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Abstract

The wind simulation method proposed by Paul S. Veers from Sandia National Laboratories
has been checked for the measured wind velocities at 40m and 80m height at FINO1 platform.
The Sandia method applied as it is, gives relatively higher standard deviation (turbulence)
than the actual but works better when random phases are used. A code for the generation
of wind field based on Sandia method has been developed from a time series of wind speed
at hub center. Various wind fields based on difference in wind shear and turbulence intensity
have been projected on to the reference wind turbine to find root bending moments of the
blade. The bending moments are calculated based on 2D Beam Element Momentum theory.
The mean bending moment values are affected by wind shear while the maximum bending
moments by turbulent intensity. An increase in turbulence in the wind field will increase the
maximum and standard deviation of flap-wise bending moment drastically.
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1 Introduction

In the design of wind turbines, wind data is needed to extract power and to estimate the
loads on the turbine blades. Wind data is available either from site measurements or from
wind models. In offshore wind, very few site measurements are available because the costs
to establish and maintain an offshore wind measuring platform are very high. So, theoretical
wind models are generally preferred to generate wind field data.

A wind field can be generated by using Sandia (Veers) method (8) or Jakob Mann method
(9). It contains information about mean wind and turbulent wind speeds. A wind field can
be imagined as a box with known amplitudes and direction of wind at various points in the
atmosphere. In practice, this box is projected onto the wind turbine with a mean wind speed
assuming Taylor’s frozen turbulence hypothesis. From the view point of the rotor plane, it
can be seen as a time series of velocities passing through.

These time series are coherent to each other. Coherence decreases with increasing separa-
tion distance. Modelling correct coherence in the generation of wind field is very important.
Various coherence models exist in the literature (10). The theoretical coherence models
only provide the magnitude of the coherence but does not contain information about phase
angles. The phase angles are often neglected because the quad-spectrum is often assumed
small for small separation distances in a homogeneous turbulence field. These conditions
are not always met and phase angles could be high and relevant. This has been observed at
Høvsøre test site for vertical separation distances (11).

The importance of phase angles in the generation of wind field has been investigated in the
first half of the thesis. Sandia method is chosen as wind field generation method. First,
simple time series with combination of 3 different cosine functions with different phase an-
gles is looked at. Next, measured wind data at 40m and 80m height at FINO1 station in
neutral atmospheric conditions is investigated. Various cases have been considered based
on how and what to use for phase angles so that time series at 80m height can be repro-
duced statistically based only on the information from time series at 40m height. Once,
a procedure has been finalized, computational code to generate the whole wind field box
based on Sandia method has been developed. A new code has also been written to generate
a wind field in cylindrical co-ordinates rather than a rectangular wind field for added benefits.

Once a turbulent wind field is generated, it can be used to find structural loads on the
wind turbine. Global structural loads, flap-wise and edge-wise root bending moments of
the blade are calculated based on 2D Beam Element Momentum (BEM) theory. Various
cases are established based on the difference in wind shear and turbulent intensity in the
generated wind field and the effect of these on root bending moments have been investigated.
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2 Background theories and methods

2.1 Taylor’s frozen turbulence hypothesis

Taylor’s hypothesis assumes that the turbulence is frozen while the wind is advected over the
rotor blade. This means that, once a wind field is generated, the properties of it won’t change
until it passes through the wind turbine. This assumption is only valid under some specific
conditions. One of the conditions is that the time required for the wind field to advect past
the turbine is less the time required for turbulent eddies to evolve. This condition is hard
to meet when large wind fields are considered. Other condition is to have the turbulence
intensity over mean wind speed to be under 0.5. This implies, Taylor’s hypothesis can only
be used on the wind field generated numerically if turbulence intensity is kept below 50%.
From the wind data collected at FINO1 station located in the North Sea, it has been ob-
served that the turbulence intensity is around 10%. The same is used in this thesis. Taylor’s
hypothesis converts the spacial domain data to time domain and vice versa (1).

∂θ

∂t
= −U ∂θ

∂x
(1)

Where,
U = mean wind velocity in x-direction
θ = any turbulent parameter

Figure 1: Plot showing how Taylor’s hypothesis works (1)

2.2 Atmospheric stability

The atmospheric stability tells us how easy it is for an air parcel to move vertically in the
atmosphere. In an unstable atmospheric condition, once an air parcel is disturbed form it’s
location, it keeps on moving away. Turbulence is high in these conditions. In a stable atmo-
sphere, the parcel returns to it’s original location. Turbulence is low in this condition. In a
neutral atmosphere, an air parcel moved from it’s location will stay at a new location. It will
neither move back to it’s original location nor away. Turbulence is moderate in this condition.
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Atmospheric condition plays a vital role in defining the turbulence and also mean wind
profile. For Taylor’s hypothesis to be valid, neutral atmospheric stability should be present.
The measured data taken for analysis is for neutral condition. The mean wind profile in
neutral atmospheric stability is gives as:

U(z) = Uref
ln( z

z0
)

ln(
zref
z0

)
(2)

Where,
U(z) = mean wind velocity in x-direction at a certain height
Uref = mean wind velocity known at a certain reference height
z = height above ground level
z0 = roughness length (depends on the site)
zref = reference height

2.3 Coherence

Winds at different horizontal and vertical separations in the atmosphere are not independent
of each other. Some correlation exists between them. Coherence is a measure of this correla-
tion in frequency domain. The magnitude of coherence depends on the separation distance,
mean wind speed and frequency. The higher the separation distance, the lesser coherence
between them. It also decreases exponentially with frequency.

Coherence between two points in the atmosphere is described as the normalized cross-
spectrum between time series of turbulent wind velocities at these points. These are complex
value numbers at different frequencies. The real part of the spectrum is called co-coherence
where as the imaginary part is called quad-coherence. There are different ways of defining
the coherence in the literature. Some simply refer the co-coherence as coherence and others
the magnitude square of normalized cross spectrum. In this thesis, only the coherence in
the along wind direction (uu-coherence) for lateral and vertical separations is considered
and the coherence is defined either as the square root of the magnitude square of normal-
ized cross spectrum called ”Magnitude coherence” or just the ”Co-coherence” as coherence
whenever applied. It is chosen like this because, a complex normalized cross-spectrum can
be represented in the polar form as:

x+ iy = |a|eiθ (3)

Where,
x = Co-coherence
a =

√
x2 + y2 Magnitude coherence

θ = arctan( quad−coherence
co−coherence ) Phase angle

11



2.4 Sandia method

In the wind industry, Sandia method (8) is used for generating a three dimensional field of
turbulent wind speeds numerically which is used for aerodynamic and structural analysis
of wind turbines. The method requires single point power spectral densities and coherence
functions as input. The output will be time series of turbulent wind speeds at these points.
Sandia method is based on a mathematical method developed by Shinozuka (12).

Let’s say time series at N number of points in the plane perpendicular to mean wind speed
are needed. Sandia method creates these N correlated time series based on a spectral matrix
S. This spectral matrix is symmetrical with dimensions NxN. The diagonal of S contains
auto spectra of the N points and off-diagonal terms contain cross spectra. Cross spectrum
between two points j and k can be calculated based on the coherence function and auto
spectra of these two points.

| Sjk(fm) |= Cohjk(fm, rjk, Ujk)
√
Sjj(fm)Skk(fm) (4)

Where,
Sjk(fm) is the cross spectrum at frequency fm
Sjj(fm) is the auto spectrum for point j at frequency fm
Skk(fm) is the auto spectrum for point k at frequency fm
Cohjk is the coherence function which depends on frequency fm, distance between j and k,
rjk and average of mean wind velocities Uj and Uk, Ujk

A lot of coherence functions exist in the literature. In this thesis, coherence function sug-
gested by Frost (13) is used. This is a real value function. It means the cross spectra won’t
have any imaginary components. So, this comes with a preliminary assumption that the
average phase difference between any two points is zero. However this is not a real scenario.
Phase lag can exist between points of various heights because of wind shear. Nevertheless,
Frost coherence function is often used along with Sandia method and given as:

Cohjk = exp
(
−C rjk fm

Ujk

)
(5)

C is the exponential decay parameter or also called coherence decrement. Lot of experiments
have been made to get an proper estimate for the value of C. Any value between 2 to 27 has
be suggested. But, Frost recommended the value of 7.5 for lateral spacing. The same value
has been used in this thesis in all of the wind field irrespective of the direction for simplicity.

Now the spectral matrix S can be found based on coherence functions and auto spectra. S
can also be written in terms of a transformation matrix H and the transpose of it’s complex
conjugate.

S(fm) = H(fm)H∗T (fm) (6)
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Since S is a real matrix, H must also be real. The transformation matrix H is not uniquely
defined though. However, if H is assumed to be a lower triangular matrix, the non-zero
values can be uniquely defined in a recursive operation starting with k=1 and j=2 as:

Hkk =
(
Skk −

k−1∑
l=1

H2
kl

)1/2
Hjk =

(
Sjk −

∑k−1
l=1 HjlHkl

)
Hkk

(7)

The elements in each row of H gives the input for the formation of time series of wind
velocities at a point k along with phase angles which are generated randomly by a uniformly
distributed variable at the interval [0 2π]. The phase matrix X is given as:

Xkk(fm) = eiθkm (8)

Where θkm is the phase angle for a point k at frequency m. The Fourier coefficients matrix
of the wind velocities V can be found from H and X. Each element of matrix V is given
as:

Vj(fm) =

j∑
k=1

Hjk(fm)eiθkm (9)

The inverse Fourier transform of V gives the time series of wind velocities for all N points.

Let’s see how the method actually works. Say we want to find time series of wind velocities
at 2 different points in the atmosphere. The input needed for the method is auto spectrum
at point 1 and 2 (S11 and S22) and the coherence function (Coh12). The cross spectrum
between 1 and 2 can be found from equation 4 as,

S12 = Coh12
√
S11S22

The spectral matrix S is now known1.

S =

[
S11 S12

S21 S22

]
The transformation matrix H can be found based on S. The elements of H from equation
7 are given as,

H11 = S
1/2
11

H21 = S21/H11

H22 = (S21 −H2
21)

1/2

1S12 = S21
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so that the lower triangular matrix H is,

H =

[
H11 0
H21 H22

]
The phase angles at point 1 and 2 can be generated from a uniformly distributed random
variable between [0 2π] as θ1 and θ2. The elements of Fourier coefficient matrix V can be
found from equation 9 as,

V1 = H11e
iθ1

V2 = H21e
iθ1 +H22e

iθ2

The real values of inverse Fourier transformation (ifft) of V1 gives the times series of wind
velocities at point 1 because the terms of H11 and θ1 correspond to the Fourier amplitudes
and it’s phases at different frequencies and the phases due to time (ω1t) will be included
while performing ifft. Similarly, ifft of V2 gives the time series of wind velocities at point 2.

2.5 DTU 10MW HAWT

The reference turbine used to find structural loads based on the wind field generated by
Sandia method is DTU 10MW Horizontal Axis Wind Turbine (HAWT). The main charac-
teristics of the turbine that are useful for this thesis are listed below. More details of the
turbine can be found in (7).

• Rated wind power, 10MW

• No. of blades, 3

• Hub height, 119m

• Hub diameter, 5.6m

• Rotor diamater, 178.3m

• Cut-in wind speed, 4m/s

• Rated wind speed, 11.4m/s

• Cut-out wind speed, 25m/s

• Cut-in rotor speed, 6rpm

• Rated rotor speed, 9.6rpm
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Figure 2: Plot of the blade of DTU 10MW reference turbine (2)

Figure 2 shows the shape of the blade for the reference wind turbine. Structural loads are
calculated at the root of this blade. An efficient wind turbine blade contains different air-
foil types over the span with a twist angle. The blades of DTU 10MW HAWT contains 5
different airfoils of type FFA-W3-xxx. The values in xxx gives information about the rela-
tive thickness of the airfoils. Five different relative thickness of 60%, 48%, 36%, 30.1% and
24.1% are used with 60% being close to the root and 24.1% close to the tip. The root of the
blade and 60% relative thickness airfoil are connected by a cylinder which in airfoil terms, an
100% relative thickness airfoil which can’t produce any lift but just drag. The aerodynamic
properties of various airfoils of the blade can be found in (7).

Figure 3: Plot of sections of the blade with various airfoil types (3)

The mass of each blade is 41,716 kg with center of gravity located at 26.2m along the span
from the root. In the present work, no pre-bend, shaft-tilt and pre-coning is considered while
calculating structural loads.
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2.6 2D Blade Element Momentum (BEM) theory

BEM theory combines the momentum theory and blade element theory. It is used to find
local forces on each element which can be combined together to find total forces acting on the
rotor. Each element of the blade is considered as a 2D airfoil, see figure 3. No interactions
between elements is considered and steady flow is assumed. Experiments might be needed
to find lift and drag coefficients of the airfoils for various angles of attack. Once the lift
and drag coefficients are established, lift and drag forces can be found for relevant angle of
attack. Using these lift and drag forces, thrust and torque on each element and on the whole
rotor can be found.

Figure 4 shows the nomenclature of an 2D airfoil. The angle of attack, α is the angle between
incoming flow and chord line. Figure 5 shows velocities at rotor plane and how α can be
calculated based on local wind and rotational speeds along with axial and angular induction
factors.

Figure 4: Plot of 2D airfoil (4)

Figure 5: Plot showing the velocities experiences by blade element/airfoil on rotor plane (5)

The wind velocity V0 is perpendicular to the rotor plane while the local rotational velocity
ωr is in the rotor plane. The actual velocity experienced by the airfoil is Vrel.

Vrel =
√

[V0(1− a)]2 + [ωr(1 + a′)]2 (10)

φ = arctan
V0(1− a)

ωr(1 + a′)
(11)
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The angle of attack, α is given as φ − θ. θ is found from blade’s local twist angle, pitch of
the blade and local deformations. The pitch of the blade for below rated wind speed will be
zero and then increases with increasing wind speed. No local deformations are taken into
account assuming a stiff blade. Once α is known, the lift and drag coefficients (Cl, Cd) can
be extracted to find lift and drag forces on the airfoil (L,D).

L =
1

2
ρAV 2

relCl

D =
1

2
ρAV 2

relCd

(12)

where,
ρ is the density of the air
A is the area of the element which is the product of chord length and element size

Figure 6: Plot showing the loads on the blade element (5)

The lift force (L) will be perpendicular to the incoming velocity Vrel and drag force (D) will
be parallel. Using L,D, φ, the force normal to the rotor plane (PN) and tangential to the
rotor plane (PT ) can be calculated.

PN = Lcosφ+Dsinφ

PT = Lsinφ−Dcosφ
(13)

PN is the thrust on the blade element and PT is the force that is driving the rotation. PT
multiplied by local radius gives local torque. Combining thrust and torque of all the elements
of 3 blades gives total thrust (T) and torque (Q) on the rotor plane. The torque multiplied
by angular velocity (ω) gives the power output of the turbine (P = ωQ).

The axial and angular induction factors, a and a
′

plays a major role in determining the out-
put power. Some iterations are needed to find proper a and a

′
. The iterations are initialized
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with a = 0 and a
′

= 0. First, the flow angle φ is computed from equation 11 and then
the angle of attack, α. The lift and drag coefficients, Cl and Cd are read for corresponding
α. From Cl and Cd, the lift and drag forces, L and D are calculated from equation 12.
From L and D, the thrust, PN and torque, Q can be calculated from equation 13. This PN
and Q will then be equated to the thrust and torque from momentum theory to find new
a and a

′
. This process is repeated until a and a

′
hasn’t changed more than a certain tolerance.

When operating at above rated wind speed with power output of 10MW, a
′

will be close
to zero. The wind field generated in order to find loads on the blade is an above rated
mean wind speed. So, a

′
is kept at zero for simplicity. The corrections for BEM theory

like Prandtl’s tip loss factor, Glauert’s limit (a > 0.4) and 3D effects are not applied in this
thesis.

Figure 7: Plot showing the thrust forces along the blade by assuming a linear variation
between elements (5)

2.7 Root bending moments

Depending on the bending plane, there are two different types of bending moments at the
root of the blade, Flap-wise and Edge-wise. No structural deflections are considered while
calculating root bending moments.

2.7.1 Flap-wise bending moment

The forces that are normal to the rotor plane, PN contribute to the flap-wise bending moment.
The bending occurs about the chord axis of the airfoils creating tensile and compressive
stresses across blade cross section.
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Figure 8: Plot showing normal loads and flap-wise bending (3)

2.7.2 Edge-wise bending moment

The forces that act in the rotor plane like PT and gravitational forces contribute to the
edge-wise bending moment. The plane of bending is normal to the chord line axis of the
airfoils of the blade. The bending moment due to gravity is the main component of edge-wise
bending moment. The maximum edge-wise bending moment occurs when the blade reaches
horizontal position as the bending moment due to gravity will be high.

Figure 9: Plot showing gravitational loads and edge-wise bending (3)
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2.8 Fourier analysis in MATLAB

Understanding Fourier analysis is very important while dealing with spectra. Fourier anal-
ysis can be done by using FFT (Fast Fourier Transform) or PSD (Power Spectral density)
functions in MATLAB (same as periodogram).

Let’s take a time series of length, N and total time, T for investigation. FFT of the time
series gives an output of complex amplitudes and it’s phase angles at different frequencies of
interval 1/T. The complex amplitudes have to be normalized by N in order to continue with
further calculations. This is because, MATLAB by default performs FFT by multiplying the
time series with its length.

By the spectral density approach, the periodogram produced by default is a one-sided spec-
trum. This means the values of the periodogram are doubled at each frequency except at
zero and Nyquist frequency. Also, the PSD values should be multiplied with N and sampling
frequency in order to take care of the scaling. The amplitudes at each frequency are then
obtained from the square root of these values. This approach uses less computational time
than FFT to generate the time series back from the calculated amplitudes and phases and
therefore adopted to rest of the thesis.

2.9 Wind field generation by Sandia method

Sandia method is used to generate a whole wind field based on a initial input time series
(x(t)) at a single point. The time series at a different location (y(t)) can be found based on
the auto-spectrum of x(t), theoretical coherence function, phase angles as obtained by the
FFT of x(t) and randomly generated phases for y(t). A different time series at a different
location can be generated by following the same procedure but now with the information
from both x(t) and y(t) and so on until the whole field is generated.

2.9.1 Sandia method on regular signals

The procedure as described in section 2.4 has been applied on two known signals (combina-
tions of 3 sinusoidal functions) to get a feel on how the method actually works. The signals
or time series are taken as,

x(t) = 1 ∗ cos(2πt) + 2 ∗ cos(4πt+ π/4) + 1 ∗ cos(6πt+ π/2)

y(t) = 2 ∗ cos(2πt+ π/4) + 1 ∗ cos(4πt+ π/2) + 2 ∗ cos(6πt)

where,
t = 0 : ∆t : T
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The time step, ∆t is assumed to be 0.01 seconds and total time, T = 10.24 seconds. This
gives the number of discrete points or time steps, N to be 1024. The number of discrete
points has to be 2n for the PSD algorithm to work properly in MATLAB.

The auto spectra, coherence and phase angles that are needed for Sandia method are cal-
culated from above x(t) and y(t). The procedure is followed as described to generate new
time series xnew(t) and ynew(t). These new time series from Sandia method are compared
with original time series x(t) and y(t). The time series x(t) can be reproduced exactly but
not y(t).

Figure 10: Plot of y(t) and ynew(t) generated by following Sandia method

It has been observed that, Sandia method as it is applied can conserve the statistics of the
signal but not the shape. The mean and standard deviation of y(t) is -0.02 and 2.13. While,
the mean and standard deviation of ynew(t) is -0.06 and 2.17.

If the shape of ynew(t) should coincide with y(t), a slight modification is needed where phase
angles of y(t) has to be used at element H21 of lower triangular matrix instead of phase
angles of x(t) while re-generating time series y(t). The mean and standard deviation in this
case came out to be -0.06 and 2.19. The mean is the same while there is a slight increase
in standard deviation but the shape can be generated back except at ends. Figure 11 shows
the signals y(t) and ynew(t) for the modified method.
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Figure 11: Plot of y(t) and ynew(t) generated by using phase angles of y(t) at H21

Figure 12 shows the auto spectrum of y(t), Pyy and ynew(t), Pyynew for the modified method.
They are almost identical.

Figure 12: Plot of spectral densities of y(t) and ynew(t)

22



3 Results and discussions

3.1 Sandia method on measured signals

In this section, it is investigated whether Sandia method can be used to reproduce measured
signals. Measured wind data from FINO1 station at 40m and 80m height under neutral
conditions is selected (14). The length of the time series is 76000 steps with frequency 20Hz.
This gives a total measuring time of over 1 hour. Mean is taken out of the time series and
only turbulent part is preserved.

Five different cases of the method have been looked at based on spectra, phase angles and
coherence of the measured signals. It is investigated if time series at 80m height can be
reproduced by using the information only from time series at 40m eventually.

Case 1: Original Sandia method. Spectrum, coherence and phase angles are calculated from
the measured signals and used accordingly as specified in the method to see if they can be
reproduced back.
Case 2: A slightly modified method where only the phase information of the second signal
is used to generate it back rather than using phase information from both signals.
Case 3: Phase angles for second signal are generated randomly
Case 4: Random phases of second signal and theoretical coherence function
Case 5: Random phases of second signal, theoretical coherence function and similar spectra

3.1.1 Case study 1

Time series at 40m is taken as initial/first signal x(t). From Fourier analysis of x(t), the
spectrum (Pxx) and phase angles (phaseX) can be computed at each frequency till Nyquist
frequency. Similarly, time series at 80m (second signal) is labelled as y(t) with spectrum
as Pyy and phase angles as phaseY. The main purpose is now to see if Sandia method can
reproduce more or less x(t) and y(t) back if all the input information is known beforehand
i.e, information about x(t) and y(t). The newly generated time series are called xnew(t) and
ynew(t).

The coherence function used in the method is the calculated coherence in along wind direc-
tion (uu-coherence) between the original time series x(t) and y(t). Mean squared coherence
is calculated with 8 Hamming windows and 50% overlap between each window (15). The
square root of these values give actual coherence values, named Cxy. It should be noted that
these coherence values won’t approach zero at high frequencies as this is not co-coherence
but magnitude of the complex coherence. It will always have values greater than zero.

It is observed that the newly generated time series xnew(t) is exactly the same as x(t) as
seen in figure 13 because it is just fft and ifft of the time series. But time series ynew(t) is
bit different from y(t) as seen in figure 14. When followed Sandia method with all the input
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from original time series, the standard deviation of the newly generated time series ynew(t)
is higher than the original time series y(t) but the mean is maintained which is zero. The
shape of the original time series is retained in the new time series but the standard deviation
has increased by 16%. The below table 1 shows the properties of the time series.

Table 1: Difference in properties of time series y(t) and ynew(t)

mean standard deviation

y(t) 3.3e−14 1.784
ynew(t) −5.9e−14 2.069

Figure 13: Plot of x(t) and xnew(t) generated by following Sandia method

Figure 14: Plot of y(t) and ynew(t) generated by following Sandia method
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Figure 15: Plot of Cxy and Cxynew

Figure 13 represents the original time series x(t) and generated time series xnew(t). They
are identical. Figure 14 represents the original time series y(t) and generated time series
ynew(t). There are some changes in the new time series but follows the original time series
pattern. Overall the values seems bit higher and hence higher standard deviation. Figure
15 represents the original coherence between x(t) and y(t), Cxy and new coherence between
xnew(t) and ynew(t), Cxynew. The newly generated coherence Cxynew is bit higher than Cxy
at all frequencies. This is because of the influence of phaseX in generation of ynew(t). The
cross component H21 of lower triangular matrix in Sandia method is multiplied with phaseX
and added to the product of H22 and phaseY in order to generate ynew(t). Therefore phaseX
has influence over ynew(t) at least at lower frequencies because H21 is significantly higher
than H22. Therefore higher coherence is expected at lower frequencies. It is also observed
that Cxynew is higher than Cxy in all frequency range but follows a similar pattern.

3.1.2 Case study 2

In order to rectify the coherence, Sandia method is modified and run again. The cross
component H21 of lower triangular matrix is multiplied with phaseY instead of phaseX. No
difference in x(t) and xnew(t) is expected and observed. The below figures 16 and 17 and
table 2 shows the differences in y(t) and ynew(t) for the new run.
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Figure 16: Plot of y(t) and ynew(t) with phaseY used at H21

Figure 17: Plot of Cxy and Cxynew with phaseY used at H21

Table 2: Difference in properties of time series y(t) and ynew(t) with phaseY used at H21

mean standard deviation

y(t) 3.3e−14 1.784
ynew(t) 6.6e−14 2.168

It can be seen from figure 16 that generated time series ynew(t) follows exactly the pattern
of y(t). Even though the pattern is almost identical, ynew(t) has higher values than y(t)
almost everywhere. That explains the high standard deviation. It should be noted that this
standard deviation for ynew(t) is even higher than the one from table 1. But, the coherence
Cxynew is very similar to original coherence Cxy which is seen in figure 17. This is because
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only phaseY is used to generate ynew(t). Even though this method produces better coherence
than original Sandia method, it increases the standard deviation of the newly generated time
series by 22%.

3.1.3 Case study 3

Both cases 1 and 2 have some problems recreating the time series y(t) back. Now, a dif-
ferent approach has been looked at. The original Sandia method is taken again i.e, H21 is
multiplied with phaseX and H22 is multiplied by phaseY and added together in order to
generate ynew(t). The time series at 80m height, y(t) and its phase angles at each frequency
till Nyquist frequency are already known. Instead of using these phase angles to generate
ynew(t), this time, the phase angles are generated randomly by a uniform distribution be-
tween 0 and 2π. This random phase generation method is frequently used in Sandia method
(8) if information about time series is not available. In this run, only the phaseY is random,
other values like auto spectrum Pyy and time series for coherence calculation is taken from
y(t). The below figures 18 and 19 and table 3 shows the differences in y(t) and ynew(t) for
the new run.

Figure 18: Plot of y(t) and ynew(t) with random phaseY
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Figure 19: Plot of Cxy and Cxynew with random phaseY

Table 3: Difference in properties of time series y(t) and ynew(t) with random phaseY

mean standard deviation

y(t) 3.3e−14 1.784
ynew(t) −6.3e−14 1.784

Figure 18 represents the original time series y(t) and the generated time series ynew(t) with
random phase. The new time series is different but follows the original time series pattern at
low frequencies. Overall the values of new time series ynew(t) looks different but the standard
deviation is identical to the original series. Table 3 shows the average statistical properties of
two time series over 10 iterations (because phaseY is generated randomly). From figure 19,
the coherence Cxynew is higher than the original coherence Cxy at high frequencies and this
is observed in case1 and very similar to each other at low frequencies and this is observed in
case2. Even though this method generates time series very identical to original time series
statistically, it still depends on the information from y(t).

3.1.4 Case study 4

In the above method, coherence Cxy is calculated from already known time series x(t) and
y(t) and used as per Sandia method to generate ynew(t). But this time, theoretical coherence
function along with random phaseY is used to generate ynew(t). The Frost coherence function
mentioned in Sandia paper (8) with decay coefficient of 7.5 and mean wind velocity at 40m
height are used to calculate theoretical coherence Cxy. When fitted the original coherence
between x(t) and y(t) with Frost coherence function, the decay coefficient came out to be 10
but this is not used here. The only information taken from y(t) is it’s auto spectrum Pyy.
The below figures 20 and 21 and table 4 shows the differences in y(t) and ynew(t) for the new
run.
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Figure 20: Plot of y(t) and ynew(t) with random phaseY and theoretical coherence function

Figure 21: Plot of Cxy and Cxynew with random phaseY and theoretical coherence function

Table 4: Difference in properties of time series y(t) and ynew(t) with random phaseY and
theoretical coherence function

mean standard deviation

y(t) 3.3e−14 1.784
ynew(t) −6.5e−14 1.791

From figure 20, the pattern of generated time series ynew(t) is bit different but follows the
original time series y(t)’s pattern at low frequencies. The turbulent wind speed values of
ynew(t) are also bit different but the standard deviation is very close to the original series
y(t) but not as similar when the coherence Cxy is calculated from original time series x(t)
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and y(t) like in case study 3. Table 4 shows the statistical properties of the two time series
averaged over 10 iterations (because phaseY is generated randomly). From figure 21, the new
coherence Cxynew is bit lower than the theoretical coherence Cxy at low frequencies but it
is very close. Cxynew also approaches zero around 0.2 frequency and oscillates around zero.
The negative values of the coherence occurs because only the real value of the coherence
(co-coherence) is plotted but not the mean squared coherence like in above coherence plots.
Co-coherence is plotted here because the theoretical coherence function (ref: Frost function)
will approach zero as frequency increases and this can only be achieved by co-coherence but
not by mean squared coherence.

The power spectral densities of y(t) and ynew(t), Pyy and Pyynew are plotted over frequency.
It can be seen from figure 22 that both spectrum are very close to each other and that the
inertial sub range with slope close to −5/3 exists. The existence of inertial sub range tells
us that the flow is turbulent. It should also be observed that only large eddies that contain
most of the turbulent kinetic energy are captured but not small eddies that are responsible
for the viscous dissipation of this energy by this measurement frequency of 20Hz.

Figure 22: Plot of power spectral densities Pyy and Pyynew

3.1.5 Case study 5

In all the above cases, information from time series y(t) is used either very extensively or
nominally in order to generate ynew(t). But in reality, information about y(t) might not be
available. So, now, only the information from x(t) is used to generate ynew(t) and compared
with y(t). For this, phaseY is generated randomly from uniform distribution between 0 and
2π, theoretical Frost coherence function with decay coefficient 7.5 is used for Cxy and the
power spectral density of x(t), Pxx is used for Pyy (Pyy = Pxx) as input. The below figures
23 and 24 and table 5 shows the differences in y(t) and ynew(t) for the new run.
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Figure 23: Plot of y(t) and ynew(t) with random phaseY, theoretical coherence function and
Pyy=Pxx

Figure 24: Plot of Cxy and Cxynew with random phaseY, theoretical coherence function and
Pyy=Pxx

Table 5: Difference in properties of time series y(t) and ynew(t) with random phaseY, theo-
retical coherence function and Pyy=Pxx

mean standard deviation

y(t) 3.3e−14 1.784
ynew(t) −10e−14 1.926

From figure 23, the generated time series ynew(t) follows the original time series y(t)’s pat-
tern in the low frequency. The values of new time series seems a bit higher than y(t) on
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average and this is seen from the standard deviation which increased by 8%. Table 5 shows
the statistical properties of the two time series averaged over 10 iterations (because phaseY
is generated randomly). From figure 24, the new coherence Cxynew is very similar to the
theoretical coherence Cxy at very low frequencies and a bit higher after but they are very
close to each other. Co-coherence is plotted for Cxynew and approaches zero around 0.2
frequency similar to Cxy

Since only the information of time series x(t) is used as input in Sandia method, the sta-
tistical properties of ynew(t) are closer to statistical properties to x(t) than y(t) seen from
table 6. This means, the auto-spectrum chosen for ynew(t) plays a major role in determining
it’s statistics. Also the pattern of ynew(t) is more similar to x(t) than y(t). Figures 25 and
26 shows the plot of x(t) and ynew(t) and x(t) and y(t) respectively. It can be seen clearly
that the original time series x(t) and y(t) are not so similar as x(t) and ynew(t). This is
also observed when calculated coherence between x(t) and y(t) is used instead of theoretical
coherence function. It seems that coherence has very little influence on the overall statistical
properties of the time series as it only exists in low frequencies and the new time series
ynew(t) follows original time series x(t) over these frequencies. This may also imply that the
assumptions made by Sandia method might not be valid for large separation distances.

Note: The turbulent kinetic energy of x(t) is higher than y(t), Pxx > Pyy because the time
series x(t) is measured at 40m height which is most probably inside the surface layer whereas
the time series y(t) is measured at 80m height. So, one has to be really careful when applying
this method when no information is available.

Figure 25: Plot of x(t) and ynew(t) with random phaseY, theoretical coherence function and
Pyy=Pxx

32



Figure 26: Plot of x(t) and y(t)

Table 6: Difference in properties of time series x(t) and ynew(t) with random phaseY, theo-
retical coherence function and Pyy=Pxx

mean standard deviation

x(t) −5.1e−14 1.906
ynew(t) −10e−14 1.926

The power spectral densities Pxx and Pyynew are plotted on a log-log plot. It can be seen
from figure 27 that the spectra are similar. This is because Pyynew is almost equal to Pxx.

Figure 27: Plot of power spectral densities Pxx and Pyynew

33



3.2 Summary in generation of ynew(t) by Sandia method

A short summary of the the above procedures is listed below. The original time series x(t)
and/or y(t) are used to create new time series xnew(t) and ynew(t) by the use of Sandia
method. The Fourier analysis of x(t) and y(t) gives the energy spectrum Pxx and Pyy and
phase values phaseX and phaseY at various frequencies from [0 fN ]. Only the coherence in
along direction (uu-coherence) is considered.

Case 1: Sandia method as mentioned in the paper (8) to generate ynew(t)
Case 2: Slightly modified method where phaseY is used at H21 instead of phaseX
Case 3: Random phase is used for phaseY with original method
Case 4: Random phase for phaseY and theoretical coherence
Case 5: Random phase for phaseY, theoretical coherence and Pyy = Pxx

Table 7 shows the differences in statistical properties for ynew(t) for all the cases.

Table 7: Difference in statistical properties for all cases

mean standard deviation

x(t) −5.1e−14 1.906
y(t) 3.3e−14 1.784
Case 1 −5.9e−14 2.069
Case 2 6.6e−14 2.168
Case 3 −6.3e−14 1.784
Case 4 −6.5e−14 1.791
Case 5 −10e−14 1.926

Even though case 1 supposed to give same results as y(t), it some how gives higher standard
deviation indicating an increase in turbulence in the new time series ynew(t). This is because
of the influence of x(t) in generation of ynew(t). Case 2 predicts the coherence between newly
generated time series very well but gives even higher standard deviation than case 1. Case
3 seems like an ideal situation where the method re-produces the signal statistically but it
depends on the information of y(t) for auto-spectrum, Pyy and coherence calculation. Case
4 also gives statistical properties close to y(t) but still depends on spectrum Pyy. ynew(t)
generated by case 5 is completely independent of the information from y(t). Even though
the standard deviation increased by 8% compared with y(t), this procedure only depends on
one input signal, x(t). Compared with standard deviation of x(t), the standard deviation of
case 5 has only increased by 1%. From now on, only the procedure mentioned in case 5 is
adapted further assuming one time series is available.
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3.3 Rectangular wind field generation

A wind field is required to find loads on a turbine. A code for generation of a wind field based
on case 5 of Sandia method has been developed. The wind field developed is for DTU 10MW
reference turbine. This turbine has rotor diameter of 178.3m and hub height of 119m. But,
for convenience, the diameter has been assumed to be 180m and hub height 120m. Logarith-
mic wind profile, equation 2 is used to obtain mean wind velocity at hub height with velocity
at 10m height U10 = 10m/s as reference height and velocity and surface roughness length
Z0 = 0.01m as input. The mean wind velocity at hub height came out to be Uhub = 13.59m/s.

The wind field generated has the shape of a rectangular box. Since, only the loads on the
blades are of interest, the width and height of the rectangular wind field box is same as the
rotor diameter, 180m. This width and height is again divided into 20 segments so that wind
velocity values are known at every 9m distance as shown in below figure 28.

Figure 28: Plot of a frame of known wind speeds at various points on the rotor plane along
with the blades of the turbine

In order to generate the wind field box according to Sandia method, information about the
spectral matrix (8) is needed as input. This spectral matrix is symmetric where the diagonal
contains information about auto-spectra of all the points in the wind field and others cross-
spectra which can be found from coherence and auto-spectra. Initially, no information is
available about the matrix without wind measurements. One can go with the standards and
use theoretical spectrum Kaimal or Von Karman (Kaimal spectrum is commonly used with
Sandia method). Instead of directly using a spectral model, time series can also be used to
calculate the spectra using Fourier analysis. This code for generation of wind field uses the
time series at hub height as input and follows the same procedure as case 5 mentioned above.
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The time series at hub height is extracted from a wind field generated in Qblade 2. This time
series is used in the code with the same parameters. The length of the time series is 1024
with time step 0.5 sec. Therefore, the total time is 512 sec. By the assumption of Taylor’s
hypothesis, (1) time scale can be converted into length scale with the help of mean wind
velocity at hub Uhub. The length scale is Uhub ∗ 512 which is approx. 6958m. Therefore, the
rectangular wind field box has dimensions LxBxH as 6958x180x180. This wind field box is
projected on to the rotor plane of the turbine with velocity Uhub in order to find time se-
ries of structural loads. An animated movie of the wind field has been made for visualization.

Figure 29: Plot of a rectangular box wind field projecting on a turbine

The input parameters used for generation of wind field are:

• Length of time series, 1024 steps

• Timestep, 0.5 sec

• No. of points in across wind direction (along Y axis), 21

• No. of points in vertical wind direction (along Z axis), 21

• Distance between each point along Y axis, 9m

• Distance between each point along Z axis, 9m

• Mean wind velocity at hub height, 13.59 m/s

• Mean wind velocity at 10m height, 10 m/s

• Surface roughness length, 0.01m

2Qblade is an open source software on design of wind turbines developed at TU Berlin

36



• Tubulent Intensity, 10%

• Hub height, 120m

• rotor radius, 90m

Figure 30: Plot of snapshot from animated wind field. The color bar on the right side
suggests wind speed in m/s

3.3.1 Comparison with wind field from Qblade

The wind field that has been generated above (called as Sandia in this section) is compared
statistically with the wind field from Qblade where time series at hub is taken from for one
realization. Figure 31 shows the standard deviation plotted for all the points (441) in wind
field from left to right and bottom to top.

Figure 31: Plot of standard deviation of time series of wind fields from Qblade and Sandia
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The standard deviation from Qblade increases with height in the wind field. This is because,
as the mean wind velocity increases with height, the standard deviation must increase in
order to keep the turbulent intensity (T.I) constant as T.I = std/mean. This behaviour is
opposite in real atmosphere where the standard deviation of wind velocities decreases with
height (16).

The standard deviation of the wind field from Sandia is more or less constant3. If the mean
wind speed increases with height and the standard deviation is constant, then the T.I de-
creases with height. This is observed in real atmosphere where the turbulent kinetic energy
decreases with increasing height in neutral atmosphere. Even though this phenomenon is
not included in the procedure, it justifies the decrease in turbulence with height.

Figure 32 shows the coherence between hub center and points along the upper Z-axis with an
interval of 9m distance in the wind fields. The theoretical Frost coherence functions for vari-
ous separation distances can be seen in figure 34b. The wind field from Sandia method shows
better coherence than the wind field form Qblade. For large separation distances, Qblade
cannot capture the coherence at low frequencies. Also, the coherence dies out rapidly even
for small separations.

Figure 32: Plot of Co-coherence between hub center and points along upper Z-axis in the
wind fields from Qblade and Sandia

Figure 33 shows the coherence for near and far separation distances from hub center for both
wind fields along with Frost theoretical coherence function. It can be seen that Sandia wind
field represents the theoretical coherence better than Qblade even though it predicts a bit
higher coherence at low frequencies.

3The standard deviation of the input signal is 1.29 where as the average standard deviation of the wind
field is 1.36. There is an 5% increment
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Figure 33: Plot of co-coherence between hub center and 9m and 72m along upper Z-axis for
Qblade and Sandia wind fields

3.3.2 Modified wind generation method

The method adapted above generates time series at each point in the wind field sequentially.
Even though the time series are generated sequentially, it does not include the phase infor-
mation of already generated time series to generate next one. So, a slightly modified version
of the wind generation method has been investigated where the phase information of already
generated time series has been used to create the next time series. More clear explanation
follows with an example.

Let’s say we have an initial time series x(t) at the hub center. We want to generate 2 new
time series y(t) and z(t) at 9m and 18m distance from the hub. First, the time series y(t)
is generated according to the procedure mentioned in case 5 from theoretical coherence Cxy,
Pxx, phaseX and phaseY. phaseY used here is generated randomly by an uniform distribution
in the range [0 2π]. But, once the time series y(t) is known, Fourier analysis of y(t) gives
new spectrum and new phase information, say Pyy and phaseY2. Pyy will be close to Pxx and
phaseY2 will be close to phaseY only at high frequencies but not at low frequencies because of
the influence of phaseX in generation of time series y(t). The time series at 18m, z(t) can be
generated either by using random phase (phaseY) or Fourier analysis phase (phaseY2). The
original method still uses phaseY. A slightly modified method is proposed where phaseY2 is
used i.e, the original random phases chosen for y(t) corrected for the correlation with x(t).

Using time series at hub center as input, new time series of wind velocities are developed
based on original and modified method along upper Z-axis (assuming the origin is at hub
center) at every 9m interval until 90m (rotor radius). In total, there are 10 different time
series generated for each method. Coherence between hub center time series and the gener-
ated time series are calculated to compare with the input theoretical coherence functions in
order to validate the authenticity of each method.
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(a) Plot of initial time series at hub center (b) Plot of theoretical coherence

Figure 34: Plot of time series at hub height and theoretical coherence functions at various
separation distances

Figure 34a shows the time series at hub center and figure 34b shows the theoretical coherence
between hub center and at a distance along the rotor radius, which are used as input for
original and modified method.

(a) Plot of calculated co-coherence for original
method

(b) Plot of calculated co-coherence for modified
method

Figure 35: Plot of co-coherence at various separation distances from hub center for original
and modified method
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Figures 35a and 35b shows the coherence calculated from the time series generated based
on original and modified method respectively for a random realization. It can be seen that
the coherence of the original method is close to the theoretical coherence (figure 34b) than
modified method. Modified method shows high coherence even at larger separation dis-
tances. However it reaches unity when frequency approaches zero and the curvature changes
to convex upwards. Original method does not reach unity when frequency approaches zero
for large separations. This phenomenon is observed in real flow measurements (10) and (17).
The frost coherence function approaches unity even for larger separation distances when
frequency approaches to zero but original method doesn’t.

Figures 36a and 36b shows the plots of the generated time series for original and modified
method including input time series. The time series generated by original method follows
the pattern of the input time series a bit while the time series generated by modified method
follows very close. When the no. of points in the wind field (no. of time series to be
generated) increases, it becomes even tougher for the time series generated by original method
to follow the pattern of the input time series as the randomness in the model increases. While
on the other hand, the total energy of the time series generated according to modified method
has increased drastically compared with the total energy of the input time series. This keeps
on increasing with increasing no. of points in the wind field. From figure 34a, the input
time series of turbulent wind speeds at hub center has range [-3 4]m/s while figure 36b
shows that the time series generated by modified method has range [-8 10]m/s. This gives
much higher energy than the input energy. When the whole wind field (rectangular box)
has been generated according to modified method, turbulent wind speeds as high as 20m/s
are observed. Obviously this is wrong. Where as, from figure 36a, the time series generated
by original method has range from [-4 4]m/s which is close to the range of input time series.
This range and total energy hasn’t change much even when the whole wind field is developed.

(a) Plot of time series generated by Sandia
method

(b) Plot of time series generated by modified
Sandia method

Figure 36: Plot of 11 time series along upper Z-axis for original and modified method
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In short summary, two different rectangular wind fields are developed based on the procedure
of case 5 as mentioned in section 3.1.5. One where only random phases are used and other,
the random phases are corrected for the correlation with input time series. This correction
increases the turbulent kinetic energy drastically and gives high coherence even at large
separations. So, only the wind field generated by random phases is considered further.

3.4 Polar wind field generation

The wind field generated by Sandia method is a rectangular box with information about
wind velocities at various points in space. This box is projected onto the DTU 10MW Hor-
izontal Axis Wind Turbine(HAWT). The box has width and height as the rotor diameter of
HAWT. Since, the blades of the turbine rotates in a circular motion, and the wind field is
rectangular, it is possible that the wind speeds at a particular location on the blade is not
available for a particular time step and have to interpolate from the nearest points on to
the blade. The interpolation procedures can be debatable since turbulent wind speeds are
stochastic.

In order to avoid interpolations and find wind speeds at exact locations on the wind turbine
blades at every instant, a circular wind field using cylindrical co-ordinates is developed with
the same parameters as the rectangular wind field. This wind field looks like a cylinder with
length equal to the length of the rectangular wind field box and has a diameter equal to the
rotor diameter. The DTU 10MW wind turbine rotates with approx. 10 rpm. This is equal
to π

3
rad/s. The time step of the input time series is 0.5 sec. This means, the blade rotates

π
3
∗ 0.5 = π

6
degrees every single time step. Therefore, 12 points are needed on each circle in

order to have sufficient frequency resolution since π
6
∗ 12 = 2π.

The HAWT rotor has a radius of 90m which is divided into 10 segments with each segment
of length 9m. The polar wind field is generated in a way that wind speeds are known at
every 9m on the blade as shown in figure 37.
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Figure 37: Plot of a frame of known wind speeds at various points radially on the rotor plane
along with the blades of the turbine

Figure 37 shows that radially distributed points coincides exactly with the blades which
wasn’t the case with the rectangular wind field, figure 28. Also, the no. of points in each
frame reduced from 441 to 121 which makes the simulation time much less for a polar wind
field.

Figure 38: Plot of a polar wind field along with HAWT

The polar wind field has a total of 121 different time series including input time series at
hub center. The standard deviation of input time series is 0.98. The average standard devi-
ation of all 120 generated time series is 1.04. There is a 6% increase in the value but this is
expected based on the procedure (case 5).
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3.4.1 Coherence plotting methods

The coherence in along wind direction between hub center time series and 120 generated
time series are calculated for a realization of a polar wind field. There are 12 points at
equal separation distance from hub center at every 9m interval. Average is taken for these
12 points and only one coherence plot is plotted for each separation distance. So, in total,
there will be 10 coherence plots. Figure 39 shows these 10 coherence plots along with input
theoretical coherence function.

Figure 39: Plot of averaged coherence from hub center to all distances. Red - calculated
average co-coherence, Blue - theoretical coherence

Instead of averaging the coherence of 12 points at every separation distance, another way
of plotting coherence is looked at. Concatenation of time series. All the 12 time series at
a certain separation distance are concatenated and coherence is plotted between hub center
time series and the concatenated time series.
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Figure 40: Plot of concatenated co-coherence between hub center and 9m separation points
along with theoretical coherence

Figure 41: Plot of averaged co-coherence between hub center and 9m separation points along
with theoretical coherence

Figure 40 shows the coherence plot between hub center and concatenated time series at
9m separation and figure 41, the averaged coherence. It can be seen that the concatenated
coherence represents the original coherence function better than the averaged coherence and
especially at low frequencies where coherence is higher. The reason could be reduction in
margin or error (18). Margin of error(MOE) for a sample is given as:

MOE = Z ∗ σ√
N

(14)

where,
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Z = Z-score value for a certain confidence interval
σ = standard deviation of the sample
N = sample size

When coherence is calculated by concatenation procedure, the length of the time series
becomes 12*1024 = 12288 and window size is taken to be 1024 which is the size of each
individual time series. So, the sample size for this procedure is 1024. Averaged coherence is
made with average of 12 coherence functions that are calculated with 12 time series each of
length 1024 and window size of 128. The sample size for this method is 128.

As MOE is inversely proportional to the square root of sample size, MOE decreases with
increasing sample size. So, the averaged method will have high error than concatenated
method. This high error that exists initially for all 12 coherence functions will be averaged
but not reduced.

3.5 Bending moment calculations on a beam

Once a polar wind field is generated with sufficient spatial and temporal resolution, struc-
tural loads on the turbine blades can be calculated using the wind velocities from the wind
field. The wind velocities are known at every 9m on the blade with a frequency of 2Hz. The
global structural response - root bending moment of the blade is investigated for various
cases depending on the variation in wind shear and/or turbulence in the wind field. The
polar wind field that is considered for calculating bending moments have Uhub as 17.7m/s,
roughness length 0.01m and turbulent intensity 10%.

3.5.1 Fixed cantilever beam

But first, an ordinary cantilever beam (fixed at one end) of the same length as the blade
is taken to see how the forces look like in general. The beam is placed in the wind field
and checked for root bending moment (bending moment at the fixed end). No structural
deformations are taken into account assuming that the beam is stiff and also mass free. The
beam is assumed to have a circular cross section with 4m diameter and drag coefficient (Cd)
as 0.5. Cd depends on the Reynolds number. Since, atmospheric turbulent flows have high
Reynolds number, the choice for the value of Cd can be justified (19).

The beam is placed along the Z-axis on the lower half of the polar wind field as seen in
figure 42. The beam is also divided into 10 segments each of 9m length and drag forces are
calculated at the mid-point of each segment. Using these drag forces and the distance from
the fixed end, bending moment at this end can be calculated. Bending moment for various
cases of the wind loads have been investigated.
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Load case 1: Homogeneous wind field i.e, without wind shear and turbulence. The wind
velocities in the whole wind field are considered to have Uhub
Load case 2: Steady wind field i.e, with wind shear but without turbulence
Load case 3: Ordinary wind field i.e, with wind shear and turbulence

Table 8 shows the mean and maximum bending moment for different load cases. The homo-
geneous and steady wind field have same mean and maximum because the wind velocities
are not changing over time. However, load case 1 have higher bending moment and this is
because, for load case 2, the wind velocities decrease from fixed to free end due to shear.
Comparing load cases 2 and 3, including turbulence has almost no effect on the mean but
significantly increases the maximum bending moment.

Figure 42: Plot of the cantilever beam placed in the wind field (6)

Table 8: Bending moment values for various load cases on a fixed cantilever beam in N-m

Load case Mean Maximum

1 1.2665e6 1.2665e6

2 1.0718e6 1.0718e6

3 1.0793e6 1.5853e6

Figure 43 shows the drag forces on all segments of the beam for the 3 load cases for a ran-
dom time step of wind loads. The drag force doesn’t change along the beam for load case 1,
decreases for load case 2 and random for load case 3. Bending moment values for all time
steps for the load cases can be seen in figure 44. The bending moment values doesn’t change
for load cases 1 and 2 and random for load case 3.
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Figure 43: Plot of drag force on each beam segment for the 3 load cases for a random time
step

Figure 44: Plot of bending moment at the fixed end for the 3 load cases for all time steps

3.5.2 Rotating cantilever beam

The same beam is made to rotate like HAWT. Now, it will have X-rotational degree of
freedom free instead of fixed. The rotational velocity is taken to be 10 rpm which is the
same as the DTU 10MW blade’s rotational velocity at/above rated wind speed. Only load
case 3 with wind shear and turbulence in the wind field along with the rotation is presented.
Let’s call this load case 4 (load case 3 + rotation). Other load cases 1 and 2 with rotation
can be seen in appendix B.
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Table 9: Bending moment values for load cases 3 and 4 in N-m

Load case Mean Maximum

3 1.0793e6 1.5853e6

4 1.9150e7 1.9855e7

Table 9 shows that the bending moment values for load case 4 increased more than 10 times
compared with load case 3. This means, the bending moment due to rotational velocities
dominates over the bending moment due to actual wind velocities at above rated wind speed.
This is because the rotational velocities increase linearly with radial distance. For a beam
rotating with 10rpm and radius 90m, tip rotational speed will be over 90m/s while wind
velocities will only be around 17.7m/s. The total velocity is calculated as shown in below
figure 45.

Figure 45: Plot of total velocity calculation

Using Utotal, drag forces can be calculated which in turn used to calculate bending moment.
It should be noted that due to turbulence Uwind changes every time step and so does α. This
means, the direction of drag force changes a bit every time step due to turbulent wind speeds
but this is neglected.

Figure 46 shows the plot of root bending moment for load case 4. This bending moment
does not have high standard deviation because bending moment due to rotation which has
higher influence is constant for all time steps.
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Figure 46: Plot of bending moment of a beam with rotation placed in the polar wind field

Figure 47 shows the plot of drag force on the beam for a random time step. It can be seen
that the drag force increases with the power 2 radially along the beam.

Figure 47: Plot of drag forces on the beam with rotation for a random time step

Drag forces without mean have been plotted for segments closest and farthest from the hub
to check for drag force variability. Figure 48 shows the drag force values without mean for
all time steps for segment 1 and 10. Segment 1 being close to the hub and segment 10 the
farthest. Clearly forces at segment 10 have higher variability due to larger variations in the
wind velocities because of shear. It should also be observed that segment 10 follows the
pattern of segment 1 indicating the coherence in the wind field.
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Figure 48: Plot of drag force variability at segment 1 and segment 10 of the beam with
rotation

3.6 Bending moment calculations on a blade

Now, the polar wind field is projected on to an actual DTU 10MW HAWT with rated rotor
speed of 10 rpm. The turbine blades will have airfoil cross sections where both lift and drag
forces exist. The blade has different airfoil types over the span. Information about blades
and airfoils can be found in (7). The blade is divided into 10 segments of 9m length in
order to apply 2D Beam Element Momentum (BEM) theory. For each 9m span of the blade,
chord length is averaged and assumed an airfoil type (common for that span) of this chord
length. Using these chord lengths and distances from hub center, twist angles of the blade
are extracted. The pitch of the blade with 17.7m/s mean wind speed at the hub and axial
induction factor4 of 0.2 is 9.87deg. Pitch + twist gives θ (figure 5). Table 10 shows the twist
angle and airfoil type for each segment of the blade.

4The choice of axial induction factor value comes from BEM theory
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Table 10: Twist angle, θ and airfoil type for each segment of the blade (7)

Segment
length (m)

Mid-point
distance (m)

Chord length-
average (m)

Twist
(deg)

θ (deg) Airfoil section
type

0 - 9 4.5 5.38 14.5 24.4 CYLINDER
9 - 18 13.5 5.65 13.9 23.8 FFA-W3-600
18 - 27 22.5 6.15 9.0 18.9 FFA-W3-480
27 - 36 31.5 6.00 6.4 16.3 FFA-W3-360
36 - 45 40.5 5.42 4.8 14.7 FFA-W3-300
45 - 54 49.5 4.70 3.0 12.9 FFA-W3-300
54 - 63 58.5 3.90 1.2 11.1 FFA-W3-240
63 - 72 67.5 3.15 -0.5 9.4 FFA-W3-240
72 - 81 76.5 2.49 -1.8 8.1 FFA-W3-240
81 - 90 85.5 1.58 -3.0 6.9 FFA-W3-240

From 2D BEM theory, an axial induction factor of 0.2 gives the required power output. The
average power from calculations came out to be 11MW. Considering 10% losses from gears
and generator, required power output of 10MW at above rated wind speed is achieved. How-
ever, the thrust forces from calculations and Betz theory are different. If the axial induction
factor is adjusted to achieve same thrust forces, power output has decreased. This theory is
very sensitive to the choice of axial induction factor. Since, power output of 10MW has to be
achieved at above rated wind speed, axial induction factor is kept at 0.2 for further analysis.
The thrust forces are not balanced because the BEM theory applied here is a simplified
version. Corrections like tip losses, Glautert limit, 3D effects have not been considered. But,
this should be okay since we are only looking for the relative importance of various load cases.

By 2D Blade Element Momentum (BEM) theory, the angle of attack, α can be calculated
(α = φ − θ, figure 5) for every time step and for every segment of the blade. Using α,
stationary lift and drag coefficients (CL, CD) can be extracted and used to find lift and drag
forces.Using lift, drag and φ, thrust on the blade perpendicular to the rotor plane at each
segment is calculated. Using thrust and segment distance from hub center, flap-wise bending
moment is calculated.

The force that is parallel to the rotor plane which drives the rotation of the blade is also
calculated from lift,drag and φ. Using this force and segment length, bending moment due
to rotation is calculated. The mass of each blade is 41716kg with center of gravity at 21.2m
span from hub center. Using this, bending moment due to gravity is also calculated. The
sum of bending moment due to gravity and rotation gives edge-wise bending moment.
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3.6.1 Blade load cases

Like in the case of cantilever beam, different load cases have also been investigated on the
blade based on wind shear and turbulence in the wind field which are listed below. Neutral
atmospheric conditions are assumed. Wind shear is calculated based on logarithmic wind
profile and turbulent intensity is 10%. When no shear in the wind is assumed, the mean wind
velocity at the hub (Uhub = 17.7m/s) is considered as the mean wind velocity for the whole
rotor plane. Table 11 shows the mean and maximum bending moments for flap-wise and
edge-wise. The maximum cycle height for edge-wise is the difference between maximum and
minimum value for all time steps of the wind field. The values given are for one realization
of a wind field and the same turbulent time history is used for all the load cases.

Blade load case 1: No shear and no turbulence
Blade load case 2: With shear and no turbulence
Blade load case 3: No shear and with turbulence
Blade load case 4: With shear and turbulence (ordinary scenario)

Table 11: Bending moments for various cases of the blade in N-m

Blade
load
case

Mean flap-
wise bending
moment

Maximum
flap-wise
bending
moment

Mean edge-
wise bending
moment

Maximum
edge-wise
bending
moment

Maximum
cycle height
edge-wise

1 1.6027e7 1.6027e7 3.5485e6 1.2187e7 1.7316e7

2 1.5696e7 1.7678e7 3.4698e6 1.2187e7 1.7316e7

3 1.6025e7 2.5811e7 3.6035e6 1.5931e7 2.2570e7

4 1.5694e7 2.5811e7 3.5249e6 1.5931e7 2.2570e7

Table 12: Standard deviation of bending moments in N-m

Blade
load
case

Standard deviation
flap-wise bending
moment

Standard deviation
edge-wise bending
moment

1 0 6.1252e6

2 1.6333e6 6.1456e6

3 2.4564e6 6.1618e6

4 2.9499e6 6.1818e6

From table 11, the mean flap-wise bending moment increases by a small amount around 2%
when wind shear is absent. This can be explained by a small example. Let’s take segment
10 (at tip) of the blade for analysis. The mean wind velocity at segment 10 without shear
is Uhub, 17.7m/s. The mean wind velocity at segment 10 with shear when it is at the top of
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the wind field is 18.7m/s and at bottom of the wind field is 15m/s. The average mean wind
velocity in shear is 16.85m/s. For large rotational velocities, the wind velocity is proportional
to the flow angle (ref: equation 11). The angle of attack increases with increasing flow angle.
And, the forces on the blade are proportional to the angle of attack (ref: equations 12 and
13). So, the forces are proportional to wind velocity. Due to this, there is a slight reduction
in mean forces when shear is present. Also, the slope of the wind profile keeps on changing
with height when shear exists. Figure 49 shows that the increment of wind speed from hub
center and above is lesser than the decrement from hub center and below from Uhub. On the
other hand, turbulence has almost no influence on mean flap-wise bending moment because
the mean turbulent velocity is zero.

Figure 49: Plot of wind profiles for the rotor diameter with and without shear

Shear has some influence on maximum flap-wise bending moment. Comparing case1 and
case2 when there is no turbulence, the value increases by 10%. And, comparing case3 and
case4 when turbulence exists, wind shear has no influence on maximum flap-wise. This is
because the maximum occurs at a time step when the blade is horizontal (along Y-axis) in
the wind field. Then the loads on the blade will be the same for both cases. Otherwise, a
slight increase in maximum values should be expected due to wind shear. Anyways, Shear
has more influence on maximum flap-wise bending moment when turbulence is not present
which is highly rare in real atmosphere.

Turbulence increases maximum flap-wise bending moment. Comparing case2 and case4,
when wind shear is present, turbulence increases the maximum value by 46%. And, com-
paring case1 and case3 with no shear, the value increases by 61%. Even though these values
are for a single realization, turbulence has more influence when wind shear is absent which is
also highly unlikely in reality because of the presence of the ground. In general, turbulence
has a lot of influence on maximum flap-wise bending moment.
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Similar behaviour is also observed in edge-wise bending moment. Lack of shear increases
the mean edge-wise bending moment a bit and turbulence has almost no effect on the mean.
The maximum edge-wise bending moment is not influenced by wind shear at all. This is
because, the bending moment due to rotation which is influenced by shear is smaller than
gravitational bending moment which is not influenced by shear. The maximum gravitational
bending moment occurs when the blade is horizontal in the wind field. When the blade is
horizontal, the mean wind speeds along span of the blade are equal (to Uhub) with or without
shear. On the contrary, introducing turbulence increases the maximum edge-wise bending
moment and cycle height by around 30%.

From table 12, the standard deviation (std) of flap-wise bending moment when no shear and
turbulence is present is zero because of constant bending moment value for every time step.
Introducing shear increases the std (case2) but introducing turbulence increases the std even
higher (case3). Case4 has the highest std because of high variability in the wind due to shear
and turbulence. While for edge-wise bending moment, not a lot of variation in std has been
observed because most of the bending moment is due to gravity. The slight variation that
has been observed follows the same pattern as flap-wise bending moment.

So, overall, wind shear has more influence on mean bending moment and turbulence on
max bending moment. The magnitude of influence of shear on mean is small compared to
turbulence on maximum but not negligible. Both shear and turbulence has an effect on
standard deviation but the effect of turbulence is higher.

3.6.2 Blade load case 4

The results from blade load case 4 where both wind shear and turbulence exists in the wind
field are presented below. Other load cases results can be seen in appendix C.

Figure 50: Plot of flap-wise bending moment for blade load case 4
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Figure 50 shows the bending moment at the root of the blade due to the forces normal to the
rotor plane which is called flap-wise bending moment. The mean flap-wise bending moment
is 1.5694e7 N-m and standard deviation is 2.95e6 N-m. The standard deviation is small
compared to the mean. This implies that the mean value does not vary much except when
high turbulent speeds are encountered. This is again because most of the bending moment
comes due to rotational velocities which are high compared to wind velocities and does not
change at above rated wind speed. The maximum bending moment for all the time steps is
2.5811e7 N-m. The blade has to be designed to have a structural strength to withstand this
maximum bending moment.

Figure 51 shows the input turbulent velocity time series at hub used to create the polar wind
field which in turn used to calculate the flap-wise bending moment by BEM theory. It can
be seen from figures 50 and 51 that some coherence exists between these two at very low
frequencies. But, the maximum bending moment does not occur when the turbulent velocity
at hub is maximum because of the influence of shear and other turbulent velocities along the
blade. Since, turbulence has a lot of influence on the maximum bending moment values, it
should be highly necessary to get the wind field as accurate as possible.

Figure 51: Plot of input time series of turbulent wind velocities at hub for the polar wind
field
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Figure 52: Plot of edge-wise bending moment for load case 4

Figure 52 shows the bending moment at the root of the blade due to the forces parallel to
the rotor plane which is called edge-wise bending moment. The mean edge-wise bending
moment is 3.5249e6 N-m and standard deviation is 6.1818e6 N-m. The standard deviation is
higher than the mean. This is because of the bending moment due to gravity which changes
its sign over one rotation and back. Hence, it’s mean will be zero. The edge-wise bending
moment’s mean comes only from bending moment due to rotation. The maximum edge-wise
bending moment is 1.5931e7 N-m. Both the mean and maximum are less than flap-wise.
But, for one rotation, the bending moment goes from approx. 1e7 to −0.5e7. The aver-
age cycle has a height of approx. 1.5e7. The blade has to be designed to have a structural
strength to withstand the fatigue generated due to these cycles for the turbine’s designed life.

Figure 53: Plot of power spectrum of flap-wise and edge-wise bending moments for blade
load case 4
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Figure 53 shows the power spectral density (PSD) of flap-wise and edge-wise bending mo-
ments plotted without mean. The highest occurs at a frequency of 0.167Hz for both which is
the frequency of rotation, 10rpm (10/60 = 0.167Hz). For flap-wise, it is due to wind shear
and for edge-wise, it is due to gravity. Except at the rotation frequency (1p), the flap-wise
bending moment dies out more rapidly than the turbulence. The energy at 3p frequency is
not seen because only one blade is considered but not all 3 blades. The PSDs of other blade
load cases can be seen in appendix C.

Figure 54: Plot of power spectrum of turbulent wind velocities at hub

Figure 54 shows the PSD of turbulent wind velocities at hub. The effect of turbulence is
visible on flap-wise bending moment at low frequencies. Edge-wise bending moment has
almost no effect from turbulence because it’s energy comes mainly from gravitational force.

The power spectral densities of flap-wise bending moment for all four blade load cases with-
out mean can be seen in figure 55. For blade load case 1, when no shear and turbulence is
present, no energy exists at frequencies other than zero which can be seen from figure 55a.
For blade load case 2, when shear without turbulence is considered, the energy exists only
at frequency 1p which can be seen from figure 55b. For blade load case 3, when turbulence
without shear is considered, the energy exists only at frequencies where turbulent kinetic
energy is high which can be seen from figure 55c. For blade load case 4, when both shear
and turbulence is considered, the energy exists at frequency 1p and at frequencies where tur-
bulent kinetic energy is high which can be seen from figure 55d. Figure 55d is just a linear
combination of figures 55b and 55c because the loads on the blade vary almost linearly with
wind speed.
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(a) Plot of power spectrum of flap-wise bending
moment for blade load case 1

(b) Plot of power spectrum of flap-wise bending
moment for blade load case 2

(c) Plot of power spectrum of flap-wise bending
moment for blade load case 3

(d) Plot of power spectrum of flap-wise bending
moment for blade load case 4

Figure 55: Plot of power spectrum of flap-wise bending moments for all four blade load cases
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Figure 56: Plot of mean lift force on each segment of the blade for blade load case 4

The mean lift force calculated for all the time steps in general increases radially over the
blade and reaches maximum at around 85% of the radius. The higher lift force at inner
sections of the blade is due to the increased aerodynamic performance by introduction of
Gurney flaps (7). And also due to higher chord length from the design of the blade and high
lift coefficient due to blade’s pitch angle.

Figure 57: Plot of mean drag force on each segment of the blade for blade load case 4

The drag force in general decreases radially over the blade. The higher drag force at 20m
radius is due to higher chord length from the design of the blade.
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Figure 58: Plot of total thrust force on the blade for blade load case 4

Figure 58 shows the total thrust force on the blade for all the time steps. It can be seen
form figure 50 that the flap-wise bending moment is highly coherent with thrust.

3.6.3 High shear and turbulence

In the section 3.6.1, the effect of absence of wind shear and turbulence has been looked
at. Now, they are intensified to see if any drastic changes in bending moments occur. A
new wind field is created with the following parameters. The shear in the wind profile has
increased by increasing the roughness length from 0.01m to 0.1m and turbulent intensity
has increased from 10% to 20% 5. The mean wind speed at hub height is kept constant
at 17.7m/s. The new wind profile with 0.1m roughness length is made from Uhub and hub
height as reference wind speed and height. Three different load cases are investigated. The
same turbulent time history is used for all three cases. The results provided are for one
realization of the wind field.

Blade load case 5: High wind shear and no turbulence
Blade load case 6: No wind shear and high turbulence
Blade load case 7: High wind shear and high turbulence

5Average power production has slightly increased due to higher wind speeds but the axial induction factor
is not adjusted in BEM theory
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Table 13: Bending moments for various cases with high shear and turbulence in N-m

Blade
load
case

Mean flap-
wise bending
moment

Maximum
flap-wise
bending
moment

Mean edge-
wise bending
moment

Maximum
edge-wise
bending
moment

Maximum
cycle height
edge-wise

5 1.5593e7 1.8220e7 3.4556e6 1.2191e7 1.7316e7

6 1.5843e7 3.3030e7 3.7300e6 1.7849e7 2.6928e7

7 1.5404e7 3.1695e7 3.6327e6 1.7849e7 2.6928e7

Table 14: Standard deviation of bending moments with high shear and turbulence in N-m

Blade
load
case

Standard deviation
flap-wise bending
moment

Standard deviation
edge-wise bending
moment

5 2.1637e6 6.1601e6

6 5.6708e6 6.3473e6

7 6.0498e6 6.3731e6

Comparing load cases 1 and 5 from tables 11 and 13, the magnitude of bending moment
values are comparable when shear is increased. High shear has some influence but no drastic
changes are observed except for an increase in standard deviation. Comparing load cases 6
and 7 when high turbulence exists, again, lack of shear increases the mean bending moment
values slightly. Also introducing shear decreases the maximum flap-wise bending moment
by 4% which is contrary from what is observed in section 3.6.1. This might be because of
the influence of high turbulence in the wind field. As expected, shear has no influence on
maximum edge-wise bending moment. Also, increase in standard deviation for flap-wise by
7% has been observed.

From load cases 1 and 6, only the mean bending moment values are comparable when tur-
bulence is highly increased. High turbulence increases the maximum and standard deviation
values drastically. The maximum flap-wise bending moment has been more than doubled,
increased by 106%. Maximum edge-wise bending moment has been increased by 45% and
maximum cycle height by 55%.

Comparing load cases 5 and 7 when high shear is present, introducing high turbulence de-
creases the mean flap-wise bending moment (1.5%) and increases the mean edge-wise bending
moment (5%) slightly. This is different from section 3.6.1 where turbulence has almost no
visible effect on mean values. The maximum flap-wise and edge-wise bending moments in-
crease by 74% and 47% respectively. Also, the standard deviation of flap-wise and edge-wise
increase by 180% and 3.5% respectively. Therefore, increasing turbulence in the wind field
increases the maximum root bending moments, cycle height and standard deviation of flap-
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wise drastically which in turn has a high influence on the blades fatigue life. Plots of bending
moments for load cases 5,6 and 7 can be seen in appendix D.

It has also been noticed that the thrust force on the blade for couple of time steps is negative
when high turbulence is present. This is because the turbulent velocities at these particular
time steps are very high and acting opposite in the mean wind direction. This gives a very
low φ. Since the blade has some twist and pitch, the angle of attack, α becomes negative.
This gives negative lift coefficients and the thrust becomes negative. Figure 59 shows the
thrust values for blade load case 7. Even though the thrust on a single blade is negative, the
total thrust force on the turbine could be positive acting perpendicular to the rotor plane
and in the mean wind direction.

Figure 59: Plot of thrust force for all time steps on a single blade of the HAWT in high shear
and high turbulence in kN

Figure 60 shows the wind speeds in the rotor plane for a random time step for both wind
fields with low and high turbulence and shear, blade load cases 4 and 7. The color bar on
the right side indicates magnitude of wind speeds in m/s. Clearly the wind field with high
turbulence and shear has higher magnitudes and variation of wind speeds in the rotor plane.
As the blade rotates in this rotor plane over a revolution, it experiences higher variation in
bending moment values.
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(a) Snapshot of wind field with 10% T.I and
0.01 roughness length

(b) Snapshot of wind field with 20% T.I and 0.1
roughness length

Figure 60: Plot of snapshots of the animated polar wind fields with low and high turbulence
and shear. The color bar suggests wind speed in m/s.

3.6.4 Blade load case 4 with high turbulence

It has been observed that turbulence has higher effect on maximum bending moment values
than shear. One last comparison has been performed by keeping the shear constant and
increasing the turbulence. Blade load case 4 with turbulence intensity (T.I) of 10% and
roughness length of 0.01m has been taken. A new wind field is created with 20% turbulence
intensity but with same roughness length of 0.01m and compared.

Table 15: Maximum (max) and standard deviation (std) of bending moments with 10% and
20% T.I in N-m

T.I Max flap-wise Std flap-wise Max edge-wise Std flap-wise
10% 2.5811e7 2.9499e6 1.5931e7 6.1818e6

20% 3.2204e7 5.5434e6 1.7902e7 6.4146e6

Comparing T.I of 20% with 10%, the maximum and std of flap-wise bending moment has
increased by 25% and 88% respectively. The increment in standard deviation is almost pro-
portional to the increment in T.I. The maximum and std of edge-wise bending moment has
increased by 13% and 4% respectively. So, doubling the turbulence in the wind field with
same shear increases maximum flap-wise bending moment by 25% and also the standard
deviation by 88% which will have a lot of effect on maximum and fatigue load cases.
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Figure 61: Plot of power spectrum of flap-wise and edge-wise bending moments for T.I of
20%

Figure 62: Plot of power spectrum of turbulent wind velocities at hub for T.I of 20%

Comparing the Fourier analysis of bending moments from wind fields with 10% and 20% T.I,
from figures 53 and 61, the maximum energy no longer occurs at the rotational frequency
of the turbine (0.167Hz) for flap-wise bending moment when high turbulence is present. It
occurs at frequencies where maximum turbulent kinetic energy happens. Figure 62 shows the
spectral density of turbulent wind velocities at hub for wind field with 20% T.I. Comparing
with figure 54, many low frequencies with high turbulent kinetic energy exists when T.I is
higher.
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4 Conclusion

Two measured signals from FINO1 platform at 40m and 80m height are tested by Sandia
method to see if they can be reproduced back. It has been observed that, Sandia method
applied as it is, can reproduce the first signal exactly but gives higher standard deviation
for the second signal. If random phases are used instead of it’s own phases in generation
of second time series, same standard deviation can be achieved. The method depends on
randomness in phase generation. If no information about second time series is available, a
theoretical coherence function, same spectra as first/input time series and random phases
can be used for it’s generation. But, this procedure gives almost same statistics as the input
signal for second signal. A slight increment in standard deviation is observed.

The above procedure cannot be applied explicitly. If a second time series is generated by
Sandia method, it is not wise to use the phase angles of the generated time series to create
a third time series but rather use the same random phase angles used to create the second
time series as input for third time series generation.

Based on Sandia method, codes for generation of wind fields have been developed. Both
rectangular and polar wind fields have been created but proceeded with polar wind field due
to it’s easy practicality with Horizontal Axis Wind Turbines. A different way of plotting
coherence has also been looked at. Concatenated coherence represents the original coherence
better than the averaged coherence because of reduction in margin of error.

The difference in root bending moment values of the blade based on variation in shear and
turbulence in the wind field has been investigated. It has been observed that, shear has more
influence on mean bending moment and turbulence on max bending moment. The magni-
tude of influence of shear on mean is small compared to turbulence on maximum but not
negligible. Both shear and turbulence has an effect on standard deviation of root bending
moments but the effect of turbulence is larger.

The effect of turbulence on maximum and standard deviation of bending moments has been
looked further by increasing the turbulence intensity (T.I) from 10% to 20% in the wind field
with 0.01m roughness length. The maximum flap-wise bending moment increases by 25% and
standard deviation by 88%. The Fourier analysis of flap-wise bending moment shows that
the frequency that contains most energy has been shifted from rotational frequency of the
turbine (for 10% T.I) to the frequencies where turbulent kinetic energy is high (for 20% T.I).

In short, a change in turbulence in the wind field will have a drastic change on ultimate
limit state and fatigue limit state design load cases. So, it is highly important to get the
turbulence right. This again depends on getting the right coherence in generation of the
wind field. Again, Sandia method gives a little increment in standard deviation (turbulence)
of the generated time series. This will have an effect on maximum and standard deviation
of root bending moments of the blade of the wind turbine.
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5 Further study

• Sandia method can be checked for longer time series to see the difference in the statistics
of the re-generated signals and for more than 2 measured signals to see the effect of
previous signals spectra and phase angles in re-generating new one

• Various coherence models can be implemented in the wind field generation and the
statistics and coherence of these different wind fields can be compared

• When generating a wind field based on Sandia method, different auto-spectra can be
used on the diagonal of spectral matrix based on different points in the wind field at
various locations

• Phase lag of turbulent eddies due to variation of mean wind speed at various heights
in the atmosphere can be implemented while generating a wind field

• The bending moment values at the root of the blade that are computed in this thesis
are only for one realization of a wind field. The difference in these values can be checked
for many realizations while using the same parameters for wind fields generation

• The wind fields that are developed is for above rated wind speed of DTU 10MW
wind turbine. Wind fields with below rated wind speed at hub can be generated and
compared with above rated to see if a similar pattern in loads is followed

• Tip losses, Glautert limit and 3D effects can be implemented in BEM theory while
calculating loads on the turbine
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Appendix

A Matlab code for Polar wind field generation

1 % Polar wind f i e l d based on Sandia Method
2

3 % xxxxxxxxxxxxxxx INPUT DATA
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

4 x = importdata ( ’ T imes e r i e s a t hub he i gh t . txt ’ ) ;
5

6 dt = 0 . 5 ; % t imestep
7 m = 21 ; %No o f po in t s a long Y a x i s and same on Z−a x i s
8 dy = 9 ; %d i s t anc e between each po int along Y a x i s
9 dz = 9 ; %d i s t anc e between each po int along Y a x i s

10 U = 1 3 . 6 ; % Mean wind v e l o c i t y at hub he ight
11 u 10 = 10 ; %Mean wind v e l o c i t y at 10m he ight ( i f d i f f e r e n t height ,

have to modify in power law )
12 Z0 = 0 . 0 1 ; % roughness l ength
13 h = 120 ; % hub he ight
14 r = 90 ; % ro to r rad iu s
15 w = pi /6 ; % For 12 no . o f po in t s in a c i r c l e
16 % xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
17

18 N = length ( x ) ; %length o f the time s e r i e s
19 f s = 1/ dt ; %Sampling f requency
20 f = ( 0 : f s /N: f s /2) ’ ; %frequency s c a l e t i l Nyquist f requency
21 T = N∗dt ; %Total time
22 t = 0 : dt :T−dt ; %time s c a l e
23 theta = 0 :w:2∗ pi−w; % angle f o r each po int in a c i r c l e
24 n = ( ( (m−1)/2)∗ l ength ( theta ) ) +1; % Total no . o f po in t s in the

po la r wind f i e l d i n c l u d i n g
25 % hub point ( o r i g i n )
26

27 % Re−con s t ru c t i ng s i g n a l by Coherence and phase in fo rmat ion
28

29 % Polar Co−o r d in a t e s f o r d i s t anc e in coherence f u c t i o n
30 %The o r i g i n i s at hub and going counter c l o ckw i s e at each dy
31 YZ = ze ro s (n , 1 ) ;
32 k = 1 ;
33 f o r i = 1 : (m−1)/2
34 f o r j = 1 : l ength ( theta )
35 k = k+1;
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36 YZ( k ) = i ∗dz∗exp (1 i ∗ theta ( j ) ) ;
37 end
38 end
39

40 p lo t (YZ)
41

42 % Performing f f t o f o r i g i n a l s i g n a l to get auto spectrum and phase
in fo rmat ion

43 X = f f t ( x ) ;
44 Pxx = abs (X( 1 : (N/2)+1) ) . ˆ 2 ;
45 phaseX = angle (X( 1 : (N/2)+1) ) ;
46

47 % Def in in ing Spec t r a l Matrix ’S ’
48 % Diagonal o f s p e c t r a l matrix
49 S = ze ro s (n , n , (N/2)+1) ;
50 f o r i =1:n
51 S( i , i , : ) = Pxx ; %PSD of d iagona l ( Assumed same as x ! ! )
52 end
53

54 % Other e lements o f s p e c t r a l matrix by t h e o r i t i c a l coherence
func t i on with decay c o e f f 7 . 5

55 p = 1 ;
56 f o r i =2:n
57 f o r j =1: i−1
58 Coh ( : , p ) = exp (−7.5∗ abs (YZ( i )−YZ( j ) )∗ f /U) ;
59 a = reshape ( s q r t (S( i , i , : ) .∗S( j , j , : ) ) , [ ] , 1 ) ;
60 S( i , j , : ) = Coh ( : , p ) .∗ a ; % Cross s p e c t r a l matrix based on

t h e o r i t i c a l coherence
61 S( j , i , : ) = S( i , j , : ) ;
62 p=p+1;
63 end
64 end
65

66 % Def in ing Phase in fo rmat ion
67 phase = ze ro s ( l ength ( phaseX ) ,n−1) ;
68 phase = [ phaseX phase ] ; % Phase matrix f o r a l l po in t s
69

70 % Def in ing Transformation Matrix ’H’ and f o u r i e r c o e f f i c i e n t s
matrix ’V’

71 H = ze ro s ( s i z e (S) ) ;
72 V = ze ro s ( (N/2) +1,n) ;
73 H( 1 , 1 , : ) = s q r t (S ( 1 , 1 , : ) ) ;
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74 V( : , 1 ) = reshape (H( 1 , 1 , : ) , [ ] , 1 ) .∗ exp (1 i ∗phase ( : , 1 ) ) ;
75 f o r j = 2 : n
76 phase ( : , j ) = −pi+2∗pi ∗ rand ( (N/2) +1 ,1) ; %Uniformly d i s t r i b u t e d

random phase between 0 to 2 p i
77 a = 0 ;
78 f o r k = 1 : j
79 i f k˜=j
80 p=0;
81 f o r l = 1 : k−1
82 p = p + (H( j , l , : ) .∗H(k , l , : ) ) ;
83 end
84 H( j , k , : ) = (S( j , k , : )−p) . /H(k , k , : ) ;
85 e l s e
86 q=0;
87 f o r l = 1 : k−1
88 q = q + (H(k , l , : ) .∗H(k , l , : ) ) ;
89 end
90 H(k , k , : ) = s q r t (S(k , k , : )−q ) ;
91 end
92 H( isnan (H) ) =0;
93 a = a + reshape (H( j , k , : ) , [ ] , 1 ) .∗ exp (1 i ∗phase ( : , k ) ) ;
94 end
95 V( : , j ) = a ;
96 %phase ( : , j ) = ang le (V( : , j ) ) ;
97 end
98

99 % Construct ing time s e r i e s from ’V’
100 v = ze ro s (N, n) ;
101 f o r j = 1 : n
102 v ( : , j ) = r e a l (2∗ i f f t (V( : , j ) ,N) ) ;
103 end
104

105 %wr i t i ng v e l o c i t i e s and po la r co−o rd in a t e s to a text f i l e
106 dlmwrite ( ’ t u r b u l e n t v e l o c i t i e s a t e a c h p o i n t S a n d i a p o l a r . txt ’ , v , ’

p r e c i s i o n ’ , ’ %.4 f ’ , ’ d e l i m i t e r ’ , ’\ t ’ )
107 dlmwrite ( ’ p o l a r c o o r d i n a t e s a t e a c h p o i n t S a n d i a p o l a r . txt ’ ,YZ, ’

p r e c i s i o n ’ , ’ %.4 f ’ , ’ d e l i m i t e r ’ , ’\ t ’ )
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B Beam load cases 1 and 2 with rotation

Beam load case 1 - Homogeneous wind field
Beam load case 2 - Steady wind field

Table 16: Bending moment values for load cases 1 and 2 with rotation

Load case Mean Maximum

1 1.9163e7 1.9163e7

2 1.9143e7 1.9272e7

Plots for the bending moment, drag force along the beam for a random time step and drag
force variability for segment 1 and segment 10 are shown only for load case 2 since there
won’t be any variability for load case 1 with rotation. It can be seen that the bending mo-
ment and shear forces vary with a frequency of 1p.

Figure 63: Plot of root bending moment of the beam placed in the polar wind field for load
case 2 with rotation
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Figure 64: Plot of drag forces on the beam at each segment for a random time step for load
case 2 with rotation

Figure 65: Plot of drag force variability on the beam at segment 1 and segment 10 for load
case 2 with rotation
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C Plots of bending moments and forces for blade load

cases 1, 2 and 3

C.1 Blade load case 1 - No shear and no turbulence

Figure 66: Plot of flap-wise bending moment for blade load case 1

Figure 67: Plot of edge-wise bending moment for blade load case 1
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Figure 68: Plot of power spectrum of bending moments for blade load case 1

Figure 69: Plot of mean lift force on each segment of the blade for blade load case 1
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Figure 70: Plot of mean drag force on each segment of the blade for load case 1

C.2 Blade load case 2 - with shear and no turbulence

Figure 71: Plot of flap-wise bending moment for blade load case 2
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Figure 72: Plot of edge-wise bending moment for blade load case 2

Figure 73: Plot of power spectrum of bending moments for blade load case 2
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Figure 74: Plot of mean lift force on each segment of the blade for blade load case 2

Figure 75: Plot of mean drag force on each segment of the blade for load case 2
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C.3 Blade load case 3 - no shear and with turbulence

Figure 76: Plot of flap-wise bending moment for blade load case 3

Figure 77: Plot of edge-wise bending moment for blade load case 3
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Figure 78: Plot of power spectrum of bending moments for blade load case 3

Figure 79: Plot of mean lift force on each segment of the blade for blade load case 3
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Figure 80: Plot of mean drag force on each segment of the blade for load case 3
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D Plots of bending moments for high shear and tur-

bulence load cases

Blade load case 5: High wind shear and no turbulence
Blade load case 6: No wind shear and high turbulence
Blade load case 7: High wind shear and high turbulence

D.1 Initial time series of turbulent wind velocities at hub

The time series of wind velocities used to generate the polar wind field with high shear and
turbulence is plotted below. This time series is initially generated in Qblade software. This
is the initial time series for all the above blade load cases

Figure 81: Plot of initial time series with high turbulence and shear
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Figure 82: Plot of power spectrum of initial time series at hub

D.2 Blade load case 5

Figure 83: Plot of flap-wise bending moment for blade load case 5
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Figure 84: Plot of edge-wise bending moment for blade load case 5

Figure 85: Plot of power spectrum of bending moments for blade load case 4
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D.3 Blade load case 6

Figure 86: Plot of flap-wise bending moment for blade load case 6

Figure 87: Plot of edge-wise bending moment for blade load case 6
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Figure 88: Plot of power spectrum of bending moments for blade load case 6

D.4 Blade load case 7

Figure 89: Plot of flap-wise bending moment for blade load case 7
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Figure 90: Plot of edge-wise bending moment for blade load case 7

Figure 91: Plot of power spectrum of bending moments for blade load case 7
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