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Community composition, population structure and phylogeny of 

coastal sympagic meiofauna in eastern Svalbard 
 

Magnus Heide Andreasen  

 

Abstract Coastal sea ice communities constitute a highly vulnerable yet little investigated part of 

the Arctic ecosystem. A better understanding of the Arctic sea ice ecosystem will aid in more 

accurate predictions of the ecological response to current climate change. Sea ice communities 

comprise microalgae and meiofauna (20-500 μm) important to the existence and functioning of 

higher trophic levels. The response of sea ice-associated (sympagic) algae and meiofauna to cur-

rent physical alterations in the Arctic will thus expectedly have ecosystem-wide consequences. 

Fundamental to the understanding of any ecosystem is knowledge on its taxa composition, species 

diversity and species functioning. This study investigated the community composition, population 

structure and phylogeny of coastal sympagic meiofauna in an unexplored region of eastern Sval-

bard in March and April 2018. Ice cores were extracted for sympagic and pelagic meiofauna, chlo-

rophyll a and physical variables in Inglefieldbukta and Agardhbukta. Microscope photography 

was applied to explore the size, feeding and reproduction of polychaetes and nematodes. Further, 

molecular barcoding aided in identifying sympagic polychaetes and nematodes from three addi-

tional locations around Svalbard. Integrated sympagic meiofauna abundances ranged from 0 to 22 

900 individuals m-2 with the most abundant and diverse communities occurring in April. Use of 

sea ice for overwintering, growth and reproduction was implied for nematodes, while polychaetes 

occurred only as feeding juveniles. Molecular analysis indicated the presence of two polychaete 

species not yet considered to be sympagic, Melaenis loveni and a Spio sp., and at least two nema-

tode species not priorly described from Svalbard sea ice. The finding of M. loveni challenges the 

presumption of Scolelepis squamata as the resident sympagic polychaete in Svalbard. The nema-

todes collected in this study likely provide the first molecular evidence for Theristus melnikovi and 

possibly the first sign of an Arctic sympagic species within the genus Halomonhystera. The above 

findings suggest eastern Svalbard to be a particular interesting area to conduct more extensive 

studies on the poorly known sympagic meiofauna and their fate in a melting Arctic.   

 

Keywords Arctic · Sea ice · Climate change · Nematodes · Polychaetes · Barcoding 

MASTER THESIS 
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Introduction 

 

The Arctic Ocean constitutes an area of high scientific, political and socioeconomic interest owing 

to its rapid physical transformation. Most apparent is the rapid decrease of sea ice (Notz and 

Stroeve 2016; Stroeve and Notz 2018); yielding imminent opportunities for shipping (Dimitrios 

and Baxevani 2018), tourism (Dawson et al. 2016) and oil and gas exploration (ACIA 2004). The 

effects of decreasing sea ice on the relative abundance, life-history and diversity of Arctic biota 

are complex and little understood (Wassmann et al. 2011). It is evident that Arctic megafauna, e.g. 

polar bears (Ursus maritimus), walrus (Odobenus rosmarus) and ringed seal (Pusa hispida) are 

vital in ecosystem functioning and in the preservation of high-Arctic culture (George et al. 2004). 

However, 72 to 100% of polar bear diet is traceable to sympagic (= sea ice-associated) primary 

production (Brown et al. 2018). Investigating the lower sympagic trophic levels is thus a vital step 

in understanding the dynamics of the Arctic Ocean’s ecosystem. 

     In sympagic communities, autotrophic protists, especially diatoms (Bacillariophyceae), to-

gether with bacteria make up the lowest trophic level, followed by metazoans mostly in the size 

range defining meiofauna; 20-500 μm (Bluhm et al. 2018). In Arctic sea ice, polychaete juveniles, 

nematodes, rotifers and ciliates are common inhabitants of the inner matrix of brine channels 

(Legendre et al. 1992; Gradinger 1999; Marquardt et al. 2011; Pitusi 2016). In addition, the inter-

phase between sea ice and seawater is inhabited by ice amphipods, e.g. Onismus nanseni and 

Apherusa glacialis, and copepods of all life stages (Bradstreet and Cross 1982; Lønne and 

Gulliksen 1989; David et al. 2015, 2016, Kohlbach et al. 2016, 2017) with several other phyla 

represented although typically in low abundances (Werner 2005). The trophic dynamics of 

sympagic meiofauna remain largely unresolved. Repeated findings of low grazing pressure on 

sympagic algae (Gradinger 1999; Nozais et al. 2001; Michel et al. 2002; Gradinger et al. 2005) 

and occurrence of both carnivory, omnivory and cannibalism indicate that the sympagic ecosystem 

is highly complex (Kramer 2010). Sympagic meiofauna communities are structured by the age 

(Lønne and Gulliksen 1991a, b; Kiko et al. 2017), location (van Leeuwe et al. 2018) and type of 

sea ice, i.e. pack vs. fast ice (Marquardt et al. 2011) as well as connectivity with the pelagic and 

benthic realm. Hence, sympagic communities in shallow coastal areas exhibit a closer resemblance 

with benthic communities compared to sympagic communities overlying deep water (Bluhm et al. 

2018). Distinct physical requirements exist in the matrix of brine channels inhabited by sympagic 

biota; temperatures below 40 °C and salinities fluctuating between 0 and above 100 (Ewert and 

Deming 2013). Moreover, biological processes; dispersal (Kiko et al. 2017) and competition 

(Krembs et al. 2000) shape sympagic communities at various spatial and temporal scales.  
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     Logistic constrains associated with investigating sea ice systems limit studies of high temporal 

and spatial resolution, e.g. those examining life history patterns. While some sympagic meiofauna, 

autochthonous meiofauna, rely on sea ice throughout their entire life history, other, inter alia pol-

ychaete juveniles, utilize sea ice only temporarily; allochtonous meiofauna (Legendre et al. 1992; 

Thomas and Dieckmann 2009). In seasonal ice, sympagic communities consequently comprise 

allochtonous fauna that rely on annual incorporation into sea ice. The debate about to what extent 

sea ice colonization is coincidental or a matter of adaption is however still ongoing for some taxa 

(Spindler and Dieckmann 1986; Krembs et al. 2000; Chresten et al. 2016). Still, for highly motile 

taxa; nematodes, and polychaete juveniles, sea ice provides an attractive habitat periodically rich 

on algal and bacterial production (McConnell et al. 2012) supporting intentional colonization.  

     Polychaetes constitute a taxonomically and functionally diverse (Barnes and Fauchald 1979; 

Snelgrove 1997; Hutchings 1998) paraphyletic group with 14 000  recognized species (Rouse and 

Pleijel 2006). However, phylogeny of polychaetes remains unresolved (Rousset et al. 2007) largely 

owing to complications associated with identification (Bleidorn et al. 2003; Eklöf 2010). With 

molecular technology advances, the traditional belief of numerous polychaetes species being cos-

mopolitans has been challenged by continued findings of greater diversity (Bhaud and Petti 2001; 

Bhaud et al. 2006; Bleidorn et al. 2006; Scarpa et al. 2016; Hutchings and Kupriyanova 2018). 

Through identifying species-specific molecular sequences, ‘barcodes’, organisms can be identified 

without the need of morphological identification (Hebert et al. 2003; Blaxter 2004). In Antarctica, 

benthic meiofaunal diversity increased substantially when using barcoding despite reference data 

being lacking for most sequences (Fonseca et al. 2017). The finding of Fonseca et al. (2017) un-

derlines the methodological prerequisite of establishment of high-quality sequences linked to 

voucher species accessible in public gene libraries, such as the Barcode of Life (Ratnasingham and 

Herbert 2007) and Genbank (Benson et al. 2013). Sympagic polychaete taxonomy still largely 

relies on morphological identification (McConnell et al. 2012) with Scolelepis squamata repre-

senting the only known sympagic polychaete (Carey 1985; Grainger et al. 1985). 

     Nematodes have, despite limited dispersal capacity, adapted to inhabit most environments, i.e. 

soils (Nicholas 1975), beaches (Hua et al. 2016), marine sediments (Fonseca et al. 2017), the pe-

lagic realm (Tchesunov and Portnova 2015), multiple animal hosts as a parasite (Leung and 

Koprivnikar 2016), and sea ice (Tchesunov and Riemann 1995). Life histories of nematodes are 

highly diverse with longevity ranging between 3 days and 15 years (Gems and Riddle 2000), mul-

tiple reproductive strategies, i.e. ovipari and ovivipari (Gerlach and Schrage 1971), variable diets 

and flexible timing of egg cleavage (Chitwood and Murphy 1964). Romeyn and Bouwman (1983) 

identified nematodes’ burrowing capacity, high tolerance to environmental stress and 
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diversification in buccal structure as characters explaining their dominance. Although often re-

ported in a benthic context, nematodes frequently dominate sea ice communities too (Carey 1982; 

Grainger et al. 1985) with densities above 232.000 m-2 (Bluhm et al. 2018). At present, four nem-

atodes are considered sympagic: Theristus melnikovi (Tchesunov 1986, in Russian), Cryonema 

crassum, C. tenue (Tchesunov and Riemann 1995) and Hieminema obliquorum (Riemann and 

Sime-Ngando 1997; Tchesunov and Portnova 2005). Their life cycles, however, remain conspic-

uous as they are yet to be registered in the benthic or pelagic realm (Tchesunov and Portnova 2003, 

2005). In addition, three to four species within the Monhysteridae family remain unidentified from 

investigations in the White Sea (Tchesunov and Portnova 2003) and the Canadian Arctic (Riemann 

and Sime-Ngando 1997). A single Halomonhystera glaciei represents the only registration of nem-

atodes in Antarctic sea ice (Blome and Riemann 1999). Sympagic nematode distribution and abun-

dance is little known as expert taxonomist are required to distinguish morphological characteris-

tics; sometimes at the scale beyond that of light microscopy (Coomans 2002; De Ley et al. 2005). 

However, as for polychaetes, molecular markers have proven useful in identification of nematodes 

(Avó et al. 2017; Fonseca et al. 2017). Still, phylogenetic analysis remains a challenging task for 

a cosmopolitan taxon with high genetic diversity within small spatial scales (Derycke et al. 2005, 

2006). In 2017 (Avó et al. 2017), 1020 sequences existed for the 18S rRNA barcode (Bhadury et 

al. 2006; Creer et al. 2010; Porazinska et al. 2010) and 281 for the cytochrome c oxidase subunit I 

(COI) with no sympagic nematodes represented. While 18S rRNA remains the preferred barcode 

for nematodes, COI represents the most applied for polychaetes (Rice et al. 2008; Olson et al. 

2009; Barroso et al. 2010; Nygren and Pleijel 2010). Based on the morphological complexity and 

incomplete sequence libraries, it is evident that sympagic nematode and polychaete diversity and 

phylogeny remains unresolved.  

     Phenetic plasticity, functional diversity and species richness determine ecosystem resilience 

(Oliver et al. 2015; Thomsen et al. 2019). Investigating coastal sympagic meiofauna communities’ 

taxonomical diversity, phylogeny and respective life histories is thus vital in predicting the eco-

logical implications of current physical alterations in the Arctic. Equally relevant, e.g. for incor-

poration into ecosystem models (Jin et al. 2006), is the establishment of baseline knowledge on 

coastal sympagic ecosystem community composition and their relation to the physical environ-

ment. Svalbard is of scientific interest due to the close physical resemblance of its coasts with 

those of other high-Arctic systems, i.e. Greenland (Madsen 1936; Petersen 1962) and Baffin Island 

(Ellis 1955; Ellis and Wilce 1961), as well as its well-established scientific and logistic facilities 

representing 45 nations (UNIS 2017). To date, most biological investigations have been conducted 

in western Svalbard (Kedra et al. 2013; Lowther et al. 2017; Bluhm et al. 2018; Daase et al. 2018) 
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and thus knowledge on marine biodiversity and community composition in eastern Svalbard is still 

poor (but see Szymelfenig et al. 1997; Schünemann 2004; Werner 2005) 

     This study represents the first effort to assess the composition of the coastal sympagic meio-

fauna community in eastern Svalbard. Length measurements on polychaetes and nematodes were 

applied to explore population structure. Finally, molecular analysis aided in investigating the di-

versity and phylogeny of polychaetes and nematodes based on samples from five locations around 

Svalbard.  

 
Materials and methods 

 

Field collection 

 

Samples for sympagic meiofauna and chlorophyll a (hereafter Chl a), physical variables, length 

measurements and phylogeny were collected in Inglefieldbukta and Agardhbukta (Fig. 1) in spring 

2018. In addition, samples for phylogenetic reference were collected in Wahlenbergfjorden and 

Palanderbukta in north-eastern Svalbard. Nematodes and polychaetes collected from Van Mi-

jenfjorden in 2017 (c.f. Pitusi 2019) were also included to represent a temporally, spatially and 

physically distant reference group (Appendix 1). For a description of Wahlenbergfjorden, Palan-

derbukta and Van Mijenfjorden, see Appendix 2 and 3. Inglefieldbukta is situated at the joint 

mouth of the glaciers Inglefieldbreen and Nordsysselbreen and constitute the 2.5 km wide and long 

bay transitioning glacial and riverine runoff from west with Storfjorden to the east (Fig. 1).  

 

 

 

 

 

 

 

 
 

Figure 1. Sampling stations in Inglefieldbukta (A; IB) and Agardhbukta (B; AGA) in eastern Svalbard, Norway.  

 

    The first bathymetric data in Inglefieldbukta were collected as a part of this study. The depth 

transect indicated the presence of a basin with a sill depth of approximately 9 m towards east and 
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a maximum depth of 32 m closest to the glacial mouth. In Storfjorden, fast-ice cover is extensive 

during winter (see sea ice charts in Appendix 4) with sea ice production occurring mostly in po-

lynyas northeast of Inglefieldbukta (Haarpaintner et al. 2001). Agardhbukta is situated 7 km north 

of Inglefieldbukta. Here, the valley Agardhdalen constitutes a large catchment area for runoff from 

several inland glaciers, rivers and streams, whose cumulative runoff terminates into the 8 km wide 

and 5 km long Agardhbukta. Hence, the two investigated sites differ in size and influence of glacial 

versus riverine runoff. In Inglefieldbukta, one shallow (4 m) and one deep (32 m) station was 

investigated in both March and April, whereas in Agardh only one station was investigated in April 

(AGA; 42 m). While the shallow station in Inglefieldbukta (IB1) was at the same location in March 

and April, the deep station was situated 200 meters apart. In March, the deep station (IB2) was 

ridge-free, whereas in April (IB3), the deep station had glacial ice incorporated into the sea ice.  

 

The physical environment 

 

To examine the physical environment of the sea ice, one core was extracted for temperature and 

another for salinity at each station. Cores extracted for temperature were measured (VWR Trace-

able Digital Thermometer) at the core’s centre after drilling in 0.5 cm from below and at 1, 2, 3, 5 

and 15 cm perpendicularly, continuing at 10 cm intervals to the top of the core. The salinity core 

was sectioned from 0-1, 1-2, 2-3, 3-10, 10-20 cm, continuing with 10 cm sections until the top of 

the core. Salinity sections were transferred into ziplock bags and thawed at room temperature for 

consequent analysis using a conductivity sensormeter (VWR Symphony SP90M5). Brine salinity 

(Sbrine) and brine volume (Vbrine) was calculated based on bulk ice salinity (Sice) and ice temperature 

(Tice) using the equations by Cox and Weeks (1983; Eq. 1 and 2). 

 

Eq. 1 

 

 

Eq. 2 

 

     For all extracted cores, snow was cleared in a 10 cm perimeter around the hole followed by 

measures of snow depth (average of three measurements), free-board and ice thickness. To assess 

the topology of the area surrounding the sampling stations, aerial photography (DJI Phantom 4 

Advanced, DJI, China) was applied in April in both Agardhbukta and Inglefieldbukta (Appendix 
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5). Further, at all stations in both March and April, an underwater camera (GoPro HERO 4 Black, 

GoPro Inc., U.S.A.) was used to assess the sub-ice structure.  

 

Chlorophyll a  

 

At each station, ice algal biomass was determined by sampling three sea ice cores divided into 

sections as described above for salinity, although with further care taken to avoid irradiance and 

drainage. For every 1 cm of sea ice core, 100 ml of filtered sea water (0.7 μm) was added to the 

ziplock bags to avoid osmotic shock (Garrison and Buck 1986; Spindler and Dieckmann 1986) 

when slowly being thawed in darkness at +4 °C. Prior to filtration, each ice sections total volume 

was measured, and total Chl a obtained by pump-filtering samples in triplicates of 10 – 1120 ml 

using 0.7 μm Whatman GF/F glass fibre filters (Whatman, England). Pelagic Chl a biomass (phy-

toplankton biomass), was estimated by filtering 500 ml triplicate subsamples from Niskin bottle 

water samples at 3 m at IB2, at 1, 5 and 15 m at IB3 and in addition at 37 m at AGA. Total Chl a 

was stored in 10 ml 100% methanol in darkness for 24 hours at +4 °C (Holm-Hansen and Riemann 

1978) and fluorescence were measured using an F10-AU Fluorometer (Turner Design, USA). 

Samples were diluted in 100% methanol when Chl a content exceeded maximum reading value. 

Two drops of 5% HCl were added to every sample to account for phaeopigments. Only Chl a 

values corrected for phaeopigments are included in this paper.  

 

Sympagic meiofauna 

 

As for Chl a, three sea ice cores were collected and processed per section (0-1, 1-2, 2-3, 3-10, 10-

20 cm, continuing throughout the core in 10 cm sections) for examination of meiofauna commu-

nities. After slowly thawing sea ice samples in darkness at +4 °C, total sample volume was rec-

orded and the sample was further filtered through a 20 μm sieve, counted, identified visually to 

lowest possible taxonomical level and photographed (Sony Handycam, SONY CO., U.S.A.) 

through a stereomicroscope (Leica Wild M3B, 1.6 – 11.5x magnification). Ciliates were only dis-

played when the quantification procedure followed that of the remaining groups; polychaetes, 

nematodes, trochophores, rotifers, eggs and unidentified (Fig. 4). All nematodes and polychaetes 

were isolated from samples and placed in individual Eppendorf tubes (1.5 mL, Eppendorf, Ger-

many) containing 96% EtOH for subsequent phylogenetic analysis. All counts were converted into 

individuals per m2 by averaging triplicates per section and integrating over the core. Only the lower 

10 cm were included as described in Pitusi (2016) and corrected using the equation by Bluhm et 
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al. (2018), although with a lower ice-water density conversion factor (C; 0.93) considered suitable 

for first-year sea ice, following Timco and Frederking (1996) (Eq. 3). The abbreviations h, n and 

V refer to height of the core (cm), number of individuals in a core section and volume filtered (ml), 

respectively. To integrate the values, calculations followed Equation 4.  

 

             Eq. 3 

 

            

             Eq. 4 

 

 

     The non-parametric Spearman rank correlation test (Spearman 1904) was applied to explore 

the relationships between sympagic meiofauna abundance and sympagic Chl a concentration as 

well as the relationship between biotic and abiotic variables. 

 

Hydrography 

 

To investigate the physics of the water column; conductivity, temperature, density and fluores-

cence was measured in the water column using a handheld CTD (SAIV A/S, Norway) and fluo-

rometer from a hole within a 10-meter perimeter of the sea ice samples. Irradiance was measured 

from a separate hole using a LI-192 quantum sensor (LI-COR, Lincoln, USA) at 1-meter depth 

intervals. To avoid additional light pollution, the hole was covered in ice and snow before meas-

urements.  

 

Pelagic meiofauna 

 

To examine the abundance of pelagic meiofauna, a 20 μm plankton net (HYDRO-BIOS, Germany) 

was hauled from the CTD hole and concentrated through a 20 μm sieve. At least two net samples 

were collected; one preserved in 70-80% ethanol and one in a 4% formalin-seawater solution buff-

ered with hexamine. In Inglefieldbukta and Agardhbukta, vertical net hauls to maximum depth 

with a safety margin of 3 m from the bottom and up were sampled with a towing speed of 0.3-0.4 

m s-1. In the laboratory, fixative solution was removed by sieving the samples through a 20 μm 

sieve and rinsed with filtered sea water (0.7 μm Whatman GF/F glass fibre filters) for 30 minutes. 

The entire sample was counted using a stereomicroscope (Leica Wild M3B, 1.6 – 11.5x 
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magnification) and taxa identified to lowest possible taxonomical level. Copepodite stages were 

not distinguished as the dominating meiofauna, e.g. nematodes and polychaetes juveniles, were 

prioritized.   

 

Length measurements 

 

Polychaetes and nematodes isolated for phylogenetic analysis were manually length-measured in 

ImageJ (Schindelin et al. 2012; Rueden et al. 2017) based on individual stereomicroscope (Leica 

Wild M3B, 1.6 – 11.5x magnification) photographs (Sony Handycam HD, Sony Inc.). A multiple 

regression model (Frasier 2015) was applied to examine the response in length on date (March to 

May) and site (Van Mijenfjorden versus east coast stations Inglefieldbukta and Agardhbukta). To 

do so, model requirements, i.e. multivariate normality, homoscedasticity and absence of multicol-

linearity were met (Ralph 2015) and interannual length variation assumed neglectable compared 

to the seasonal variation investigated here. Selection, construction and testing of the model is sum-

marized in Appendix 6.   

 

DNA extraction, PCR and purification 

 

DNA from polychaetes and nematodes was extracted using a commercial DNA extraction kit 

(Blood & Tissue Kit, QIAGEN). When DNA was not successfully isolated using the Blood & 

Tissue Kit, HotSHOT extraction was applied  (Truett et al. 2000).  To increase amplification suc-

cess of polychaetes, two primer combinations were applied in amplifying polychaete COI DNA, 

while one was applied for nematodes (Appendix 7). A DreamTaq cycle (Thermo Fisher Scientific) 

was applied for both nematodes and polychaetes (95 °C – 5 min, 37 x (95 °C – 1 min, 54 °C – 1 

min, 72 °C – 2 min), 4 °C – ∞). Following the recommendations of Leray and collaborators, a 

PlatiniumTaq touch down cycle (Korbie and Mattick 2008) was applied for polychaete individuals 

not yielding DNA through DreamTaq: 16 x (95 °C – 10 sec, 62 °C – 30 sec, (minus 2 °C for every 

2nd cycle); 72 °C – 60 sec), 25 x (95 °C – 10 sec, 46 °C – 30 sec, 72 °C – 5 min, 4 °C – ∞ (Leray 

et al. 2013). The amplification was checked for success through gel electrophoresis, and the prod-

ucts were cleaned using HigherPurity™ solid-phase reversible immobilization (SPRI) cleaning 

(Canvax, Córdoba, Spain). Finally, cleaned products were Sanger sequenced (Sanger et al. 1977; 

GATC Biotech LightRun, Germany). 
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Bioinformatic analyses and phylogeny 

 

Retrieved sequences were trimmed and checked for chimeras. Bad quality reads of a reading qual-

ity <10 constituted maximum five bases per sequence and were neutralized in Geneious Prime 

(Biomatters Ltd.). Consensus sequences were created only in instances where both complimentary 

sequences were of high quality. Sequences were compared to NCBI’s database using BLAST. For 

polychaetes and nematodes, all available sequences of the most similar hits in BLAST were down-

loaded from NCBI’s GenBank and aligned in MEGA7’s MUSCLE software (Edgar 2004). Fol-

lowing alignment and end-trimming, trimmed sequences from this study were aligned. Lastly, out-

group sequences were aligned. For nematodes, Diplolaimella dievengatensis (Jacobs et al. 1990) 

was used as an outgroup following Tchesunov and Portnova (2015), while for polychaetes in In-

glefieldbukta, a polychaete known to inhabit sea ice in Canada (Grainger et al. 1985), Scolelepis 

squamata, was chosen. For polychaetes isolated from sea ice in Van Mijenfjorden, another out-

group comprised by species of the Bylgides genera was chosen owing to the genetic dissimilarity 

to the polychaetes in Inglefieldbukta (GBIF.org; 2019; Norlinder et al. 2012). Any sequence yield-

ing a length of less than 600 base pairs after alignment and trimming was discarded to retain ro-

bustness of the phylogenetic analysis. Consequently, the alignments were 632, 619 and 625 base 

pairs long for polychaetes in Inglefieldbukta and Van Mijenfjorden, and nematodes, respectively. 

Accession numbers for sequences included from reference studies are listed in Appendix 8.  

     To evaluate the most suitable evolutionary model supporting the phylogenetic analysis, 

MEGA7’s model selection tool was applied. The Hasegawa-Kishino-Yano model (Hasegawa et 

al. 1985) assuming 59% of sites to be evolutionary invariable yielded the lowest Bayesian Infor-

mation Criterion and was hence selected for the phylogenetic analysis of polychaetes. For nema-

todes, the Kimura 2-parameter model (Kimura 1980) assuming 45% of sites to be evolutionary 

invariable yielded the lowest Bayesian Information Criterion. To support the phylogenetic struc-

ture, maximum likelihood and maximum parsimony were applied in combination, both with 1000 

replications, using MEGA7 (Kumar et al. 2016). For polychaetes in Van Mijenfjorden, maximum 

likelihood and neighbour joining were applied since maximum parsimony performs best in anal-

yses on low genetic diversity. 
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Date Station n Snow depth Ice thickness Freeboard Skeleton layer

March 22nd IB1 8 2.8 ± 1.6 45.3 ± 1.8 3.2 ± 0.8 2.0 ± 1.5

March 23rd IB2 8 9.9 ± 2.4 44.4 ± 1.8 1.4 ± 1.1 1.8 ± 0.8

April 15th AGA 12 6.0 ± 4.3 62.0 ± 7.5 4.5 ± 1.9 0.9 ± 0.7

April 26th IB1 9 13.9 ± 1.8 67.0 ± 1.0 3.1 ± 0.2 1.1 ± 0.3

April 27th IB3 12 39.9 ± 1.0 86.5 ± 9.1 –0.7 ± 1.00 0.9 ± 0.3

Results 

 

The physical environment 

 

In Inglefieldbukta no glacial ice was observed in the nearby surroundings in March (radius = 100 

meter), whereas in April, the deep sampling station was highly influenced by glacial ice visible 

both from above and below the sea ice (Fig. 1; Appendix 5). No glacial ice was visible within a 

perimeter of 1000 m in Agardhbukta. However, the snow was unevenly distributed (Table 1). Both 

snow depth and ice thickness increased throughout the sampling period, while freeboard was over-

all similar (1.4 to 4.5 cm), albeit with a negative average at IB3 (Table 1).  

 
Table 1. Average (± SD) measures of physical parameters (cm) of the sea ice and snow in Inglefieldbukta (IB) and 

Agardhbukta (AGA) in Svalbard.  

 

 

 

 

 

      

 

     Salinity, temperature, brine salinity and brine volume were investigated in vertical sea ice sec-

tions in Inglefieldbukta and Agardhbukta (Fig. 2). Salinity decreased the most within the lower 10 

centimetres. In April, sea ice was thicker, and thus these profiles were longer. In Inglefieldbukta 

in late March and Agardhbukta in mid-April, a slight increase in salinity was observed in the up-

permost sections, following a C-shape. Temperature profiles above 10 cm from the water varied 

markedly between March and April. In the lower 10 cm, however, temperature was similar across 

stations, sites and dates. As a direct function of sea ice temperature (Eq. 1), brine salinity displays 

a reverse profile with maxima occurring at the top. Conversely, brine volume decreased towards 

the top with the steepest decline in the lower 20 cm (Fig. 2).  
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Figure 2. Vertical sea ice profiles of salinity, temperature, brine salinity and brine volume in Inglefieldbukta (shallow 

station: IB1 and deep stations: IB2, IB3) in March and April and Agardhbukta (AGA) in April 2018. The dashed line 

marks the 5% theoretical minima in brine volume for meiofauna to occur (Golden et al. 1998).  
 
 
Although not visible from the extracted salinity cores or quantified otherwise, glacial ice was 

visible in >50% of cores extracted at IB3. No cores were solely constituted by glacial ice. 

 

Hydrography and chlorophyll a 

 

A CTD with a fluorometer attached yielded substantially different profiles in Inglefieldbukta in 

March (IB2) and April (IB3). However, the ~10 psu lower salinity and hence density in March is 

considered an instrument error. In both months, no pycnocline was present and fluorometry was 

low, i.e. <0.3 μg Chl a L-1, although with a weak fluorometric increase from March to April (Fig. 

3).  
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Figure 3. CTD and fluorescence profiles in Inglefieldbukta in March (left) and April (right) at deep stations IB2 and 

IB3, respectively.  

     Irradiance measured vertically from surface until lowest reading value resulted in maxima of 

0.0138 and 0.0007 μmol s
-1

 m
-2 for IB2 and IB3, respectively, followed by a similar extinction 

coefficient (k) of –0.08. In Agardhbukta, the maximum irradiance was 0.0080 μmol s
-1

 m
-2 and the 

extinction coefficient –0.05. 

      In March, average integrated Chl a concentration in sea ice was low; 0.51 mg Chl a m-2 at IB1 

and 0.07 mg Chl a m-2 at IB2. In April, the sea ice Chl a biomass had increased at IB1 (2.90 mg 

Chl a m-2), while at IB3 in April, average concentration was 0.01 mg Chl a m-2. Chl a peaked in 

Agardhbukta in April with 6.31 mg Chl a m-2. In the water column at IB2 in March, the concen-

tration of Chl a was on average 0.06 ± 0.06 μg Chl a L-1 at 3 m and at IB3 in April 0.08 ± 0.002 

μg Chl a L-1 at 1, 5 and 15 meters. In Agardhbukta at 1, 5, 15 and 37 m, the Chl a concentration 

was low; on average 0.02 ± 0.006 μg Chl a L-1. At all investigated stations, the sea ice algae 

communities were dominated by the pennate diatom Nitzschia frigida (Appendix 9). In In-

glefieldbukta in March, the centric cold-water diatom Melosira arctica was observed in long 

chains (Appendix 10).  
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Sympagic meiofauna 

 

Of the total 15 cores with each lower four sections (0-10 cm) investigated, 60% of the sections 

contained meiofauna yielding integrated abundances between 390 and 22 900 individuals m-2 in 

single cores. Integrated total and relative abundance of all registered taxa is displayed in Figure 4.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Integrated total and relative abundance of sympagic meiofauna in Inglefieldbukta (IB) and Agardhbukta 

(AGA) in eastern Svalbard, spring 2018. Poly. juv. = polychaete juvenile, Troch. larv. = trochophore larvae, Unident. 

= unidentified.  
 

In March, especially at IB2, meiofauna communities were dominated by nematodes. However, in 

April, polychaetes, eggs and unidentified dominated IB1 while only nematodes and ciliates were 

registered at IB3. In Agardhbukta, eggs and polychaetes dominated followed by trochophores and 

rotifers. Ciliates were not quantified in March, but present at all stations in April. Eggs were reg-

istered at every station, except at station IB3.  
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Chlorophyll a and sympagic meiofauna  

 

A significant positive relationship (Spearman rank correlation, r = 0.56, p < 0.01) was found 

between meiofauna abundance and Chl a concentration. However, the relationship was highly 

variable both within and between sites and sections (Fig. 5) and did not account for nematodes 

alone (p>0.1). Sympagic meiofauna abundance and Chl a concentration did not respond signifi-

cantly to distance from sea ice-water interphase (p > 0.1), but both responded negatively to snow 

depth (p < 0.05).   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sympagic meiofauna abundance (mean+SD; n = 3) and sympagic chlorophyll a (mean+SD; n = 3) in the 

lower 10 cm sections in Inglefieldbukta (IB1-3) and Agardhbukta (AGA) in eastern Svalbard, 2018. Poly. juv. = 

polychaete juvenile, Troch. larv. = trochophore larvae, Unident. = unidentified, Chl a = chlorophyll a. Note differences 

in scales. 

 

Pelagic meiofauna 

 

In Inglefieldbukta in March, 42 nematodes m-2 and one polychaete m-2 were registered in the water 

column at IB2, while in April, neither of the taxa were found despite two additional samples taken. 

Copepod nauplii dominated pelagic communities by accounting for 71% and 37% of the net mi-

crozooplankton community in March and April, respectively. In March, copepod nauplii, nema-

todes and copepods dominated, while in April, copepod nauplii, chaetognaths and copepods were 
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most numerous. The number of registered taxa increased from six to ten from March to April 

(Appendix 11).  

 

Length measurements 

 

Length of sympagic polychaetes found in sea ice increased significantly (ANCOVA; p < 0.001) 

throughout the season in both Van Mijenfjorden (n = 60), Inglefieldbukta (n = 52) and 

Agardhbukta (n = 9) with no significant difference in response between sites (ANCOVA test for 

comparison of regression line). The polychaetes in Van Mijenfjorden, however, were on average 

96.1 μm larger than polychaetes at both east coast stations in March (ANCOVA; p < 0.01). All 

polychaetes in Inglefieldbukta were observed feeding when algae were present. The multiple linear 

regression model including date and site (VMF: 1; IB; 0) as predictors explained 27.4% of the 

variance in polychaete length (Eq. 5). 

 

           Eq. 5 
 

     Nematodes occurred in the sea ice in Inglefieldbukta at both shallow and deep stations in both 

March and April, but not in Agardhbukta. The length ranged from 266.9 (IB1, April) to 2242.1 

μm (IB2, March). However, heteroscedasticity constrained modelling of nematodes. In Van Mi-

jenfjorden, nematodes were on average 684.41 μm larger than nematodes in Inglefieldbukta with 

size generally decreasing in response to time at both sites. Still, the spread in size increased 

throughout the season with both juveniles (<1700 μm; Tchesunov and Riemann 1995) and adults 

occurring simultaneously in late April in both Van Mijenfjorden and Inglefieldbukta. In In-

glefieldbukta (22nd of March 2018), 21 nematodes collected from the water column at IB2 were 

length measured. Compared to individuals measured in the overlying sea ice from the same day 

and station, the nematodes in the water were on average smaller (two-sample t-test; p<0.001) alt-

hough the size range of the pelagic nematodes (638.7 – 1527.4 μm) were encompassed within that 

of the sympagic (603.6 – 2242.1 μm).  

 

Phylogeny 

 

Of the 63 polychaetes isolated from Inglefieldbukta for phylogenetic analysis, 10 polychaetes from 

IB1 in April were of good quality for further analysis, i.e. >620 base pairs, no gaps and high-

quality reads. In addition, 25 sequences of the CMC strains from the Canadian Arctic (Carr et al. 
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2011) were aligned for reference.  Maximum likelihood and maximum parsimony analyses re-

vealed a similar clustering by outlining three clades indicated Clade 1, 2 and 3 in Figure 6. Six 

polychaetes of the CMC01 strain constituted Clade 1, while Clade 3 was constituted by 10 poly-

chaetes of the CMC03 strain. The 10 polychaetes analysed in this study all grouped with the 

CMC02 strain, together constituting Clade 2 (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Phylogenetic tree based on maximum likelihood (bold bootstrap values) and maximum parsimony (grey 

bootstrap values) on 10 polychaetes from Inglefieldbukta in April and 25 polychaetes from the Canadian Arctic. Ac-

cession numbers are available in Appendix 8 and reference names in Appendix 12. *Sequences from this study. 

 Polychaetes isolated from Van Mijenfjorden in 2017 (n = 13) yielded three high quality sequences 

all genetically distant from polychaetes isolated from Inglefieldbukta. Hence, a separate molecular 

analysis including taxa of higher genetic similarity was done based on polychaete phylogeny sum-

marized in the Global Biodiversity Information Facility (GBIF.org; 2019). Sequences belonging 

to neighbouring genera were thus identified (Appendix 8) and included in the analysis (Fig. 7). 
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Figure 7. Phylogenetic tree based on maximum likelihood (bold bootstrap values) and neighbour joining (grey boot-

strap values) on three polychaetes from Van Mijenfjorden April 2017 and 18 reference sequences mostly from the 

Canadian Arctic, Chukchi Sea and Svalbard. Accession numbers are available in Appendix 8 and reference names in 

Appendix 12. *Analysed in this study with sequences from Pitusi et al. (2019).  

 

All polychaetes from Van Mijenfjorden places within Clade 2 together with a Melaenis loveni 

(Malmgren 1865) isolated from Svalbard waters, while Clade 1 is constituted by Eunoe spp. 

(Malmgren 1865).  

     Nematodes from IB1 (n = 1) and IB2 (n = 6) in March, Wahlenbergfjorden (WB) in May (n = 

2) and Palanderbukta (PAL) in June (n = 2) yielded high quality sequences for phylogenetic anal-

ysis. Combined with sequences from Van Mijenfjorden (n = 43; Pitusi 2019), the Håkon Mosby 

Mud Volcano (n = 5; HMMV; Van Campenhout et al. 2014) and the west coast of the Netherlands 

(n = 16; Van Campenhout et al. 2014), maximum likelihood and maximum parsimony revealed 

similar phylogenetic clustering (Fig. 8). The included voucher sequences from HMMV and the 

Netherlands represent, to my knowledge, the accessible high-quality sequences on the Halo-

monhystera sp. 18S rRNA barcode in GenBank.  
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Figure 8. Phylogenetic tree based on maximum likelihood (bold bootstrap values) and maximum parsimony (grey 

bootstrap values) on seven nematodes from Inglefieldbukta (IB1-2), two from Palanderbukta (PAL), 44 from Van 

Mijenfjorden (VMF), 20 from the Netherlands (GD1-5; Theristus) and five from the Håkon Mosby Mud Volcano 

(HMMV). Accession numbers are available in Appendix 8 and reference names in Appendix 12. * Sequences from 

this study, ** Sequences from Pitusi (2019).  

 

Three clades can be distinguished: Clade 1, 2 and 3. Clade 1 is constituted solely by individuals 

isolated from sea ice (IB1, IB2, PAL and VMF), while Clade 2 displays Halomonhystera disjuncta 

sequences isolated from sediments from the Netherlands (GD1-5) and Håkon Mosby Mud volcano 

(HMMV). Clade 3 is more distant to clade 1 and 2 and has a deeper branching containing a com-

bination of sequences obtained from WB and VMF related to Theristus spp. 
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Discussion 

 

The aim of this study was to determine the community composition of coastal sympagic meio-

fauna in eastern Svalbard. Further, the population structure of sympagic polychaetes and nema-

todes was examined based on registrations of eggs, concurrent sampling of the pelagic realm and 

length measurements with reference to sympagic communities in Van Mijenfjorden. To investi-

gate the diversity and phylogeny of polychaetes and nematodes, molecular barcoding was ap-

plied. We found coastal sympagic communities in March constituted by coexisting polychaete 

juveniles and nematodes at low overall abundances, i.e. ≤626 ind. m-2. In April, the sympagic 

communities were characterized by greater abundances, low coexistence of the two dominating 

phyla and the addition of trochophore larvae, rotifers and numerous eggs. Statistically significant 

increases in size and observations of feeding polychaetes implied that polychaete juveniles used 

the sympagic realm as a feeding ground, supporting earlier findings by Gradinger et al. (2009). 

Initial size increments, molecularly confirmed presence of eggs and later simultaneous occur-

rences of both adult and juvenile nematodes support that nematodes both feed, reproduce and 

raise juveniles inside the sea ice throughout the spring. While the habitat use appeared similar 

between polychaetes in Inglefieldbukta and Van Mijenfjorden, the species are seemingly differ-

ent. Hence, at least one species within the genus Spio inhabits the east coast, while Melaenis 

loveni inhabits the west coast. Similarly, size patterns of nematodes in Inglefieldbukta and Van 

Mijenfjorden resembled each other despite having at least two species in Van Mijenfjorden and 

one species in Inglefieldbukta.  

 
Community composition 

 
Polychaetes and nematodes dominated the coastal sympagic community in Inglefieldbukta in 

March, albeit at relatively low abundances; 272-626 ind. m-2. Contrary to expectations, little dif-

ference was observed in abundance and taxa composition between the shallow (4 m; IB1) and deep 

(32 m; IB2/3) station in March. From March to April, total abundance increased from 8 635 to 22 

903 ind. m-2 at IB1, while the deep station (IB2) only increased slightly in abundance from March 

to April (IB3). Interestingly, Agardhbukta resembled the community of IB1, both with regards to 

abundance and community composition, but not IB3. Together, this underlines the substantial 

compositional variation typically observed within small spatial scales in sympagic meiofauna 

communities (Bluhm et al. 2018). The differences in depth (4 m versus 42 m), distance (15 km) 

and terrestrial input (glacier front versus river valley) encompassed here are likely too narrow to 
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explain the observed variation. Snow depth at IB3 was 39.9±1.0 cm; more than twice the thickness 

of both IB1 and AGA in April. Consequently, under-ice irradiance at IB3, 0.0007 μmol s
-1

 m
-2

, 

was one order of magnitude lower than at the adjacent stations. Hence, variation in snow depth 

and the associated irradiance and Chl a might explain the observed community variation, i.e. a 

polychaete-dominated community at IB1 and AGA in April and a community dominated by nem-

atodes and ciliates at IB3 in April. The availability of algae, here expressed as Chl a, shape 

sympagic meiofauna communities (Gradinger 1999; Schünemannn and Werner 2005) but is in 

turn rarely influenced by meiofaunal grazing (Gradinger 1999; Nozais et al. 2001; Michel et al. 

2002; Gradinger et al. 2005). Still, polychaete abundance responded positively to the concentration 

of Chl a, while nematodes did not. Hence, only ciliates and nematodes were registered at IB3 

where integrated Chl a was 0.01 mg Chl a m-2. By being bacterivorous, nematodes and ciliates do 

not depend on algae-based energy (Tchesunov and Riemann 1995; Kramer 2010) as it is implied 

from the simultaneous relatively high nematode and ciliate abundance and low Chl a concentration 

at the uppermost section at IB2 and IB3 (Fig. 5). The absence of algae likely influences sympagic 

nematodes and ciliates indirectly by not supporting polychaete juveniles and hereby increase sub-

strate availability and further directly by not competing with bacteria for inorganic nutrients (Ap-

pendix 13). Nematodes and ciliates are consequently potential important ecosystem components 

in coastal sympagic ecosystems where sympagic algae biomass is limited by low irradiance. 

     The presence of glacial ice inside the sea ice at the deep station in Inglefieldbukta in April (IB3; 

Appendix 5) provides an additional explanation for the low diversity and abundance of sympagic 

meiofauna here. Albeit not covered by salinity measurements herein, a lower brine volume is ex-

pected with the lower salinities of glacial ice (Golden et al. 1998; Krembs et al. 2000; Burton et 

al. 2018); consequently supressing the colonization and succession of sympagic biota. 

     A greater taxonomical richness and lower abundance was observed among the pelagic meio-

fauna at the deep stations with six and ten taxonomical groups in March (IB2) and April (IB3), 

compared to 4 and 6 in the sea ice, respectively. The finding of lower abundance of pelagic meio-

fauna are well in line with the concurrent low concentration of pelagic Chl a and follow findings 

in Storfjorden, north of Svalbard (Schünemann 2004) and in the Baltic Sea (Meiners et al. 2002). 

The lower diversity in the sympagic realm, compared to the pelagic realm, is likely a result of the 

strong selection for small, morphologically plastic taxa that can cope with the distinct physiochem-

istry of brine channels (Krembs et al. 2000). Only nematodes in March were simultaneously pre-

sent in the sympagic and pelagic realm; indicating a habitat specificity for the investigated 
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meiofauna throughout March and April. The ability to thrive in both realms likely increases the 

fitness and resilience of sympagic nematodes. 

 
Diversity of sympagic polychaetes and nematodes 

 
It is still unclear which and how many polychaete and nematode species inhabit the sea ice in 

Svalbard. Molecular analyses in this study show the presence of at least two polychaete species; 

Melaenis loveni in Van Mijenfjorden and at least one species within the genus Spio in In-

glefieldbukta. Both are, to my knowledge, new to the register of polychaetes inhabiting sea ice and 

challenge the presumption of Scolelepis squamata as the sole sea ice inhabitant in Svalbard. M. 

loveni is not new to the polychaete literature in Svalbard but has only been registered from the 

benthic environment, most recently by Norlinder et al. (2012) and initially by Wirén (1883) in Van 

Mijenfjorden during the Vega Expedition (1878-1879). Spio species have been described in the 

Arctic as early as 1776 (Müller 1776) and later by Schneider in 1977 (see Blum and Fong 2016). 

The sequences representing the Spio genera in this study originate from the Canadian Arctic (Carr 

et al. 2011) and represent the most genetically similar voucher genus available in GenBank 

(Benson et al. 2013). Expert taxonomists are required to establish voucher species for the poly-

chaetes analysed here. While a pan-Arctic distribution is known for several meiofauna (Carr et al. 

2011; Bluhm et al. 2018), it remains unknown if the same is true at the species level. It is thus 

intriguing to clarify the genetic similarity between the polychaetes collected in Svalbard and in 

Canada.  

     The sympagic nematodes analysed in this study constitute the first evidence of the sympagic 

nematode diversity in sea ice in Inglefieldbukta, Palanderbukta and Wahlenbergfjorden. Molecular 

analyses implied the presence of at least two species within separate genera; Theristus and another 

yet unknown genus with up to several species closely related to Halomonhystera disjuncta. 

Theristus melnikovi is known from sea ice in the Fram Strait, Laptev Sea and the Central Arctic 

Ocean (Tchesunov and Riemann 1995) but has not priorly been described for Svalbard. Here, a 

Theristus sp. occurred in Van Mijenfjorden in April (n = 2) and in Wahlenbergfjorden in May (n 

= 2); possibly adding to T. melnikovi’s apparent pan-Arctic distribution. Sea ice cover in Van 

Mijenfjorden and Wahlenbergfjorden is seasonal. Further, especially in Van Mijenfjorden, con-

nectivity with external sea ice communities is scarce. Therefore, the presumed finding of T. melni-

kovi in Van Mijenfjorden and Wahlenbergfjorden indicate a sympago-benthic life strategy. Occur-

rences of T. melnikovi inside sea ice over deep water (1000-3000 m) in the Central Arctic Ocean 

and Fram Strait (Tchesunov and Riemann 1995) can be explained by dispersal from neighboring 
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seed communities as has been suggested for sympagic algae (Kauko et al. 2018). While not iden-

tified to species level, nematodes within the Theristus genus have been observed in the benthos in 

the Laptev sea at depths from 65 m (Vanaverbeke et al. 1997). Hence, the Laptev Sea shelf pro-

vides shallow depths and polynyas potentially suitable for sea ice colonization and subsequent 

transpolar drift (Krumpen et al. 2019).  

     The unknown nematode genus’ occurrence in both Palanderbukta, Inglefieldbukta and Van Mi-

jenfjorden imply that at least two species coexist in the coastal sympagic communities in Svalbard. 

The sample size presented here is likely too scarce to cover the diversity of the respective sampling 

sites but provides a baseline for further sympagic meiofauna diversity studies in eastern Svalbard. 

Appendix 14 visually summarizes registrations of the polychaetes and nematodes discussed here. 

 
Further prospects 

 
Polychaetes and nematodes remain among the dominating meiofauna in coastal sympagic ecosys-

tems in the Arctic (Kern and Carey 1983; Grainger et al. 1985; Gradinger et al. 2009; Marquardt 

et al. 2011). It is therefore fundamental to establish a record of their diversity, distribution and 

ecosystem function if we are to understand their ecological significance in Arctic coastal ecosys-

tems. However, an extensive collection of voucher species created through close collaboration 

between molecular biologist and taxonomist is required followed by novel metagenetic ap-

proaches. This will aid in making currently challenging ecological questions more easily accessi-

ble, possibly through ecosystem-wide models (Zhang et al. 2010). To elucidate the life history of 

sympagic nematodes, future research should prioritize concurrent sampling of the pelagic and ben-

thic realm when investigating sympagic nematodes. Greater dependency of the sympagic realm 

will likely result in greater ramifications for both higher and lower tropic level, following the cur-

rent decline in sea ice extent. Hence, knowledge on habitat use and timing will aid in understanding 

and predicting the ecological response of sympagic nematodes in future climate scenarios. Further, 

exploring the generality of the influence of glacial ice incorporation, questioned in this study, can 

become useful when investigating coastal areas prone to glacial ice.  

     This study supports the use of Svalbard as a model area (CAFF 2017) with special emphasis on 

the eastern region investigated herein. The climate of the east coast resembles that of the more 

inaccessible high-Arctic; as underlined by the finding of the high-Arctic multiyear sea ice indicator 

species Melosira arctica in this study (Józef Wiktor, pers. communication). M. arctica relies on 

stability and is hence most prominent at the inner sections of ice sheets (Poulin and Michel 2014). 

Therefore, protected bays like Inglefieldbukta expectedly best resemble its high-Arctic habitat.  
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Conclusion 

 

This paper provided insight into the community composition, population structure and phylogeny 

of coastal sympagic meiofauna in eastern Svalbard. Communities in March were lowest in abun-

dance, i.e. ≤626 ind. m-2, and comprised polychaete juveniles, nematodes and nematode eggs. In 

Inglefield in April, taxonomic diversity, polychaete juvenile dominance and total sympagic meio-

fauna abundance increased at the shallow station reaching abundances up to 22 900 ind. m-2. The 

adjacent deep station comprised nematodes and ciliates. Snow depth and glacial ice most likely 

explains the observed variation in community composition between stations and dates. Observa-

tions of nematode size increments, molecular identification of nematode eggs and the subsequent 

presence of nematode juveniles imply that nematodes utilize the sympagic realm to feed, reproduce 

and raise juveniles. The presence of long chains of Melosira arctica confirms the relevance of the 

high-Arctic environment of eastern Svalbard as a model area for monitoring the response of 

sympagic ecosystems to diminishing sea ice. Finally, the addition of at least two meiofauna species 

new to sympagic literature implies that numerous discoveries await in eastern Svalbard for 

sympagic ecosystem research.  

 
References 

 

ACIA (2004) ACIA, Impacts of a Warming Arctic: Arctic Climate Impact Assessment 

Allgén CA (1929) Südschwedische Marine Nematoden. Göteborgs K Vetens- och Vitterh Samh 

Handl 2:1–40 

Avó AP, Daniell TJ, Neilson R, et al. (2017) DNA Barcoding and Morphological Identification of 

Benthic Nematodes Assemblages of Estuarine Intertidal Sediments: Advances in Molecular 

Tools for Biodiversity Assessment. Front Mar Sci 4. doi: 10.3389/fmars.2017.00066 

Barnes M, Fauchald K (1979) The Diet of Worms: a Study of Polychaete Feeding Guilds. Ocean 

Mar Biol Ann Rev 17:193–284 

Barroso R, Klautau M, Solé-Cava AM, Paiva PC (2010) Eurythoe complanata (Polychaeta: 

Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar 

Biol 157:69–80 

Benson DA, Cavanaugh M, Clark K, et al (2013) GenBank. Nucleic Acids Res 41:D36–D42. doi: 

10.1093/nar/gks1195 

Bhadury P, Austen MC, Bilton DT, et al. (2006) Development and evaluation of a DNA-barcoding 



 25 

approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9 

Bhaud M, Koh B-S, Martín D (2006) New systematic results based on chaetal hard structures in 

Mesochaetopterus (Polychaeta). Sci Mar 70:35–44 

Bhaud MR, Petti MAV (2001) Spiochaetopterus nonatoi, a new species of Chaetopteridae 

(Polychaeta) from Brazil: biogeographical consequences. J Mar Biol Assoc United Kingdom 

81:225–234 

Blaxter ML (2004) The promise of a DNA taxonomy. Philos Trans R Soc London Ser B Biol Sci 

359:669–679 

Bleidorn C, Podsiadlowski L, Bartolomaeus T (2006) The complete mitochondrial genome of the 

orbiniid polychaete Orbinia latreillii (Annelida, Orbiniidae) – A novel gene order for 

Annelida and implications for annelid phylogeny. Gene 370:96–103. doi: 

https://doi.org/10.1016/j.gene.2005.11.018 

Bleidorn C, Vogt L, Bartolomaeus T (2003) New insights into polychaete phylogeny (Annelida) 

inferred from 18S rDNA sequences. Mol Phylogenet Evol 29:279–288 

Blome D, Riemann F (1999) Antarctic sea ice nematodes, with description of Geomonystera 

glaciei sp. n. (Monhysteridae). Mitt hamb zool Mus Inst 96:15–20 

Bluhm BA, Hop H, Vihtakari M, et al. (2018) Sea ice meiofauna distribution on local to pan-Arctic 

scales. Ecol Evol 8:2350–2364. doi: 10.1002/ece3.3797 

Blum S, Fong J (2016) CAS Invertebrate Zoology (IZ). GBIF.org. Accessed 27 May 2019 

Bradstreet MSW, Cross WE (1982) Trophic Relationships at High Arctic Ice Edges. Arctic 35:1–

12 

Brown TA, Galicia MP, Thiemann GW, et al. (2018) High contributions of sea ice derived carbon 

in polar bear (Ursus maritimus) tissue. PLoS One 1–13 

Burton JC, Amundson JM, Cassotto R, et al. (2018) Quantifying flow and stress in ice mélange, 

the world’s largest granular material. PNAS 115:5105–5110. doi: 10.1073/pnas.1715136115 

CAFF (2017) State of the Arctic Marine Biodiversity Report 

Carey AG (1985) Marine ice fauna: Arctic In: Horner RA (ed), Sea ice biota. CRC Press 173–190 

Carey AG (1982) Arctic Sea Ice Fauna1 Assemblage: First Approach Meiofauna. Mar Ecol 8:1–

8 

Carr CM, Hardy SM, Brown TM, et al. (2011) A Tri-Oceanic Perspective: DNA Barcoding 

Reveals Geographic Structure and Cryptic Diversity in Canadian Polychaetes. 6. doi: 

10.1371/journal.pone.0022232 

Chitwood BG, Murphy DG (1964) Observations on two marine monhysterids: their classification, 

cultivation, and behavior. Trans Am Microsc Soc 83:311–329 



 26 

Chresten L, Hawes LI, Holtegaard M, Sorrell BK (2016) Is colonization of sea ice by diatoms 

facilitated by increased surface roughness in growing ice crystals? Polar Biol. doi: 

10.1007/s00300-016-1981-3 

Coomans A (2002) Present status and future of nematode systematics. Nematology 4:573–582 

Creer S, Fonseca VG, Porazinska DL, et al. (2010) Ultrasequencing of the meiofaunal biosphere: 

practice, pitfalls and promises. Mol Ecol 19:4–20 

Daase M, Kosobokova K, KS L, et al. (2018) New insights into the biology of Calanus spp. 

(Copepoda) males in the Arctic. Mar Ecol Prog Ser 607:53–69 

David C, Lange B, Krumpen T, et al. (2016) Under-ice distribution of polar cod Boreogadus saida 

in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol 

39:981–994. doi: 10.1007/s00300-015-1774-0 

David C, Lange B, Rabe B, Flores H (2015) Community structure of under-ice fauna in the 

Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar 

Ecol Prog Ser 522:15–32 

Dawson J, Stewart EJ, Johnston ME, et al. (2016) Identifying and evaluating adaptation strategies 

for cruise tourism in Arctic Canada in Arctic Canada. J Sustain Tour 9582. doi: 

10.1080/09669582.2015.1125358 

De Ley P, De Ley IT, Morris K, et al. (2005) An integrated approach to fast and informative 

morphological vouchering of nematodes for applications in molecular barcoding. Philos 

Trans R Soc B Biol Sci 360:1945–1958 

Derycke S, Backeljau T, Vlaeminck C, et al. (2006) Seasonal dynamics of population genetic 

structure in cryptic taxa of the Pellioditis marina complex (Nematoda: Rhabditida). Genetica 

128:307–321 

Derycke S, Remerie T, Vierstraete A, et al. (2005) Mitochondrial DNA variation and cryptic 

speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 

300:91–103 

Dimitrios D, Baxevani E (2018) The Future of Arctic Shipping Business and the Positive Influence 

of the International Code for Ships Operating in Polar Waters. Journal Ocean Technol 

Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space 

complexity. BMC Bioinformatics 5:113 

Eklöf J (2010) Taxonomy and phylogeny of polychaetes. Department of Zoology; Zoologiska 

institutionen 

Ellis D V (1955) Some observations on the shore fauna of Baffin Island. Arctic 8:224–236 

Ellis D V, Wilce RT (1961) Arctic and subarctic examples of intertidal zonation. Arctic 14:224–



 27 

235 

Ewert M, Deming JW (2013) Sea Ice Microorganisms: Environmental Constraints and 

Extracellular Responses. Biology (Basel) 603–628. doi: 10.3390/biology2020603 

Flink A, Noormets R, Fransner O, Hogan K (2014) Observations and implications of submarine 

landforms in Wahlenbergfjorden, Eastern Svalbard 

Fonseca VG, Sinniger F, Gaspar JM, et al. (2017) Revealing higher than expected meiofaunal 

diversity in Antarctic sediments: A metabarcoding approach. Sci Rep 7:1–11. doi: 

10.1038/s41598-017-06687-x 

Frasier TR (2015) A note on the use of multiple linear regression in molecular ecology. Mol Ecol 

Resour. doi: 10.1111/1755-0998.12499 

Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice 

community studies. Polar Biol 6:237–239 

Gems D, Riddle DL (2000) Genetic, behavioral and environmental determinants of male longevity 

in Caenorhabditis elegans. Genetics 154:1597–1610 

George JCC, Huntington HP, Brewster K, et al. (2004) Observation on Shorefast Ice Dynamics in 

Arctic Alaska and the Responses of the Iñupiat Hunting Community. Arctic. doi: 

10.14430/arctic514 

Gerlach SA, Schrage M (1971) Life cycles in marine meiobenthos. Experiments at various 

temperatures with Monhystera disjuncta and Theristus pertenuis (Nematoda). Mar Biol 

9:274–280 

Golden KM, Ackley SF, Lytle VI (1998) The Percolation Phase Transition in Sea Ice. Science 

282:2238–2241. doi: 10.1126/science.282.5397.2238 

Gradinger R (1999) Integrated abundance and biomass of sympagic meiofauna in Arctic and 

Antarctic pack ice. Polar Biol 22:169–177. doi: 10.1007/s003000050407 

Gradinger RR, Kaufman MR, Bluhm BA (2009) Pivotal role of sea ice sediments in the seasonal 

development of near-shore Arctic fast ice biota. Mar Ecol Prog Ser 394:49–63. doi: 

10.3354/meps08320 

Gradinger RR, Meiners K, Plumley G, et al. (2005) Abundance and composition of the sea-ice 

meiofauna in off-shore pack ice of the Beaufort Gyre in summer 2002 and 2003. Polar Biol 

28:171–181. doi: 10.1007/s00300-004-0674-5 

Grainger EH, Mohammed AA, Lovrity JE (1985) The Sea Ice Fauna of Frobisher Bay, Arctic 

Canada. Arctic 38:23–30 

Haarpaintner J, Haugan PM, Gascard JC (2001) Interannual variability of the Storfjorden 

(Svalbard) ice cover and ice production observed by ERS-2 SAR. Ann Glaciol 33:430–436. 



 28 

doi: doi:10.3189/172756401781818392 

Halinski RS, Feldt LS (1970) The selection of variables in multiple regression analysis. J Educ 

Meas 7:151–157 

Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock 

of mitochondrial DNA. J Mol Evol 22:160–174 

Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA 

barcodes. Proceedings Biol Sci 270:313–321. doi: 10.1098/rspb.2002.2218 

Holm-Hansen O, Riemann B (1978) Chlorophyll a Determination: Improvements in Methodology. 

Oikos 30:438–447. doi: 10.2307/3543338 

Hua E, Mu F, Zhang Z, et al. (2016) Nematode community structure and diversity pattern in sandy 

beaches of Qingdao, China. J Ocean Univ China 15:33–40 

Hutchings P, Kupriyanova E (2018) Cosmopolitan Polychaetes - Fact or Fiction? Personal and 

Historical Perspectives. Invertebr Syst. doi: 10.1071/IS17035 

Hutchings PAT (1998) Biodiversity and functioning of polychaetes in benthic sediments. 

Biodivers Conserv 1145: 

Jacobs LJ, Van De Velde MC, Geraert E, Vranken G (1990) Description of Diplolaimella 

dievengatensis sp. n. (Nematoda: Monhysteridae). Nematologica 36:1–21 

Jin M, Deal CJ, Wang J, et al. (2006) Controls of the landfast ice–ocean ecosystem offshore 

Barrow, Alaska. Ann Glaciol 44:63–72 

Kauko HM, Olsen LM, Duarte P, et al. (2018) Algal Colonization of Young Arctic Sea Ice in 

Spring. Front Mar Sci 5:199. doi: 10.3389/fmars.2018.00199 

Kedra M, Pabis K, Gromisz S, Wesławski JM (2013) Distribution patterns of polychaete fauna in 

an Arctic fjord (Hornsund, Spitsbergen). Polar Biol 36:1463–1472. doi: 10.1007/s00300-013-

1366-9 

Kern JC, Carey AG (1983) The faunal assemblage inhabiting seasonal sea ice in the nearshore 

Arctic Ocean with emphasis on copepods. Mar Ecol Prog Ser 10:159–167 

Kiko R, Kern S, Kramer M, Mütze H (2017) Colonization of newly forming Arctic sea ice by 

meiofauna: a case study for the future Arctic? Polar Biol 40:1277–1288. doi: 10.1007/s00300-

016-2052-5 

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through 

comparative studies of nucleotide sequences. J Mol Evol 16:111–120 

Kohlbach D, Graeve M, A. Lange B, et al. (2016) The importance of ice algae-produced carbon 

in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable 

isotope analyses. Limnol Oceanogr 61. doi: 10.1002/lno.10351 



 29 

Kohlbach D, Schaafsma FL, Graeve M, et al. (2017) Strong linkage of polar cod (Boreogadus 

saida) to sea ice algae-produced carbon: Evidence from stomach content, fatty acid and stable 

isotope analyses. Prog Oceanogr 152. doi: 10.1016/j.pocean.2017.02.003 

Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR 

amplification. Nat Protoc 3:13–15. doi: 10.1038/nprot.2008.133 

Kramer M (2010) The role of sympagic meiofauna in Arctic and Antarctic sea-ice food webs. The 

Christian Albrechts Universität zu Kiel 

Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface 

area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Bio Ecol 243:55–

80. doi: 10.1016/S0022-0981(99)00111-2 

Krumpen T, Belter HJ, Boetius A, et al. (2019) Arctic warming interrupts the Transpolar Drift and 

affects long-range transport of sea ice and ice-rafted matter. Sci Rep 9:5459. doi: 

10.1038/s41598-019-41456-y 

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 

7.0 for bigger datasets. Mol Biol Evol 33:1870–1874 

Legendre L, Ackley SF, Dieckmann GS, et al. (1992) Ecology of sea ice biota. Polar Biol 12:429–

444. doi: 10.1007/BF00243114 

Leu E, Graeve M, Wulff A (2016) A (too) bright future? Arctic diatoms under radiation stress. 

Polar Biol 39:1711–1724. doi: 10.1007/s00300-016-2003-1 

Leung TLF, Koprivnikar J (2016) Nematode parasite diversity in birds: the role of host ecology, 

life history and migration. J Anim Ecol 85:1471–1480 

Lønne OJ, Gulliksen B (1989) Size, age and diet of polar cod, Boreogadus saida (Lepechin 1773), 

in ice covered waters. Polar Biol 9:187–191. doi: 10.1007/BF00297174 

Lønne OJ, Gulliksen B (1991a) On the distribution of sympagic macro-fauna in the seasonally ice 

covered Barents Sea. Polar Biol 11:457–469. doi: 10.1007/BF00233081 

Lønne OJ, Gulliksen B (1991b) Sympagic macro-fauna from multiyear sea-ice near Svalbard. 

Polar Biol 11:471–477. doi: 10.1007/BF00233082 

Lowther AD, Fisk A, Kovacs KM, Lydersen C (2017) Interdecadal changes in the marine food 

web along the west Spitsbergen coast detected in the stable isotope composition of ringed 

seal (Pusa hispida) whiskers. Polar Biol 40:2027–2033. doi: 10.1007/s00300-017-2122-3 

Madsen H (1936) Investigations on the Shore Fauna of East Greenland with a Survey of the Shores 

of Other Arctic Regions: Treaarsexpeditionen til Christian den X’s Land 1931-34 under 

Ledelse af Lauge Koch.  

Malmgren AJ (1865) Öfversigt af Kongl. Vetenskaps-akademiens forhandlingar. P. A. Norstedt 



 30 

& Söner 

Marquardt M, Kramer M, Carnat G, Werner I (2011) Vertical distribution of sympagic meiofauna 

in sea ice in the Canadian Beaufort Sea. Polar Biol 34:1887–1900. doi: 10.1007/s00300-011-

1078-y 

McConnell B, Gradinger R, Iken K, Bluhm BA (2012) Growth rates of arctic juvenile Scolelepis 

squamata (Polychaeta: Spionidae) isolated from Chukchi Sea fast ice. Polar Biol 1487–1494. 

doi: 10.1007/s00300-012-1187-2 

Meiners K, Fehling J, Granskog MA, Spindler M (2002) Abundance, biomass and composition of 

biota in Baltic sea ice and underlying water (March 2000). Polar Biol 25:761–770. doi: 

10.1007/s00300-002-0403-x 

Michel C, Nielsen TG, Nozais C, Gosselin M (2002) Significance of sedimentation and grazing 

by ice micro- and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquat 

Microb Ecol 30:57–68. doi: 10.3354/ame030057 

Müller OF (1776) Zoologiae Danicae prodromus: seu Animalium Daniae et Norvegiae 

indigenarum; characteres, nomina, et synonyma imprimis popularium. doi: 

https://doi.org/10.5962/bhl.title.13268 

Mundy CJ, Barber DG, Michel C (2005) Variability of snow and ice thermal, physical and optical 

properties pertinent to sea ice algae biomass during spring. J Mar Syst 58:107–120. doi: 

https://doi.org/10.1016/j.jmarsys.2005.07.003 

Nicholas WL (1975) The biology of free-living nematodes. Clarendon Press. 

Norlinder E, Nygren A, Wiklund H, Pleijel F (2012) Phylogeny of scale-worms (Aphroditiformia, 

Annelida), assessed from 18S rRNA, 28S rRNA, 16S rRNA, mitochondrial cytochrome c 

oxidase subunit I (COI) and morphology. Mol Phylogenet Evol 65:490–500. doi: 

10.1016/j.ympev.2012.07.002 

Notz D, Stroeve J (2016) Observed Arctic sea-ice loss directly follows anthropogenic CO2 

emission. Science 354:747–750. doi: 10.1126/science.aag2345 

Nozais C, Gosselin M, Michel C, Tita G (2001) Abundance, biomass, composition and grazing 

impact of the sea-ice meiofauna in the North water, Northern Baffin Bay. Mar Ecol Prog Ser 

217:235–250. doi: 10.3354/meps217235 

Nygren A, Pleijel F (2010) Redescription of Imajimaea draculai—a rare syllid polychaete 

associated with the sea pen Funiculina quadrangularis. J Mar Biol Assoc United Kingdom 

90:1441–1448 

Oliver TH, Heard MS, Isaac NJB, et al. (2015) Biodiversity and Resilience of Ecosystem 

Functions. Trends Ecol Evol 30:673–684. doi: 10.1016/j.tree.2015.08.009 



 31 

Olson MA, Zajac RN, Russello MA (2009) Estuarine-scale genetic variation in the polychaete 

Hobsonia florida (Ampharetidae; Annelida) in Long Island Sound and relationships to 

Pleistocene glaciations. Biol Bull 217:86–94 

Petersen GH (1962) The distribution of Balanus balanoides (L.) and Littorina saxatilis, Olivi, var. 

groenlandica, Mencke in Northern West Greenland: with remarks on some causative factors. 

Danmarks Arktiske Station 33:1-40 

Pitusi V (2016) Seasonal development of ice algal biomass and sympagic meiofauna in Van 

Mijenfjorden, southwest Svalbard. The University Centre in Svalbard 

Pitusi V (2019) Seasonal abundance and activity of sympagic meiofauna in Van Mijenfjorden, 

Svalbard. The University Centre in Svalbard 

Porazinska DL, Sung W, Giblin‐Davis RM, Thomas WK (2010) Reproducibility of read numbers 

in high‐throughput sequencing analysis of nematode community composition and structure. 

Mol Ecol Resour 10:666–676 

Poulin M, Michel C (2014) Sub-ice colonial Melosira arctica in Arctic first-year ice. Diatom Res 

29:1–9. doi: 10.1080/0269249X.2013.877085 

R Core Team (2019) R: A language and environment for statistical computing. Vienna, Austria 

 http://www.R-project.org/ 

Ralph MN (2015) Regression and model-building in conservation biology, biogeography and 

ecology: The distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ 

models. Biodivers Conserv. doi: DOI: 10.1023/A:1008985925162 

Ratnasingham S, Herbert PD (2007) BOLD: The Barcode of Life Data System 

(www.barcodinglife.org). Mol Ecol Notes. doi: 10.1111/j.1471-8286.2006.01678.x 

Rice SA, Karl S, Rice KA (2008) The Polydora cornuta complex (Annelida: Polychaeta) contains 

populations that are reproductively isolated and genetically distinct. Invertebr Biol 127:45–

64. doi: 10.1111/j.1744-7410.2007.00104.x 

Riemann F, Sime-Ngando T (1997) Note on sea-ice nematodes (Monhysteroidea) from Resolute 

Passage, Canadian high Arctic. Polar Biol 18:70–75 

Romeyn K, Bouwman LA (1983) Food selection and consumption by estuarine nematodes. 

Hydrobiol Bull 17:103–109 

Rouse G, Pleijel F (2006) Reproductive Biology and Phylogeny of Annelida 

Rousset V, Pleijel F, Rouse GW, et al. (2007) A molecular phylogeny of annelids. Cladistics 

23:41–63 

Rueden CT, Schindelin J, Hiner MC, et al. (2017) ImageJ2: ImageJ for the next generation of 

scientific image data. 1–26. doi: 10.1186/s12859-017-1934-z 



 32 

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc 

Natl Acad Sci 74:5463–5467 

Scarpa F, Cossu P, Lai T, et al. (2016) Meiofaunal cryptic species challenge species delimitation: 

the case of the Monocelis lineata (Platyhelminthes: Proseriata) species complex. Contrib to 

Zool 85:123–145 

Schindelin J, Arganda-Carreras I, Frise E, et al. (2012) Fiji: an open-source platform for biological-

image analysis. Nat Methods 9:676 

Schünemann H (2004) Studies on the Arctic pack-ice habitat and sympagic meiofauna – seasonal 

and regional variabilities. Der Christian Albrechts Universität zu Kiel 

Schünemannn H, Werner I (2005) Seasonal variations in distribution patterns of sympagic 

meiofauna in Arctic pack ice. Mar Biol 1091–1102. doi: 10.1007/s00227-004-1511-7 

Snelgrove PVR (1997) The Importance of Marine Sediment Biodiversity in Ecosystem Processes. 

Springer 26:578–583 

Spearman C (1904) The Proof and Measurement of Association between Two Things. Am J 

Psychol 15:72–101. doi: 10.2307/1412159 

Spindler M, Dieckmann GS (1986) Distribution and abundance of the planktic foraminifer 

Neogloboquadrina pachyderma in sea ice of the Weddell Sea (Antarctica). Polar Biol 5:185–

191. doi: 10.1007/BF00441699 

Stroeve J, Notz D (2018) Changing state of Arctic sea ice across all seasons. Environ Res Lett 

Szymelfenig M, Kwasniewski S, Weslawski J (1997) Intertidal zone of Svalbard. Polar Biol 

18:45–52. doi: 10.1007/s003000050157 

Tchesunov A, Portnova D (2005) Free-living nematodes in seasonal coastal ice of the White Sea. 

Description of Hieminema obliquorum gen. et sp. n. (Nematoda, Monhysteroidea). Zool 

Zhurnal 

Tchesunov A V, Portnova DA (2015) Description of two free-living nematode species of 

Halomonhystera disjuncta complex (Nematoda: Monhysterida) from two peculiar habitats in 

the sea. Helgol Mar Res 57–85. doi: 10.1007/s10152-014-0416-1 

Tchesunov A V, Portnova DA (2003) Nematode population in the coastal seasonal ice of the White 

Sea. Russian Society of Nematologists, Vladivostok 

Tchesunov A V, Riemann F (1995) Arctic Sea Ice Nematodes (Monhysteroidea) with Descriptions 

of Cryonema crassum gen. n., sp. n. and C. tenue sp. n. Nematologica 41:35–50 

Telenius A, Shah M (2016) Invertebrates Collection of the Swedish Museum of Natural History. 

GBIF-Sweden. Occurrence dataset. GBIF.org. Accessed 27 May 2019 

Thomas DN, Dieckmann GS (2009) Sea Ice, 2nd edn. Wiley 



 33 

Thomsen MS, Godbold JA, Garcia C, et al. (2019) Compensatory responses can alter the form of 

the biodiversity – function relation curve. Proc R Soc B 

Timco GW, Frederking RMW (1996) A review of sea ice density. Cold Reg Sci Technol 24:1–6. 

doi: https://doi.org/10.1016/0165-232X(95)00007-X 

Truett GE, Heeger P, Mynatt RL, et al. (2000) Preparation of PCR-quality mouse genomic DNA 

with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29:52,54. doi: 

10.2144/00291bm09 

UNIS Board (2017) UNIS Annual Report 2017 

Van Campenhout J, Derycke S, Tchesunov A, et al. (2014) The Halomonhystera disjuncta 

population is homogeneous across the Håkon Mosby mud volcano (Barents Sea) but is 

genetically differentiated from its shallow-water relatives. J Zool Syst Evol Res 52:203–216. 

doi: 10.1111/jzs.12054 

van Leeuwe MA, Tedesco L, Arrigo KR, et al. (2018) Microalgal community structure and 

primary production in Arctic and Antarctic sea ice: a synthesis. Elem Sci Anth 6. doi: 

10.1525/elementa.267 

Vanaverbeke J, Arbizu PM, Dahms HU, Schminke HK (1997) The metazoan meiobenthos along 

a depth gradient in the Arctic Laptev Sea with special attention to nematode communities. 

Polar Biol 18:391–401. doi: 10.1007/s003000050205 

Wassmann P, Duarte CM, Agustí S, Sejr MK (2011) Footprints of climate change in the Arctic 

marine ecosystem. Glob Chang Biol 1235–1249. doi: 10.1111/j.1365-2486.2010.02311.x 

Werner I (2005) Living conditions, abundance and biomass of under-ice fauna in the Storfjord 

area (western Barents Sea, Arctic) in late winter (March 2003). Polar Biol 28:311–318. doi: 

10.1007/s00300-004-0678-1 

Wirén, A (1883) Chaetopoder från Sibiriska Ishafved och Berings Haf Insamlade under Vega-

Expeditionen 1878-1879. Vega-Expeditionens Vetenskapliga Iakttagelser bearbetade af 

deltagare i resan och andra forskare. 2:383-428, plates 27-32. 

Zhang J, Spitz YH, Steele M, et al. (2010) Modeling the impact of declining sea ice on the Arctic 

marine planktonic ecosystem. J Geophys Res Ocean 115:1–24. doi: 10.1029/2009JC005387 

 

  



 34 

Supporting information

Appendix 1. Station coordinates
Appendix 2. Site description of Wahlenbergfjorden and Palanderbukta with notes on 
  methodology
Appendix 3. Site description of Van Mijenfjorden 
Appendix 4. Sea ice charts 
Appendix 5. Field site photographs 
Appendix 6. Model selection, construction and testing 
Appendix 7. Primer overview 
Appendix 8. Accession numbers 
Appendix 9. Sympagic algae in Agardhbukta
Appendix 10. Chain of Melosira arctica 
Appendix 11. Sympagic and pelagic meiofauna
Appendix 12. Reference names 
Appendix 13. Registrations of selected polychaetes and nematodes in the Arctic
Appendix 14. Conceptual figure on trophic dynamics under different snow depths

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 35 

Station Date Station depth (m) Pos °N Pos °E

IB1 22.03/26.04.18 4 77°53.255 18°16.227

IB2 23.03.18 32 77°53.453 18°14.302

IB3 27.04.18 32 77°53.282 18°13.768

AGA 15.04.18 42 78°00.580 18°34.426

Depth 1 23.03.18 24 77°53.453 18°14.302

Depth 2 23.03.18 28 77°53.660 18°15.566

Depth 3 23.03.18 17 77°53.767 18°16.409

Depth 4 23.03.18 13 77°53.844 18°17.101

Depth 5 23.03.18 9 77°53.909 18°17.815

Depth 6 23.03.18 10 77°53.988 18°18.553

Appendix 1. Station coordinates 
 
Table 1. Coordinates and depth of stations in Inglefieldbukta (IB) and Agardhbukta (AGA) along  
with depth transect stations in Inglefieldbukta.  
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Appendix 2. Site description of Wahlenbergfjorden and Palanderbukta with notes on  
methodology 
 
Wahlenbergfjorden is a 50 km long east-west directed fjord terminating to the Hinlopen Strait in 
northern Svalbard at 79°41 N 19°21 E. At the southern shore, 10 km from the fjord mouth, the 35 
km long Palanderbukta branches of in a northwest-southeast direction (Fig. 1). Depth maxima are 
290 m and 120 m for Wahlenbergfjorden and Palanderbukta, respectively, with exposed bedrock 
as the main bottom substrate (Flink et al. 2014).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Wahlenbergfjorden and Palanderbukta, northern Svalbard, with depth (HTR) and six sampling stations 
along the sea ice edge 18th of June 2018.  

 
Wahlenbergfjorden 
Sea ice pieces (volume not quantified) were collected from R/V Helmer Hansen, 5th of May 2018 
at 79°42.157’ N, 20°21.287’ E. Filtered sea water (0.7 μm) was added and samples were stored 
cold and dark until further analysis as described for sea ice cores in the main paper.  

 
Palanderbukta 
Three sea ice samples (~ 0.1 m3) were collected along the sea ice edge in Palanderbukta, 18th of 
June 2018. By the same locations, a 20 μm plankton net was hauled to 18 m once 10 meters per-
pendicular from the ice edge (Fig. 1). Depths measured using the echo sounder from M/S Spits-
bergen 600 m west of the sample site represent the accessible bathymetric data (Table 1). 
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Station Date n Time Station depth (m) Pos °N Pos °E

water1 18.06.18 1 14:00 – 15:00 – 79°34.427' 20°40.049'

ice1 18.06.18 1 14:00 – 15:00 – 79°34.423' 20°40.133'

water2 18.06.18 1 14:00 – 15:00 – 79°34.525' 20°40.170'

ice2 18.06.18 1 14:00 – 15:00 – 79°34.516' 20°40.250'

water3 18.06.18 1 14:00 – 15:00 – 79°34.705' 20°40.572'

ice3 18.06.18 1 14:00 – 15:00 – 79°34.693' 20°40.703'

HTR 18.06.18 – 17:40 69 79°34.474' 20°37.991'

 
Table 1. Sample stations and depth station (HTR) in Palanderbukta, Svalbard.  
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Appendix 3. Site description of Van Mijenfjorden  
 
Van Mijenfjorden is situated in western Svalbard at 78 °N 16 °E partially separated from the 
Atlantic influenced West Spitsbergen Current by Akseløya (Fig. 2). The fjord is 60 km long and 
on average 10 km wide with numerous glaciers and glacial rivers characterizing the coast. The 
bathymetry is characterized by two basins; an inner shallower of up to 74 m and an outer with 
depths up to 115 m. Moreover, the currently inactive coalmine Svea is located in the northeastern 
part. Compared to Agardhbukta and especially Inglefieldbukta, Van Mijenfjorden is subject to 
considerable motorized traffic, i.e. snow mobiles on sea ice and shores during spring, aviation 
throughout the year and industrial marine vessels most frequently during open-water periods.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Van Mijenfjorden in western Svalbard with reference sampling stations VMF, VMF30 and VMF1 from  
Pitusi (2019) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 39 

01.06

02.01

02.02 02.03

02.05

03.04

10.01 15.01

15.02

15.05 15.06

16.04

18.01 22.01

22.02

22.03

23.02

23.03 26.04

27.04

AGA
IB

Appendix 4. Sea ice charts  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Sea ice charts (02.01.18 – 15.06.18) from Storfjorden area displaying southeastern ice edge dynamics esti-
mated from satellite imagery (Norwegian Meteorological Institute). Bold dates represent dates of sampling.  
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Appendix 5. Field site photographs  
 
Aerial photography was applied when the snow and ice topography surrounding the station was 
not homogenous. In Agardhbukta, 15.04.18, a wave-like structure characterized the sea ice with 
consequences for the distribution of snow cover (Fig. 1). In Inglefieldbukta at IB3, 27.04.18, 
glacial ice was incorporated into the sea ice with implications for the topography and, most likely, 
salinity (Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Station in Agardhbukta, 15.04.18, with visible heterogeneous distribution of snow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Station (IB3) in Inglefieldbukta, 27.04.18, with visible glacial ice pieces in the nearby surroundings. 
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Appendix 6. Model selection, construction and testing 
 

A model was constructed for the following hypotheses: 
H0: Sympagic polychaete juvenile length does not differ from March to May in neither east 
Svalbard (Inglefieldbukta/Agardhbukta) or west Svalbard (Van Mijenfjorden) 
 
Variables 
Dependent: Continuous (sympagic polychaete juvenile length)  
Independent: Continuous (day number) and categorical (east Svalbard or west Svalbard)  
Model: Multiple linear regression (analysis of covariance, ANCOVA, in R; Eq. 1) 
 
         Eq. 1 
 
Assumptions 
- Similar environmental conditions in the sample years 2017 and 2018 
 
Pitfalls  
Multicollinearity  
- Tested against using the backward elimination method (Halinski and Feldt 1970)  

including the interaction term site:day number 
Autocorrelation 
- Both time (day number) and place (east or west) is included as independent variables in  

this model and considering temporal and spatial autocorrelation is consequently not  
relevant 

Excluding important predictor variables 
- Multiple predictor variables should be included in future attempts to explain the pro-

cesses underlying polychaete growth, inter alia nutrient availability, temperature, salinity, 
competition for nutrients and space 

Power and sample size 
- The power of this model is limited by low temporal resolution and sample size. It should  

therefore serve as a reference model until further data on the included variables are  
accessible 

 
Model testing 
Testing of homoscedasticity, multicollinearity and normal distribution (Quantile-Quantile 
plots) was done in in R (R Core Team 2019).  
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Primer ID Sequence Base pairs Target Reference 

polyLCO (F) GAYTATWTTCAACAAATCATAAAGATATTGG

polyHCO (R) TAMACTTCWGGGTGACCAAARAATCA

miCOlint F GGWACWGGWTGAACWGTWTAYCCYCC Leray et al. (2013)

jgHCO2190 TAIACYTCIGGRTGICCRAARAAYCA Geller et al. (2013)

MN18F CGCGAATRGCTCATTACAACAGC

Nem_18S_R CGCGAATRGCTCATTACAACAGC

Carr et al. (2011)

Bhadury et al. (2006)

313 COI

925

710 Poly COI

Nema 18S

Appendix 7. Primer overview 
 
Table 1. Primers applied in molecular analyses of polychaetes (COI) and nematodes (18S rRNA) in this study. Base 
pairs = number of base pairs expected, Poly = polychaete, Nema = nematode. 
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Accession numbers

Accession no. Description Origin Reference Gene

HM417792.1 Bylgides BOLD White Sea Carr, unpubl. COI
HQ024272.1 Bylgides groenlandicus Canadian Arctic Carr et al. 2011 COI
HM473329.1 Bylgides macrolepidus British Columbia Carr et al. 2011 COI
HQ024273.1 Bylgides promamme Canadian Arctic Carr et al. 2011 COI
HQ024300.1 Eunoe nodosa  CMC01 Canadian Arctic Carr et al. 2011 COI
HQ023873.1 Eunoe nodosa CMC02 Canadian Arctic Carr et al. 2011 COI
HQ023872.1 Eunoe nodosa CMC02 Canadian Arctic Carr et al. 2011 COI
HQ024302.1 Eunoe nodosa  CMC02 Canadian Arctic Carr et al. 2011 COI
HQ024301.1 Eunoe nodosa  CMC02 Canadian Arctic Carr et al. 2011 COI
HM473743.1 Eunoe oerstedi CMC01 Chukchi Sea Carr et al. 2011 COI
HM473742.1 Eunoe oerstedi CMC01 Chukchi Sea Carr et al. 2011 COI
HM473741.1 Eunoe oerstedi CMC01 Chukchi Sea Carr et al. 2011 COI
HM473740.1 Eunoe oerstedi CMC01 Chukchi Sea Carr et al. 2011 COI
HQ024020.1 Eunoe oerstedi CMC02 Canadian Arctic Carr et al. 2011 COI
MF121623.1 Eunoe sp. 11BIOAK Cook Inlet Carr, unpubl. COI
MF121462.1 Eunoe sp. 11BIOAK Cook Inlet Carr, unpubl. COI
MF121029.1 Eunoe sp. 11BIOAK Cook Inlet Carr, unpubl. COI
GU672348.1 Eunoe sp. BOLD Canadian Arctic Carr et al. 2011 COI
GU672336.1 Eunoe sp. BOLD Canadian Arctic Carr et al. 2011 COI
MH242753.1 Eunoe sp. FHL1 Washington Leray & Paulay, unpubl. COI
HM473744.1 Eunoe spinicirris Chukchi Sea Carr et al. 2011 COI
JN852936.1 Melaenis loveni Svalbard Norlinder et al. (2012) COI

Appendix 8. Accession numbers  
 
 
Sequences on Halomonhystera disjuncta (previously Geomonhystera disjuncta; GD; Bastian 
1865) are available in Van Campenhout et al. (2014; supplementary material).  
 
Table 1. Accession numbers for voucher polychaete species from NCBI’s GenBank included in phylogenetic  
analyses in this study.  
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Accession numbers

Accession no. Description Origin Reference Gene

HM473680.1  Scolelepis squamata Vancouver Island Carr et al. 2011 COI
HM473679.1 Scolelepis squamata Vancouver Island Carr et al. 2011 COI
HQ932541.1 Scolelepis squamata Vancouver Island Jeffery et al., unpubl. COI
MF120984.1 Scolelepis squamata Gulf of Alaska Carr et al., unpubl. COI
MF121430.1 Scolelepis squamata Gulf of Alaska Carr et al., unpubl. COI
MF121675.1 Scolelepis squamata Gulf of Alaska Carr et al., unpubl. COI
GU672125.1 Spio sp. CMC01 Canadian Arctic Carr et al. 2011 COI
HQ024469.1 Spio sp. CMC01 Canadian Arctic Carr et al. 2011 COI
HQ024470.1 Spio sp. CMC01 Canadian Arctic Carr et al. 2011 COI
HQ024471.1 Spio sp. CMC01 Canadian Arctic Carr et al. 2011 COI
HQ024472.1 Spio sp. CMC01 Canadian Arctic Carr et al. 2011 COI
HQ024474.1 Spio sp. CMC01 Canadian Arctic Carr et al. 2011 COI
GU672142.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
GU672196.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
GU672212.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
GU672214.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
GU672316.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
GU672349.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
GU672398.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
HQ023786.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
HQ561107.1 Spio sp. CMC02 Canadian Arctic Carr et al. 2011 COI
GU672334.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
GU672335.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ023787.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ023788.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ023789.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ023790.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ023791.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ023792.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ024476.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
HQ024475.1 Spio sp. CMC03 Canadian Arctic Carr et al. 2011 COI
MG670060.1 Theristus acer Netherlands Macheriotou et al., unpubl. 18S
MG670062.1 Theristus ensifer Netherlands Macheriotou et al., unpubl. 18S
MG670070.1 Theristus sp. Netherlands Macheriotou et al., unpubl. 18S

 
Table 1, continued. Accession numbers for voucher polychaete species from NCBI’s GenBank included in phyloge-
netic analyses in this study.  
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ind m-2 lower 10 cm

Taxa AGA April

Armoured dinoflagellate 0
Ceratium arcticum 0
Cf. Gyrosigma fascida 0
Chaetoceros sp. 1
Cylidrotheca closterium 1
Dictyocha speculum 0
Dinophysis rotundata 1
Entomoneis sp. 1
Fragilaropsis cylindrus 0
Gymnodiniacae sp. 1
Haslea sp. 1
Navicula levissima 1
Navicula septentrionalis 1
Nitzschia frigida 1
Nitzschia promare 1
Pauliella taentiata 1
Pleurosigma sp. 0
Protoperidinium breve 0
Pterosperma vanhoeffenii 0
Thalassiosira antarctica/gravia 1

Appendix 9. Sympagic algae in Agardhbukta 
 
Table 1. Sympagic algae registered in Agardhbukta (AGA) 15th of April 2018. Most dominant species are bold.  
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Appendix 10. Chain of Melosira arctica 
 
 
At IB1 in Inglefieldbukta, 26.04.18, long chains of Melosira arctica were observed at the lower 
1 cm section sea ice (Fig. 1). The observation was confirmed by Jósef Wiktor (personal com-
munication, May 2018).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Chain of Melosira arctica (black arrow) from sea ice in Inglefieldbukta, Svalbard, 26.04.18. 
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ind m-2 lower 10 cm

Taxa IB1 March IB2 March AGA April IB1 April IB3 April

Sympagic
Polychaete juv. 208.7 ± 150 300.4 ± 139 4321.7 ± 1878 4596.7 ± 2583 0.0
Nematoda 219.7 ± 138 1913.4 ± 936 0.0 407.6 ± 236 2051.3 ± 1382
Trochophora 0.0 0.0 1271.0 ± 298 0.0 0.0
Rotifera 0.0 0.0 347.3 ± 128 395.4 ± 153 0.0
Ciliata 351.9 ± 104 1723.5 ± 418 401.9 ± 166
Eggs 0.0 263.0 ± 125 7998.4 ± 2742 1903.1 ± 1252 0.0
Unidentified 0.0 59.3 ± 52 0.0 5189.3 ± 3368 0.0

Pelagic
Polychate juv. 2.0 0.0
Nematoda 42.0 0.0
Copepoda 38.0 75.3  ± 28.0
Cop. nauplii 212.0 98.7  ± 95.3
Ophiopluteus 0.0 3.3  ± 4.2
Sarsia 0.0 0.7  ± 1.2
Other hydrozoa 0.0 0.7  ± 1.5
Bivalvia veliger 4.0 1.3  ± 2.3
Chaetognatha 0.0 2.0  ± 3.5
Eggs 2.0 78.7  ± 43.1
Unidentified 0.0 4.0  ± 4.0
Degr. poly. juv. 0.0 16.7  ± 28.9

Appendix 11. Sympagic and pelagic meiofauna 
 
Table 1. Sympagic and pelagic meiofauna (ind. m-2 ± SD) in Inglefieldbukta (IB) and Agardhbukta (AGA) in  
spring 2018. Degr. poly. juv. = degraded polychaete juvenile.  
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Ref. Name Phylum Ref # Station Date Reference

IB1A1 Polychaeta 59FF51 IB1 26.04.18 Andreasen et al. 2019, unpubl.
IB1A2 Polychaeta 59FF67 IB1 26.04.18 Andreasen et al. 2019, unpubl.
IB1A3 Polychaeta 59FF61 IB1 26.04.18 Andreasen et al. 2019, unpubl.
IB1A4 Polychaeta 59FF53 IB1 26.04.18 Andreasen et al. 2019, unpubl.
IB1A5 Polychaeta 59FF59 IB1 26.04.18 Andreasen et al. 2019, unpubl.
IB1A6 Polychaeta 59FF55 IB1 26.04.18 Andreasen et al. 2019, unpubl.
IB1A7 Polychaeta 59FF57 IB1 26.04.18 Andreasen et al. 2019, unpubl.
IB1A8 Polychaeta 59FF93 IB1 26.04.18 Andreasen et al. 2019, unpubl.

IB1A9 Polychaeta 59FF73 IB1 26.04.18 Andreasen et al. 2019, unpubl.

IB1A10 Polychaeta 59FF69 IB1 26.04.18 Andreasen et al. 2019, unpubl.

VMF1 Polychaeta 59FG47 VMF30 28.04.18 Pitusi et al. 2018, unpubl.
VMF2 Polychaeta 59FG45 VMF30 28.04.18 Pitusi et al. 2018, unpubl.
VMF3 Polychaeta 59FG43 VMF30 28.04.18 Pitusi et al. 2018, unpubl.

Appendix 12. Reference names 
 
Table 1. Reference names for polychaetes displayed in phylogenetic trees.  
IB = Inglefieldbukta, VMF = Van Mijenfjorden. 
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Table 2. Reference names for nematodes displayed in phylogenetic trees.  
IB = Inglefieldbukta, VMF = Van Mijenfjorden. 
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Table 2, continued. Reference names for nematodes displayed in phylogenetic trees.  
IB = Inglefieldbukta, VMF = Van Mijenfjorden. 
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Appendix 13. Conceptual figure on trophic dynamics under different snow depths 
 
In the discussion section, I evaluated the potential influence of decreased irradiance, as a result 
of the greater snow depth, on the sympagic community at IB3 in April compared to IB1 and AGA 
in April. Figure 1 illustrates the concepts behind the reasoning in this paper and builds upon 
results by Kramer (2010).  
 
 

 
 
 
Figure 1. Conceptual illustration of potential trophic responses to different snow depths. 1: snow 
depth determines the level of irradiance available to sympagic algae, 2: a too thick snow layer 
inhibits photosynthesis and hampers sympagic algae production, 3: the proportion of inorganic 
nutrients being assimilated by sympagic algae or bacteria will depend on the light saturation of 
sympagic algae, 4: the community will be dominated by either polychates (Poly. juv.) or 
nematodes and ciliates. The illustration assumes that polychaetes largely graze on sympagic 
algae, while nematodes and ciliates feed on bacteria (Kramer 2010). In addition, the illustration 
assumes an intermediate snow depth in the polychaete-dominated community, yielding an 
optimal light climate for sympagic algae (Mundy et al. 2005). The concept will hence not apply 
in radiation-stressed communities (Leu et al. 2016). 
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Appendix 14. Registrations of selected polychaetes and nematodes in the Arctic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Published benthic registrations of Melaenis loveni at depths from 5-162 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Published benthic registrations of Spio spp. at depths from 2-150 m above the Arctic Circle. CMC01-03 
represent registrations by Carr et al. (2011) included herein.  
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Figure 3. Published registrations of Theristus melnikovi, Theristus sp., Cryonema crassum, C. tenue, Cryonema 
sp., Hieminema obliquorum and three species belonging to Monhysteridae in sea ice (orange) and benthos 
(brown).  
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Station Species Collector Year collected Database / reference

Kongsøya Melaenis loveni Kolthoff and Ohlin 1898 Telenius and Shah (2016)

Storfjorden Melaenis loveni Malmgren 1864 Telenius and Shah (2016)

Sørkapp Melaenis loveni Malmgren 1866 Telenius and Shah (2016)

Van Mijenfjorden Melaenis loveni Wirén 1883 Telenius and Shah (2016)

Kongsfjorden Melaenis loveni Goës 1861 Telenius and Shah (2016)

Widjefjorden Melaenis loveni Pleijel 2003 Telenius and Shah (2016)

Beaufort Sea Melaenis loveni Dickinson; Broad, Dunton 1976; 77; 78 Telenius and Shah (2016)

Chuckchi Sea Melaenis loveni Stuxberg, Nordquist and Stuxberg 1878; 79 Telenius and Shah (2016)

Baffin Bay Melaenis loveni Nilson 1894 Telenius and Shah (2016)

Hurry Fjord Melaenis loveni Arwidsson 1899 Telenius and Shah (2016)

Coronation Gulf Melaenis loveni Miller 2012 Telenius and Shah (2016)

Edgeøya Spio filicornis Malmgren 1864 Telenius and Shah (2016)

North of Svalbard Spio filicornis Kolthoff and Ohlin 1878 Telenius and Shah (2016)

Pechorskoye More Spio filicornis Stuxberg 1878 Telenius and Shah (2016)

Beaufort Sea Spio filicornis Schneider 1977 Blum and Fong (2016)

Disco Bay Spio filicornis Disco Bay 1870 Blum and Fong (2016)

Central Arctic Ocean Theristus melnikovi Tchesunov and Riemann (1995)

Laptev Sea Theristus melnikovi Tchesunov and Riemann (1995)

Cryonema crassum Tchesunov and Riemann (1995)

Cryonema tenue Tchesunov and Riemann (1995)

Theristus sp. Vanaverbeke (1993)

Fram Strait Theristus melnikovi Tchesunov and Riemann (1995)

Cryonema sp. Tchesunov and Riemann (1995)

The White Sea Theristus melnikovi Tchesunov and Portnova (2005)

Cryonema crassum Tchesunov and Portnova (2005)

Hieminema obliquorum Tchesunov and Portnova (2005)

3 Monhysteridae sp. Tchesunov and Portnova (2005)

Resolute Bay Theristus melnikovi Riemann and Ngando (1997)

Cryonema tenue Riemann and Ngando (1997)

Hieminema obliquorum Riemann and Ngando (1997)

3 Monhysteridae sp. Riemann and Ngando (1997)

Frobisher Bay Theristus sp. Grainger et al. (1985)

Table 1. Collectors of species illustrated in Figure 1, 2 and 3 above. Specimens included in Appendix 8: Acces-
sion numbers are not included. References comprise data on the listed collectors (Blum and Fong 2016; Telenius 
and Shah 2016). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 


