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Abstract 
 

The classical match-mismatch hypothesis proposes that the timing between larval first 

feeding and food availability is an important driver of year-class strength. With climate 

change and the warming of the oceans, it is expected that the spring bloom in temperate 

waters will start earlier in the year, which may shift the timing of food availability for fish 

larvae, such as Calanus finmarchicus eggs and nauplii. However, decreased water clarity due 

to climate-driven run-off from terrestrial environments is hypothesised to have the opposite 

effect, delaying the spring bloom. Here, we present a mechanistic model of the propagation 

of C. finmarchicus eggs and nauplii together with dependent larval Gadus morhua growth, 

and include spring bloom timing, water clarity and visual predation mortality. The results 

suggest that decreased water clarity reduce visual predation on spawning Calanus, leading 

to increased egg and nauplii food for fish larvae. Increased food availability in addition to the 

reduced visual predation on cod larvae, may suggest that decreased water clarity increase 

larval survival at certain optimal spawning times. Due to the responses in larval fitness from 

decreased water clarity, we suggest that non-chlorophyll light attenuation is an important 

parameter to consider in future models of fish larvae. 
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1. Introduction 

There is no lack of attempts to explain the interannual variation in recruitment to a stock of 

fish (e.g. Litvak and Leggett, 1992, Houde, 1997, Durant et al., 2007). Johan Hjort’s (1914) 

“Critical period” hypothesis was paradigm defining, and became one of the dominant 

explanations of the recruitment variability for more than 75 years (Houde, 2008). Hjort’s 

critical period referred to the time when a fish larva has exhausted its yolk-sac reserves, and 

has to shift to external feeding, referred to as first-feeding. First-feeding larva is thought to 

be highly susceptible to starvation, and changes in planktonic food availability in this period 

was proposed as one of the most important drivers of variability in year-class strength 

(Durant et al., 2007). Expanding on Hjort’s ideas, Cushing (1990)  extended the critical period 

to cover a longer period of time, the development through larval life and up until 

metamorphosis, and argued that, in addition to the starvation threat of first-feeding larvae, 

poorly fed larvae grew more slowly, prolonging the period when they are highly vulnerable 

to predation. Cushing named his hypothesis the ‘match-mismatch hypothesis’ (MMH), and 

emphasized the importance of a temporal match between the peaks in abundance of fish 

larvae and their planktonic prey for recruitment success (fig. 1) (Cushing, 1990).  

 

Figure 1: A graphical representation of the match-mismatch hypothesis. The relative overlap between consumer 

abundance and resources can be a temporal match (light shading), resulting in high consumer population 

recruitment, or a mismatch (dark shading), with low consumer population recruitment. Reproduced from Kerby 

et al. (2012) 
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Empirical support for the MMH has been ambiguous, as it has been difficult to demonstrate 

it in the field (Leggett and Deblois, 1994). However, it can be argued that this has been the 

result of data limitations and the simplifications of complex trophic interactions in modelling 

attempts (Durant et al., 2007). Beaugrand et al. (2003) studied the recruitment variability of 

Atlantic cod, and suggested a mechanism, involving the MMH, by which variations in 

temperature affected larval cod survival by bottom-up control, due to rising temperatures 

changing the plankton ecosystem negatively. Their results supported the MMH, and showed 

that the survival of larval cod was dependent on three parameters of their prey: their mean 

size, seasonal timing, and abundance (Beaugrand et al., 2003).  

As Cushing (1990) suggested, a temporal match between larval and prey abundances is 

important, because it is expected that well-fed larvae grows faster and reaches the size 

where they undergo metamorphosis at a younger age, thus reducing the cumulative 

mortality rate due to predation during the larval stage, when mortality is known to especially 

high (Leggett and Deblois, 1994). However, experimental sampling suggests that cod larvae 

maintains a close-to-maximum growth rate even in circumstances where food availability is 

low (Folkvord, 2005), due to behavioural changes in the foraging strategy. This is highlighted 

in modelling efforts of optimal behaviour in larval cod, suggesting that it is difficult to 

establish a clear relationship between food availability and growth rate (Fiksen and 

Jørgensen, 2011). Growth rate is predicted to be upheld by a flexible foraging strategy, as 

low food availability leads to increased risk-taking behaviour. Other modelling efforts 

produced similar results (Fouzai et al., 2015), that larval growth rate showed little response 

to prey densities. Growth rate generally increased with temperature, but survival increased 

with both temperature and prey density (Fouzai et al., 2015). This suggests that food 

availability is a greater determinant for survival, than for growth rate. A reason for this is 

that larvae may be motivated to maintain a high feeding rate to support its maximum 

growth rate, because, while the instantaneous predation risk increases, it lowers the 

cumulative predator-induced mortality risk during the larval stage (Jørgensen et al., 2014).  

One of the most well studied stocks of fish is the Northeast Arctic (NEA) cod stock. It is the 

commercially most important fish stock of Norway, with an annual export value of around 6 

billion NOK (Statistisk Sentralbyrå, 2019). The stock is located in the Barents Sea, with an 

estimated total stock size of 2.9 million tonnes (2015) (Bakketeig et al., 2017). NEA cod is a 
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species that performs spawning migrations in the late winter or early spring, leaving their 

feeding grounds in the Barents Sea, travelling to Coastal Norway to spawn. The most 

important spawning grounds are located in Lofoten, Norway, but in recent years, a growing 

number of fish seems to shift their spawning location northwards (Bakketeig et al., 2017). 

This is not a new phenomenon, as the same pattern was observed in the 1930-1950, but the 

literature provides no conclusive evidence for the mechanisms behind such changes in 

spawning locations. For the period 1905 to 1976,  Sundby and Nakken (2008) suggested that 

it might be driven by variations in climate (e.g. higher temperatures) and is possibly caused 

by a north- and eastward shift in adult distribution on the feeding grounds, that might result 

in migration routes too far from the southernmost spawning grounds. Combined with higher 

fecundity and offspring survival due to higher temperature, a larger proportion of the new 

recruits settles in the northern and eastern parts of the Barents Sea. Contradictory to the 

results of Sundby and Nakken (2008), statistical analyses by Opdal and Jørgensen (2015) 

done for an extended time period going back to 1866, produced no significant relationship 

between spawning ground distribution and climate indicators (i.e. North Atlantic Oscillation 

index and ocean temperature from the Kola transect), but found that demography had a 

strong influence on spawning location. This was in line with earlier data (Opdal, 2010) and 

modelling studies (Opdal, 2010, Jørgensen et al., 2008) pointing towards an effect of fishing 

on spawning location. While the analysis by Opdal and Jørgensen (2015) suggested no direct 

effect of neither density dependence nor ocean temperature on spawning locations, a study 

by Langangen et al. (2019), found otherwise. They found, using a different, more recent 

dataset (2000-2016), that there was a strong correlation between temperature and 

spawning latitude.  

Additionally, there has been observed a temporal shift in cod phenology, as Pedersen (1984) 

demonstrated that during 1929-1982, the peak spawning time of NEA cod was delayed by 

two weeks. Pedersen (1984) argued that a declining mean spawning age due to 

overexploitation and industrial trawling was the driving force behind the change. This was 

rooted in the observation that larger and older individuals tended to arrive earlier at the 

spawning grounds that smaller younger fish. Thus, a reduction in the relative abundance of   

large fish due to fishing, would shift the median spawning time towards a later date.  
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Overexploitation of fish stocks have been shown to affects life history traits in a population, 

as it selects for maturation at an earlier age and smaller size (Olsen et al., 2004). However, 

the Theoretical Ecology Group of UiB  (Opdal, 2018) has scrutinized the same data as 

Pedersen, and extended the time series back to 1877, before the onset of industrial trawling, 

and to the present day. During this time series, the pattern is even more pronounced, as 

peak spawning time has been steadily delayed by about 40 days up until the 1980s, after 

which it has advanced again. The observation that the delay in spawning time preceded the 

onset of the industrial trawl fishery in the 1920 (Godø, 2003) may indicate that fisheries-

induced changes in demography is not the only driver for the phenological changes in the 

NEA cod stock, as first suggested by Pedersen (1984). It is also worth noting that such a delay 

is opposite of what is expected from climate warming, where events in spring are expected 

to occur earlier in the year, not later (Walther et al., 2002, Poloczanska et al., 2013). 

One possible explanation for the observed delay in in spawning could stem from a bottom-

up process, starting with the abiotic environment and propagating up through the trophic 

levels, eventually reaching the spawning cod. A possible starting point, could be the 

observation of the long-term freshening of Norwegian Coastal waters (1935-2007), in turn 

resulting in a coastal water darkening (Aksnes et al., 2009) due to increase in e.g. dissolved 

organic matter (DOM) associated with river run-off (Frigstad et al., 2013). Similar reduction 

in water clarity has also been observed through shoaling Secchi disk depth in the North Sea 

and Baltic Sea (Dupont and Aksnes, 2013). Intuitively, darker water increases light 

attenuation and leads to a shoaling of the euphotic zone, and thus limits the zone of 

plankton growth and may influence the timing of the phytoplankton bloom (Aksnes, 2015).  

Extending this line of reasoning, a shift in phytoplankton bloom may in turn influence the 

time at which overwintering Calanus finmarchicus, an important prey species for larval cod, 

ascend to the surface to spawn (Heath, 1999), further influencing when Calanus eggs and 

nauplii are available for first-feeding NEA cod larvae to eat. However, a phytoplankton 

bloom not only provides feeding opportunities for adult Calanus, but also influences water 

clarity and thereby predation risk from visual predators – both for Calanus and cod larvae.  

Thus, a decrease in water clarity associated with coastal water darkening (Aksnes et al., 

2009) can be expected to influence the feeding efficiency of a visual predator on Calanus and 
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cod larvae independently of season, while the spring bloom will only influence the visual 

range in a limited time period.  

The seasonal timing of prey availability is highly variable, and the spring peak in plankton 

production can vary interannually by more than a month (Brander et al., 2001). Due to the 

consensus that the critical period is important to recruitment success (Cushing, 1990), it is 

reasonable to assume that the timing of this period is under strong selective pressure. The 

peak spawning times of cod tend to be just prior to the onset of the spring phytoplankton 

bloom, and this suggests that the cod is adapted to some average plankton cycle (Brander et 

al., 2001).  

Thus, we have a system with multiple dynamics: (1) coastal darkening reduce water clarity 

which in turn will affect the visibility for predators and fish larvae; (2) coastal darkening may 

in turn cause a shift in spring bloom timing, changing the seasonal water clarity and the 

Calanus end date for overwintering, but also the seasonal visibility; (3) because daylight and 

temperatures are rapidly changing in spring, a shift in bloom timing will influence both 

zooplankton and larval growth (through temperature) and predation (through day lengths 

and light levels).     

In other words, with so many influencing factors, it is not obvious how this will play out in 

terms of larval fish survival. Without considering anything else, we expect a late spring 

bloom, when temperature is high and still increasing rapidly, to lead to higher reproduction 

rates for Calanus. In turn, this leads to higher prey availability for cod larvae, who will then 

be able to maintain high growth rates through less effort and increased metabolism, thus 

increasing their survival. However, as day lengths and light levels increases, how will the 

potentially intensified predation pressure from fish inhibit the supposedly beneficial 

consequences of a late bloom for cod larvae, either directly or indirectly through Calanus 

density control?  

To investigate this, we have developed a mechanistic model involving the copepod C. 

finmarchicus and larval cod. We model population dynamics of Calanus in relation to spring 

bloom timing, visual predation and water clarity, and let individual cod larvae hatch and start 

feeding in the environment at different times of the year. This enables us to investigate the 

survival expectancy of cod hatched at different dates, and thus evaluate how the mentioned 
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environmental factors affect optimal hatching times through the season. In addition, we can 

also study the effect of a shifting bloom, and try to tear apart the importance of bloom 

timing in relation to temperature and surface light with regards to optimal time for larval 

first-feeding. In short, we found that decreased water clarity and a delay in the spring bloom 

and Calanus production favours late hatchers slightly.  

 

2. Model description 

The model description follows the standard protocol for individual-based models 

recommended by Grimm et al. (2006). 

2.1 Purpose 

The model was developed to investigate how timing of hatching affects the fitness of larval 

cod under varying environmental conditions, with a special emphasis on the optical 

properties of the water. We define larval fitness as the survival probability to 15 mm length. 

The model follows the propagation of Calanus eggs and nauplii and the successive growth 

and survival of cod larvae, in relation to spring bloom timing, water clarity, and visual 

predators. We expect water clarity in Norwegian Coastal waters to decrease due to climate 

change, and the non-chlorophyll light attenuation coefficient, Knon, is an important 

parameter in this model. Increased Knon may have many implications for the trophic 

interactions along the Norwegian Coast, such as a delayed phytoplankton bloom, changes in 

abundance and mortality of zooplankton, and reduced foraging efficiency of fish larvae. 

Thus, the purpose of this modelling effort is to clarify how Knon affects the fitness of cod 

larvae, especially related to timing between hatching date and peaks in prey availability. The 

simulation occurs at a latitude 68° N, to mimic temperature and light conditions around 

Lofoten, Norway, which is the historically most important spawning location for NEA cod. 

The results of this modelling effort might be helpful in furthering our predictive abilities 

when it comes to fish recruitment in a changing environment.  
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2.2 State variables and scales 

Larval cod are modelled as individuals, with the dynamic state variables age (days), length 

(m), and weight (mg carbon). Calanus, on the other hand, are structured into different 

developmental stages, eggs, small nauplii (stage N1-4), large nauplii (stage N5-6), and adult 

copepods (stage C6). Egg production by adult Calanus females, weigth and the development 

times for all Calanus stages are temperature-dependent. The habitat is a cubic meter at 20 m 

depth, characterized by light level (fig. 2A), chlorophyll a concentration and temperature (fig. 

2C).  

2.3 Process overview and scheduling 

Each day of the simulation, the following processes place: larval feeding, growth, mortality, 

and Calanus egg production, development, and mortality. Larval growth is directly 

dependent on the feeding rate, which is regulated by light levels in the environment and the 

presence of appropriately sized prey. Fish larvae that live in an environment without food 

will expend mass through respiration. Thus, if they do not encounter and catch enough food 

to compensate for their respiration costs over a prolonged period, their expected survival 

will be set to zero. Prey is produced by adult Calanus, which are present in the simulation for 

a limited time, dependent on their seed duration (the period where they enter the 

simulation) and mortality. Calanus egg production and the development times of the 

different naupli stages are temperature-dependent, but eggs are produced only after the 

phytoplankton bloom has started. In this model, temperature is obtained from 

measurement-station along the Norwegian Coast, extrapolated between the measuring 

points and idealized to fit the simulation (fig. 2C). The mortality regimes consists of constant 

daily background mortality rates for Calanus, a size-dependent background mortality rate for 

fish larvae, and predation-induced mortality for adult Calanus and fish larvae. The predation-

induced mortality is regulated by the density of visual predators and their response to the 

light conditions in the environment.  
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Figure 2: Surface irradiance at mid-day (A), daylengths (B), idealized temperature (C, left x-axis) and chlorophyll 

a concentration in three different modelling scenarios (C, right x-axis) throughout the simulation periods.  

 

2.3 Initialization 

Individual larval cod are introduced in the model at age 1 day with a length of 5 mm, every 

day from day 1 through day 200. Larvae are modelled to have a maximum age of 80 days, to 

avoid artificial age bounds, thus the simulation lasts for a total of 280 days. Mature, female 

Calanus enters in cohorts of 10 individuals per day, from the same day that the 

phytoplankton bloom starts (fig. 2C), and the following 30 days. The spring phytoplankton 

bloom is modelled as a normal distribution function, and three scenarios are simulated (fig. 

2C). All the initial values are based on data from the literature.  
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2.4 Submodels 

Larval feeding process 

As fish larvae are visual foragers (i.e. detects prey by sight), its feeding success is dependent 

on the rate of which it encounters and detects prey, and its capture success. Detailed models 

of larval feeding have been developed and applied in earlier modelling efforts (Fiksen and 

Mackenzie, 2002, Kristiansen et al., 2007, Fiksen and Jørgensen, 2011). Based on those, this 

model defines larval feeding, E, as the mass it ingests per time unit (mg carbon s-1), 

represented by the equation:  

𝐸 =
𝐶$𝛽&𝑛$𝑀$

1 + 𝛽&𝑛$
(1) 

where Cp = 0.2, and represents the prey capture probability of the larvae (Fiksen and 

Mackenzie, 2002), np is the abundance of available prey (# m-3, table 1), Mp is the mean prey 

carbon weight (mg carbon, Eq.14). Larval prey are Calanus eggs and nauplii, whose 

temperature-dependent carbon weights are the product of functions explained later 

(subsection “Calanus abundance”, eq. 11, 12, 13). The clearance rate, βl, (m3s-1), is the 

parameter that varies with the abiotic environment. It is modelled as: 

𝛽& = 𝑣𝜋𝑅6𝑢 (2) 

Here, v represents the shape of the larva’s visual field and is equal to 0.5, due to the 

assumption that it can only detect prey by looking up or to the sides. The larva’s swimming 

velocity, u, are equal to one body length per second.  

The visual range, R (fig. 4), is a key variable of the clearance rate. It is driven by a complex 

combination between the physical properties of the environment and physiological and 

morphological characteristics of both the fish larva and its prey. The prospect of a fish larva 

spotting a zooplankton prey is dependent on: (i) the prey’s body size, also referred to as the 

image area of the prey (Ap), and its contrast against the background (z); (ii) the eye 

sensitivity, which scales with the relationship between body size and prey size (Fiksen and 

Mackenzie, 2002); (iii) and the ambient light levels (Aksnes and Utne, 1997) (see table 1 for 

parameter values). Ambient light levels in the environment of the simulation (20 m depth) is 

reliant on the level of light attenuation, and the current model distinguishes between light 
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attenuation from phytoplankton, and attenuation from abiotic factors, such as dissolved 

organic matter, with the coefficient Knon (Woźniak et al., 2003).  

 

Figure 3: Visual range (m) of cod larvae of small (5 mm), medium (10 mm), and large (15 mm) size, as a function 

of Knon, non-chlorophyll light attenuation. The graphical representation is at midday (h=12) day 100 of the 

simulation, when chlorophyll concentration is at its peak.  

 

Larval growth rate 

Experimental results by Finn et al. (2002) indicated that the respiration rate of larval cod 

varies with body mass in dry weight, w (mg), and temperature, T (°C). From Finn et al. 

(2002), the daily respiration r (mg carbon individual-1 day-1) is expressed as:  

𝑟 = 2.38 ∗ 10?@𝑤B.C	𝑒B.BFFG	𝑠	𝑑𝑤J (3) 

 

where dwc is a dry weight-to-carbon conversion constant (table 1), equal to 0.4, as 

approximately 40% of a larva’s dry weight is made up of carbon (Harris et al., 1986). The 

constant s represents seconds in a day, converting the respiration to a daily rate. This 
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respiration rate is applied in cases where growth is food-limited. Under such conditions, the 

daily growth rate, DGR (mg carbon day-1), is represented by the equation  

𝐷𝐺𝑅(𝑤, 𝑇) = 𝑎O𝐸 − 𝑑𝑤J𝑟 (4) 

 

where af is assimilation efficiency, equal to 0.75, to simulate energy losses through 

behavioural and metabolic processes not related to growth (Kristiansen et al., 2007).  

When food is abundant, and the larva is able to capture and ingest more food than it can 

assimilate, the growth rate is temperature-, and size-limited. Through extensive laboratory 

experiments, Otterlei et al. (1999) and Folkvord (2005) found the specific growth rate (% day-

1) under conditions with an excess of available food to be:  

𝑆𝐺𝑅(𝑤, 𝑇) = 𝑎 − 𝑏 ln(𝑤) − 𝑐 ln(𝑤)6 + 𝑑 ln(𝑤)U (5) 

 

SGR is the specific growth rate in percentage per day, expressed as a function of larval dry 

weight, w (mg), and temperature, T (°C) , and a = 1.2 + 1.8T, b = 0.078T, c = 0.0946T, and d = 

0.0105T. 

 

Larval mortality 

This model includes the impact of visual predators on the survival of the fish larvae. These 

predators are typically fish, and their encounter rate with the larvae (mf, encounters s-1) is 

expressed as  

𝑚O = 𝛽O	𝑑O (6) 

 

where β	f is the clearance rate for a fish predator (m3 s-1), and df the density of fish predators 

(# m-3). We assume that the fish predators have the same probability of appearing anywhere 

in the water column, and, since the predators have a higher swimming velocity than the 

larvae, is able to catch a larva it encounters with certainty. The natural daily mortality of 

pelagic fish larvae (mbg, day-1) can be expressed as (Mcgurk, 1986):   
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𝑚YZ = 2.2𝑥10?\	(𝑖	𝑤)?B.^ (7) 

 

Note that Mcgurk (1986) expression unit is dry weight in grams, therefore the conversion of 

w to mg by the constant i (1x10-3). The product of eq. 7 is multiplied by a factor of 0.5 and 

added to the product of eq. 6, to give us the daily mortality rate of larval cod, without 

marginalizing the impact from fish predators.   

 

Calanus abundance 

Acting as the food source for larval cod, C. finmarchicus are modelled into the environment 

to replicate and simulate abundances observed in the real environment (Fiksen and Carlotti, 

1998). The model does not include any feedback mechanics from the fish larva, i.e. larval 

feeding does not reduce the number of copepods and nauplii. However, as with the fish 

larvae, adult Calanus are also susceptible to predation from visual feeders. Their mortality 

rate from visual feeders (mC6, encounter Calanus-1 s-1) are represented as Holling disc-

equation parameterized for C6-stage Calanus: 

𝑚`a =
𝛽O𝑑O

1 + 𝛽O𝛶𝑑`a
(8) 

 

where βf is the encounter rate of the fish predator (table 1), ϒ is the handling time of prey (s) 

by the fish predator (table 1), and dC6 is Calanus abundance. This equation yields the 

mortality rate per second. Eiane et al. (2002) found that observed daily mortality rate in 

environments dominated by visual feeders tend to be about 0.008 for all developmental 

stages, but noted that this might be an overestimation with regards to adult copepods. Thus, 

in this model, a background mortality rate of the adult Calanus equal to 0.035 (C6bg, table 1), 

to account for the dynamic mortality rate from eq. 8. 

The fish larvae do not feed on the adult Calanus, but their offspring. Fiksen and Carlotti 

(1998) created a model of optimal life history in C. finmarchicus, and functions for an adult 

copepod’s temperature-dependent reproduction is applied in the current model, 
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represented as reproduction 𝐵`a (number of eggs laid per female, as a function of 

temperature, T):  

𝐵`a = 𝑔	𝑝^G (9) 

 

where g = 4.8 (scaling factor) and the temperature coefficient p5 = 1.096 (table 1). Thus, the 

population dynamics of eggs and nauplii are simple. They are produced by adults, and 

develops and moults into different naupli stages. The model separates the different pre-

mature Calanus stages into two naupliar groups, containing small (N1-N4 stage) and large 

(N5-N6) nauplii, and a copepodite stage (C1), at which they no longer act as larval prey and 

leaves the simulation. The development times, D (days), between the stages are represented 

as a function of temperature, retrieved from rearing experiments performed by Campbell et 

al. (2001):  

𝐷 = 𝜎	(	𝑇 + 9.11	)h (10) 

 

where σ and q are constants (table 1). Each development stage were fit by data matching 

the time from the midpoint of the egg-laying period to the time where 50% of the copepods 

had reached a given stage, such that constant σN1 = 595 for the development time from egg 

to stage NI, and σN5 = 3710 to stage NV. The constant q = -2.5. Both eggs and nauplii are 

modelled to have a daily mortality rate of 0.08, in accordance to findings by Eiane et al. 

(2002).  

Abundance of eggs (negg), N1-4 (nN1) and N5-6 (nN5) nauplii are retrieved through adult 

calanus abundance (nC6) and eq. 9 and 10. The weight of Calanus eggs and nauplii are the 

product of temperature dependent functions from Campbell et al. (2001). For eggs, the 

weight (mg carbon) is: 

𝑤iZZ = jℎiZZ	𝑇 + 𝑗iZZm	𝑖 (11) 

 

For stages N1-N4 nauplii: 

𝑤no = (ℎno	𝑇 + 𝑗no)	𝑖 (12) 
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For stages N5-N6 nauplii:  

𝑤n^ = (ℎn^	𝑇 + 𝑗n^)	𝑖 (13) 

Note that the products are multiplied with i (1x10-3, table) to convert grams to mg. Thus, the 

mean weight of prey (Mp, mg carbon) can be calculated using eq. 11-13 and the egg and 

nauplii abundances:  

𝑀$ =
𝑛iZZ	𝑤iZZ + 𝑛no	𝑤no + 𝑛n^	𝑤n^

𝑛$
(14) 

where np is the total prey abundance (table 1). 

Figure 4 illustrates the population dynamics of Calanus in a scenario where the 

phytoplankton bloom, and thus Calanus introduction, starts at day 40, for three different 

Knon values (0.05; 0.15; 0.3 m-1). With high light attenuation, i.e. Knon=0.3 m-1, Calanus 

survival increases, resulting in greater abundance. Most notably, they remain in the 

environment longer, prolonging the time when food is available for cod larvae. 

 

Figure 4: Population dynamics of Calanus under standard conditions, where adult Calanus are introduced at day 

40. Colored lines denotes different values of Knon, and shows that increased Knon leads to higher survival for 

Calanus. 
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2.5 Simulation scenarios 

We run the model for three scenarios related to the timing of the phytoplankton bloom, and 

each with three different Knon values (0.05; 0.15; 0.3 m-1). The standard scenario is when the 

bloom starts at day 40 and peaks at day 100. For the two other scenarios, we temporally 

shift the bloom 20 days in either direction. In all scenarios, Calanus introduction is linked to 

the start of the phytoplankton bloom. In addition, we also perform a sensitivity analysis by 

running the same simulation experiments with constant temperature, increased food 

densities and shallower habitat depth, to investigate whether the same trends as in the 

regular scenarios unfolds, and how much of an effect these environmental factors have on 

larval fitness. We did this by manipulating a select variable before running the same 

scenarios again with: (1) constant seasonal temperature of 4.7° C; (2) a tenfold increase in 

prey density, by multiplying the egg production rate of Calanus by a factor of 10; (3) a 

shallower habitat, at 15 meters depth instead of 20 meters. 



22 
 

Table 1: List of parameters, variables, units and values. 

Symbol Variable or parameter Unit Value 

Ap	 Image area of prey m-2 1.5x10-8 

af	 Assimilation efficiency - 0.75 

a	 Specific growth rate (SGR) parameter - 1.2 + 1.8T 

b	 Specific growth rate (SGR) parameter - 0.078T 

β	 Clearance rate m3 s-1 Eq. (2) 

BC6	 Egg production rate of C6-Calanus Eggs C6-Calanus-1 day-1 Eq. (9) 

Cp	 Prey capture probability of larva - 0.2 

c	 Specific growth rate (SGR) parameter - 0.0946T 

D	 Development times for Calanus eggs and 

nauplii 

Day Eq. (10) 

DGR	 Daily growth rate of fish larva mg carbon day-1 Eq. (4) 

d	 Specific growth rate (SGR) parameter - 0.0105T 

dC6	 Density of C6-Calanus # m-3 “Initialization” 

df	 Density of fish predator # m-3 1.0x10-4 

dp	 Density of food mg carbon m-3 np * Mp 

dwc	 Conversion constant (dry weight to carbon 

weight)  

mg carbon mg-1 dry-

weight-1 

0.4 

E	 Larval feeding mg carbon s-1 Eq. (1) 

g	 Scaling factor, Calanus reproduction - 4.8 

hegg	 Constant, temperature dependent carbon 

weight, Calanus egg (Eq.11) 

- -0.00255 

hN1	 Constant, temperature dependent carbon 

weight, Calanus N1-4 nauplii (Eq.12) 

- 9.46x10-4 

hN5	 Constant, temperature dependent carbon 

weight, Calanus N5-6 nauplii (Eq.13) 

- -0.0117 

jegg	 Constant, temperature dependent carbon 

weight, Calanus egg (Eq.11) 

- 0.261 

j	N1	 Constant, temperature dependent carbon 

weight, Calanus N1-4 nauplii (Eq.12) 

- 0.226 

j	N5	 Constant, temperature dependent carbon 

weight, Calanus N5-6 nauplii (Eq.13) 

- 1.825 

Mp	 Mean weight of prey mg carbon Eq.(14) 
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Table 1 (continued) 

mC6 C6 mortality rate from fish predators Encounter Calanus-1 s-1 Eq. (8) 

C6bg	 C6 background mortality Day-1 0.035 

mf Larval mortality from fish predators Encounter s-1 Eq. (6) 

mbg Larval background mortality Day-1 Eq. (7) 

negg	 Abundance of Calanus eggs # m-3 Eq.(9)(10) 

nN1	 Abundance of N1-4 nauplii # m-3 Eq.(9)(10) 

nN5	 Abundance of N5-6 nauplii # m-3 Eq.(9)(10) 

np Total prey abundance # m-3 negg * nN1 * 

nN5 

Knon Non-chlorophyll light attenuation m-1 0.05; 0.15; 

0,3 

p5 Temperature coefficient of Calanus 

development time 

- 1.096 

σN1 Constant, egg development time - 595 

σN5 Constant, Calanus development time - 3710 

q Constant, Calanus development time - -2.5 

R Visual detection range  m  Fig. 4 

r Respiration rate of fish larva mg carbon ind.-1 day-1 Eq. (3) 

SGR Specific growth rate of fish larva % of body weight day-1 Eq. (5) 

s	 Seconds in a day s day-1 86400 

v Visual field Proportion of 360° 0.5 

u Swimming velocity Body length s-1 1 

w Larval dry weight mg Eq.(3) 

wegg	 Calanus egg carbon weight mg carbon Eq.(11) 

wN1	 Calanus N1-4 naupli carbon weight mg carbon Eq.(12) 

wN5	 Calanus N5-6 naupli carbon weight mg carbon Eq.(13) 

ϒ Prey handling time s 2 

z Prey contrast against the background - 0.3 

i	 Constant, converting g to mg - 1x10-3 
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3. Results 
 

3.1 Optimal hatching times in relation to water clarity and timing of 

phytoplankton bloom and prey availability 

In the first scenario (fig. 5A), when the start of the phytoplankton bloom and the 

introduction of Calanus was day 20, the optimal hatching times was between day 30 and 60, 

with the peak date being about 30 days before the peak in prey availability (shaded areas, 

fig. 5). Such an early bloom favoured larvae living in conditions with intermediate water 

clarity (Knon = 0.15 m-1), as they experienced the highest fitness (maximum recorded fitness = 

2.5x10-4). In the second scenario, where the bloom started at day 40, the optimal hatching 

times were delayed by about 20 days and narrowed by a small margin (fig. 5B). Still, the 

larvae in a Knon = 0.15 m-1 environment experienced highest fitness, but fitness values 

dropped to about one fifth of what was recorded in the first scenario. A further delay in the 

phytoplankton bloom (starting day 60, fig. 5C) saw a similar delay of optimal hatching times, 

but benefited late hatchers in waters with a Knon value of 0.3. The results uncovered a trend 

where, as the phytoplankton bloom and peaks in prey availability was delayed, late hatchers 

in high Knon waters experienced increased fitness. The trend was even more pronounced as 

the bloom was delayed further. 

3.2 Simulation experiments 

Temperature 

Temperature is rapidly changing through the simulation period (fig. 2C), especially in the 

period when the phytoplankton bloom starts. To investigate the effect of temperature, we 

applied a constant seasonal temperature of 4.7° C. The results predicted that larval fitness 

and optimal hatching times were not sensitive to changes in temperature, as the same 

pattern appeared (see Appendix A, fig. A1) as in the standard scenarios. This suggests that 

the seasonal change in temperature (e.g. increased temperature experienced by late 

hatchers in a late bloom scenario) does not explain the difference in fitness between the 

scenarios.  
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Prey density 

To test the effect of prey density on larval fitness, we multiplied the egg production rate by 

adult Calanus by a factor of 10. The fitness patterns remained the same for larvae in waters 

with a Knon value of 0.05. When Knon was 0.15, the larvae experienced a slight increase in 

fitness and the viable hatching window was extended by around 30 days. With Knon = 0.3, 

larval fitness increased greatly, and remained high through all bloom timing experiments, in 

addition to a large extension on optimal hatching times (a viable hatching window of almost 

three months). With a late bloom, they experienced more than a tenfold increase in fitness 

compared to Figure 5C (see Appendix A, fig. A2). As such, food availability seems to be a 

limiting factor for larval growth in waters with medium to low clarity, as the light conditions 

may inhibit the foraging efficiency of the larvae. 

Habitat depth 

When we adjust the habitat depth to 15 meters, it mainly affects the light levels, due to less 

cumulated beam attenuation through the water masses. A shallower depth led to drastic 

changes in fitness for the larvae (see Appendix A, fig. A3). Similar to the normal scenarios 

(fig. 5, left panels), larval fitness in environments with low and medium Knon, was predicted 

to decrease as the bloom was delayed, while recording fitness values much lower than in the 

normal scenarios. For larvae living in high Knon-environments, the same trend with a 

decrease in fitness as the bloom was delayed, was observed. However, compared to the 

normal scenarios, they experienced a drastic increase in fitness. In the normal simulations 

with an early and medium bloom (fig. 5A, B), no larvae in a high Knon-environment was 

expected to either survive or grow to the targeted 15 mm of length. When the habitat was 

set to 15 m, they reached fitness values of 4.5x10-4 (early bloom, optimal hatching day = 40) 

and 1.2x10-4 (medium bloom, optimal hatching day = 60). It is also important to note that 

this increase in fitness was predicted even though food availability was lower compared to 

the normal simulations. However, in a late bloom scenario, food density at this depth was so 

low that the larvae obtained slightly lower fitness than in the scenario plotted in Figure 5C. 

This, together with the results from the prey density analysis, isolates light conditions as a 

particularly important variable for larval growth and fitness.
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Figure 5: Fitness of hatching times through seasons when the phytoplankton bloom and Calanus production starts at day 20 
(A), 40 (B), and 60 (C). Simulations were run for three different Knon values (0.05; 0.15; 0.3 m-1). Optimal hatching times are 
dependent on prey density. When the plankton starts early, larvae living in environments with a Knon value of 0.15 m-1(light 
blue) obtain the highest fitness. A delayed bloom(C) benefits larvae living in conditions with high light attenuation (Knon=0.3 
m-1, green). Shaded areas represent prey density (mg carbon m-3) for the different Knon-scenarios.
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4. Discussion 
 

Modelling ecosystem dynamics is a challenging topic, as it is difficult to replicate nature’s 

complex trophic interactions in a simple and precise way. In this study, we tried to tear apart 

some of the factors we believe affects fish growth and survival, specifically related to the 

observed delay in spawning times of the NEA cod. To do this, we applied a mechanistic 

model of the zooplankton Calanus finmarchicus population dynamics and the dependent 

growth and survival of larval cod, in relation to spring bloom timing, water clarity and visual 

predation mortality. We sought to isolate the environmental factors from each other, to 

investigate to what extent each of them affects the optimal hatching times of cod through 

the season. Though C. finmarchicus exhibits great asynchrony in the timing of their 

overwintering wake up (Heath, 1999), we assumed it to be linked to the onset of the spring 

bloom. We found that as the spring bloom was delayed, the optimal hatching times for cod 

was delayed as well. A late bloom reduced the fitness (survival probability to 15 mm length) 

of larvae when light attenuation was low and medium, while it benefited larvae living in 

waters with high light attenuation. A simulation experiment where we set a constant 

seasonal temperature did not result in a different fitness pattern, suggesting that the change 

in larval fitness due to changing bloom timing is not caused by changing temperature (i.e. 

increasing temperature during a late bloom). However, when manipulating prey densities to 

become 10 times the normal value, we observed changes in larval fitness in waters with 

medium and high Knon, with larvae in the latter environment experiencing a drastic increase 

in fitness. Coupled with the results from the experiment where the habitat was set to 15 m, 

this points to the seasonal light conditions as a very important variable to larval success. It 

seems to be particulary important with regards to foraging efficiency. This is highlighted by 

the model result that, in a late bloom scenario with high light attenuation, larval fitness was 

lower at 15 m depth than at 20 m depth, partly due to lower prey densities. In these 

scenarios, larval growth rate may be reduced to such a large extent that they never reach 

the targeted length within a reasonable time period. 
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All things considered, the model produced a trend that the fitness of hatching times were 

linked to peaks in prey density, and a delayed bloom favoured larvae in darker waters, 

compared to waters with a lower Knon value. In the introduction, we hypothesized coastal 

water darkening to play a role in the temporal shift in NEA cod phenology. We proposed a 

bottom-up mechanism, by which darker waters may lead to a shift in the timing of the spring 

bloom, in turn changing the timing of when zooplankton end their overwintering slumber. 

Additionally, the spring bloom affects the level of light attenuation, and combined with 

darker waters reduces the visibility for predators and fish larvae. Thus, we could expect 

higher abundances of zooplankton prey for the fish larvae, due to higher temperatures and 

less predation. While the reduced visibility could be expected to reduce the foraging 

efficiency of the fish larvae, the combination of increased prey abundance and reduced 

predation pressure could possibly be beneficial for the survival of the larvae. The model did 

produce results indicating greater Calanus abundances when light attenuation was high. At 

the same time, the results suggested that larvae were reliant on quite high food densities to 

have a realistic chance to survive. The level of non-chlorophyll light attenuation can be highly 

variable, and the modelled value of 0.3 m-1 might be high compared to what we can expect 

in Norwegian Coastal Waters. Aksnes (2015) developed an empirical model where he, using 

salinity as a proxy, estimated Norwegian Coastal Water to have an averaged Knon value of 

0.185 m-1. When we look at the results in scenarios with a Knon of 0.15 (fig. 5, light blue), they 

suggest a trend of decreasing fitness as the phytoplankton bloom is delayed. Thus, there 

might be some factors that are unaccounted for in our model, making it difficult to evaluate 

if our hypothesis is supported.  

The modelled fitness values for the most viable hatching times fits well within the range 

predicted by previous models (Fiksen and Jørgensen, 2011, Fouzai et al., 2015), and the size-

dependet natural mortality expected for fish larvae (Mcgurk, 1986). However, multiple 

environmental factors are changing rapidly through the season, especially for the modelled 

time period. There are few constant variables, and this model proved to be sensitive to 

changes in prey density and habitat depth. This sensitivity underlines the difficulty in 

creating a realistic digital environment, as natural fluctuations and interseasonal variations 

can have a great impact on larval success. Meanwhile, the simplistic nature of the model 

works well to evaluate the impact specific variables has on larval survival. For instance, the 
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weak response to changes in water temperature may suggest that the differences in fitness 

and optimal hatching times between the scenarios cannot be attributed to the seasonal 

variability in temperature during the duration of the spring bloom. As for Calanus, their 

development times and egg production rate are temperature-specific, but the model results 

did not imply an effect of changing temperature on their abundance. In line with the 

reasoning presented in the introduction, that timing of spawning is under strong selective 

pressure and linked to peaks in food availability, we can argue that increasing temperature 

later in the season is not the main driver behind the observed temporal shift in cod 

phenology. 

Modelling behaviour was beyond the scope of this project, but other models have shown 

that larval survival can be greatly influenced by its behavioural compensations in response to 

the environment (e.g. Fiksen and Jørgensen, 2011, Fouzai et al., 2015). In the current 

project, we modelled larvae at a specific depth, but in reality, a larva would migrate 

vertically, either to shallower, lighter depths and increase its foraging activity, or deeper to 

avoid visual predators. With increased food availability, optimal behavior will lead to larvae 

spending less time searching for food at the shallow, well-lit depths, decreasing its 

probability to be detected and eaten by a visual predator (Fiksen and Jørgensen, 2011). High 

food availability might also reduce the number daily vertical migrations the larvae has to 

perform in order to find enough food to sustain a high growth rate, especially for larger 

larvae (Fouzai et al., 2015). These models predicted that larvae would go to great lengths to 

maintain a near maximum growth rate because it appeared optimal to accept higher 

predation than lower growth (Fiksen and Jørgensen, 2011). Thus, the results of these studies 

suggested a weak link between prey density and growth rate except when food availability is 

very low, and a strong link between increased survival and increased food and temperature 

(Fiksen and Jørgensen, 2011). This is somewhat contrary to the results of the current model, 

as the simulation experiments with increased prey availability implied that slow growth was 

the inhibiting factor for larvae in water with high light attenuation. Meanwhile, fitness was 

only recorded for individuals that reached the targeted length, which means that slow 

growers are eliminated from the results.  

The behaviour models of Fiksen and Jørgensen (2011) and Fouzai et al. (2015) did not 

include a variable non-chlorophyll light attenuation coefficient, Knon. By examing the 
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difference in larval fitness dependent on changes in Knon, we might infer the likely 

behavioural responses of the larvae. For instance, we would expect larvae living in waters 

with high light attenuation to select shallower habitats than in waters with a lower Knon, 

especially in the case of an early spring bloom. This might illustrate one of the strong points 

of the model; its usefulness in predicting the outcome of specific situations. Comparing the 

fitness trends of two scenarios where only one variable is manipulated, might provide 

valuable predictions that can be accounted for in the development of other ecological 

models. Aksnes (2015) notes that most ecosystem models does not account for variations 

non-chlorophyll light attenuation, and calls for an increased attention on it in phytoplankton 

modelling. As our results indicate, zooplankton abundance and larval fish survival are very 

responsive changes in light attenuation, and this suggests that Knon is an important 

parameter to include in future models larval behavior and survival.  

As for the hypothesis investigated in this thesis, there might be many consequences of 

coastal water darkening that are not known, and thus not accounted for in the model. Our 

hypothesis rests on the assumption that there is a link between a darkening of the coastal 

waters and the timing of the spring phytoplankton bloom, but this remains speculative. 

Additionally, some of the parameters included in this model might not be accurate. For 

instance, mortality of zooplankton is hard to predict through experimental studies, and their 

mortality patterns may differ greatly over short distances (Eiane et al., 2002). However, most 

of the modelled scenarios suggested a slight delay in optimal hatching times relative to the 

peaks in zooplankton abundance as the phytoplankton bloom was delayed. This might 

suggest that there is some merit to the hypothesized increased fitness for late hatchers. As 

larval growth seemed to be sensitive to food densities, by including behavioural mechanisms 

in models of larvae in environments with high light attenuation, might produce a stronger 

fitness response. Nevertheless, it proved to be difficult to use such a simple model in 

evaluating a system with so many dynamic factors. There are several questions that need to 

be researched before we can draw a conclusion. 
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Appendix A – Figures of simulation experiments (3.2) 

 

Figure A1: Simulation experiment with a constant seasonal temperature, 4.7° C.  Fitness of hatching times through seasons 
when the phytoplankton bloom and Calanus production starts at day 20 (A), 40 (B), and 60 (C). Simulations were run for 
three different Knon values (0.05; 0.15; 0.3 m-1). Shaded areas represents prey density, each colour corresponding to a 
different Knon. The pattern is similar to the results of Figure 5. 
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Figure A2: Simulation experiment where Calanus egg production rate was increased by a factor of 10. The panels represents 
scenarios where the phytoplankton bloom and Calanus production starts at day 20 (A), 40 (B), and 60 (C). Simulations were 
run for three different Knon values (0.05; 0.15; 0.3 m-1). Shaded areas represents prey density, each colour corresponding to a 
different Knon..With high light attenuation (Knon=0.3 m-1, green), viable spawning windows broadened widely compared to 
the normal scenarios (fig. 5). The viable spawning window broadened with medium light attenuation as well, but resulted in 
lower fitness of the hatching times than in the normal scenarios (fig. 5). 
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Figure A3: Simulation experiment at a shallower habitat (15 m depth). The panels represents scenarios where the 
phytoplankton bloom and Calanus production starts at day 20 (A), 40 (B), and 60 (C). Simulations were run for three 
different Knon values (0.05; 0.15; 0.3 m-1). Shaded areas represents prey density, each colour corresponding to a different 
Knon. With low and medium light attenuation, fitness of hatching times were reduced compared to the normal scenario (fig. 
5). An early and medium bloom with high light attenuation resulted in increased fitness compared to the normal scenarios, 
but the results show a decline in fitness related to a delayed bloom. 
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Appendix B – MATLAB code 
 

% Bloom dynamics and calanus spawning 
%********************************************* 
% Calculates calanus mortality and spawning dynamics under different levels 
of water clarity. 
% Water clarity modulates mortality through parameter R, which is the 
% detection range of a visual predator in a given chl a concentration. R-
values are 
% calculated separately in Fortran and read from r-tables into MATLAB. 
%********************************************** 
  
close all; 
clear all; 
  
RunC6=1; %0=skip this part if C6 is allready estimated. 
  
% general parameters 
minDay=1;               % first day (DON'T CHANGE!) 
maxDay=280;             % last day of simulation 
daysinyear=365;          
dayRes=24;              % time steps in a day (DON'T CHANGE!)  
  
% parameters for Chla 
chlaPeak = 100;         % time of chla peak in test distribution, day of 
year 
chlaMax = 5;            % ug chl a/m3,  Chla level at peak 
chlaStD = 20;           % stD of bloom, days 
chlaMin = 0;            % background chla level 
  
%parameters for zooplankton 
zooA = 0.004*0.001*0.75; % surface area of C6 calanus (m2), 
length*width*0.75 
zooCtr = 0.3;           % contrast 
zooZ = 20;              % depth of zooplankton habitat, m 
C6initAbun = 10;        % initial abundance of C6/m3 
C6seedTime = 30;        % number of days C6 arrive to surface layer from 
wake-up 
  
aN1 = 595;              % a-parameter for egg to N1 development time in 
Belehrádek temperature functions (Cambell, 2001) 
aN5 = 3710;             % a-parameter for egg to N5 
aC1 = 5267;             % a-parameter for egg to C1 development time.. 
p4 = 0.4;               % p4-parameter for estimating #eggs layed/female as 
function of temperature (Fiksen and Carlotti, 1998) 
p5 = 1.096;             % p5-parameter. (p5=1.096 in Fiksen and Carlotti); 
  
NShape=0.5;             % generic shape of Nauplii, diam:length ratio 
NCtr = 0.3;             % generic contrast    
EggCtr = 0.3; 
  
%mortalities (background/fixed) 
C6mBack = 0.035;         % background C6 mortality, 0.04 day-1  Eiane et 
al, 2002 
eggM = 0.08;            % egg mortality per day,  Eiane et al, 2002 
NM = 0.08;              % nauplii mortality d-1,  Eiane et al, 2002 
C1M = 0.08;             % C1 mortality d-1, Eiane et al, 2002 
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%matrix length based on development time at low (4 deg) temperature. 
C6ageMax = 100;             % not development time, but sufficiantly long 
for all C6 to die. 
EGGageMax = 4;              % sufficiantly long for all eggs to develop to 
naupli (N) 
N1ageMax = 17;              % sufficiantly long for all naupli (N) to 
develop to C1(not modelled) 
N5ageMax = 12; 
  
% parameters for fish larvae 
larvShape=0.2;                  % larval width : length ratio 
larvCtr = 0.3;                  % contrast 
larvDW2C = 0.4;                 % conversion from dry weight to carbon 
(carbon makes up ca 40% of larval dry weight, Harris et al 1986) 
larvC2DW = 1/larvDW2C;          % conversion from carbon to dry weight 
(carbon makes up ca 40% of larval dry weight, Harris et al 1986) 
larvInitWgt = 0.01 * larvC2DW;  % larval initial weight, mg carbon (0.03) 
larvInitLen = 0.005;            % larval initial length, m (NOT USED) 
larvAgeMax = 80;               % maximum age of larvae 
larvSeedDayStart = 1;           % first day of larva modelling 
larvSeedDayEnd = maxDay-larvAgeMax;     % last day 
VisRtoSDPreyinBL=1;             % Detection distance in bodylengths (BL) of 
small prey at satiating light and clear water (=1 BL for a 0.015 mm2 prey, 
Fiksen & MacKenzie 2002) 
larvKe = 1;             %  
larvRelV = 1;                   % larval relative swimming speed (BL s-1) 
larvVisFieldShape = 0.5;        % larval visuald field. 1 = 360 degrees  
larvCP = 0.2;                   % larval prey capture probability (Fiksen & 
MacKenzie 2002: 0.2) 
larvHandTime = 0;               % larval prey handling time  
larvAssimEff = 0.75;            % larval assimilation efficiency 
  
% parameters for fish predator 
fishLen = 0.3;          % length of fish, meters 
fishKe = 1;             % fish light satiation, umol p m-2 s-1 
fishV = 0.3;            % fish swimming speed, m s-1 
fishVisFieldShape = 0.5;% fish eye angle, degrees 
fishHandTime =2;        % handling time for fish predator, sec 
fishAbun = 1E-4;        % density of fish predators, #/m3 
fishEMzoo=50000;        % eye sensitivity when feeding on zooplankton  
  
% parameters for surface light 
cloudCover=0.5;         % cloud cover 
pi2=8.*atan(1.);     
dLat=68;%68;            % pick appropriate latitude 
rLat=dLat*(pi2/360);    %latitude in radians; 
  
% parameters for light at depth down to zZoo 
kNon= [0.05 0.15 0.3];        % non chlorophyll light attenuation, m-1 
 
%% SET ENVIRONMENT 
% load temperature from 3D matrix: 
load TempMat.mat %loading temperature data 3D-matrix MatT: [depth(0:100), 
lat(58:0.1:71), day (1:365)]. 
latRes=58:0.1:71; 
f=latRes==dLat; 
Temp=squeeze(MatT(:,f,:)); %Temp at 68degN 
  
% create idal seasonal temperature by smoothing. Used to estimate 
development time (Behlradek) 
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f=fit([1:daysinyear]',mean(Temp(1:zooZ,:))','poly5'); 
Temp=f(1:daysinyear)*0+4.7; % set new idealized seasonal temperature 
  
%Conceptual chl a bloom 
chlaSurf=chlaMin+chlaStD*(chlaMax-chlaMin)*2.5*pdf('normal', minDay:maxDay, 
chlaPeak,chlaStD); %normal distribition function 
mean(chlaSurf)     %should be ~1 (Vikebø et al 2012) 
chlaOnset=find(chlaSurf>0.05, 1); %day of bloom onset 
  
% chlorophyl concentration from surface to zZoo (depth of zooplankton) 
Chla(1:zooZ, minDay:maxDay)=repmat(chlaSurf, zooZ,1); % currently 
chlorophyll concentation is same in depth as surface 
  
  
%% C6 ZOOPLANTON MODEL 
  
C6WakeUp=chlaOnset; % decide if wake up day for C6 should be (in)dependent 
of spring bloom   
% C6WakeUp=40; 
  
if RunC6==1 %  run C6 loop below 
   for k=1:length(kNon) %loop over different k-non values 
         
       %C6 model 
       C6=zeros(maxDay,C6ageMax); % empty matrix for C6 
       
        for julDay=minDay:maxDay-1              % loop over days 
            if julDay > C6WakeUp && julDay<C6WakeUp+C6seedTime 
                C6(julDay,1)=C6initAbun;        %add C6 to age 1 
            else 
            end 
            for age=1:C6ageMax-1                % loop over C6 ages 
                C6mRateFishSum=0;               % reset daily C6 mortality 
rate from fish to zero 
                C6Abun=C6(julDay,age); 
                 
                  
                for t=1:dayRes                  %loop over hours 
                    Eb = zeros(zooZ+1,1);         % empty matrix of ambient 
light at depth  Replaced every hour 
                    % calculate surface light and light at depth 
                    Eb(1) = qsw0(cloudCover,rLat,julDay,t) * 4.6; % surface 
light in umol p m-2 s-1, calls SUBROUTINE QSW0() 
                                         
                    for z=2:zooZ+1      %light at depth. Note that 1st row 
in Eb is surface (calculated outside the z-loop) 
                        DiffAtt = kNon(k) + Chla(z-1,julDay)*(0.0506*exp(-
0.606*Chla(z-1,julDay))+0.0285)+(0.068*exp((-0.014)*(550-550)));  % Coastal 
type 2, equations 13 and 15 in Wozniak et al 2003  
                        BeamAtt = (kNon(k)*2) + (0.39*(Chla(z-
1,julDay)^0.57))*(1.563 - 0.001149*550);                                      
% equations 3.47 and 3.48 in Mobley (Voss 1992) 
                        Eb(z) = Eb(z-1)*exp(-DiffAtt); 
                    end 
                    if Eb(zooZ+1)>0 % if there is light (Eb>0) 
                        
r=getr(BeamAtt,zooCtr,zooA,fishEMzoo,fishKe,Eb(zooZ+1)); % find visual 
range (m) of a fish at depth zooZ,  call SUBROUTINE GETR() 
                    else 
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                        r=0; 
                    end 
                    %calculate hourly mortality from visual feeders (fish) 
at zooZ (a fixed depth): 
                    if C6Abun>0                                                         
%if C6Abun is >0, calculate mortality from fish .... 
                        fishClear = fishVisFieldShape*pi*(r^2)*fishV;                   
%find the volume cleared by a fish m3 s-1  
                        fishIng =fishClear*C6Abun/(1 + 
fishClear*fishHandTime*C6Abun);  % fish ingestion rate,calanus per fish per 
second (handling time limited) 
                        C6mRateFish = fishIng*fishAbun/C6Abun;                          
% calanus mortality rate, s-1 
                    else 
                        C6mRateFish=0;                                      
% *** ... otherwise set mortality from fish to zero 
                    end 
                    C6mRateFishSum=C6mRateFishSum + C6mRateFish*3600;       
% sum the mortality rates per hour (3600 sec) 
                end % hour 
                C6mFish = 1-exp(-C6mRateFishSum);                           
% C6 mortality from fish, probability of dying per day 
                %C6m=max(C6mFish, 1-exp(-C6mBack));                          
% C6 mortality overall. Cannot be lower than daily background mortality 
(C6mBack) 
                C6m=1-exp(-C6mBack -C6mRateFishSum);                          
% C6 mortality overall. Cannot be lower than daily background mortality 
(C6mBack) 
                C6(julDay+1,age+1)=C6(julDay,age)- C6(julDay,age)*C6m;      
% remove eaten C6 from population (mortality) and tranfer survivors to the 
next day and age 
                 
            end % age 
        
        end % julian days 
    C6_All(:,:,k)=C6; 
    end %kNon values 
     
    save C6_AllK.mat C6_All  
  
else % if not running C6 loop 
    load C6_AllK.mat; %read C6 from file 
end 
  
% sum all C6 age classes 
C6sum=[]; 
for k=1:length(kNon) 
    C6sum(:,k)=nansum(C6_All(:,:,k),2); 
end 
  
%% EGG AND NAUPLII MODEL 
% generate empty matrices 
EGG_All=zeros(maxDay, EGGageMax, length(kNon)); 
N1_All=  zeros(maxDay, N1ageMax, length(kNon)); 
N5_All=  zeros(maxDay, N5ageMax, length(kNon)); 
  
for k=1:length(kNon) % loop over different R-values 
    C6=C6_All(:,:,k); % extract C6 abundances generated in the C6 model 
    EGG= zeros(maxDay, EGGageMax); 
    N1=   zeros(maxDay, N1ageMax); 
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    N5=   zeros(maxDay, N5ageMax); 
    for julDay=minDay:maxDay-1 % loop over all days 
    
        time2N1= int32(aN1*(Temp(julDay) + 9.11)^-2.05);            % 
development time from egg to N1 in Belehrádek temperature functions 
(Cambell, 2001) 
        time2N5 = int32(aN5*(Temp(julDay) + 9.11)^-2.05) - time2N1; 
        time2C1= int32(aC1*(Temp(julDay) + 9.11)^-2.05) - time2N5;  % 
development time from N1 to C1  
         
        eggNo = 12*p4*p5^Temp(julDay);                              % 
number of eggs/female/day as function of Temp (Fiksen and Carlotti, 1998) 
     
        % egg loop 
        EGG(julDay,1)=sum(C6(julDay,:))*eggNo; 
        for age=1:time2N1 
           EGG(julDay+1, age+1)= EGG(julDay,age) - EGG(julDay, age)*eggM; 
%remove daily agg mortality (eggN) 
        end 
  
        % Nauplii 1-4 loop 
        N1(julDay,1)=EGG(julDay, time2N1); 
        for age=1:time2N5 
            N1(julDay+1,age+1)=N1(julDay,age) - N1(julDay,age)*NM; % remove 
daily naupli mortality (NM) 
        end 
         
        N5(julDay,1)=N1(julDay, time2N5); 
        for age=1:time2C1 
            N5(julDay+1,age+1)=N5(julDay,age) - N5(julDay,age)*NM; % remove 
daily naupli mortality (NM) 
        end 
         
    end % julDay 
    % Store for all kNon-values 
    EGG_All(:,:,k)=EGG; 
    N1_All(:,:,k)=N1; 
    N5_All(:,:,k)=N5; 
end % kNon loop 
  
%Sum all age groups  
for k=1:length(kNon) 
    EGGsum(:,k)=nansum(EGG_All(:,:,k),2); 
    N1sum(:,k)=nansum(N1_All(:,:,k),2); 
    N5sum(:,k)=nansum(N5_All(:,:,k),2); 
end 
  
%% LARVAL FISH MODEL 
WGT_All=[]; SURV_All=[]; LEN_All=[]; PREYMASS_All=[];    
  
Check=[];Check2=[]; 
for k=1:length(kNon) %loop over different k-non values 
     
    WGT = zeros(maxDay, larvAgeMax+1);                                      
% initial matrix for weight, mg carbon 
    LEN = zeros(maxDay, larvAgeMax+1);                                      
% initial matrix for length, m 
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    SURV = zeros(maxDay, larvAgeMax+1);                                     
% initial matrix for survival. Per Jan 31, this only includes visual 
predators. 
    PREYMASS = zeros(maxDay, larvAgeMax+1); 
     
    WGT(larvSeedDayStart:larvSeedDayEnd,1) = larvInitWgt;                                       
% initial weight, Carbon, at seed day 
    LEN(larvSeedDayStart:larvSeedDayEnd, 1)=1E-
3*exp((log(larvInitWgt*larvC2DW)+9.2)/3.9);      % initial length in m 
(from dry weight), from Otterlei & al 1999 
    SURV(larvSeedDayStart:larvSeedDayEnd,1)=1; 
         
    for seedDay=larvSeedDayStart:larvSeedDayEnd                            
% follow larva from different seed days  
                
        for julDay=seedDay:seedDay + larvAgeMax                               
% loop over days of the  
            age=julDay-seedDay +1;                                          
% find age. Add +1, so age starts at age 1 (day) 
             
            LmRateFishSum = 0;                                              
% reset daily mortality estimate 
            larvPreyMassEncSum = 0;                                         
% reset sum of larval prey mass encounter  
            Eb = zeros(zooZ+1,1);                                           
% empty vector of ambient light at depth (zooZ+1 = 15 m) and t (hour). 
Replaced every new day  
             
            preyAbun=EGGsum(julDay,k) + N1sum(julDay,k) + N5sum(julDay,k);  
% Sum abundance of all available prey (# m-3) that day 
             
            % estimates of temperature dependent egg and nauplii sizes 
(Area, m2) (from Table 2 in Campbell, 2001) 
            EggA = pi*((-0.405*Temp(julDay)+147)*1E-6/2)^2;                   
% surface area of an egg (m2) assuming circular shape 
            N1L = (-0.250*Temp(julDay)+ 310)*1E-6;                          
% length (m) of Naupli stage 1-4 (Table 2 in Campbell 2001) 
            N1A = pi*(N1L*NShape)*N1L*0.75;                                 
% Area (m2) of Naupli stage 1-4 
            N5L = (-3.75*Temp(julDay) + 607)*1E-6;                          
% length (m) of Nauplii stage 5-6 (Table 2 in Campbell 2001) 
            N5A = pi*(N5L*NShape)*N5L*0.75;                                 
% Area (m2) of Nauplii stage 5-6 
             
            preyA = (EGGsum(julDay,k)*EggA + N1sum(julDay,k)*N1A + 
N5sum(julDay,k)*N5A)/ preyAbun;      % weighted mean prey Area (m2) based 
on the abundance of eggs, N1-4 (N1) and N5-6 (N5)   
            preyCtr = (EGGsum(julDay,k)*EggCtr + N1sum(julDay,k)*NCtr + 
N5sum(julDay,k)*NCtr)/ preyAbun;% Weighted mean prey contrast 
             
            % estimates of temperature dependent egg and nauplii carbon 
content (mg) (from Table 2 in Campbell, 2001) 
            EggC = (-0.00255 * Temp(julDay) + 0.216) * 1E-3 ;               
% egg carbon weight, mg 
            N1C = (9.46E-4 * Temp(julDay) + 0.226) * 1E-3;                  
% N1-4 carbon weight, mg 
            N5C = (-0.0117 * Temp(julDay) + 1.825) * 1E-3;                  
% N5-6 carbon weight, mg 
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            preyMass = (EGGsum(julDay,k)*EggC + N1sum(julDay,k)*N1C + 
N5sum(julDay,k)*N5C)/ preyAbun;% weighted mean prey carbon weight, mg 
                 
            %loop over hours 
            for t=1:dayRes                                       
                 
                % calculate surface light and light at depth 
                Eb(1) = qsw0(cloudCover,rLat,julDay,t) * 4.6;               
% surface light in umol p m-2 s-1 
                for z=2:zooZ+1                                              
% light at depth. Note that 1st row in Eb is surface (calculated outside 
the z-loop) 
                    DiffAtt = kNon(k) + Chla(z-1,julDay)*(0.0506*exp(-
0.606*Chla(z-1,julDay))+0.0285)+(0.068*exp((-0.014)*(550-550)));  % Coastal 
type 2, equations 13 and 15 in Wozniak et al 2003  
                    BeamAtt = (kNon(k)*2) + (0.39*(Chla(z-
1,julDay)^0.57))*(1.563 - 0.001149*550);                                      
% equations 3.47 and 3.48 in Mobley (Voss 1992) 
                    Eb(z) = Eb(z-1)*exp(-DiffAtt); 
                end 
                % find larva's visual range when feeding on zoopl. prey 
                if Eb(zooZ+1)>0 && preyAbun>0                                       
% if there is light (Eb>0) and prey is present.  
                                      
                    
larvEM=((LEN(julDay,age)*VisRtoSDPreyinBL)^2.)/(preyCtr*(0.1*0.2*0.75*1E-
6)); % larval eye sensitivty (EM) depend on bodylength and prey size 
                    r=getr(BeamAtt,preyCtr,preyA,larvEM,larvKe,Eb(zooZ+1));         
% find visual range (m) of a fish at depth zooZ,  call SUBROUTINE 
GETR(r,c,C0,Ap,Vc,Ke,Eb,IER) Aksnes & Utne 1997 
                     
                    % Larval feeding 
                    larvV=LEN(julDay, age)*larvRelV;                                                            
% larval swimming speed, m s-1 
                    larvClear = larvVisFieldShape*pi*(r^2)*larvV;                                               
% larval clearance rate, m3 s-1 
                    larvPreyMassEnc = 
(larvCP*larvClear*preyAbun*preyMass)/(1+larvClear*preyAbun*larvHandTime); % 
mg Carbon encountered per second  
                else 
                   larvPreyMassEnc=0;  
                end 
                larvPreyMassEncSum = larvPreyMassEncSum + 
larvPreyMassEnc*3600;     % sum prey mass encounter carbon per hour (3600 
s) through a day (24 H)  
                 
                % Find predator's visual range 
                if Eb(zooZ+1)>0                                             
% if there is light (Eb>0) 
                    larvW = larvShape*LEN(julDay, age);                     
% larval width,m 
                    larvA = larvW*LEN(julDay, age)*0.75;                    
% larval area, m2 
                    fishEM=((fishLen*VisRtoSDPreyinBL)^2)/(larvCtr*larvA);  
% eye sensitivity (previously em=50000) 
                    r=getr(BeamAtt,larvCtr,larvA,fishEM,fishKe,Eb(zooZ+1)); 
% find visual range (m) of a fish at depth zooZ,  call SUBROUTINE 
GETR(r,c,C0,Ap,Vc,Ke,Eb,IER) 
                else 
                    r=0; 
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                end 
                %calculate hourly mortality from visual feeders (fish) at 
zooZ (a fixed depth): 
                fishClear = fishVisFieldShape*pi*(r^2)*fishV;               
% find the volume cleared by a single fish m3 s-1  
                fishEncRate = fishClear*fishAbun;                           
% lethal encounters with fish predator (not handling time limited), s-1 
                LmRateFishSum=LmRateFishSum + fishEncRate*3600;             
% sum the mortality rates per hour (3600 sec) through a day (24 H) 
                 
            end % hour 
             
            % calculate daily growth 
            wgt=WGT(julDay,age)*larvC2DW;                                   
% get larval weight (mg Carbon) and convert to mg DW 
            if wgt>0.03                                                     
% check if within range of SGR equation 
                temp=Temp(julDay);                                          
% get temperaure that day 
                R = 2.38E-7 * exp(0.088*temp);                              
% Respiration from Finn & al. (2002), g dWeight/sec 
                larvResp = (wgt^0.9)*R*86400*larvDW2C;                      
% respiration in carbon/day 
                         
                SGR = 1.2 + 1.8*temp - 0.078*temp*(log(wgt)) - 
0.0946*temp*(log(wgt))^2 + 0.0105*temp*(log(wgt))^3; % max temp dep growth, 
mg DW day-1 (Folkvord 2005) 
                larvSGR=log((SGR/100) + 1);%                                 
% max daily growth rate (weight/weight /day) .  
             
                larvDelta=(larvResp + 
larvSGR*WGT(julDay,age))/larvAssimEff;    % food needed to sustain max 
growth  
                if larvDelta<larvPreyMassEncSum                                 
% if daily food intake kan sustain max growth (SGR)... 
                    larvGrowth = WGT(julDay,age)*larvSGR;                       
% estimat max absolute growth in mg Carbon 
                else                                                            
% if not..   
                    larvGrowth = larvPreyMassEncSum*larvAssimEff - 
larvResp;    % growth  = assimilated food - respiration, mg Carbon   
                end 
                 
                larvMBack=(2.2*1E-4 * (wgt*1E-3)^-0.85) * 0.5;                  
% background mortality, day-1 (NOTE: we multiply by 0.5 to account for 
visual pred) 
                    
                WGT(julDay+1,age+1)=WGT(julDay,age) + larvGrowth;               
% add growth to weight, mg C 
                %SURV(julDay,age) = min(exp(-LmRateFishSum), exp(-
larvMBack));   % survival probability  
                SURV(julDay+1,age+1) = exp(-LmRateFishSum-(larvMBack));   % 
survival probability  
                LEN(julDay+1,age+1) = 1E-
3*exp((log(WGT(julDay+1,age+1)*larvC2DW)+9.2)/3.9); % estimate length, m 
                 
            else % if the larva is smaller than 0.03 mg 
                 
                WGT(julDay+1,age+1)=0; % set weight to zero, mg C 
                SURV(julDay+1,age+1) = 0; 
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                LEN(julDay+1,age+1) = 0 ; % set length, m to zero 
            end % check on minimum weight requirement  
             
            PREYMASS(julDay+1,age+1)=preyMass; %store prey mass  
             
             
        end %julian day          
    end % seed days 
     
    % store results for different kNon-values 
    WGT_All(:,:,k)=WGT; 
    SURV_All(:,:,k)=SURV; 
    LEN_All(:,:,k)=LEN;    
    PREYMASS_All(:,:,k)=PREYMASS; 
end %kNon values 
 

 


