypothetical representation of Zn intestinal uptake 

in Atlantic salmon is shown in Figure 8. This figure summarizes the uptake of Zn across 

the intestinal epithelium including the different possible stages and information 

obtained in this PhD work (Paper I and II). The uptake of Zn across the intestinal 

epithelium will be influenced by inhibitors and enhancers at the point of contact with 

the absorbing membranes. 

In this PhD work, Zn-containing compounds were found in the soluble fraction of an 

Atlantic salmon feed and the data obtained suggested that the observed Zn-containing 

compounds were high, medium and low molecular weight compounds (Paper I). The 

molecular weight of the compounds will influence whether compounds will be 

absorbed or not and also their route of uptake [98]. One study regarding Zn uptake was 

performed in rainbow trout using an in vivo perfusion technique [99]. It was proposed 

that diffusive pathway was blocked as a consequence of increased secretion of 

epithelial mucus [99]. Results obtained using an in vivo perfusion technique indicated 

that epithelial mucus can hinder Zn intestinal uptake. In this PhD work, it was 

demonstrated that amino acid transporters are involved in Zn intestinal uptake (Paper 

II). The RTgutGC cells were exposed to amino acids along with the amino acid 

transporter blocker (BCH). A significant reduction in Zn intestinal uptake was seen in 

cells treated with BCH when compared to cells untreated with BCH (Paper II). Also, 

Zn intestinal uptake was positively influenced by the presence of methionine (Paper 

II).  
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Figure 8 – A hypothetical representation of intestinal zinc (Zn) uptake in Atlantic salmon; 1) 

Zn-containing compounds reach the intestine, chemical species such as Zn+2, Zn chelated with 

an amino acid (AA) and Zn bonded with proteins or peptides; 2) paracellular uptake; 3) 

intracellular uptake; Transporters from the Zrt- and Irt-like protein (ZIP) family and amino 

acid transporters (AAT) are examples of active transporters acting at the brush border 

membrane of the intestine; adapted from Bury et al. 2003 [25]. 

1 

2 

3 

Inhibitors: Large size of mineral form, epithelial mucus 

Enhancer: Methionine 
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4.3 Mineral availability in Atlantic salmon  

The apparent availability of inorganic and organic sources of Zn, Se and Mn in Atlantic 

salmon diets was studied (Paper III). This was done by preparing 16 experimental 

diets and these diets were fed to Atlantic salmon for 11 days. Table 6 summarizes the 

average concentration of Zn, Se and Mn in the basal mix and in the diets. In the same 

table, solubility, apparent availability, available level in diets (i.e. [(average of Zn or 

Se or Mn in diet)*(average of Zn or Se or Mn apparent availability)]/100), requirement 

in Atlantic salmon, and the upper limit in EU for Zn, Se and Mn.  

Table 6 – Concentrations of Zn, Se and Mn in the basal ingredients mix (mg kg -1, n=7) and 

in the experimental diets (mg kg -1, n=16); apparent availability (%, n=16), available level in 

diets (mg kg -1), requirement in Atlantic salmon and the upper limit in EU for Zn, Se and Mn 

(mg kg -1). The values for basal mix, diets, solubility and apparent availability are presented 

as average ± standard deviation.  

 Zn Se Mn 

Basal mix, mg kg -1 (n=7) 27.3 ± 0.1 0.20 ± 0.01 15.6 ± 0.8 

Diets, mg kg -1 (n=16) 142 ± 6 0.58 ± 0.03 25 ± 4 

Solubility, % (n=2) 3 ± 3 16 ± 11 10 ± 7 

App. availability, % (n=16) 33 ± 7 67 ± 5 24 ± 12 

Available level in diet (a), mg kg -1 47 0.39 6 

Requirement, mg kg -1 37 (b) n.d. 10 (b) 

Upper limit in EU, mg kg -1 180 (c) 0.5 (d) 100 (e) 

n.d. – not defined 

(a) Available level in diets = [(average of Zn or Se or Mn in diet)*(average of Zn or Se or 

Mn apparent availability)]/100 

(b) NRC (2011) [36] 

(c) Reg. (EC) No. 2003/1831 and amendments [52,53] 

(d) The supplemented organic Se must not exceed 0.2 mg kg -1 in complete feed; Reg. (EC) 

No. 2003/1831 and amendments [52,54-57] 

(e) Reg. (EC) No. 2003/1831 and amendments [52,57] 
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As reviewed by Prabhu and co-workers, the mineral requirement of fish can be affected 

by one or a combination of the following factors: biological factors (e.g. species, life 

stage, sex, trophic level, feeding habits and the nutritional status of the fish), dietary 

factors (e.g. diet composition, availability, nutrient and anti-nutrient interactions) and 

environmental factors (e.g. salinity, temperature and mineral concentration in water) 

[11]. The findings obtained in the PhD work regarding Zn, Se and Mn availability are 

compared to the mineral requirement in Atlantic salmon. This comparison was done 

separately for Zn, Se and Mn. 

Zinc. Fish meal is known to have higher level of Zn (181 mg kg -1) when compared 

with plant-based ingredients (46 mg kg -1) (Table 2). The Zn concentration in the basal 

mix (27.3 ± 0.1 mg kg -1) was lower than the Zn requirement (37 mg kg -1) (Table 6) 

[36] and not all Zn in the basal mix is expected to be available. Consequently, it is 

recommended to supplement Zn (using inorganic or organic sources) to cover the 

requirement of the fish ensuring good performance in Atlantic salmon [100]. In the 

feeding trial (Paper III), average of Zn apparent availability was 33% and the available 

Zn level was 47 mg kg -1 (Table 6). The available Zn concentration is higher than the 

concentration established as Zn requirement in Atlantic salmon (37 mg kg -1) (Table 6) 

[36], meaning that the available Zn concentration was enough to cover the  requirement 

of the fish. The low values obtained for apparent availability of Zn can be related to the 

high dietary level of Zn (Paper III). In Norway, the average Zn concentration in feeds 

in 2017 was on average 170 mg kg -1 (n=40) [10]. In general, the higher the dietary 

level in comparison to the requirement, the lower the apparent availability will be. This 

was reported by Prabhu and co-workers who found that in rainbow trout, the apparently 

absorbed proportion of Zn decreased with increasing Zn dietary level above the 

requirement [101]. The Zn concentration in the basal mix was 27.3 ± 0.1 mg kg -1 and 

the Zn concentration in the diets was 142 ± 6 mg kg -1 (Table 6). Thus, it remains a 

question of whether Zn supplementation at such high level is needed. The EFSA 

proposed to decrease the upper limit to 150 mg Zn kg -1 complete feed for salmonids 

[102]. According to EFSA, the decrease of the upper limit to 150 mg Zn kg -1 complete 

feed for salmonids would ensure good health, welfare and productivity of the target 
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species, and would result in an overall reduction of Zn emissions from animal 

production of about 20% [102]. There is an environmental concern in terms of Zn in 

water and sediments around cages for farming fish [102]. Indeed, in the feeding trial 

(Paper III), average of Zn apparent availability was 33% (Table 6) meaning that 

around 67% of the Zn added in diets will be not be absorbed ending in the fish faecal 

matter. Therefore, it is important to expand the knowledge on Zn availability and how 

Zn availability can be increased. Higher Zn availability would promote good fish health 

and simultaneously decrease the environmental load via faeces.  

Selenium. Fish meal is known to have higher level (1.9 mg kg -1) compared with Se 

level in plant-based ingredients (0.1 mg kg -1) (Table 2). The requirement for Se in 

Atlantic salmon is not known. However, Se requirement in rainbow trout was estimated 

as 0.15 mg kg -1 [36]. The concentration of Se in the basal mix was 0.20 ± 0.01 mg kg 

-1 (Table 6) thus, enough to cover Se requirement assuming that rainbow trout and 

Atlantic salmon have a similar requirement of Se. However, it is important to consider 

partial dietary availability thus, organic or inorganic sources of Se are often 

supplemented to cover Se requirement. In the feeding trial (Paper III), average of Se 

apparent availability was 67% and available Se was 0.39 mg kg -1 (Table 6). There is a 

small difference between the concentration of Se in basal mix (0.2 mg kg -1) and the Se 

upper limit (0.5 mg kg -1) which leaves a narrow window for supplementation (Table 

6). In Norway, the Se concentration in feeds in 2017 was on average 0.8 mg kg -1 (n=40) 

[10] and this concentration is higher than the current upper limit (0.5 mg kg -1). 

Moreover, the addition of organic Se must not exceed 0.2 mg kg -1 in complete feed 

[52,54-57]. Selenium speciation methods as the ones reported by Sele and co-workers 

[79] are important to differentiate between several forms of Se in feed (i.e. selenite, 

selenate, Se-methyl-seleno-cysteine, selenomethionine (SeMet) and selenocystine 

(SeCys)) but there is no method available to differentiate between supplemented Se 

forms and Se forms naturally present in feed ingredients and feed. 

Manganese. Fish meal is known to contain a lower level of Mn (12 mg kg -1) compared 

with plant-based ingredients (28 mg kg -1) (Table 2). The Mn concentration in the basal 

mix (15.6 ± 0.8 mg kg -1) was higher than the Mn requirement (10 mg kg -1) of Atlantic 
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salmon (Table 6). However, Mn from basal mix might not be all available, and as a 

precautionary measure Mn is supplemented to Atlantic salmon feeds (inorganic or 

organic sources). In the feeding trial (Paper III), average Mn apparent availability was 

24% and available Mn was 6 mg kg -1 (Table 6). The available Mn concentration was 

slightly lower (6 mg kg -1) than the level of Mn requirement in Atlantic salmon (10 mg 

kg -1), thus, not enough to cover Mn requirement. However, it is important to consider 

that the Mn apparent availability varied greatly (Paper III). Manganese is secreted via 

bile into the gut. Thus, faecal Mn includes a portion of endogenous Mn in addition to 

unabsorbed Mn [103]. The high variability of Mn apparent availability can be related 

with having more Mn in the faeces (i.e. endogenous and unabsorbed Mn) than in the 

diet (Paper III). In Norway, the Mn concentration in feeds in 2017 was on average 47 

mg kg -1 (n=40) [10] and this concentration is approximately half of the current upper 

limit (100 mg kg -1) (Table 6). In rainbow trout, the apparent availability Mn decreased 

with increasing Mn dietary level above the requirement [101]. In this feeding trial 

(Paper III), Mn concentration in diets was 25 ± 4 mg kg -1 (n=16) and this is higher 

than the level of Mn requirement in Atlantic salmon (10 mg kg -1). Thus, the lower 

values obtained for apparent availability of Mn can also be related to the high dietary 

level of Mn (Paper III). 

4.3.1 Mineral availability is influenced by the chemical form 

There is little known about mineral requirements for fish when compared to what is 

known for land animals [11]. Mineral supplementation is recommended in salmonid 

feeds to maintain whole body and tissue levels of important trace minerals, such as Zn, 

Mn and Se [26]. Whether supplementation should be performed using inorganic or 

organic mineral sources is unclear. In this PhD work, the apparent availability of Zn, 

Se and Mn was evaluated in Atlantic salmon (Paper III). The results from this study 

suggested that the apparent availability of Se and Mn depends on the chemical form of 

the minerals (Paper III). Selenomethionine was more available than selenite, while 

manganese sulphate was more available than manganese chelate of glycine (Paper 

III). The apparent availability of Zn was not affected by the chemical form of the 

additive source (Paper II). There are studies demonstrating the benefits of organic 
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minerals over inorganic forms in salmonids diets [104-109]. Bell and Cowey studied 

the digestibility and bioavailability of dietary Se from fish meal, selenite, SeMet and 

SeCys in Atlantic salmon. Selenomethionine  was found to be the most available Se 

source followed by selenite [104]. Apines-Amar and co-workers compared the 

availability of inorganic sources of Zn, Mn and Cu (sulphates) with the organic source 

of Zn, Mn and Cu (amino acid chelates) in experimental diets [107], and in 

experimental diets containing tricalcium phosphate and phytate [106]. Both studies 

were performed in rainbow trout, and the organic sources of Zn, Cu and Mn (amino 

acid chelates) were more available than the Zn, Cu and Mn inorganic sources 

(sulphates) [106,107]. Rider and co-workers studied the bioavailability of inorganic 

and organic Se and Zn sources in rainbow trout fed a fish meal based diet [108]. Three 

diets were tested; control diet (no added Se or Zn); one diet supplemented with 

inorganic sources of Se and Zn (sodium selenite and Zn sulphate); and one diet 

supplemented with organic sources of Se and Zn (Se yeast and Zn proteinate). The 

bioavailability of Se was influenced by the chemical form, the diet supplemented with 

Se yeast had higher bioavailability than the diet supplemented with selenite [108]. 

However, the influence of the Zn chemical form on Zn bioavailability was not clear 

[108]. Fontagne-Dicharry and co-workers studied the influence of chemical forms and 

levels of dietary Se on antioxidant status and oxidative stress-related parameters in 

rainbow trout [109]. The results obtained demonstrated that the Se availability was 

higher in a diet supplemented with Se yeast than in a diet supplemented with selenite 

or a non-supplemented diet [109]. In salmonids, organic Se supplementation has higher 

availability when compared with inorganic Se supplementation as shown in this work 

(Paper III) and elsewhere [104,108,109]. However, the effect of the chemical form on 

mineral availability is not so clear for other minerals such as Zn and Mn [11]. Data 

showed that the Mn chemical form influenced Mn availability, but did not influenced 

Zn availability (Paper III). Mineral uptake is influenced by interactions with other 

dietary components leading to the formation of insoluble complexes or of large 

compounds which cannot be absorbed [110]. Inorganic mineral forms (e.g. sulphates 

and chlorides) are very weakly bound and for that reason chemical bounds can be easily 

destroyed, leaving the mineral ions free to interact [110,111]. Theoretically, organic 
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mineral sources are chemically more stable, which prevents the mineral sources from 

interacting [112,110]. In addition, the influence of gastrointestinal environment on 

mineral chelation needs to be considered. The evaluation of metal chelation at different 

pH will give more information. Brown and Zeringue performed an evaluation of 

solubility and structural integrity of chelated minerals at pH 2 and 5 [113]. In this work, 

the effect of gastrointestinal environment on Zn speciation was also considered (Paper 

II). Two media representing the intestine environment of freshwater or seawater 

salmonids were tested. The Zn ion uptake was not affected by the ionic concentration 

in the media. However, Zn uptake was influenced by the ionic concentration in the 

media when methionine was present (Paper II). In addition, the influence of 

gastrointestinal environment tested in vitro affected the solubility of Zn and Mn (Paper 

IV). There was a clear drop in solubility of these two minerals when the acidic 

hydrolysis ended and the alkaline hydrolysis started. The amount of soluble Zn was 

low in the acidic hydrolysis (3-8%) and in the alkaline hydrolysis (0.4-2%). For Mn, 

during the acidic hydrolysis the Mn solubility was higher in the diet supplemented with 

an inorganic mineral source (6-25%) than the diet supplemented with an organic 

mineral source (4-17%) but the amount of soluble Mn in the alkaline hydrolysis was 

similar for both diets (4-8%) (Paper IV). Overall, these results suggested that the 

gastrointestinal environment influenced Zn and Mn chemical forms. 

4.3.2 Mineral availability is influenced by interactions 

As reviewed by Hilton (1989) a range of dietary interactions can influence mineral 

availability [37]. The mineral-mineral interactions and mineral-other dietary 

component interactions will be discussed below as these are interactions relevant for 

this PhD work.  

i) Mineral-mineral interactions. Previous studies in Atlantic salmon showed that Zn 

requirement was higher in the seawater phase than in the freshwater phase [26]. This 

led to investigate whether Zn availability is influenced by the variation in the 

gastrointestinal ionic concentration after shifting from freshwater to seawater (Paper 

II). The data obtained in Paper II indicated an interaction effect between Zn intestinal 
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uptake and the gastrointestinal ionic concentration media ionic composition but only 

when methionine was present in the media. The Zn uptake across the epithelial cells 

exposed to seawater media ion composition was significantly lower compared to the 

Zn uptake across the epithelial cells exposed to freshwater media ion composition, but 

only at Zn concentrations of 12 and 25 μM. The study gave some suggestions regarding 

the differences seen in Zn requirement of Atlantic salmon in the freshwater and 

seawater phase. However, in order to have a broader understanding, the influence of 

factors such as physiological conditions and diet composition are important to be 

considered and should be studied. Mineral-mineral interactions between Zn, Se and Mn 

were found to influence Zn, Se and Mn apparent availability (Paper III). The data 

obtained in Paper III suggested that these interactions had a negative effect which 

lowered the apparent availability. For instance, the interaction between Zn additive 

source and Se additive source, and the interaction between Zn, Se and Mn additive 

sources, decreased the apparent availability of Zn (Figure 9) (Paper III). In addition, 

the interaction between Zn and Mn additive sources decreased the apparent availability 

of Se (Paper III). This encourages further research to understand the interaction 

mechanisms. Interactions involving Zn, Se and Mn have been studied in rainbow trout 

[114-116] and in Atlantic salmon [105,117,118]. Knox and co-workers studied the 

effects of dietary Cu and Cu:Zn ratio [114] and the effects of dietary Zn intake on Cu 

metabolism in rainbow trout [115]. Results from the first study suggested that the 

dietary Cu:Zn ratio caused small changes in the plasma and hepatic levels of Mg, Na, 

Ca and K, but interaction effects between Zn and Cu were not seen [114]. Moreover, 

results from the second study showed that increased dietary Zn reduced the activity of 

Mn superoxide dismutase and increased the activity of Cu-Zn superoxide dismutase 

[115]. Ojo and co-workers examined in vitro interactions between Cu and Zn in 

rainbow trout [116]. The study was performed by increasing one at the time the 

concentration of Cu or Zn. A higher concentration of Zn reduced the availability of Cu 

and a higher concentration of Cu reduced the availability of Cu [116]. The interactions 

between Zn and Cu are antagonistic, as Zn and Cu interfere on each other absorption 

by upregulating synthesis of MTs within enterocytes [110].  

 



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Pareto charts showing the t-value of the effect using separately apparent availability 

(%) of zinc (Zn) (1), selenium (Se) (2) and manganese (Mn) (3); the factors are Zn additive 

source (A), Se additive source (B), Mn additive source (C) and phytic acid level (D); the 

horizontal axis shows the factors and interactions ordered according to their magnitude; the 

vertical axis shows the t-value of the absolute effect; in grey, the effects with positive t-value 

and, in white, the effects with negative t-value; the reference line on the chart is the t-value 

limit (α = 0.05; d.f. = 30); any effect that is over this reference line is statistically significant 

(p < .05); adapted from Paper III. 
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One study in Atlantic salmon reported a synergistic interaction between Zn and Fe 

[105]. Andersen and co-workers studied the bioavailability and interactions with other 

micronutrients of three dietary Fe sources in Atlantic salmon [105]. The study found a 

positive correlation between whole body Fe concentrations and whole body Zn 

concentrations [105]. One study demonstrated an antagonist interaction effect between 

Se and Cu in Atlantic salmon [118]. Berntssen and co-workers found a reduction in 

tissue Se levels in the high dietary Cu group [118]. In rainbow trout, the Se and Cu 

interaction lead to the formation of a Se-Cu complex which reduced the availability of 

Se and Cu [119]. In this PhD work, the effect of minerals, such as Cu and Fe, on the 

availability of Zn, Se and Mn were not evaluated. However, it is likely that Cu and Fe 

can be involved in interactions involving Zn, Se and Mn, influencing mineral 

availability in Atlantic salmon. 

ii) Mineral-other dietary component interactions. Several interactions between 

minerals and other dietary components have been pointed out as important in animal 

nutrition [110,120]. For the past decades, with the introduction of plant-based 

ingredients, the main focus has been to study the effect of plant-based ingredients and 

related compounds on fish performance. Consequently, several studies were performed 

in salmonids [121-139]. In this PhD work, experimental diets with low and high levels 

of phytic acid were fed to Atlantic salmon (Paper III). The phytic acid level as a factor 

did not affect apparent availability of Zn, Se and Mn (Figure 9) but the difference in 

phytic acid concentrations between the low (11.3 ± 0.1 μmol g−1, n = 2) and high 

(12.0 ± 0.1 μmol g−1, n = 2) phytic acid level diets was not large (Paper III). 

Conversely, several interactions between the phytic acid level and Zn, Se and Mn 

affected the apparent availability of Zn, Se and Mn (Paper III). For instance, the 

interaction between Se additive source, Mn additive source and phytic acid level 

(B × C × D) affected the apparent availability of Zn and Mn, and the interaction 

between Zn additive source and phytic acid level (A × D) affected the apparent 

availability of Se (Figure 9). Spinelli and co-workers evaluated the effect of phytic acid 

on mineral availability in rainbow trout [140]. They did not observe effects of the 

dietary phytic acid level (0.5%) on Zn availability [140]. These results support the 



48 

findings in this study. Conversely, Richardson and co-workers reported that the 

concentration of Zn in plasma of Chinook salmon was directly related to the 

concentration of dietary Zn and inversely related to the dietary level of phytic acid, 

suggesting an interaction effect between Zn and phytic acid in juvenile Chinook salmon 

[141]. The studies performed by Spinelli and co-workers, and Richardson and co-

workers used purified diets supplemented with sodium phytate, thus the difference in 

results between the two studies might be related to the use of different salmonids 

species, fish age or interactions with other dietary components. The effect of dietary 

components on mineral availability was shown by Prabhu and co-workers [101]. They 

studied the availability of a range of minerals including Mn, Zn and Se in rainbow trout 

[101]. Two basal diets, a fish meal diet (62.8 mg of Zn kg -1 feed and 9.4 mg of Mn kg 

-1 feed) and a plant-based diet (42.9 mg of Zn kg -1 feed and 88.6 mg of Mn kg -1 feed), 

were fed to rainbow trout. The results demonstrated that the ingredients used to 

formulate the diet influenced the apparent availability of Zn and Mn, but did not 

influenced Se apparent availability [101]. The Zn apparent availability was higher in 

fish fed the fish meal diet (56.1 ± 7.4%) when compared with fish fed plant-based  diet 

(40.2 ± 3%) [101]. Similar results were seen for Mn. The Mn apparent availability was 

higher in fish fed the fish meal diet (31 ± 4.8%) than in fish fed plant-based diet (7.3 ± 

0.4%) [101]. 

4.4 Correlation between solubility and apparent availability of 

zinc, selenium and manganese 

Mineral availability is usually studied in vivo but having a fast and reliable in vitro 

method for the estimation of dietary mineral availability would greatly facilitate 

screening of new feed ingredients and feeds. The correlation between in vitro solubility 

and in vivo apparent availability of Zn, Se and Mn was evaluated (Paper IV). In 

general, the values obtained for in vitro solubility were lower than the values obtained 

for in vivo apparent availability of Zn, Se and Mn (Paper IV). The results shown a 

strong significant positive correlation between solubility and apparent availability of 

Mn and a weak non-significant positive correlation between solubility and apparent 
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availability of Zn and Se (Paper IV). Despite the weak correlation, the effect of the 

chemical form of the minerals were similar for Zn, Se and Mn solubility and Zn, Se 

and Mn apparent availability. The chemical form (Zn sulphate or Zn chelate of glycine) 

did not affect the Zn solubility (Paper IV) and the Zn apparent availability (Paper III). 

For Se, the organic form (SeMet) was more soluble (Paper IV) and also had higher 

availability than the inorganic form (selenite) (Paper III). Moreover, the Mn inorganic 

form (Mn sulphate) was more soluble (Paper IV) and more available (Paper III) than 

the Mn organic form (Mn chelate of glycine). This shows that in vitro evaluation of the 

mineral solubility gives promising insights on mineral availability. Thus, in vitro 

methods can be considered as a screening method, replacing some of the in vivo feeding 

trials. However, more work needs to be done to improve the in vitro digestion method 

to better estimate mineral availability. The low solubility of Zn, Se and Mn can be 

related with several factors. Mineral solubility is influenced by chemical structure, 

oxidation state of the mineral, mineral concentration, and changes in pH and 

temperature [111,142,143]. In addition, minerals can bind to other compounds forming 

complexes which are less soluble in water [144]. The influence of changes in pH and 

temperature on the solubility of Zn was evaluated (Paper I and IV). The solubility of 

Zn was low (3.5-10%) at a temperature of 4 or 20 °C and pH values of 6.5 or 8.5 (Paper 

I). Also, low Zn solubility (0.4-8%) was obtained at a temperature of 15 ºC, and pH 

values of 2.1 or 8.0 (Paper IV). The influence of changes in pH on the solubility of 

Mn and Se were evaluated (Paper IV). The change in pH did not affect Se solubility. 

However, low Mn solubility (4-25%) was obtained at a temperature of 15 ºC, and pH 

values of 2.1 or 8.0 (Paper IV). These results show that mineral solubility was 

influenced by changes in pH and temperature. An Atlantic salmon feed contains both 

marine and plant-based ingredients, and it is a lipid rich sample (~20-35% fat). The 

different ingredients can have an effect on the mineral solubility. A recent review 

described the ability of divalent minerals to bind free fatty acids and these chemical 

reactions can limit mineral solubility due to formation of poorly soluble soaps and salts 

[145]. Furthermore, divalent ions can easily bind to other compounds which are less 

soluble in water (i.e. phytic acid, sulphides) [111,146] and this might be also a reason 

for the lower solubility of Zn and Mn (Paper I and IV).  



50 

5. Conclusions 

1) Development of analytical methods for Zn speciation 

The present work developed an analytical method to study Zn speciation. The fish feed 

contained several Zn species originating from different sources as the feed contains 

both marine-based ingredients, plant-based ingredients, and supplemented forms. The 

developed SEC-ICP-MS method provided qualitative and semi-quantitative 

information on Zn chemical species present in the soluble fractions of feed. Four Zn-

containing peaks were found, each with different molecular weights. In this work, the 

SEC-ICP-MS method was applied to the study of Zn species in fish feed but could 

potentially be applied to other types of feed and feed ingredients. Overall, the 

developed analytical methods provided complementary information for understanding 

the effect of speciation on mineral availability. 

2) Evaluation of Zn intestinal uptake using RTgutGC cell line 

The in vitro uptake of Zn was studied using RTgutGC cell line under media 

compositions mimicking the intestinal ionic concentration of freshwater or seawater 

acclimatised salmonids. The Zn intestinal uptake was not affected by the ionic 

concentration in the media. However, the Zn intestinal uptake was influenced by the 

ionic concentration in the media when methionine was present. The results obtained in 

this task demonstrated that RTgutGC cell line can be used to identify mechanisms 

involved in Zn intestinal uptake such as the effect of chemical forms and the effect of 

interactions occurring over the intestinal tract of salmonids. 

3) Evaluation of solubility of Zn, Se and Mn in Atlantic salmon  

The present work developed an in vitro digestion method to evaluate solubility of Zn, 

Se and Mn in Atlantic salmon diets. Data obtained demonstrated that solubility of Zn, 

Se and Mn was influenced both by the mineral chemical form supplemented to the diet 

and by the gastrointestinal environment. Regarding the mineral form supplemented to 

the diets, SeMet was more soluble than selenite, and Mn sulphate was more soluble 
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than Mn chelate of glycine. Conversely, the Zn additive source did not influence the 

solubility of Zn. The gastrointestinal environment did not affect the solubility of Se but 

affected the solubility of Zn and Mn. For both Zn and Mn there was a clear drop in 

solubility when shifting from acidic to alkaline hydrolysis, suggesting that the 

solubility of the Zn and Mn compounds was affected by the increased pH. 

4) Evaluation of apparent availability of Zn, Se and Mn in Atlantic salmon  

This work compared apparent availability of Zn, Se and Mn from inorganic metal salts 

and their organic forms in Atlantic salmon. Results demonstrated that in practical diets 

with low inclusion of fish meal, the availability of the three minerals depended on their 

chemical form. Selenomethionine was more available than selenite, and Mn sulphate 

was more available than Mn chelate of glycine. Conversely, the Zn additive source did 

not affect Zn availability. A number of mineral-mineral interactions were found to have 

a significant negative effect on the apparent availability of Zn, Se and Mn. In addition, 

phytic acid was involved in several interactions. The results regarding the interactions 

between the different factors were obtained using a full factorial design. This type of 

experimental design should be considered more often when studying mineral 

availability and mineral interactions in fish. Finding mineral chemical forms with 

higher availability supports health and robustness of Atlantic salmon and 

simultaneously decreases the environmental load via faeces. 

5) Correlation between solubility and apparent availability of Zn, Se and Mn  

The correlation between solubility and apparent availability of Zn, Se and Mn was 

evaluated. The results obtained suggested that there is a significant positive correlation 

between Mn solubility and Mn apparent availability and non-significant positive 

correlations between Zn solubility and Zn apparent availability Zn and Se solubility 

and Se apparent availability. Even though significant correlations were not found for 

Zn and Se, the effect of the chemical form was similar for Zn, Se and Mn solubility 

and Zn, Se and Mn apparent availability. This demonstrated that in vitro evaluation of 

the mineral solubility gives promising insights on mineral availability and can 

potentially be used as screening method, replacing some of the in vivo feeding trials. 
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6. Future perspectives 

6.1 Development of analytical methods for zinc speciation  

One of the tasks of the PhD work was the development of analytical methods to study 

Zn speciation. However, one of the challenges encountered during the method 

development for Zn speciation analysis was the identification of the Zn-containing 

peaks. Considering that Zn species will influence Zn uptake, information about the 

chemical structure of the Zn-containing species is important. Since the ICP-MS 

detector only provides information about the atomic mass of elements, alternative 

techniques are needed to get complementary molecular information. In order to pursue 

this approach a parallel coupling of HPLC (SEC) to ICP-MS and ESI-MS was set up 

(Figure 10).  

 

Figure 10 – Flowchart showing the set-up for characterization of unknown Zn-containing 

compounds by size exclusion chromatography (SEC) simultaneously coupled to inductively 

coupled plasma mass spectrometry (ICP-MS) and electrospray ionization mass spectrometer 

(ESI-MS); the sample is pumped into the SEC column by the high-performance liquid 

chromatography (HPLC) pump; the compounds present in the sample are separated by the 

SEC column; the flow splitter will split the flow of the sample between both detectors, ICP-

MS and ESI-MS. 
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The preliminary results obtained from the analysis of an extract of an Atlantic salmon 

feed suggested that this approach could be used as a promising set-up for the 

characterisation of unknown Zn species (Figure 11), providing simultaneous elemental 

and molecular information of Zn species. However, these are only preliminary results 

and further work needs to be done. For instance, the method needs further optimization 

and mass spectrometric techniques with high mass resolution could be used in the set-

up. High mass resolution tools could be employed to achieve accurate mass information 

of the unknown Zn species (e.g. quadrupole time-of-flight mass spectrometry or 

orbitrap mass spectrometer). In addition to the identification of the organic-bound Zn 

species, it is also relevant to develop other Zn speciation methods to determine ionic 

Zn species in the soluble fraction of a fish feed. For instance, determination of free 

ionic Zn, as it is known that ionic Zn has a physiological relevance in Zn absorption. 

 

Figure 11 – Chromatograms of Zn species in the soluble fraction of an Atlantic salmon feed 

analysed by (a) SEC-ICP-MS and (b) SEC-ESI-MS; a molecular weight calibration was 

performed using thyroglobulin (660 kDa, monitoring 127I), Zn/Cu superoxide dismutase (32 

kDa, monitoring 66Zn), myoglobin (17 kDa, monitoring 57Fe), vitamin B12 (1.36 kDa, 

monitoring 59Co); Peak 1 (P1): ~ 600 kDa, Rt 8.2 min; Peak 2+3 (P2+3): from 32 to 17 kDa, 

Rt 14.2 + 15.3 min; Peak 4 (P4): from 17 to 1.36 kDa, Rt 16.3 min; Peak 5 (P5): > 1.36 kDa, 

Rt 23.2 min. 
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6.2 Mineral availability  

This work studied Zn, Se and Mn availability in plant-based diets and the data 

suggested that in practical diets with low inclusion of fish meal for Atlantic salmon, 

the availability of Zn, Se and Mn depend on their chemical form. In addition, several 

interactions had an effect on mineral availability. This encourages further research to 

understand the interaction mechanisms. However, the complexity of understanding the 

multiple dietary interactions and their effect on mineral availability can be challenging 

as several factors play a role. In this regard, the use of experimental factorial design 

allows to simultaneously study the influence of several factors and their respective 

interaction effects on the response. This approach should be considered more often in 

mineral availability studies. In this study, the effect of the chemical form of Zn, Se and 

Mn was evaluated. However, there are many other relevant minerals. For instance, in 

further feeding trials, Fe and Cu could be added to the study as it is likely that Cu and 

Fe are involved in interactions influencing mineral availability in Atlantic salmon.  

 

During this PhD work, emphasis was given to the study of solubility of Zn, Se and Mn. 

However, there are several other minerals relevant in salmonids nutrition. Thus, the in 

vitro digestion method could be used to study solubility of other minerals in salmonid 

feeds. Moreover, a strong positive correlation between solubility and apparent 

availability was obtained for Mn but not for Zn or Se. This indicates that the mineral 

solubility estimation performed can be used to evaluate Mn availability, while for Zn 

and Se, the in vitro method needs to be optimised, for instance with longer digestion 

times and wider pH ranges. In addition, more data points could lead to stronger 

correlation for Zn and Se, thus more feeds should be evaluated. 
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A B S T R A C T

Zinc (Zn) is an element essential to all living organisms and it has an important role as a cofactor of several
enzymes. In fish, Zn deficiency has been associated with impaired growth, cataracts, skeletal abnormalities and
reduced activity of various Zn metalloenzymes. Fish meal and fish oil traditionally used in salmon feed pre-
paration are being replaced by plant-based ingredients. Zinc additives are supplemented to salmon feed to ensure
adequate Zn levels, promoting good health and welfare in Atlantic salmon (Salmo salar). The main objective of
the present study was to evaluate Zn species found in an Atlantic salmon feed. This work describes a Zn ex-
traction method that was optimized using a fractional factorial design (FFD), whereby the effect of six factors
could be studied by performing only eight experiments. The effects of the type of extraction solution and its
molar concentration, pH, presence of sodium dodecyl sulphate, temperature and extraction time on Zn extrac-
tion were investigated. Mild extraction conditions were chosen in order to keep the Zn species intact. Total Zn
(soluble fractions and non-soluble fractions) was determined by inductively coupled plasma mass spectrometry
(ICP-MS). The highest Zn recovery was obtained using 100mM Tris-HCl, pH 8.5 at a temperature of 4 °C for 24 h
where the total Zn in soluble fraction and non-soluble fraction was 9.9 ± 0.2% and 98 ± 6%, respectively. Zinc
speciation analysis (on the soluble fractions) was further conducted by size exclusion inductively coupled plasma
mass spectroscopy (SEC-ICP-MS). The SEC-ICP-MS method provided qualitative and semi-quantitative in-
formation regarding Zn species present in the soluble fractions of the feed. Four Zn-containing peaks were found,
each with different molecular weights: Peak 1 (high molecular weight - ≥600 kDa), peak 2 and peak 3 (medium
molecular weight – 32 to 17 kDa) were the least abundant (1–6%), while peak 4 (low molecular weight – 17 to
1.36 kDa) was the most abundant (84–95%).

1. Introduction

Zinc (Zn) is an element that occurs naturally in water, air and soil
and it is essential to all living organisms [1]. Zinc plays an essential role
as a cofactor of several enzymes and it has also paracellular and in-
tracellular signalling functions [2]. In farmed fish, Zn deficiency has
been associated with impaired growth, cataracts, skeletal abnormalities
and reduced activity of various Zn metalloenzymes [3,4]. Feed con-
sumption and waterborne mineral uptake are the main sources of Zn in
Atlantic salmon (Salmo salar) [5]. The composition of salmon feed have
during recent years changed from the use of mainly marine feed in-
gredients, such as fish meal and fish oil, to an increasing replacement
with plant-based ingredients, e.g. soybean meal, maize gluten meal,

wheat gluten and rapeseed oil [6]. Zinc is naturally present in fish meal
and in plant-based ingredients, with typical concentrations ranging
from 64 to 74mg kg−1 (data for 2008) [7] and from 35 to 48mg kg−1

(data for 2016) [8], respectively. Zinc is added to feeds to prevent
diseases and ensure animal welfare [9].

The European Union regulation EC No. 2003/1831 and amend-
ments set the rules for the use of Zn additives in animal nutrition [10].
Examples of these additives are zinc acetate dihydrate, zinc chloride
anhydrous, zinc oxide, zinc sulphate heptahydrate, zinc sulphate
monohydrate, zinc chelate of amino acids hydrate, zinc chelate of
protein hydrolysates, zinc chelate of glycine hydrate (solid) and zinc
chelate of glycine hydrate (liquid). In the European Union, the current
upper limit for total Zn in complete feed of all fish except salmonids is
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150mg kg−1 and for salmonids feeds it is 180mg kg−1 feed [11].
Elemental speciation analysis is the quantification or/and the

identification of different chemical compounds, or element species
[12]. There is limited knowledge on the chemical species of Zn in fish
feeds. As the bioavailability of an element depends on its chemical form
(i.e. its species) [13], Zn speciation analysis can provide valuable in-
formation with regards to fish nutrition studies. Zinc may be present in
organic or inorganic forms. However, it is not so clear which forms have
enhanced bioavailability [2,14]. Hence, development of proper analy-
tical methods is needed to characterize Zn species present in feeds.

For separation of element species, high performance liquid chro-
matography (HPLC) is the traditional separation technique [15]. Other
separation techniques, such as gas chromatography (GC), supercritical
fluid chromatography (SFC) and capillary electrophoresis (CE) have
also been used for the separation of element species [15,16]. In-
ductively coupled plasma mass spectrometry (ICP-MS) is the preferred
detection method for elemental analysis as it gives high sensitivity and
selectivity, provides isotope information and has multi-element cap-
ability [17]. For speciation analysis of Zn in plant-based matrices,
samples are generally extracted using buffers, and subsequent analysis
for Zn species is performed by size exclusion chromatography (SEC)
coupled to ICP-MS [18–20]. Also, ion-exchange chromatography (IEC)
coupled to ICP-MS [19] and CE-ICP-MS [21] have been used for Zn
speciation in plant tissue and horse feed, respectively. So far, however,
there is no reported study on Zn speciation in fish feed.

Traditionally, method development is performed using the one-
factor-at-a-time (OFAT) strategy, which is a labour-intensive and ma-
terial consuming approach. However, the use of design of experiments
(DOE) is a much more efficient way to evaluate not only individual but
also joint effects of the variables compared to the OFAT approach
[22,23]. A DOE is selected based on experimental objectives, number of
factors to be studied and on the amount of resources available. For
screening purposes and a large number of factors to be studied, there
are typically two types of design that are recommended, the Plackett-
Burman and the fractional factorial design (FFD). A FFD is a design
where the experiments conducted are only a subset of the runs in the
full factorial design. The design can be expanded if needed [23,24].

The DOE has been applied in speciation studies of elements such as
copper [25], selenium [26], mercury [27], chromium [28–30], arsenic
[31,32] and antimony [32]. In speciation analysis, one of the most
critical points is to keep the native structure of each chemical species
intact along the extraction process and during the chromatographic
separation [33,34]. For the extraction of Zn from a horse feed and
tissues of barley grains, the use of ammonium acetate, Tris-HCl and
NaCl in a range of concentrations from 10 to 100mM as extraction
solutions were reported [20,21]. In addition, different temperatures
and extraction times were evaluated. Considering the lack of methods
for Zn speciation in feed, the aim of the present study was to develop an

extraction method for Zn in Atlantic salmon feed. The approach in-
cluded (i) a FFD experimental setup, (ii) mild extraction conditions to
keep chemical species intact, and (iii) a chromatographic method to
characterize Zn species in Atlantic salmon feed.

2. Experimental

2.1. Chemicals and reagents

Analytical reagent grade chemicals and Milli-Q® water
(18.2MΩ cm) (EMD Millipore Corporation, Billerica, MA, USA) were
used throughout the study unless stated otherwise. Methanol (MeOH,
LiChrosolv®, HPLC grade), acetic acid (CH3COOH, Emsure® ACS, ISO,
96% w/w), hydrochloric acid (HCl, Emsure® ACS, ISO, 37% w/w),
hydrogen peroxide (H2O2, Emsure® ACS, ISO, 30% w/w) were obtained
from Merck (Darmstadt, Germany). Nitric acid (HNO3, trace se-
lect,≥ 69.0% w/w) was obtained from Sigma-Aldrich (St. Louis, MO,
USA). Multielement (product number SS60835) and germanium (pro-
duct number SS1230) standard solutions were obtained from
Spectrascan TeknoLab (Drøbak, Norway). Tris(hydroxymethyl)amino-
methane [Tris-HCl, NH2C(CH2OH)3], ammonium acetate
(NH4CH3CO2), sodium dodecyl sulphate (SDS), thyroglobulin (T1001),
glutathione peroxidase (G6137), superoxide dismutase (S7446), myo-
globin (M1882) and vitamin B12 (V2876) were purchased from Sigma
Aldrich (St. Louis, MO, USA).

2.2. Sample

The feed sample used (L1, 3mm) is described elsewhere [35]. The
feed was formulated based on commercial feed for Atlantic salmon,
containing protein sources mainly from plant-based ingredients (i.e.
15% marine protein, 8% fish oil, 65% plant proteins and 10% plant
oils). Zinc oxide was added to the feed. The feed was grinded by hand
with a pestle and a mortar, and sieved to ensure a feed fraction with
similar particle size (from 850 μm to 1.12mm). To establish a target
value for total Zn, the feed sample was analysed at the laboratory and
two other accredited laboratories.

2.3. Experimental design

Based on previous Zn speciation studies [20,21], the factors in-
cluded in the experimental design were type of extraction solution (A),
molar concentration of the extraction solution, mM (B), pH (C), addi-
tion of 4% sodium dodecyl sulphate (SDS) solution (D), temperature, °C
(E), and extraction time, hour/s (F) (Table 1). Factors were set at low
(−1) and high (+1) levels. The experimental procedure was performed
according to a 26−3 fractional factorial design (resolution III). Eight
experiments in triplicate (n=3) and a blank for each experiment

Table 1
2III6 − 3 fractional factorial design. The tested factors were type of extraction solution (A), concentration of the extraction solution, mM (B), pH (C), addition of 4%
sodium dodecyl sulphate (SDS) solution (D), temperature, °C (E), and extraction time, hour/s (F). Factor level codes are shown as “−1” or “+1” followed by the real
factor level shown between parenthesis. Concentration of soluble Zn is expressed as mean ± standard deviation (mg kg−1 feed, n=3).

Factors: Coded (real)

Exp. A: Extraction
solution

B: Concentration
(mM)

C: pH D=AB:
4% SDS

E=AC:
Temp. (°C)

F=BC:
Time (h)

Soluble Zn
(mg kg −1 feed)

1 −1 (Tris-HCl) −1 (10) −1 (6.5) +1 (yes) +1 (20) +1 (24) 6.2 ± 0.2
2 +1 (Amm. Acetate) −1 (10) −1 (6.5) −1 (no) −1 (4) +1 (24) 4.5 ± 0.3
3 −1 (Tris-HCl) +1 (100) −1 (6.5) −1 (no) +1 (20) −1 (1) 5.66 ± 0.07
4 +1 (Amm. Acetate) +1 (100) −1 (6.5) +1 (yes) −1 (4) −1 (1) 6.9 ± 0.1
5 −1 (Tris-HCl) −1 (10) +1 (8.5) +1 (yes) −1 (4) −1 (1) 6.9 ± 0.2
6 +1 (Amm. Acetate) −1 (10) +1 (8.5) −1 (no) +1 (20) −1 (1) 3.87 ± 0.09
7 −1 (Tris-HCl) +1 (100) +1 (8.5) -1 (no) -1 (4) +1 (24) 10.9 ± 0.3
8 +1 (Amm. Acetate) +1 (100) +1 (8.5) +1 (yes) +1 (20) +1 (24) 6.14 ± 0.05
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(n=1) were performed (in total 32 experiments). Details about the
conditions used for experiment 1–8 are presented in Table 1. The ex-
perimental design and analysis of data from experiments was performed
using R commander plugin for DOE [R foundation for statistical com-
puting, version 3.4, [36,37]. The main effect of each factor (A to F) was
calculated using Eq. (1):

= +
+n n

effect of main factor Y Y
(1)

where “Y +” refers to the responses at level (+1), the “Y −” to the
responses at level (−1), the “n+” to the number of data points at level
(+1) and “n −” to the number of data points at level (−1).

A two-tailed t-test was used to determine the statistical significance
of the main effects at a confidence level of 95% using Eq. (2):

=t value of the effect effect of main factor
standard error (2)

Approximately 0.5 g of feed was extracted into 5mL of extraction
solution, for 1 or 24 h, at a temperature of 4 or 21 °C. The extraction
solution applied was either Tris-HCl or ammonium acetate, with con-
centrations of 10 or 100mM and pH values of 6.5 or 8.5. One milliliter
of 4% of SDS was added to some samples (Table 1). The final volume
was adjusted to 5mL in all samples. The samples were extracted in a
random order. After the extraction procedure, samples were centrifuged
for 10min at 3000g (Eppendorf® Centrifuge 5702, Hamburg, Germany).
The samples were fractionated into soluble and non-soluble fractions
using a Pasteur pipette. The soluble fractions were filtered through a
0.45 μm disposable syringe filter (Sartorius, Gӧttingen, Germany) and
transferred to new tubes. The non-soluble fractions were dried in an
oven for 24 h at 60 °C. The experimental outline of the study is pre-
sented in Fig. 1. Total Zn (soluble fractions and non-soluble fractions)
was determined using ICP-MS and Zn speciation analysis (soluble
fractions) was performed using SEC-ICP-MS.

2.4. Determination of total zinc by ICP-MS

For the determination of total Zn, the feed and feed fractions (i.e.
the soluble and the non-soluble fractions) were decomposed using mi-
crowave assisted acid digestion based on the procedure previously de-
scribed [38]. Briefly, approximately 0.2 g of feed was digested using

2.0 mL of HNO3 (69% w/w) and 0.5mL of H2O2 (30% w/w) in a
Milestone-MLS-1200 microwave oven (Milestone Inc., Shelton, CT,
USA). The digested samples were subsequently diluted to 25mL with
Milli-Q® water. A similar procedure was applied to digest the entire
dried non-soluble fractions (~0.5 g). The soluble fractions (500 μL)
were digested using 2mL of HNO3 in an ultrawave digestion system
(UltraWAVE, Milestone, Sorisole, Italy). The samples were capped and
placed in the ultrawave system with a container of 130mL Milli-Q®
water and 5mL H2O2. The extracts were then diluted to 25mL with
Milli-Q® water. The total Zn determination was performed by use of an
ICP-MS (iCapQ ICP-MS, Thermo Scientific, Waltham, USA) equipped
with an autosampler (FAST SC-4Q DX, Elemental Scientific, Omaha,

Fig. 1. Methodology flowchart.

Table 2
The operating parameters for the ICP-MS and SEC-ICP-MS.

ICP–MS settings (iCapQ)

Forward power 1550W
Plasma gas flow 14.0 Lmin−1

Carrier gas flow 1.02 Lmin−1

Makeup gas flow 0.80 Lmin−1

Dwell time 0.1 s per isotope
Isotopes monitored 66Zn, 72Ge

ICP–MS settings (7500cx)

Forward power 1550W
Plasma gas flow 15.0 Lmin−1

Carrier gas flow 0.94 Lmin−1

Makeup gas flow 0.25 Lmin−1

Dwell time 0.1 s per isotope
Isotopes monitored 127I,78Se, 66Zn, 59Co, 57Fe

HPLC settings

Column TSKgel G3000SWxl SEC column
(30 cm×7.8mm, 5 μm particle size)+QC-PAK guard
column (7 μm particle size)

Calibration range 1.0× 104–5.0× 105 Da
Mobile phase 50mM Tris-HCl+3% MeOH (pH 7.5)
Flow rate 0.7mLmin−1

Injection volume 50 μL
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USA). The samples were analysed in a random order. A solution of
germanium was added on-line for correction of instrumental drift
during the analysis. The instrument was optimized using a tuning so-
lution (1 ppb tuning solution B, Thermo Fisher, in 2% HNO3 and 0.5%
HCl) prior to analysis. The instrumental settings are presented in
Table 2. Data were collected and processed using the Qtegra ICP-MS
software (Thermo Scientific, version 2.1, 2013). For the quantitative
determination of total Zn, an external calibration curve (10 to
500 ngmL−1) was used and two certified reference materials were in-
cluded to assess the accuracy of the method: lobster hepatopancreas
(TORT-3; National Research Council Canada, Ottawa, Ontario, Canada)
and oyster tissue (SMR 1566b; National Institute of Standards and
Technology, Gaithersburg, USA). The obtained values were in agree-
ment with the certified values. The validated range for Zn determina-
tion is from 0.5 to 1400mg kg−1 (DW).

2.5. Zinc speciation by SEC-ICP-MS

The SEC-ICP-MS method was developed based on principles de-
scribed elsewhere [20,39]. Further optimisation was done in this study
to the analysis of a fish feed. The soluble fractions were analysed using
a 1260 HPLC coupled with a 7500cx ICP-MS (Agilent Technologies,
Santa Clara, USA) and a SEC column (TSKgel G3000SWxl, Tosoh,
Stuttgart, Germany). The mobile phase solution was prepared by dis-
solving an appropriate amount of tris(hydroxymethyl)aminomethane to
reach the desired ionic strength (50mM) in an aqueous 3% (v/v) MeOH
solution, followed by adjustment of pH to 7.5 with HCl (37% w/w). The
samples were analysed in a random order. The instrument was tuned
according to manufacturer's instructions. The instrumental settings for
the HPLC and ICP-MS are listed in Table 2.

Prior to speciation analysis of the soluble fractions, a molecular
weight calibration was performed using thyroglobulin (660 kDa, mon-
itoring 127I), glutathione peroxidase (84 kDa, monitoring 78Se), Zn/Cu
superoxide dismutase (32 kDa, monitoring 66Zn), myoglobin (17 kDa,
monitoring 57Fe), vitamin B12 (1.36 kDa, monitoring 59Co). The stan-
dards were prepared with a concentration of 100 ng element mL−1 in
Milli-Q® water. For the quantitative determination of Zn species an
external calibration curve of the Zn/Cu SOD standard (5 to
200 ng ZnmL −1) was applied, and species were quantified by peak
areas. The calibration curve was analysed at the beginning and at the
end of the analytical sequence. The 50 ng ZnmL−1 standard was ana-
lysed at the middle of the sequence. All sample extracts were spiked
with 0.5 μL of vitamin B12 (1000 ngmL−1) prior to analysis in order to
correct for retention times shifts.

The chemical nature of the Zn species in the soluble fractions was
further investigated. The soluble fractions of experiment 7 (n=3) were
split in two parts, one was heated and the other was kept as is. The
soluble fractions were heated at 90 °C for 10min using a heat block
(Bibby Scientific Stuart, Stone, Staffordshire) as described by Temara
and colleagues [40]. The heated and non-heated extracts were eval-
uated by the SEC-ICP-MS method as previously described.

3. Results and discussion

3.1. Total zinc in feed

The average total Zn concentration was 110 ± 8mg kg−1 of feed
(n=10). The target value was used to calculate the recovery of the
extraction experiments.

3.2. Effect of extraction factors by fractional factorial design

The concentration of soluble Zn was different in the various ex-
perimental runs proposed by the 26−3 fractional factorial design
(Table 1). The highest and lowest Zn recoveries were obtained under
the conditions dictated by experiments 7 and 6 respectively (Table 1).

The former condition consisted of 100mM Tris-HCl, pH 8.5 at a tem-
perature of 4 °C for 24 h and the latter of 10mM ammonium acetate,
pH 8.5 at a temperature of 20 °C for 1 h.

The effect of the main factors on the response is presented in the
form of a Pareto chart (Fig. 2). The results show that the factors having
a statistically significant effect (p < 0.05) on Zn extraction were type
of extraction solution (A), molar concentration of the extraction solu-
tion, mM (B), pH (C), temperature, °C (E) and extraction time, hour/s
(F). The addition of 4% sodium dodecyl sulphate (SDS) solution did not
have a significant effect on the Zn extraction and such finding was also
reported elsewhere [41]. The same results suggest that to maximize the
concentration of Zn extracted, factors such as type of extraction solu-
tion (A) and temperature, °C (E) should be kept at the low (−1) level,
which implies using Tris-HCl as extraction solution and performing the
extraction at 4 °C. Furthermore, factors such as molar concentration of
the extraction solution, mM (B), pH (C) and time, hour/s (F) should be
kept at the high (+1) level. This means the extraction should be per-
formed using 100mM Tris-HCl, pH 8.5 at a temperature of 4 °C for 24 h.
Altogether, these extraction conditions correspond to those described
by experiment 7 (Table 1). As a set of experimental conditions was
obtained in the initial fractional factorial design, no more experiments
were performed.

3.3. Zinc extraction recovery

Zinc recovery (%) was determined for the soluble and non-soluble
fractions by calculation of the ratio of Zn obtained for each fraction
compared to total Zn in the feed (110mg kg−1 feed) (Table 3). The
variation obtained was acceptable taking into consideration the mea-
surement uncertainty of the method, which is 20%. The sum of both
fractions was calculated by adding the average value found in soluble
Zn (%) and non-soluble Zn (%). The overall recovery of Zn ranged from
83 to 124%.

Between 4 and 10% of Zn was extracted into the soluble fraction of
the feed (Table 3). The extraction method is a critical step in element

Fig. 2. Pareto chart with the magnitude of the main effects using the con-
centration of soluble Zn as response. Horizontal axis shows the factors ordered
accordingly with their magnitude; type of extraction solution (A), concentration
of the extraction solution, mM (B), pH (C), addition of 4% sodium dodecyl
sulphate (SDS) solution (D), temperature, °C (E), and extraction time, hour/s
(F); the vertical axis shows the t-value of the absolute effect. The reference line
is the t-value limit (α=0.05; d.f. = 17). A t-value of |effect| above the re-
ference line indicates a significant contribution of this factor to the response
(p < 0.05). In grey, the effects with positive t-value and, in white, the effects
with negative t-value. The standard error was 0.1448 for each main factor.
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speciation analysis. This is mainly due to the challenges of providing
high extraction recovery as well as preserving the integrity of the ori-
ginal species during the extraction process simultaneously [42,43].
There is a number of speciation protocols, which include the use mi-
crowave and ultrasound assisted extraction [44,45]. However, our
study focus on the use of mild extraction conditions to keep the che-
mical species intact. Microwave and ultrasound-assisted extraction
could affect the species integrity [44,45]. Consequently, both micro-
wave and ultrasound assisted extraction were not included in the ex-
traction methodology.

Mild extraction conditions were applied to keep the integrity of the
chemical species intact, which may compromise the extraction recovery
in the soluble fraction. Furthermore, Zn ion (Zn+2) can easily bind to
other compounds which are less soluble in water (i.e. phytic acid, sul-
phides) [46,47]. The lower solubility found in this study could be due to
Zn binding to other compounds present in the fish feed and thereby
forming water insoluble Zn species.

3.4. Zinc speciation analysis of feed by SEC-ICP-MS

Different types of columns and mobile phases were tested in order
to identify the most robust technique for Zn speciation analysis, i.e. a
method that preserves the integrity of the metal binding species.
First, various anion-exchange settings were applied for the separa-
tion of Zn species. However, the obtained chromatograms showed
poor resolution and severe peak broadening. Hence, anion-exchange
chromatography was disregarded as a chromatographic separation
technique for Zn species in fish feed extracts. This finding is con-
sistent with a previous study, according to Persson et al. (2009),
anion-exchange chromatography showed poor chromatographic re-
sults for Zn compounds from barley grains [20]. Reversed phase
chromatography (RPC) was applied for the separation of Zn species
but the obtained chromatograms also showed poor resolution and
peak broadening. Hence, RPC was also disregarded as a chromato-
graphic separation technique for Zn species in fish feed extracts. In
IEC and RPC, the separation is based on electrostatic forces [48] and
this may cause effects on the native chemical structures in the se-
paration creating artefacts and misleading information [49]. This
may be due to de-stabilization of the metal binding species and the
weak binding capacity of some metals, such as Zn [46]. When ap-
plying SEC, the stability of the Zn species markedly improved, and
therefore SEC-ICP-MS was chosen as a method for Zn speciation. The
SEC-ICP-MS method gave semi-quantitative results for the Zn species
detected using the external calibration curve of the Zn/Cu SOD
standard (Table 4). Furthermore, the method provided qualitative
results regarding molecular size of Zn species present in the feed
extracts, by comparison of elution times of Zn species with the elu-
tion times of the molecular weight calibration standards (Fig. 3 and
Table 4).

The soluble fractions of experiment 1 to 8 were evaluated by SEC-
ICP-MS. Both, number of peaks and total Zn in the soluble fraction were

used as parameters to select the set of Zn extraction conditions. The
results from the SEC-ICP-MS analysis show the presence of several Zn
species. The different extraction conditions affected the type and
amount of species present in the extract (Table 3). Extraction conditions
applied in experiment 1, 4, 5, 7 and 8 extracted peaks 1 to 4. However,
when using the extraction conditions of experiment 2, 3 and 6, peak 1
was not detected. The ratio of each peak was calculated based on the
sum of all peaks and it is presented in Table 3. Peak 1, peak 2, and peak
3 were the least abundant (1–6%) and peak 4 was the most abundant
(84–95%). Fig. 3 shows the Zn profile of the soluble fraction of a feed
extract using the extraction conditions of experiment 7 (n=3) ob-
tained by SEC-ICP-MS. The chromatograms from the three replicates of
experiment 7 are overlapping, thus indicating good repeatability
(Fig. 3).

The SEC-ICP-MS method gave qualitative information regarding the
size range of the Zn species present in the soluble fraction. The mole-
cular weight calibration was performed using thyroglobulin (660 kDa,
Rt ~ 9.4min), glutathione peroxidase (84 kDa, Rt ~ 12.9), Zn/Cu su-
peroxide dismutase (32 kDa, Rt ~ 14.6), myoglobin (17 kDa,
Rt ~ 17.2), vitamin B12 (1.36 kDa, Rt ~ 19.5). On the chromatograms,
it was observed the elution of peak 1 (Rt ~ 8.6min) and those Zn
species have a high molecular weight (≥600 kDa). Additionally, peaks
2 and 3 peaks were observed (Rt ~ 15.7 and 16.6min) and the Zn
species in this case are medium molecular weight 1 (Mw~32–17 kDa).
Peak 4 (Rt ~ 18min) indicates the presence of Zn species with low
molecular weight (Mw~17 kDa–1.36 kDa).

In SEC, the molecules separation is based on molecule size. Hence,
each peak might contain several compounds with similar molecular
weight [50].

Structural information about the Zn-containing compounds pre-
sent in peak 1 to 4 would give complementary data about the Zn
species. However, one limiting factor in further method development
is the lack of standards to study Zn compounds [19,51]. The Zn
compounds were further investigated providing complementary in-
formation of the chemical nature of the Zn species in the soluble
fractions. The Zn compounds found in the soluble fraction originate
from different sources, as the feed samples contain both animal and
plant ingredients. The different ingredients and the molecular weight
range of the Zn peaks suggest that the observed Zn peaks could be
metalloproteins. One of the most studied metalloproteins is the
ubiquitous metallothioneins (MTs). The MTs are thermally stable
proteins, so a heating step is a commonly used protocol to confirm
their presence [52]. Thus, the soluble fractions of experiment 7
(n=3) were heated. The chromatographic profile obtained from
heated and non-heated extracts were compared, and the chromato-
graphic profiles were similar. The compounds eluting in peak 1, 2, 3
and 4 were heat stable, suggesting that the compounds are MTs. The
MTs are known to be the only proteins which are heat stable and
have metal association ability [53]. This supports our suggestion of
the Zn compounds being MTs.

4. Conclusions

In the present study, the effect of different conditions for the
extraction of Zn from fish feed was studied using a FFD approach.
Eight experiments were carried out and the effect of six different
factors on the extraction of Zn was determined. The highest recovery
for Zn in fish feed was obtained when using 100 mM Tris-HCl, pH 8.5
at a temperature of 4 °C for 24 h and four peaks were found under
these extraction conditions. The application of mild extraction con-
ditions and SEC were found to be appropriate to keep the Zn species
intact. The speciation profile of Zn in the soluble fractions was
evaluated using a SEC-ICP-MS method developed to study Zn species
in a fish feed. This analytical method will be used to characterize Zn
species present in feeds.

Table 3
Total Zn in the soluble and non-soluble fractions (%) and the calculated sum Zn
(%). Soluble Zn and non-soluble Zn values are expressed as mean ± standard
deviation (%, n= 3).

Exp. Soluble Zn (%) Non-soluble Zn (%) Sum Zn (%)

1 5.6 ± 0.1 105 ± 12 111
2 4.1 ± 0.2 82 ± 19 83
3 5.15 ± 0.06 112 ± 5 117
4 6.3 ± 0.1 118 ± 6 124
5 6.2 ± 0.1 108 ± 14 114
6 3.52 ± 0.08 105 ± 3 109
7 9.9 ± 0.2 98 ± 6 108
8 5.58 ± 0.05 102 ± 7 108

M.S. Silva et al. Journal of Chromatography B 1104 (2019) 262–268

266



Acknowledgments

This work is part of the project “Apparent availability and re-
quirements of microminerals in salmon” which is funded by the
Research Council of Norway (grant no. 244490). The authors ac-
knowledge the National Food Institute in Denmark and the National

Food Agency in Sweden for helping establishing the target value for Zn
and the ARRAINA project for providing the Atlantic salmon feed.

References

[1] S. Frassinetti, G.L. Bronzetti, L. Caltavuturo, M. Cini, C.D. Croce, The role of zinc in
life: a review, J. Environ. Pathol. Toxicol. Oncol. 25 (2006) 597–610.

[2] C. Hogstrand, Chapter 3. Zinc, in: Chris M. Wood, Anthony P. Farrell, C.J. Brauner
(Eds.), Fish Physiology, Academic Press, 2011, pp. 135–200.

[3] C. Boglione, E. Gisbert, P. Gavaia, P.E. Witten, M. Moren, S. Fontagne,
G. Koumoundouros, Skeletal anomalies in reared European fish larvae and juve-
niles. Part 2: main typologies, occurrences and causative factors, Rev. Aquac. 5
(2013) 121–167.

[4] S.M. Lin, X. Lin, Y. Yang, F.J. Li, L. Luo, Comparison of chelated zinc and zinc
sulfate as zinc sources for growth and immune response of shrimp (Litopenaeus
vannamei), Aquaculture 406 (2013) 79–84.

[5] T. Watanabe, V. Kiron, S. Satoh, Trace minerals in fish nutrition, Aquaculture 151
(1997) 185–207.

[6] T. Ytrestøyl, T.S. Aas, T. Åsgård, Utilisation of feed resources in production of
Atlantic salmon (Salmo salar) in Norway, Aquaculture 448 (2015) 365–374.

[7] M. Sanden, G.-I. Hemre, A. Måge, B.T. Lunestad, M. Espe, A.-K. Lundebye,
R. Ørnsrud, Program for overvåking av fiskefôr, Nasjonalt Institutt for Ernærings-og
Sjømatforskning (NIFES), 2013.

[8] M. Sanden, G.-I. Hemre, A. Måge, B.T. Lunestad, M. Espe, K.K. Lie, A.-K. Lundebye,
H. Amlund, R. Waagbø, R. Ørnsrud, Program for overvåking av fiskefôr, Nasjonalt
Institutt for Ernærings- og Sjømatforskning (NIFES), 2017.

[9] N.R. Council, Nutrient requirements of fish and shrimp, The National Academies
Press, Washington, DC, 2011.

[10] E. Commission, Regulation (EC) No 1831/2003 of the European Parliament and of
the Council of 22 September 2003 on Additives for Use in Animal Nutrition (text
with EEA relevance), (2003), pp. 29–43.

[11] E. Commission, Commission implementing regulation (EU) 2016/1095 of 6 July
2016 concerning the authorisation of zinc acetate dihydrate, zinc chloride anhy-
drous, zinc oxide, zinc sulphate heptahydrate, zinc sulphate monohydrate, zinc
chelate of amino acids hydrate, zinc chelate of protein hydrolysates, zinc chelate of
glycine hydrate (solid) and zinc chelate of glycine hydrate (liquid) as feed additives
for all animal species and amending regulations (EC) No 1334/2003, (EC) No 479/
2006, (EU) No 335/2010 and implementing regulations (EU) No 991/2012 and
(EU) No 636/2013 (text with EEA relevance), Off. J. Eur. Union (2016) 7–27.

[12] D.M. Templeton, F. Ariese, R. Cornelis, L.G. Danielsson, H. Muntau, H.P. Van
Leeuwen, R. Lobinski, Guidelines for terms related to chemical speciation and
fractionation of elements. Definitions, structural aspects, and methodological ap-
proaches (IUPAC Recommendations 2000), Pure Appl. Chem. 72 (2000)
1453–1470.

[13] P.M. Visakh, S. Thomas, L.B. Iturriaga, P.D. Ribotta, Advances in food science and
technology, Wiley, 2013.

[14] D. Dominguez, S. Rimoldi, L.E. Robaina, S. Torrecillas, G. Terova, M.J. Zamorano,
V. Karalazos, K. Hamre, M. Izquierdo, Inorganic, organic, and encapsulated mi-
nerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758), PeerJ 5
(2017) 1–21.

[15] H. Rekhi, S. Rani, N. Sharma, A.K. Malik, A review on recent applications of high-
performance liquid chromatography in metal determination and speciation ana-
lysis, Crit. Rev. Anal. Chem. 47 (2017) 524–537.

[16] K.L. Ackley, J.A. Caruso, J.I.G. Alonso, J.R. Encinar, B. Michalke, C.C. Chéry,
Chapter 4. Separation techniques, Handbook of elemental speciation: techniques
and methodology, John Wiley & Sons, Ltd, 2004, pp. 147–239.

[17] E. Bulska, A. Ruszczyńska, Analytical techniques for trace element determination,
Physical Sciences Reviews 2 (2017) 1–5.

[18] D.P. Persson, T.C. de Bang, P.R. Pedas, U.B. Kutman, I. Cakmak, B. Andersen,
C. Finnie, J.K. Schjoerring, S. Husted, Molecular speciation and tissue compart-
mentation of zinc in durum wheat grains with contrasting nutritional status, New
Phytol. 211 (2016) 1255–1265.

[19] J. Karasinski, W. Cegielkowska, M. Wojciechowski, M. Wierzbicka, E. Bulska,
Analytical protocol for investigation of zinc speciation in plant tissue, Chem. Pap.
68 (2014) 291–299.

Table 4
Zinc speciation analysis by SEC-ICP-MS (mean ± standard deviation, n=3, mg kg −1 feed).

Peak 1 (≥ 600 kDa, Rt ~ 8.6min) Peak 2 (32–17 kDa, Rt ~ 15.7min) Peak 3 (32–17 kDa, Rt ~ 16.6min) Peak 4 (17–1.36 kDa, Rt ~ 18min)

Exp. mg kg −1 feed Area (%) mg kg −1 feed Area (%) mg kg −1 feed Area (%) mg kg −1 feed Area (%)

1 0.33 ± 0.03 4 0.505 ± 0.005 6 0.442 ± 0.004 6 6.75 ± 0.06 84
2 n.d. 0 0.263 ± 0.005 3 0.339 ± 0.002 4 8.6 ± 0.1 93
3 n.d. 0 0.44 ± 0.01 5 0.447 ± 0.003 5 8.7 ± 0.2 91
4 0.138 ± 0.002 1 0.349 ± 0.004 4 0.376 ± 0.004 4 8.9 ± 0.2 91
5 0.181 ± 0.004 2 0.278 ± 0.005 3 0.354 ± 0.002 4 8.3 ± 0.1 91
6 n.d. 0 0.294 ± 0.001 3 0.383 ± 0.001 4 9.0 ± 0.5 93
7 0.0635 ± 0.0004 1 0.171 ± 0.006 2 0.295 ± 0.001 3 9.7 ± 0.2 95
8 0.29 ± 0.06 4 0.326 ± 0.006 4 0.343 ± 0.005 4 7.13 ± 0.07 88

n.d.= not detected.

Fig. 3. Chromatogram of Zn species in the soluble fraction of feed, extracted
according to experiment 7, and analysed by SEC-ICP-MS (n=3); (A) Shows a
complete Zn profile; (B) Shows an enlargement of Zn profile from 8 to 17min;
Blue, red and black lines represent the three replicates of experiment 7. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

M.S. Silva et al. Journal of Chromatography B 1104 (2019) 262–268

267



[20] D.P. Persson, T.H. Hansen, K.H. Laursen, J.K. Schjoerring, S. Husted, Simultaneous
iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using
SEC-ICP-MS and IP-ICP-MS, Metallomics 1 (2009) 418–426.

[21] V. Vacchina, C. Ionescu, S. Oguey, R. Lobinski, Determination of Zn–, Cu– and
Mn–glycinate complexes in feed samples and in-vitro and in-vivo assays to assess
their bioaccessibility in feed samples, Talanta 113 (2013) 14–18.

[22] D.C. Montgomery, Design and Analysis of Experiments, 7th ed., John Wiley & Sons,
Ltd., Hoboken, NJ, 2008.

[23] J.N. Miller, J.C. Miller, Statistics and chemometrics for analytical chemistry, 6th
ed., Pearson, 2005.

[24] G.W. Oehlert, A First Course in Design and Analysis of Experiments, 1st ed., W. H.
Freeman, 2000.

[25] M.T.F. Teodoro, F.D. Dias, D.G. da Silva, M.A. Bezerra, A.F. Dantas, L.S.G. Teixeira,
A.L.C. Pereira, Determination of copper total and speciation in food samples by
flame atomic absorption spectrometry in association with solid-phase extraction
with bamboo (Bambusa vulgaris) fiber loaded with bathocuproine, Microchem. J.
132 (2017) 351–357.

[26] L. Nyaba, J.M. Matong, K.M. Dimpe, P.N. Nomngongo, Speciation of inorganic se-
lenium in environmental samples after suspended dispersive solid phase micro-
extraction combined with inductively coupled plasma spectrometric determination,
Talanta 159 (2016) 174–180.

[27] D.E. Leon-Perez, A.M. Munoz-Jimenez, C. Jimenez-Cartagena, Determination of
mercury species in fish and seafood by gas chromatography–mass spectrometry:
validation study, Food Anal. Methods 8 (2015) 2383–2391.

[28] M. Cuellar, V. Pfaffen, P.I. Ortiz, Application of multi-factorial experimental design
to successfully model and optimize inorganic chromium speciation by square wave
voltammetry, J. Electroanal. Chem. 765 (2016) 37–44.

[29] F. Hernandez, F. Seby, S. Millour, L. Noel, T. Guerin, Optimisation of selective al-
kaline extraction for Cr(VI) determination in dairy and cereal products by HPIC-
ICPMS using an experimental design, Food Chem. 214 (2017) 339–346.

[30] G. Fakhriyan, H.Z. Mousavi, S.M. Sajjadi, Speciation and determination of Cr(III)
and Cr(VI) by directly suspended droplet microextraction coupled with flame
atomic absorption spectrometry: an application of central composite design strategy
as an experimental design tool, Anal. Methods 8 (2016) 5070–5078.

[31] V. Dufailly, L. Noel, J.M. Fremy, D. Beauchemin, T. Guerin, Optimisation by ex-
perimental design of an IEC/ICP-MS speciation method for arsenic in seafood fol-
lowing microwave assisted extraction, J. Anal. Atom. Spectrom. 22 (2007)
1168–1173.

[32] A. Gholami, H. Noorizade, Pre-concentration, speciation and determination of As
and Sb by optimized experimental design DLLME combined with GF-AAS, Bulg.
Chem. Commun. 48 (2016) 36–42.

[33] Q. Wang, Metallomics: analytical techniques and speciation methods, Anal. Bioanal.
Chem. 24 (2017) 5617–5618.

[34] D. Corradini, E. Eksteen, R. Eksteen, P. Schoenmakers, N. Miller, Handbook of
HPLC, CRC Press, 2nd ed., 2011.

[35] John F. Taylor, Luisa M. Vera, Christian De Santis, Erik-Jan Lock, Marit Espe, Kaja
H. Skjærven, Daniel Leeming, Jorge del Pozo, Jose Mota-Velasco, Herve Migaud,
Kristin Hamre, Douglas R. Tocher, The effect of micronutrient supplementation on
growth and hepatic metabolism in diploid and triploid Atlantic salmon (Salmo
salar) parr fed a low marine ingredient diet, Comp. Biochem. Physiol. B Biochem.
Mol. Biol. 1096-4959, 227 (2019) 106–121.

[36] R.C. Team, R: A Language and environment for statistical computing, Austria,
Vienna, 2017.

[37] U. Groemping, RcmdrPlugin.DOE: R commander plugin for (industrial) Design of
Experiments, (2014).

[38] K. Julshamn, A. Maage, H.S. Norli, K.H. Grobecker, L. Jorhem, P. Fecher,
Determination of arsenic, cadmium, mercury, and lead by inductively coupled
plasma/mass spectrometry in foods after pressure digestion: NMKL interlaboratory
study, J. AOAC Int. 90 (2007) 844–856.

[39] A. Lothian, B.R. Roberts, Standards for quantitative metalloproteomic analysis
using size exclusion ICP-MS, Jove-J. Vis. Exp. 110 (2016) 1–8.

[40] A. Temara, M. Warnau, P. Dubois, W.J. Langston, Quantification of metallothio-
neins in the common asteroid Asterias rubens (Echinodermata) exposed experi-
mentally or naturally to cadmium, Aquat. Toxicol. 38 (1997) 17–34.

[41] J. Wojcieszek, K. Witkos, L. Ruzik, K. Pawlak, Comparison of copper and zinc in
vitro bioaccessibility from cyanobacteria rich in proteins and a synthetic supple-
ment containing gluconate complexes: LC-MS mapping of bioaccessible copper
complexes, Anal. Bioanal. Chem. 408 (2016) 785–795.

[42] B.B. Kebbekus, Chapter 5. Preparation of samples for metals analysis, in: S. Mitra
(Ed.), Sample Preparation Techniques in Analytical Chemistry, John Wiley & Sons,
Inc., 2004, pp. 227–270.

[43] H. Emons, Challenges from speciation analysis for the development of biological
reference materials, Fresenius J. Anal. Chem. 370 (2001) 115–119.

[44] C. Bendicho, I. Lavilla, Ultrasound-assisted metal extractions, reference module in
chemistry, Molecular sciences and chemical engineering, Elsevier, 2013.

[45] J. Feldmann, A. Elgazali, M.F. Ezzeldin, Z. Gajdosechova, E. Krupp, F. Aborode,
M.M. Lawan, A. Raab, A.H. Petursdottir, K. Amayo, Chapter 10. Microwave-assisted
sample preparation for element speciation, in: É.M.d.M. Flores (Ed.), Microwave-
Assisted Sample Preparation for Trace Element Analysis, Elsevier, Amsterdam,
2014, pp. 281–312.

[46] A. Krezel, W. Maret, The biological inorganic chemistry of zinc ions, Arch. Biochem.
Biophys. 611 (2016) 3–19.

[47] R.K. Gupta, S.S. Gangoliya, N.K. Singh, Reduction of phytic acid and enhancement
of bioavailable micronutrients in food grains, J. Food Sci. Technol. 52 (2015)
676–684.

[48] O. Coskun, Separation techniques: chromatography, North Clin. Istanb. 3 (2016)
156–160.

[49] V. Vacchina, S. Oguey, C. Ionescu, D. Bravo, R. Lobinski, Characterization of metal
glycinate complexes by electrospray Q-TOF-MS/MS and their determination by
capillary electrophoresis-ICP-MS: application to premix samples, Anal. Bioanal.
Chem. 398 (2010) 435–449.

[50] P. Hong, S. Koza, E.S.P. Bouvier, Size-exclusion chromatography for the analysis of
protein biotherapeutics and their aggregates, J. Liq. Chromatogr. Relat. Technol. 35
(2012) 2923–2950.

[51] H. Goenaga-Infante, G. Koellensperger, It is time for a special issue dedicated to
elemental speciation analysis, J. Anal. Atom. Spectrom. 31 (2016) 1704–1705.

[52] M. Goetghebeur, S. Kermasha, J. Kensley, M. Metche, Purification and character-
ization of copper-metallothionein from Aspergillus niger by affinity chromatography,
Biotechnol. Appl. Biochem. 22 (1995) 315–325.

[53] J.-P. Wu, H.-C. Chen, Metallothionein induction and heavy metal accumulation in
white shrimp Litopenaeus vannamei exposed to cadmium and zinc, Comp. Biochem.
Physiol. C: Toxicol. Pharmacol. 140 (2005) 383–394.

M.S. Silva et al. Journal of Chromatography B 1104 (2019) 262–268

268





Paper II 

P. Antony Jesu Prabhu, Thea Stewart, Marta Silva, Heidi Amlund, Robin Ørnsrud,

Erik-Jan Lock, Rune Waagbø and Christer Hogstrand 

Zinc uptake in fish intestinal epithelial model RTgutGC: Impact of media 

ion composition and methionine chelation 

Journal of Trace Elements in Medicine and Biology, 2018, 50: 377-383





Contents lists available at ScienceDirect

Journal of Trace Elements in Medicine and Biology

journal homepage: www.elsevier.com/locate/jtemb

Zinc uptake in fish intestinal epithelial model RTgutGC: Impact of media ion
composition and methionine chelation

P. Antony Jesu Prabhua,c,⁎, Stewart T.c, Silva M.a,b, H. Amlunda, Ørnsrud R.a, Lock E.-J.a,
Waagbo R.a,b, Hogstrand C.c

a Fish Nutrition program, Institute of Marine Research, P.O. Box 1870, 5817, Bergen, Norway
b Institute of Biology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
cMetal metabolism group, Department of Nutritional Sciences, Kings College London, Franklin-Wilkins Building, 150 Stamford street, SE1 9NH, London, United Kingdom

A R T I C L E I N F O

Keywords:
RTgutGC
Apical zinc uptake
Amino acid chelate
Lumen ion composition
Bioavailability
Salmonids

A B S T R A C T

Apical uptake of zinc as ionic Zn(II) or as Zn-methionine (Zn-Met) was studied in RTgutGC cell line in vitro under
media compositions mirroring the gut luminal ionic concentration of freshwater (FW) and seawater (SW) ac-
climated salmonids. Viability of the RTgutGC cells exposed to experimental media preparations showed a time-
dependent decrease in SW treated cells, with the effect being significant at 48 h (P < 0.01), but not at 12 h or
24 h. Half effective concentration of Zn exposure over 12 h (EC50, in μM) was not differentially affected by media
composition (FW, 59.7 ± 12.1 or SW, 83.2 ± 7.2; mean ± SE, P=0.43). Zinc (65Zn) influx in RTgutGC was
not different between FW or SW treated cells, but increased significantly in the presence of methionine (2mM, L-
Met or DL-Met). An interaction effect was observed between Zn concentration and media ionic composition on
the impact of Met on apical Zn uptake (L-met, P < 0.001; DL-met, P=0.02). In the presence of Met, apical Zn
uptake in SW medium was significantly lower compared to FW, but only at higher Zn concentrations (12 and 25
μM, P < 0.01). Further, Met facilitated Zn uptake was reduced in cells treated with an amino acid transport
system blocker with the effect being more significant and stereospecific in SW ionic conditions. The findings of
this study showed that (i) Zn speciation in the presence of Met improved apical Zn uptake in RTgutGC cells and
Zn-Met species were possibly taken up through Met uptake system. (ii) The effect was differentially affected by
the ionic composition of the medium. Implications and limitations of the observations towards practical Zn
nutrition of salmonids are discussed.

1. Introduction

While essential as a nutrient, zinc (Zn) is also a potential toxicant
and an environmental contaminant of concern [1]. Although fish are
able to acquire waterborne Zn via gills, diet is regarded to be the major
source of Zn [2]. Knowledge on gastrointestinal (GI) uptake of Zn is
therefore significant in fish nutrition and aquatic toxicology [3]. The GI
tract is a highly versatile and multi-functional organ in fish [4]. In
addition to the primary function of nutrient uptake, the GI tract also
serve osmoregulatory functions [5]. The ionic composition of the gut
luminal content in seawater (SW) fish varies from that of freshwater
(FW) fish due to the fact that marine fish drink and selectively pre-
cipitate ions to facilitate water uptake in the hyperosmotic seawater
medium [6]. To date, knowledge on the impact of ionic composition of
the gut luminal contents on nutrient uptake at the intestinal epithelium
is limited. Impact of lumen composition on the GI uptake of Zn was

found to be complex and affected by interactions with other ions and
ligands at various stages of absorption [3,7].

In aquaculture, formulated fish feeds are supplemented with Zn
additives, as the bioavailability of endogenous Zn in feed ingredients is
low due to the presence of anti-nutritional factors [8]. The Zn additives
used can be categorised into inorganic salts and chelated forms. In-
organic Zn salts of sulphate, chloride or oxide are used, where sulphate
is the most studied and relatively more bioavailable form of inorganic
Zn to fish [9]. Among chelated forms, Zn chelated with specific amino
acids eg. methionine [10,11], glycine [12] or a mix of amino acids have
been studied [13,14]. In the aforementioned studies, the chemical form
of Zn additive and interactions anti-nutrients have been the focus of
investigation towards enhancing bioavailability of dietary Zn [8,9]. In
some of these studies, dietary supply of amino acid chelated Zn was
found to be more bioavailable than inorganic salts of Zn [11,14].
Nevertheless, results are inconsistent and subject to high variability
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[9,15], such that it remained inconclusive even in a radiotracer study
[16]. Physiological studies on Zn uptake in fish using in vitro brush
border vesicles [17] and in vivo perfusion models [3] have revealed that
amino acids with high binding affinity for Zn(II) can improve Zn up-
take, but the mechanism for which is less understood.

Similar to mammals, GI uptake of Zn in fish is also believed to be
orchestrated by more than one transport system involving solute carrier
families Slc30 (Znt) and Slc39 (Zip); and potentially L-Type Calcium
Channel (LTCC) and divalent metal transporter-1(DMT1) [7,18]. In the
intestine, dietary Zn binds to the mucus of the intestinal epithelium,
and is transported into the epithelial cells either as the Zn(II) ion or
bound to amino acids [1,15]. Uptake of Zn(II) through Zip4 is of vital
nutritional significance in mammals; however, the relative efficiency
and functional importance of Zip mediated Zn(II) uptake versus amino
acid facilitated Zn uptake in GI tract remains to be well understood in
mammals, and even more so in fish [1]. The complexity of the en-
vironment and multiple dietary interactions have been major con-
straints in understanding the limiting factors of dietary Zn bioavail-
ability in fish nutritional studies. In this regard, strengthening our
knowledge on uptake mechanisms is required to better understand and
predict dietary metal bioavailability from feed matrices to fish under
varying environmental conditions [19,20].

Until recently, enterocyte cell models were not available to study
nutrient uptake mechanisms for fish nutrition research. However, now
an intestinal epithelial cell line (RTgutGC) exhibiting apical and baso-
lateral characteristics has been established [21,22]. RTgutGC cell line
has been proposed as a physiologically adequate fish intestinal epi-
thelial model, equivalent to the Caco-2 cell line for human intestinal
epithelium [22]. Since then, RTgutGC cells have been well char-
acterised with structural and functional features like forming a mono-
layer, mucous secretion, tight junction and desmosomes formation be-
tween adjacent cells, develop trans-epithelial resistance and polarize
over time to exhibit epithelial characteristics [21,23,24]. RTgutGC cells
have been used to study metal uptake characteristics for environmental
monitoring of potential metal toxicants like silver and its nanoparticles
[23,25,26]. However, uptake of nutritionally relevant metals have not
been investigated in the RTgutGC model. In this study, we examined the
apical uptake of Zn and Zn-Met species as affected by media composi-
tion mirroring the luminal ionic concentrations found in freshwater
(FW) and seawater (SW) acclimatised salmonids using the RTgutGC cell
line.

2. Material and methods

2.1. Cell culture

RTgutGC cells (obtained in kind from Professor Dr. Kristin Schirmer,
Dept. of Environmental Toxicology, Eawag, Swiss Federal Institute of
Aquatic Science and Technology, Switzerland) were aseptically cul-
tured in Leibovitz’ L-15 medium (Invitrogen/Gibco, Switzerland) con-
taining 5% fetal bovine serum (FBS, Eurobio, France) and 1% genta-
mycin sulfate (BioWhittaker™/Lonza, Belgium) at 19 °C in normal
atmosphere as previously described by [22]. The cells were routinely
grown in 75 cm2 cell culture flasks and when confluent after 2 weeks,
they were either split to new flasks or harvested to be used in experi-
ments. Cells from the confluent flasks were harvested by washing twice
with 1ml Versene EDTA solution (Invitrogen/Gibco, Switzerland) and
detached using 0.7ml of trypsin (0.25% in phosphate-buffer saline,
PBS, Biowest, Nuaille´, France). The trypsin reaction was stopped by
adding 10ml of L15/FBS medium. The resulting cell suspension was
centrifuged at 1000 rpm, 19 °C for 3min. The density of the harvested
cells was estimated by manual counting using haemocytometer. The
cells were diluted to required volume in L15/FBS and seeded to each
well in 24 well plates (Falcon™ Polystyrene Microplates) at a density of
5× 104 cells well−1 and incubated at 19 °C for 48 h prior to experi-
ments.

2.2. Exposure media composition

Two experimental media (i) FW and (ii) SW were conceptually de-
signed from [27,28,6] to closely represent the luminal ionic composi-
tion of the freshwater (FW) and seawater (SW) acclimated salmonids,
respectively (Table 1). One other medium (L15/ex), adapted from [29],
was used as reference to test the viability of cells when treated with
experimental media compositions. The composition of the reference
exposure medium was based on the ionic concentration of complete L-
15 medium used to culture the RTgutGC cells without amino acids or
serum and was shown to be able to maintain viability of the cells up to
72 h [21]. The nominal and analysed ionic concentrations of exposure
media are presented in Table 1. The concentrations of ions were ana-
lysed using a PE NexION 350D ICP-MS instrument following the
method as described in [25].

2.3. Cell viability assay

The metabolic activity of the cells, measured with the Alamar blue
assay, was used to indicate cell viability. Cell suspension in complete
L15/FBS was seeded to 96-well plates at a density of 4× 104 cells
well−1 and incubated at 19 °C for 24 h before exposure to different
experimental media. After 24 h, the L15/FBS medium was removed
from each well, rinsed twice with phosphate buffered saline (PBS) and
treated with L15/ex, FW or SW medium with total nominal zinc con-
centrations of 0, 25, 50, 100 and 150 μM; the respective analysed Zn
concentrations were 0.2, 25.2, 52.1, 105.8 and 158.3 μM. The viability
of cells was examined at 12 h, 24 h and 48 h post-exposure to experi-
mental media by incubating in dark for 1 h at 19 °C with the Alamar
blue reagent (10 μLwell−1) and absorbance recorded at 570 nm, with
600 nm as a reference wavelength using a spectrophotometric plate
reader.

Table 1
Chemical and ionic composition of the experimental media tested.

Chemical
composition (mM)

L15/ex Freshwater
(FW)

Seawater
(SW)

Values from
literature
reports

Sodium nitrate 155 155 155
Potassium nitrate 6.2 6.2 6.2
Magnesium sulfate 3.8 19.5 51.1
Calcium nitrate 1.5 5.4 5.4
HEPES 5.0 5.0 5.0
Magnesium

chloride
– 15.0 44.9

Sodium pyruvate 5.7 5.7 5.7
Galactose 5.7 5.7 5.7
pH 7.1 7.4 7.4
Ionic strength 178.0 258.0 400.0

Ionic composition
(mM)

FW‡ SW§

Calcium, Ca2+ * 1.6 ± 0.1 5.3 ± 0.2 5.1 ± 0.2 2 - 4 60 -
185

Magnesium, Mg2+ * 3.9 ± 0.3 32.5 ± 0.7 89.4 ± 2.5 15 - 25 50 -
135

Potassium, K+ * 8.2 ± 1.2 8.6 ± 1.1 7.6 ± 1.3 8 - 10 3 - 14
Sodium, Na+ * 160 ± 3 157 ± 2 153 ± 3 100 -

150
100 -
225

Nitrate, NO3
- ** 164 172.4 172.4

Sulfate, SO4
- ** 3.8 18.7 48.6

Chloride, Cl- ** 1.5 31.5 94.5 25 - 35 60 -
120

*analysed (n= 3); **nominal. L15/ex, adapted from [29]; FW and SW, con-
ceptually formulated to mimic ionic composition of intestinal luminal fluid in
freshwater [27,28]‡ and seawater [6] § acclimated salmonids. Ionic strength
was calculated using the software Visual MINTEQ.
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2.4. Zinc (65Zn) influx assays

2.4.1. Effect of ionic composition of the medium
The RTgutGC cells were seeded to 24 well plates at a density of

5× 104 cells well−1 in complete L15/FBS medium, and incubated at
19 °C for 48 h. Subsequently, the medium in the wells were removed,
rinsed thoroughly with PBS, treated with respective experimental
medium and allowed to acclimatise for 20min. Later, the cells were
treated with the same medium with 65Zn(II) (as ZnCl2; approx. 4 kBq/
ml; Perkin-Elmer, USA) added at different concentrations (added as
ZnSO4 solution, molecular biology grade, Sigma) and incubated at 19 °C
for 15min. The medium was then recovered from the well, rinsed with
ice cold medium (with 200 μM Zn, pH 7.4) and quench buffer (with
5mM EGTA, pH 7.4) for 5min to remove any adsorbed 65Zn(II). The
monolayer of cells adhered to the bottom of the wells were digested
with 100 μl of 2% hot SDS detergent and the cellular material recovered
completely. The cell digests were then counted for radioactivity using
1282 Compugamma Laboratory Gamma Counter, LKB Wallac. The
counts per minute (cpm) obtained were corrected for background ac-
tivity and radioactive decay, and converted using specific activity cal-
culations following the formulae of Glover and Hogstrand [3]. In each
treatment group, 6 wells were used; 3 wells were exposed to 65Zn
containing medium, whereas 3 others were exposed to equivalent
concentrations of Zn from ZnSO4 only. The latter were used for de-
termining the protein concentration of cells (after homogenisation with
500 μl of 0.5M NaOH) using Bradford assay kit (Bio-Rad) with BSA as
the standard. The rate of uptake was expressed as pmoles Zn
min−1 mg−1 protein.

2.4.2. Impact of methionine on Zn uptake
Zn uptake by RTgutGC cells were examined in FW and SW media

compositions in the presence of L-methionine (L-Met, Sigma) or DL-
methionine (DL-Met, Alfa Aesar). The cells were exposed to nominal
concentrations of 3.07, 6.14, 12.27 and 24.55 μM 65Zn(II) in FW and
SW media (i) without amino acids (control) or with 2mM of (ii) L-Met
or (iii) DL-Met. The pH of all experimental media preparations were
adjusted to 7.4 using 0.5M NaOH. The preparation of cells prior to
experimental exposure and the assay conditions were as described in
2.4.1. The exposure period was 15min and experiments were per-
formed in triplicate (n= 3) with three technical (well) replicates per
experiment. The influx of 65Zn(II) was calculated as described in 2.4.1.

2.4.3. Impact of amino acid transport inhibitor on zinc uptake
Cells were seeded in 24 well plates as described in 2.4.1 and ex-

posed to FW or SW medium with a nominal concentration of 10 μM
65Zn(II) either without amino acids (i) or with 2mM of (ii) L-Met, (iii)
D-methionine (D-Met, Sigma) or (iv) DL-Met. The exposure to the above
media preparations were made in the presence or absence of 10mM of
an amino acid transport inhibitor (2-Aminobicyclo [2.2.1] heptane-2-
carboxylic acid, BCH, Sigma). The exposure period was 15min and
assay conditions were as described in 2.4.1. The experiment was per-
formed in triplicate (n= 3) with three technical (well) replicates each
time.

2.4.4. Data analyses
The data presented in this manuscript are mean of three repeated

observations (n= 3), analysed using GraphPad Prism version 7 for
Windows, GraphPad Software, California, USA. Data on EC50 for Zn
exposure in FW and SW medium were estimated using a four para-
meter, variable slope model. The test of significance between EC50 in
FW and SW media was obtained through fit-comparison option avail-
able in GraphPad Prism. Rest of the data were analysed by two-way
ANOVA followed by Tukey’s multiple comparison test; whenever the
interaction effect was significant, one-way ANOVA was employed to
make group-wise comparisons using Tukey’s multiple comparison test.

3. Results

3.1. Cell viability assay

The metabolic activity of the cells exposed to the FW and SW media
compositions were on par with the cells exposed to the reference
medium (L15/ex) at 12 h, and declined thereafter in SW treated cells in
a time-dependent manner (Fig. 1). The exposure to increasing con-
centrations of Zn in the medium reduced the metabolic activity of the
cells in a dose dependent manner (Fig. 2). Analysis of the cell viability
data using a four parameter, variable slope model indicated that the
EC50 for Zn (as μM, mean ± SE) was not significantly different be-
tween RTgutGC cells exposed to FW (59.7 ± 12.1) or SW (83.2 ± 7.2)
media (P=0.43).

Fig. 1. Viability of RTgutGC cells (measured with Alamar blue assay) exposed
to FW (black bar) and SW (grey bar) experimental media relative to L15/ex
(white bar) as reference medium. Data are represented as mean ± SD (n= 3)
of 12, 24 and 48 h exposure periods. Two-way ANOVA showed significant effect
of both media composition (P < 0.01) and time (P < 0.05). Asterisk (*) in-
dicates significant difference at each time point as obtained through Tukey’s
multiple comparison test (**, P < 0.01) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article).

Fig. 2. Concentration dependent decrease in metabolic activity of RTgutGC
cells exposed to total zinc concentrations from 0 to 160 μM in FW (filled circle,
solid line) or SW (open circle, dashed line) after 12 h exposure, normalised to
L15/ex. Four parameter, variable slope model used to calculate EC50 for Zn
(mean ± SE, in μM) in RTgutGC cells exposed to FW (59.7 ± 12.1) and SW
(83.2 ± 7.2) media, however the difference was not statistically significant
(P= 0.43). The test of significance was performed in GraphPad Prisim by the
option to compare best-fit values of specific parameter (EC50) between two data
sets.
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3.2. Effect of media composition and methionine chelation on apical Zn
uptake

The influx of 65Zn increased with increasing Zn concentration in the
media (P < 0.001). The difference in the ion composition between FW
or SW media did not have a significant impact the influx of 65Zn in
RTgutGC cell line (Fig. 3). Methionine (L- or DL-) inclusion in the media
at 2mM concentration significantly influenced the apical influx of Zn in
RTgutGC cells (Fig. 4). Two-way ANOVA showed significant interaction
effect (L-met, P < 0.001; DL-met, P= 0.02) between Zn concentration
and media ionic composition on the impact of methionine on Zn uptake.
Post-hoc comparison following one-way ANOVA showed that Zn uptake
in the presence of methionine (L-Met or DL-Met) was significantly lower
in SW treated cells at higher Zn concentrations (12 and 25 μM)
(P < 0.05). Cells exposed to amino acids along with the amino acid
transporter blocker (BCH) showed a significant (P < 0.001) reduction
in 65Zn uptake when compared to cells untreated with BCH. The effect
was more pronounced and stereospecific in SW than in FW conditions
(Fig. 5).

4. Discussion

Ionic composition in the gastrointestinal (GI) lumen of fish can vary
depending on the environment (salinity induced hypo- or hyper-os-
moregulation), feeding status (time after a meal) and diet composition
(ion concentration of the diet). In rainbow trout, in vitro metal uptake
studies have used artificial saline preparations to closely mimic the
ionic composition found in the GI lumen [30–33]. However, large
variations seem to exist in the Ca2+ and Na+ concentrations between
the artificial saline and actual measurements in rainbow trout. The Na+

concentration in the intestinal luminal content of rainbow trout
10–20 h post-meal and 24 h after sudden change to seawater varies
from about 100–225mM [6]; whereas, in the mucosal saline used for
the in vitro studies the Na+ concentration ranges between 0 and 60mM
[30–33]. Similarly, the Ca2+ concentration in the mucosal saline used
in studies in rainbow trout [33] and other marine/seawater adapted
fish was about 5mM [30–32]; whereas, in intact marine fish, the lu-
minal content was reported to vary from 60 to 185mM [6]. Higher
Ca2+ levels tend to precipitate chloride and sulfate, and hence it might
be a methodological consideration with in vitro studies to use less Ca2+.
Moreover, in marine fish, the high Ca2+ entering the GI lumen through
drinking of seawater is precipitated as calcium carbonate aided by Ca2+

induced bicarbonate secretions from the intestinal epithelium [34]. In
this context, it is not known if bicarbonate secretion is active in
RTgutGC cell line and this merits further investigation. In the present
study, although the Na+ concentrations were closer to the range of
those found in seawater living rainbow trout during digestion of a meal
[6], the Ca2+ concentrations were considerably lower (see Table 1).
The effect of luminal Ca2+ on intestinal zinc uptake is complex; it sti-
mulated epithelial Zn uptake in rainbow trout, but inhibited post-in-
testinal accumulation of Zn [7]. It is therefore possible that the differ-
ence in Ca2+ concentrations used in the present study and that in the
seawater rainbow trout intestine influenced our results but it is difficult
to predict the directionality of this uncertainty.

Zinc transport across cellular and intracellular membranes takes
place through Zn transport proteins (Zip and Znt) [18]. Transport of Zn
into the cytosol is mediated by members of the slc39 (Zip) transporter
family, while movement of Zn away from the cytosol, either into or-
ganelles or out of the cell, is achieved through members of the slc30
(Znt) transporter family [35]. In mammals, Zip1–6 and Zip14 are

Fig. 3. Impact of ion composition in the medium on Zn influx in RTgutGC cells
(mean±SD; n=3): Zn influx under FW (black bars) and SW (grey bars) media.
Data were analysed through two-way ANOVA, followed by Tukey’s multiple
comparison test. The P-values of ANOVA are presented in insets and the post-
hoc differences among groups are represented as superscript letter above the
bars. Bars with different are statistically different (P< 0.05).

Fig. 4. Impact of methionine chelation on Zn influx in RTgutGC cells
(mean± SD; n=3): Zn influx under FW (black bars) and SW (grey bars)
medium (A) with 2 mM L-methionine; (B) 2 mM DL-methionine. Data were
initially analysed by two-way ANOVA, which showed a significant interaction
effect. Therefore, one-way ANOVA was performed followed by Tukey’s multiple
comparison test. The post-hoc differences among groups are represented by
superscript letter above the bars. Bars with different letters differ significantly
(P< 0.05).
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involved in Zn uptake from extracellular fluid; Zip4 located at the
apical surface and Znt1 at the basolateral membrane of intestinal epi-
thelia are of vital importance for uptake of dietary Zn [36,37]. The
mRNA and protein levels of key Zn transporters were differentially
expressed in the duodenum of pigs fed ZnSO4 or Zn-chitosan chelate as
the dietary Zn source; the ZnSO4 group, with more ionic Zn(II) had
significantly higher Zip4 and Zip5 protein abundance [38]. Although
Zip transporters are involved in the uptake of ionic Zn(II), other diva-
lent metal transport systems (DMT1, CTR1, TRPV6) [39,40] and amino
acid mediated pathways may also contribute to Zn uptake in mammals
[41,42]. However, in fish Trpv6 is not expressed in the intestine and the
importance of Dmt1 and Ctr1 for intestinal Zn uptake are not known. It
has been suggested that amino acid-linked Zn transport occurs in fish
intestine [3,17]. Zn uptake in brush-border membrane vesicles was
correlated to mono-histidine species [17] and the bis-histidine Zn
complex was bioavailable to rainbow trout in vivo [3]. The effects of
histidine and cysteine on the uptake of Zn by mammalian erythrocytes
have also been suggested to be mediated by the bis-complex of metal-
amino acid species [42]. The donor ligand hypothesis and/or the
transported chelate hypothesis have been suggested as the two plau-
sible means of amino acid aided metal transport in fish [3,17,20,43].
The donor-ligand hypothesis assumes that amino acid ligand aids is
shuttling metals from inhibitory ligands in the luminal chyme to
dedicated metal transporters; whereas, in the transported-chelate hy-
pothesis an alternative transport pathway which accepts the metal-
amino acid chelate as a substrate is proposed. In rainbow trout brush
border membrane vesicles, lack of stereospecific action of histidine (L-

or D-) upon apical Zn(II) uptake suggested of the donor-ligand ex-
change, but was not in support of the transported chelate hypothesis
[17]. However, the possibility of fish amino acid transport system being
less stereospecific was also suggested, contrary to mammals [44].
Nevertheless, the impact of different stereoisomers is important to be
studied as the efficiency of organic Zn additive used in fish feeds can be
related to the stereoisomer used to chelate. Moreover, it is of relevance
in understanding the possibility of methionine supplements (L- or DL-)
used in fish feeds improving Zn uptake. By studying the uptake of
copper (Cu) from Cu-histidine in the presence of an array of potential
histidine transport system inhibitors, Glover et al. [20] suggested a
distinct transport system for Cu-histidine chelates in rainbow trout
brush border membrane vesicles, in vitro. Recently, manganese (Mn)
from Mn-lysine complex has been suggested to be transported by
amino-acid uptake pathways (y+ and b0,+), different from the ionic
Mn2+ uptake pathway in primary rat intestinal epithelial cells [45]. In
the present study, Zn uptake increased in the presence of methionine
and it was reduced upon simultaneous exposure to BCH, a potent
blocker of Na+-dependent methionine transport systems in intestinal
epithelial cells [46,47]. These data suggest that the Zn-methionine
chelate is transported through an amino acid mediated uptake pathway,
similar to that suggested for Cu-histidine and Mn-lysine [20,45].
Therefore, the transported chelate hypothesis merits further investiga-
tion.

In mammals, amino acid uptake systems are pH sensitive and are
either Na+-dependent (B° and B0,+), or Na+-independent (b0,+, L, and
y+); whereas, systems B0,+, b0,+, and y+ are used by cationic amino
acids, systems B° and L are specific for neutral amino acids [46,48].
Understanding of the different amino acid uptake pathways and the
mode of action of the amino acid transport blocker used (BCH) is re-
quired to comprehend the differential effects of BCH on Zn uptake in
RTgutGC cells exposed to FW and SW medium. BCH competes with
methionine as a substrate of transport systems, which includes both the
Na+-dependent system (B° and B0,+) and a part of the Na+-in-
dependent (L-type) amino acid transport systems [46]. While the use-
fulness of BCH to study amino acid uptake systems is documented, no
reports are available to refer if BCH has the ability to chelate Zn. We
hereby show that BCH alone was neither able to significantly increase
or decrease the uptake of Zn(II), which implies that Zn chelation with
BCH was not favored under the test conditions. In fish, the Na+-
mediated components of amino acid transport in the intestine are de-
pendent on luminal Na+ concentration, whereas only the non-mediated
components are functional in the absence of luminal Na+ [49,50]. Al-
though the Na+ concentration and pH of the medium was not different
between FW and SW, the effect of BCH in reducing Zn uptake in the
presence of methionine was more potent in cells exposed to SW
medium. This observation could possibly be due to a differential con-
tribution of the Na+-independent system in amino acid uptake under
FW and SW luminal conditions. Indeed, in the European seabass (Di-
centrarchus labrax), the contribution of the saturable Na+-independent
component was much higher for epithelial transport of methionine,
compared to other amino acids namely glycine or alanine [51]. Further
studies targeting specific Zn(II) and putative Zn-amino acid chelate
transport systems are required to better understand the underlying
mechanisms.

With increasing inclusion of plant derived protein sources used in
salmonid feeds, availability of dietary Zn is reduced and requires higher
supplementation levels than those recommended by NRC [52] to meet
the Zn requirement of salmonids [53]. Due to environmental concerns,
the European Food Safety Authority (EFSA) opinion suggested reduc-
tion in the maximum permissible Zn levels in salmonid feeds from 200
to 150mg kg−1 complete feed and also laid emphasis on improving the
availability of dietary Zn to limit Zn emissions [54]. In this context, our
present study provides basic data in support of Zn-Met chelation to
improve apical Zn uptake in the enterocytes, but also the possibility of a
physiological limitation under luminal conditions of high ionic

Fig. 5. Impact of amino acid transport inhibitor (2-Aminobicyclo [2.2.1] hep-
tane-2-carboxylic acid, BCH, 10 mM) on zinc influx in RTgutGC cells exposed to
FW (A) and SW (B) medium. L-methionine (L-Met), D-methionine (D-Met) or
DL-methionine (DL-Met) added at 2 mM concentrations. No-AA (without me-
thionine, negative control); CON, control with methionine; +BCH, with BCH.
Data presented as mean±SD (n=3) analysed using two-way ANOVA, with Met
and BCH as main effects (No-AA treatments were not included in the two-way
ANOVA model). P-values of the main effects and their interaction are provided
as insets. The differences between groups as obtained by Tukey’s multiple
comparison test are shown as superscript letter over the bars. Bars with dif-
ferent letters are significantly different (P<0.05).

P. Antony Jesu Prabhu et al. Journal of Trace Elements in Medicine and Biology 50 (2018) 377–383

381



concentration. The lack of functional adaptability in RTgutGC cells to
SW ionic conditions due to short exposure and lack of convincing data
to discern if the cells exhibited uptake at initial rate or saturation ki-
netics are potential limitations of this study. RTgutGC exhibited a
transient induction in mRNA expression of Na+/K+-ATPase (α-subunit)
only up to 24 h upon exposure to a high ionic SW medium [21].
Therefore, the uptake characteristics displayed by the RTgutGC cells
herein can be more comparable to rainbow trout enterocytes exposed to
seawater challenge and not that displayed by a seawater adapted fish.
Our previous research on zebrafish suggests that there is no or limited
systemic control of zinc uptake across the intestine, in the sense of
humoral regulation, and the intestinal epithelium is responding directly
to the Zn availability in the gut [55]. This improves the relevance of an
in vitro system for studies on Zn uptake; nevertheless, a cell culture will
always be a model of reality. Hence, translating the results from this in
vitro uptake study in an enterocyte cell line to intestinal Zn uptake in
vivo should be viewed with these constraints in mind.

The findings of this study towards understanding intestinal Zn up-
take under different ionic conditions and dietary Zn forms will be of
high practical interest in fish nutrition. To conclude, using RTgutGC we
found no evidence for a difference in Zn uptake in media representing
the intestine of FW and SW salmonids. However, Zn uptake in the
presence of methionine was influenced by the ionic concentration in the
media.
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A B S T R A C T

The composition of salmonid diets has changed from the use of mainly marine ingredients to increased use of
plant ingredients, and this has an impact on the mineral content and availability. Minerals, like zinc (Zn),
selenium (Se) and manganese (Mn), are supplemented to diets as inorganic or organic forms to cover the nu-
tritional requirements of fish. This study compared the apparent availability (AA) of Zn, Se and Mn from in-
organic metal salts and their organic forms in Atlantic salmon. Sixteen diets were prepared based on a two-level
factorial design (24). The tested factors were Zn additive source (A), Se additive source (B), Mn additive source
(C) and phytic acid level (D). The diets were fed to Atlantic salmon for 11 days, faeces were collected by
stripping, and the total content of mineral and yttrium in diets and faeces were determined by inductively
coupled plasma mass spectrometry. Data obtained were used to estimate the AA for the minerals. Zinc additive
source had no significant effect on the AA of Zn. However, the Se and Mn additive source had significant effects
on the AA of Se and Mn, respectively. Higher AA of Se was achieved with selenomethionine than with selenite,
and Mn sulphate was more available than Mn chelate of glycine. The phytic acid level did not significantly affect
the AA of Zn, Se or Mn. However, several interactions between mineral additive sources and the phytic acid level
significantly affected the AA of Zn, Se and Mn.

1. Introduction

For many years in aquaculture industry, fish meal and fish oil were
used as main ingredients in diet formulation. Over the last 10–15 years,
access to fish meal and fish oil has become more difficult due to their
price and aquaculture industry growth. As a consequence, the for-
mulation of salmonid diets has changed and nowadays most commer-
cial salmonid diets contain>70% of plant ingredients (Ytrestoyl et al.,
2015). Minerals such as zinc (Zn), selenium (Se) and manganese (Mn)
are naturally present in fish meal and in plant ingredients. In fish meal,
Zn, Se and Mn are present in concentrations ranging from 64 to
74mg kg−1, 1.5 to 3.1 mg kg−1 and 3.6 to 12mg kg−1, respectively
(Sanden et al., 2013). Zinc, Se and Mn are present in plant ingredients
in concentrations ranging from 35 to 48mg kg−1,< 0.01 to
0.16mg kg−1 and 26 to 46mg kg−1, respectively (Sanden et al., 2017).
In addition to the native sources found in ingredients, Zn, Se and Mn are
supplemented to salmon diets as inorganic metal salts or their organic
forms to meet the nutritional requirements of the fish (NRC, 2011;

Schlegel et al., 2008). In the European Union, the current upper limit
for total Zn in complete feed of all fish except salmonids is 150mg kg−1

and for salmonids feeds it is 180mg kg−1 feed (European Commission,
2003, 2016). The current upper limit for total Se in fish feed is
0.5 mg kg−1 (European Commission, 2003) and the supplementation of
organic Se must not exceed 0.2 mg kg−1 in complete feed (European
Commission, 2013a, b, 2015, 2017a, b). The upper limit in feed for Mn
is 100mg kg−1 (European Commission, 2017c, 2003).

Phytic acid is commonly found in cereal grains. Thus, the use of
plant-based ingredients will add phytic acid in fish diet (Kumar et al.,
2012; Lall, 2003). The phytic acid molecule is a very reactive molecule
due to the presence of phosphate groups which are highly negatively
charged. Hence, the molecules tend to bind divalent cations (e.g. Ca+2,
Fe+2, Zn+2) rendering them poorly available to the fish (Cao et al.,
2007; Kumar et al., 2012). In fish, the availability of minerals from a
diet is dependent on the diet composition, the chemical form of the
mineral, and possible interactions with other diet components and
nutrients coexisting in the gastrointestinal tract (Lall, 2003; Watanabe
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et al., 1997). Finding mineral sources with higher availability can re-
duce the amount of minerals one needs to add to the diets. Conse-
quently, there is an increasing interest of comparing the availability of
inorganic metal salts and their organic forms. A systematic review,
where a large number of studies were included, discussed the avail-
ability of organic mineral sources over the respective inorganic forms in
fish (Prabhu et al., 2016). Herein it was concluded that Se organic forms
(selenomethionine (SeMet) and selenoyeast (Se yeast)) have higher
availability when compared with the inorganic form of Se (selenite).
However, for Zn and Mn sources, the data available in literature was
found to be highly variable and inconsistent across studies (Prabhu
et al., 2016).

Mineral availability studies have been performed in salmonids
species, such as Atlantic salmon (Salmo salar) (Bell and Cowey, 1989;
Maage et al. 2001), coho salmon (Oncorhynchus kisutch) (Sugiura et al.,
1998) and rainbow trout (Oncorhynchus mykiss) (Apines-Amar et al.,
2004; Fontagne-Dicharry et al., 2015; Rider et al., 2010; Sugiura et al.,
1998). Bell and Cowey studied the digestibility and bioavailability of
dietary Se from fish meal, selenite, SeMet and selenocystine (SeCys) in
Atlantic salmon. Selenomethionine was found to be the most available
Se source (91.6 ± 1.0%) followed by selenite (63.9 ± 4.26%) (Bell
and Cowey, 1989). Maage and co-workers compared the availability of
an organic Zn form (Zn gluconate) with the availability of an inorganic
Zn form (Zn sulphate) in Atlantic salmon. Herein, the results obtained
showed no differences in Zn status between groups given different Zn
forms (Maage et al., 2001). Sugiura and colleagues studied mineral
availability of different ingredients (e.g. animal and plant-based in-
gredients) for salmonid diets. The apparent availability (AA) of calcium
(Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), sodium
(Na), phosphorous (P), strontium (Sr), Mn and Zn in ingredients were
determined in coho salmon and rainbow trout, and the AA of the mi-
nerals studied varied among the ingredients (Sugiura et al., 1998).
Rider and co-workers compared the digestibility of inorganic and or-
ganic forms of Zn and Se in rainbow trout. Three marine-based diets
(diet without supplementation, diet supplemented with selenite and Zn
sulphate, and diet supplemented with Se yeast + Zn proteinate) were
tested. The outcome of this study was that the diet supplemented with
Se yeast had higher digestibility than the diet without supplementation
and the diet supplemented with selenite. The digestibility of Zn was
similar in the three treatments (Rider et al., 2010). Fontagné-Dicharry
and colleagues studied the influence of Se chemical forms and levels on
antioxidant status in rainbow trout fry. They found that plant-based
diets need to be supplemented with Se to ensure adequate antioxidant
status. In the same study, the Se availability was higher in a diet sup-
plemented with Se yeast than in a diet supplemented with selenite or a
non-supplemented diet (Fontagne-Dicharry et al., 2015). Apines-Amar
and co-workers compared the absorption of Zn, Mn and Cu in rainbow
trout, using one diet supplemented with inorganic salts and two diets
supplemented with amino acid chelate. Higher absorption of Zn and Mn
was obtained using diets supplemented with amino acid chelate, while
higher absorption of Cu was obtained using the diet supplemented with
inorganic salt (Apines-Amar et al., 2004). In the current study, we will
provide data on the effect of the inorganic and organic forms of Zn, Se
and Mn on Zn, Se and Mn availability in Atlantic salmon.

Design of experiments (DOE), a multivariate experimental design
approach, offers a large number of advantages over the one-factor-at-a-
time approach. Two of the most important advantages of DOE are the
ability to estimate the effect of each factor individually and to study
interaction effects simultaneously (Miller, 2010; Montgomery, 2008).
The DOE includes a wide range of designs such as Box-Behnken, latin
square, randomized complete block design, central composite, frac-
tional factorial design, and full factorial design. The full factorial design
(FFD) is the most commonly used design due to the intuitive strategy of
this experimental design (Hicks and Turner, 1999). The popularity of
FFD has grown in the last years in different research fields, including
aquaculture. Some successful applications of the FFD within

aquaculture research have been reported (Hu et al., 2011; Nicolaisen
et al., 2014; Søfteland et al., 2016). For instance, Nicolaisen and co-
workers used FFD as a tool to optimize rearing conditions of fish larvae
(Nicolaisen et al., 2014). Moreover, FFD was applied in a study ex-
amining how nutrients can modulate the toxicological outcome of
contaminants in novel diets for Atlantic salmon (Søfteland et al., 2016)
and in a study of CO2 removal method in recirculating aquaculture
waters (Hu et al., 2011). Until now, the FFD have not been used in
mineral availability studies in fish. This is the first study using FFD to
study the chemical forms of the supplemented minerals as well as the
interactions among minerals.

The aim of the present study was to compare the AA of inorganic
and organic forms of Zn, Se and Mn in Atlantic salmon (Salmo salar)
diets. The research hypotheses are (i) the AA of Zn, Se and Mn are
dependent on their chemical form, (ii) the interactions between Zn, Se
and Mn sources in the diet have an influence on their AA, and (iii) the
AA of Zn, Se and Mn are affected by dietary phytic acid.

2. Materials and methods

2.1. Experimental design

The experiment design was a two-level FFD with four factors
(24= 16 diets). The tested factors were Zn additive source (A), Se ad-
ditive source (B), Mn additive source (C) and phytic acid level (D). Two
factorial levels were used and coded as “−1” and “+1” for inorganic
and organic mineral additive source (factors A, B and C) or low and
high phytic acid level (factor D), respectively. The factors Zn additive
source (A), Se additive source (B), Mn additive source (C) are qualita-
tive variables and the factor phytic acid level (D) is a quantitative
variable. Table 1 shows the variables and levels used for each factor,
and Table 2 describes the 16 experimental diets.

2.2. Experimental diets

The 16 experimental diets were produced at Skretting Aquaculture
Research Centre (Stavanger, Norway). All diets contained the same type
of ingredients but the proportions were adjusted to have two basal
mixtures with a low and a high phytic acid level, as described in
Table 3. Yttrium oxide (Y2O3) was added as an inert marker. Zinc sul-
phate monohydrate (ZnSO4.H2O, Zn 35%, Vilomix, Hønefoss, Norway),
zinc chelate of glycine hydrate (Zn(x)1–3.nH2O, x= anion of glycine
(C2H4NO2−), Zn 26%, Phytobiotics, Eltville, Germany), sodium selenite
(Na2SeO3, Se 4.5% BMP, DSM nutritional products, Basel, Switzerland),
L-selenomethionine (C5H11NO2Se, Se 0.16%, Orffa Additives, Wer-
kendam, The Netherlands), manganous sulphate monohydrate
(MnSO4.H2O, Mn 32%, Vilomix, Hønefoss, Norway), manganese che-
late of glycine hydrate (Mn(x)1–3.nH2O, x= anion of glycine
(C2H4NO2−), Mn 22%, Phytobiotics, Eltville, Germany) were used as
mineral additive sources. The nominal concentration of Zn, Se and Mn

Table 1
Experimental design factors (A-D) and respective levels; two factorial levels
coded as “−1” and “+1” for inorganic and organic mineral additive source
(factors A, B and C) or low and high phytic acid level (factor D), respectively;
factors A – zinc additive source, B – selenium additive source and C – manga-
nese additive source are qualitative variables and factor D – phytic acid level is
a quantitative variable.

Factor Level -1 Level +1

A – zinc additive source zinc sulphate zinc chelate of glycine
B – selenium additive

source
selenite selenomethionine

C – manganese additive
source

manganous
sulphate

manganese chelate of
glycine

D – phytic acid level low high
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were 150mg kg−1 diet, 0.5 mg kg−1 diet and 25mg kg−1 diet, respec-
tively. The concentration of Zn, Se and Mn in the ingredients was de-
termined and this information was taken into consideration when

preparing the diet formulation.

2.3. Fish and experimental conditions

The feeding trial took place at Lerang Research Station (Skretting
Aquaculture Research Centre, Lerang, Norway) according to Norwegian
(FOR-2015-06−18-761) and European legislation (Directive 2010/
63/EU). Atlantic salmon (SalmoBreed strain) were reared in seawater
with continuous light (24 h). The salmon used in this trial had a mean
initial body weight of 294 ± 11 g (n=1584). Each diet was tested in
triplicate tanks, thus the salmon were randomly distributed to 48 tanks
(450 L tanks) and each tank contained 33 fish. The fish were acclimated
in their respective tank for 20 days while being fed a commercial diet
(Spirit 3 mm, Skretting). The fish were fed the experimental diets for
11 days. The fish were fed using automatic feeders three times a day.
Collection and weighing of uneaten diet were conducted 30min after
the end of each meal and based on these data, diet intake was calcu-
lated. The average diet intake was 0.55 ± 0.08% (n=48) of body
weight day −1. During the trial, the average saturation of dissolved
oxygen in the seawater was 101 ± 5% (n=9) and the average tem-
perature in the seawater was 11.9 ± 0.3 °C (n=29).

2.4. Sampling

Fish were killed by overdose using 6mL of tricaine methanesul-
phonate stock solution per L−1 of water (PharmaQ, Bergen, Norway).
Subsequently, the fish was individually weighed and length measured.
A pooled sample of faeces from fish (n=20) from the same tank was
collected into a plate by stripping from the ventral fin to anus. The
sample was collected in a 50mL falcon and immediately stored at
−20 °C. The samples were kept at −20 °C until further analysis.

2.5. Chemical analysis

2.5.1. Chemicals and reagents
Analytical reagent grade chemicals and Milli-Q® water

Table 2
Full factorial design, number of experimental diets, factors and experimental responses as apparent availability (AA, %) for zinc (Zn), selenium (Se) and manganese
(Mn) in Atlantic salmon fed the 16 experimental diets for 11 days; the factors Zn additive source (A), Se additive source (B), Mn additive source (C) were coded as
“−1” and “+1” for inorganic and organic mineral additive source, respectively; the factor phytic acid level (D) was coded as “−1” and “+1” for low and high phytic
acid level, respectively; Factor level codes are shown as “-1” or “+1” followed by the real factor level (shown between parenthesis); ZnSul= Zn sulphate,
ZnCheGly= Zn chelate of glycine, SeMet= selenomethionine, MnSul=Mn sulphate, MnCheGly=Mn chelate of glycine. The AA (%) was determined by AA=100
– [100*(yttrium in diet/yttrium in faeces)*(Zn or Se or Mn in faeces/Zn or Se or Mn in diet)]; The AA (%) values are presented as average ± standard deviation
(n=3).

Diet Factors Response (AA, %)

A
Zn additive source

B
Se additive source

C
Mn additive source

D
Phytic acid level

Zn Se Mn

1 -1 (ZnSul) -1 (Selenite) -1 (MnSul) -1 (low) 31 ± 12 63 ± 4 31 ± 12
2 1 (ZnCheGly) -1 (Selenite) -1 (MnSul) -1 (low) 31 ± 3 66 ± 2 21 ± 2
3 -1 (ZnSul) 1 (SeMet) -1 (MnSul) -1 (low) 34 ± 9 74 ± 2 35 ± 16
4 1 (ZnCheGly) 1 (SeMet) -1 (MnSul) -1 (low) 34 ± 5 74 ± 2 24 ± 14
5 -1 (ZnSul) -1 (Selenite) 1 (MnCheGly) -1 (low) 24 ± 1 64 ± 4 4 ± 10
6 1 (ZnCheGly) -1 (Selenite) 1 (MnCheGly) -1 (low) 35 ± 2 61 ± 3 27 ± 12
7 -1 (ZnSul) 1 (SeMet) 1 (MnCheGly) -1 (low) 44 ± 6 76 ± 4 14 ± 10
8 1 (ZnCheGly) 1 (SeMet) 1 (MnCheGly) -1 (low) 29 ± 13 67 ± 6 31 ± 17
9 -1 (ZnSul) -1 (Selenite) -1 (MnSul) 1 (high) 27 ± 8 58 ± 5 20 ± 13
10 1 (ZnCheGly) -1 (Selenite) -1 (MnSul) 1 (high) 34 ± 5 68 ± 4 38 ± 7
11 -1 (ZnSul) 1 (SeMet) -1 (MnSul) 1 (high) 27 ± 6 69 ± 4 28 ± 15
12 1 (ZnCheGly) 1 (SeMet) -1 (MnSul) 1 (high) 36 ± 5 72 ± 4 32 ± 14
13 -1 (ZnSul) -1 (Selenite) 1 (MnCheGly) 1 (high) 38 ± 5 65 ± 11 36 ± 12
14 1 (ZnCheGly) -1 (Selenite) 1 (MnCheGly) 1 (high) 45 ± 16 64 ± 10 25 ± 32
15 -1 (ZnSul) 1 (SeMet) 1 (MnCheGly) 1 (high) 28 ± 4 62 ± 8 1 ± 10
16 1 (ZnCheGly) 1 (SeMet) 1 (MnCheGly) 1 (high) 23 ± 5 68 ± 3 9 ± 13

Table 3
Formulation and composition of the experimental diets (n=16); all the diets
were prepared using the same ingredients but the proportions were adjusted to
have basal mixtures for low and high phytic acid; low phytic acid and high
phytic acid refers to the concentration of phytic acid.

Ingredients (%) Low phytic acid High phytic acid

Wheat 8.3 8.1
Corn gluten 15.0 15.0
Hi-pro soya 14.4 10.0
Wheat gluten 20.0 14.3
Soya protein concentrate 10.0 20.0
Fish meala 5.0 5.0
Fish oila 9.9 10.1
Rapeseed oilb 12.3 12.6
Microingredients and premixesc 5.4 5.2
Experimental premixes (zinc, selenium and

manganese)d
0.6 0.6

Proximate composition (analysed, n=8) Average ± SD Average ± SD
Dry weight (%) 92.2 ± 0.6 92.6 ± 0.5
Lipid (%) 21.2 ± 0.6 22.0 ± 0.3
Protein, analysed as N×6.25 (%) 48 ± 2 46 ± 2
Ash (%) 4.2 ± 0.2 4.3 ± 0.1

AD of protein (%) (n=2) 93.1 ± 0.1 93.24 ± 0.05
AD of lipid (%) (n=2) 97.8 ± 0.3 97.6 ± 0.2
Phytic acid (μmol g−1) (n=2) 11.3 ± 0.1 12.0 ± 0.1

a North-Atlantic.
b European, non-GM.
c Contains monoamonium phosphate, histidine HCl, yttrium oxide, L-lysine

and DL-methionine and astaxanthin; standard vitamin and mineral mix, ex-
cluding the target minerals zinc, selenium and manganese.
d The experimental premixes were manually prepared and added to the diets

following the full factorial matrix.
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(18.2MΩ cm) (EMD Millipore Corporation, Billerica, MA, USA) were
used throughout the study unless otherwise stated. Hydrogen peroxide
(H2O2, Emsure® ACS, ISO, 30% w/w) was obtained from Merck
(Darmstadt, Germany). Nitric acid (HNO3, trace select,≥ 69.0% w/w)
was acquired from Sigma-Aldrich (St. Louis, MO, USA). High purity
ethylenediaminetetraacetic acid (EDTA) was purchased from Leco
Corporation (Saint Joseph, MI, USA). Sulphanilamide (C6H8N2O2S,
98% purity) was acquired from Alfa Aesar GmbH & Co (Karlsruhe,
Germany).

2.5.2. Biochemical analysis of diets and faeces
Diets were homogenised for 10 s at 3000 rpm using a knife mill (GM

300, Retsch GmbH, Haan, Germany) and kept at 4 °C until further
analysis. Faeces samples were freeze dried for 72 h at −80 °C, homo-
genised with a pestle and mortar into a fine powder and stored at room
temperature until further analysis. The 16 diets were analysed for dry
matter, ash content, lipid content, protein content, and faeces were
analysed for lipid content and protein content following standard pro-
cedures. Dry matter content was measured gravimetrically after drying
at 104 °C for 24 h, ash content was determined by combustion in a
muffle furnace flame combustion at 550 °C for 16–18 h, and lipid con-
tent was determined after acid-extraction (Lie, 1991). Total nitrogen
was measured with a nitrogen analyser (Vario Macro Cube, Elementar
Analysensysteme GmbH, Langenselbold, Germany) according to AOAC
official methods of analysis (AOAC, 2002), and protein calculated as
N×6.25. The instrument was calibrated with EDTA (certified re-
ference material). Sulphanilamide and a standard meat reference ma-
terial (SMRD 2000, LGC Standards, Teddington, UK) were used as
control samples. The phytic acid content was determined in the two
basal diets (i.e. low phytic acid diets and high phytic acid diets) fol-
lowing the procedure described by Zeller and co-workers (Zeller et al.,
2015). Briefly, samples were extracted with a solution containing 0.2M
EDTA and 0.1M NaF (pH 10). For sample clean-up, the extracts were
filtered through a 0.2 μm cellulose acetate filter (VWR, Darmstadt,
Germany) into a Microcon® filter (cutoff 30 kDa) device (Millipore,
Bedford, MA, USA) following manufacturer's instructions. Filtrates were
analysed using ion chromatography (Carbo Pac 200 column) and UV
detection at 290 nm after post-column derivatisation using an ICS-3000
system (Dionex, Idstein, Germany).

2.5.3. Element determination in seawater, ingredients, diets and faeces by
inductively coupled plasma mass spectrometry

The Zn, Se and Mn concentration in the seawater was measured.
Seawater samples were collected from the water inlet (n=3) and from
tanks fed diets 1, 8, 9 and 16 (n=3) using 50mL plastic containers.
The samples were kept at 4 °C and shipped on ice to an accredited la-
boratory where the analyses were performed (ALS, Oslo, Norway). The
determination of Zn, Se and Mn was performed by inductively coupled
plasma mass spectrometry (ICP-MS) according to the method EPA
200.8 (EMSL, 1996).

Ingredients were homogenised for 10 s at 10000 rpm using a knife
mill (GM 300, Retsch GmbH, Haan, Germany) and kept at room tem-
perature until further analysis. The samples were decomposed using
microwave assisted acid digestion based on the procedure previously
described (Julshamn et al., 2007). Briefly, approximately 0.2 g of diet
was digested using 2mL of HNO3 (69% w/w) and 0.5 mL of H2O2 (30%
w/w) in a Milestone-MLS−1200 microwave oven (Milestone Inc.,
Shelton, CT, USA). The digested samples were subsequently diluted to
25mL with Milli-Q® water. A similar procedure was applied to digest
the ingredients and the faeces samples. Approximately 0.2 g of sample
was digested using 2mL of HNO3 in an ultrawave digestion system
(UltraWAVE, Milestone, Sorisole, Italy). The samples were capped and
placed in the ultrawave system with a container of 130mL Milli-Q®
water and 5mL H2O2. The extracts were then diluted to 25mL with
Milli-Q® water. The Zn, Se, Mn and yttrium concentrations were de-
termined in the ingredients, diets and faeces by ICP-MS (iCapQ ICP-MS,

Thermo Scientific, Waltham, USA) equipped with an auto sampler
(FAST SC-4Q DX, Elemental Scientific, Omaha, USA). The eluate was
introduced directly into the nebulizer tube of the ICP-MS and Zn, Se,
Mn and yttrium were detected at m/z 66, 78, 55, and 89, respectively,
in the KED reaction mode. A solution of germanium and rhodium was
added on-line for correction of instrumental drift during the analysis. As
specified by the manufacturer, the tuning of the ICP-MS was performed
using a tuning solution (1 ppb tuning solution B, Thermo Fisher, in 2%
HNO3 and 0.5% HCl) prior to analysis. Data were collected and pro-
cessed using the Qtegra ICP-MS software (Thermo Scientific, version
2.1, 2013). For the quantitative determination of Zn, Se and Mn, an
external calibration curve (10 to 500 ngmL−1) was used. Two certified
reference materials (CRM) were included to assess the accuracy of the
method, i.e. lobster hepatopancreas (TORT-3; National Research
Council Canada, Ottawa, Ontario, Canada) and oyster tissue (SMR
1566b; National Institute of Standards and Technology, Gaithersburg,
USA). The obtained values for each CRM (n=5) were in agreement
with the certified values.

2.6. Calculations and statistical analysis

The experimental design matrix was drawn by using R Commander
Plugin for DOE (Groemping, 2014; R Core Team, 2018). The apparent
digestibility (AD) was determined for protein and lipid, and the ap-
parent availability (AA) was determined for minerals. The formula used
to determine AD (%) and AA (%) was previously described by Cho and
Slinger (Cho and Slinger, 1979). The AD of protein and AD of lipid was
determined according to Eq. 1:

=AD (%) 100 100 yttrium in diet
yttrium in faeces

protein or lipid in faeces
protein or lipid in diet

(1)

The AA of Zn, AA of Mn and AA of Se was determined according to
Eq. 2:

=AA (%) 100 100 yttrium in diet
yttrium in faeces

Zn or Se or Mn in faeces
Zn or Se or Mn in diet

(2)

The AA of Zn, AA of Se and AA of Mn (%) were used as responses for
statistical analysis. Data analysis was performed using the R com-
mander plugin for DOE (Groemping, 2014; R Core Team, 2018). The
Ryan-Joiner test was performed to evaluate normality of the data and
the Grubb's test was performed to check for outliers at a confidence
level of 95%. A ranking test to choose the diet with highest availability
simultaneously for Zn, Se and Mn was performed at a confidence level
of 95%. This ranking was performed comparing the median to the value
of AA obtained in each replicate and only the values above the second
quartile were considered. A two-tailed t-test was used to determine the
magnitude of the effect of the main factors and interactions at a con-
fidence level of 95%.

3. Results

3.1. Experimental diets

The proximate composition of the diets (i.e. dry matter, ash, crude
lipid and crude protein) used in this work is presented in Table 3. The
measured values for dry matter, ash, crude lipid and crude protein were
similar to the expected values.

The phytic acid concentration in low level and high level phytic acid
diets was 11.3 ± 0.1 μmol g−1 (n=2) and 12.0 ± 0.1 μmol g−1

(n=2), respectively. The total phytic acid content is a sum of myo-
inositol hexakisphosphate (InsP6) and myo-inositol pentakisphosphate
(InsP5) (i.e. Ins(12345)P5- and Ins(12456)P5) as these were the isomers
quantified in the diets of this study.
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The total concentrations of Zn, Se and Mn in the low phytic acid
diets were 144 ± 5mg of kg−1 feed w/w (n=8),
0.58 ± 0.02mg kg−1 feed w/w (n=8) and 26 ± 4mg kg−1 feed w/
w (n=8), respectively. The total concentrations of Zn, Se and Mn in
the high phytic acid diets were 140 ± 5mg of kg−1 feed w/w (n=8),
0.58 ± 0.03mg kg−1 feed w/w (n=8) and 24 ± 3mg kg−1 feed w/
w (n=8), respectively. The total concentration of Se was slightly above
the current upper limit (0.5mg kg−1) and the total concentration of Mn
and Zn were below the current upper limit (current upper limit for total
Mn is 100mg kg−1 and for total Zn it is 180mg kg−1 in salmonids
feeds). There was little variation between the analysed mineral con-
centrations and the nominal concentrations (i.e. 150mg Zn kg−1 diet,
0.5 mg Se kg−1 diet and 25mg Mn kg−1 diet), and there was also little
variation between the total concentration of Zn, Se and Mn in the low
phytic acid and high phytic acid diets. As can be seen in Fig. 1, the total
concentration of Zn, Se and Mn in the low phytic acid diets and in the
high phytic acid diets is a sum of the concentration of Zn, Se and Mn
from the basal mix and the concentration of Zn, Se and Mn supple-
mented as additive source.

3.2. Zinc, selenium, and manganese concentrations in the seawater

The Zn, Se, and Mn concentrations in the seawater inlet were
3.5 ± 0.3 μg L−1 (n=3), 9 ± 3 μg L−1 (n=3) and 4 ± 1 μg L−1

(n=3), respectively. In the seawater samples collected from the tanks
the Zn, Se, and Mn concentrations were 4 ± 1 μg L−1 (n=12),
11 ± 2 μg L−1 (n=12) and 3 ± 2 μg L−1 (n=12), respectively. The
concentrations between the analysed minerals in the seawater at inlet
and the outlet of the tanks were not statistically different.

3.3. Apparent availability of zinc, selenium and manganese

Faeces are composed of undigested material but also endogenous
secretions (e.g. digestive enzymes, bile secretions, sloughed epithelium
and mucus). The term apparent availability is used to acknowledge the
fact that the values obtained are not only related to the unabsorbed
minerals from the diet but, also digestive secretions (NRC, 2011).
Table 2 shows the factors chosen, the different factor level settings and
the estimated values for AA of Zn, Se and Mn (%) in Atlantic salmon.

The two highest AA of Zn (44 ± 6% and 45 ± 16%, n=3) were
obtained using diet 7 (i.e. low phytic acid diet, supplemented with Zn
sulphate, SeMet and Mn chelate of glycine) and diet 14 (i.e. high phytic
acid diet, supplemented with Zn chelate of glycine, selenite and Mn
chelate of glycine), respectively. The two lowest AA of Zn (24 ± 1%
and 23 ± 5%, n=3) were obtained using diet 5 (i.e. low phytic acid
diet, supplemented with Zn sulphate, selenite and Mn chelate of gly-
cine) and diet 16 (i.e. high phytic acid diet, supplemented with Zn
chelate of glycine, SeMet and Mn chelate of glycine). The highest AA of
Se (76 ± 4%, n=3) was obtained using diet 7 (i.e. low phytic acid
diet, supplemented with Zn sulphate, SeMet and Mn chelate of glycine),
while, the lowest AA of Se (58 ± 5%, n=3) was obtained using diet 9
(i.e. high phytic acid diet, supplemented with Zn sulphate, selenite and
Mn sulphate). The highest AA of Mn (38 ± 7%, n=3) was obtained
using diet 10 (i.e. high phytic acid diet, supplemented with Zn chelate
of glycine, selenite and Mn sulphate). The lowest AA of Mn (1 ± 10%,
n=3) was obtained using diet 15 (i.e. high phytic acid diet, supple-
mented with Zn sulphate, SeMet and Mn chelate of glycine).

3.4. Main factors and interactions effects

The effect of the main factors and their interactions on the AA of Zn,
Mn and Se are presented graphically in three Pareto charts (Fig. 2). The
Pareto chart for Zn shows that the factor B (Zn additive source) did not
significantly affect the AA of Zn (p > .05) (see Fig. 2(a)). However, the
interaction between Zn additive source and Se additive source (A×B),
the interaction between Se additive source and the phytic acid level
(B×D), the interaction between Zn, Se and Mn additive sources
(A×B×C) and the interaction between Se additive source, Mn ad-
ditive source and phytic acid level (B×C×D) significantly affected
the AA of Zn (p < .05) (See Fig. 2(a)). All these interactions showed a
negative interactive effect which lowered the AA of Zn. The effect of
B×D had the highest interaction effect on the AA of Zn, followed by
B×C×D, A×B×C, and A×B, respectively. The higher the t-value,
the higher the effect on the AA of Zn. As can be seen in Fig. 2(a), the Se
additive source (factor B) had an effect in all the interactions with a
significant effect for AA of Zn. The effect of interactions between Se
additive source and phytic acid level (i.e. B×D, interaction between Se
additive source and the phytic acid level, and B×C×D, interaction

Fig. 1. Total concentration (mg kg−1 feed w/w) of
zinc (Zn), selenium (Se) and manganese (Mn) in the
low phytic acid diets (n=8) and in the high phytic
acid diets (n=8); total concentration values are
presented as average ± standard deviation; the
light grey represents the concentration of Zn, Se and
Mn from ingredients and the dark grey represents the
concentration of Zn, Se and Mn added as additive
source.
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between Se additive source, Mn additive source and phytic acid level)
had significant effects (p < .05) on the AA of Zn. The Pareto chart for
Se shows that Se additive source (factor B) significantly affected the AA
of Se (p < .05) (Fig. 2(b)). Factor B had a positive t-value suggesting
that this factor should be kept at the level “+1” and that the organic Se
(SeMet) had higher availability than inorganic Se (selenite). The effect
of factor B had the highest t-value of absolute effect on the AA of Se
followed by A×D and A×C, respectively. The interactions between
Zn additive source and phytic acid level (A×D) and between Zn and
Mn additive sources (A×C) significantly affected the AA of Se
(p < .05). The interaction A×D showed a positive effect and the in-
teraction A×C showed a negative effect on the AA of Se (Fig. 2(b)).
The Pareto chart for Mn shows that the effect of factor C (Mn additive
source) significantly affected the AA of Mn (p < .05) and this factor
had a negative t-value effect (Fig. 2(c)). This suggests that to have a
higher AA of Mn, factor C should be kept at the level “-1”, which im-
plies using an inorganic source of Mn (Mn sulphate). Moreover, the
interactions between Se additive source and phytic acid level (B×D),
between Zn additive source, Mn additive source and phytic acid level
(A×C×D), and between Se additive source, Mn additive source and
phytic acid level (B×C×D) significantly affected the AA of Mn
(p < .05). These interactions had a negative effect on the AA of Mn.
The Mn additive source (C) and the interaction between Zn additive
source, Mn additive source and phytic acid level (A×C×D) had the
highest t-value of the absolute effect on the AA of Mn followed by the
interaction between Se additive source and phytic acid level (B×D)
and the interaction between Se additive source, Mn additive source and
phytic acid level (B×C×D). This indicates that Mn additive source
and the interaction between Zn additive source, Mn additive source and
phytic acid level had the highest effect on AA of Mn.

4. Discussion

The average AD of protein and the average AD of lipid was ap-
proximately 93% and 98%, respectively. Our results are in line with
other studies in Atlantic salmon also fed plant-based diets (i.e. lower
fish meal inclusion) (Espe et al., 2012; Pratoomyot et al., 2010;
Storebakken et al., 2000). Espe and co-workers (Espe et al., 2012) as
well as Storebakken and co-workers (Storebakken et al., 2000) have
reported AD of protein values between 89 to 94% and 88.6 to 93.6%,
respectively. Moreover, the AD of lipid obtained in this study (~ 98%)
was comparable to the values obtained by Storebakken and co-workers
(90.9–93.1%) (Storebakken et al., 2000) and Pratoomyot and co-
workers (90.5%) (Pratoomyot et al., 2010). Taken together, this in-
dicates that the experimental diets had a good protein and lipid di-
gestibility.

4.1. Apparent availability of zinc, selenium and manganese

The total concentration of Zn, Se and Mn in the experimental diets is
a sum of the concentration of Zn, Se and Mn from the basal mix and the
concentration of Zn, Se and Mn supplemented as additive source
(Fig. 1). This study demonstrated that in Atlantic salmon, the avail-
ability of Zn, Se and Mn from a diet is dependent on the diet compo-
sition, the chemical form of the Zn, Se and Mn, the interactions between
Zn, Se, Mn, and the interactions between Zn, Se, Mn and dietary phytic
acid. The obtained values for AA of Zn (23 to 45%) reported in this
study are similar to the AA of Zn found in rainbow trout fed plant-based
diets supplemented with Zn sulphate (34.5 to 40.4%) (Prabhu et al.,
2018b). However, the values for AA of Zn in our study are lower when
compared with the Zn availability values found in coho salmon fed diets
supplemented with Zn sulphate (60.0 to 89.3%) (Sugiura et al., 1998).
The difference previously reported regarding the AA of Zn might be
related to the fact that, purified diets were used in the study performed
in coho salmon by Sugiura and co-workers (Sugiura et al., 1998). It is
well known that AA of minerals is higher in purified diets than in
practical diets (NRC, 2011). Moreover, the lower values obtained for
AA of Zn can be related to the high dietary level of Zn. The Zn con-
centration in diets was ~150mg kg −1 and the requirement of Zn for
Atlantic salmon is between 37 and 67mg kg −1 (Maage and Julshamn,
1993). In general, the higher the dietary level in comparison to the
requirement, the lower the AA will be. This was reported by Rode-
hutscord and co-workers (Rodehutscord et al., 2000), who found that
the apparently absorbed proportion of P became lower with increasing
P dietary levels above the requirement (Rodehutscord et al., 2000). The
AA of Se obtained in our study (58 to 74%) was similar to the Se
availability found in a study performed in Atlantic salmon post-smolts
fed a diet supplemented with selenite (63.9 ± 4.26%) (Bell and
Cowey, 1989). However, in the same study of Atlantic salmon post-
smolts fed a diet supplemented with SeMet, the value obtained for AA
of Se (91.6 ± 1.0%) was higher (Bell and Cowey, 1989) than the va-
lues of AA of Se obtained in current study (58 to 74%). The values
obtained for AA of Se in our study are slightly lower than the ones
obtained in a study in rainbow trout fed plant-based diets supplemented
with selenite (79.8 to 81.9%) (Prabhu et al., 2018b). Regarding the AA
of Mn, the values obtained in our study (1 to 38%) were similar to the
ones obtained for Mn availability in rainbow trout (4.2 to 53.7%, except
wheat gluten diet (67.7%) (Sugiura et al., 1998) and 6.6 to 31%
(Prabhu et al., 2018b) and coho salmon (5.1 to 52.6%). The low AA
obtained for Mn (1 to 38%) can be related to the high dietary level of
Mn. The Mn concentration in diets was ~25mg kg −1 and the re-
quirement of Mn for Atlantic salmon is between 7.5 and 15mg kg −1

(Lorentzen et al., 1996).The AA determination was based on the ratio
between Mn in diet and Mn in faeces. As a result of a higher level of Mn
analysed in faeces than Mn in diet (i.e. diets 5, 14, 15, 16;

Fig. 2. Pareto chart showing the t-value of the effect using individually apparent availability (AA, %) of zinc (Zn) (a), selenium (Se) (b) and manganese (Mn) (c); the
horizontal axis shows the factors and interactions ordered according to their magnitude, the factors are Zn additive source (A), Se additive source (B), Mn additive
source (C) and phytic acid level (D); the vertical axis shows the t-value of the absolute effect; in grey, the effects with positive t-value and, in white, the effects with
negative t-value; the reference line on the chart is the t-value limit (α=0.05; d.f. = 30); any effect that is over this reference line is statistically significant (p < .05).
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supplemented with Mn chelate of glycine), negative values for AA of
Mn for some of the replicates (within the same diet) were obtained. A
similar finding was reported by Sugiura and co-workers in coho salmon
fed diets supplemented with Mn sulphate (Sugiura et al., 1998). Man-
ganese is secreted via bile into the gut, thus faecal Mn includes a por-
tion of endogenous Mn in addition to the unabsorbed Mn. This could be
the reason for having more Mn in the faeces than in the diet, explaining
the higher standard deviation values for AA of Mn in diets 5, 14, 15, 16
(see Table 2).

4.2. Apparent availability is affected by the chemical form of zinc, selenium
and manganese

One of the aims of this study was to evaluate the effect of the
chemical form of Zn, Se and Mn on the AA of Zn, Se and Mn. Selenium
is the only element for which there is evidence of a higher availability
of organic sources over inorganic forms in fish (Prabhu et al., 2016).
The result of this study shown that the organic Se (SeMet) had higher
availability than inorganic Se (selenite). This is in agreement with other
studies, which have demonstrated that organic sources of Se (e.g.
SeMet) are more available than selenite to fish (Bennett et al., 1986;
Dominguez et al., 2017; Lorentzen et al., 1994; Wang and Lovell, 1997;
Wang et al., 2007). Regarding salmonid studies, SeMet was found to be
the most available form of dietary Se to Atlantic salmon when com-
pared with SeCys and selenite (Bell and Cowey, 1989), and in rainbow
trout when compared with selenite (Fontagne-Dicharry et al., 2015;
Rider et al., 2010). This study demonstrated that Zn organic and in-
organic sources had similar AA. A similar finding was reported by
Maage and colleagues. In their study, similar Zn availability was ob-
tained in Atlantic salmon fed diets supplemented with organic Zn
source (Zn gluconate) and inorganic Zn source (Zn sulphate) (Maage
et al., 2001). Regarding Mn, inorganic source (Mn sulphate) had higher
availability than organic source (Mn chelate of glycine). Conversely, a
study in rainbow trout reported higher Mn availability when supple-
mented as organic source (Mn amino acid chelate) than inorganic
source (Mn sulphate) (Apines-Amar et al., 2004).

Several studies have discussed the availability of organic versus
inorganic forms of minerals in fish (Apines-Amar et al., 2004; Bell and
Cowey, 1989; Dominguez et al., 2017; Fontagne-Dicharry et al., 2015;
Lorentzen et al., 1994; Rider et al., 2010; Wang and Lovell, 1997; Wang
et al., 2007). In this study, three organic minerals were used; Zn chelate
of glycine, SeMet and Mn chelate of glycine. These compounds are
grouped as organic minerals but they differ in their chemical properties.
Selenomethionine is a biological synthesised molecule where Se is
covalently bound to two carbon atoms creating an amino acid con-
taining Se (replacing sulphur) (Shils and Shike, 2006). Zinc chelate of
glycine and Mn chelate of glycine are products of a chemical reaction,
mixing the inorganic mineral with the glycine amino acid. The glycine
establishes two chemical bonds with the metal forming a ring structure;
one covalent bond between the metal and the nitrogen in the NH2 group
from the glycine and one ionic chemical bond between the metal ion
and the oxygen from the –COOH group (Ashmead, 2012b). Glycine is a
small ligand and, as metal ion can form octahedral transition metal

complexes, it is possible to find a metal atom such Zn or Mn attached to
one, two or three glycine anions. The abundance of each form (i.e.
ZnGly, ZnGly2, ZnGly3 or MnGly, MnGly2, MnGly3) is dependent on the
molar ratio between the metal ion and glycine (Murphy and Martell,
1957). This creates some complexity in terms of understanding the
availability of Zn and Mn chelate of glycine. Mineral absorption occurs
mainly in the intestine and there is a concern regarding the stability of
the chelate compounds until they reach the intestine (Goff, 2018). One
assumption considers that the digestive tract fluids and chyme may
contain molecules that can act as ligands. Thus, if any of these ligands
have higher stability constants then they could pull the metal ion from
the glycine chelate. The temperature, concentration and pH in the lu-
minal environment have also influence on the stability constants, hence
the affinity of the metal to the ligand (Brown and Zeringue, 1994). For
example, glycine has a pKa of 2.35 and a pKb of 9.78 (Owen, 1934) and
the InsP6, a possible ligand, has 12 ionizable protons, six of them have a
pKa≥5.2 and the remaining pKa values are< 3.2 (Turner et al.,
2006). This means that the metal ion will bind glycine or phytic acid
depending on the intestinal conditions (temperature, pH, ligand con-
centration). Another assumption is that glycine chelate changes its
chemical nature with changes in pH throughout the gastrointestinal
tract (Fig.3). In the stomach (pH ~ 2.4), the bond between the metal
and the nitrogen in the NH2 group break; but, the ion continues to be
attached to the glycine via carboxyl bonds. In the pyloric caeca (pH ~
7), the molecule is a chelated configuration with the amino acid ligands
forming heterocyclic rings with the metal ion. In the intestine (pH 7–9),
the amine bond from the nitrogen to the metal is once again broken as
occurred earlier in the acid pH environment. These changes in pH result
in a molecule in which the metal continues to be bound to the amino
acid via the carboxyl bond but it is not a chelate as such (Ashmead,
2012a). The availability of Zn and Mn chelate of glycine throughout the
intestinal tract is complex, as the changes in Zn and Mn chelate of
glycine chemical conformation due to pH can influence the route of
uptake. Our previous research performed in vitro using rainbow trout
derived intestinal cell line (RTgutGC) demonstrated that, in the pre-
sence of methionine, Zn uptake increased; whereas it decreased when
an amino acid transport blocker was used, suggesting that Zn chelate of
methionine is transported through an amino acid mediated uptake
pathway (Prabhu et al., 2018a), in line with the reports for histidine
facilitated uptake of Zn and Cu (Glover and Wood, 2008; Glover et al.,
2003). In primary rat intestinal epithelial cells, Mn chelate of lysine has
been suggested to be transported by amino acid uptake pathways
(Zhang et al., 2015).

4.3. Minerals interact in the fish intestinal tract

This study is the first focused on quantifying the interactions among
minerals and the effect of these interactions on mineral AA. Mineral
interactions are known to occur in the fish gastrointestinal tract
(Watanabe et al., 1997). The exact location of these interactions is not
fully understood, but evidence suggests that Se and Mn may share the
Zn transporters systems (Cousins, 2012). Moreover, Mn+2 and Zn+2

ions may compete for common ligands as the positively charged metal

Fig. 3. – Changes in chemical conformation of glycine chelate during the fish intestinal tract: stomach (pH ~ 2.4), pyloric caeca (pH ~ 7) and intestine (pH 7–9).
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ions become stable in the presence of anions (Crichton, 2012). This
could explain the interaction seen between factors Zn, Se and Mn ad-
ditive sources (A, B and C, respectively in Table 1). The interaction
between Zn and Se additive sources (A×B) had a significant effect on
AA of Zn suggesting that there is an interaction between Zn and Se
additive sources that impacts Zn availability. A Zn-Se antagonist effect
where a Zn-Se complex was formed in the intestinal tract of rats fed
wheat grain was previously described (House and Welch, 1989).
Moreover, an antagonist effect of Mn-Se was also previously reported in
pigs (Burch et al., 1975) which can corroborate our results of interac-
tion effect between Mn and Se.

In mineral nutrition, it would be appropriate to have a diet with the
highest availability possible for all the minerals. In practice, this could
mean that instead of choosing one diet that has higher availability of a
single mineral the diet of choice takes in consideration the availability
of several minerals simultaneously. In this work, it was studied which
diet would have the highest mineral availability for Zn, Se and Mn si-
multaneously. It was found that diet 4 and diet 12 fulfilled this con-
dition for Zn, Se and Mn. Diets 4 and 12 were supplemented with or-
ganic forms of Zn and Se (i.e. Zn chelate of glycine and SeMet) and
inorganic form of Mn (i.e. Mn sulphate) in two levels of phytic acid. The
phytic acid concentrations in low level and high level phytic acid diets
were 11.3 ± 0.1 μmol g−1 (n=2) and 12.0 ± 0.1 μmol g−1 (n=2),
respectively. The difference in phytic acid concentrations between the
low and high phytic acid level diets was not large. However, fish diets
with a higher amount of phytic acid can be produced if phytic acid is
supplemented in diets as a salt (Sajjadi and Carter, 2004). In this study,
it was decided to change the ingredient ratios to obtain diets with low
and high levels of phytic acid instead of supplementing phytic acid as a
salt. This decision means to have a shorter range between the low and
high phytic acid level diets (i.e. ranging from 11.3 ± 0.1 μmol g−1 to
12.0 ± 0.1 μmol g−1) but meaningful in terms of Atlantic salmon
farming industry.

The diets with higher AA of Zn were diet 7 (i.e. low phytic acid diet
and supplemented with Zn sulphate) and diet 14 (i.e. high phytic acid
diet and supplemented with Zn chelate of glycine). This suggested that
depending on the level of phytic acid present in the diet, supple-
mentation with inorganic source or organic source of Zn should be
considered. Similar evidence was found in channel catfish, where the
beneficial effects of adding Zn as an amino acid chelate were greater in
diets that contained high levels of phytic acid (Paripatananont and
Lovell, 1995). In the fish gut, the phytic acid may bind cations such as
Mn+2 and Zn+2 thus reducing the mineral availability of Zn and Mn
(Kumar et al., 2012). This can explain the significant effect on AA of Mn
of the interaction of Zn additive source (A), Mn additive source (C) and
phytic acid level (D). Moreover, the interaction of Se additive source (B)
and phytic acid level (D) had a significant effect on AA of Mn and AA of
Zn. The influence of phytic acid on minerals, such as Zn, Cu, Mn, has
been investigated in fish (Kumar et al., 2012). However, data regarding
the influence of phytic acid on Se is lacking in fish. This is the first study
reporting an interaction between Se and phytic acid. The data obtained
regarding the interactions encourages further research to understand
the interaction mechanisms.

5. Conclusions

The present study compared the AA of inorganic and organic forms
of Zn, Se and Mn in Atlantic salmon diets using a FFD. This study de-
monstrated that in low fish meal practical diets for Atlantic salmon, the
availability of the minerals depends on the chemical form. Inorganic
source of Mn (MnSO4) and organic source of Se (SeMet) had better AA;
there were no significant difference in Zn availability between in-
organic source and organic source of Zn. In addition, this study reports
several interactions between the Zn, Se and Mn additive sources. A
number of these interactions were found to have a significant impact on
AA of Zn, Se and Mn. The phytic acid level did not significantly affect

AA of Zn, Se and Mn. However, several interactions with phytic acid
level had a significant effect on AA of Zn, Se and Mn. The knowledge
obtained regarding the interactions between the different factors was
achieved using the FFD as a multivariate experimental design approach.
This type of design should be considered more often when studying the
mineral availability in fish, as it is known that mineral availability is
influenced by other minerals.
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