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Abstract

In this work, two main numerical modeling methods are used to create synthetic

seismic data in an elastic, isotropic medium. These methods are the Born approx-

imation and AVO modeling. Regarding the Born approximation, a method for

calculating the perturbed Green function in the time domain is developed using

isochrons. The perturbed Green function is also calculated in the frequency domain.

AVO modeling can use the full Zoeppritz equation or a linearized approximation of

the full Zoeppritz equation. Comparing the Zoeppritz equation and Born modeling

give similar record sections for low-velocity contrasts. However, with large angles

and high contrasts, the Born approximation and the linearized Zoeppritz equation

becomes inaccurate.

A problem with AVO inversion and with all processing techniques are the pres-

ence of seismic noise in the data. This noise is part of the reason why there is no

unique model. It is, therefore, beneficial to estimate the uncertainty of different

possible models. An iterative ensemble-based data assimilation method called the

ensemble smoother for multiple data assimilations (ES-MDA) is used as the frame-

work for non-linear seismic inversion. The ES-MDA method for the stationary case

is called the ensemble optimal interpolation with multiple data assimilations (EnOI-

MDA) method in this work. The method generates an ensemble of updated models

by using the seismic data and a priori knowledge. The updated models allow one

to estimate the model uncertainty. The EnOI-MDA method is compared with an-

other ensemble-based method called the EnOI method. The results show that the

EnOI-MDA method estimates the model uncertainty better then the EnOI method

if the signal-to-noise ratio is relatively high (SNR=15). The EnOI-MDA method as-

sumes Gaussian distributed noise, which is not expected in seismic data. If the data

have non-Gaussian noise, the estimation of the model uncertainty can be wrong. A

sensitivity study is done by testing the method on different types of non-Gaussian

seismic noise. All the sources of noise looked at in this thesis are combined, and the

results suggest that the method estimate the model uncertainty well. Erroneously

estimated noise is used to test how the method responds. Results show that a wrong

noise estimation does not cause a big change in the results. This justifies the use of

the method on real data when the noise is often hard to estimate correctly.
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Chapter 1

Introduction

One of the primary methods to explore the subsurface is with the use of seismic

waves. The main goal of this thesis is to identify structures and determine the prop-

erties of the media, especially the velocities. This goal is achieved by executing a

seismic acquisition to obtain the seismic data, processing of the data into an image,

and interpreting that image to identify key features. The acquisition’s receiver and

source geometry and area have to be specified in advance to explore a given area.

The raw data that has been recorded by the receivers are processed in a series of

processing. Examples of processing steps can be to remove noise, correct for dipping

reflectors or estimate elastic parameters and or velocities. When an image of the

subsurface has been made, it can be interpreted. Structural and quantitative inter-

pretation can be used to create a geological model and for well planning purposes

(Kearey et al., 2013).

The energy demand is high and will most likely increase in the future with an

increased human population (Conti et al., 2016). Because of this demand, it is es-

sential to continue the development of new knowledge and technology within seismic

exploration and monitoring of producing fields to improve the understanding of the

subsurface.
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1.1 Seismic forward modeling

The goal of seismic forward modeling is to compare the seismic response of a given

geophysical model given source and receiver positions. Forward modeling is a pow-

erful tool because it allows one to check whether an estimated model, gives the

same response as the real data. It also allows creating synthetic data to understand

better how wave propagation works. Seismic forward modeling is either done in an

acoustic medium or an elastic medium. In an acoustic medium, only acoustic waves

are modeled, and full waveform modeling is often implemented using the finite dif-

ference method, the Born approximation or ray tracing. Introductory texts on the

use of the finite difference method can be found in Boore (1972) and Moczo et al.

(2007). While it is easier and less computationally expensive to do acoustic, seismic

modeling, it is not always accurate enough. Elastic seismic modeling can model both

S-waves and P-waves in a complex isotropic or anisotropic medium. To do elastic

seismic modeling with the finite difference method is very computationally expen-

sive. Therefore, other methods may be used, such as the Born approximation or

ray tracing. The Born approximation is less computationally expensive compared

to the finite difference method, especially at higher frequencies. However, high-

velocity contrasts may provide a less accurate result (Moser, 2012). Introductory

papers on Born approximation are found in Dahlen et al. (2000), Cerveny (2001)

and Moser (2012). Information about Ray tracing can be found in the paper by

Krebes (2004). The Born approximation, finite difference, and ray tracing models

surface data. AVO modeling is done in the elastic medium to model image data.

AVO modeling is discussed in the book by Ikelle and Amundsen (2005).

1.2 AVO inversion

Amplitude variation with offset (AVO) or amplitude variation with angle (AVA) is a

method that models reflection and transmission coefficients based on the incoming

incidence angle and the physical properties of the subsurface (Downton, 2005). The

method works well if there is a sharp discontinuity in the physical properties be-

tween two layers that are elastic. The relationship between the incidence angle and

physical properties is described in detail by Aki and Richards (1980) and Ikelle and
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Amundsen (2005). The relationship is given as an equation, called the Zoeppritz

equation. The full Zoeppritz equation is nonlinear. Therefore linear approximations

have been derived by among others Aki and Richards (1980) and Shuey (1985). The

Zoeppritz equation is valid for reflection and transmission of plane waves at the

interface between two half-spaces.

The objective of AVO inversion is to estimate the physical properties, given observed

seismic reflection data. AVO inversion is mostly done in an elastic medium because

AVO inversion is not very computationally demanding. However, the data needs

to be processed and prepared for inversion and is, therefore, not straightforward.

There are several reasons for this. For example, the background model and wavelet

have to be known. Theoretically, it is possible to use PP, SP, PS, and SS reflections,

which can improve the inversion results. In practice, this may be demanding since

it is required to separate the modes and align the data (PS and PP have different

reflection times). AVO inversion is often done using a linear approximation of the

full Zoeppritz equation. A linear approximation reduces the computation time and

makes the inversion simpler. The approximation decreases the accuracy with large

incidence angles and high contrasts (Ikelle and Amundsen, 2005). Nonlinear inver-

sion using the full Zoeppritz equation often requires iterative methods that can end

up in a local minimum using a poorly chosen initial model. Therefore both nonlinear

and linear AVO inversion has its advantages and disadvantages.

1.3 Aim and motivation of the thesis

The scope of this thesis is to do seismic forward modeling using the Born approxima-

tion and AVO modeling. The forward modeled data will be used to create synthetic

seismograms that are used to do an AVO inversion. The inversion method used

here is a stochastic nonlinear AVO inversion method called ensemble smoother for

multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2013). This method,

explained in detail in this thesis, has the advantage that it estimates the model un-

certainty by inverting for hundreds to thousands of different parameters. However,

it requires that the noise in the data can be estimated, and the noise is generally

poorly known. It also requires one to have some a priori knowledge about the elastic
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parameters.

The motivation for estimating the model uncertainty is that it allows to under-

stand the effect the noise has on inversion. An optimal solution can still be far from

the truth if the model and data uncertainties are high.

The ES-MDA method has been used on AVO inversion previously by Liu and Grana

(2018) for both PP and PS synthetic seismic data. The authors did not specify which

kind of noise they used (probably random Gaussian distributed noise) and did not

investigate different types of noise that would be natural in a seismic gather. Also,

they did not look at how different types of priors or number of assimilations might

affect the inversion.

The main objective of this thesis is, therefore, to test the sensitivity and stabil-

ity of the method by looking at different types of noise that are expected to occur

in a common midpoint gather, different prior mean and standard deviation, number

of assimilations and signal to noise ratios. This study would help to prepare for

inversion on real data, and provide a framework for understanding and analyzing

the results.

Chapter 2 and 3 focus on the theoretical and numerical aspects of forward modeling.

Chapter 4 focuses on deterministic and stochastic inversion. Chapter 5 focuses on

the numerical aspect of stochastic AVO inversion. Chapter 6 focuses on the sensi-

tivity and stability of the ES-MDA method. Chapter 7 presents the final discussion,

forward work, and a conclusion.

All the results produced in this thesis are created by using my personal coded pro-

grams, if not specified otherwise.
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Chapter 2

Forward modeling - Theory

2.1 Outline

Physical theories allow one to make predictions. Given a physical model, it is pos-

sible to predict the outcome of some measurements. The problem of predicting the

result of a measurement is called the forward problem (Tarantola, 2005).

In this chapter, the theory of seismic elastic forward modeling is discussed. The

elastic wave equation, which is the basis of forward seismic modeling, is given (sec-

tion 2.2). The Green tensor is then introduced to the wave equation. The theory

behind the Born approximation (sections 2.3 and 2.4) and AVO modeling (section

2.5), which are two ways of doing forward modeling, are presented. Finally, I show

how to relate reflectivity to seismic displacement.

2.2 Elastic wave propagation

Elastodynamic wave equation

For a given point, x, at time t, Hooke’s law states that (Ikelle and Amundsen,
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2005),

τij(x, t) = cijkl(x)
∂uk(x, t)

∂xl
i, j, k, l = x, y, z, (2.1)

where τij is the stress tensor, cijkl is the stiffness tensor and uk is the displacement.

The stiffness tensor defines the elastic properties of a medium. It consists of 81

elastic parameters, but because of symmetry, the number of independent elastic

elements can be reduced to 21 for an arbitrary anisotropic medium. For an isotropic

medium, the number of independent elastic elements can be reduced to 2. In this

case, the stiffness tensor can be written as (Ikelle and Amundsen, 2005):

cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.2)

where λ and µ are the Lamé parameters, and δij is the Kronecker delta, which is 1

if i = j and zero otherwise.

The wave equation that governs the wave propagation is derived from Newton’s

second law of motion (Ikelle and Amundsen, 2005):

f = ma, (2.3)

where f is the force, m is the mass and a is the acceleration. The components

of force are derived from the components of stress acting on an elemental volume

representing a particle in position, x, at the time, t. The total force component in

the i-th direction is fi = (∂jτij)∆x∆y∆z. Mass is equal to density times volume.

Inserting this in equation 2.3 gives (Ikelle and Amundsen, 2005):

ρ(x)
∂2ui(x, t)

∂t2
=
∂τij(x, t)

∂xj
+ fi(x, t). (2.4)

By combining Hooke’s law (equation 2.1) with equation 2.4, the equation becomes
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the elastodynamic wave equation (Ikelle and Amundsen, 2005):

ρ(x)
∂2ui(x, t)

∂t2
=

∂

∂xj

(
cijkl(x)

∂uk(x, t)

∂xl

)
+ fi(x, t), (2.5)

where ui(x, t) is the elastic displacement field at position x at time t in the ith direc-

tion. Equation 2.5 is called homogeneous when fi(x, t) = 0. Equation 2.5 describes

how the displacement field ui(x, t) as a result of the source fi(x, t).

Green function

The response of the medium at location x and time t0 to a point force at loca-

tion s is called the Green function g(x, ω; s). The elastodynamic Green function

g(x, ω; s) is a solution to equation 2.5 (Cerveny, 2001, p. 81):

∂

∂xj

(
cijkl

∂gkn
∂xl

)
− ρ∂

2gin
∂t2

= −δinδ(t− t0)δ(x− s), (2.6)

where δ(x − s) is the Dirac-delta function. When the Green tensor is known, we

can find a solution to the elastic wave equation (2.5) using superposition:

ui(x, t) =

∫
gij(x, t; s) ∗ fj(s, t)dx. (2.7)

The source can be expressed as f(s, t) = δ(x− s)A(t), where A(t) is the wavelet.

Frequency domain

The elastic wave equation expressed in equation 2.5, is in the time domain. One can

also express the wave equation in the frequency domain using the Fourier transform:

ω2ρ(x)
∂2Ui(x, ω)

∂t2
=

∂

∂xj

(
cijkl(x)

∂Uk(x, ω)

∂xl

)
+ Fi(x, ω), (2.8)

where ω is the angular frequency ω = 2πf . U is the displacement in the frequency

domain and F is the source in the frequency domain.
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In the frequency domain, the Green tensor in equation 2.6 can be written as (Cer-

veny, 2001, p. 81):

∂

∂xj

(
cijkl

∂Gkn

∂xl

)
+ ρω2Gin = −δinδ(x− s), (2.9)

where G is the Green tensor in the frequency domain.

Homogeneous, isotropic medium

In the case of a homogeneous, isotropic, medium, we can insert equation 2.2 into

equation 2.5. In the time domain this can be written as (operator notation):

ρ∂2
t u = (λ+ 2µ)∇(∇ · u) + µ∇2u + f. (2.10)

In the frequency domain this equation can be written as:

−ρω2U = (λ+ µ)∇(∇ ·U) + µ∇2U + F. (2.11)

In a unbounded and homogeneous 3D medium we can express the elastic Green

function analytically (Pujol, 2003), (Aki and Richards, 1980) (time domain):

gin(x, t; s) =
1

4πρ
(3γiγj − δij)

1

r3

[
H
(
t− r

α

)
−H

(
t− r

β

)]
t

+
1

4πρα2
γiγj

1

r
δ
(
t− r

α

)
− 1

4πρβ2
(γiγj − δij)

1

r
δ
(
t− r

β

)
,

(2.12)

where α, β and ρ are the P-wave velocity, S-wave velocity and density respectively.

γ1, γ2 and γ3 are expressed as:

γ1 = sinΘcosΦ γ2 = sinΘsinΦ γ3 = cosΘ. (2.13)
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Figure 2.1: Definition of the direction cosines γ1,γ2 and γ3 (used in equation 2.14) and
vector Γ. S indicates the source location. The receiver is in the direction of Γ (Pujol,
2003).

The function H(t) represents the Heaviside unit step function. The Heaviside step

function is zero for negative arguments and one for positive arguments. The Heav-

iside functions gives the ”box car” function with a value of one within [ r
α
, r
β
] and

zero elsewhere. The first term in equation 2.12 becomes negligible when the dis-

tance r becomes large, because 1
r3

quickly goes to zero. In this thesis, the far field

homogeneous isotropic Green tensor is used (Pujol, 2003) (time domain):

gin(x, t; s) =
1

4πρα2
γiγj

1

r
δ
(
t− r

α

)
− 1

4πρβ2
(γiγj − δij)

1

r
δ
(
t− r

β

)
. (2.14)

2.3 Born approximation

The Born approximation is a forward modeling method to compute singly scattered

waves. The medium is divided into a smooth slowly varying or constant background

medium (α0, β0 and ρ0) and a perturbed medium (α1, β1 and ρ1). For an isotropic
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medium, the parameters are expressed as:

α = α0 + α1,

β = β0 + β1,

ρ = ρ0 + ρ1.

(2.15)

It is also possible to divide the Lamé parameters into a background model and a

perturbation part. The associated perturbation of the P-wave and S-wave velocities

are given by (Dahlen et al., 2000):

2ρ0α0α1 = λ1 + 2µ1 − ρ1α
2
0

2ρ0β0β1 = µ1 − ρ1β
2
0 .

(2.16)

Green’s tensor is written as a sum of a background Green tensor G0(r, ω; s) and a

perturbed Green tensor G1(r, ω; s):

G(r, ω; s) = G0(r, ω; s) +G1(r, ω; s). (2.17)

The background Green tensor G0(r, ω; s) is found by solving the elastic isotropic

wave equation (section 2.2) for the background medium. The goal is now to find an

expression for the perturbed Green tensor G1(r, ω; s). The perturbed Green tensor

is found in Dahlen et al. (2000):

G1(r, ω; s) =

∫∫∫
ρ1

(
ω2G0(r, ω;x) ·G0(x, ω; s)

)
d3x

−
∫∫∫

λ1

(
∇ ·G0

T (r, ω;x)
)(
∇ ·G0(x, ω; s)

)
d3x

−
∫∫∫

µ1

(
∇G0

T (r, ω;x)
)

:
[
∇G0(x, ω; s) + (∇G0

T (x, ω; s))
]
d3x,

(2.18)

where∇ is the spatial gradient and T is the transpose. G0(x, ω; s) is the wave going

from the source s to the scatter in point x. G0(r, ω;x) is the wave going from the

scatter in point x to the receiver r (fig. 2.3). The Green tensor in the frequency
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Figure 2.2: Illustration of a geometrical ray from the source s to the receiver r. The
polarization vector for the P-wave in the direction of the unit wave vector k̂ and the
polarization vector for the S-wave q̂ is perpendicular to the direction of the unit wave
vector k̂ (Dahlen et al., 2000).

domain is given by Dahlen et al. (2000):

G0(r;ω; s) = A(r; s)e−iωT (r;s)p̂rp̂s,

A(r; s) =
1

4πR

1√
ρ0(r)ρ0(s)c0(r)c3

0(s)
,

(2.19)

where R is the geometrical spreading coefficient, which is the total path from the

source to the receiver. For a constant background medium, which is used in this

thesis, the geometrical spreading coefficient is R = ||r − s||. The unit vectors p̂s and

p̂r are the polarization directions of the wave when leaving and arriving at the source

and receiver respectively. The unit wave vector for the direction of propagation is

k̂. The polarization of the P-wave p̂ is in the direction of the propagation, meaning

p̂ = k̂ and the polarization of the S-wave p̂ is perpendicular to the direction of the

propagation, meaning p̂ · k̂ = 0, where k̂ is the unit wave vector (fig. 2.2).

The perturbations are evaluated at the location of the scatterer x, and all of the

gradients ∇ =∇x. The Green tensor in equation 2.19 is used in the expression for

the perturbed Green tensor (equation 2.18). The gradient ∇x is only allowed to op-

erate on the rapidly oscillating exponentials exp(−iωT (x; s)) and exp(−iωT (r;x)),

using a high frequency approximation (Dahlen et al., 2000). The gradient of the
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Figure 2.3: Ray paths from a source s to an arbitrary point x and from the arbitrary point
x to the receiver r, or directly from the source s to the receiver r. The take off unit wave
vectors along the unscattered (directly from s to r) and scattered paths at the source are

k̂s or k̂
′
s respectively. The incoming and outgoing unit wave vectors at the point x are k̂

′

and k̂
′′

respectively. The unscattered and scattered arrival unit wave vector at the receiver

are k̂r and k̂
′′
r respectively (Dahlen et al., 2000).

Green tensor can be expressed as:

∇xG0(r, ω;x) ≈ −iωk̂′′ 1
c′′
A(r;x)e−iωT (r;x)p̂′′p̂r,

∇xG0(x, ω; s) ≈ −iωk̂′ 1
c′
A(x; s)e−iωT (x;s)p̂′p̂s.

(2.20)

Combining equations 2.19, 2.20 and 2.18 give the expression:

G1(x, ω; r) = ω2

∫∫∫ [
G0(r, ω;x) · (ρ0S) ·G0(x, ω; s)

]
d3x,

S =

(
α1

α0

)
Sα +

(
β1

β0

)
Sβ +

(
ρ1

ρ0

)
Sρ,

Sα = −2

(
α2

0

c′c′′

)
k̂
′
k̂
′′
,

Sβ = 2

(
β2

0

c′c′′

)[
2k̂
′′
k̂
′ − k̂′k̂′′ − (k̂

′ · k̂′′)I
]
,

Sρ = I −
(
α2

0 − 2β2
0

c′c′′

)
k̂
′′
k̂
′ −
(
β2

0

c′c′′

)[
k̂
′
k̂
′′

+ (k̂
′ · k̂′′)I

]
,

(2.21)
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where k̂
′

and k̂
′′

is the incoming and outgoing unit wave vectors at some arbitrary

point x respectively (figure 2.3). By using the expressions for the Green tensors

(equation 2.19), equation 2.21 can be written as:

G1(r, ω; s) = ω2ρ0

∫∫∫
A(r;x)A(x; s)e−iω(T (r;x)+T (x;s))p̂r(p̂

′′ ·S · p̂′)p̂sd3x, (2.22)

where

(p̂′′ · S · p̂′) = p̂′′ ·
[α1

α0

Sα +
β1

β0

Sβ +
ρ1

ρ0

Sρ

]
· p̂′. (2.23)

The quantity (p̂′′ · S · p̂′) in equation 2.22 is a dimensionless measure of the scat-

tering strength of the wave with incoming p̂′ and outgoing p̂′′ polarization vectors

at the point x. Dahlen et al. (2000) defines three normalized Rayleigh scattering

coefficients, each one associated with the P-wave α, S-wave β velocity and density

ρ:

Ωα,β,ρ = −1

2
(p̂′′ · Sα,β,ρ · p̂′). (2.24)

There are twelve scattering coefficients in total (see table 2.1).

In this thesis I only compute G1(r, ω; s), in the case of P→P scattering. The

normalization factor −1
2

is used so that Ωα = 1 for P→P scattering. Equation 2.22

can now be rewritten as:

G1(r, ω; s) = ω2ρ0

∫∫∫
A(r;x)A(x; s)e−iω(T (r;x)+T (x;s))p̂rp̂sΩd

3x, (2.25)

where

Ω = −2

(
α1

α0

Ωα +
β1

β0

Ωβ +
ρ1

ρ0

Ωρ

)
. (2.26)

The Born approximation does not work well for large scattering contrasts with re-
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spect to the background medium. For this reason, the Born approximation is called

a weak-scattering approximation (Moser, 2012).

P→P scattering:
Ωα = 1,

Ωβ = −2(β/α)2[1− (k̂
′ · k̂′′)2],

Ωρ = 1
2
(1− k̂′ · k̂′′)− (β/α)2[1− (k̂

′ · k̂′′)2]
S→P scattering:

Ωα = 0,

Ωβ = (k̂
′ · k̂′′)(q̂′ · q̂′′) + (k̂

′ · q̂′′)(k̂′′ · q̂′),
Ωρ = 1

2
[−q̂′ · q̂′′ + (k̂

′ · q̂′′)(k̂′′ · q̂′) + (k̂
′ · k̂′′)(q̂′ · q̂′′)]

P→S scattering:
Ωα = 0,

Ωβ = 2(β/α)(k̂
′ · k̂′′)(k̂′ · q̂′′),

Ωρ = −1
2
(k̂
′ · k̂′′) + (β/α)(k̂

′ · k̂′′)(k̂′ · q̂′′)
S→S scattering:

Ωα = 0,

Ωβ = 2β
α

[(k̂
′ · k̂′′)(k̂′′ · q̂′)],

Ωρ = −1
2
(k̂
′′ · q̂′) + (β/α)(k̂

′ · k̂′′)(k̂′′ · q̂′)

Table 2.1: Normalized Rayleigh scattering coefficients for α1, β1 and ρ1. k̂
′
, k̂
′′

and q̂′,
q̂′′ are the incoming and outgoing P- and S-wave polarization vectors respectively in the
scattering point x.

2.4 Born approximation in the time domain using

isochrons

The Green’s tensor (2.19) in the time domain is written as:

g0(r, t; s) = A(r; s)p̂rp̂sδ(t− T (r;x, s))

A(r; s) =
1

4πR

1√
ρ0(r)ρ0(s)c0(r)c3

0(s)
.

(2.27)
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The perturbed Green tensor in the time domain can therefore be written as:

g1(r, t; s) =
d2

dt2

∫∫∫
A(r;x)A(x; s)p̂r

(
p̂′′ · (ρ0S) · p̂′

)
p̂s×

δ
(
t− (T (r;x) + T (x; s))

)
d3x.

(2.28)

Here one needs to calculate the Green tensor for each time step. In practice, seis-

mograms are recorded and computed at discrete equally spaced time points. These

time points differ from the computed travel time T (r;x, s). One way of calculating

the Green tensor is to find the nearest time step to the travel time at a grid point.

Martin and Keers (2018) computes g1(r, t; s) for the acoustic case using isochrons.

In this thesis isochrons are used to compute g1(r, t; s), but for an elastic case:

ĝ1(r, t; s) =
d2

dt2

∫∫∫
Vt(x)

ars(x)d3x, (2.29)

with

Vt(x) = {x|t−∆t/2 < T (r;x, s) < t+ ∆t/2},

T (r;x, s) = T (x; s) + T (r;x),
(2.30)

and

ars(x) = ρ0A(r;x)A(x; s)p̂rp̂sΩ. (2.31)

The integral over Vt(x) is the volume between two isochron surfaces St−∆t/2 and

St+∆t/2 as shown in figure 2.4, where

St±∆t/2 = {x|t±∆t/2 = T (r; s)}. (2.32)

For a constant 3D background medium, the isochron surfaces are ellipsoidal. For a

varying background medium the surfaces St±∆t/2 become deformed. If we assume

that there is no multipathing, as is the case if the background medium is homoge-

neous, then the surfaces are smooth.
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Figure 2.4: Illustration of three different isochron surfaces St±∆t/2 and St. s and r are the
source and receiver positions respectively. x is a spacial position with a slowness vector
going in the direction of the source ps and the receiver pr. φ is the angle between ps or
pr and ps + pr. ∆y is the distance between St+∆t/2 and St (Martin and Keers, 2018).

One can parameterize the surface St and the coordinate y (x1,x2,x3) → (ξ1,ξ2,y) to

find a surface integral. Coordinate y is the perpendicular distance from one isochron

to the next one. Because of the change in coordinates, equation 2.29 is rewritten as:

ĝ1(r, t; s) =
d2

dt2

∫∫∫
Vt(x)

ars(x(ξ1, ξ2))

∣∣∣∣∂(x1, x2, x3)

∂(ξ1, ξ2, y)

∣∣∣∣dξ1dξ2dy, (2.33)

where

∣∣∣∣∂(x1, x2, x3)

∂(ξ1, ξ2, y)

∣∣∣∣ (2.34)

is the Jacobian. Following the derivation from Martin and Keers (2018) for the

elastic case, equation 2.33 can be written as:

ĝ1(r, t; s) =
d2

dt2

∫∫
St

ars(x)
∆t

|pr + ps|
d2x. (2.35)
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For a PP or SS scattering equation 2.35 can be written as:

ĝ1(r, t; s) =
d2

dt2

∫∫
St

ars(x)
c0∆t

2| cosϕ(x)|
d2x, (2.36)

where c0 is the velocity from the source to the scatter point and receiver to the

scatter point. ϕ is the incidence angle.

2.5 AVO modeling

Discontinuities in the elastic parameters (i.e., an interface that separates two me-

dia), dictate that the P- and S-wave hitting that interface will undergo changes. The

amplitude, wavenumber, and direction of propagation will change. In this section,

boundary conditions for the elastodynamic field at solid-solid interfaces will be dis-

cussed.

The displacement field u is treated as continuous across the interface:

u(z−) = u(z+), (2.37)

where z− and z+ indicate the values of the displacement field u just above and below

the interface respectively. Continuity of the displacement field means continuity of

structure. According to Newton’s third law of motion, the vertical traction at the

interface must also be continuous:

T z(z
−) = T z(z

+), (2.38)

which imply that two points infinitely close across the boundary have the same

stresses. Otherwise, the volume would be acted upon by a finite force that would

accelerate the volume (Ikelle and Amundsen, 2005).

The partitioning of energy at the interface, into reflected and transmitted waves,

is dependent on the elastic parameters in the two media and the angle of incidence
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of the incoming wave field. The objective is to find an equation for the reflected and

transmitted energy as a function of the incidence angle and the elastic properties.

It is assumed that the waves are plane waves. This assumption neglects the ef-

fects of geometrical spreading and curvature of the wavefront. When a plane wave

is incident upon a discontinuous plane interface, both compressive stresses and shear

stresses occur. Both P- and S-waves are therefore reflected and transmitted away

from the interface. Using the Helmholtz decomposition of the displacement field

for a homogeneous, isotropic, linearly elastic medium (equation 2.10), the P- and S-

waves can be separated into two separate displacement fields (Ikelle and Amundsen,

2005):

u = ∇χ+∇×ψ = u1 + u2, ∇ ·ψ = 0, (2.39)

where χ and ψ are the P-wave and S-wave displacement potentials respectively. For

plane harmonic-displacement waves, the P- and S-wave potentials can be written

as:

χ = αAP exp

[
i
ω

α
(k̂ · x− αt)

]
P-wave potential, (2.40)

ψy = βAS exp

[
i
ω

β
(k̂ · x− βt)

]
SV-wave potential, (2.41)

where AP is the amplitude of the P-wave, AS is the amplitude to the S-wave and

k̂ is the direction of propagation. α1, β1 and ρ1 are the velocities and density in

the upper layer and α2, β2 and ρ2 are the velocities and density in the lower layer.

Figure 2.5 shows a model of the subsurface in the xz-plane with two homogeneous,

isotropic, elastic media separating an interface. Since plane waves are considered,

the wavefronts can be represented as ray paths. The diagram of ray paths depicts

the reflection and transmission process for incident P- or S-waves. Only a downward

traveling incident P-wave is considered. The downward-traveling incident P-wave,

the upward-traveling S- and P-wave, and the downward-traveling S- and P-wave
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Figure 2.5: Partitioning of energy along with an interface for a wave incident on the in-
terface separating two homogeneous isotropic, elastic media. VP , VS , and ρ represent the
P-wave velocity, S-wave velocity, and density in this figure. φ and θ represents the angles
of the incident, reflected or transmitted waves. (a) shows an incident down-propagating
P-wave. (b) shows an incident down-propagating S-wave. (c) shows an incident up-
propagating P-wave. (d) shows an incident up-propagating S-wave (Ikelle and Amundsen,
2005).
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potentials respectively are:

χI = α1 exp

[
i
ω

α1

(x sin θi + z cos θi)

]
, (2.42)

χR = α1RPP exp

[
i
ω

α1

(x sin θr − z cos θr)

]
, (2.43)

ψR = β1RPS exp

[
i
ω

β1

(x sinφr − z cosφr)

]
, (2.44)

χT = α2TPP exp

[
i
ω

α2

(x sin θt + z cos θt)

]
, (2.45)

ψT = β2TPS exp

[
i
ω

β2

(x sinφt + z cosφt)

]
., (2.46)

where θ and φ are the angles of the P-wave and S-wave respectively. Snell’s law

gives the direction taken by the reflected and transmitted waves:

sin θi
α1

=
sin θr
α1

=
sin θt
α2

=
sinφr
β1

=
sinφt
β2

= p. (2.47)

The physical properties and angles are known, and the reflection and transmission

process are fixed by Snell’s law. The boundary conditions (see equations 2.37 and

2.38) at the interface still have to be satisfied to solve for the amplitude of the

reflected and transmitted waves. The displacement and stress which are continuous

across the interface can be expressed in terms of wave potentials:

ux =
∂χ

∂x
− ∂ψ

∂z
, (2.48)

uz =
∂χ

∂z
+
∂ψ

∂x
, (2.49)
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and

τxz =
1

2
µ

(
2
∂2χ

∂x∂z
+
∂2ψ

∂x2
− ∂ψ

∂z2

)
, (2.50)

τzz = λ∇2χ+ 2µ

(
∂2χ

∂z2
+

∂2ψ

∂x∂z

)
. (2.51)

The boundary continuity conditions require that both components of displacement

and both components of stress are continuous at the interface. The displacement

fields 2.40 and 2.41 applied to the boundary conditions gives four equations. These

four equations are expressed as a system of equations for an incident P-wave or

S-wave.. For an incident P-wave the system of equations is (Ikelle and Amundsen,

2005):


sin θi cosφr − sin θt cosφt

cos θi − sinφr cos θt sinφt

sin 2θi a1 cos 2φr b1 sin 2θt −c1 cos 2φt

cos 2φr −a2 sin 2φr −b2 cos 2φt −c2 sin 2φt

×

RPP

RPS

TPP

TPS

 =


− sin θi

cos θi

sin 2θi

− cos 2φr

 , (2.52)
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where

Z1 = ρ1α1

Z2 = ρ2α2

W1 = ρ1β1

W2 = ρ1β2

a1 =
α1

β1

b1 =
β2α1W2

α2β1W1

c1 =
α1W2

β1W1

a2 =
β1

α1

b2 =
Z2

Z1

c2 =
W2

Z1

.

(2.53)

Equation 2.52 can be solved numerically or analytically. The analytical solution for

the reflected PP coefficient is (Ikelle and Amundsen, 2005):

RPP =
c1d2 − c3d4

d1d2 + d4d3

, (2.54)

where
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qP1 =

√
α−2

1 − p2 : P-wave top layer

qS1 =

√
β−2

1 − p2 : S-wave top layer

qP2 =

√
α−2

2 − p2 : P-wave bottom layer

qS2 =

√
β−2

2 − p2 : S-wave bottom layer

d1 = 2p2∆µ(qP1 − qP2) + (ρ1qP2 + ρ2qP1)

d2 = 2p2∆µ(qS1 − qS2) + (ρ1qS2 + ρ2qS1)

d3 = p[2∆µ(qP1qS2 + p2)−∆ρ]

d4 = p[2∆µ(qP2qS1 + p2)−∆ρ]

c1 = 2p2∆µ(qP1 + qP2)− (ρ1qP2 − ρ2qP1)

c2 = −[2p2∆µ(qS1 + qS2)− (ρ1qS2 − ρ2qS1)]

c3 = −p[2∆µ(qP1qS2 − p2) + ∆ρ]

c4 = −p[2∆µ(qP2qS1 − p2) + ∆ρ].

(2.55)

Here p is the slowness and ∆µ = µ2−µ1 and ∆ρ = ρ2−ρ1 are the contrast between

the two layers.

The full Zoeppritz is non-linear, but it can be linearized under the assumption

of small parameter contrasts and incidence angles. The reason why it is useful to

linearize the full Zoeppritz equation is that it is possible to do linear AVO inversion

when one can express the forward problem in operator form d = Gm. There are

many different approximations to the full Zoeppritz equation to make it linear, one

of them is the approximation by Aki and Richards (1980):

RPP = aα(i)
∆α

ᾱ
+ aβ(i)

∆β

β̄
+ aρ(i)

∆ρ

ρ̄
, (2.56)

where
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aα(i) =
1

2
(1 + tan2 i)

aβ(i) = −4
β̄2

ᾱ2
sin2 i

aρ(i) =
1

2

(
1− 4

β̄2

ᾱ2
sin2 i

)
.

(2.57)

This linearized Zoeppritz equation is not accurate for high contrasts and high inci-

dence angles (Ikelle and Amundsen, 2005).

The displacement field can be found by convolving the reflectivity r(t) with a

source signature w(t) and the propagation signature g(t) which takes the geometri-

cal spreading and travel-time into account. If one measures the displacement with

one or more receivers, the instrument filter has to be considered and convolved with

the source signature and reflectivity. The instrument filter will be ignored in this

thesis. The displacement is written as (Ikelle and Amundsen, 2005):

u(t) = g(t) ∗ w(t) ∗ r(t). (2.58)

The wavefield consists of three components, two lateral and one vertical. In this

thesis, only the vertical component will be used.
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Chapter 3

Forward modeling - Numerical

implementations

3.1 Outline

In this chapter, I present the forward modeling implementation and results using

the theory discussed in chapter 2 for an elastic isotropic medium. Three velocity

models are used to do forward modeling (section 3.2). The Born approximation

and the AVO modeling are used on two models to create synthetic record sections

(section 3.5). The Born approximation is used in both the time domain by using

isochrons and in the frequency domain. The AVO modeling is done using both

the full Zoeppritz and a linearized version of the full Zoeppritz. Only the Born

approximation in the frequency domain is used on model 3 to create a synthetic

record section (section 3.5).

3.2 Velocity and density models

There models will be described in this chapter. Model 1 and 2 have the same size

and the same receiver and source geometry. Model 3 is much larger and with a

different source and receiver geometry.
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Model 1 is a simple model which consists of a layer over a half-space (see table

3.1 and figure 3.1). The velocity perturbation strength is 5%. Model 2 consists of

four layers over a half-space (see table 3.2 and figure 3.2). The background medium

for model 1 and 2 is constant and have the same parameter values as the first layer

in each model.

The grid size in models 1 and 2 is 5× 5× 5 meters in the x, y, and z directions. The

size of models 1 and 2 is 1200× 1300× 1000 meters.

The source and receivers are at a depth of 0 meters. There is only one source, with

11 receivers distributed every 50 meters in the x-direction starting at the source

position. The source and receiver geometry for models 1 and 2 are shown in figures

3.1 and 3.2 respectively, together with the P-wave velocity in the xz-plane.

Table 3.1: Model 1. Table of the P-wave velocity, S-wave velocity and density values in
each layer and the background model.

Model 1 P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Layer 1 2500 1471 2300
Halfspace 2625 1544 2400
Background model 2500 1471 2300

Table 3.2: Model 2. Table of the P-wave velocity, S-wave velocity and density values in
each layer and the background model.

Model 2 P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Layer 1 2300 1170 2146
Layer 2 2500 1270 2192
Layer 3 2150 1070 2135
Layer 4 2250 1120 2110
Half-space 2400 1170 2169
Background model 2300 1170 2146
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P-wave velocity model in the xz-plane
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Figure 3.1: Model 1. 3D P-wave velocity model in the xz plane. The source (∗) and
receivers (5) geometry are shown together with the seismic rays from the source to the
receivers.
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P-wave velocity model in the xz-plane
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Figure 3.2: Model 2. 3D P-wave velocity model in the xz plane. The source (∗) and
receivers (5) geometry are shown together with the seismic rays from the source to the
receivers.
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Model 3 is a random Gaussian 3D model. The reason for using a random Gaussian

model is because the forward modeled record section will be used later as noise in the

synthetic seismic data (see subsection 6.3.7). This Gaussian model is generated by

using a Gaussian correlation function (Tengesdal, 2013), (Minakov et al., 2017). The

code for generating random Gaussian models was provided to me. The perturbation

strength is at a maximum of 10% with respect to the background medium and has

a correlation length of 100m. The background medium is constant: α0 = 2225 m/s,

β0 = 1298 m/s and ρ0 = 2108 kg/m3. The Gaussian model is shown in figure 3.3.

Model 3 has a size of 6000 × 6100 × 3510 meters in the x, y, and z-direction, re-

spectively. The grid size is 10× 10× 10 meters.

The source and receivers are at the same depth (0 meters). There are 41 source

and receiver pairs placed to the left and right of a common midpoint. The distance

between the sources is 35m. The distance between the receivers is the same. At

the midpoint, there is a source and receiver pair on top of each other. The source

and receiver geometry for model 3 is shown in figure 3.3, together with the P-wave

velocity perturbation in the xz-plane. The S-wave velocity perturbation is equal to

the P-wave velocity divided by 1.7. The density perturbation is zero.
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Gaussian model in the xz-plane
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Figure 3.3: Model 3. Random Gaussian 3D P-wave perturbation velocity model in the xz
plane. The source (∗) and receivers (5) geometry are shown.
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3.3 Born approximation

To compute a synthetic seismogram using the Born approximation in the frequency

domain (equation 2.25) is straight forward. The perturbed Green function has to be

computed for all frequencies one chooses to include. Then the Green tensor is multi-

plied with the source wavelet in the frequency domain. Finally, the inverse Fourier

transform is used to transform the synthetic seismogram into the time domain.

The computation of the synthetic seismogram using the Born approximation in

the time domain is not as simple. The perturbed Green function in the time domain

(equation 2.28) has to be solved for each time step. The problem with this is that

the time of the wavefront does not fit perfectly with each time step. Because of that,

one needs to find a way to approximate the integral in equation 2.28. In section 2.4

the volume integral is transformed into a surface integral. The surface represents the

phase function 2.30 at each time step. The goal in this section is to use a numerical

solution to approximate the surface integral. The approximated perturbed Green

function is convolved with the wavelet to get the synthetic seismogram.

To compute the integral in equation 2.35, one needs to define a surface where the

time is equal (isochron) with the use of the spatial grid points. One way of doing

this is to divide the surface into triangular surfaces and sum over all those surfaces.

This is done by finding vertex positions (the corners of the triangles) x1(n), x2(n),

x3(n), where n = 1,...,ntr and ntr are the number of triangles. The integration for

each triangle is computed by taking the average value for the integrand at each

vertex (three for each triangle) times the area of each triangle. By summing all the

triangles together, the total integral of the isochron is found. The average value for

each triangle is found by using the expression of equation 2.35 (Martin and Keers,

2018):

In =
∆t

3

3∑
m=1

ar,s(xm)
∆t

|pr + ps|
(3.1)

The area of each triangle is found by calculating half the area of the parallelogram
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spanned by x2 - x1 and x3 - x1:

∆An =
1

2
|(x2 − x1)× (x3 − x1)| (3.2)

The perturbed Green tensor then becomes:

Ĝ1(r, t; s) ≈ d2

dt2

ntr∑
n=1

In∆An. (3.3)

3.4 AVO modeling

Reflection coefficients are calculated from models 1 and 2 using the full Zoeppritz

(equation 2.52) and the linearized Zoeppritz (equation 2.56) by Aki and Richards

(1980). The reflection coefficients as a function of incidence angle are shown in fig-

ures 3.4 and 3.5. The highest incidence angle from the source and receiver geometry

in model 1 is 42.5 degrees. This incidence angle suggests from figure 3.4 that it is not

expected that there is any significant difference between the AVO modeled seismo-

gram using the linearized Zoeppritz and the full Zoeppritz. The highest incidence

angle from the source and receiver geometry in model 2 for all layer boundaries

is 50.7, 41.1, 37.4, and 31.4 going downwards. This suggests that there can be a

significant difference between the AVO modeled seismograms for the first reflector.
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Figure 3.4: Reflection coefficients as a function of incidence angle calculated for model 1
using the full Zoeppritz (equation 2.52) and a linearized version (equation 2.56) by Aki
and Richards (1980).
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Figure 3.5: Reflection coefficients as a function of incidence angle calculated for model 2
using the full Zoeppritz (equation 2.52) and a linearized version (equation 2.56) by Aki
and Richards (1980). Top left is layer boundary 1. Top right is layer boundary 2. Bottom
left is layer boundary 3. Bottom right is layer boundary 4.
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3.5 Record sections

In this section, the Born approximation in the frequency and time domain as de-

scribed in sections 2.3 and 2.4, and the AVO modeling with the full and linearized

Zoeppritz equations described in section 2.5 are used to create synthetic record sec-

tions from models 1 and 2. In model 3, only the Born approximation in the frequency

domain will be used to create a synthetic record section. The z-component is chosen

for all three record sections.

The reflection coefficients for the full and linearized Zoeppritz as a function of angle

are shown in figures 3.4 and 3.5 for models 1 and 2. The wavelet that has been

used in models 1 and 2 is a Ricker wavelet and has a peak frequency of 15 Hz. In

model 3, a Ricker wavelet with a peak frequency of 25 Hz has been used. Only PP

reflections have been modeled.

The length of the signal in models 1, 2, and 3 is only 0.5s, 0.6s, and 3.3s, respectively

with a sampling of 0.002s. The record sections are shown in figures 3.6, 3.7 and 3.8.

Geometrical spreading is included in record sections 1 and 2 but is ignored in record

section 3.
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Figure 3.6: Record section for PP scattering/reflection using model 1 from table 3.1.
The source and receiver geometry are shown in figure 3.1. The red and blue lines are the
displacements calculated using the Born approximation in the time and frequency domain,
respectively. The green and black stippled line are the displacements calculated using the
full Zoeppritz equation (2.52) and a linearized version of the full Zoeppritz equation (2.56).
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Figure 3.7: Record section for PP scattering/reflection using model 2 from table 3.2.
The source and receiver geometry are shown in figure 3.2. The red and blue lines are the
displacements calculated using the Born approximation in the time and frequency domain,
respectively. The green and black stippled line are the displacements calculated using the
full Zoeppritz equation (2.52) and a linearized version of the full Zoeppritz equation (2.56).
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Figure 3.8: Record section calculated with the Born approximation in the frequency do-
main for PP reflections using model 3. The source and receiver geometry are shown in
figure 3.3.
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3.6 Discussion

In this section, I discuss the elastic forward modeling results from the three models

and the four modeling methods used. The four modeling methods used are: 1) The

Born approximation in the time domain using isochrons. 2) The Born approxima-

tion in the frequency domain. 3) AVO modeling using the full Zoeppritz equation.

4) AVO modeling using a linearized Zoeppritz equation by Aki and Richards (1980).

Reflection coefficients

As mentioned briefly in section 3.4, the linearized Zoeppritz equation by Aki and

Richards (1980) is believed not to be accurate for high velocity contrasts and high

incidence angles (see figures 3.4 and 3.5). The highest contrast is between layer 1

and 2, and layer 2 and 3 in model 3.2. Here it is apparent that for large incidence an-

gles, the difference between the full Zoeppritz and the linearized Zoeppritz becomes

significant. Since the highest incidence angle is 50.7◦ and 41.1◦ for the boundary

between layer 1 and 2, and layer 2 and 3 respectively this makes the linearized Zoep-

pritz equation inaccurate for the maximum offset in model 2.

Synthetic record sections

The record sections in figure 3.6 show that the full and linearized Zoeppritz model-

ing methods give approximately the same result. Figure 3.7 shows some difference

at high offsets. This difference is because of the high contrasts and high incidence

angles for the reflection coefficients. The difference between the Born approximation

computed in the time domain and frequency domain in figures 3.6, and 3.7 is almost

negligible. The AVO modeling and Born approximation exhibit some difference for

near offsets. In the first record section (figure 3.6) the Born approximation has two

local minima for each trace (around 0.27s and 0.33s for the first trace), the earliest

minimum has a higher value than the AVO modeled trace, while the latest minimum

has a lower value than the AVO modeled trace. The reason for this difference prob-

ably is related to the fact that Born modeling is not accurate for sharp boundaries

(Moser, 2012).



Chapter 3. Forward modeling - Numerical implementations 40

For far offsets in the first record section (figure 3.6), the Born approximation and

AVO modeling seem to approximately have identical traces. For the second record

section (figure 3.6) the Born approximation and the AVO modeling show some dif-

ference between traces for large offsets. This difference indicates that the Born

approximation does not work well for strong scatterers and high incidence angles.

This result is in alignment with the theory from section 2.3.

The record sections in figure 3.8 show a strong first reflection. The sharp veloc-

ity contrast entering the perturbed medium is the reason for this strong reflection.

This record section will be used later in chapter 6 to add noise from random hetero-

geneities to a common midpoint gather.
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Chapter 4

Stochastic inversion

4.1 Outline

Given in this chapter, is the theoretical background of stochastic inversion. First

discussed is the general theory of nonlinear and linear inverse problem. The Bayes

theorem is introduced, which is the basis for stochastic inversion. Next gradient-

based least square solutions are discussed. Finally two ensemble-based methods are

discussed. The implementations of these methods are presented in chapter 5.

4.2 Nonlinear inverse problems

In chapter 2, the forward problem was introduced. The forward problem (4.1) states

that it is possible to predict the outcome of some measurement d given a model m:

g(m) = d, (4.1)

where g is the operator relating the model m to the measurement d (note that g

is not the same as the Green function g1(r, ω; s) in chapters 2 and 3). The inverse

problem is about finding the model m given the measurement d. The measure-

ment d is used to estimate a set of model parameters m. It is assumed that some
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physical model mtrue describes the measurement that is observed. The parameters

may be physical entities (e.g., density and or velocity), coefficients or constants in

a functional relationship that describes a physical process (Aster et al., 2018). In-

verse problems with a finite number of data points and parameters are often called

discrete inverse problems or parameter estimation problems. A general parameter

estimation problem can be written as a system of equations as in equation 4.1.

The model m is found using either mathematical inverse techniques or trial-and-

error techniques that solve the forward problem (4.1) repeatedly and look for the

”best” solution (Stein and Wysession, 2009).

Most inverse problems are nonlinear, and it is rarely possible to solve the inverse

problem analytically. The inability to express the problem analytically means that

it is not possible to find an explicit expression for the model in terms of the data.

A nonlinear problem is solved using either local or global methods, which involve a

search or exploration of the model space, or direct computation. Search methods

can be gradient-based (e.g., conjugate gradient and quasi-Newton) and are gener-

ally iterative and find a local minimum (or maximum). Global methods (e.g., Monte

Carlo) find the global minimum (or maximum) (Everett, 2013).

Linearization can be used to solve nonlinear inverse problems that are far from

linear around the expected true model iteratively (Stein and Wysession, 2009). It-

eratively solving the problem requires that there are no local minima between the

initial model and the true model. This is done by expanding the data d (4.1) in

a Taylor series about the initial model m0 and keeping only the linear term (Stein

and Wysession, 2009). The Taylor approximation can be written as:

di ≈ d0
i +

P∑
j=1

∂di
∂mj

∣∣∣∣
m0

∆mj, (4.2)

where P is the number of model parameters and d0 is the forward modeled data for
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the initial model m0. This equation can be written in matrix form:

d ≈ d0 +G∆m, (4.3)

where Gij = ∂di
∂mj

. The difference between the observed data dobs and the data for

the initial model d0 is then used to simplify the equation:

dobs ≈ d0 +G∆m,

∆d = dobs − d0 ≈ G∆m,
(4.4)

so that the equation can approximately be written as:

∆d = G∆m. (4.5)

The solution of this equation gives the change in the model ∆m. Equation 4.5

is now linear and can be solved explicitly. The solution to equation 4.5 can be

approximated or solved with least-squares as described in the next section 4.3. The

change in the model is then added to the existing or initial model m = m0 + ∆m.

The new model is used to predict new data d and equation 4.5 is used again to

find a new model. This process is repeated until successive iterations produce only

small changes in the model, and in the total misfit of the data ∆d. This iterative

algorithm is a typical approach when using a gradient method.

4.3 Linear inverse problems

If the forward problem (equation 4.1) is linear, then it can be written on the form:

d = Gm, (4.6)

where G is now the operator matrix (not to be confused with the Green function

from chapters 2 and 3)
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In sections 4.2 and 4.3, the system of equations 4.6 and 4.5 has no solution, in-

finitely many solutions or a unique solution. When a system of equations has more

data points/equations than parameters/unknowns, it is called an over-determined

system (Everett, 2013). In this thesis, only over-determined systems are used. In

over-determined systems, no model vector can satisfy all the constraints exactly,

unless some constraints are redundant. However, it is possible to find a solution

that can find an approximate solution to the system of equations. If the forward

problem is linear, d = Gm, the least squares approach can be used. The least

squares approach minimizes a weighted sum of squares of the discrepancies between

each computed data point and the corresponding measured value (Everett, 2013):

∂∆T∆

∂mk

= 0,

∆i = di −
n∑
j=1

Gijmj, i = 1, ...,m.
(4.7)

Here n is the number of parameters and m is the number of data samples. ∆T∆ is

often called the cost function or misfit function. Equation 4.7 can be written as:

5[d−Gm]T [d−Gm] = 0. (4.8)

This leads to:

m = (GTG)−1GTd. (4.9)

(GTG)−1GT is called the least-squares or generalized inverse G−g. Least squares is

often applied to equation 4.5 to find ∆m.

4.4 Bayes’ theorem and inverse Problems

All physical measurements have some error e associated with it. This error is often

assumed to be random and is not modeled by the forward problem. There are vari-
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ous reasons the forward problem does not capture this error. The physical problem

might not be fully understood, the physical problem might be too complicated to

express mathematically, or there can be measurement noise in the observed data.

These errors are often the reason why there is no unique solution for the model in

the inverse problem. The least square solution of the inverse problem (equation 4.9)

is just one of infinitely many solutions (Everett, 2013).

Theoretical knowledge and or other independent measurements prior to the current

measurement can help find the model parameters that make sense and put restric-

tions on the model space. This prior knowledge is called a priori information.

Because of measurement errors and non-uniqueness, it is desirable to define a state

of information, with the aid of the probability theory, as a probability density func-

tion over the parameter space. This state of information will help understand the

many possibilities to a solution and the model uncertainty. The measurements of the

observable parameters, the a priori information on the model parameters and the

physical correlation between the model parameters and the observable parameters

(forward modeling) can be described using probability density functions (Tarantola,

2005).

The measured parameters have a probability density function p(d) which describes

the measured parameter uncertainty. p(d) can be estimated based on theoretical

knowledge or many repeated measurements. The model parameters have a probabil-

ity density function known prior to the measurement p(m), which is estimated from

the a priori information. For every model m, one may exhibit a probability density

function for d written as p(d|m) (Tarantola, 2005). Based on the measurement it

is possible to estimate a posteriori model probability density function p(m|d).

The general idea behind the inverse problem using probability density functions

can be explained with Bayes’ theorem (Tarantola, 2005):

p(m|d) =
p(d|m)p(m)

p(d)
. (4.10)

p(m|d) is the probability density function of the posterior model m given the data

d. p(d|m) is the probability density function of the data d given the a priori model
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m. Bayes’ formula can be broken into four subtasks (Kaipio and Somersalo, 2006):

1. Based on the a priori information of the model m, find a prior probability

density function p(m) that reflects the prior information. The prior probability

density function needs to have the ”true” model in the distribution space for

the method to work. Otherwise the method will not ”converge” to the true

model.

2. Estimate the measurement error probability density function p(d).

3. Find the likelihood function p(d|m) that describes the relation between the

observation and the model.

4. Develop methods to find and explore the posterior probability density function.

p(m|d).

Each of these steps often is a challenge on its own. An advantage with the Bayes’

theorem is the use of the prior, which can reduce the weight of the information

coming from the observed data. Prior knowledge is an advantage if the data is noisy

or if solving the problem requires a lot of measurements, which are not available.

Otherwise, it might not be beneficial to use prior knowledge when solving a problem.

In the next sections, methods to find a posterior probability density function us-

ing the principle of Bayes’ theorem are explored.

4.5 Gradient-based methods

Tarantola (2005) defines the inverse problem with uncertainties as:

p(m|d) =
1

v
p(m)p(d), (4.11)

where v is the normalization constant defined as v =
∫
M
p(m)p(d)dm. It is assumed

that the modelization uncertainty can be ignored for now.

In this section, all problems are modeled using Gaussian distributions, both the

prior and posterior probability functions. The covariance plays a key role when us-
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ing Gaussian distributions.

When the forward problem is linear, the posterior uncertainties are Gaussian if

the prior uncertainties are Gaussian. When the forward problem is non-linear, or

the data contains non-Gaussian errors, the posterior probability is not Gaussian. If

the non-linearities are not too severe, it is often sufficient to find the maximum like-

lihood point of the distribution and estimate the shape of the distribution around

that point. If the problem is close to linear, it can be sufficient to do a single step

in the search direction to find the posterior mean, covariance or ensemble members

(Tarantola, 2005) (more about this in section 4.6.1 and 4.6.2).

If the prior probability density function is Gaussian, it can be written as (Tarantola,

2005):

p(m) = C exp(−1

2
(m− µ)TC−1

M (m− µ)), (4.12)

where µ is the mean of m, C is a constant and CM is the prior model covariance

matrix. The result from the forward modeled data g(m), can be represented by a

Gaussian probability density function centered at the observed value dobs with the

measurement error covariance CD (Tarantola, 2005):

p(d) = C exp(−1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)). (4.13)

For a linear problem, combining equation 4.11, 4.12 and 4.13 gives the posterior

probability density function:

p(m|d) = C exp(−1

2
S(m)), (4.14)

where S(m) is the misfit function:

S(m) = ‖g(m)− dobs‖2
D + ‖m− µ‖2

M

= (g(m)− dobs)TC−1
D (g(m)− dobs) + (m− µ)TC−1

M (m− µ).
(4.15)
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If the modelization uncertainties can be described using Gaussian statistics, with

a covariance matrix CT , then this can be included in equation 4.15. CD is then

replaced by CT + CD. If the forward problem is non-linear, then equation 4.14

cannot be used. When the forward problem is linear, then it can be written as

d = Gm. Now equation 4.15 can be written as:

S(m) = ‖Gm− dobs‖2
D + ‖m− µ‖2

M

= (Gm− dobs)TC−1
D (Gm− dobs) + (m− µ)TC−1

M (m− µ).
(4.16)

Since the posterior has a Gaussian probability density function, it must have a

posterior mean µ̂ and covariance ĈM , so that equation 4.14 can be written as:

p(m|d) = const. exp(−1

2
(m− µ̂)T Ĉ

−1

M (m− µ̂)). (4.17)

In Tarantola (2005) it is shown that the solution to the posterior mean is:

µ̂ = µ+CMG
T (GCMG

T +CD)−1(dobs −Gµ), (4.18)

and the posterior covariance is:

ĈM = CM −CMG
T (GCMG

T +CD)−1GCM . (4.19)

The point µ̂ is the minimum of the least-squares misfit function (4.15). µ̂ is the

’best’ point in the sense that it is close to the prior mean µ and the predicted mean.

Equations 4.18 and 4.19 can be used in a dynamical system that evolves with time.

The Kalman filter method uses these equations and estimates the state of a dynam-

ical system at discrete time points (Welch et al., 1995). The posterior mean and

covariance at the current time step are used as the prior in the next time step and

so forth. That way, the model uncertainties are updated for each time step.

If there is no a priori information available, one can take the limit C−1
M → 0 and
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the posterior mean can be written as:

µ̂ = (GTC−1
D G)−1(GTC−1

D dobs), (4.20)

and posterior covariance:

ĈM = (GTC−1
D G)−1. (4.21)

If the forward problem is non-linear g(m), the posterior probability density function

p(m|d) is not Gaussian. As mentioned in section 4.2 it is possible to linearize g(m)

around µ, as shown in equation 4.2. Replacing the forward operator G with the

gradient Gij = ∂di
∂mj

∣∣∣
µ

in equations 4.18 and 4.19, gives the posterior mean and

covariance respectively (Tarantola, 2005):

µ̂ ≈ µ+CMG
T (GCMG

T +CD)−1(dobs − g(µ)) (4.22)

ĈM ≈ CM −CMG
T (GCMG

T +CD)−1GCM . (4.23)

These two equations are both linear and have the same form as equation 4.18 and

4.19. The right strategy for problems that are not too severely non-linear is to use

iterative algorithms to obtain the maximum likelihood point of p(m|d), then use a

linearization of g(m) around that likelihood point to estimate a posteriori covariance

matrix. This iterative algorithm uses the same procedure as described at the end of

section 4.2, and is a typical problem of non-linear least-squares minimization. The

non-linear problem can be solved using the quasi-Newton method. The solution to

the posterior mean can be written as (Tarantola, 2005):

µn+1 = µn − kn(GT
nC

−1
D Gn +C−1

M )−1(GT
nC

−1
D (g(µn)− dobs) +C−1

M (µn − µprior)),
(4.24)

where µprior is the mean of the prior, µn is the mean of each step, Gij,n = ∂di
∂mj

∣∣∣
µn
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and kn is the damping k . 1. The algorithm is initialized at an arbitrary point µ0

(the simple choice is µ0 = µprior) and converges to a local optimal point. Once the

maximum likelihood point µ̂ has been found, the posterior covariance matrix can

be estimated (Tarantola, 2005):

ĈM ' CM −CMG
T (GCMG

T +CD)−1GCM , (4.25)

where G is now the partial derivative taken at the convergence point, Gij = ∂di
∂mj

∣∣∣
µ̂
.

Since this method is locally convergent, it is important to carefully choose µ0 such

that it converges to the desired minimum. If there are too many local minima and the

method is too far from being linear, then it is better to use a Monte Carlo method.

With Monte Carlo methods, one can use more realistic probability distributions

for non-linear problems. However, Monte Carlo methods require that one draws

many samples from the model space. Monte Carlo methods can be computationally

demanding.

4.6 Ensemble methods

4.6.1 Ensemble Optimal Interpolation

The Ensemble Kalman Filter (EnKF) is a Monte Carlo approximation of the Kalman

filter (Evensen, 2009). EnKF does not require evolving the prior covariance matrix.

Instead the state vector m (i.e. each ensemble member) is evolved. In AVO inver-

sion, there is no time dependence. Therefore, the problem is stationary. When the

problem is stationary, EnKF can be referred to as Ensemble Optimal Interpolation

(EnOI) (Evensen, 2003). The state vector m is represented as an ensemble:

X = [m1, ...,mN ] = [mi]. (4.26)

X is an n×N matrix where N is the number of ensembles and n is the dimension

(number of parameters). In other words, the ensemble members are samples from

the prior covariance matrix CM .
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The measurement vector dobs is replicated into an m×N matrix:

D = [d1, ...,dN ] = [di], (4.27)

where

di = dobs + εi, εi ∼ N(0,CD), (4.28)

where m is the number of measurements. Each column di consists of the measure-

ment vector dobs plus a random vector εi from them-dimensional normal distribution

N(0,CD).

One advantage with the EnKF/EnOI method compared to the Kalman Filter/gradient-

based least square method in section 4.5 is that it avoids evolving the covariance

matrix. Therefore, the derivatives of the forward operator G is not needed. The

realizations are obtained directly through the posterior ensembles XP . The EnOI

can also be applied to problems that are close to linear. The equations assume a

linear operator (Emerick and Reynolds, 2013). Therefore, the problem needs to be

close to linear. For a non-linear problem, the solution is only a local minimum. The

posterior ensemble can be written as (Evensen, 2003):

XP = X +
1

N − 1
A(GA)TP−1

(
D −GX

)
, (4.29)
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where

P =
1

N − 1
GA(GA)T +R,

[GA]i = g(mi)−
1

N

N∑
j=1

g(mj),

R =
1

N − 1
DA(DA)T ,

[DA]i = di −
1

N

N∑
j=1

dj,

[GX]i = g(mi),

[A]i = mi −
1

N

N∑
j=1

mj,

(4.30)

This formula also holds for a fixed constant in the forward problem, g(m) =

h(m) + f . Notice that R and CD are not the same covariance matrices. CD is the

prescribed measurement error covariance matrix and R is the ensemble covariance

matrix estimated from the replicated data D (Evensen, 2003). It is assumed that

the distributions used to generate the data ensemble CD are independent (Evensen,

2003), meaning that the data is uncorrelated. The prior ensemble covariance matrix

is defined as AAT/(N − 1). The prior and noise are assumed to have a Gaussian

distribution (Evensen, 2003). These assumptions imply that the posterior 4.30 is

not Gaussian if the prior or data are not Gaussian. However, it is still possible to

use non-Gaussian noise (Evensen, 2003).

Reynolds et al. (2006) showed that EnOI could be derived as an approximation

to the Gauss-Newton method, which uses an ”average” sensitivity/gradient matrix.

For each EnOI update, one Gauss-Newton iteration is computed with a full step

in the search direction. Using only one Gauss-Newton iteration suggests that the

forward problem cannot be too far from linear. If the problem is highly non-linear,

some form of iteration (with the gradient estimated in each step) is required to

characterize the model uncertainty (Tarantola, 2005). EnOI becomes equivalent to

gradient-based least square solution for the linear-Gaussian case when the size of



53 4.6. Ensemble methods

the ensemble goes to infinity (Emerick and Reynolds, 2012).

The flow diagram of the EnOI algorithm is as follows (Evensen, 2003):

Estimate CD and CM

Replicate data D and sample X

Estimate R

Calculate forward mod-

eled data GX (4.30)

Estimate A (4.30)

Estimate GA (4.30)

Calculate P

Calculate the posteri-

ori ensembles XP (4.30)

4.6.2 Multiple Data Assimilation

Ensemble Smoother (ES) is a method that computes a global update by simulta-

neously assimilating all dynamic data available (Emerick and Reynolds, 2012). In

this thesis, dynamic data is not considered. For one time step, the ES and EnOI

methods are the same. In this section, a method called Ensemble Smoother for Mul-

tiple Data Assimilation (ES-MDA) (Emerick and Reynolds, 2012) will be discussed
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for stationary data. The name Ensemble Smoother for Multiple Data Assimilation

can, therefore, be changed and will now be referred to as the Ensemble Optimal

Interpolation for Multiple Data Assimilation (EnOI-MDA) in order to emphasize

the stationarity of the problem.

EnOI-MDA can be interpreted as an ”iterative” EnOI method, with a predetermined

number of iterations. For one assimilation/iteration, these two methods (EnOI and

EnOI-MDA) are the same. Instead of performing a single and potentially large cor-

rection, multiple smaller corrections to the ensemble are done. The measurement

covariance matrix CD is damped with an inflating coefficient, αi. The inflating

coefficient needs to uphold a requirement such that
∑Na

i=1
1
αi

= 1, where Na is the

number of predetermined iterations. ES-MDA becomes equivalent to KF or EnOI

for the linear Gaussian case when the size of the ensemble goes to infinity (Emerick

and Reynolds, 2012).

Since EnOI-MDA does multiple iterations for each update, this can be thought of

as multiple small Gauss-Newton corrections in the search direction, unlike the EnK-

F/EnOI which performs one large correction. The choice of inflation coefficients is

not straightforward. The simplest choice for α is when αi = Na for all i. Previous

work shows that it can be beneficial to choose αi in a decreasing order (Emerick

and Reynolds, 2013), (Emerick, 2018). In this case, one start by assimilating data

with large αi, which reduces the magnitude of the initial updates, then αi is grad-

ually reduced, and the magnitude of the updates increases. The rationality behind

this procedure is that at the beginning of the data assimilation, the predicted data

are far from the observations, so it is beneficial to restrict the changes in the mod-

els to avoid overcorrection. Overcorrection can result in unreasonably large values

of some model parameters (Emerick and Reynolds, 2012). Emerick and Reynolds

(2012) found that it is typically more difficult to assimilate very reliable data when

the problem is non-linear. In that case, it may be beneficial to assimilate data

multiples times with an inflated measurement error covariance matrix. Better esti-

mates can be obtained by doing several smaller updates, instead of one large update.

Ensemble collapse is a phenomenon where all the ensembles collapse to a single

realization (Emerick and Reynolds, 2012). Ensemble collapse occurs when the num-
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ber of parameters estimated is less than the number of ensembles. Therefore, it

is crucial to have this in mind when constructing the prior ensemble X. It is also

essential to choose the prior mean and covariance matrix in such a way that it covers

the true model. If the true model is not covered, the model uncertainty estimation

can be wrong.

The flow diagram of the EnOI-MDA algorithm is as follows (Emerick and Reynolds

(2013)):
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Chapter 5

Stochastic AVO Inversion -

Numerical Implementations

5.1 Outline

In this chapter, the AVO inversion results using the ensemble methods described

in chapter 4 are presented. First, the velocity and density model are introduced

(section 5.2). Then the forward modeled data calculated based on the model with

random noise is presented (section 5.3). The prior, inflation coefficients, number of

assimilations, and the measurement error covariance matrix are then chosen (sec-

tion 5.4). Finally, the AVO inversion result is given using the EnOI and EnOI-MDA

method (section 5.5).

Only figures showing the estimated P-wave velocity are shown in this chapter. All

results are given in appendix A. The results show the prior and posterior models

for the P-wave velocity, S-wave velocity, and density. CIP gathers with and without

noise used in the inversion are shown in appendix A.
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5.2 Model

Model 2 from section 3.2 is used in this chapter. This model is a simple layered

model (see figure 3.2). A simple model is chosen to understand, illustrate, and test

the behavior of the EnOI-MDA method. The model is converted from depth to time

by using the P-wave velocity, as the inversion is traditionally used for CIP in the

time domain. The P-wave velocity, S-wave velocity, and density model in time are

shown in figure 5.1. The P-wave velocity, S-wave velocity, and density values in each

layer are given in table 5.1.

Table 5.1: Table of the P-wave velocity, S-wave velocity, and density values in each layer
of the model used in this chapter.

P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Layer 1 2300 1170 2146
Layer 2 2500 1270 2192
Layer 3 2150 1070 2135
Layer 4 2250 1120 2110
Layer 5 2400 1170 2169
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Figure 5.1: P-wave velocity (left), S-wave velocity (middle), and density (right) model
used in this chapter.
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5.3 Forward modeled data

Seismic forward modeling is done using the full Zoeppritz equation theory as de-

scribed in section 2.5. The reflection coefficients calculated with the full Zoeppritz

equation are convolved with a Ricker wavelet with a peak frequency of 25 Hz. The

reflection coefficients calculated with the full Zoeppritz equation are convolved with

a Ricker wavelet with a peak frequency of 25 Hz. This wavelet is used for all angles

and depths. The wavelet is also used in the inversion algorithm.

The data is created directly in the time-angle domain. The incidence angles start

at 0 degrees and end at 40 degrees with a new trace every 4 degrees. Using data

in the time-angle domain will simplify the AVO inversion since the full Zoeppritz

equation is dependent on the incidence angle. The seismic data is a common image

point (CIP) gather. The resulting CIP gather is shown in figure 5.2.
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Figure 5.2: A common image point gather in the angle domain without noise using the
model in figure 5.1.

The EnOI and ES-MDA methods are tested by including noise in the data. The

EnOI and ES-MDA method both require the noise to have a Gaussian distribution.
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The strength of the noise is chosen such that the signal to noise ratio (SNR) is 15.

The signal to noise ratio is calculated by taking the root mean square (RMS) of the

signal without noise and dividing it by the RMS of the noise over the entire time

window. The signal with random Gaussian distributed noise is shown in figure 5.3.
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Figure 5.3: A common image point gather in the angle domain with random Gaussian
distributed noise using the model in figure 5.1.
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5.4 Prior, measurement error and assimilations

Using the EnOI and EnOI-MDA methods to do AVO inversion requires some prior

knowledge about the model. Assume that some prior knowledge about the model

is given. This prior knowledge can be given as a multivariate Gaussian distribution

that has a mean and covariance. In this case, it is assumed that there is no corre-

lation between the parameters and that the standard deviation is the same in all

layers. The mean and standard deviation of the prior model are shown in table 5.2.

The prior state matrix X is sampled from this prior model.

Table 5.2: Table of the P-wave velocity, S-wave velocity and density mean and standard
deviation to the prior covariance matrix.

P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean (µ) 2500 1200 2100
Std (σ) 400 300 300

The error covariance matrix needs to be approximated. This matrix is usually hard

to estimate and will be different for each survey. In this example, it is assumed

that the measurement error has a Gaussian distribution, and the covariance matrix

is known. The mean is zero, there is no correlation, and the standard deviation is

1.64e-06. This standard deviation is equivalent to a SNR of 15.

When using the EnOI-MDA method, the number of assimilation Na is set to 5

and the inflation coefficients a = [100
5
, 100

10
, 100

15
, 100

30
, 100

40
]. The optimal choice of the

number of assimilations and the inflation coefficients will be investigated in section

6.5.

5.5 Inversion results

When doing the inversion, it is assumed that the location of the layer boundaries

is known in time and that the layers have homogeneous properties. The location

of the layer boundaries is not necessarily known when using real data, but in this

thesis, the validity of the method is the primary interest, so the example here is for
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an ideal case.

The standard deviation and mean of the posterior distribution have been calcu-

lated, assuming that the posterior has a Gaussian distribution. The accuracy of the

results are measured based on the standard deviation of the posterior distribution

in each layer and the difference between the mean of the posterior distribution and

the true model. It is also essential for the true model to be within the area of the

posterior distribution. Otherwise, the model uncertainty estimation is wrong.

The AVO inversion results for the P-wave velocity, S-wave velocity, and density

using the EnOI method are shown in table 5.3. The prior, posterior, and true solu-

tion for the P-wave are shown in figure 5.4. See appendix A for the corresponding

S-wave velocity and density estimation. The results for the P-wave velocity, S-wave

velocity, and density using the EnOI-MDA method are shown in table 5.4. The prior,

posterior, and true solution for the P-wave are shown in figure 5.5. See appendix A

for the corresponding S-wave velocity and density estimation.

The output from an AVO inversion is the parameter contrast between two layers.

Therefore, one does not get the absolute parameters in a layer by doing an AVO

inversion. However, if the parameters in the top layer are known, one can estimate

the absolute parameters in the bottom layer based on the contrast from the inver-

sion. In this thesis, the results are shown as the absolute parameters (by assuming

that the parameters in the top layer are known), so that it can be compared with

the true parameters.
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Table 5.3: Table showing the standard deviation of the posterior distribution and the
difference between the mean of the posterior distribution and the true model for the P-
wave velocity, S-wave velocity, and density for each layer. The result is obtained using the
EnOI method.

EnOI P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)

Std - layer 2 135 70 135
Std - layer 3 140 72 140
Std - layer 4 138 77 143
Std - layer 5 138 73 138

Mean-true - layer 2 12 12 26
Mean-true - layer 3 37 8 10
Mean-true - layer 4 83 53 31
Mean-true - layer 5 18 4 17

Table 5.4: Table showing the standard deviation of the posterior distribution and the
difference between the mean of the posterior distribution and the true model for the P-
wave velocity, S-wave velocity, and density for each layer. The result is obtained using the
EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)

Std - layer 2 26 18 22
Std - layer 3 69 41 71
Std - layer 4 29 19 26
Std - layer 5 28 19 25

Mean-true - layer 2 2 2 3
Mean-true - layer 3 39 23 41
Mean-true - layer 4 11 8 8
Mean-true - layer 5 23 17 20
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Figure 5.4: The result for the P-wave velocity inversion using the EnOI method. The
light gray and dark gray areas are the 95 % confidence area of the prior and posteriors
distribution, respectively. The blue and black lines are the mean of the prior and posterior
distributions, respectively. The red line is the true P-wave velocity.
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Figure 5.5: The result for the P-wave inversion velocity using the EnOI-MDA method. The
light gray and dark gray areas gives the 95 % confidence area of the prior and posterior
distributions, respectively. The blue and black lines gives the mean of the prior and
posterior distributions, respectively. The red line is the true P-wave velocity.
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5.6 Discussion

The EnOI-MDA method does a better job at estimating the model uncertainty than

the EnOI method for this prior and data. The big difference in the posterior mean

and standard deviation between the EnOI and EnOI-MDA method is believed to

be because the problem is non-linear. In subsection 4.6.2, it was learned that it is

harder to assimilate very reliable data when the problem is non-linear (Emerick and

Reynolds, 2012). The problem is non-linear because the full Zoeppritz equation has

been used to model the synthetic data, and the data is very reliable because the

SNR is 15. This result suggests that the EnOI-MDA method is better to use than

the EnOI method for reliable data when the problem is non-linear.

The model uncertainty estimation that is calculated using the EnOI-MDA method

works for this CIP gather. The true solution is within the 95% confidence area, and

the mean of the posterior is close to the true solution. The standard deviation of

the posterior covariance matrix is low, which is good as long as the true solution is

found within this area.
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Chapter 6

Sensitivity analysis

6.1 Outline

The main objective of this chapter is to discuss the stability and sensitivity of the

EnOI-MDA method when realistic noise is observed on the data. Different sources

of noise that are natural in seismic data are used in the data (section 6.3) to test the

sensitivity. After this the choice of prior (mean and covariance), number of assimi-

lations and inflation coefficients are investigated (sections 6.4 and 6.5). Erroneously

estimated noise is used to see how that impacts the results (section 6.4). Finally, a

discussion about the stability and sensitivity of the method is given (section 6.6).

Only figures showing the estimated P-wave velocity are shown in this chapter. All

results for all tests in this chapter are given in appendix B. The results show the

prior and posterior models for the P-wave velocity, S-wave velocity, and density.

The common image point gathers with each source of noise used in this chapter are

shown in appendix B.

6.2 Model and data

The model that has been used to create synthetic data is a 1D model (figure 6.1). The

1D model is a modified 1D line at 2004m offset in the P-wave velocity Marmousi
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model (Martin et al., 2006). The 1D model has 42 layers in total. The S-wave

velocity is chosen such that the P/S ratio varies randomly between 1.4 and 2.0.

The density is chosen using Gardner’s equation (see equation 6.1) where α varies

randomly between 290 and 330 (Gardner et al., 1974). Even though the true model

parameters are correlated, this is not used in the inversion scheme in this thesis.

This model can be converted to a model in the time domain by using the P-wave

velocity (see figure 6.2).

ρ = αVP
0.25. (6.1)
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Figure 6.1: 1D model showing the P-wave velocity (left), S-wave velocity (middle) and
density (right) profile in depth.

The observed CIP gather is calculated using the 1D model in figure 6.2 in the same

way as in section 5.3 with the same wavelet. This wavelet is used for all angles and

depths, and in the inversion algorithm. Only PP primary reflections are modeled.

There are 11 angles in total, going from 0 to 40 degrees. The signal to noise ratio is

calculated by taking the root mean square (RMS) of the signal without noise and

dividing it by the RMS of the noise. The inversion using the EnOI-MDA method is
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done the same way as described in chapter 5.
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Figure 6.2: 1D model showing the P-wave velocity (left), S-wave velocity (middle) and
density (right) profile in time.
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Figure 6.3: CIP gather using the 1D model in figure 6.2 and the full Zoeppritz equation.
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6.3 Naturally occurring noise in a CIP gather

The EnOI-MDA method assumes that the measurement noise is random and has a

Gaussian distribution. Random Gaussian noise is unfortunately not the case with

seismic data (coherent noise is one the reasons seismic noise is non-random and

non-Gaussian). The data have noise associated with the acquisition, processing, or

instruments. In this chapter, different sources of noise associated with the acquisi-

tion and processing are explored.

For all the different types of noise, the same prior has been used. The mean and

standard deviation of the prior covariance matrix is constant with depth and are

shown in table 6.1. The number of assimilations is Na = 4 and the inflation coeffi-

cient is constant α = 4. The accuracy of the results is measured based on the mean

of the posterior standard deviation in all layer. The accuracy is also based on the

RMS of the difference between the posterior mean and the true model in all layers.

The sources of noise that are used in this chapter are: 1) Constant random Gaus-

sian distributed noise, 2) Increasing random Gaussian distributed noise with depth,

3) Attenuation and dispersion, 4) Erroneous wavelet estimation, 5) Multiples, 6)

Ghosts and 7) Random heterogeneities.

Table 6.1: Table of the P-wave velocity, S-wave velocity and density prior mean and
standard deviation.

P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean (µ) 2650 1559 1935
Std (σ) 900 900 900

6.3.1 Random Gaussian noise

The ES-MDA method assumes that the data noise is random and has a Gaussian

distribution. Therefore, this is naturally the ideal case and the first type of noise

that is modeled. In this case, the SNR is 15, which is quite high. The noise is

constant with depth. The CIP gather with random noise is shown in appendix B.
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The results from the inversion are shown in table 6.2 and figure 6.4 (see appendix

B for the corresponding S-wave velocity and density estimation).

Table 6.2: Table showing the result obtained by using random Gaussian noise in the data.
The table shows the mean of the posterior standard deviation in all layers and the RMS
of the difference between the posterior mean and the true model for the P-wave velocity,
S-wave velocity, and density.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 124 75 133
RMS(mean-true) 71 42 70

Figure 6.4: The inversion result for the P-wave velocity using random Gaussian noise in
the data. The blue and black lines are the mean from the prior and posterior, respectively.
The light and dark gray areas show the prior and posterior 95% confidence areas (i.e.,
there is a 95% chance of finding the solution within this area). The red line shows the
true P-wave velocity.
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6.3.2 Increasing noise with depth

The signal to noise ratio generally decreases with depth (i.e., the noise increases with

depth). The SNR decreases because more and more energy is lost due to reflections,

transmissions, attenuation, and geometrical spreading. The signal loses energy as

it travels deeper and progressively becomes weaker. As a result, the SNR decreases.

This scenario is tested by randomly increasing the noise with depth to simulate a

decreasing signal to noise ratio. It is assumed that the signal to noise ratio decreases

linearly with time from SNR=20 to SNR=3. The CIP gather with increasing noise

with depth is shown in appendix B. The measurement error covariance matrix is

constructed to account for this. The inversion results are given in figure 6.5 (see

appendix B for the corresponding S-wave velocity and density estimation) and table

6.3.

Table 6.3: Table showing the result obtained using increasing noise with depth in the data.
The table shows the mean of the posterior standard deviation in all layers and the RMS
of the difference between the posterior mean and the true model for the P-wave velocity,
S-wave velocity, and density. The result is obtained with the EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 170 104 172
RMS(mean-true) 126 76 112
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Figure 6.5: The inversion result for the P-wave velocity using increasing noise with depth in
the data. The blue and black lines are the mean from the prior and posterior distributions,
respectively. The light and dark gray areas show the prior and posterior 95% confidence
areas (i.e., there should be a 95% chance of finding the solution within this area). The
red line shows the true P-wave velocity.
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6.3.3 Attenuation and physical dispersion

Attenuation as a function of distance x and frequency ω is defined as (Stein and

Wysession, 2009):

A(ω, x) = exp
( −ωx

2c(ω)Q

)
, (6.2)

where Q is the quality factor and c is the wave velocity. This equation shows that

different frequencies are attenuated differently. High frequencies are attenuated

faster with distance compared to low frequencies. Waves with different frequencies

travel at different speeds. The wave velocity as a function of frequency is defined as

(Stein and Wysession, 2009):

c(ω) = c0

[
1 +

1

πQ
ln

(
ω

ω0

)]
, (6.3)

where c0 is the reference velocity, and ω0 is the reference frequency. Equation 6.2 does

three things to a signal: 1) the amplitude gets reduced, 2) the signal is broadened

and 3) the signal gets delayed. The effect of attenuation on a wavelet that has

traveled 0.2 seconds with a constant Q=100 is shown in figure 6.6.

In reality, the Q-factor is not constant with depth. It can both increase and decrease

depending on the media. However, in this thesis, it is assumed that the Q-factor is

constant with depth. The Q-factor is equal to 500, which creates a SNR of 3 (using

the entire time window). If the SNR is measured in several time windows with

increasing time, the SNR will increase with time. The CIP gather with attenuation

and dispersion is shown in appendix B. The results of the inversion using this data

are shown in figure 6.7 (see appendix B for the corresponding S-wave velocity and

density estimation) and table 6.4.

Now, another case is considered: the amplitude attenuation is taken into account

and corrected for perfectly, but the dispersion is still present in the seismic data.

Q=500 and is constant with depth, which gives a SNR of 4.1. The CIP gather

with dispersion (without attenuation) is shown in appendix B. The inversion results

are shown in figure 6.8 (see appendix B for the corresponding S-wave velocity and
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density estimation) and table 6.5.
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Figure 6.6: The effect of attenuation and physical dispersion on a wavelet that has traveled
0.2 seconds with Q = 100.
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Table 6.4: Table showing the result obtained using attenuation and physical dispersion
as noise in the data. The table shows the mean of the posterior standard deviation in
all layers and the RMS of the difference between the posterior mean and the true model
for the P-wave velocity, S-wave velocity, and density. The result is obtained with the
EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 283 189 252
RMS(mean-true) 252 158 182

Table 6.5: Table showing the result obtained using physical dispersion (without attenua-
tion) as noise in the data. The table shows the mean of the posterior standard deviation
in all layers and the RMS of the difference between the posterior mean and the true model
for the P-wave velocity, S-wave velocity, and density. The result is obtained with the
EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 253 165 230
RMS(mean-true) 188 120 146
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Figure 6.7: The inversion result for the P-wave velocity using attenuation and physical
dispersion as noise in the data. The blue and black lines are the mean from the prior and
posterior, respectively. The light and dark gray areas show the prior and posterior 95%
confidence areas (i.e., there should be a 95% chance of finding the solution within this
area). The red line shows the true P-wave velocity.
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Figure 6.8: The inversion result for the P-wave velocity using physical dispersion (without
attenuation) as noise in the data. The blue and black lines are the mean from the prior
and posterior, respectively. The light and dark gray areas show the prior and posterior
95% confidence areas (i.e., there should be a 95% chance of finding the solution within
this area). The red line shows the true P-wave velocity.



81 6.3. Naturally occurring noise in a CIP gather

6.3.4 Errors in the estimation of the wavelet

In practice, it is difficult to estimate the wavelet from the seismic data. The AVO

inversion depends on the estimated wavelet being as close as possible to the true

wavelet in the seismic data. If the estimation is imperfect, there will be some result-

ing noise in the modeled data compared to the true data. The wavelet is deformed

with depth, partly because of absorption and dispersion (Stein and Wysession, 2009).

This section shares some similarities with the subsection about dispersion and at-

tenuation (subsection 6.3.3). These two sections are similar because the wavelet

changes its shape with depth as it gets dispersed and attenuated. However, in this

section, it is assumed that the wavelet does not change with depth or angle. In this

section, an imperfect wavelet is created. The wavelet is a filtered Dirac delta func-

tion which has been convolved with a trapezoid function. Then a hamming window

has been applied to the wavelet (Alerini, personal communication). The true and

estimated wavelet are shown in figure 6.9. The SNR is 3.0 for the modeled versus

the true data, which is quite low. The CIP gather using the wrong wavelet is shown

in appendix B. The inversion results are shown in figure 6.10 (see appendix B for

the corresponding S-wave velocity and density estimation) and table 6.6.

Table 6.6: Table showing the result obtained using the wrong estimated wavelet as noise
in the data. The table shows the mean of the posterior standard deviation in all layers
and the RMS of the difference between the posterior mean and the true model for the
P-wave velocity, S-wave velocity, and density. The result is obtained with the EnOI-MDA
method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 279 187 249
RMS(mean-true) 235 147 182
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Figure 6.9: The estimated wavelet that is used in the AVO inversion (red) and the true
wavelet (black). The estimated wavelet is a filtered Dirac delta function which has been
convolved with a trapezoid function. Then a hamming window has then been applied to
the wavelet. The true wavelet is Ricker wavelet with a peak frequency of 25Hz.
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Figure 6.10: The inversion result for the P-wave velocity using the wrong estimated wavelet
as noise in the data. The blue and black lines are the mean from the prior and posterior,
respectively. The light and dark gray areas show the prior and posterior 95% confidence
areas (i.e., there should be a 95% chance of finding the solution within this area). The
red line shows the true P-wave velocity.
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6.3.5 Multiples

Multiples are a common source of noise in seismic data. Surface multiples can be

attenuated, at least partly (Dragoset and Jeričević, 1998). However, internal multi-

ples are challenging to attenuate (Dragoset and Jeričević, 1998).

The multiples included are surface multiples and internal multiples. Some exam-

ples are shown in figure 6.11 and 6.12. The possibilities of ways multiples can travel

from the source to the receiver are very high. Therefore, all possible multiples are

not modeled. The surface reflection multiple (middle figure 6.11) is modeled for

all layers with the identical ray path from the source to the surface reflection, and

from the surface reflection to the receiver (i.e., the ray path is symmetrical around

the surface reflection). Pegleg surface multiples are modeled for all layers and are

reflected once at the ”sea floor” before or after being reflected at the surface (as

shown in figure 6.11). The internal multiples are modeled for all layers to have the

same travel path from the source to the down-going reflection and to the receiver

(i.e., the ray path is symmetrical around the midpoint/down-going reflection). The

multiples included are first order multiples. Higher order multiples are ignored. Two

inversion tests on multiples are done here. Test number one has the full strength

of the multiples. In the second test, surface multiples have 10% of their initial am-

plitude, except for pegleg surface multiples (as shown in the bottom figure 6.11),

which have 50% of their initial amplitude. Internal multiples are hard to remove.

Therefore they are not attenuated.

The goal is to model multiples realistically. This goal is archived by modeling a

common midpoint (CMP) gather for multiples and primaries separately. This CMP

gather is modeled from the 1D model in figure 6.1 for the same source and receiver

geometry as in figure 3.3. Straight rays are used. Geometrical spreading is not mod-

eled. Velocity analysis and NMO correction have been done to the primary CMP

gather. That way the right NMO velocity is chosen. The NMO velocity that is cho-

sen for the primaries is now used on the multiple CMP gather. The multiple CMP

gather is converted from the offset domain to the angle domain by using straight

rays to find the incidence angle at each point in time. The multiple CMP gather has

now been NMO corrected (with the NMO velocity used on the primary CMP gather)
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and converted to the angle domain (see figure 6.13). The multiple CMP gather is

added to the CIP gather modeled directly in the time-angle domain (see figure 6.3).

This gather is used as the data for the AVO inversion. The SNR is 6.9 and 13.5 for

non-attenuated and attenuated surface multiples respectively. The CIP gather with

multiples as noise is shown in appendix B. The results for the attenuated surface

multiples are shown in figure 6.14 (see appendix B for the corresponding S-wave

velocity and density estimation) and table 6.8. The results for the non-attenuated

surface multiples are shown in table 6.7 (the figure for the estimated P-wave velocity,

S-wave velocity, and density is shown in appendix B).
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Figure 6.11: Three examples of surface multiples in a layered medium. The top figure is
called sea floor multiple. The middle one is called reflection multiple. The bottom one is
referred to as a pegleg multiple in this thesis.
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Figure 6.12: Two examples of internal multiples in a layered medium.
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Figure 6.13: A CMP gather for modeled multiples that have been NMO corrected using
the NMO velocity for the primaries. The CMP gather are converted from the offset to the
angle domain. The surface multiples have been attenuated to 10% (sea floor and reflection
multiple) and 50% (pegleg multiple) of their initial amplitude.
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Table 6.7: Table showing the result obtained using multiples (non-attenuated surface
multiples) as noise in the data. The table shows the mean of the posterior standard
deviation in all layers and the RMS of the difference between the posterior mean and the
true model for the P-wave velocity, S-wave velocity, and density. The result is obtained
with the EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 187 121 177
RMS(mean-true) 268 183 187

Table 6.8: Table showing the result obtained using multiples (attenuated surface multiples)
as noise in the data. The table shows the mean of the posterior standard deviation in all
layers and the RMS of the difference between the posterior mean and the true model
for the P-wave velocity, S-wave velocity, and density. The result is obtained with the
EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 130 79 134
RMS(mean-true) 208 134 139
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Figure 6.14: The inversion result for the P-wave velocity using the multiples (attenuated
surface multiples) as noise in the data. The blue and black lines are the mean from
the prior and posterior, respectively. The light and dark gray areas show the prior and
posterior 95% confidence areas (i.e., there should be a 95% chance of finding the solution
within this area). The red line shows the true P-wave velocity.
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6.3.6 Ghosts

There are three different types of ghosts: the source ghost, the receiver ghost, and

a combination of the source and receiver ghosts. This is illustrated in figure 6.15.

Ghosts have almost the same signature as the primary reflection. The only significant

difference being the slight time delay, and in case of the source and receiver ghost,

an opposite polarity. The ghost that is a combination of the receiver and source

ghosts has the same polarity as the primary. The amplitude difference between the

ghosts and the primary is small. It is assumed that the ghosts have 10% of their

initial amplitude.

Figure 6.15: This figure shows the three different types of ghosts. The black line represents
the primary reflection. The magenta and blue lines show the source and receiver ghosts,
respectively. The green line shows both the source and receiver ghosts.

All the ghosts in figure 6.15 are modeled for all layers. The goal is to model all ghosts

realistically. This goal is archived the same way as for the multiples in subsection

6.3.5. In the end, a realistic CMP gather that is NMO corrected and converted to

the angle domain is acquired. This gather is then added to the CIP gather for the

primaries, which is modeled directly in the time-angle domain (see figure 6.3). This

gather is now used as the data for the AVO inversion. This noise causes a SNR
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of 6.2. The CIP gather with ghosts as noise is shown in appendix B. The results

are shown in figure 6.16 (see appendix B for the corresponding S-wave velocity and

density estimation) and table 6.9.

Table 6.9: Table showing the result obtained using ghosts as noise in the data. The table
shows the mean of the posterior standard deviation in all layers and the RMS of the
difference between the posterior mean and the true model for the P-wave velocity, S-wave
velocity, and density. The result is obtained with the EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 208 131 199
RMS(mean-true) 217 156 200

Figure 6.16: The inversion result for the P-wave velocity using ghosts as noise in the data.
The blue and black lines are the mean from the prior and posterior, respectively. The
light and dark gray areas show the prior and posterior 95% confidence areas (i.e., there
should be a 95% chance of finding the solution within this area). The red line shows the
true P-wave velocity.
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6.3.7 Random heterogeneities

When doing AVO inversion, there are a couple of assumptions that are made. One

is that the model is a layered medium without heterogeneities within each layer.

Another is that a 3D velocity model with only large scale heterogeneities is present,

missing the small scale heterogeneities. There are always some heterogeneities in

each layer, but the strength and structure of those heterogeneities vary. These het-

erogeneities influence the seismic data. The forward modeled data used for the

inversion usually does not take this into account. These heterogeneities are thus

unwanted and cause noise in the real seismic data.

In this subsection, random heterogeneities are modeled using the Born approxi-

mation as described in chapter 3. The background velocity model used in the Born

approximation is constant. The record section that is modeled is shown in figure

3.8 in chapter 3. The perturbation strength is at maximum 10% with respect to

the background medium and has a correlation length of 100m (see section 3.2). The

”sea floor” reflection is not wanted in this case, only the perturbation from the het-

erogeneities. The record section in figure 3.8 is cut right after the sea floor reflection

and before the boundary reflections at 3.2s. All traces have removed the interval

from time=0s and to the sea floor reflection of the first trace. This new record

section is shown in figure 6.17.

The record section is in the offset domain and need to be transformed into the

angle domain. This transformation is done the same way as for the record section

with ghosts and multiples. First, the record section are NMO corrected using the

correct NMO velocity for the primaries. The gather is then transformed into the

angle domain. The gather in the angle domain is then added to the CIP gather for

the primaries that are modeled directly in the time-angle domain (see figure 6.3).

This noise cases a SNR of 8.9. The CIP gather with random heterogeneities as

noise is shown in appendix B. This gather is the data that is used for the inversion.

The results are shown in figure 6.18 (see appendix B for the corresponding S-wave

velocity and density estimation) and table 6.10.
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Figure 6.17: The record section from figure 3.8, but without the seafloor reflection and
boundary reflections.
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Table 6.10: Table showing the result obtained using random heterogeneities as the source
of noise in the data. The table shows the mean of the posterior standard deviation in
all layers and the RMS of the difference between the posterior mean and the true model
for the P-wave velocity, S-wave velocity, and density. The result is obtained with the
EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 171 106 171
RMS(mean-true) 125 79 116

Figure 6.18: The inversion result for the P-wave velocity using random heterogeneities as
the source of noise in the data. The blue and black lines are the mean from the prior and
posterior, respectively. The light and dark gray areas show the prior and posterior 95%
confidence areas (i.e., there should be a 95% chance of finding the solution within this
area). The red line shows the true P-wave velocity.
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6.3.8 Noise combined

In this subsection, all the noise sources (except for increasing noise with depth and

attenuation) that have been looked at so far in this chapter, are combined. After

adding all the noise together, the amplitude of the signal with noise is reduced by a

scalar to have the same amplitude as the signal without noise (i.e., the gather with

noise is reduced such that the norms of the signal with noise and without noise are

approximately the same). The combination of the noise sources results in a SNR of

4.1. The CIP gather with the combination of the noise is shown in appendix B. Some

of the noise interferes constructively, and some destructively (i.e., different types of

noise can interfere in a way that either increase the amount of noise or decrease the

amount of noise). The inversion results are shown in figure 6.19 (see appendix B for

the corresponding S-wave velocity and density estimation) and table 6.11.

Table 6.11: Table showing the result obtained using the combination of noise in the data.
The table shows the mean of the posterior standard deviation in all layers and the RMS
of the difference between the posterior mean and the true model for the P-wave velocity,
S-wave velocity, and density. The result is obtained with the EnOI-MDA method.

EnOI-MDA P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean(std) 261 175 237
RMS(mean-true) 222 145 171
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Figure 6.19: The combination of noise is used as noise in the data. The figure shows
the inversion result for the P-wave velocity. The blue and black lines are the mean from
the prior and posterior, respectively. The light and dark gray areas show the prior and
posterior 95% confidence areas (i.e., there should be a 95% chance of finding the solution
within this area). The red line shows the true P-wave velocity.

6.3.9 Summary - Tornado plot

To compare the inversion results from all sources of noise looked at, the results from

this chapter are shown in a tornado plot 6.20. This tornado plot shows the standard

deviation of the posterior covariance matrix and the difference between the posterior

mean and the true model.
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Figure 6.20: The results for P-wave velocity, S-wave velocity, and density for different
types of noise. The results are shown as the RMS of the difference between the true and
mean of the posterior in all the layers and the mean of the posterior standard deviation
in all the layers.
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6.4 Choice of prior and measurement error covari-

ance matrix

In this section, two different priors are chosen to study how these influence the

results. The SNR is set to 15 for both examples. The number of assimilations is

Na = 4 and the inflation coefficient is constant, α = 4. The noise is random and

has a Gaussian distribution. The seismic data is shown in figure 6.3. The noise is

added to the seismic data. The inversion results are shown in the two bar diagrams

6.21 at the end of the section. Different under- or overestimated measurement er-

ror covariance matrices are constructed to test how that will change the results. A

summary of these results are given in figure 6.22.

Prior model 1: Constant standard deviation and constant mean

The prior that has been used so far is shown in tables 6.1 and 6.12 and is now

referred to as prior model 1. This prior has a large standard deviation. The stan-

dard deviation and mean are constant. The AVO inversion results when using this

prior are shown in figure 6.4 (see appendix B for the corresponding S-wave velocity

and density estimation) and table 6.2. In this example, it is assumed that almost

no prior information is given. Because of the limited prior knowledge, the standard

deviation is overestimated to ensure that the prior distribution captures the true

solution.

Prior model 2: Increasing standard deviation and increasing mean

The standard deviation and mean of the prior now increase with time. The stan-

dard deviation and mean are shown in table 6.12. In this example, it is assumed

that some prior information is given, for that reason, the prior standard deviation

is smaller, and the prior mean is closer to the true solution. The P-wave velocity,

S-wave velocity, and density estimation are shown in appendix B.
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Table 6.12: Table of the P-wave velocity, S-wave velocity, and density mean and standard
deviation to prior model 1 and 2. The mean and standard deviation increases linearly for
prior model 2 but is constant for prior model 1.

Prior 1 P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean (µ) 2650 1559 1935
Std (σ) 900 900 900

Prior 2 P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Mean (µ) 1500 → 3531 831 → 2215 1935 → 2417
Std (σ) 300 → 800 180 → 650 200 → 400
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Figure 6.21: Bar diagram showing the results for P-wave velocity, S-wave velocity, and
density for two different prior models. The results are shown as the RMS of the difference
between the true solution and posterior mean in all the layers and the mean of the posterior
standard deviation in all the layers.
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Measurement error covariance matrix

By increasing/overestimating or decreasing/underestimating the standard deviation

in the measurement error covariance matrix, one can test how that changes the re-

sults. The true SNR is 4.1. However, it is now assumed that the SNR is different

from 4.1, which can lead to the wrong measurement error covariance matrix. Here

tests with both random Gaussian distributed noise and the combination of noise

are done. The measurement error covariance matrix is build based on a SNR of 8.0,

3.5, and 2.0. The inversion results using the EnOI-MDA method are shown in the

figure 6.22 (see appendix B for the corresponding P-wave velocity, S-wave velocity

and density estimation figures using the combination of noise).
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Figure 6.22: The results for P-wave velocity, S-wave velocity, and density for different
measurement error covariance matrices based on the wrong SNR (except when the SNR
is 4.1, which is the correct SNR). The results are shown as the RMS of the difference
between the true and posterior mean in all the layers and the mean of the posterior
standard deviation in all the layers.
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6.5 Inflation coefficients and assimilations

In this section, two different choices of the number of assimilations and inflation

coefficients are chosen to explore how these influence the results. Emerick (2018)

talks about how to choose the number of assimilations and inflation coefficients. In

table 6.13, one can see the two combinations of inflation coefficients and number

of assimilations that have been tested. SNR=15 for all examples. The noise is

random and has a Gaussian distribution. Prior model 1 from section 6.4 are used.

The results are shown in figure 6.23 (see appendix B for the corresponding P-wave

velocity, S-wave velocity and density estimation figures). Test number two gave the

best result (see figure 6.24).

Table 6.13: Table that shows the number of assimilations and inflation coefficients for the
two different tests done in this section.

Test number Number of assimilations Inflation coefficients
1 2 2, 2
2 5 100/5, 100/10, 100/15, 100/30, 100/40
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Figure 6.23: Bar diagram showing the results for P-wave velocity, S-wave velocity, and
density for the different number of assimilations and inflation coefficients. The results are
shown as the RMS of the difference between the true and posterior mean in all the layers
and the mean of the posterior standard deviation in all the layers.
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Figure 6.24: The inversion result for the P-wave velocity using test number 2 with 5
assimilations, see table 6.13. The blue and black lines are the mean from the prior and
posterior, respectively. The light and dark gray areas show the prior and posterior 95%
confidence areas (i.e., there is a 95% chance of finding the solution within this area). The
red line shows the true P-wave velocity.
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6.6 Discussion

Naturally occurring seismic noise

The EnOI-MDA assumes random Gaussian noise (Emerick and Reynolds, 2013).

Therefore, the results using this noise gives the best model uncertainty estimation

(subsection 6.3.1). The posterior distribution mean is close to the true model in

most layers, and the posterior standard deviation is low. The true solution is always

within the 95% confidence area of the estimated model distribution, which suggests

that the method works for this model and this type of noise.

Increasing noise with depth is handled well using the EnOI-MDA method (see fig-

ure 6.5 and table 6.3). The standard deviation of the posterior covariance matrix

increases, and the true solution is within the confidence area of the estimated model

distribution. Since the SNR ratio increases with depth for real data, it would be

natural to build the measurement error covariance matrix in a way that accounts

for this.

The attenuation and physical dispersion as noise (subsection 6.3.3), have a big effect

on the SNR. This effect on the SNR is mainly because of the physical dispersion,

which delays part of the wavelet and effects most of the gather. The EnOI-MDA

method seems to handle dispersion with attenuation, and dispersion without atten-

uation as noise well (see figures 6.7, 6.8, and tables 6.4, 6.5). The true solution is

within the 95% confidence area of the estimated model distribution, which is a good

sign.

A wrong wavelet estimation can be a big source of noise (subsection 6.3.4). Hence

the SNR is low. The SNR is believed to be low because this noise affects the whole

gather (in contrast to multiples that only affects parts of the gather). The EnOI-

MDA method seems to handle this noise well (see figure 6.10 and table 6.6). The

true solution is within the 95% confidence area of the estimated model distribution,

except for one layer (where it is just outside the 95% confidence area). The wavelet

estimation is known to be a major effort for classical inversion. The wavelet estima-

tion should also be a major effort for EnOI-MDA inversion. The estimated wavelet
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is quite close to the true wavelet. Wavelets that are far from the true wavelet could

also be tested. A better test (than what was done in this thesis), would have been

to estimate the wavelet from the data. Wavelet estimation requires some special

applications not available in this thesis.

Multiples can have a low or high SNR depending on whether the surface multiples

are successfully attenuated (subsection 6.3.5). The multiples only affects certain

parts of the gather. Not all the possible multiples are modeled. As a result, the

SNR is higher (less noise) than for real data. The internal multiples modeled in this

section is weaker than the surface multiples. The surface multiples are, therefore,

the most important ones to attenuate. The surface multiples are also easier to re-

move than internal multiples. The most realistic scenario, where 10% to 50% (see

subsection 6.3.5) of the amplitude to the surface multiples remain show negative

results using the EnOI-MDA method (see figure 6.14 and table 6.8). The true so-

lution is outside the confidence area of the estimated model distribution in several

layers, and by quite a lot. The same is true for the results using multiples when

the surface multiples are not attenuated (see table 6.7). These results show that

multiples as noise can give misleading model uncertainty estimations when using

the EnOI-MDA method. It is therefore important to attenuate multiples, especially

surface multiples because they can cause wrong estimation of the model uncertainty.

Ghosts can give a very low SNR if they have not been attenuated (subsection 6.3.6).

This is because they almost have the same amplitude as the primaries. If ghosts

are attenuated to 10% of their original amplitude, the SNR is 6.2 for the example

shown in this chapter. The results using the EnOI-MDA method show that the true

solution is outside the confidence area of the estimated model distribution in a few

layers (see figure 6.16 and table 6.9). These results imply that ghosts as noise can

give a misleading estimation of the model uncertainty when using the EnOI-MDA

method. Ghosts are therefore important to attenuate. The modeling of the multi-

ples and ghosts could have been done more realistic by using a 3D velocity medium

and ray tracing. The transformation from the angle to offset domain could also have

been done more realistic by using a 3D velocity model and ray tracing.

Using a random perturbation medium with a 10% maximum perturbation strength
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to create noise gives a moderate or high SNR (subsection 6.3.7). This noise will

increase if the maximum perturbation strength increases. The results using the

EnOI-MDA method show that the true model is within the confidence area of the

estimated model distribution, which is a good sign (see figure 6.18 and table 6.10).

The modeling of the perturbations could have been done more realistic by using a

smooth 3D background medium and ray tracing. A constant background medium

makes the result of the NMO correction less realistic than a varying velocity model

(unless a constant velocity model was used when modeling the data for the pri-

maries). The transformation from the angle to offset domain could also have been

done more realistic by using a 3D velocity model and ray tracing.

The combination of all the noise sources discussed in this section (except for in-

creasing noise with depth and attenuation) give a low SNR (subsection 6.3.8). This

combination of noise is the most realistic example in this thesis. It will indicate how

the EnOI-MDA method works in the case of real data. The combination of all the

noise is not Gaussian. Therefore it is not an ideal case. The results using the EnOI-

MDA method show that the true solution is within the 95% confidence area of the

estimated model distribution (except in one layer, where it is just outside the 95%

confidence area, which can happen with a 5% change). The mean of the posterior

tends to be close to the true solution given the amount of noise (see figure 6.19 and

table 6.11). It cannot be concluded if this estimation of the model uncertainty is an

overestimation or underestimation because the true model uncertainty is not known.

The tornado plot (figure 6.20) shows that the ghosts, multiples, wavelet estimation,

and dispersion with attenuation give the highest difference between the mean of the

posterior and the true solution. Dispersion with attenuation, dispersion without

attenuation, and wavelet estimation give the highest posterior standard deviation.

These results tell that these types of noise are important to attenuate or reduce

because they have a low SNR which results in a large model uncertainty. Multiples

(with attenuated surface multiples) have a high SNR of 13.5. The standard deviation

is low, but the difference between the true solution and the mean of the posterior

is high for a SNR of 13.5. The SNR is different for each type of noise. Therefore

they cannot be compared directly. The SNR directly influences the results such

that standard deviation and difference between the true model and the mean of the
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posterior changes.

Choice of prior and measurement error covariance matrix

The bar diagram 6.21 shows that the prior model has some effect on the results.

The prior can reduce the weight of the information coming from the observed data

(Tarantola, 2005), or reduce the number of assimilations needed to get an accurate

result. With enough assimilations, one can obtain good results even for prior models

with a large standard deviation and a mean far from the true model, like prior model

1. It is better to overestimate the prior uncertainty than to underestimate it. If one

overestimates the prior uncertainty, the true model is more likely to be captured by

the prior distribution.

It is difficult to differentiate between noise and signal completely. Therefore, it

is interesting to investigate how the results will react if the noise is over- or under-

estimated. The true SNR is 4.1 for the combination of noise in subsection 6.3.8. A

summary of the results using different measurement error covariance matrices from

section 6.4 are shown in figure 6.22. The results using an underestimated data un-

certainty (SNR=8.0) give only a small/moderate reduction 8%-22% in the standard

deviation and a moderate reduction 30%-47% in the difference between the true

model and posterior mean for the combination of noise. The results using a small

overestimation of the data uncertainty (SNR=3.5) give a small increase of 4%-8%

in the standard deviation and a small increase 4%-6% in the difference between the

true model and posterior mean for the combination of noise. The results using a

big overestimation of the data uncertainty (SNR=2.0) give a moderate increase of

29%-34% in the standard deviation and a moderate increase 18%-36% in the dif-

ference between the true model and posterior mean for the combination of noise.

Overestimating the noise by a small amount ( 15%), gave small changes (4%-8%) in

the results. Under- or the overestimation of noise by a factor of 2, gave moderate

changes (8%-47%) in the results.

The EnOI-MDA method assumes Gaussian distributed noise (Evensen, 2003). It

also assumes that the problem is linear (Emerick and Reynolds, 2013). These as-

sumptions are approximately true for problems that are close to linear (see chapter
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4 for more details). If the noise is not Gaussian or the problem is far from linear, the

true posterior does not have a Gaussian distribution (Emerick and Reynolds, 2013).

The non-linear inversion done in chapter 5 and 6 is close to linear. The combination

of all the noise from section 6.3 does not have a Gaussian distribution. Therefore

this method is not expected to estimate the true posterior uncertainty. However, it

can give an approximation or something which is close to the true model uncertainty.

In this thesis, it seems to give a good result (in the case of combined noise) because

the true solution is within the 95% confidence area of the posterior. Unfortunately,

it cannot be concluded that this uncertainty estimation is correct or an overestima-

tion because the true model uncertainty is not known.

It should be possible to change the measurement error covariance matrix to have

the same or a similar signature as the seismic noise. To construct that covariance

matrix is a big challenge or perhaps impossible to do with real seismic data because

it is hard to differentiate between noise and signal completely. For synthetic data,

one can differentiate between noise and signal completely. Therefore it should be

possible to build a covariance matrix that has a similar signature as the noise for

the observed data. The EnOI-MDA method still assumes the noise is Gaussian and

that the noise is uncorrelated (Emerick and Reynolds, 2013), even though one can

build the measurement error covariance matrix to be non-Gaussian with correlations.

Perhaps the resulting posterior uncertainty is closer to the true model uncertainty

when using a covariance matrix that fits with non-Gaussian noise. These tests are

outside the scope of this thesis but are something worth investigating.

Assimilations and inflation coefficients

The bar diagram 6.23, clearly shows that several assimilations are necessary when

using prior model 1. When the prior model is far from the true model, and the

standard deviation is large, several assimilations are required to get an accurate

model uncertainty estimation. If the prior mean is close to the true solution, and

the standard deviation is low, not as many assimilations are needed to get an accu-

rate result. Five assimilations are sufficient when using prior model 1 and random

Gaussian noise. For more than five assimilations, the results do not change signifi-

cantly. In section 5.6, it was discussed why the EnOI-MDA method showed better
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results for the non-linear inversion. There it was believed to be related to the low

SNR and the non-linearity of the problem. The results from section 6.5 suggest that

two assimilations are not enough for reliable data and a non-linear problem. Instead,

several assimilations are required, as shown in this chapter. It is recommended to

do several assimilations for priors that have a large standard deviation and reliable

data.
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Chapter 7

Final discussion and conclusion

7.1 Forward modeling

A comparison has been done between AVO modeling and the Born approximation

in an elastic isotropic medium. The Born approximation was calculated in the time

and frequency domain. The Born approximation in the time domain was calcu-

lated using isochrons. The AVO modeling was calculated using the linearized and

full Zoeppritz equation. The comparisons were performed in order to evaluate the

accuracy of the linearized Zoeppritz equation and the Born approximation. The

modeling was performed on a layer over a half-space model and four layers over a

half-space model. The results show that the Born approximation in the time and

frequency domain give approximately the same results. The Born approximation

and linearized Zoeppritz are not accurate for high-velocity contrasts and high inci-

dence angles (Moser, 2012), (Ikelle and Amundsen, 2005). The models in chapters

5 and 6 have some high velocity contrasts. This result justifies the use of the full

Zoeppritz equation versus the linearized Zoeppritz.

A random Gaussian model is created to model random heterogeneities with the

Born approximation. This record section is used in chapter 6 as noise.



Chapter 7. Final discussion and conclusion 114

7.2 Stochastic AVO inversion

The EnOI-MDA and EnOI methods were used for non-linear inversion to estimate

the model uncertainty. Based on a priori knowledge and observed seismic data, an

uncertainty estimation was calculated for a simple layered model. The two meth-

ods are compared, and the results show a big difference in the posterior mean and

standard deviation. The EnOI-MDA posterior mean is closer to the true solution,

and the standard deviation is smaller compared to the EnOI posterior. The EnOI

method overestimates the uncertainty. The EnOI method probably shows a worse

result because the problem is non-linear. The EnOI-MDA method works better for

non-linear problems when the data is reliable by using multiple small steps and an

inflated measurement error covariance matrix (Emerick and Reynolds, 2012). Since

the EnOI-MDA method shows much better results compared to the EnOI method,

the EnOI-MDA method was used in the sensitivity analysis presented in chapter 6.

The EnOI-MDA method is tested on different sources of noise that naturally oc-

cur in seismic data. Attenuation, physical dispersion, wrong wavelet estimation,

increasing noise with depth, multiples, ghosts, and random heterogeneities are the

sources of noise investigated in this thesis. Some sources of noise are more severe

than others. Physical dispersion, attenuation, and wrong wavelet estimation cause

a very low SNR, and it is important to attenuate these types of noise. Ghosts and

multiples give wrong uncertainty estimations in some layers. All these sources of

noise (except for increasing noise with depth and attenuation) are combined and

used for the EnOI-MDA inversion. The true solution is within the 95% confidence

area in all layers (except for one, where it is just outside this area). The combination

of noise shows a slightly higher, but similar uncertainty to the corresponding test

with random Gaussian distributed noise.

The choice of the prior can reduce the weight of the information coming from the

observed data (Tarantola, 2005). It is, however, essential that it captures the true

model. Otherwise, the estimation of uncertainty can be wrong. The measurement

error covariance matrix is hard to estimate from seismic data. Different tests show

that overestimating or underestimating the noise by a factor of 2 does not change

the results by much. These results show that even if the noise uncertainty is overes-
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timated, the EnOI-MDA method can still be used. However, if the noise is under-

estimated, this can lead to an underestimation in the model. It is also important

to keep in mind that the prior influences the results. If the confidence in the data

is low and the confidence in the prior is high, the data will not influence the results

much.

Unfortunately, since the EnOI-MDA method assumes Gaussian distributed random

noise (Emerick and Reynolds, 2013), it cannot be concluded how accurate the es-

timated uncertainty is to the true model uncertainty, because it is not known how

to quantify it. Since the true solution is within the estimated model uncertainty

confidence area, the method gives promising results. The method can give some in-

formation about the model uncertainty, given that the data uncertainty is not very

wrong. It is crucial to be aware of the limitation of the method and what kind of

noise that has the potential of causing the wrong model uncertainty estimation.

7.3 Future work

The EnOI-MDA method should be compared to the gradient-based methods dis-

cussed in section 4.5. The least square covariance and mean estimation (see equa-

tion 4.19 and 4.18) is linear. Therefore the linearized Zoeppritz can be used for

that method. The quasi-Newton covariance and mean estimation (see equation 4.24

and 4.25) can be applied to weakly non-linear problems, but the evaluation of the

gradient is needed. These methods also assume random Gaussian distributed noise

(Tarantola, 2005), but it would be interesting to compare with ensemble-based meth-

ods when doing AVO inversion.

More random heterogeneity models should be generated with their respective record

sections to test how different perturbation strength and correlation lengths affect the

noise in the data.

The modeling in this thesis was done using straight rays. More accurate model-

ing programs to generate multiples and ghosts using 3D velocity models and ray

tracing should be tested. Better processing to convert the record sections from the



Chapter 7. Final discussion and conclusion 116

offset to angle domain (by using 3D velocity models and ray tracing) should also be

used. These improvements will make the noise study more realistic. Other sources of

noise can be investigated to see how that will affect the inversion results. Examples

of other sources of noise can be scaling of the wavelet, blending, dipping reflectors

or ocean waves.

It has been discussed in chapter 6 that it should be possible to construct a measure-

ment error covariance matrix that represents realistic seismic noise. This should be

tested to see how the method reacts to a non-Gaussian measurement error covari-

ance matrix. It should also be tested how the method reacts to correlated data and

construct the measurement error covariance matrix in that way.

The EnOI-MDA method has now been tested on realistic synthetic data with differ-

ent sources of noise. It has been tested for different prior covariance matrices and

measurement error covariance matrices for both random and realistic noise. Now

that the EnOI-MDA method is better understood it should be tested on real data.
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7.4 Conclusion

The AVO modeling and Born approximation have successfully been calculated using

two simple layered models. The full Zoeppritz equation has proven to be accurate

for high-velocity contrasts and was used in the EnOI and EnOI-MDA AVO inversion

algorithm. The EnOI-MDA method gave better results than the EnOI method using

data from a simple layered model with random Gaussian distributed noise. Differ-

ent sources of noise have been applied to synthetic data created from a realistic

layered model. This data have been used in the EnOI-MDA method to estimate the

model uncertainty. The true solution was within the model uncertainty estimation

when using attenuation, physical dispersion, wrong wavelet estimation, and random

heterogeneities as noise. Using multiples and ghosts as noise gave wrong model

uncertainty estimations. Using the combination of all the sources of noise (in this

thesis) gave an estimation of the model uncertainty with the true solution within

the 95% confidence area. This result is a good sign and indicates that a meaningful

estimation of the model uncertainty is achieved. However, the accuracy of the data

uncertainty estimation is not known. The noise can be under- or overestimated with-

out getting a profoundly different result. If the noise is underestimated, this will

underestimate the model uncertainty (i.e., the standard deviation of the posterior

is smaller then it should be). After initial and promising results of Liu and Grana

(2018) the thesis has done the groundwork for understanding EnOI-MDA AVO inver-

sion. A sensitivity study for different sources of noise has been done, which increases

the understanding of how the method works for non-Gaussian noise. This thesis will

help to understand the results when the EnOI-MDA method is implemented on real

seismic data.
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traveltimes—I. Theory. Geophysical Journal International, 141(1):157–174.

Downton, J. E. (2005). Seismic parameter estimation from AVO inversion. Univer-

sity of Calgary, Department of Geology and Geophysics, Calgary, Canada.
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Appendices

A Chapter 5: CIP gathers and results

In this appendix, the results and gathers from chapter 5 are presented. The gathers

with noise, without noise, and the difference are shown. The difference with and

without noise is divided by the norm of the noise to show the characteristics of the

noise. The results are shown for the P-wave velocity, S-wave velocity, and density.

The legends in the results are removed in the figures but are explained here: The

blue and black lines are the prior and posterior mean respectively. The light gray

and dark gray areas are the 95% confidence areas for the prior and posterior, respec-

tively. The red line in the true model. The legend is shown in figure 1.

Figure 1: Legend used for results in this appendix.
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CIP gather
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Figure 2: Gathers with and without random Gaussian noise. The SNR is high (SNR=15),
therefore it is hard to see the difference between the gathers with and without noise at
this large scale.
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The EnOI method

Figure 3: Results using the EnOI method.
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The EnOI-MDA method

Figure 4: Results using the EnOI-MDA method.
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B Chapter 6: CIP gathers and results

In this appendix, the results and gathers for each type of noise are presented. For

each type of noise, the gathers with noise, without noise, and the difference are

shown. The difference with and without noise is divided by the norm of the noise to

show the characteristics of the noise. The results are shown for the P-wave velocity,

S-wave velocity, and density. The legends in the results are removed in the figures

but are explained here: The blue and black lines are the prior and posterior mean

respectively. The light gray and dark gray areas are the 95% confidence areas for

the prior and posterior, respectively. The red line in the true model. The red line

in the true model. The legend is shown in figure 5.

Figure 5: Legend used for results in this appendix.
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Random Gaussian noise
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Figure 6: Gathers with and without random Gaussian noise. The SNR is high (SNR=15),
therefore it is hard to see the difference between the gathers with and without noise at
this large scale.
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Figure 7: Results using random Gaussian noise.
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Increasing noise with depth
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Figure 8: Gathers with and without increasing random Gaussian noise with depth.
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Figure 9: Results using increasing random Gaussian noise.



Bibliography 130

Attenuation with dispersion
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Figure 10: Gathers with dispersion and attenuation, and without dispersion and attenua-
tion as noise.
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Figure 11: Results using dispersion and attenuation as noise.
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Dispersion (without attenuation)
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Figure 12: Gathers with and without dispersion (without attenuation) as noise.
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Figure 13: Results using dispersion (without attenuation) as noise.
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Wrong wavelet estimation
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Figure 14: Gathers with the true wavelet and the estimated wavelet.
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Figure 15: Results using the estimated wavelet as noise.
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Multiples (without attenuated surface multiples)
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Figure 16: Gathers with and without multiples (without attenuated surface multiples) as
noise.
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Figure 17: Results using multiples (without attenuated surface multiples) as noise.
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Multiples (with attenuated surface multiples)
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Figure 18: Gathers with and without multiples (with attenuated surface multiples) as
noise.
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Figure 19: Results using multiples (with attenuated surface multiples) as noise.
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Ghosts
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Figure 20: Gathers with and without ghosts as noise.
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Figure 21: Results using ghosts as noise.
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Random heterogeneities
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Figure 22: Gathers with and without random heterogeneities as noise.
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Figure 23: Results using random heterogeneities as noise.
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Combination of noise
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Figure 24: Gathers with and without the combination of noise.
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Figure 25: Results using the combination of noise.
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Prior model 1 (CIP gather shown in figure 6)

Figure 26: Results using prior model 1 and random Gaussian noise (SNR=15).
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Prior model 2 (CIP gather shown in figure 6)

Figure 27: Results using prior model 2 and random Gaussian noise (SNR=15).
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Combination of noise (correct estimated SNR=4.1) (CIP gather shown

in figure 24)

Figure 28: Results using the combination of noise with the correct estimated SNR=4.1.
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Combination of noise (erroneous estimated SNR=8.0) (CIP gather shown

in figure 24)

Figure 29: Results using the combination of noise with the erroneous estimated SNR=8.0.
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Combination of noise (erroneous estimated SNR=3.5) (CIP gather shown

in figure 24)

Figure 30: Results using the combination of noise with the erroneous estimated SNR=3.5.
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Combination of noise (erroneous estimated SNR=2.0) (CIP gather shown

in figure 24)

Figure 31: Results using the combination of noise with the erroneous estimated SNR=2.0.
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Two assimilations (CIP gather shown in figure 6)

Figure 32: Results using two assimilations and random Gaussian noise (SNR=15).
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Five assimilations (CIP gather shown in figure 6)

Figure 33: Results using five assimilations and random Gaussian noise (SNR=15).
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