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Abstract

Data-driven schemes are in high demand, given the growing abundance and accessibility

to large amounts of measurements from historical records, numerical simulations, and

experimental data. However, despite the abundance of data, modeling high-dimensional

complex dynamical systems remains a challenge. In this thesis we present a data-driven

method for modeling dynamical systems called the Dynamic Mode Decomposition (DMD).

This is a recent method that has first emerged in the fluid mechanics community as a tool

for analyzing the dynamics of nonlinear systems. However, given its ability to provide an

accurate decomposition of a complex system into spatiotemporal coherent structures, it

gained popularity and interest from other fields where complex nonlinear processes cannot

be accurately characterized by known governing equations, or that exhibit a rich multiscale

dynamic properties. This method relies on the fact that many of these systems evolve

on a low-dimensional attractor that may be characterized by dominant spatiotemporal

coherent structures. The confidence that the DMD is useful to characterize non-linear

dynamics is given by theoretical framework provided by Koopmans theory, which will also

be presented in the thesis. Short examples are used to illustrate the DMD application and

the Koopmans operator theory. Finally, two data-sets generated from two different fields

(from a 2D ocean model, and a neuron strip experiment) are tested using the DMD. We

will use the decomposition results to identify structures which we may relate to a physical

phenomena, and discuss the performance.
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Notation

Vectors

v is a vector of dimension n in a space Cn, where n ∈ N;

v∗ is the complex conjugate of v;

v is the average of the components of v;

diag(A) is the vector with the diagonal components of a matrix A;

Matrices

A is a n×m matrix;

aij is the (i, j)th entry of a matrix A;

Mn×m is the space of n×m matrices;

det(A) is the determinant of matrix A;

A∗ is the complex conjugate transpose of matrix A;

A+ is the Moore-Penrose pseudo-inverse of matrix A, computed as A+ = (A∗A)−1A∗;

Functions

f is a function f : S→ F;

fx is the partial derivative w.r.t. x, that is, fx = ∂f/∂x;

fxx is the second order partial derivative w.r.t. x, that is, fxx = ∂2f/∂x2;

fxy is the second order partial derivative w.r.t. x and y, that is, fxy = ∂2f/(∂x∂y);



ḟ is the time derivative of f , that is, ḟ = df/dt;

f̈ is the second time derivative of f , that is, f̈ = d2f/dt2;

Acronyms/Abbreviations

DMD Dynamic Mode Decomposition

FFT Fast Fourier Transform

PDE Partial Differential Equation

POD Proper Orthogonal Decomposition

ODE Ordinary Differential Equation

SVD Singular Value Decomposition
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Introduction

The description of the dynamics of complex systems involves the construction of models to

accurately simulate high-dimensional processes such as, for example, the hydrodynamics of

the ocean through Navier-Stokes equations. Additionally, given the large scale complexity

of such processes, high computational cost is required for solving such models. In order

to reduce these costs while preserving an acceptable numerical accuracy, reduced order

modeling schemes are of great importance.

One other scenario is the incomplete knowledge or even the unavailability of access to

the governing equations that can accurately describe the system we wish to model. The

spread of infectious diseases, neuron networks, or other biological processes, are examples

of such systems. A dynamical system, in the abstract sense, is an evolution rule that

describes how one state develops into another over the course of time.

We consider that f is associated with an autonomous continuous dynamical system, in

particular,

ẏ(x, t) = f(y(x, t)), (0.1)

where y(x, t) is the state of the system at time t and x the spatial distribution over some

domain Ω, and f is a vector field that maps smooth manifoldM⊂ Rn into itself.

Since we are interested in numerical solutions of (0.1), we also consider the discrete-time

dynamical systems which can be induced by considering a flow map F :M→M, which

maps the state yk at time k to a future state yk+1 by

F (yk) = yk +

∫ (k+1)∆t

k∆t

f(y(x, τ))dτ. (0.2)

For simplicity, we will use f instead of F , if it is clear from the context. The discrete

representation of the autonomous dynamical system then takes the form

yk+1 = f(yk). (0.3)
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When having access to data, the main goal here is to model complex dynamical systems

with a reduced computational cost and extract the relevant and meaningful dynamical

structures, while maintaining its accuracy within an acceptable margin.

The dynamic mode decomposition (DMD), first proposed by Schmid in [22], is a purely

data-driven, equation-free method that extracts dynamic information (in the form of eigen-

values and eigenfunctions) from data generated by numerical simulations or experimental

data. It does not require the knowledge of the governing equations for the dynamical sys-

tem, e.g. (0.1) and (0.3), relying solely on the gathered input data to extract its dynamic

modes. The growing interest on the application of this method is related to its potential

usage as a diagnostic tool, for model order reduction, as a future-state predictor and for

control applications. Furthermore, the connection with the Koopman spectral analysis of

non-linear dynamical systems provided the DMD with the theoretical framework so that

it can be used as a tool for the analysis of general non-linear systems.

This thesis is organized as follows. In Chapter 1 we briefly present the Proper Ortho-

gonal Decomposition (POD) technique, which lays the concepts of model reduction which

capitalizes on the existence of low rank dominant dynamics in the system, to obtain an

optimal basis functions spanning a lower-dimensional subspace.

Chapter 2 introduces the Koopman operator theory, which provides a mathematical

foundation for the application of the DMD to data generated by nonlinear systems. At

the end of Chapter 2 we introduce four short practical examples to illustrate some of the

underlying concepts behind the Koopman operator.

In Chapter 3 we present the DMD, where we introduce the algorithmic formulation,

its variations, and a theoretical framework which connects the DMD with the Koopman

operator. Finally, we revisit the short examples introduced in the previous chapter to es-

tablishing the practical connection between the Koopman operator and the DMD method.

In Chapter 4 we present two different applications where we measure the results and

test the performance of the method using the concepts and techniques introduced in the

previous chapters. Each application correspond to two very distinct fields: the first one is

for a 2D hydrodynamic velocity field model which data was generated from a numerical

simulation of the Bergen Ocean Model [1]; and the second corresponds to data collected

from a neural field experiment [28].

Chapter 5 we give a summary of the results, make concluding remarks and discuss

future work.
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Chapter 1

Proper Orthogonal Decomposition

The main motivation to present the Proper Orthogonal Decomposition (POD) technique

in the context of this thesis is to introduce the concept of a reduced-order models and

snapshot methods. Although the focus of this thesis is not on this technique, for the sake

of completeness we present a brief description of the method. In this chapter, we closely

follow [18, 20].

The POD, broadly speaking, is a technique of finding in a optimal way a basis which

spans an ensemble of data collected from an experimental or numerical simulation of a

dynamical system. This method has been often used in developing low-dimensional models

of fluids [23]. The idea is, given a set of data that lies in a vector space V , to find a subspace

Vr of fixed dimension r such that the error in the projection onto the subspace is minimized.

1.1 Optimality of the POD Basis

Suppose we have a set of data y(t) ∈ Rd, with 0 ≤ t ≤ T . We seek a projection Pr : Rd →

Rd of fixed rank r that minimizes the total error∫ T

0

‖y(t)− Pry(t))‖2 dt. (1.1)

To solve this problen, we introduce the d× d matrix

R =

∫ T

0

y(t)y(t)∗dt, (1.2)

and find the eigenvalues and eigenvectors of R, given by

Rφj = λjφj, λ1 ≥ · · · ≥ λq ≥ 0. (1.3)
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Since R is symmetric, positive-semidefinite, all the eigenvalues λj are real and nonnegative,

and the eigenvectors φj may be chosen to be orthonormal. The vectors φj are called the

POD modes. The optimal subspace of dimension r is spanned by {φ1, . . . , φr}, and the

optimal projection Pr is given by

Pr =
r∑
j=1

φjφ
∗
j . (1.4)

1.2 Computation of reduced-order models

Having determined Pr, assume now that we are determining the solutions of a system

described by equations (0.1). To capitalize on the POD modes one can form reduced order

models using Galerkin projection (see, e.g. L.C.Evans [10]), which specifies that ẏ(t) =

Prf(y(t)), i.e., projecting the original vector field f onto the r-dimensional subspace. We

then write

yr(t) =
r∑
j=1

αj(t)φj, (1.5)

Substituting (1.5) on (0.1) and multiplying by φ∗j , we obtain

α̇j(t) = φ∗jf(x(t)), j = 1, ..., r (1.6)

which is a set of r ODE that describe the evolution of xr(t). In other words, the determ-

ination of solutions to (0.1) which previously involved solving a set of d ODE, can be now

reduced to a set of r ODE.

1.3 Snapshot-based methods

When analyzing a time series of data on a spatial grid, it is often beneficial to use snapshot-

based methods. The two or three-dimensional vector field data at time tk is then rearranged

into a single column vector. If we consider a discrete set of snapshots {y(tk)}qk=0 ∈ Rd

generated by some physical process described by the equations (0.3), the ensemble of

snapshots can be expressed as in the following matrix,

X =


y0,1 y1,1 · · · yq,1

y0,2 y1,2 · · · yq,2
...

...
...

...

y0,d y1,d · · · yq,d

 . (1.7)
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In this framework, the POD can be formulated using the SVD of the matrix X, that

is, snapshots X,

X = UΣV, (1.8)

where U ∈ Cn×n, V ∈ Cq×q, and Σ ∈ Rn×q. U and V are unitary matrices, and Σ is a

diagonal rectangular matrix with positive singular values {σ1, σ2, ..., σr}, where r denotes

the number of positive singular values.

The column vectors in U = {φ1, φ2, ..., φn} and V = {ϕ1, ϕ2, ..., ϕq} contain the ortho-

gonal eigenvectors of XXT and XTX, respectively, as in X = UΣV T

XT = V Σ∗UT
⇒

XXT = UΣΣTUT

XTX = V ΣTΣV T
⇒

XXTU = UΛ

XTXV = V Λ,

where Λ = ΣΣT = ΣTΣ =
∑q

k=1 λq.

The singular values of the snapshot matrix X are then associated with the eigenvalues

of the matrices XTX and XXT by the relation λk = σ2
k.

Since XXT is symmetric and positive-semidefinite, all the eigenvalues λk are real and

non-negative, and by virtue of the properties of the SVD, the eigenvectors U are orthonor-

mal.

The main result is that the optimal POD subspace of dimension l is spanned by

{φ1, φ2, ..., φl}, and the optimal projection is given by Pr =
∑q

k=1 φkφ
T
k .

The basis vectors, re-written as Ur = (φ1, . . . , φr), are called the POD modes, where

the r ≤ min(n, q) is the number of nonzero singular-values, corresponding to the rank of

X.

1.4 Dimension reduction

We now set our goal to determine an optimal subspace of V which is of the lowest possible

dimension r << l, while maintaining a good approximation to the original data set. In

other words, we seek a reduced-order system such that the exact solution of yk can be

approximated by a linear combination of r basis vectors, where Ur.

As proposed in [15], we measure the approximation by using the relative information

content referred as energy, defined as

I(r) =

∑r
i=1 σ

2
i∑l

j=1 σ
2
j

, (1.9)
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The goal is to choose the smallest r such that I(r) is still sufficiently close to 1. For

example, if the subspace Ur should contain a percentage γ of the information in U , then

one should chose r such that

r = min
r

(
I(r) ≥ γ

100

)
.

1.5 Conclusions

In this chapter we have seen that the POD method identifies an optimal orthogonal basis

of spatially and temporal correlated modes U and V , respectively, capitalizing on the SVD

method of decomposing a data matrix. It is essentially a model reduction technique, and

it is based on the assumption that the evolution in time of the dynamics of the system is

governed by a reduced number of dominant modes.

Associated with the Galerkin projection, the dimension of the system of governing

equations we have to solve in order to determine its solution can be greatly reduced.

However, even for a reduced dimension r, these systems may still be expensive to simulate.

To connect the POD to the feature method of this thesis, the DMD method, we em-

phasize on what makes them distinct: we will see that the DMD not only provides the

modes of the system, as POD, but it also associates these correlated spatial modes with a

temporal frequency and a possible growth or decay rate.
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Chapter 2

Koopman Operator

Much of the interest surrounding the DMD method comes from the strong connection to

nonlinear dynamical systems through Koopman spectral theory. In this chapter we follow

closely [5, 6, 18, 20].

In the field of dynamical systems, the composition operator

Kg(x) = g ◦ f(x). (2.1)

is often referred to as the Koopman operator. Here, f is associated with evolution rule

and g belongs to a Hilbert space

L2(M) =

{
g :M→ C|g measurable, and

∫
M

∣∣g2
∣∣ dx < +∞

}
,

with the 〈f, g〉L2(M) :=
∫
M fgdM, which induces the norm, ‖g‖2

L2 = 〈g, g〉L2(M). We call

this function g observable.

It was shown in the original work by Koopman [14] that for a map f which is invertible

and measure-preserving, K is a unitary operator, belonging to a Hilbert space with the

usual definition of inner product and induced norm in L2. We refer to [19] for extension of

these results.

Using the definition of the Koopman operator to the discrete case, having the bounded

operator K : H → H (see Appendix C) acting on all possible measurements of the state

xk ∈M, g(xk) ∈ C, we write

Kg(xk) = g(xk+1), (2.2)

where g(xk+1) ∈ C are all possible measurements of the state xk+1 at time k + 1.
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In the continuous case, using the chain rule on (2.1) the Koopman operator definition

is expressed as

Kg(x) = Og(x)f(x). (2.3)

The underlying idea behind this transformation is that a dynamical system, mapped

from a possible nonlinear finite-dimensional space M onto a infinite-dimensional Hilbert

space H, g ∈ H(M,C), can now be represented by a infinite-dimensional linear operator

K as in (2.2) in the discrete case, or (2.3) in the continuous case.

2.1 Spectral Decomposition of the Koopman operator

To represent the solution of a dynamical system in the discrete-time case (0.3), the spectral

decomposition of the linear Koopman operator K is

Kϕj(x) = λϕj(x), j = {1, 2, . . . } , (2.4)

where ϕj : M → R, are the eigenvectors and λj ∈ C the eigenvalues of the Koopman

operator K.

If the vector observable g(x) lies within the span of the eigenfunctions {ϕj}nj=1, where

n may be infinite, then g may be expanded in terms of the eigenfunctions,

g(x) =
n∑
j=1

vjϕj(x), (2.5)

where {vj}nj=1 is a set of scalar coefficients called Koopman modes of the map f .

The dynamics of g(xk) decomposition can be obtained by first iterating (2.2) relative

to the initial condition of the state x, yielding

[Kg](x0) = g(x1)

[K2g](x0) = g(x2)

...

[Kkg](x0) = g(xk),

then plugging in (2.5),

Kkg(x0) = Kk
n∑
j=1

vjϕj(x0), (2.6)

and finally, from (2.4)

g(xk+1) =
n∑
j=1

λkjvjϕj(x0). (2.7)
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The Koopman eigenvalues {λj}nj=1 characterize the growth rate and frequency of each

corresponding Koopman mode vj. The phase of λj determines its frequency and its mag-

nitude the rate of growth. ϕj is the eigenfunction of K which is a function of the initial

condition.

Let us now consider the vector of observable functions g(x) ∈ H, such that g :M→

Dn, where Dn ⊂ C, and x ∈ Rm and f is as previously defined in (0.1). If D is an

invariant subspace spanned by the eigenfunctions of the Koopman operator {ϕj(x)}nj=1,

where n <∞, such that a linear operator K : Dn → Dn, then K is also finite-dimensional.

That is, if there is a restriction g = (g1, . . . , gn)T , where n < ∞, which induces K :

Dn → Dn, where Dn is a subspace of C, then the expression

[Kg](xk) =
n∑
j=1

λjvjϕj(xk),

holds. Equivalently,

g(xk+1) =
m∑
j=1

λkjvjϕj(x0). (2.8)

In practice, the goal is to find an invariant finite-dimensional Hilbert sub-space (Dn) to

where our nonlinear dynamical system can be mapped, while conserving all its dynamical

characteristics.

2.2 Examples of Koopman modes

In this section following [5, 20], two examples illustrate that the eigenvalues and eigenfunc-

tions of the Koopman operator are related to the eigenmodes for linear systems and to the

discrete Fourier transform for periodic solutions.

2.2.1 Koopman modes for linear systems

Let us consider a special case when f : Rn → Rn is linear, that is, f(x) = Ax. Note that

n may be infinity. Consider that A has a complete set of eigenvectors and corresponding

eigenvalues denoted by vj and λj, respectively, such that,

Avj = λjvj, j = 1, ..., n. (2.9)

Let wi be the eigenfunctions of the adjoint A∗, such that, A∗wj = λjwj, with λj the

corresponding eigenvalue. Next, we define the scalar valued function

ϕj(x) = 〈x,wj〉 , j = 1, ..., n.
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Then, since

Kϕj(x) = ϕ(Ax) = 〈Ax,wj〉 = 〈x, A∗wj〉 =
〈
x, λjwi

〉
= λj 〈x,wj〉 = λjϕj(x),

ϕi are eigenfunctions of K.

Now, for any x ∈M, as long as A has a full set of eigenvectors, we may write,

x =
n∑
j=1

〈x,wj〉vj =
n∑
i=1

ϕj(x)vj

From these expressions and (2.5), for linear systems, the Koopman modes vj coincide

with the eigenvectors of A.

2.2.2 Koopman modes for periodic systems

Consider a nonlinear system which solution to (0.3) is periodic. Assume the set of vectors

generated by xk+1 = f(xk) is X = (x0, . . . ,xm−1), such that xk+m = xk for any k, where

X ∈M.

A way to analyze this solution is to take its Fourier transform. Let us consider the set

of vectors F = (x̂0, . . . , x̂m−1), where F ∈ C, that satisfy

xk =
m−1∑
j=0

e2πijk/mx̂j, k = 0, . . . ,m− 1. (2.10)

Let us now define a set of functions ϕ :M→ C,

ϕj(xk) = e2πijk/m, j, k = 0, . . . ,m− 1. (2.11)

Acting on all functions ϕj(xk) with a linear operator K, we obtain

Kϕj(xk) = ϕj(f(xk)) = ϕ(xk+1) = e2πij(k+1)/m = e2πij/me2πijk/m = e2πij/mϕ(xk). (2.12)

By comparing this result with (2.4), we see that ϕj are the eigenfunctions of the Koop-

man operator K, with eigenvalues λj = e2πij/m.

Recalling (2.10), and plugging in (2.11), we get

xk =
m−1∑
j=0

ϕj(xk)x̂j. (2.13)

This expression is equivalent in form to (2.5). Thus, if we restrict our phase space to the

periodic orbit S, the Koopman modes are the vectors given by the discrete Fourier trans-

form x̂j and the phases of the corresponding eigenvalues λj = e2πij/m are the frequencies

given by 2πj/m.
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As discussed in papers [16, 20], this result can be generalized to non-periodic systems,

when the dynamics are restricted to any attractor.

2.3 Examples of Simple Applications

To illustrate applications of the Koopman Operator theory, we introduce 4 short examples

of nonlinear dynamical systems.

In the first three examples we look into nonlinear ODE. Although examples 2 and 3

are not distinct when it comes to the process for determining the linear operator K and

the conclusions in the context of this chapter are also similar, each of them will be useful

in different ways on Chapter 3.

In example 4 we solve the Burgers’ equation, and look into the connection between the

analytical solution using the Fourier transform and Koopman theory.

2.3.1 Example 1 - Nonlinear ODE

Let us consider a nonlinear homogeneous ODE defined byẋ1 = µx1

ẋ2 = ξ(x2 − x2
1),

(2.14)

where, the vector x ∈M ⊆ R2, and µ a constant. Consider now the set of observables,

g(x) := (x1, x2, x
2
1)T , (2.15)

where, g :M→D. A change of variables z := g(x), results in
ż1 = ẋ1 = µx1 = µz1

ż2 = ẋ2 = ξ(x2 − x2
1) = ξ(z2 − z3)

ż3 = 2x1ẋ1 = 2x1µx1 = 2µx2
1 = 2µz3,

(2.16)

which, in matrix form, we write
ż1

ż2

ż3

 =


µ 0 0

0 ξ −ξ

0 0 2ξ



z1

z2

z3

 . (2.17)

We now have a linear system of ODE of the form ż = Kz, as in (2.3).
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For first order linear system of ODE in (2.17), the solution is of the form z(t) =

c1e
λ1tϕ1 + c2e

λ2tϕ2 + c3e
λ3tϕ3, where λj and ϕj are the eigenvalues and eigenvectors, re-

spectively, of K, and cj are constants.

For the analytical solution of (2.17), being a linear system, we start by determining the

eigenvalues of K, with

det(A− λI) = 0.

The eigenvalues are

λ1 = µ; λ2 = ξ; λ3 = 2ξ,

and the corresponding eigenvectors,

ϕ1 = (1, 0, 0)T ; ϕ2 = (0, 1, 0)T ; ϕ3 = (0,−1, 2)T .

The solution of (2.17), given by the states x1 and x2, which we can obtain from the

transformation of variables z := g(x), (x1, x2) = (z1, z2), is thus,x1(t)

x2(t)

 = c1

1

0

 eµt + c2

0

1

 eξt + c3

 0

−1

 e2ξt. (2.18)

Assuming that the parameters ξ and µ are real and negative (so that the solution x(t) is

stable and not oscillatory).

It is important to note that this particular choice of observables (2.15) allowed us to

find an invariant finite-dimensional Hilbert sub-space D = span{ϕ1, ϕ2, ϕ3}, where the

solution to (2.17) was easy to obtain. Determining the solution x in the original space

M was made easy by the selection of the observables, since that for g−1 : D → M,

g−1(x1, x2, x
2
1)T = (x1, x2)T .

2.3.2 Example 2 - Logistic Map

In the next example, we consider the logistic map

xk+1 = µxk(1− xk), (2.19)

where x ∈ [0, 1] ⊂ R is the variable and µ ∈ [0, 4] ⊂ R a parameter. A chaotic behavior of

this nonlinear system can arise from the choice of the parameter µ.

Let us select a new mapping with the observables, as we did on the previous example,

and select the nonlinear term in (2.19) such that,

g(xk) = (xk, x
2
k)
T . (2.20)



15

We define the change of variables yk := g(xk). Then, it yieldsyk+1,1 = µxk − µx2
k

yk+1,2 = (µxk − µx2
k)

2 = µx2
k − 2µ2x3

k + µ2x4
k,

(2.21)

which induces third and forth order polynomials of the state xk. To have a linear rep-

resentation of these measurements, we will add to the vector of observables these induced

nonlinearities, that is,

g(x) = (xk, x
2
k, x

3
k, x

4
k)
T . (2.22)

However, taking the same steps, we find that these added observables will induce polyno-

mials of order six and eight, thus continuing the cycle and extending it to infinity.

In matrix form,

xk+1

x2
k+1

x3
k+1

x4
k+1

x5
k+1

...


=



µ −µ 0 0 0 0 0 0 . . .

0 µ2 −2µ2 µ2 0 0 0 0 . . .

0 0 µ3 −3µ3 3µ3 µ3 0 0 . . .

0 0 0 µ4 −4µ4 6µ4 4µ4 µ4 . . .

0 0 0 0 µ5 −5µ5 10µ5 −10µ5 . . .
...

...
...

...
...

...
...

... . . .





xk

x2
k

x3
k

x4
k

x5
k

...


. (2.23)

In this case, the dimension for the Koopman operator matrix reaches infinite, which doesn’t

violate Koopmans theory, since it allows infinite-dimensional space of all possible meas-

urements of state x. However, the infinite-dimensional nature of the problem makes it, in

computational terms, unattainable to solve.

To test if with a truncation in (2.23) we can still achieve a good approximation, we

solve the resulting linear system and compare it with the exact solution.

Testing in Matlab c©for k = 7 with x0 = 0.5, as seen in Figures 2.1 and 2.2, it is

obvious to conclude that the simple truncation of the system is not a good method to

obtain approximate solutions.

2.3.3 Example 3 - Van der Pol

The Van der Pol oscillator is expressed as

ÿ − µ(1− y2)ẏ + y = 0, (2.24)

where y ∈ R is the state corresponding to the position coordinate, which is a function of

time t, and µ ∈ R+
0 is a scalar. This scalar parameter gives us a measure on how strongly
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Figure 2.1: Solution xk, for µ = 3 and x0 = 0.5. In (a) the exact solution, and in (b) the

solution obtained from the truncated system.
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Figure 2.2: Solutions xk, for µ = 3.57 and x0 = 0.5. In (a) the exact solution, and in (b) the

solution obtained from the truncated system.

this system is non-linear. A weight of µ = 0 would give us a linear system, the simple

harmonic motion ÿ + y = 0.

The second order ODE, can be transformed into a first order system of ODE,ẏ1 = y2

ẏ2 = µ(1− y2
1)y2 − y1.

(2.25)

The numerical solution of (2.25), obtained from Matlab c©, using the command ode45,

can be visualized in Figure 2.3.

Just as we did in section 2.3.2, we expand our vector of observables with the nonlin-

ear terms of (2.25). For convenience, we define a change of variables for the vector of
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(a) (µ = 1) (b) Limit cycle in phase space for values of µ

Figure 2.3: The solution of the Van der Pol Oscillator for different values of µ in (b) and the

time evolution of the states y with µ = 1.

observables as z := g(y), where

g(y) = (y1, y2, y
2
1y2, y1y

2
2, y

2
1y

2
2, y1y

3
2, y

3
1y2, . . . )

T . (2.26)

In matrix form, we expand (2.25) with (2.26), as

ż1

ż2

ż3

ż4

ż5

ż6

ż7

...



=



0 1 0 0 0 0 0 . . .

−1 µ −µ 0 0 0 0 . . .

0 0 µ/2 (2 + µ/4) −µ/2 0 0 . . .

0 0 −2µ 2µ 1/5 0 0 . . .

0 0 0 0 2 2µ −2 . . .

0 0 0 0 3µ −3 0 . . .

0 0 3 0 0 0 µ . . .
...

...
...

...
...

...
... . . .





z1

z2

z3

z4

z5

z6

z7

...



. (2.27)

Just as in the previous example, using the nonlinear terms as observables to determine

the transformation g(y), defined in (2.26) fails to determine a finite-dimensional Koopman

operator.

2.3.4 Example 4 - Burgers’ Equation (PDE)

In this example we will focus on solving a PDE, and in particular, the Burger’s equation

ut + uux − εuxx = 0, (2.28)
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with diffusive regulation and a nonlinear advection. Equivalently,

ut = (εux −
u2

2
)x. (2.29)

Let us consider the solutions u(x, t) to the one-dimensional (2.28), over a domain x ∈[
− L,L

]
, and

ut = f(u), (2.30)

where the function f : R→ R is given by

f(u) = εuxx − uux, (2.31)

with Dirichlet boundary conditions u(±L, t) = 0.

The exact solution for this problem can be obtained by the application of the Cole-Hopf

transformation of variables. We will see that this is equivalent, in the context of Koopmans

theory, as defining a vector of observables.

The Cole-Hopf transformation, h
(
u(x, t)

)
= v(x, t), where h : R→M⊆ R is given by

h
(
u(x, t)

)
= exp

(
− 1

2ε

∫ x

−∞
u(ξ, t)dξ

)
. (2.32)

We now have a transformation that maps a strongly nonlinear PDE to a linear diffusion

equation expressed as

v = εvxx. (2.33)

Expression (2.33) can be derived by starting from

u = −2ε
vx
v
, (2.34)

which is equivalent to (2.32). From this we can obtain

ut = −2ε
(vx
v

)
t

= −2ε
[vxtv − vtvx

v2

]
= −2ε

(vt
v

)
x
,

ux = −2ε
(vxx
x
−
(vx
v

)2)
, and

u2 = 4ε2
(vx
v

)2

,

which we plug into (2.29), so that

−2ε
(vt
v

)
x

= −2ε2
(vxx
v

)
x
⇒ vt = εvxx, from integration.
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The solution to (2.33) can be found by applying the Fourier transform in x, which is

given by

v̂t = −εk2v̂, (2.35)

where v̂ denotes the Fourier transform of v(x, t), and k the wavenumber.

We denominate the Fourier transform as F (v), mapping F :M→ F ⊆ C. The solution

in the Fourier domain to the ODE of (2.35) is easily found as,

v̂ = v̂0 exp(−εk2t), (2.36)

where v̂0 = v̂(k, 0) is the Fourier transform of the initial condition v(x, 0).

To establish the equivalency with Koopmans theory, the vector of observables can be

derived as follows,

g
(
u(x, t)

)
= F ◦ h

(
u(x, t)

)
= F

(
v(k, t)

)
= v̂(k, t).

In summary, the observable g(u) = v̂ maps the function (2.30) to the Fourier space F

as g(ut) = g(f(u)), such that

Kg(u) = g(f(u)),

where K : D → D ⊆ F is the Koopman linear operator which, from (2.36), is given by

K = exp(−εk2t). (2.37)

Computation of a particular solution

To illustrate this example, let us consider an initial condition for the Burgers’ equation as

u0 = sech(x), with x ∈ [−10, 10] and parameter ε = 0.1.

To find the solution u for the Burger’s equation, we only need to compute the evolution

of our observable v̂ given by (2.36) in the Fourier space (Figure 2.4(a)). To compute the

solution of the Burgers equation u(x, t), at any point in time, we have to use (2.34) to map

the solution v̂ back to the original space (Figure 2.4(b)).

Explicit observables and Koopman operators that can be constructed analytically are,

however, uncommon.

2.4 Comments and Conclusions

These examples highlighted that the right set of observables g(x) is crucial to analytically

determine an invariant finite-dimensional Hilbert subspace D to which the nonlinear dy-
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(a) Solution v̂ = Kv̂0. (b) Solution u.

Figure 2.4: In (b) the solution u(t) of the Burgers equation mapped from the solution to the

linear problem in the Fourier space depicted in (a).

namical system can be mapped. Furthermore, the determination of this set of observable

functions may not be trivial, as showed in Example 4. One added difficulty we saw in

the same example, expressed in (2.34), is that that the transformation of the observable

function back to the original state space may also require additional calculations.

In the next chapter we present the purely data-driven DMD method which approx-

imates the Koopman operator. This is extremely useful for enabling evaluation of the

operator from data since it provides the mathematical framework of Koopmans theory

with a computationally tractable algorithm.

To illustrate practical applications of this connection, the examples presented here will

be revisited at the end of the next Chapter.
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Chapter 3

Dynamic Mode Decomposition

Following the definitions in [13, 18], suppose we have two sets of data,

X = (x0,x1, . . . ,xm), Y = (y0,y2, . . . ,ym), (3.1)

such that yk = f(xk), where f is a map associated with the evolution of a dynamical

system (0.1). The DMD computes the leading eigendecomposition of the best-fit linear

operator A relating the data Y ≈ AX.

The DMD modes, also called dynamic modes, are the eigenvectors of A, and each DMD

mode corresponds to a particular eigenvalue of A.

Algorithmically, the DMD can be described as a method that inputs discrete data (3.1)

generated from a dynamical system (0.1) and outputs the eigenvalues and eigenvectors

satisfying

Aφj = λjφj. (3.2)

Having the low-rank approximations of the eigenvalues and eigenvectors for A, a con-

tinuous solution of ˙̃y(t) = Aỹ(t), where ỹ(t) ≈ y(t), can be constructed as a function of

time. This we call the linear model that approximates the solution of (0.1), which is the

main goal for this chapter, thus

y(t) ≈
r∑
j=1

vjφj(x) exp(ωjt), (3.3)

where x is the state vector, vj corresponds to a scalar, φj(x) the eigenfunctions of A, and,

assuming that the data was collected with a uniform sampling time ∆t,

ωj = log(λj)/∆t. (3.4)
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A direct result of the formulation of the expansion of the solution as in (3.3) is that

one now has access to characteristic spatiotemporal features of the system. The rate of

growth/decay and frequency of oscillations of each DMD mode is given by the eigenvalue

ωj and the time dependent term exp(ωjt) gives us the dynamics associated to each mode

φj(x) scaled with a constant vj.

The determination of matrix A is trivial when the data-set (3.1) is generated by a linear

dynamical system. However, when we have non-linear systems, we are not guaranteed to

obtain good approximations from the simple application of the DMD method. In [20] it

was showed that the DMD approximates the Koopman operator. This fact highlighted the

important role played by the observables and their associated evolution manifolds.

3.1 Connection with Koopman Operator

In the first papers over the DMD it was required that the data was a sequential time

series. A sequential time series is an ordered sequence such that (z0, . . . ,zq) is generated

by zk+1 = f(zk). However, a more general definition of data was proposed in [13]. In the

new definition, data is a set of pairs {(x0,y0), · · · , (xm,ym)}, which are a not necessarily

ordered. The emphasis of this new definition is on the linear-consistency property of the

data which provides a theoretical framework for the algorithm and the connection with

Koopman operator theory (see Section 3.3.3).

However, since the sequential time-series collected data is only a particular case of this

new definition, we keep this assumption on all examples and applications throughout the

thesis.

Let us now assume that A has a full set of eigenvectors, so that we can write the

expansion

xk =
l∑

j=1

cjkφj, (3.5)

where cjk are some constants (See Appendix B for details). Then,

yk ≈ Axk (3.6)

≈
l∑

j=1

Acjkφj (3.7)

≈
l∑

j=1

λjcjkφj. (3.8)
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Comparing this result with the Koopman operator spectral decomposition expression

(2.7), we find that the DMD modes φj correspond to the Koopman modes vj, the DMD

eigenvalues to the Koopman eigenvalues, and the constant cjk to the eigenfunctions ϕj(zk).

This Koopman analogy is what provides a mathematical foundation for applying the

DMD to data generated by nonlinear systems.

3.2 Formulation in terms of the Frobenius companion

matrix

The theory behind the algorithm presented in this section is based on the Frobenius com-

panion matrix as proposed in [20, 21, 22].

Consider data in the snapshot matrix X represented as

X = (x0, . . . ,xm), (3.9)

where xk ∈ Rn, and matrices X and Y as in (3.1), with yk = xk+1. Herein we assume that

the snapshot X is an ordered sequence of data separated by a constant sampling time ∆t.

We start by assuming that xk+1 = Axk, and n is so large that we cannot compute

eigenvalues of A directly.

A standard method for computing estimates of the eigenvalues of A is a Krylov method,

which starts with an initial vector x0 (often random), and then computes iterates of x0.

After m − 1 iterations, one has a collection of m orthonormal vectors that span a Krylov

subspace given by

Kn(A,x0) = span
{
x0, Ax0, . . . , A

m−1x0

}
. (3.10)

The Arnoldi method is a type of Krylov method which involves computing the action of A

on arbitrary vectors. See, e.g. [25] for more details.

Matrix A is not available, however, as we only have access to a data-set (3.1). P.J.Schmid

in [22] proposes a variation of the Arnoldi algorithm which does not require the explicit

knowledge of A. For that, we start by assuming the special case where the mth iterate xm

is a linear combination of the previous iterates,i.e.,

xm = Axm−1 = c0x0 + ...+ cm−1xm−1, (3.11)

where c = (c0, . . . , cm−1) is a vector of constants. This yields,

AX = XC, (3.12)
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where

C =



0 · · · c0

1 0 · · · c1

. . . . . . ...

1 0 cm−2

1 cm−1


(3.13)

is a Frobenius companion matrix of dimension (m×m). The eigenvalues of C are then a

subset of the eigenvalues of A (see box below).

To verify this, let the pair (ϕj, λj) be the eigenvectors and eigenvalues of C. Then,

let T be a square matrix whose columns are the m linearly independent eigenvectors

of C, and Λ a diagonal matrix with the corresponding eigenvalues {λj}mj=1. As T is

invertible, since its columns are linearly independent, the eigendecomposition of C

is thus, C = TΛT−1.

Starting from (3.12), and plugging in the eigendecomposition of C,

AX = XC

⇔ AX = XT−1ΛT

⇔ AXT−1 = XT−1ΛTT−1

⇔ AXT−1 = XT−1Λ

where XT−1 is the matrix of the eigenvectors of A with eigenvalue Λ. Moreover, vj

are the columns of V = XT−1.

Due to the properties of power iteration, the linearity of the sequence (3.10) will occur

gradually with the increase of m. So, if the m-th iterate is not a linear combination of the

previous iterations, we write the residual,

r = Axm−1 −
m−1∑
j=0

cjxj.

Equivalently,

r = xm −Xc. (3.14)

In this case, (3.12) becomes

AX = XC + reT , (3.15)

where e = (0, ...., 1).
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From (3.14) we know that the residual r is minimum when it is orthogonal to span {x0, ...,xm−1},

then c is chosen such that min
c

∣∣ 〈r, X〉 ∣∣.
The eigenvalues of C are now the approximations to the eigenvalues of A, called the

Ritz values, and the corresponding approximate eigenvectors are given by ϕj = Xφj, called

the Ritz vectors. See, e.g, [25].

The following theorem proven in [20], summarizes the above.

Theorem 3.2.1. Consider a set of data cX as in (3.9), and let λj, φj be the empirical

Ritz values and vectors of this sequence. Assume that λj are distinct. Then

xk =
m∑
j=1

λkjφj, k = {0, . . . ,m− 1} , (3.16)

xm =
m∑
j=1

λmj φj + r, r ⊥ {x0, . . . ,xm−1} . (3.17)

Next, we resume the results from above in a form of an algorithm:

Algorithm 1
1: INPUT: Define X from (3.1);

2: Find constants ci such that min
c

∣∣ 〈r, X〉 ∣∣.
3: Define the companion matrix C from (3.13);

4: Find eigenvalues and eigenvectors which satisfy Cφj = λjφj ;

5: OUTPUT:

• DMD modes φj

• Eigenvalues λj

Comments

From the properties associated with the Krylov methods, if xk = Akx0, then the Ritz

values λj are the same as the ones determined after m steps of the Arnoldi method, and

φj are the corresponding eigenvectors.

3.3 SVD based algorithm

In the previous section, Algorithm 1 was formulated in terms of the Frobenius companion

matrix (3.13). However, an alternative based on SVD was first proposed in [22] due to the

unstability of Algorithm 1, since determining eigenvalues of C is an ill-conditioned problem.
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In [13] the algorithm is modified so that it has a more general application by expanding

on the definition of the data. This approach is also used to strengthen the connection with

the Koopman operator (see Section 3.3.3).

3.3.1 Projected DMD

In this subsection, we assume X and Y as in (3.1), where yk = xk+1.

We start by preprocessing the data matrix X, applying the SVD, and plug in (3.15),

so that

AX = Y ⇔

⇔ AUΣV ∗ = Y

⇔ U∗AUΣV ∗ = U∗Y

⇔ U∗AUΣV ∗V = U∗Y V

⇔ U∗AU = U∗Y V Σ−1.

Then, let Ã := U∗AU , so that we have,

Ã = U∗Y V Σ−1. (3.18)

Since the matrix U contains the proper orthogonal modes of X, Ã is a projection of

the linear operator A onto the POD basis functions U . One feature obtained with this

variation is that we can now restrict the projection basis U , similar to the POD method.

The modal structures are then to be extracted from the matrix Ã,

φi = Uξj, (3.19)

where ξj is the jth eigenvector of Ã, i.e., Ãξj = λjξj, and U is the unitary matrix of the

right singular vectors of the snapshot sequence X.

Algorithm 2 summarizes the method.

In [13] the DMD mode obtained from (3.22) in Algorithm 2 is referred to as projected

DMD modes. The origin for this nomeclature is discussed in Section 3.3.3.

3.3.2 Exact DMD

A variation of this algorithm, called Exact DMD in the formulation presented in [13],

proposed a more general definition of data, while emphasizing on its linear consistency

property (see Section 3.3.3). Matrices X and Y are defined in (3.1).
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Algorithm 2 (SVD based DMD)
1: INPUT: Matrices X and Y as defined in (3.1), where yk = xk+1, k = 0, . . . ,m− 1;

2: Compute the reduced or truncated SVD of X,

X = UΣV ∗ (3.20)

3: Define the matrix

Ã = U∗Y V Σ−1 (3.21)

4: Compute eigenvalues and eigenvectors that satisfy Ãξj = Λξj , where Λ = diag(λj) ;

5: OUTPUT:

• DMD modes,

φj = Uξj , (3.22)

• Eigenvalues λj .

For the data-set given by (3.1), we define the operator

A = Y X+, (3.23)

where X+ is the pseudoinverse of X. The DMD of the pair (X, Y ) is given by the ei-

gendecomposition of A, i.e., the DMD modes and eigenvalues are the eigenvectors and

eigenvalues of A.

Algorithm 3 (Exact DMD)
1: INPUT: Rearrange the data {(x0,y0), . . . , (xm−1,ym−1)} into the matrices X and Y , as in (3.1),

2: Compute the reduced or truncated SVD of X (3.20);

3: Define the matrix

Ã = U∗Y V Σ−1 (3.24)

4: Compute eigenvalues and eigenvectors which satisfy Ãξj = λjξj , and define W = (ξ1, . . . , ξm);

5: OUTPUT:

• DMD mode given by

Φ = Y V Σ−1W, (3.25)

where Φ = (φ1, . . . , φm);

• Eigenvalues λj .

Theorem 3.3.1, proven in [13], shows that Algorithm 3 identifies the eigenpairs of matrix

A, therefore the denomination for the modes in (3.25) as Exact DMD.

Theorem 3.3.1. Each pair (φ, λ) generated by expression (3.25) from Algorithm 3, is an

eigenvalue/eigenvector pair of A. Furthermore, the algorithm identifies all of the non-zero



29

eigenvalues of A.

3.3.3 Exact and Projected DMD

Let us first define the linear consistency of matrices. Two n × m matrices X and Y

are linearly consistent if, whenever Xc = 0, then Y c = 0. That is, X and Y are linearly

consistent if and only if the nullspace of Y, which we denote byN (Y ) contains the nullspace

of X, or equivalently, N (X) ⊂ N (Y ). Theorem 3.3.2, proven in [13], follows:

Theorem 3.3.2. Define A = Y X+. Then Y = AX if and only if X and Y are linearly

consistent.

Note that algorithms 2 and 3 are nearly similar, the difference being on the terms used

in (3.25) and (3.22). Theorem 3.3.3 proven in [13] addresses this difference.

Theorem 3.3.3. Let Ãξ = λξ, with λ 6= 0, and let PX denote the orthogonal projec-

tion onto the image of X. Then, φ̂ := Uξ is an eigenvector of PXA with eigenvalue λ.

Furthermore, if φ is given by (3.25), then φ̂ = PXφ.

From that it follows that the modes determined from (3.22) by the Algorithm 2, which

we now refer as φ̂, are the projection of the modes determined from (3.25) by Algorithm

3 onto the range of X, therefore the reference to (3.22) as Projected DMD. Denoting the

orthogonal projection onto the range of X as PX , if vectors yk lie in the span of the vectors

xk, then PXA = A, and the projected modes (3.22) and exact DMD modes (3.25) are

identical.

Although both solutions (3.22) and (3.25) converge if X and Y have the same column

spaces, in all the examples and applications presented in the thesis we implemented Al-

gorithm 3, given its more general formulation.

3.4 Standing Waves and Time Delay Embedding

In this section, we show that one of the shortcomings of this method manifests when the

data is generated by a standing wave. This can be solved using a technique based on the

methods developed in [24]. For this section, we closely follow [13].

Consider the data set Z = (z0, . . . ,zq) generated by a standing wave defined by

zk = cos(kθ)q, zk ∈ Rnand k = 0, . . . ,m, (3.26)
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q ∈ Rn is a constant vector, and θ denotes the frequency of oscillation.

DMD applied to data-set Z

To determine the DMDmodes and eigenvalues from the data we apply the DMD to matrices

X = qxT , Y = qy,T

where the components of x and y are xk = cos(kθ) and yk = cos
(
(k + 1)θ

)
, respectively.

The unitary matrix U obtained from the application of the SVD on matrix X is a

single column, corresponding to a singular value matrix Σ of dimension 1 × 1, given that

q is a constant vector and rank(X) = 1. The matrix Ã, as a consequence, is a matrix of

dimension 1×1. The output of the DMD will, therefore, be precisely one real-valued DMD

eigenvalue.

The eigenvalue in the continuous space obtained from (3.4), is of the form ω = α+ iβ,

where α is the real part and β the imaginary part. Given that β = 0, since the eigenvalue is

real, then eωt = eαt [cos(β) + i sin(β)] = eαt, from which we see that the oscillatory nature

of the data in (3.26) is not captured by the method.

Linear consistency of the input data

The failure of this method can be underlined by Theorem 3.3.2, when we look at the linear

consistency of data. X and Y are not linearly consistent, unless θ = nπ, where n ∈ N+
0 .

This can be seen from the definition of linearly consistency (N (X) = N (Y )). If we

consider a vector a = (− cos θ, 1, 0, . . . , 0)T , then a ∈ N (X), since Xa = 0. However,

Y a 6= 0, unless θ = nπ, which comes from Y a = q(− cos2(θ) + cos(2θ)) = q sin2 θ.

Therefore, from theorem 3.3.2, There is no A such that Y = AX.

However, by appending to Z a time-shifted value of itself, that is, z̃k = (zk, zk+1)T ,

results in that the new updated matrices X and Y becoming linearly consistent, thus

enabling to identify the correct dynamics, which we will verify next.

DMD to modified data-set

We illustrate these results with Matlab c©, computing the DMD algorithm for the data in

(3.26), where q ∈ R50. For this simple example, we considered q = −502 + x2,x ∈ [0, 50].
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Figure 3.1 resumes the results. Notice in Figure 3.1(d) the location of the estimated

DMD eigenvalues. When we add the time-delayed values, the data matrix is now of rank 2,

and the determined eigenvalues are complex conjugate, thus denoting a oscillatory behavior.

The linear consistency of the data in this example is easy to compute in Matlab c©.

By determining the null space using the command null on the constructed matrix X, and

knowing that, by definition N (X) ⊂ N (Y ), then YN (X) ≤ ε, where ε is a value that we

may consider negligible (for example, εmachine).

When we use the data directly from (3.26), ‖YN (X)‖ ≈ O(103), whereas, by adding

the time-delayed values, we obtain ‖YN (X)‖ ≈ O(10−10). Thus confirming that by adding

the time-delayed terms the values obtained are negligible, hence the linear consistency of

matrices X and Y .

(a) Exact Solution (b) DMD

(c) DMD with time delay
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Time-delayed
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(d) Eigenvalues

Figure 3.1: In (d) the location of the continuous time eigenvalues, where we see, marked in red,

the two complex conjugate eigenvalues obtained by appending to z the time-shifted value of itself.

This resulted in the standing wave DMD approximation in (c). In (b) is the approximated solution

obtained from the DMD without the time-shifted augmented data, and in (c) the exact solution for

the Burgers equation.
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Conclusions

The time delay strategy we used in this example is a particularization of the idea behind

Takens theorem, which extended results can be read in [24]. The main idea is that we can

extend the matrix of snapshots with the time-delayed observations, and by doing this, we

may be able to recover dynamics which are not directly measured but "embedded" in the

measured states, hence the name Time Delay Embedding used in this theorem. More on

this method is also in [13]. The difficulty of this strategy is that we are enlarging the data

matrix dimension, thus increasing the algorithms computational cost. We will often apply

the results of Takens theorem on examples and applications throughout the thesis. The

theory, however, given the limited extent of time permitted for this thesis, can be found

on the already mentioned literature.

3.5 Examples of Simple Applications

In this section, to illustrate the methods applications and to evidence the connections to

the Koopman operator, we revisit the examples used in Chapter 2.

We define the relative error εj as

εj =
‖ỹj − yj‖2

‖yj‖2

, (3.27)

where, x̃j is the state vector estimated by DMD at time j, and xj the reference state

vector. To measure the performance of the method, we use the averaged relative error,

given by

ε =
1

m

m∑
j=1

εj, (3.28)

where m is the number of time samples.

For the dimension reduction of step 2 in Algorithm 3, we used the same expression as

in chapter 1 with (1.9), which we recall here, as

I(r) =

∑r
i=1 σ

2
i∑l

j=1 σ
2
j

,

As a threshold criteria, by default, we are using I(r) ≥ 0.99, if not mentioned otherwise.

All Matlab c©code needed for the computation of the problems presented in these ex-

amples are included in Appendix D.
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3.5.1 Example 1 - Nonlinear ODE

The system (2.14), which we recall here, was defined as ẋ− µx = 0

ÿ − λ(ẏ − ẋ2) = 0.

In this example we use the discrete values generated from Matlab c© with the ode45

function to construct a snapshot matrix.

DMD with g(x) = x

In the first implementation, the observables are the set of linear measurements of the states,

i.e. g(x) = x.

The DMD generates the modes and eigenvalues with which we can construct the linear

model (3.3), and the obtained solution is seen in Figure (3.2(a)). We can observe that the

DMD produces an approximation to the exact solution, and the states trajectory correctly

converges on the attractor at the origin. However, the approximation is not accurate.

DMD with g(x) = (x1, x2, x
2
1)T

For the second test, we used the set of observables as derived in Chapter 2 for this same

example, that is, g(x) = (x1, x2, x
2
1)T . The linear model approximation obtained from the

determined DMD modes and eigenvalues generated the solution as seen in Figure (3.2(b)).

This is a better approximation to the exact solution, as expected, since the DMD method

determines the eigenvalues and eigenvectors of a linear operator A as discussed in section

3.2. The mean relative error obtained is ε = O(10−8).

DMD with g(x) = (x1, x2, x
2
2)T

If we select the wrong state as an observable, however, the relative error εj shows higher

values than with g(x) = x , as seen in Figure 3.2(c).

Figure 3.2(d) resumes the evolution of the relative error εj for each of these different

settings.

Conclusions

From this very simple example it is possible to illustrate some important characteristics

discussed in the last two chapters:
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(d) Evolution of error εj

Figure 3.2: In (d) the evolution of the relative error ε for the three possible choices of observ-

ables, in which is evident that the wrong choice has worse results (in green) than the the linear

measurement of the states (in blue). (a), (b) and (c) maps the trajectories of the estimated states,

when compared with the exact solution.

• the right choice of observables is crucial to approximate the Koopman operator;

• the wrong choice of observables can in fact produce larger errors than only using

linear measures of the states;

• if the dynamical system is linear, as the one obtained in (2.17), the DMD algorithm

approximates the exact solution with ε→ 0.

3.5.2 Example 2 - Logistic Map

As discussed in section 2.3.2, the infinite-dimensionality of the Koopman operator K made

the calculation of the solution to the system unattainable. Truncating K did not produce

satisfactory results, either. In this section we now use the truncation of the infinite set of
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the observables previously determined, apply the DMD and verify the results.

The solutions shown were obtained using the data set
{
x

(1)
k

}q
k=0

which corresponds to

the discrete values generated from Matlab c©by computing (2.19) with parameter µ = 3,

and the data-set
{
x

(2)
k

}q
k=0

which corresponds to µ = 3.8. The initial condition on both

cases was defined as x0 = 0.5

Define the set of Observables

As in the previous example, we test the algorithm using different sets of observables. The

selected set of observables are the ones determined in section 2.3.2, that is,

g(xk) = (xk, x
2
k, . . . , x

p
k)
T , (3.29)

where, p is the order of the polynomial.

Results

In Figure 3.3 the solutions obtained by DMD with different p using data-set x(1). As

the order p increases, the solution obtained from the linear model approximates the exact

solution.
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(a) p = 2
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(b) p = 4

Figure 3.3: Evolution of the exact solution of the logistic equation with parameters µ = 3, x0 =

0.5, marked in red, compared with the obtained from the linear model determined by the DMD

marked in blue. In (a) the solution obtained using the data matrix augmented with p = 2 order of

polynomials of the state x. In (b) the solution using the data matrix with the polynomials up to

order p = 4.
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In Figure 3.4, the solutions obtained from DMD, with different p using data-set x2.

The linear model fails to capture the exact solution.
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(a) p=7
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Figure 3.4: Evolution of the exact solution of the logistic equation with parameters µ = 3.8, x0 =

0.5 marked in red, compared with the obtained from the linear model estimated by the DMD marked

in blue.

Figure 3.5 plots the evolution of the error ε by curve defined with the parameter µ

as the polynomial order p increases. Note the convergence of the algorithm with p in the

tested conditions and the low accuracy in the case where µ = 3.8.
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Figure 3.5: Comparison of the evolution of the relative error ε with the order p used in the data

matrices. For µ = 3.8 the relative error does not converge to zero.

Conclusions

In this example, we used the results from section 2.3.2, where the Koopman theory frame-

work enabled us to find a infinite set of observables with a polynomial structure.
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When the behavior of the exact solution exhibited a stable convergence, as with the

set x(1), the DMD was able to determine a linear model that could approximate it fairly

accurately. However, when the system does not converge to an attractor, or a limit cycle,

as with the set x(2), DMD fails to find a fitting linear model. This can be simple to intuit,

since a finite-dimensional linear space does not admit multiple fixed-points or attracting

structures. Extended results on this can be found in [3, 17].

3.5.3 Example 3 - Van der Pol

The Van der Pol equation, transformed into a first order ODE, as formulated in (2.25), is

given as ẏ1 = y2

ẏ2 = µ(1− y2
1)y2 − y1.

The nonlinearity is driven by the parameter µ. In this example, µ = 1.2, except when

indicated otherwise.

Observables based on polynomials of order p

The numerical solution we used to obtain the data-set for computing the DMD was gen-

erated with the ode45 command in Matlab c©(code in Appendix D). This was also used

as a reference to compute the mean relative error ε.

As in the previous example, the vector of observables (2.26) also denotes an increasing

order polynomial structure, except we now have a 2-dimensional system with variables y1

and y2.

As previously, we use a truncation of the vector of observables defined as

Pp(y) = (y1, y2, y1y2, y
2
1, y

2
2, y

2
1y2, . . . , y

p
1, y

p
2)T .

In Figures 3.6 and 3.7, we plot the solutions obtained from the linear model with p = 1

and p = 12, respectively.

As the order p of polynomials used to construct the observable g(x) increases, the

approximation to the exact solution improves until p = 12. As we increase p further,

however, the condition number of the matrix Σ, determined in step 2 of the DMD, also

increases, and consequently the determination of φ by (3.25) becomes a ill-conditioned

problem. Figure 3.8 with the relative error ε reflects the above.
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Figure 3.6: Comparison of the exact solution of the Van der Pol equations with parameter µ = 1.2

and initial condition y0 = (0, 4), in red, and the obtained from the DMD using as the data matrix

g(y) = y, in blue. In (a) the evolution in time of states y1 and y2, and in (b) the state space plot.
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Figure 3.7: Comparison of the exact solution of the Van der Pol equations with parameter

µ = 1.2 and initial condition bmy0 = (0, 4), in red, and the obtained from the DMD using as the

data matrix g(y) = P12(y), in blue. In (a) the evolution in time of states y1 and y2, and in (b)

the state space plot.

Observables based on time-delay embedding

As a different approach, the observable matrix is now augmented with time-shifted meas-

urement copies of the snapshot states, based on the embedded time delay technique dis-

cussed in section 3.4.
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Figure 3.8: Mean relative error evolution ε with p. As the order p of the polynomials used for

the data matrix increases, the mean relative error converges.

The observable matrix is now constructed as

g(y) =


y0 y1 . . . ym−d

y1 y2 . . . ym−1

...
... . . .

...

yd yd+1 . . . ym

 . (3.30)

where the parameter d determines the number of time-shifted copies of the measurements

y to stack on the observables matrix (3.30).

As the number of time-shifted stacked copies d increases, the solution obtained from

the determined linear model by the DMD approximates the reference solution. This can

be observed in Figures 3.9, and 3.10. The approximation to the exact curves depicting the

temporal evolution of the states y1 and y2 improves with d (Figures 3.9(a) and 3.10(a)).

Similarly, the phase space on Figures 3.9(b) and 3.10(b) show how the states trajectories

increasingly adjust to the shape of the limit cycle in the exact solution.

Initial conditions

We verified that the initial condition had an effect on the value of d necessary time-shifted

measurements until ε converged. Figure 3.11, plotting ε against d, for each initial condition

illustrates that the furthest the initial condition y0 is from the limit cycle, the higher is

the number of d of time-shifted measurements required.
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Figure 3.9: Comparison of the exact solution of the Van der Pol equations with parameter µ = 1.2

and initial condition y0 = (0, 4), in red, and the obtained from the DMD using as the data matrix

d = 200 time-shifted vectors, in blue. In (a) the time evolution of the states y1 and y2, and in (b)

the state space plot.
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Figure 3.10: Comparison of the exact solution of the Van der Pol equations in red, and the

obtained from the DMD now using d = 400 time delayed vectors in blue. In (a) the time evolution

of the states y1 and y2, and in (b) the state space plot.

Nonlinearity

Since the parameter µ gives us a measure of how strongly the Van der Pol system is non-

linear, we changed this parameter and measured the relative error ε for each value of d. In

Figure 3.14 we can see the results and verify that the more strongly nonlinear the system

is, the higher is the number d of time-shifted measurements are required until the linear

model fits the measured data with acceptable accuracy.
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Figure 3.11: Comparison of mean relative error ε by initial condition y0. The furthest is it from

the limit cycle, the mode time delays d are necessary until ε converges.

Figures 3.12 and 3.13 show the solution estimated from the DMD compared with the

exact solution, considering µ = 4 and initial condition y0 = (0, 6)
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Figure 3.12: Comparison of the exact solution of the Van der Pol equations with parameter

µ = 4 and initial condition y0 = (0, 6) in red, and the obtained from the DMD using d = 400, in

blue. In (a) the time evolution of the states y1 and y2, and in (b) the state space plot.

3.5.4 Example 4 - Burgers’ equation

In this example we approximate the solution of a PDE, the Burgers’ equation ut + uux −

εuxx = 0, using the DMD with the discrete data generated from a numerical simulation

of this system. To obtain this data we applied the Fast Fourier Transform method (FFT)

using Matlab c©. The solution obtained by FFT is our reference when computing the mean

relative error ε.
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Figure 3.13: Comparison of the exact solution of the Van der Pol equations with parameter

µ = 1.2 and initial condition y0 = (0, 4) in red, and the obtained from the DMD using d = 600,

in blue. In (a) the time evolution of the states y1 and y2, and in (b) the state space plot.
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Figure 3.14: Comparison of the relative error ε with parameter µ. The higher is the value of µ,

the higher needs d to be, before ε converges.

We now consider the set of observables as the linear measure of the states u, so that

g(u) = u, and evaluate the results obtained from the DMD by changing the truncation

criteria at the step 2 of Algorithm 3 corresponding to the SVD of matrix X.

The output of the DMD then provides r eigenvalues and the corresponding DMDmodes,

where r corresponds to our truncation criteria. Figures 3.15(a) and 3.15(b) plot the solu-

tions obtained from the linear model estimated by the DMD with r = 3 and r = 7,

respectively. For comparison, Figure 3.15(c) shows the numerical solution obtained by

FFT.

In Figure 3.16(a) we plot the evolution of the relative error ε with the truncation criteria

r. and Figure 3.16(b) plots the normalized weight of each singular value determined by
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(a) DMD with 3 modes (b) DMD with 7 modes

(c) Exact

Figure 3.15: In (a) the solution of the linear model estimated by the DMD with r = 3, while in

(b) r = 7, and in (c) the exact solution for Burgers equation.

σj/
∑l

i=1 σi. We see that, for the Burgers equation, as the weight of the singular values

sharply decreases, the relative error ε follows the same trend.

3.6 Conclusions

From the short examples presented, we have seen that the proper choice of a set of ob-

servables is crucial for the success of the method. In order to obtain reasonably accurate

results, the construction of the observables was based in techniques such as the embedded

time delay for example 3, or by using the measure of the states in polynomial form, tested

in every case but example 4. However, in systems such as the Burgers equation, the direct

measure of the states delivered sufficiently accurate results.

The concepts discussed in the previous Chapters 1 and 2, on the POD method and the
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Figure 3.16: In (a) the evolution of the relative error with the increase of rank r, and in (b), the

normalized Singular Values from the SVD of the data matrix consisting of the state measurements

u obtained from the exact solution of the Burgers equation, with u0 = sech(x).

Koopman operator, respectively, are related to the DMD in different but complementary

ways. The DMD incorporates the concept of spatial dimensionality-reduction technique

of the POD, and the connection with the Koopmans operator theory, which provides the

method with a framework which gives us the confidence to use it as useful method to

characterize non-linear dynamics.
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Chapter 4

Application - Case Studies

In this chapter we use the methods and techniques discussed earlier on two particular

applications.

In the first application, presented in Section 4.1, the numerical data set is generated by

numerical simulations by the Bergen Ocean Model (see [1]). This data-set consist of 2D

velocity fields at the sea floor. The goal is to describe the data using the DMD modes and

eigenvalues within acceptable accuracy. We test different methods for choosing observables,

compare the outcomes and discuss the results.

The second application, at Section 4.2, we apply the DMD on the data generated by

two-population neural field model with added noise. We consider two examples of pattern

formation (for details see [28]). The goal here is to test if the method is capable of recovering

the stable patterns from a noisy data.

To evaluate the accuracy of the results, we use the relative error εj and the mean

relative error ε as defined in (3.27) and (3.28), respectively.

4.1 2D Velocity Field Data

In the discretized area covered by a n × m spatial grid, we represent the state vector of

the velocity field by yk ∈ Rn·m, where the subscript k = 0, . . . , q represents the discrete

time. At each grid point l = 1, . . . , n, . . . , n · m, xl = (ul, vl)
T ∈ R2 is a vector where

ul ∈ R corresponds to the horizontal component of the velocity, and vl ∈ R is the vertical

component in an euclidean coordinate system. The velocity field data, at each time k

is then given by yk = (xk,1, . . . ,xk,n·m)T . The data-set is, hence, ordered as the matrix
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X = (y0, . . . ,yq), which expanded with its components gives

X =



u0,1 u1,1 . . . uq,1

v0,1 v1,1 . . . vq,1

u0,2 u1,2 . . . uq,2
...

...
...

...

v0,n·m . . . . . . vq,n·m


.

In section 4.1.1, we apply the DMD to the data-set X1, which consists of values of the

velocity field obtained from a 32[Km]×32[Km] area with 800[m] resolution corresponding

to a 40× 40 grid over a time interval of τ =
[
0, 1500

]
[h] with a ∆τ = 0.7143[h].

Here, we are mostly interested in the gains in accuracy we can obtain as we test different

techniques for selecting the observables for approximating the Koopman operator.

In Section 4.1.2 the DMD is applied to the data-set X2 which consists of values of the

velocity field obtained from a 40[Km]×41.6[Km] area covered by a 53×51 spatial grid over

a time interval of τ =
[
0, 1500

]
[h], sampled at ∆τ = 0.01429[h]. The choice of technique

to construct the matrix of observables to use in the DMD is based on the results of Section

4.1.1.

4.1.1 Choice of Observables

To minimize the effects of external forcing terms, such as wind or other time-dependent

terms that may change the equilibrium state of the dynamical system, the data in X1 is a

subset of X with a shorter time interval, in this case 48[h], resulting in q = 68 snapshots,

so that those forcing terms can be considered as invariant.

The selection of the right set of observables is important to best approximate the

Koopman operator. For that purpose, we tested three strategies as summarized next:

• Using the direct measure of the states as the observables, i.e., g(y) = y;

• Augmenting the data matrix with n-th order polynomial measurements of the states,

as defined in (3.29), i.e., g(y) = Pn(y);

• Augmenting the data matrix using the embedded time delay technique as in (3.30).
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Linear measurements of the state

We first construct the snapshot matrix as in (1.7) from the data X1. As the observables are

exactly the measurement of the states x, the resulting matrix of snapshots is of dimension

3362× 68.

Step 2 of Algorithm 3 is where we can reduce the dimensionality of our problem. As

in Section 3.5, the reduced rank which we denote by r, is chosen so that the expression

of energy (1.9) holds. We test the results with the energy threshold set to I(r) < 0.99

and I(r) < 0.999. Figure 4.1 plots the normalized singular values obtained in step 2 of

Algorithm 3. The singular values that are retained are marked in blue.
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(a) I(r) < 0.99
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(b) I(r) < 0.999

Figure 4.1: Singular Values distribution normalized by σj/
∑n

k=1 σk. In (a) marked in blue

are the r retained singular values, set by the threshold I(r) < 0.99 and in (b) the equivalent for

I(r) < 0.999

After obtaining the DMD modes and eigenvalues from the Algorithm 3, Figure 4.2 plots

the eigenvalues ω = log(λ)/∆t (3.3). Since the eigenvalue ωk = αk + iβk ∈ C, the real part

αj gives the growth rate and the imaginary part βj gives the frequency associated with the

eigenfunction ϕk(y).

We define

wj =
vj∑n
l=1 vl

, (4.1)

where wj is a normalized weight of each scalar vj. The eigenvalues in Figure 4.2, marked

in blue, correspond to those whose weight of the scalar vj is wj > 0.05.

Note that by choosing r such that I(r) < 0.999, Figures (4.4) and (4.3), show that

the relative error ε is generally lower than when the choice of r is I(r) < 0.99. The mean
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relative error for these two cases results in ε0.99 = 0.46892 and ε0.999 = 0.11439. This

suggests that the low energy modes have an important effect on the system dynamics.

Regarding the location of the eigenvalues, another observation from both cases is that

they seem to cluster near the imaginary axis close to the zero real value, denoting a slow

growth/decay of eigenvalues associated with the DMD modes.
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(a) I(r) < 0.99
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(b) I(r) < 0.999

Figure 4.2: In (a) the distribution of the estimated continuous time eigenvalues ω corresponding

to the threshold I(r) < 0.99 and in (b), the estimation for a threshold I(r) < 0.999. Marked in

blue are the dominant eigenvalues, using as a criteria wj > 0.05

Figures 4.3(a) and 4.4(a) show the evolution of the relative error εj in time j when

the data was measured. Figures 4.3(b) and 4.4(b), show the evolution of the error when

the system evolves beyond the measured data. We conclude that the current model is not

useful for long-term future-states predictions.

Polynomial based states observables

Here we applied the DMD using the observables matrix augmented with a set of polyno-

mials defined as Pp(y) := (y,y2, . . . ,yp)T . The tests for p = 4, 10, and 20, did not show

any improvement from the previous results. When I(r) < 0.99, εPp = 0.47043, and when

I(r) < 0.999, εPp = 0.11144, for p = 4, 10, 20.

Note that the observables matrix dimension increases, as dim(Pp) = 2(n · m)p × p =

3362 · p × 68. Despite of the increased computation cost the method did not give better

accuracy.
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Figure 4.3: Evolution of the relative error ε, when the threshold for determining r is I(r) < 0.99.

In (a) is when the estimated linear model evolves during the time corresponding to the acquired

data, whereas in (b) it corresponds to a future-state prediction.
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Figure 4.4: Evolution of the relative error ε, when the threshold for determining r is I(r) < 0.999.

In (a) is when the estimated linear model evolves during the time corresponding to the acquired

data, whereas in (b) it corresponds to a future-state prediction.

Embedded time delay

Testing DMD using the embedded time delay technique, as we did in section 3.5 for the

Van der Pol equations example, produced the best results in terms of accuracy, as we show

next.
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The observables matrix is now constructed as in (3.30), that is,

g(x) =



g0

(
{yj}q−dj=0

)
g1

(
{yj}q−d+1

j=1

)
...

gd

(
{yj}qj=d

)


=


y0 y1 . . . yq−p

y1 y2 . . . yq−p+1

...
... . . .

...

yp yp+1 . . . yq

 , (4.2)

where d denotes the number of copies of time-shifted measurements to stack on the ob-

servables matrix (4.2). We tested for d = 4, 10, and 20, so that we get the same matrix

dimensions as we obtained in the previous polynomial based matrix of observables.

To determine r we considered only the threshold I(r) < 0.999.

Note that as the number d changes, the observables matrix dimension also changes

according to dim
(
g(y)

)
=
(
nm · (d+ 1)

)
×
(
q − d

)
.

From (4.2), the approximation to the states {yj}q−dj=0 is obtained from the identity

g0(y) = y. Figures 4.5(a) and 4.6(a) plot the relative error until time k = q − d, whereas

in Figures 4.5(b) and 4.6(b) includes the relative error from the time k = q − d+ 1.
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Figure 4.5: Using d = 4 time delayed vectors, (a) shows the evolution of the relative error

ε corresponding to q − d time data-points, whereas (b) shows, marked in blue, the evolution of

ε during the last d measured data points of X1, and marked in red the corresponding to future-

state prediction. In (c) the continuous time eigenvalues locations, where marked in blue are the

dominant eigenvalues.

Figures 4.5(c) and 4.6(c) show that as the value d increases, the continuous time eigen-

values tend to cluster closer to the axis where the real part of its value is zero.

The mean relative error obtained with the increase of d denoted an improvement, as

showed by the values of εd=4 = 0.0689, εd=10 = 0.0607, and εd=20 = 0.0517.
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Figure 4.6: Equivalent to Figure 4.5, but now with the number of time delays d = 20.

Relative Error Comparison

Figure 4.7 resumes the mean relative errors for the three used techniques with the different

parameters. The embedded time delay technique has shown the most accurate results.

However, when j ≥ (q − p) as the dimension of the matrix of observables has p less

columns, the accuracy reduces sharply, and the predictions produced, as observed in the

red curve in Figures 4.5(b) and 4.6(b), are not reliable.
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Figure 4.7: Summarizing the results, the evolution of the mean relative error ε with each set

of chosen observables. In (a), corresponding to the acquired data, and in (b) for future-state

predictions. in the x-axis, x corresponds to the linear measurement of the states, Pn(x) corresponds

to the nth order polynomials agumenting the data matrix, and etdd, corresponds to the embedded

time delay technique with d time-shifted copied ensembles.

Comments and Conclusions

From the results obtained, we summarize the conclusions as follow:
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1. The choice of threshold in the energy criteria to perform a low-rank truncation of

the data have shown a significant impact on the accuracy results. This result also

seems to suggest that the low-energy singular values have an important effect on the

dynamics.

2. The strategy of augmenting the observable matrix with polynomial based measure-

ments of the states did not produce any improved results from the DMD when com-

pared to the simple linear measurement of the states. This particular choice of

observables was not suitable to find an appropriate approximation to the Koopman

operator.

3. From the three strategies tested, the embedded time delay showed the most accurate

results. This came at a cost, however, since the required number of data points, or

the time interval of measurements, had to be larger than the actual time interval for

the more accurate estimation. The data matrix is also of larger dimension.

From these observations, for the subsequent tests, the rank r is to be determined by

I(r) < 0.999 and the embedded time delay technique is used to construct the snapshot

matrix of observables g(x).

4.1.2 DMD on matrix of observables: Results and analysis

Data-set sampling time

For this section the data-set X2 is sampled at ∆τ = 0.01429[h]. However, we can, in fact,

chose to alter the current ∆τ , since the oversampling brings a greater cost in computation

with no significant gain in the accuracy.

If we refer to the Nyquist theorem, it states that, in order to adequately reproduce

a signal, it should be periodically sampled at a rate that is at least 2 times the highest

frequency we wish to record. In the previous tests, which data was sampled at ∆τ = 0.7143,

the highest frequency the algorithm managed to capture corresponded to ω ≈ 2π/9, which

would imply a ∆τ < 4.5[h].

However, since we are using the embedded time delay technique, there is a trade-off to

consider. From (4.2), we see that higher d reduces the number of columns by the same

value, that corresponds to the total number of snapshots, which is now reduced to q−d. If
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we consider the Nyquist sampling as the sole reference, we would create greater restrictions

on the number of time-shifted observables.

Data-set duration

For these runs of Algorithm 3, we considered the data with ∆τ = 0.2857[h]. For each test

we used data spanning the equivalent to 5 × 24[h], from which we used the equivalent to

d = 299. This results in an increase from the original data snapshot matrix of dimension

5406×420 to a 1621800×121 matrix of observables. The consequence of this choice is that

we are using the method to extract spatial structures and associated temporal responses

for a time frame of 34[h], while using 120[h] of data. This is a cost we are willing to take

in this specific case, since we are interested in finding fundamental spatial structures and

temporal patterns that we can extract from a complex system such as this one. If we were

aiming to make future state predictions, the strategy would have to be adjusted.

Experiments description

We run this setup at three different time frames, namely τ (1) =
[
0, 120

]
[h], τ (2) =

[
500, 620

]
[h]

and τ (3) =
[
1000, 1120

]
[h]. Each time frame corresponds to a experiment. For simplicity,

we use the notation for time t, such that, t = 0 at τ (i)
0 , where i is the number of the

experiment, and the subscript 0 in τ denotes the initial time. The data-sets corresponding

each experiment are denoted by X (i)
2 , which are subsets of X2.

The goal is to analyze the DMD modes and eigenvalues resulting from each experi-

ment, and to identify spatiotemporal coherent structures that persist in each of these three

different time frames.

In Figure 4.8 we show the maps of the continuous time eigenvalues ωj obtained from

the DMD from each of the three experiments. We are focusing on the most dominant

eigenvalues which we rate from (4.1). Marked in blue, the eigenvalues which hold the

threshold wj > 0.01.

Experiment 1: τ =
[
0, 120

]
[h]

With the data-set X (1)
2 , the construction of the observable matrix (4.2) is based on the

stacking of d = 399 time-shifted observables. Figure 4.9 depicts the selected 4 dominant

complex conjugate eigenvalues and corresponding DMD modes determined from the DMD.
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Figure 4.8: Location of the time continuous eigenvalues estimated by the DMD, when (a) τ =[
0, 120

]
, (b) τ =

[
500, 620

]
, and (c) τ =

[
1000, 1120

]
.

Since the eigenvalues are complex conjugate, we only represent the ones with positive

imaginary part.

The right panel in each subplot shows the dynamics related to the term exp(ωkt) in

(3.3). Since ωk is a complex number, we observe a oscillatory behavior with a periodicity

of 12.3[h] (Tk = 2π/βk). In the left panel we represent the streamlines that result from a

constant vector field defined by the DMD mode φk(x). Figures 4.9(b), 4.9(c) and 4.9(d)

are the representations of the remaining modes, not including their complex conjugate.

Figure 4.10 shows the result of the sum of the DMD modes with the dynamics from

Figure 4.9 at time t = 17[h] when compared with the original data . The color-map

corresponds to kinetic energy, given by kj = u2
j + v2

j .

One can observe that, using only 4 modes, the streamlines generated by the vector field

determined from the linear model exhibits a very similar structure to the original data.
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(a) DMD mode 1 with v1 ≈ 11.7 and T1 ≈ 12.4(h)
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(b) DMD mode 3 with v3 ≈ 17.5 and T2 ≈ 124(h)
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(c) DMD mode 5 with v5 ≈ 5.6 and T5 ≈ 19.3(h)
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(d) DMD mode 7 with v7 ≈ 12.8 and T1 ≈ 33(h)

Figure 4.9: Dominant modes and eigenvalues estimated by the DMD from data of Experiment

1. On the left graph of each plot, the streamlines generated from the DMD mode φj corresponding

to the eigenvalue ωj, and on the right side the evolution in time of exp(ωjt)

The relative error evolution in time is in Figure 4.11(a), with ε(1) ≈ 0.0648. Figure 4.11(b)

shows the evolution of the relative error corresponding to the time interval when the data

points were used for the time-shifted components in the observable matrix (in blue), and

the future-state predictions (in red).

Experiment 2: τ =
[
500, 620

]
[h]

In this experiment we now use the data-set X (2)
2 with the same parameter d and threshold

I(r) < 0.999 as used in Experiment 1. Figure 4.12 depicts the modes corresponding to the

eigenvalues selected in Figure 4.8(b).

In Figure 4.13, for comparison, we show the reconstructed velocity field at time t = 17[h]

using 4 modes, side by side with the original data. We can observe that the model was
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Figure 4.10: Solution of Experiment 1 at time t = 17[h]. The left plot corresponds to the exact

solution, and on the right the obtained from the linear model estimated by the DMD.
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Figure 4.11: Evolution in time of the relative error ε obtained with the DMD estimated linear

model in Experiment 1. In (a) during the acquired data X (1)
2 , and in (b) the combination of the

last d acquired data-points, marked in blue, and the future-state prediction in red.

able to reconstruct the main characteristic structures of the original dynamical system.

Figure 4.14(a) shows the relative error evolution ε over the time corresponding to the

measured data with mean relative error ε(2) = 0.0644. Figure 4.14(b) shows the relative

error for the future-state prediction (in red), and the relative error during the d time delays

(in blue).

Comparing with the modes in Figure 4.9, note that the DMD modes and eigenvalues

corresponding to Figure 4.12(a) and Figure 4.9(a) exhibit a very similar structure and

periodicity (T = 12.4[h]).
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(a) DMD mode 1 with v1 ≈ 15.8 and T1 ≈ 12.3(h)
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(b) DMD mode 3 with v3 ≈ 21.2 and T3 ≈ 104(h)
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(c) DMD mode 5 with v5 ≈ 6.63 and T1 ≈ 19.7(h)
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(d) DMD mode 5 with v1 ≈ 16.6 and T1 ≈ 34.3(h)

Figure 4.12: Dominant modes and eigenvalues estimated by the DMD from data of Experiment

2. On the left graph of each plot, the streamlines generated from the DMD mode φj corresponding

to the eigenvalue ωj, and on the right side the evolution in time of exp(ωjt)
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Figure 4.13: Solution of Experiment 2 at time t = 17[h]. The left plot corresponds to the exact

solution, and the right one the obtained from the linear model estimated by the DMD.
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Figure 4.14: Evolution in time of the relative error ε obtained with the DMD estimated linear

model in Experiment 2. In (a) during the acquired data X (2)
2 , and in (b) the combination of the

last d acquired data-points, marked in blue, and the future-state prediction in red.

Experiment 3: τ =
[
1000, 1120

]
[h]

Similarly to the procedure of the previous experiments, the DMD modes and dynamics

can be seen in Figure 4.15. In Figure 4.16, the dynamics as estimated using the dominant

modes, at time t = 17[h], side by side with the original data.

Figure 4.17 plots the relative errors. The mean relative error corresponding to Figure

4.17(a) was ε(3) = 0.0587.

4.1.3 Comments and Conclusions

From the three results presented we can identify one dominant mode that persists in each

of the three different experiments. The eigenvalue has a period of T ≈ 12.4(h), and the

corresponding DMD mode φ(y) shows a laminar-like structure. This suggest that we may

have identified the M2 tidal mode component of this velocity field [7].

When generating a solution ỹk, k = 0, 1, . . . , from the linear model approximation

obtained by DMD, the accuracy when compared to the original data yk showed values

consistently under 10%, even when using only 4 modes, and we were able to reproduce

fairly complex spatiotemporal structures. In fact, if we average the mean relative error

ε obtained by each experiment, εexperiments = 0.0626. Have we used all the determined

modes, this average relative error would drop to εall modes = 0.0332.
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(a) DMD mode 1 with v1 ≈ 13.4 and T1 ≈ 12.4(h)
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(b) DMD mode 3 with v3 ≈ 41.6 and T3 ≈ ∞(h)
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(c) DMD mode 5 with v5 ≈ 34.4 and T3 ≈ 64.4(h)
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(d) DMD mode 7 with v7 ≈ 11.9 and T3 ≈ 23.5(h)

Figure 4.15: Dominant modes and eigenvalues estimated by the DMD from data of Experiment

3. On the left graph of each plot, the streamlines generated from the DMD mode φj corresponding

to the eigenvalue ωj, and on the right side the evolution in time of exp(ωjt)
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Figure 4.16: Solution of Experiment 3 at time t = 17[h]. The left plot corresponds to the exact

solution, and the right one the obtained from the linear model estimated by the DMD.
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Figure 4.17: Evolution in time of the relative error ε obtained with the DMD estimated linear

model in Experiment 3. In (a) during the acquired data X (3)
2 , and in (b) the combination of the

last d acquired data-points, marked in blue, and the future-state prediction in red.

4.2 Neural Field Experiment

In [28] a two-population firing-rate model describing the dynamics of excitatory and inhib-

itory neural activity in one spatial dimension is investigated with respect to formation of

patterns, in particular stationary periodic patterns and spatiotemporal oscillations. The

model is described by means of the coupled system of two nonlinear integro-differential

equations,

∂

∂t
ue = −ue + ωee ⊗ Pe(ue − θe)− ωie ⊗ Pi(ui − θi)

(4.3)

τ
∂

∂t
ui = −ui + ωei ⊗ Pe(ue − θe)− ωii ⊗ Pi(ui − θi)

where ⊗ denotes the convolution operator

[f ⊗ g](x) =

∫
Ω

f(x− y)g(y)dy, Ω ⊆ R.

Here ue and ui denote the membrane potentials of excitatory and inhibitory elements,

respectively, at the spatial point x and time t. The region Ω is the spatial region occupied

by the neurons. The functions ωmn (m,n = e, i) model the coupling strengths in the

network, while Pm (m = e, i) are the firing rate functions modelled by sigmoidal functions

with parameterized maximum inclinations. The parameter τ is the relative inhibition time

while θe and θi are the threshold values for firing of the excitatory and the inhibitory

neurons, respectively. For the certain parameter regimes, evolution of perturbed constant
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states ui = ue = const result in different oscillatory patterns, see data X = (x0, . . . ,x100)

in Figure 4.18 and data Y = (y0, . . . ,y200) in Figure 4.25 and [28]. Here we test if the

DMD can reconstruct these stable oscillatory patterns.

4.2.1 Computing the DMD

For that end, since we are only interested on the slow decaying or growing eigenvalues, we

ignored all modes which eigenvalues with negative real values are further away from the

imaginary axis, regardless of the value of the scalar vj. That is, given the continuous time

eigenvalues ωj = αj + iβj, we select the modes which growth rate given by αj are closer to

(or greater than) zero.

For these computations, the reduced rank r was determined by the threshold I(r) <

0.999. We are selecting the eigenvalues with growth rate αj ≥ −0.01, and the weight

wj ≥ 0.1 using (4.1).

To this data, we added Gaussian white noise. This added noise only affects the meas-

urement but does not interact with the true dynamics of the system, that is, we assume

that the states xk take the form

x̂k = xk + nk,

where nk is a random noise vector, and the subscript k = 0, 1, . . . ,m corresponds to the

discrete time instant. We take each component of nk to be independent and normally

distributed with zero mean and a given variance, i.e., nk ∼ N (0, N).

In [8] it was shown that the computation of the DMD eigenvalues is biased by the

presence of sensor noise. In this same work, several methods are presented for debiasing

within the standard DMD framework. A different approach is also presented in [2].

In this current application case, however, we instead test the effect of using the time

delay technique in the noise affected data.

Data-set X

Figure 4.19 shows X̂ when N = diag(0.2).

Linear measurements of the states

We first run the DMD algorithm considering that the observables matrix is the linear

measurement of states g(xk) = xk.
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Figure 4.18: Data X

Figure 4.19: Data X̂ with added noise nk.

The resulting continuous time eigenvalue (ωk) map is in Figure 4.20(a). The dominant

eigenvalues are real valued and far from zero, thus denoting a fast decay. From this we can

immediately see that the method failed to capture the dynamics, since all states rapidly

decay to zero. For comparison, Figure 4.20(b) shows the eigenvalues obtained by the DMD

from the data X not affected by noise. Here, the eigenvalues are closer to the imaginary

axis, and we can also find complex conjugates with αj ≥ 0.05.

Although the obtained DMD model did not result in an accurate approximation for the

dynamical system either as t→ +∞, the crucial point is that the added noise produced a

very noticeable effect on the determination of the DMD eigenvalues. More on the effect of

sensor noise in the DMD can be read in [8].
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Figure 4.20: Eigenvalue map considering g(x) = x. In (a) the eigenvalues were estimated by

the DMD from the noisy data X̂. The eigenvalues which are closest to the imaginary axis are only

real valued. The dominant marked in blue, does not even satisfy the condition we set for the real

value, since ωX = −0.049. In (b) we see the dominating eigenvalues estimated by the DMD from

computing the noiseless data X, ω
X̂

= {−0.0097,−0.009± i0.0082,−0.0092± i2154}.

Embedded time delay

Next, we considered the observables snapshot matrix constructed from time-shifted copies

of the measurements X, as in (3.30) and set d = 19.

Figure 4.21(a) maps the DMD continuous time eigenvalues obtained from X̂. For

comparison, Figure 4.21(b) maps the DMD eigenvalues obtained from the data not affected

by noise. We see that the dominant eigenvalues in both cases, marked in blue, are very

similar.

Figure 4.22 displays the modes and eigenvalues extracted from X̂ by the DMD. As

in the previous section, we only plot one of the complex conjugate pairs, hence the two

plots to modes and eigenvalues (φj, λj) correspond to j = 1 and j = 3. The upper two

graphs show the time evolution of x(j, t) = vjϕj exp(ωjt), for each mode j. The left plot

corresponds to the excitatory neurons, and the right to the inhibitory neurons. The bottom

graphic plots the time dependent term exp(ωjt) of the linear model (3.3).

The sum of the 3 modes results in the approximation x̃(t), plotted in Figure 4.23. As

expected, the transient dynamics occurring from t0 until t ≈ 20 is not captured by the

model, given that we excluded all eigenvalues which growth rate αj < −0.01. However, a

stable pattern is shown in the approximated dynamics.

The nonzero real values of the eigenvalues indicates that, even if slow, there is a growth
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Figure 4.21: Continuous eigenvalue location with d = 19. In (a), the dominant eigenvalues,

estimated from X̂, ω
X̂

= {0.0011,−0.0031± i0.1699}, and in (b) the estimated from X, ωX =

{0.0008,−0.0033± i0.1726}

of the DMD mode 1 corresponding to ω1, and a decay of modes 2 and 3 corresponding to

ω2 and ω3, so that in the long run as t→∞, the accuracy of the approximation x̃ to the

exact solution tends to degrade.

For the complex conjugate pair of eigenvalues the phase θ = arctan(Im(ωj)/Re(ωj)) is

non-zero as well. In fact, by inspecting Figure 4.24(a), one verifies an oscillatory behavior

of the relative error εj curve. Moreover, comparing Figures 4.23 and 4.18, we can observe

a phase delay on the oscillations of the model generated solution. To test this hypothesis,

we added to the model a phase delay corresponding to θ1 = 0, θ2 = −1.5587, θ3 = 1.5587.

The linear model was now corrected to x̃(t) =
∑3

j=1 vjφj(x) exp(ωjt+ iθj).

Figure 4.24(a) plots the evolution of relative error ε when the approximation x̃ is

obtained with only 3 modes. In Figure 4.24(b) the evolution of the relative error εj corrected

with a phase delay θ. The results indicate that the phase θ is in fact one of the factors

that contributes to the relative error εk.

Data-set Y

Figure 4.26 plots the noise affected data Ŷ , when N = 0.1.

Once again, the observables used to approximate the Koopman eigenfunctions are based

on the time-delay technique. The number of time-shifted observables of Y was set to

d = 399.
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(a) Mode 1 (b) Mode 2

Figure 4.22: Plots of the time evolution of each of the DMD modes extracted from data X̂

(on top) and corresponding time evolution of the eigenvalue dependent term of the DMD (at

the bottom). (a) corresponds to the real valued eigenvalue ω1, and (b) to the complex valued ω3

equivalent to its complex conjugate ω2.

Figure 4.23: Solution x̂(t) generated by the DMD from the computation of data X̂.

After running the DMD algorithm on the data Ŷ , we reconstructed the continuous time

dependent approximation ỹ(t) and plotted its evolution in Figure 4.29. Figure 4.27 plots

the dominant DMD modes and dynamics.

Finally, Figure 4.30 plots the evolution of the relative error.

4.2.2 Comments and Conclusions

In this section, as we set the goals we proposed to achieve, the choices of parameters and

criteria focused on the growth rate of the eigenvalues estimated by the DMD. Choosing dif-
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Figure 4.24: Evolution in time of the relative error ε corresponding to the data-set X̂. The plot

in (b) corresponds to the linear model corrected with the phase delay θ, whereas (a) corresponds

to the linear model estimated directly from the DMD.

Figure 4.25: Data Y

ferent criteria to select dominant modes depends on what is the specific goal of the study

when analyzing a particular system. For example, a different goal could be identifying

specific oscillatory patterns in the system, which we could characterize by the frequency

of oscillation measured by the imaginary component of the eigenvalues. Since the focus

was only on the identification of the most dominating stationary periodic patterns and

spatiotemporal oscillations, the resulting linear model when only composed of the corres-

ponding modes and eigenvalues, was not adequate to be used as an accurate model of the

full-dimensional system.

Comparing the computation of the two data-sets X and Y , augmented with the time-
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Figure 4.26: Data Ŷ , with the added noise nk

(a) Mode 1 (b) Mode 2

Figure 4.27: Plots of the time evolution of each of the DMD modes extracted from data Ŷ (on top)

and corresponding time evolution of the eigenvalue dependent term of the DMD (at the bottom).

(a) corresponds to the real valued eigenvalue ω1, and (b) to the complex valued ω3 equivalent to

its complex conjugate ω2.

delayed components, we observed that a much larger number dY = 399 and data points

(total of 200), when compared to dX = 19 and 100 data points for the data-set X, was

needed before achieving a satisfactory result. If we recall the observations from the Van

der Pol equations example while using embedded time delay in Chapter 3, the number of

time-shifted observables d necessary to find an approximation solution increased the more

strongly nonlinear the Van der Pol equations were. It is plausible that this case follows the

same trend.

One other aspect we tested with these two cases was the effect of added Gaussian white
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Figure 4.28: Continuous eigenvalue location with d = 399, which dominant eigenvalues corres-

pond to ω
Ŷ
= {0.0, 0.0001± i0.6100}.

Figure 4.29: DMD
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Figure 4.30: Evolution in time of the relative error ε corresponding to the data-set Ŷ

noise to the measured data. The addition of time-shifted observables resulted in a solution

where the effect of noise was reduced, while successfully recovering the dominant modes

and eigenvalues characteristic of the dynamical system.
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Chapter 5

Discussion and Conclusions

5.1 Summary

Although the Dynamic Mode Decomposition is the feature method presented in this thesis,

it is the strong connection to the Koopman theory that allows to show that the DMD is

useful for characterizing nonlinear dynamics, and, furthermore, to develop strategies to

improve this characterization.

The DMD is a purely data-driven method that computes approximations to the Koop-

man eigenvalues, eigenfunctions and modes from a set of snapshots. It differs from the

POD method in that the latter is used essentially to determine an optimal set of ortho-

gonal basis functions, a new set coordinates in which space the solution of the problem

evolves. The DMD, however, besides providing the modes, not necessarily orthogonal, also

provides the associated eigenvalues, with which we are able to construct a time dependent

model of the system.

The fact that the DMD does not pose restrictions on the linearity of the dynamical

system, nor the knowledge of its governing equations, makes it possible to use in different

disciplines, such as in Fluid Mechanics or in Neuroscience. The choice of the applications

presented in Chapter 4 is a reflection of these points.

5.2 Results

The short examples included in Chapters 2 and 3 illustrated the different characteristics

related to the Koopman operator and the DMD method and to introduce strategies and
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techniques which we later used in the main two applications. Particularly, the embedded

time delay [3, 24, 27].

One tested feature of the DMD method was the effects on the accuracy by reducing

the order of the system. The criteria for the reduction was based on the energy threshold

expressed in (1.9). However, in the ocean model application the difference between choosing

a threshold of 99% and 99.9% was significant, suggesting that low-energy modes in this

system may have significant impact on the dynamics.

Throughout the examples and the applications presented in the thesis, the importance

of selecting the correct set of observables was evident. On our applications, the data

matrix of snapshots augmented with the copied time-shifted linear measurements of the

states, consistently showed the most accurate results. This came at a cost, however, which

was more obvious ocean model application, as the addition of time-shifted measurements

had the consequence of increasing the data matrix dimension. The computational cost of

running the DMD algorithm consequently increased as well. Moreover, to be able to use

this technique, we require the access to extra snapshots for the evolving system beyond

the time window we are studying.

In both applications, we were able to identify dominant spatiotemporal patterns and

temporal responses characteristic of the studied dynamical systems purely by processing

data. In the ocean model case, we captured a structure resembling theM2 tidal mode, and

in the neuron field, two main dominant modes.

The approximation of the Koopman modes and eigenvalues generated by the DMD

Algorithm 3 allowed us to construct a time depended linear model, which can potentially

output the dynamical system state at any point in time, including future-state predictions.

However, the results obtained for that end in the Bergen Ocean Model application were

not good. The fact that this particular system is characteristically subjected to external

time dependent forces that may change its equilibrium state, poses challenges that the

strategies we used in this thesis do not cover.

In the Neural field experiment, one aspect that showed interesting results was with

the DMD method combined with the embedded time delay technique was applied to data

affected by Gaussian white noise. Although there are methods developed to correct the

bias of the DMD in computing the eigenvalues when in presence of noise in the data in [8]

and [2], the embedded time delay technique did reduce these effects, and we were able to

recover the stable patterns that most characterized the dynamical system.
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5.3 Future work

Next we list some of the strategies and studies which would be interesting to pursue.

Singular value thresholding

The DMD algorithm is based on the SVD of the data. In all the examples we tested, the

criteria for the truncation of the singular values was based on (1.9). The importance of

low-energy modes is difficult to estimate, and the simple truncation with this criteria may

be not optimal.

There are other methods for determination of the singular values truncation threshold.

In [12] is proposed an optimal truncation of singular values in the case of a data matrix of

measurements that contain additive white noise.

Nonuniform Sampling

All the DMD applications we presented were based on a uniform step size sampled data.

The work in [4] developed compressive sampling strategies for computing DMD from heav-

ily sub-sampled data. These strategies may be useful to chose different sampling strategies

as well.

Taking the Neural field application as an example: to improve the capture of the

transient dynamics, a more dense distribution of measurements at the initial states of the

system, and more sparse as it evolves to a steady state, may potentially allow us to collect

richer data, while keeping a lower overall data storage. A Chebyshev polynomial to select

the sample points, for example, may be an adequate candidate for this problem.

Multi-resolution Dynamic Mode Decomposition

The multi-resolution DMD is a technique inspired on the idea of wavelets, this method is

structured as a recursive computation of DMD to remove low frequency features from a

given collection of snapshots. The recursive nature of the method, and the linear properties

of the DMD decomposition allows to apply DMD to progressively extract its modes to

shorter snapshot sampling windows. Refer to [26, 27] for more on this method.
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Extended and Kernel Methods

To expand on the possible alternative sets of observables to approximate the Koopman

operator, [26, 27] proposes techniques called Extended DMD and Kernel DMD. The core

idea is to choose a large and sufficiently diverse set of candidates with the expectation that

it will include enough features for an accurate reconstruction of the Koopman operator.

Chaotic systems

Capitalizing on the work in [24] on the embedded time delays, [3] presents a data-driven

decomposition of chaos as an intermittenly forced linear system.

Effect of noise

One result which may be interesting to pursue is the noise reduction on the data when

DMD was used with the data matrix augmented with the time delay vectors as observables.

Even if not a dedicated method for noise filtering, it is, nevertheless, a useful side-effect.





76

Bibliography

[1] Ali, A., Frøysa, H. G., Avlesen, H., and Alendal, G. (2016). Simulating spatial and

temporal varying co2 signals from sources at the seafloor to help designing risk-based

monitoring programs. Journal of Geophysical Research: Oceans, 121(1):745–757. 2, 46

[2] Askham, T. and Kutz, J. N. (2017). Variable projection methods for an optimized

dynamic mode decomposition. ArXiv e-prints. 62, 72

[3] Brunton, S., Brunton, B., L. Proctor, J., Kaiser, E., and Nathan Kutz, J. (2016). Chaos

as an intermittently forced linear system. Nature Communications, 8. 37, 72, 74

[4] Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2013). Compressive sampling and

dynamic mode decomposition. ArXiv e-prints. 73

[5] Budišić, M., Mohr, R., and Mezic, I. (2012). Applied koopmanism. Chaos (Woodbury,

N.Y.), 22:047510. 9, 11

[6] Chen, K. K., Tu, J. H., and Rowley, C. W. (2012). Variants of dynamic mode de-

composition: Boundary condition, koopman, and fourier analyses. Journal of Nonlinear

Science, 22(6):887–915. 9

[7] Davies, A. M. and Furnes, G. K. (1980). Observed and computed m2 tidal currents in

the north sea. Journal of Physical Oceanography, 10(2):237–257. 59

[8] Dawson, S. T. M., Hemati, M. S., Williams, M. O., and Rowley, C. W. (2016). Charac-

terizing and correcting for the effect of sensor noise in the dynamic mode decomposition.

Experiments in Fluids, 57(3):42. 62, 63, 72

[9] Du, J., Fang, F., Pain, C., Navon, I., Zhu, J., and Ham, D. (2013). Pod reduced-order

unstructured mesh modeling applied to 2d and 3d fluid flow. Computers and Math-



77

ematics with Applications, 65(3):362 – 379. Efficient Numerical Methods for Scientific

Applications.

[10] Evans, L. C. (1999). Partial differential equations and monge-kantorovich mass trans-

fer (surveypaper. In Current Developments in Mathematics, 1997, International Press.

5, 83

[11] Friedman, B. (1962). Principles and Techniques of Applied Mathematics. Dover. 81

[12] Gavish, M. and Donoho, D. L. (2014). The optimal hard threshold for singular values

is 4/
√

3. IEEE Transactions on Information Theory, 60(8):5040–5053. 73

[13] H. Tu, J., Rowley, C., Luchtenburg, D., Brunton, S., and Nathan Kutz, J. (2013).

On dynamic mode decomposition: Theory and applications. Journal of Computational

Dynamics, 1. 22, 23, 27, 28, 29, 32

[14] Koopman, B. O. (1931). Hamiltonian systems and transformation in hilbert space.

Proceedings of the National Academy of Sciences, 17(5):315–318. 9

[15] Ly, H. V. and Tran, H. T. (2002). Proper orthogonal decomposition for flow calcula-

tions and optimal control in a horizontal cvd reactor. Quarterly of Applied Mathematics,

60(4):631–656. 6

[16] Mezic, I. (2005). Spectral properties of dynamical systems, model reduction and

decompositions. Nonlinear Dynamics, 41(1):309–325. 13

[17] Mezic, I. (2017). Koopman operator spectrum and data analysis. 37

[18] Nathan Kutz, J., Brunton, S., Brunton, B., and L. Proctor, J. (2016). Dynamic Mode

Decomposition: Data-Driven Modeling of Complex Systems. 4, 9, 22, 81

[19] Nordgren, E. A. (1978). Composition operators on hilbert spaces. In Bachar, J. M.

and Hadwin, D. W., editors, Hilbert Space Operators, pages 37–63, Berlin, Heidelberg.

Springer Berlin Heidelberg. 9

[20] Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P., and Henningson, D. S. (2009).

Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127. 4, 9, 11,

13, 23, 24, 26



78

[21] Ruhe, A. (1984). Rational krylov sequence methods for eigenvalue computation. Lin-

ear Algebra and its Applications, 58:391 – 405. 24

[22] Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental

data. Journal of Fluid Mechanics, 656:5–28. 2, 24, 26

[23] Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. i - coherent

structures. ii - symmetries and transformations. iii - dynamics and scaling. 45. 4

[24] Takens, F. (2006). Detecting Strange Attractors in Turbulence. Lecture Notes in Math-

ematics, volume 898, pages 366–381. 29, 32, 72, 74

[25] Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM: Society for

Industrial and Applied Mathematics. 24, 26, 79, 81

[26] Williams, M., Rowley, C., and G. Kevrekidis, I. (2014). A kernel-based approach to

data-driven koopman spectral analysis. 73, 74

[27] Williams, M. O., Kevrekidis, I. G., and Rowley, C. W. (2015). A data–driven approx-

imation of the koopman operator: Extending dynamic mode decomposition. Journal of

Nonlinear Science, 25(6):1307–1346. 72, 73, 74

[28] Wyller, J., Blomquist, P., and Einevoll, G. T. (2007). Turing instability and pattern

formation in a two-population neuronal network model. Physica D: Nonlinear Phenom-

ena, 225(1):75 – 93. 2, 46, 61, 62



79

Appendix A

SVD

Definitions from [25].

A.1 Description and Definition

The Singular Value Decomposition (SVD) is a matrix factorization, applicable to both

complex and real matrices.

A = UΣV ∗, (A.1)

where the matrix A ∈ Cn×m has a decomposition in which U ∈ Cn×n is unitary, V ∈ Cm×m

is unitary, and Σ ∈ Rn×m is diagonal.

• U = {ui}, where ui are the columns defined as left singular vectors, with r linearly

independent and orthonormal vectors in space Cn;

• V = {vi}, where vi are the columns defined as right singular vectors, with r linearly

independent and orthonormal vectors in space Cm; and

• Σ = diag(σi), whose entries σi, defined as singular values are nonnegative and nonin-

creasing in their ordering, that is σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.

A.2 Existence and Uniqueness

Every matrix has a unique SVD, as proven in [25] in the following theorem:

Theorem A.2.1. Every matrix A ∈ Cm×n has a singular value decomposition (A.1).

Furthermore, the singular values {σi} are uniquely determined, and, if A is square and the
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σj are distinct, the left and right singular vectors {uj} and {vj} are uniquely determined

up to complex signs.

A.3 Matrix Properties

• The rank of A is r, the number of nonzero singular values.

• range(A) = {u1, . . . , ur} and null(A) = {vr+1, . . . , vn}.

• ‖A‖2 = σ1 and ‖A‖F =
√
σ2

1 + · · ·+ σ2
r

• The nonzero singular values of A are the square roots of the nonzero eigenvalues of

A∗A or AA∗.(These matrices have the same nonzero eigenvalues.)

• If A = A∗, then the singular values of A are the absolute values of the eigenvalues of

A.

• For A ∈ Cm×m, |det(A)| =
∏m

i=1 σi
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Appendix B

Eigenvalue Problem

Definitions from [11, 18, 25].

B.1 Definitions

1. Let the square matrix A ∈ Cm×m be a linear transformation on a subspace S of Cm.

A nonzero vector x ∈ Cm is an eigenvector of A and λ ∈ C is the corresponding

eigenvalue if

Ax = λx. (B.1)

The set of all eigenvalues of the matrix A is the spectrum of A;

2. The characteristic polynomial of A ∈ Cm×m is the polynomial of degree m defined as

pA(z) = det(zI − A). (B.2)

λ is an eigenvalue of A if and only if pA(λ) = 0.

3. Algebraic multiplicity of an eigenvalue λ of A is the multiplicity as a root of pA(z) =

(z − λ1)(z − λ2) . . . (z − λm);

If A ∈ Cm×m, then A has m eigenvalues, counted with algebraic multiplicity. In

particular, if the roots of pA are simple (algebraic multiplicity of 1), then A has m

distinct eigenvalues;

4. Similarity Transformations: If X is nonsingular, then A and X−1AX have the same

characteristic polynomial, eigenvalues, and algebraic multiplicities.
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5. Unitary Diagonalization: In the cases when matrix A ∈ Cm×m not only have m

linearly independent eigenvectors, but are also orthogonal, then A is unitarily diag-

onizable,i.e., there exists a unitary Q, such that

A = QΛQ∗; (B.3)

6. A hermitian matrix (A = A∗) is unitarily diagonizable, and its eigenvalues are real;

7. A matrix is unitarily diagonizable if and only if it is normal (A∗A = AA∗).

B.2 First order ODE

The analytical solution of a system of continuous first order linear differential equations

ẋ = Ax, (B.4)

is of the form,

x(t) = eAtx0 =
∑
j

qje
λjtq−1

j x0, (B.5)

where x0 is the initial condition for the vector x(t = 0), A ∈ Rn×n a square matrix, and λj

and qj the eigenvalues and eigenvectors of A.

Stability

Let the eigenvalue λ = a+ ib, then, eλt = eat [cos (bt) + i sin (bt)] ≤ eat.

As t→ +∞,

a < 0, eat < M (stable)

a > 0, eat → +∞ (unstable).

Discrete Case

The solution to

xk+1 = Ãxk, (B.6)

where Ã = eAt, is

xk = QΛ̃kQ−1x0. (B.7)

Stability

As k → +∞,

Λ̃ < 1, xk < M (stable)

Λ̃ > 1, xk → +∞ (unstable).
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Appendix C

Functional analysis

Definitions from [10].

C.1 Banach Spaces

Let X denote a linear space.

Definition: A mapping ‖·‖ : X → [0,∞) is a norm if

1. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ X,

2. ‖λu‖ = |λ| ‖u‖ ,∀u ∈ X,λ ∈ R,

3. ‖u‖ = 0 ⇐⇒ u = 0.

Definitions:

1. A sequence {uk}∞k=1 ⊂ X converges to u ∈ X, that is uk → u, if

lim
k→∞
‖uk − ul‖ = 0.

2. A sequence {uk}∞k=1 ⊂ X is called a a Cauchy sequence provided for each ε > 0 there

exists N > 0 such that

lim
k→∞
‖uk − ul‖ < ε ∀k, l ≥ N.

3. X is complete if each Cauchy sequence in X converges; that is, whenever {uk}∞k=1 is

a Cauchy sequence, there exists u ∈ X such that {uk}∞k=1 converges to u.

4. A Banach space X is a complete, normed linear space.
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C.2 Hilbert spaces

Let H be a real linear space.

Definition: A mapping 〈·, ·〉 : H×H → R is called an inner product if

1. 〈 u, v〉 = 〈 v, u〉 ∀u, v ∈ H,

2. the mapping u� 〈u, v〉 is linear for each v ∈ H,

3. 〈u, u〉 ≥ 0,∀u ∈ H,

4. 〈u, u〉 = 0 ⇐⇒ u = 0.

Definition: If 〈·, ·〉 is an inner product, the associated norm is

‖u‖ := 〈u, u〉1/2 , u ∈ H.

Definition: A Hilbert spaceH is a Banach space endowed with an inner product which

generates the norm.

For example, the space L2(Ω) is a Hilbert space, with

〈f, g〉 =

∫
Ω

fgdx.

Definitions:

1. Two elements u, v ∈ H are orthogonal if 〈u, v〉 = 0.

2. A countable basis {wk}∞k=1 ⊂ H is orthonormal if〈wk, wl〉 = 0, k 6= l

‖wk‖ = 1.

If u ∈ H and {wk}∞k=1 ⊂ H is an orthonormal basis, we can write

u =
∞∑
k=1

〈u,wk〉wk.

Definition: If S is a subspace of H, S⊥ = {u ∈ H| 〈u, v〉 = 0,∀v ∈ H} is the subspace

orthogonal to S.
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C.3 Bounded linear operators

Let X and Y be real Banach spaces.

Definitions:

1. A mapping A : X → Y is a linear operator provided

A[λu+ µv] = λAu+ µAv, ∀u, v ∈ X,λ, µ ∈ R.

2. The range of A is R(A) := {v ∈ Y |v = Au, for some u ∈ X} and the null space of A

is N (A) := {u ∈ X|Au = 0}.

Definition: A linear operator A : X → Y is bounded and continuous if

‖A‖ <∞.

Definitions:

1. If A : H → H is a bounded, linear operator, its adjoint A∗ : H → H satisfies

〈Au, v〉 = 〈u,A∗v〉 , ∀u, v ∈ H.

2. A is symmetric if A∗ = A.
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Appendix D

Code

D.1 Main functions

1 function [Phi lambda] = computeDMD(Data,r)

2 % Compute DMD - Code adapted from JKutz, S.Brunton, B.Brunton,

3 % and J.Proctor (Dynamic Mode Decomposition)

4 X = Data(:,1:end-1);

5 X2 = Data(:,2:end);

6 [U,S,V] = svd(X,’econ’);

7 % Compute DMD (Phi are eigenvectors)

8 U = U(:,1:r);

9 S = S(1:r,1:r);

10 V = V(:,1:r);

11 Atilde = U’*X2*V*pinv(S);

12 [W,eigs] = eig(Atilde);

13 Phi = X2*V*pinv(S)*W;

14 lambda = diag(eigs);

1 function r = reduced_form(Cs,tolerance)

2 % Determine minimum rank r, s.t. sum S(r)/sum S(n) >= tolerance

3 if nargin < 2

4 tolerance = .99;

5 end

6 S=svd(Cs);



87

7 denominator = sum (S.^2);

8 epson_E = 0;

9 r=0;

10 while(epson_E < tolerance)

11 r = r + 1;

12 epson_E = sum(S(1:r).^2)/denominator;

13 end

1 function y_dmd=time_series(Phi,lambda,z0,t)

2 % reconstruction of the dynamical system from eigenvalues (lambda)

3 % and eigenvectors (phi), with z0=Phi\x0, and t the vector time

4 % x(t)=Phi*exp(omega*t)*z0

5 dt=t(2)-t(1); % time step

6 % frequency in continuos space

7 omega=log(lambda)/dt;

8 r_ord=length(Phi(1,:));

9 % Reconstruction of time series from eigenpairs

10 time_dynamics=zeros(r_ord,length(t));

11 for iter=1:length(t)

12 time_dynamics(:,iter)=z0.*(exp(omega*t(iter)));

13 end

14 y_dmd=Phi*time_dynamics;

1 function error=relError(y_approx,y,t)

2 m=size(y,1);

3 n=length(t)

4 difference = real(y_approx-y);

5 error=[];

6 for iter = 1:length(t)

7 error(iter)=norm(difference(:,iter))/norm(y(:,iter));

8 end

1 function H=timeDelay(X,p)

2 % Construction of the Hankel matrix for the embedded time delay.
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3 % X is the snapshot data matrix, and p the number of time delays.

4 [n,m]=size(X);

5 H=[];

6 for j = 1:p

7 H = [H ; X(:,j:j-p+end)];

8 end

D.2 Code for Examples

1 %% Example 1

2 mu = -.2; lambda = -.5; % Parameters

3 t=0:0.001:1000; % Time

4 % initial conditions

5 x0 = [1.5; -1]

6

7 % numerical solution

8 [t,x]=ode45(@(t,x)[mu*x(1);lambda*(x(2)-x(1)^2)], t, x0);

9

10 % Koopman linear operator

11 y0=[x0; x0(1).^2]; % initial condition

12 A = [mu 0 0; 0 lambda -lambda; 0 0 2*mu];

13 [t,y] = ode45(@(t,y) A*y,tspan, y0); % Solution

14

15 % DMD

16 y0 = [x0; x0(1).^2]; % initial condition

17 yc = [x(:,1),x(:,2),x(:,1).^2];

18 r = reduced_form(yc);

19 [Phi,lambda] = computeDMD(y,r);

1 %% Example 2 - Logistic mapping

2 % r = [ <(r-1)/r oscillatory>,<4 attractors>,<chaotic>]

3 r=[3 3.56995 3.8];
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4 x(1:length(r),1) = 0.5 % Initial condition

5 Tf=35; % Final time

6 T=0:1:Tf; % Time

7 dt=T(2)-T(1);

8 % Constructing a matrix X with all different parameters ’r’

9 for iter=2:Tf+1

10 x(:,iter)=...

11 r’.*(x(:,iter-1).*(ones(length(r),1)-x(:,iter-1)));

12 end

13 mu=1; % Select logistic curve (position in vector r)

14

15 %% Koopman linear operator

16 mu_par=r(mu);

17 % Koopman operator truncated at x_7

18 K=diag([mu_par mu_par^2 mu_par^3 mu_par^4 mu_par^5 mu_par^6 mu_par

^7])+...

19 diag([-mu_par -2*mu_par^2 -3*mu_par^3 -4*mu_par^4 -5*mu_par^5 -6*

mu_par^6],1)+...

20 diag([0 mu_par^2 3*mu_par^3 6*mu_par^4 10*mu_par^5],2)+...

21 diag([0 0 mu_par^3 -4*mu_par^4],3);

22

23

24 % Construct the observables matrix

25 % g(x) = {x x^2 x^3 x^4 x^5 x^6 x^7 ...}

26 ord=10; % order of polynomial

27 g=zeros(ord,length(x(1,:)),length(r));

28 for iter=1:length(r)

29 g(1,:,iter)=x(iter,:);

30 for order=2:ord

31 g(1:order,:,iter)=...

32 [g(1:(order-1),:,iter);x(iter,:).^order];

33 end
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34 end

35 g0=g(:,1,mu); % Observables initial condition

36 %% DMD

37 r_ord = reduced_form(g(:,:,mu));

38 [Phi,lambda] = computeDMD(g(:,:,mu),r_ord);

39 z0=Phi\g0;

40 % reconstruct the linear model

41 y_dmd=time_series(Phi,lambda,z0,T);

1 % Example 3 - Van der Pol

2 mu = 2.5; % Parameter

3 t = 0:0.01:30; % time discretization

4 y0 = [0;4];% Initial condition

5 % Numerical solution - Reference

6 [t,y] = ode45(’rhs_vdPol’,t,y0,[],mu);

7

8 % Funtion for the rhs of vanderpol

9 function rhs = rhs_vdPol(t,x,dummy,mu)

10 rhs=[x(2) ; mu*(1-x(1)^2)*x(2)-x(1)];

11 %% DMD

12 % Construct the observables matrix (based on the

13 % determined koopman operator)

14 g=[]; % initializing observables

15 p=14; % order of polynomial

16 for iter=1:p

17 n=0;

18 for m=iter:-1:0

19 g=[g;y_1.^m.*y_2.^n];

20 n=n+1;

21 end

22 end

23 g1=g(:,1); % Initial condition

24 r_g = reduced_form(g);
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25 % determine eigenpairs from DMD

26 [Phi_g,lambda_g] = computeDMD(g,r_g);

27 z0_g = Phi_g\g1;

28 % reconstruct linear model

29 y_dmd_g =time_series(Phi_g,lambda_g,z0_g,t);

30

31 % Embedded time delay

32 p=100; % number of time delays

33 H=timeDelay(y’,p);

34 r = reduced_form(H,.999); % tolerance can be adjusted

35 [Phi,lambda] = computeDMD(H,r);

36 H1=H(:,1); % Initial condition

37 z0 = Phi\H1;

38 y_dmd =time_series(Phi,lambda,z0,t); % reconstruct linear model

1 % Example 4

2 %Burgers’ equation

3 %u_t +uu_x-eu_xx=0

4 L=20; n=512; % L is the length and n the number of discrete points

5 x=linspace(-L/2,L/2,n+1); x=x(1:n); % spatial discretization

6 k=fftshift((2*pi/L)*[-n/2:n/2-1].’); % fouries modes scaled from L

7 steps=20; % time discretization

8 t=linspace(0,2*pi,steps+1); dt=t(2)-t(1);

9 %Parameters

10 [X,T]=meshgrid(x,t);

11 epsilon=.1; % constant

12 % initial condition

13 u0=sech(x);

14 v0=exp(-(epsilon/2)*atan(sinh(x)));

15 % Solving Burgers equation with FFT

16 [t,u]=ode45(@(t,u)rhs_burgers(t,u,k,epsilon),t,u0);

17 % Solving Heat equation with FFT

18 [t,v]=ode45(@(t,v)rhs_heat(t,v,k,epsilon),t,v0);
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19

20 %% DMD

21 r = reduced_form(u,.999);

22 %Determine DMD eigenfunctions and eigenvalues

23 [Phi,lambda] = computeDMD(u’,r);

24 z0=Phi\u0.’;

25 % reconstruct the linear model

26 u_dmd=time_series(Phi,lambda,z0,t);

27

28 function du_dt = rhs_burgers(t,u,k,epsilon)

29 % function to determine rhs of Burgers equation using FFT

30 u_hat=fft(u);

31 du_hat=1i*k.*u_hat;

32 ddu_hat=-(k.^2).*u_hat;

33 du=ifft(du_hat);

34 ddu=ifft(ddu_hat);

35 du_dt= -u.*du+epsilon*ddu;

36 end

37 function dvdt=rhs_heat(t,v,k,epsilon)

38 % function to determine rhs of the heat equation using FFT

39 v_hat=fft(v);

40 ddv_hat=-(k.^2).*v_hat;

41 ddv=ifft(ddv_hat);

42 dvdt=epsilon*ddv;

43 end
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