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Abstract

Insurance coverages for marine shipping fleets are often created by a broker, who
negotiates underwriter insurance offers on behalf of the fleet owner. The broker
evaluates different combinations of offers, searching for the best insurance coverage
for their customers. The coverage must have a minimal price, while earning the bro-
ker a large enough commission. This time consuming and difficult task is currently
performed manually.

We present a bilinear model of the broker problem, and prove that solving it is NP-
hard. We propose three different solution methods: (1) solving the model exactly
using the commercially available software Baron, (2) alternatingly solving linearized
subproblems and (3) using a metaheuristic. Results from computational experiments
show that the second solution method outperforms Baron, both with respect to
running time and objective function value.

The model and the alternating algorithm constitute a powerful tool for the brokers.
It yields solutions with prices close to provable lower bounds in less than a second
for most of the test instances.
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Notation
The following notation will be used throughout the thesis.

Mathematical model

P – All products.

U – All underwriters.

S – All ships.

Up – Underwriters offering product p.

Sp – Ships to be insured for product p.

Ip – Underwriters included in product p.

Cp – Claims lead candidates for product p.

Wp – Underwriters wanting shares smaller
than or equal to claims lead share for prod-
uct p.

τ – Total rating of an insurance coverage.

δ – Largest discount split difference of an
insurance coverage.

Abbreviations

uwr – Underwriter.

BP – Broker Problem.

MC – Model Core.

Edge – Edge Group AS.

UiB – University of Bergen.

AMPL – A Mathematical Programming Language.

Baron – Branch-And-Reduce Optimization Navigator.

CBC – Coin-or Branch and Cut.

ALT – Alternating algorithm.

PSO – Particle swarm optimization.

SA – Simulated annealing.
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Chapter 1

Introduction

With a fleet of ships, fleet owners transport cargo by sea. Marine shipping, like all
other shipping industries, involves risk, and so it is important for the fleet owners to
insure their fleet and cargo. Underwriters provide the fleet owners with insurance
offers, in which their insurance price and conditions are specified. With fleet owners
as customers, brokers negotiate these offers. Their goal is to create an insurance
coverage at a minimal customer price, while also earning a commission. We refer to
this task as the Broker Problem (BP).

Marine brokerage is a traditional field where most tasks are performed manually.
New underwriter offers are usually negotiated from previous offers. As a result, the
brokerage relies heavily upon past experience and relationships with the underwrit-
ers. Because of this, the brokers must consider both quantitative and qualitative
properties when evaluating the offers.

This thesis is the result of a collaboration between the marine brokerage company
Edge Group AS (Edge) and the University of Bergen (UiB). Edge wants to explore
the possibility of using optimization for creating insurance coverages on behalf of
their customers. The BP can be formulated as an optimization problem, where
the objective is to minimize the customer price, and the constraints correspond to
the conditions specified by the customer and the underwriters. To the best of our
knowledge, there does not exist any optimization model describing this problem, nor
any solution approaches.

In this thesis we formulate a model describing the BP, and prove that solving it is
NP-hard. We perform computational experiments for comparing different solution
methods. The best solution method finds close to optimal solutions in few seconds
for instances of varying sizes—outperforming the proprietary global optimization
solver Baron.
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We mainly focus on the quantitative aspect of the insurance coverage. To incorporate
the qualitative aspects into the insurance coverage, an interplay between the broker
and the model is necessary. The insurance coverage created by the model will serve
as a basis for further brokering, rather than as a final solution. Re-solving the model
for new offers gives a new basis for further brokering, and so forth. Because of this
interplay, finding a good solution quickly may be more valuable than performing an
extensive search for an optimal solution. We examine the trade-off between running
time and solution quality, by comparing several solution methods.

The model and solution methods are all implemented from scratch, using the pro-
gramming languages A Mathematical Programming Language (AMPL), which is
used for algebraic modeling, and Python, which is one of the fastest growing pro-
gramming languages. AMPL has great readability for implementation of mathe-
matical models and offer a wide range of solvers, but it is limited with respect to
implementing more complex solution methods. With Python we have great freedom
for implementing solution methods, and the optimization package or-tools created
by Google provide a variety of solvers. Since Python is not a modeling language,
the readability is arguably worse than for AMPL.

The structure of the thesis is presented below.

Chapter 1 – Introduction The first part of this chapter contains necessary
background information, and presents the goal of the thesis. Next we describe the
motivation for solving the BP, and then we give a simple problem description by
means of examples. Finally we present previous work regarding the use optimization
in the field of marine insurance and marine brokerage.

Chapter 2 – Model formulation In this chapter we give the complete BP
description, and present a mathematical model which defines the problem in its
entirety. We continue by discussing a couple of model extensions and some model
properties, before proving that solving the BP is NP-hard.

Chapter 3 – Solution methods This chapter presents three different solution
approaches for solving the BP model, along with one solution method for each of
the model extensions. For solving the model, we examine a global optimization
algorithm, a linearization technique and a metaheuristic algorithm. The model
extensions are solved by a heuristic algorithm and a linear program, respectively.

Chapter 4 – A simulated annealing approach In this chapter we present
the problem specific choices for the metaheuristic approach to solving the BP. This
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includes generation of an initial solution, design of heuristics and parameter tuning.
We devote a chapter to this solution method because of the many problem-specific
choices it involves, as opposed to the straightforward application of the other solution
methods proposed in Chapter 3.

Chapter 5 – Computational experiments We begin this chapter by describ-
ing the experimental setup and the test instances for the computational experiments.
We report the results from solving the BP model and its extensions using the pro-
posed solution methods, and finally we present our observations regarding these
results.

Chapter 6 – Conclusion and future work In this final chapter, we summarize
our work by restating the thesis goal and explaining how we reached it. We also
propose some areas for future work.

1.1 Motivation

To avoid the risk of big losses, marine insurance underwriters usually do not want
to provide insurance coverage for an entire fleet. This means that several under-
writer offers must be combined in order to provide a complete insurance coverage.
The broker examines which combination of offers results in the best solution, and
consequently which underwriters to include in the insurance coverage. Consider the
case where a broker is provided with 15 underwriter offers, and wants to create an
insurance coverage consisting of 8 out of these offers. In this modest example, there
are 6,435 possible combinations of underwriter offers for the broker to consider. This
is a daunting manual task.

To complicate matters further, the price of each underwriter offer can only be cal-
culated after the combination of underwriters is determined. This is because the
calculation of the price involves two variables for each underwriter offer, whose values
are dependent on the corresponding variables of all the other involved underwriters.
This means that it is not possible to examine an underwriter offer separately—all
the 6,435 possible combinations must be examined in order to guarantee that the
best solution has been found.

The BP is also a multi-objective problem—an insurance coverage should have a
minimal customer price and yield a maximal broker commission. The commission
constitutes a certain percentage of the price, which means that finding a low-price
insurance coverage while earning a significant commission is a contradictory goal.
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It is clear from this section that finding a good solution to the BP by hand is a diffi-
cult task. Brokers currently spend a significant portion of their time attempting to
solve this problem. Using an optimization model to quickly generate good insurance
coverages would let the brokers spend their time more efficiently, i.e., use more of
their time negotiating better offers. Since both the model and the solution methods
are implemented from scratch in a free programming language, with the possibility
of using free solvers, this approach for solving the BP is free of charge. The bro-
kers can save both time and money, which would provide them with a competitive
advantage of the other marine brokerage companies.

1.2 Simple problem description

In this section we give a minimal working example of the BP problem. This is
a smallest possible example demonstrating the key properties of the problem. By
solving increasingly difficult subproblems, we demonstrate different properties of the
problem. This is done in an effort to let the reader gradually familiarize himself with
the BP, before going into the details in the next chapter.

Let S be the set of ships constituting the customer fleet and let U be the set of
candidate underwriters. For every ship s ∈ S, each underwriter u ∈ U offers an
insurance rate (rates,u), which indicates the percentage of the ship value (values)
that must be paid for the underwriter to insure the ship. We define the total price
(total priceu) of an underwriter offer to be the cost of insuring the entire fleet, if
that underwriter were to cover the entire insurance. For each underwriter u ∈ U ,
the total price is calculated as the sum over all the customer ships s ∈ S, of the ship
rate multiplied with the ship value,

total priceu =
∑
s∈S

values ·
(
rates,u · 10−2

)
. (1.1)

The rates are conventionally presented as percentages rather than as decimals. For
the calculation of total priceu, the rates are therefore multiplied by 10−2.

In addition to the rate, each underwriter u ∈ U offers a price discount (total discountu).
This discount is split between the customer and the broker, such that the customer
discount and the broker discount sums up to the total discount. Furthermore, the
underwriters specify the minimal and maximal acceptable shares (shareu) they may
be assigned. The customer specifies the broker share (broker share), which is the
percentage of the fleet for which the customer requests insurance. For each un-
derwriter u ∈ U , the customer price (customer priceu) and the broker commission
(broker commissionu) is calculated as products of the total price, the share and the
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discount split, divided by the broker share

customer priceu =
total priceu · shareu · (1− customer discountu)

broker share
, (1.2)

broker commissionu =
total priceu · shareu · broker discountu

broker share
. (1.3)

The broker aims to minimize the customer price, while earning a commission that
is at least 5 % of the customer price.

Problem 1.1 (Minimal Working Example). Consider a customer with a fleet
consisting of two ships, and three candidate underwriters. The customer wants a
complete insurance coverage, i.e., broker share is equal to 1. The ship values, the
rates offered by the underwriters and the underwriter conditions are presented in the
tables below.

Table 1.1: Ship values and underwriter rates.

rate

value (e) uwr1 uwr2 uwr3

ship1 1,000,000 0.02 0.02 0.01
ship2 1,500,000 0.01 0.01 0.02

Table 1.2: Underwriter conditions.

min share max share total discount

uwr1 0.2 0.4 0.05
uwr2 0.2 0.4 0.10
uwr3 0.3 0.6 0.20

The goal is to distribute shares among the underwriters such that the shares sum up
to the broker share, and split the total discount between the customer and the broker
in such a way that the customer price is minimal while the broker commission is at
least 5 % of the customer price. y

We solve Problem 1.1 step by step, where each step is presented as an example. For
each example we provide the corresponding optimal solution, which changes as we
consider more properties of the problem.
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Example 1.2 (Rates). As a first step we disregard the underwriter conditions
in Table 1.2 and the constraint specifying that the broker commission must be at
least 5 % of the customer price. We minimize the customer price by concentrating
solely on the ship values and the rates provided by the underwriters—both found
in Table 1.1 Using the formula from Equation (1.1), we calculate the total price of
the complete insurance coverage for the three underwriters.

uwr1 : (1/1) · (1,000,000 · 0.02 · 10−2 + 1,500,000 · 0.01 · 10−2) = 350

uwr2 : (1/1) · (1,000,000 · 0.02 · 10−2 + 1,500,000 · 0.01 · 10−2) = 350

uwr3 : (1/1) · (1,000,000 · 0.01 · 10−2 + 1,500,000 · 0.02 · 10−2) = 400

We see that uwr1 and uwr2 provide the cheapest offers, while the offer from uwr3

is more expensive. An optimal insurance coverage at this step excludes uwr3, and
includes either uwr1 or uwr2, or both, at the customer price of 350 euros. y

Example 1.3 (Rates and shares). In the second step, we distribute shares among
the underwriters, satisfying the conditions in the first two columns of Table 1.2. In
the previous example we found that the optimal price for an insurance coverage is
achieved by including either uwr1 or uwr2, or both. At the current step this turns
out to be infeasible, since both underwriters have a condition of covering at most
40 % of the insurance, which sums to less than 100 %. We are forced to include
uwr3 in the insurance coverage. Since its offer is the most expensive, we want to
give it the smallest possible share, i.e., the remaining 20 %. However, uwr3 wants
to cover at least 30 % of the insurance, and we need to reduce the share of either
uwr1 or uwr2 to 30 % in order to satisfy all underwriter conditions.

We have found an optimal distribution of shares, and calculate the corresponding cus-
tomer price at this step, using the formula in Equation (1.2) (where customer discountuj

is set to zero).∑
u∈U

customer priceu = 350 · 0.4 + 350 · 0.3 + 400 · 0.3 = 365.

The minimal customer price at this step is 365 euros, which is slightly higher than
in the previous example. y

Example 1.4 (Rates, shares and discounts). In the final step, we additionally
split the discount provided by the underwriters between the customer and the broker,
and we include the condition that the broker commission must be at least 5 % of
the customer price. The total discount is specified in the third column of Table 1.2.

We can no longer solve the problem by inspection or by a greedy approach, as we
did in the preceding examples. Even for an instance as small as Problem 1.1, there
are infinitely many combinations of share distributions and discount splits. An
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algebraic model of the problem instance is formulated below, where customer priceu
and broker commissionu is computed by Equations (1.1)-(1.3).

minimize
∑
u∈U

customer priceu

subject to
∑
u∈U

broker commissionu ≥ 0.05 ·
∑
u∈U

customer priceu∑
u∈U

shareu = broker share

customer discountu + broker discountu = total discountu, for all u ∈ U

where customer discountu ∈ [0, total discountu], for all u ∈ U
broker discountu ∈ [0, total discountu], for all u ∈ U

shareu ∈ {0} ∪ [min shareu,max shareu], for all u ∈ U

We find an optimal solution by using the nonlinear solver Baron. This solution
results in a customer price of 337 euros, and a broker commission of 17 euros. The
corresponding share distribution and discount splits are presented in Table 1.3.

Table 1.3: Optimal solution to Problem 1.1. The values of shares and discounts are
displayed with 1 and 2 decimals of precision, respectively.

share customer discount broker discount

uwr1 0.2 0.02 0.03
uwr2 0.4 0.06 0.04
uwr3 0.4 0.14 0.06

y

This section illustrates the difficulty of manually creating an optimal insurance
coverage—even when the problem instance is simple.

1.3 Previous work

In this section we present previous work regarding the use of optimization and
mathematical modeling in the field of marine insurance.

The most important job of a marine insurance broker is to negotiate underwriter
insurance offers on behalf of its customer. The broker and the underwriters have
opposite goals in this negotiation—the underwriters want to earn as much profit as



Chapter 1. Introduction 8

possible, while the broker wants to achieve the lowest possible price. Kihlstrom and
Roth (1982) propose a game-theoretic model as a way to negotiate the terms of an
insurance contract. The model is based on the solution to the classic bargaining
problem described by Nash (1950), and studies how the degree of risk aversion
affects the result of the insurance contract negotiation. The key takeaway is that
when bargaining with a risk neutral insurer, a risk aversive client will pay a higher
premium, for less coverage of the potential loss, than a less risk averse client.

Borch (1961) explains how mathematical modeling can be used to describe the
traditional way of creating insurance contracts, where company supervisors make
subjective choices, partly based on input from actuaries. He states that we can
assume that there is some consistency to their subjective choices, and that this
consistency can be expressed by utility functions, which the insurance company
aims to maximize. These utility functions, which he refers to as the “utility of
money”, are used further in Borch (1962), where a model of the reinsurance market
is proposed. He argues that a Pareto optimal insurance contract arrangement can
be reached by seeing the problem as an n-person game. An arrangement is Pareto
optimal if all involved parties receive the maximal possible utility, in the sense that
a larger utility for any of them will lead to a smaller utility for at least one of
the others. Extensive research of utility theory and competitive equilibrium within
insurance is found in Chapters 2 and 3 of Borch et al. (1990).

Much effort has been put into solving bargaining problems, both within insurance
and in general. This theory is useful for the brokering of insurance contracts, but
does not solve the problem of creating an optimal insurance coverage with respect
to the customer price. Smith (1968) addresses the current lack of literature on opti-
mization of insurance purchase, for protection against casualty, which he compares
to the problem of optimal inventory stockage under uncertainty. He derives several
theorems for determining the optimal amount of insurance coverage for different
probabilities of loss. Raviv (1979) addresses the problem of insurance purchases fur-
ther by developing a general model. The model contains utility functions for both
the insurance purchaser and the insurer. He shows that Pareto optimal insurance
contracts involve a deductible and coinsurance of the losses above the deductible.
This work is extended by Szpiro (1985), who derives explicit expressions for the
optimal amounts of insurance to be purchased.

It is clear that the negotiation of insurance contracts is a popular area of research.
The area of insurance purchasing, while not as popular, has also been studied in
depth. For the latter, most of the focus has been upon the amount of insurance
to purchase, in relation to the probability of risk and the amount of deductible.
For the problem of constructing an insurance coverage with a minimal customer
price, without the consideration of risk and deductible, there does to the best of our
knowledge not exist any documented optimization model.
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Chapter 2

Model formulation

In this chapter we give a complete problem definition by expanding the minimal
working example defined in Problem 1.1. We continue by describing a mathemat-
ical model of the BP, defining a couple of model extensions and discussing some
model properties. At the end of the chapter we prove that the BP is NP-hard, by
constructing a reduction from the Subset-Sum problem.

2.1 Problem definition

Let the BP be equal to the simple problem description defined by the minimal work-
ing example in Problem 1.1. So far, we have not discussed what kind of insurance
the underwriters offer. We refer to the different types of insurance as products. Ex-
amples of products within marine insurance are insurance of hull and machinery and
insurance of loss of hire. The customer chooses one or several insurance products for
each ship, and specifies the broker share for each of the products. Each underwriter
specifies the products they offer, along with corresponding rates and discounts for
each product. Every product is now associated with a subset of ships and a subset
of underwriters, which means that the BP expands to creating several insurance
coverages—one for each product.

The minimal working example states that the broker commission must be at least
5 % of the customer price. We now expand to let this minimal commission factor
vary for the different products. The value of this factor typically lies in the interval
5 %-10 %, and is determined by the broker.

In any insurance coverage, one underwriter is chosen to be claims lead. The main
task of the claims lead is to handle the salvage operation on behalf of all the involved
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underwriters, in case of a casualty. For each product, a subset of underwriters are
chosen as claims lead candidates.

The customer needs to specify whether or not the insurance coverage constructed
by the broker is to have a claims lead. If the broker share is set to 100 %, the
coverage must contain exactly one claims lead. If the broker share is less than 100
%, for instance 60 %, this means that the remaining 40 % of the insurance coverage
is being handled by someone else. In this case, the claims lead can be in either the
first or the second insurance coverage, but not in both.

All underwriters must specify the minimal and maximal acceptable share they may
be assigned. In addition to specifying these limits, they have the option of restricting
their share size to be smaller than or equal to the claims lead share. This may be
desirable, since they do not have control of the salvage operation.

Since the brokers must consider qualitative properties of the insurance coverage,
as well as quantitative, they may have preferences regarding which underwriters are
included in the different products. Because of this, a set of underwriter preferences is
associated with every product, so that each underwriter in this set must be included
in the coverage of the corresponding product.

The underwriters may also have inter-product demands. Consider the set of prod-
ucts P = {p, p′, p∗} and the underwriter u ∈ U who provides all three products.
Underwriter u may define a condition of offering product p if and only if it is in-
cluded in the insurance coverage of product p′. This makes the task of creating an
insurance coverage for several products significantly harder. It links all the products
together in such a way that the insurance coverage of each product is influenced by
the insurance coverage of every other product. These inter-product demands also
exist for potential claims leads.

Formally, the problem under study is defined as follows.

Definition 2.1 (The Broker Problem (BP)).

For each product,

- find a distribution of shares that sum up to the corresponding broker share,

while not violating the share limits specified by the underwriters,

- split the underwriter discounts between the customer and the broker,

- include the correct number of claims lead,

- satisfy all inter-product demands,

in such a way that the broker commission is larger than or equal to the specified
percentage of the customer price, and the total customer price is minimal.

y
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2.2 Mathematical model

In this section we present the mathematical model describing the BP. We list all
sets, parameters and decision variables, define the objective function, and present
all the constraints along with descriptions.

2.2.1 Sets

P All products p to be included in the insurance coverage.
S All ships s constituting the customer fleet.
U All underwriters u that are candidates for the insurance coverage.

Sp The subset of ships to be insured for product p ∈ P .
Up The subset of underwriters who offer product p ∈ P .

Ip The subset of underwriters who must be included in covering product p ∈ P .
Cp The subset of underwriters who are claims lead candidates for product p ∈ P .
Wp The subset of underwriters who want shares smaller than or equal to the

claims lead share for product p ∈ P .

2.2.2 Parameters

valuep,s Value of ship s for product p.
ratep,s,u Rate provided by underwriter u for ship s and product p.

min sharep,u Lowest acceptable share for underwriter u and product p.
max sharep,u Highest acceptable share for underwriter u and product p.
total discountp,u Total discount provided by underwriter u and product p.

min ratiop Lowest acceptable ratio of the broker commission divided
by the customer price, for each product p.

max price Highest acceptable total customer price.
max commission Highest acceptable total broker commission.

broker sharep The insurance coverage percentage to be covered by the
broker for product p.

num claims leadp Indicates whether the insurance coverage of product p
contains the claims lead or not.
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u demandsp,u,p′ Indicates whether underwriter u offers to cover product p if
and only if it also covers product p′.

cl demandsp,u,p′ Indicates whether underwriter u offers to be claims lead of
product p if and only if it is also claims lead of product p′.

2.2.3 Decision variables

sharep,u ∈ [0,1] Amount of coverage of product p assigned to
underwriter u.

customer discountp,u ∈ [0,1] Amount of discount given to the customer from
underwriter u for product p.

broker discountp,u ∈ [0,1] Amount of discount given to the broker from
underwriter u for product p.

includedp,u ∈ {0,1} Equal to 1 if underwriter u is included in the
insurance coverage of product p, equal to 0 if not.

claims leadp,u ∈ {0,1} Equal to 1 if underwriter u is claims lead for product
p, equal to 0 if not.

2.2.4 Derived parameters and variables

The total price of assigning the complete insurance coverage of product p to under-
writer u, for each product p ∈ P and each underwriter u ∈ Up:

total pricep,u =
∑
s∈Sp

valuep,s ·
(
ratep,s,u · 10−2

)
. (2.1)

Computation of the customer price and the broker commission for each product
p ∈ P and each underwriter u ∈ Up.

customer pricep,u =
total pricep,u · sharep,u · (1− customer discountp,u)

broker sharep
(2.2)

broker commissionp,u =
total pricep,u · sharep,u · broker discountp,u

broker sharep
(2.3)
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2.2.5 Objective function

The goal of the broker is to minimize the total customer price.

minimize
∑
p∈P

∑
u∈Up

customer pricep,u (2.4)

2.2.6 Constraints

The total customer price and the total broker commission must be smaller than or
equal to their respective upper bounds.∑

p∈P

∑
u∈Up

customer pricep,u ≤ max price (2.5)

∑
p∈P

∑
u∈Up

broker commissionp,u ≤ max commission (2.6)

The broker commission must be larger than or equal to the minimal acceptable
percentage of the customer price, for each product p ∈ P .∑

u∈Up

broker commissionp,u ≥ min ratiop ·
∑
u∈Up

customer pricep,u (2.7)

For each product p ∈ P and each underwriter u ∈ Up, the customer discount and
broker discount must sum to the total discount provided by underwriter u, if it is
included in the coverage of product p, and to zero otherwise.

broker discountp,u + customer discountp,u = total discountp,u · includedp,u (2.8)

Analogously, for each product p ∈ P and each underwriter u ∈ Up, the assigned share
must lie in between the minimal and maximal acceptable shares for underwriter u,
if it is included in the coverage of product p, and be equal to zero otherwise.

min sharep,u · includedp,u ≤ sharep,u ≤ max sharep,u · includedp,u (2.9)

All shares must add up to the broker share, for each product p ∈ P .∑
u∈Up

sharep,u = broker sharep (2.10)
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The insurance coverage must include the specified number of claims lead, for each
product p ∈ P . ∑

u∈Cp
claims leadp,u = number of claims leadp (2.11)

An underwriter can only be claims lead of a product if it is also claims lead of all other
products in its claims lead demands. The underwriter must also be included in the
insurance coverage in order to be claims lead. This must hold for each product p ∈ P ,
each claims lead candidate u ∈ Cp and all products {p′ ∈ P | cl demandsp,u,p′ = 1}.

claims leadp,u ≤ claims leadp′,u (2.12)

claims leadp,u ≤ includedp,u (2.13)

All underwriters u ∈ Ip must be included in the insurance coverage, for each product
p ∈ P .

includedp,u = 1 (2.14)

The share assigned to underwriter u can not be larger than the share of the claims
lead share. This must hold for each product p ∈ P , each underwriter u ∈ Wp and
each claims lead candidate u′ ∈ Cp.

sharep,u ≤ sharep,u′ + (1− claims leadp,u′) (2.15)

An underwriter can only be included in a product if it is also included in all other
products of its product demands. This must hold for each product p ∈ P , each
underwriter u ∈ Up and all products {p′ ∈ P | u demandsp,u,p′ = 1}.

includedp,u ≤ includedp′,u (2.16)

2.3 Model extensions

The primary objective of the BP is to minimize the customer price. If there are
several solutions with the same customer price, all of them will be considered by
the mathematical model to be equally good. A broker would however favor some
solutions over others, because of certain desirable properties. In this section we
introduce two model extensions which describe such solution properties. Both of
these extensions are handled by solution methods, rather than being incorporated
into the mathematical model, so that they are treated as secondary objectives.
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2.3.1 Underwriter ratings

Every underwriter is associated with a priority rating (priority ratingu). This rat-
ing is a real number whose value is determined based on previous experiences and
relationships. The rating represents to what degree the underwriter is desirable to
include in an insurance coverage. One factor of desirableness is how quickly the
underwriter usually has issued insurance payouts in the past.

The mathematical model only distinguishes between underwriters in regards to their
contribution to the customer price, but a broker would additionally consider the
underwriter priority ratings. A slightly higher customer price could be favorable, if
it leads to a smoother handling of casualties.

For an arbitrary insurance coverage, we let U∗ ⊆ U denote the set of underwriters
that are included in at least one product of the insurance coverage. We denote the
total rating of an insurance coverage by τ , and define it to be the sum of the priority
ratings of all underwriters u ∈ U∗,

τ =
∑
u∈U∗

priority ratingu. (2.17)

If an underwriter with low priority rating is included in one product of the insurance
coverage, the “damage is already done”. Including it in more products will not
worsen the casualty handling. It is desirable to maximize τ , so that underwriters
with low priority are not included in the insurance coverage.

2.3.2 Even discount splits

When a customer is presented with the price of an insurance coverage, he may ask
the broker how much discount he received from the different underwriters. For
this reason, it is desirable to split the total discount evenly, rather than giving the
customer zero discount from one underwriter and all the discount from another. The
mathematical model does not take this into account. Even though an uneven split
does not need to affect the customer price, it affects the relationship between the
customer and the underwriters.

Let U ′p ⊆ Up denote the set of underwriters that are included in the insurance
coverage of product p ∈ P . We denote the largest discount split difference by δ, and
define it as the largest difference between the smallest and largest customer discount
for the included underwriters u ∈ U ′p within each product p ∈ P

δ = max
p∈P

(
max
u∈U ′p

(customer disocuntp,u)− min
u∈U ′p

(customer discountp,u)

)
. (2.18)

It is desirable to minimize δ so that the discount split is as even as possible.
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2.4 Model properties

A common way to discuss the size of a mathematical model is to consider the
number of decision variables and constraints, which depend on the input instance
size. We derive the number of decision variables and the number of constraints in
the BP model with regards to a general instance. To see how the number of decision
variables and constraints grow as the instance size increases, we use big-O notation.

The number of variables is:

O (5 |P| |Up|) = O (|P| |U|)

The number of constraints is:

O
(
2 + 3 |P|+ 4 |P| |Up|+ |P| |Ip|+ |P| |Wp| |Cp|+ |P|2 |Up|+ |P|2 |Cp|

)
= O

(
|P| |U|2 + |P|2 |U|

)
As the instance size increases, the number of decision variables and the number
of constraints are bounded by a polynomial of degree 2 and 3, respectively. The
number of constraints grows with a factor of O (|P|+ |U|) faster than the number
of variables.

The BP model contains real variables and binary variables. Most of the constraints
in the model are linear, since no variables are multiplied by each other. However,
in the computation of customer pricep,u and broker commissionp,u (Equations (2.2)-
(2.3)) there are products involving the real variables sharep,u, customer discountp,u
and broker discountp,u. This makes the model nonlinear. There are no other vari-
ables causing the nonlinearity, which means that if either the variable sharep,u or
the variables customer discountp,u and broker discountp,u had been parameters, the
problem would be linear. Such a problem is called a bilinear problem. Recognizing
the bilinearity is important with regards to the choice of solution method. We give
a simple example showing how a bilinear problem turns into a linear problem when
one of the bilinear variables are fixed.

Example 2.2. Consider the problems P andQ below. We recognize that P becomes
the same problem as Q if we fix x = 1. This simple modification turns a bilinear
problem into a linear problem. Figure 2.1 visualizes how this affects the problem.
The problem constraints are represented by blue lines, and the filled area represents
the solution space. The black lines mark the objective function for different objective
function values.
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P : maximize f(x, y) = x · y
subject to x+ y ≤ 10

where x, y ≥ 0

Q : maximize f(y) = y
subject to y ≤ 9

where y ≥ 0

0 5 10
x

0

5

10

y

f =
1

f =
7

f =
15

(a) Graphic representation of P .

0 5 10 15
x

0

10

y

f = 1

f = 7

f = 15

(b) Graphic representation of Q.

Figure 2.1

We see that the optimal solution to P is located somewhere along one of the con-
straints, while the optimal solution to Q has the favorable property of being located
at a vertex. y

2.5 Model complexity

In this section we examine the BP model complexity. We begin by defining a
simplified version of the model, which we refer to as the Model Core. Because
the Model Core is similar to the well-known Subset-Sum Problem, we use this fact
to determine the BP model complexity. This is achieved by proving that solving the
Model Core is at least as hard as solving the Subset-Sum Problem.

The BP model consists of several sets and parameters. To discuss the complexity
of the model, we simplify by considering a single product. We omit the product
index of sets and parameters for the duration of this section, as it is not needed.
Furthermore, we leave some sets empty, and assign values of zero or infinity to
certain parameters—see Table 2.1 for these assignments. As a result, several of
the model constraints become redundant and are disregarded. The Model Core is
defined by the remaining constraints.
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Table 2.1: Set and parameter assignments for the Model Core.

Sets Parameters

P := {p} min ratiop := 0
Ip := ∅ max price := ∞
Cp := ∅ max commissoin := ∞
Wp := ∅ num claims leadp := 0

Problem 2.3 (Model Core (MC)).

Does there exist a subset of underwriters U ′ ⊆ U , along with a share distribution
and discount splits for all underwriters u ∈ U ′, such that the following constraints
are satisfied?

1. The share of each underwriter u must either be zero or lie between min shareu
and max shareu, for all u ∈ U ′:

min shareu ≤ shareu ≤ max shareu. (2.19)

2. The sum of all shares must be equal to broker share:∑
u∈U ′

shareu = broker share. (2.20)

3. The discount split from underwriter u must add up to total discountu, for all
u ∈ U ′:

customer discountu + broker discountu = total discountu. (2.21)

y

2.5.1 Determining existence of a solution

Whether or not a solution to the MC exists is determined by the share distribution
and discount splits among the underwriters. The discount split from a single under-
writer does not affect the other underwriters, nor does it imply that this underwriter
should be included in the subset of underwriters U ′ (the insurance coverage). This
means that we can choose discount splits satisfying Equation (2.21), for all the un-
derwriters in U , without affecting the existence of a solution. Distributing the shares
among the underwriters, however, turns out to be a hard problem. Since the sum
of all shares must be equal to broker share, the assignment of a share to a single
underwriter will affect all the other underwriters.
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We need to determine whether there exists a share distribution satisfying the con-
straints (2.19) and (2.20). From these two constraints, it is clear that broker share
must lie between the sum of minimal shares and the sum of maximal shares.

min shareu ≤ shareu ≤ max shareu, for all u ∈ U ′,
which implies

∑
u∈U ′

min shareu ≤
∑
u∈U ′

shareu ≤
∑
u∈U ′

max shareu,

and we get
∑
u∈U ′

min shareu ≤ broker share ≤
∑
u∈U ′

max shareu. (2.22)

It is important to note that any solution to Equations (2.19) and (2.20) is a solution
to Equation (2.22), but the converse does not hold. However, we are interested in
the existence of a solution, and we give a proof that for any value of broker share,
for which Equation (2.22) holds, there must also exist a solution to Equations (2.19)
and (2.20).

Proposition 2.4. For any value of broker share satisfying Equation (2.22), there
must exist a share distribution for which Equations (2.19) and (2.20) also hold.

Proof. Any value of broker share that satisfies Equation (2.22) must lie in the inter-
val,

broker share ∈

[∑
u∈U ′

min shareu,
∑
u∈U ′

max shareu

]
.

We let the variable α ∈ [0, 1] indicate the position of broker share in this interval,

broker share =
∑
u∈U ′

min shareu + α

(∑
u∈U ′

max shareu −
∑
u∈U ′

min shareu

)
.

We use the value of α to determine a share distribution satisfying Equation (2.19).
For all u ∈ U ′, we let α determine the position of shareu in the interval [min shareu,max shareu]
of feasible values, i.e.,

shareu := min shareu + α (max shareu −min shareu) .

Since α is a variable in the interval [0, 1], Equation (2.19) must be satisfied for this
share distribution.
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In order to verify that the proposed share distribution also satisfies Equation (2.20),
we compute the sum of shares for all underwriters u ∈ U ′,∑

u∈U ′
shareu =

∑
u∈U ′

(min shareu + α (max shareu −min shareu))

=
∑
u∈U ′

min shareu + α
∑
u∈U ′

(max shareu −min shareu)

= broker share.

Equation (2.20) is also satisfied, and the proof is complete.

We rewrite Equation (2.22) by splitting it into two, and recognize that the MC
has a solution if and only if there exists a subset U ′ ⊆ U for which the following
inequalities are satisfied ∑

u∈U ′
min shareu ≤ broker share, (2.23)∑

u∈U ′
max shareu ≥ broker share. (2.24)

The problem of finding such a subset is similar to the well-known Subset-Sum Prob-
lem.

2.5.2 Subset-Sum Problem

We introduce the Subset-Sum Problem (SSP) by giving a classic example. Suppose
Bob is going hiking and wants to pack a backpack which will provide him with
maximal comfort during the trip. His choice of items are constrained by the total
capacity of the backpack. Bob considers the total value of his knapsack to be deter-
mined by how well this capacity is exploited. In other words, his goal is to maximize
the total weight of his knapsack, preferably to the point where the knapsack weight
is exactly equal to its capacity. This is an instance of the SSP, formulated as an
optimization problem. The corresponding decision problem is defined as follows.

Definition 2.5 (Subset-Sum Problem (SSP)). Given a knapsack with capacity
W ∈ Z+, a finite set of items N , where all items n ∈ N have weights w(n) ∈ Z+;
does there exist a subset of items N ′ ⊆ N such that∑

n∈N ′
w(n) = W? (2.25)

y
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The SSP has been proved to be NP-complete (Martello, 1990). This means that
there is currently no known polynomial time algorithm for solving the SSP, however
it has not been proven that no such algorithm exists. Furthermore, a proposed
solution to the SSP can be verified in polynomial time. We will not go into more
detail on NP-completeness, and refer the interested reader instead to Chapter 6 in
Wolsey (1998) or Chapter 8 in Dasgupta and Vazirani (2006) for an introduction.

2.5.3 Reduction

We are ready to determine the complexity of the MC. In order to prove that it is
NP-complete, we need to

1. show that a proposed solution can be verified in polynomial time,

2. perform a polynomial reduction from an NP-complete problem to the MC.

Verifying a proposed solution to the problem is done by checking whether or not
the constraints in its definition are satisfied. It is clear that all three constraints
in Problem 2.3 can be verified in O(|U|) time, where |U| refers to the number of
underwriters. Since the set of underwriters is finite, the complexity of verifying a
solution is linear.

For the second step, we need to perform a polynomial reduction from an NP-
complete problem to the MC, i.e., to Equations (2.23) and (2.24). When a problem
A reduces to a problem B, one of the problems have a solution if and only if the
other problem also has a solution. Furthermore, the reduction proves that problem
B is at least as hard to solve as problem A.

The similarity between the SSP and the MC becomes more clear if we split Equation
(2.25) in two: ∑

n∈N ′
w(n) ≤ W,∑

n∈N ′
w(n) ≥ W.

Comparing these equations to Equations (2.23) and (2.24), we see a strong similarity.
In order to perform a reduction from the SSP to the MC, we must define the sets
and parameters of the MC from an arbitrary SSP input.

We define a bijection f : N 7→ U such that the set of knapsack items corresponds
to the set of underwriters. Furthermore, we let the item weights correspond to the
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minimal underwriter shares and to the maximal underwriter shares, i.e.,

min sharef(n) = w(n),

max sharef(n) = w(n),

for all n ∈ N . Finally, the knapsack capacity (W ) corresponds to the broker share
(broker share).

For all underwriters u, the reduction results in MC instances where min shareu is
equal to max shareu, which clearly satisfies the condition of min shareu being less
than or equal to max shareu. A solution to the the MC exists if and only if there
exists a solution to the SSP, and so the reduction from the SSP to the MC is complete.
This means that solving the MC is at least as hard as solving the SSP, and so, the
MC must also be NP-complete.
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Chapter 3

Solution methods

In this chapter we go into detail about the different solution methods used for
solving the BP model. We begin by presenting a global optimization method. Even
for relatively small problem instances, this method is time consuming. Because of
this, we investigate two local optimization methods, which are able to find solutions
to larger instances of the BP in reasonable time. Even though these methods do not
guarantee optimality, they may produce solutions close to optimality.

We conclude the chapter by presenting solution methods for handling the two sec-
ondary objectives described in Section 2.3. Their purpose is to tune the optimal
solution, in an attempt to fulfill the secondary objectives to the best possible extent,
without worsening the value of the primary objective function.

3.1 Exact algorithm

Two widely used methods for solving integer programs are cutting plane algorithms
and branch-and-bound algorithms (Wolsey, 1998). These are global optimization
methods, which use different techniques for searching the solution space for the opti-
mal solution. Both methods solve the relaxation of integer programming problems,
in such a way that the solution of the relaxed problem is integer.

Cutting plane algorithms solve the relaxed problem by adding hyperplanes that
modify the solution space. This procedure is demonstrated in Figure 3.1. The
purpose of these hyperplanes is to cut away parts of the solution space that do not
contain feasible solutions of the original integer programming problem, i.e., fractional
numbers. We keep adding cutting planes as long as the optimal solution to the
modified solution space has fractional coordinates. Eventually, the optimal solution
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will have all-integer coordinates, and an optimal solution to the original integer
programming problem is found.

Figure 3.1: The cutting planes (red lines) modify the solution space (blue area) of
the relaxed problem, until the optimal solution (red point) is integral.

The branch-and-bound method works by systematically examining sub-areas of the
solution space. Analytical upper and lower bounds on the objective function are
calculated for each sub-area. The procedure starts by finding the optimal solution
of the entire solution space. If this solution contains a fractional coordinate, the
solution space is split by hyperplanes corresponding to the floor and ceiling of the
fractional coordinate (branching), as illustrated in Figure 3.2. The upper and lower
bounds on the objective function are considered for each sub-area. If these bounds
indicate that the sub-area may contain a better solution than yet has been found,
the sub-area is searched for its optimal solution. Some sub-areas may however be
disregarded (bounding), because the corresponding upper and lower bounds imply
that no better solution exists in these areas.

Figure 3.2: The solution space (blue area) is split by hyperplanes (red lines) into
sub-areas, by removing fractional coordinates of optimal solutions (red point), and
is searched until the optimal integer solution is found.

There exist many implementations of different variations and combinations of these
two solution methods. These implementations are referred to as solvers. Some well-
known high quality solvers in this category are Cplex, Gurobi and Baron. It is
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neither common nor recommended to implement solvers from scratch, but rather to
use the ones available. Some solvers are free, others are proprietary.

For solving the BP, we have chosen to use the solver Branch-And-Reduce Optimiza-
tion Navigator (Baron), created by Ryoo and Sahinidis (1996). As is clear from its
name, this is a variation of the branch-and-bound method. For each branch, Baron
applies a range reduction of the continuous variables, which leads to improved lower
and upper bounds on the value of the global optimum—hence the name Branch-and-
Reduce.

Implementing the mathematical model in AMPL, we choose Baron as the solver.
Given enough time, Baron is guaranteed to find an optimal solution. For solving
the BP, this is unfortunately too time consuming. Baron solves the Minimal Working
Example (Problem 1.1) instantly, but as the instance size increases the solution time
grows rapidly.

3.2 Linear approximation

Solving linear problems is considerably easier than solving nonlinear problems, and
finding good linear approximations can help us solve nonlinear problems. Even
though this approach does not guarantee global optimality, it may yield solutions
close to optimal. For problems where computational time or power are factors, in
addition to solution quality, this approach may be beneficial.

We approximate the BP by using the alternating algorithm (ALT) first constructed
by Haverly (1978), and further developed by Audet et al. (2004). ALT is a simple
algorithm for solving bilinear problems, by iteratively solving linear subproblems.
Consider a bilinear problem, where the variables causing the bilinearity are x and y.
In the first iteration, we fix variable x at some initial value. We now have a linear
problem in y, which is easily solved. For the next iteration, we fix variable y at
the solution value achieved in the previous iteration, and unfix variable x. Again,
we have a linear problem. The algorithm keeps on in this manner until there is
no change in objective function value, or until the change is below some specified
threshold. In order to make the alternating process clear, we use an example to
demonstrate how ALT solves a bilinear problem.

Example 3.1 (Iteratively solving linear subproblems). Consider the bilinear
problem:

maximize x · y
subject to x + y ≤ 5

x − y ≤ 1
−x + y ≤ 1
x , y ≥ 0

0 2 4
x

0

2

4

y
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In the figure, the constraints are represented by blue lines, and the filled area repre-
sents the solution space. In order to use ALT to solve this problem, we must decide
on some initial value for either x or y. We choose to fix y = 1, which means that the
algorithm begins by optimizing the variable x. For each iteration, we demonstrate
how the objective function and constraints change, along with a visualization of
which part of the solution space is being searched. The gray lines show the original
optimization problem, but are not “active” in the current iteration.

Iteration 1: We fix y = 1 and optimize for x. The optimal solution is at x = 2,
with objective value x · 1 = 2.

maximize x
subject to x + 1 ≤ 5

x − 1 ≤ 1
−x + 1 ≤ 1
x ≥ 0

0 2 4
x

0

2

4

y

Iteration 2: We fix x = 2 and optimize for y. The optimal solution is at y = 3,
with objective value 2 · y = 6.

maximize 2y
subject to 2 + y ≤ 5

2 − y ≤ 1
−2 + y ≤ 1

y ≥ 0

0 2 4
x

0

2

4

y

Iteration 3: We fix y = 3 and optimize for x. The optimal solution is at x = 2,
with objective value x · 3 = 6.

maximize 3x
subject to x + 3 ≤ 5

x − 3 ≤ 1
−x + 3 ≤ 1
x ≥ 0

0 2 4
x

0

2

4

y

The objective value is equal to that of the previous iteration, and so the algorithm
terminates and provides (x, y) = (2, 3) as the best solution, with objective value
2 · 3 = 6.

y
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Note that the solution found by ALT in the example above is not optimal—the
optimal solution is at (x, y) = (2.5, 2.5) with objective value 2.5 · 2.5 = 6.25. This
example also shows that the solution is dependent on the initial solution. If we had
fixed x = 1 in stead of y, the algorithm would have terminated in a different local
optimum. Furthermore, if we had fixed any of the variables at zero, the objective
function of the first iteration would have vanished. In this case, it is possible that
the other variable would also be set equal to zero, there would be no change in
the objective function value, and the algorithm would terminate at the objective
function value of zero—as far from the optimal solution as possible.

By creating good initial solutions for fixing one of the variables, this need not be
an issue. Because the problem is “translated into” linear programs, reaching the
final solution is very fast. The algorithm can be run several times from different
starting solutions, and it may still be solved considerably faster than by using a
global optimization solver. ALT is intuitively easy to understand and just as easy
to implement, see Algorithm 1 for the pseudocode.

Algorithm 1: Pseudocode for the alternating algorithm.

Input : Problem instance with bilinear variables x, y and an initial solution.
Output : Solution.

// Initialize

1 optimize x = true
2 solution = initial solution

// Alternate

3 while change in objective function value do
4 if optimize x then
5 fix y at solution
6 solution = optimize(x)

7 else
8 fix x at solution
9 solution = optimize(y)

10 optimize x = not optimize x

11 return solution

We need to define a general method for constructing an initial solution, for an arbi-
trary BP instance. The probability of this initial solution being feasible should be as
high as possible. Since the variables sharep,u are dependent on each other, the easiest
way to create an initial solution is by fixing the variables customer discountp,u and
broker discountp,u. We want to maximize the probability of the broker commission
being sufficiently large, i.e., the probability of Equation (2.7) being satisfied. To
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achieve this, we split the total discount in such a way that the broker receives all
the discount, and the customer receives zero discount

broker discountp,u = total discountp,u, (3.1)

customer discountp,u = 0,

for all products p ∈ P and all underwriters u ∈ Up. Unfortunately, this locks
all underwriters u ∈ Up as included in the insurance coverage of product p ∈ P .
This is because Equation (2.8) forces the variables includedp,u to be equal to 1
for all underwriters u ∈ Up, given the initial solution. In the first iteration of
ALT, Equation (2.9) will consequently force the variables sharep,u to be nonzero
for all underwriters u ∈ Up, which may very well lead to infeasibility because of
Equation (2.10). In other words, the includedp,u variables force all underwriters to
be included in the insurance coverage, without the possibility of removing them from
the coverage at a later point.

To avoid the issue described above, we make a slight modification to ALT. We
let Equation (2.8) be active for the iterations optimizing customer discountp,u and
broker discountp,u, and inactive otherwise. Analogously, we let Equations (2.9) and
(2.10) be active for the iterations optimizing sharep,u, and inactive otherwise. Re-
moval of included underwriters is now possible, since the includedp,u variables affect
the current iteration only. This results in a flexible algorithm, with the construction
of an initial solution having a high probability of being feasible.

3.3 Heuristic approach

Heuristic solution methods are expected to work well in practice, without the support
of theoretical proofs. These approaches find solutions to problems fast by sacrificing
the guarantee of finding an optimal solution. The solution space is searched by use
of heuristics, which are problem-specific rules of thumb for finding good solutions.
The heuristics are combined in algorithms, referred to as metaheuristics, which we
define as is done by Sörensen and Glover (2013).

Definition 3.2 (Metaheuristics). A metaheuristic is a high-level problem-
independent algorithmic framework that provides a set of guidelines or strategies for
developing heuristic optimization algorithms.

y

Many metaheuristics are inspired by animal behavior or natural processes. Particle
swarm optimization (PSO), developed by Kennedy and Eberhart (1995), searches
the solution space by simulating the social behavior of the individual organisms in a
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bird flock or fish school. Simulated annealing (SA), described in its original form by
Kirkpatrick et al. (1983) and Černý (1985), uses the temperature in connection to the
process of annealing solids to determine the intensity of the solution space search.
Furthermore, there exist metaheuristics based on ant colony behavior, mutations
and heritage of genetics and different types of search strategies.

Erbeyoğlu and Bilge (2016) examined the performance of SA and PSO for solving
bilinear problems, and found that both methods perform well on large instances. By
its construction PSO is a natural choice for handling continuous variables. On the
other hand SA can work well for both continuous and binary variables. Because the
BP is a mixed integer problem we solve it using the SA algorithm.

3.3.1 Simulated annealing

Simulated annealing is widely researched and has been applied to a large variety of
optimization problems. As the interest for SA grew during the 1980s, van Laarhoven
and Aarts (1987) decided to write a review of the theory and applications of SA.

Annealing is a physical process in which a solid with defects is heated to a tempera-
ture where the particles in the solid freely rearrange themselves. Slowly cooling the
solid down, the particles arrange themselves in a low energy (symmetric) state. We
demonstrate the stages of this process in Figure 3.3.

(a) Structure with defects. (b) Heat and movement. (c) Symmetric structure.

Figure 3.3: Annealing process.

Simulated annealing starts at an initial solution, that is either provided or generated.
At each iteration a neighboring solution is compared to the current solution, and
possibly accepted as the new current solution. The set of neighboring solutions is
defined to be any solution reachable from the current solution by applying a heuristic.
The energy state E of a solution is represented by its objective function, and so the
change of energy ∆E between two solutions is defined as the change in the objective
function value,

∆E = new solution objective value− current solution objetive value. (3.2)
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Whenever ∆E is less than zero for a neighboring solution, the algorithm accepts
this solution as the new current solution, since it leads to a decrease in energy. If
∆E is larger than or equal to zero, the neighboring solution may still be accepted
as the new current solution, even though this leads to an increase in energy. The
acceptance of worse solutions corresponds to the free rearrangement of particles
in the solid. When the temperature is high, there is more movement in the solid,
and the probability of accepting a worse solution should be higher than when the
temperature is low—when the solid is crystallizing. To achieve this behavior, the
probability of accepting worse solutions is represented by the Boltzmann probability

ρ = exp

(
−∆E

T

)
, (3.3)

where T is the current temperature. Accepting worse solutions allows SA to escape
local minima, as opposed to a local search which would get stuck as shown in Figure
3.4.

Figure 3.4: Performing a local search starting from anywhere along the blue line will
lead to the local optimum (blue point), in stead of the global optimum (red point).

When the temperature is high SA explores the entire solution space, and when the
temperature is low it moves towards a local search of the neighborhood at the current
solution. Since the set of heuristics determine the neighborhoods of the solutions, it
is important to design heuristics that together allow for searching the entire solution
space. Heuristics that yield neighboring solutions close to the current solution are
said to increase the intensification of the search, while heuristics that yield neighbors
far away from the current solution are said to increase the diversification of the
search. Having only intensification heuristics leads to a pure local search, while only
diversification heuristics leads to a random search. Balancing the intensification and
diversification is important for SA to produce good solutions. The choice of cooling
schedule for the temperature also greatly influences the quality of the solutions
found. Some of the most common cooling schedules are shown in Figure 3.5. The
pseudocode for simulated annealing is shown in Algorithm 2.
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Figure 3.5: Common cooling schedules for simulated annealing.

3.4 Solving the model extensions

In this section we present the solution methods created for handling the secondary ob-
jectives of the BP. A solution found by either one of the solution methods described
in the previous sections is given as input to these extension solution methods. For
the remainder of this chapter, we shall refer to this solution as the initial solution.
Each of the extension solution methods fix the customer price at the value of the
initial solution. In this way the primary objective function value is not affected,
but the final solution is tuned in order to fulfill the secondary objectives defined
in Section 2.3 to the best possible extent. In other words, the extension solution
methods choose which optima with equal primary objective function value to return
as the final solution. If there exists only one such optimum, the solution extensions
are without effect.

3.4.1 Maximizing the total rating τ

Recall the definition of the total rating τ of an insurance coverage from Equation
(2.17). We use a heuristic approach for maximizing the total rating of the initial so-
lution. For 1,000 iterations, we apply a heuristic for swapping included underwriters
with low rating, by currently not included underwriters with higher rating. These
underwriters are chosen from sets of candidates for removal and addition. We define
feasibility checks that are used for constructing these candidate sets. The purpose
of the checks is to minimize the probability of choosing underwriter combinations
that yield infeasible solutions. We present the checks in detail in Section 4.2.2.
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Algorithm 2: Pseudocode for simulated annealing.

Input : Problem instance, initial solution, temperatures T0, Tf , cooling schedule.
Output : Solution.

// Initialize

1 solution = initial solution
2 best solution = initial solution
3 T = T0

// Simulate the annealing process

4 while T > Tf do
5 repeat
6 Generate new solution = heuristic(solution)
7 Compute change in objective function value ∆E

8 if ∆E < 0 then
// Always accept better solutions

9 solution = new solution

10 if new best solution then
11 best solution = new solution

12 else
// Accept worse solutions with Boltzman probability

13 if random(0,1) < exp
(
−∆E

T

)
then

14 solution = new solution

15 until max iterations is reached or new solution is accepted

16 Cool down T according to cooling schedule

17 return best solution

Each iteration of the heuristic approach consists of three steps:

1. Choosing a product for performing the swap,

2. Choosing the underwriter to be removed from the product,

3. Searching for an underwriter to replace the removed underwriter.

are constructed in order to minimize the probability of choosing underwriters whose
swaps leads to infeasible solutions.

Step 1 is straightforward, as we randomly choose a product for which the swap is
to be made. For step 2, we wish to remove an underwriter with low rating from the
product. It is not guaranteed that we will be able to replace the removed underwriter,
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and so we should not try to remove the underwriter with the lowest rating at each
iteration—this may potentially get us nowhere. Because of this, we randomly choose
among a set of underwriters with lowest ratings, where the cardinality of the set is
variable.

The set cardinality is initially equal to one, so that we start by attempting to
remove the underwriter with the worst rating. If no swap can be made for this
underwriter, we increase the cardinality by one, and move to the next iteration.
We keep increasing the set cardinality by one whenever the number of successive
iterations with no successful swap is larger than the set cardinality.

When we have chosen an underwriter to remove, we move to step 3. In this step we
sort the set of potential replacement underwriters from highest to lowest rating. For
each of these underwriters, in this order, we attempt to swap it with the underwriter
chosen to be removed. We then use ALT to search for a feasible solution for this
combination of underwriters, with the customer price fixed at the initial solution
value. If a feasible solution is found, we keep this as our new current solution,
reset the set cardinality to one and the number of successive unsuccessful iterations
to zero, before moving to the next iteration. If no feasible solution is found, we
move to the next underwriter in the set of potential replacement underwriters. If
no replacement is found, we increment the number of successive iterations with no
successful swap by one, and move to the next iteration. We present the pseudocode
for this solution method in Algorithm 3.

3.4.2 Minimizing the discount split difference δ

Recall the definition of the largest discount split difference δ of an insurance coverage
from Equation (2.18). We use a linear program to minimize δ for the initial solution.

In ALT, we alternate between a model optimizing the underwriter share distribution
and a model optimizing the discount splits between the customer and the broker. We
can use the latter model to solve this model extension. We fix the variables sharep,u
to the values of the initial solution for all products p ∈ P and all underwriters
u ∈ Up, and change the objective function to minimize δ. The customer price
is fixed at the initial solution value. Optimizing this linear model, the variables
customer discountp,u will be assigned values as similar to each other as possible, for
all underwriters u ∈ Up within each product p ∈ P .
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Algorithm 3: Pseudocode for maximizing τ .

Input : Problem instance, initial solution, max iterations.
Output : Solution.

// Initialize

1 current solution = initial solution
2 successive fails = 0
3 size = 1

4 for i in range max iterations do

// Step 1: Randomly choose product p

5 p = random(P)

// Step 2: Choose underwriter ur to be removed

6 ur = random(removal candidates, size)

// Step 3: Attempt to perform swaps with underwriter ua to be added

7 foreach ua in sorted( addition candidates) do
8 new solution = current solution.swap(ua, ub)
9 result = ALT(new solution)

10 if result is feasible then
11 current solution = result
12 size = 1
13 successive fails = 0
14 continue

15 if no successful swap then
16 successive fails += 1
17 if successive fails > size then
18 size += 1

19 return current solution
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Chapter 4

A simulated annealing approach

Even though SA is a problem-independent framework, as stated in Definition 3.2,
the choice of values for its many parameters strongly influences the solution qual-
ity for different problems. Its performance is also highly dependent on the set of
heuristics. Because of this, we devote a chapter to describing all the problem-specific
components and choices made in our SA approach to solving the BP.

We begin by describing our choice of initial solution, and proceed by introducing
feasibility checks and heuristics used to generate neighboring solutions. Finally we
address the choices made for tuning the SA parameters to fit the BP problem.

4.1 Initial solution

As SA iteratively applies heuristics to the current solution, it requires an initial
solution. This solution can either be generated inside the SA algorithm, or it can be
provided. For the BP it would be unnecessarily complicated to generate an initial
solution randomly or greedily, since it would be hard to guarantee feasibility. An
easy and fast way to create a feasible solution is to simply use ALT.

Like for SA we still need to provide an initial solution for ALT, but only for half
of the variables causing bilinearity. This is a much simpler task than generating
an initial solution for SA. We use the procedure for creating an initial solution for
ALT described in Section 3.2, and provide the solution found by ALT as the initial
solution for SA. We illustrate this architecture in Figure 4.1.



Chapter 4. A simulated annealing approach 36

Figure 4.1: SA implementation architecture.
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4.2 Neighboring solutions

Neighboring solutions are generated in two steps:

1. We apply a heuristic to the current solution.

This modifies the combination of included underwriters—the heuristic either
adds more underwriters to the solution, removes underwriters from it or swaps
underwriters.

Since the different products need not have the same sets of underwriter candi-
dates, and especially not the same set of included underwriters, the heuristics
are applied to one product at a time. Both the heuristic and the product
are chosen uniformly at random among the set of heuristics and the set of
products, respectively.

2. We use ALT to generate a solution for the modified combination of underwrit-
ers. In addition to the new solution, ALT returns a Boolean value indicating
whether or not a feasible solution was found.

When we determine the combination of included underwriters using heuristics, the
variables includedp,u become redundant, and we consequently remove them from
the model. As a result of this, the model constraints containing only these variables
vanish. We design feasibility checks for replacing these constraints, in addition to
decreasing the probability of generating underwriter combinations which have no
feasible solutions. The purpose of these checks is not to guarantee feasibility—which
is not possible without solving the model itself—it is to decrease the probability of
generating infeasible neighboring solutions. We attempt to find a balance between
decreasing the probability of infeasibility and the extensiveness of the feasibility
checks.

4.2.1 Feasibility checks

The feasibility checks are used when creating sets of candidates for being added to
or removed from the current solution, by filtering the set of all underwriters. Below
we describe the feasibility checks performed in the heuristics.

Share distribution
We check that there exists a share distribution among the combination of included
underwriters. For the product of interest, we compute the sum of minimal shares
and the sum of maximal shares, over all the included underwriters. If the broker
share is contained in the interval of these two sums (inclusively), there exists at least
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one feasible share distribution among the included underwriters. The candidates for
removal from the solution are the underwriters that do not cause the broker share to
lie outside of this interval if they are removed (analogously for the set of candidates
for addition to the solution).

Underwriter preferences
Any underwriter that is in the set Ip of underwriters that must be included for the
specified product, must be included in the insurance coverage. The set of candidates
for removal from the product never includes an underwriter which is in this set.

Claims lead candidates
If the product of interest is to contain a claims lead underwriter, the set of claims
lead candidates should never be empty. If there is only one claims lead candidate,
the set of candidates for removal from the solution never includes this underwriter.

This feasibility check does not guarantee feasibility. If a heuristic removes more
than one underwriter, it can remove all the claims lead candidates since they may
all be in the set of candidates for removal. We choose to allow for such infeasibilities
to occur, in order to keep the balance between the probability of feasibility and
extensiveness of the checks.

Underwriter inter-product demands
We check that the underwriter inter-product demands are satisfied by representing
the demands as directed graphs. For each underwriter u, we create a product depen-
dency graph, where the set of nodes corresponds to the set of all products offered by
the underwriter, and the set of arcs represents the inter-product demands. Examples
of such dependency graphs are shown in Figure 4.2. An arc (p, p′) indicates that
underwriter u can be included in product p only if it is also included in product p′.
This means that if there exists any path from product p to product p∗, the under-
writer can be included in product p only if it is also included in product p∗ and all
other products corresponding to nodes along the path. We use breadth first search
to check these connectivities for the sets of candidates for removal and addition.

4.2.2 Heuristics

The heuristics take as input the current solution and the product for which the
combination of included underwriters is to be modified. For some inputs, the sets
of candidates for removal and addition are empty. Together with the neighboring
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Figure 4.2

solution, the heuristics return a Boolean value indicating whether or not the heuris-
tic was successful in modifying the combination of underwriters. We present the
heuristics below.

Random remove underwriter
An underwriter is chosen uniformly at random among the candidates for removal,
and is subsequently removed from the solution. The set of candidates for removal
contains every included underwriter that:

1. does not break share feasibility if removed,

2. is not contained in the set of underwriter preferences,

3. is not the only claims lead candidate, and

4. does not break underwriter inter-product demands if removed.

Random add underwriter
An underwriter is chosen uniformly at random among the candidates for addition,
and is subsequently added to the solution. The set of candidates for addition con-
tains every underwriter that:

1. is currently not included in the solution

2. does not break share feasibility if added, and

3. does not break underwriter inter-product demands if added.

Random swap underwriters
One underwriter is chosen uniformly at random among the candidates for removal,
another underwriter is chosen at random among the candidates for addition, and
they are subsequently swapped.
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The set of candidates for removal contains every included underwriter that satisfies
conditions 2.-4. specified for the heuristic “random remove underwriter.” The share
feasibility limits are updated by subtracting the corresponding minimal share and
maximal share from the sums. The set of candidates for addition contains every
underwriter that satisfies all the conditions specified for the heuristic “random add
underwriter.”

Remove the two underwriters with smallest share, and replace by one
The two underwriters among the candidates for removal with the smallest corre-
sponding shares are replaced by a randomly chosen underwriter among the candi-
dates for addition.

The set of candidates for removal contains every included underwriter that satisfies
conditions 2.-4. specified for the heuristic “random remove underwriter.” The share
feasibility limits are updated by subtracting the corresponding minimal share and
maximal share from the sums. The set of candidates for addition contains every
underwriter that satisfies all the conditions specified for the heuristic “random add
underwriter.”

4.3 Parameter tuning

The SA parameters are: the initial and final temperature, the cooling schedule for
decreasing the temperature, the total number of cooling iterations (the number of
iterations used for cooling the temperature from initial temperature to final temper-
ature), and the number of searching iterations (the maximal number of iterations
used to search for a feasible solution at every cooling iteration). Finding good values
for these parameters is critical for SA to perform well.

There are several different methods for parameter tuning, ranging from trial-and-
error to statistical methods. We tune the initial temperature and final temperature
from the behavior of the first α iterations of SA, and we choose the cooling schedule
and the number of cooling and searching iterations by trial-and-error.

4.3.1 Tuning the initial and final temperature

We tune the temperatures by examining the changes in energy ∆E between neigh-
boring solutions for the specific instance we are solving. Let N denote the number
of cooling iterations, and define α := max{10, 0.2N}. For the first α iterations of
SA, all neighboring solutions are accepted, regardless of whether they are better or
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worse than the current solution. We compute ∆E at every iteration using Equation
(3.2).

After α iterations, we calculate the average energy change ∆Eavg for these first
iterations. We let T := T0 and ∆E := ∆Eavg, and rewrite the Boltzmann probability
Equation (3.3), in order to calculate the initial temperature T0

ρ = exp

(
−∆Eavg

T0

)
⇔ T0 =

−∆Eavg

ln (ρ)
.

By assigning a value ρ0 to ρ, i.e., determining the initial probability of accepting
a worse solution, we can calculate the value of T0, and set Tf = 1. The initial
probability is typically set to a value close to 1 (van Laarhoven and Aarts, 1987),
but we find that setting ρ0 = 0.5 works better for the BP.

4.3.2 Choosing the cooling schedule and the number of cool-
ing iterations and searching iterations

The remaining parameters are the number of cooling iterations N , the number of
search iterations M , and the cooling schedule for decreasing the temperature from T0

to Tf . Among the cooling schedules displayed in Figure 3.5, we choose the commonly
used exponential cooling schedule (van Laarhoven and Aarts, 1987).

We set the default number of cooling iterations to 500, and the default number of
searching iterations to 10 % of the cooling iterations, in order to keep the running
time reasonable.



Chapter 5. Computational experiments 42

Chapter 5

Computational experiments

In this chapter we present results from the following experiments:

• Evaluation of solution methods for the BP model

We solve the BP model using the solution methods presented in Chapter 3,
and compare the solution quality and running time of ALT and SA. We use
the global optimization solver Baron to obtain upper and lower bounds on the
objective function value.

• Evaluation of the effect of solving the model extensions

We solve the BP model extensions for the feasible test instance solutions. For
each extension, we consider the running time, the number of instances for
which the corresponding solution is improved, and the extent of solution im-
provement.

Before presenting the results of these experiments, we specify the tools used for the
experimentation and provide information about the test instances. We continue by
describing each experiment in more detail, explaining the corresponding results, and
finally sharing our observations regarding the experiment results.

5.1 Experimental setup

All experiments were run on a 64 bit Ubuntu 16.04 computer, with a 2.70 GHz speed
quad-core i5-6400 processor and 8 GB RAM.

The BP model is implemented in AMPL (version 20181217), as is specified in Section
2.2, using Baron as the solver. The two linearized BP submodels used in ALT, for
optimizing share distribution and discount split, respectively, are implemented in
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Python (version 3.6.7). These linearizations of the BP model are implemented as
specified at the end of Section 3.2. We use the optimization package or-tools

(version 6.8.5452) created by Google, together with the solver Coin-or Branch and
Cut (CBC). This solver is among the free solvers that can be used together with
or-tools. ALT, SA and the solution methods for the model extensions are also
implemented in Python.

5.2 Test instances

The experiments are carried out on a total of 68 test instances: 3 of which are based
on real data provided by Edge, and 65 of which are randomly generated. Any real
data must undergo a process of complete anonymization with regards to the fleet
owners and the underwriters involved. This is a time consuming task. We use in-
stances of varying size in order to challenge the solution methods. For these reasons,
most of the instances are randomly generated. Unless specified differently, we use
uniform probabilities for random choices. We combine the mathematical notation
for the floor function (b·c) and the ceiling function (d·e) to represent rounding a
number to the nearest integer, e.g., b0.1e = 0 and b0.5e = 1.

5.2.1 Instances based on real data

The real data provided by Edge contains information about the number |P| of
products and for each product p ∈ P , the number |Sp| of ships, the number |Up| of
underwriters, and values of the following parameters: valuep,s, ratep,s,u, min sharep,u,
max sharep,u and total discountp,u. This information does not define a complete BP
instance, since there are several more sets and parameters that need to be specified.
To handle this, we generate the remaining sets and parameters randomly. For each
product p ∈ P :

• there is a 75 % probability that the parameter num claims leadp is equal to 1,

• the parameter broker sharep is randomly chosen from the interval [0.7, 1.0],

• the parameter min ratiop is randomly chosen from the interval [0.05, 0.10],

• the set Cp is a randomly chosen subset of Up, with cardinality in the interval
[b0.3 · |Up|e, b0.5 · |Up|e],

• the set Ip is a randomly chosen subset of Up, with cardinality 1, 2 or 3,

• the set Wp is a randomly chosen subset of Up, with cardinality equal to
b0.1 · |Up|e.
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The only remaining parameters are the inter-product demands for underwriters and
potential claims leads. Recall that for all products p, p′ ∈ P and underwriters
u ∈ Up ∩Up′ , if the value of u demandsp,u,p′ is equal to 1, the constraint (2.16)
becomes active. Analogously for claims lead candidates u ∈ Cp ∩Cp′ , if the value of
cl demandsp,u,p′ is equal to 1, the constraint (2.12) becomes active. We are interested
in how the number of such constraints affects the “tightness” of the solution space.
For this reason we vary the probability of u demandsp,u,p′ and cl demandsp,u,p′ being
equal to 1, for all combinations of products and underwriters. We let D be the set
of probabilities, and generate a test instance for each d ∈ D, i.e., we get |D| different
test instances from each real dataset.

5.2.2 Randomly generated instances

When we create randomly generated test instances, we vary their size by specifying
the number |P| of products and the number |U| of underwriters. The number of
ships is kept constant. For each product we randomly choose a subset of underwrit-
ers Up with cardinality in the interval [b0.6 · |U|e, b1.0 · |U|e], and a subset of ships
Sp with cardinality in the interval [b0.6 · |S|e, b1.0 · |S|e]. Values for the following pa-
rameters are randomly generated: valuep,s, ratep,s,u, min sharep,u, max sharep,u and
total discountp,u. The intervals from which these values are generated are based on
the parameter values observed in real datasets. The remaining sets and parameters
are generated in the same way as described for the instances based on real data.

We create one random test instance for every combination of the following set car-
dinalities and probabilities of inter-product demands

|P| ∈ {1, 3, 10, 15, 50},
|U| ∈ {5, 15, 40, 100, 300},
D = {0.0, 0.10, 0.30},

with the exception of when |P| = 1, which is not combined with the different prob-
abilities d ∈ D. This is because an instance with only one product cannot contain
inter-product demands. As a result, we get (|P|−1) · |U| · |D|+1 · |U| = 65 randomly
generated instances.

The instance names are on the format: P |P| U |U|Dd·100. As an example, an instance
with 3 products, 15 underwriters and a probability of inter-product demands equal
to 0.10, is given the name P3 U15D10. The symbol ∗ is appended to the names of
instances based on real data.
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5.3 Results

5.3.1 Evaluation of solution methods for the BP model

This experiment concerns the BP primary objective function, in which the customer
price is minimized. For each test instance, we compare the running time and the
objective function value corresponding to the solutions found by ALT and SA, whose
implementations follow the descriptions in Section 3.2 and Chapter 4, respectively.
Since the optimal solutions are unknown for all the test instances, we run Baron
for 40 minutes in order to obtain upper and lower bounds on the optimal customer
price. The lower bounds reported by Baron are theoretically deduced, as described
in Section 3.1. The upper bounds are equal to the best objective function values
found by Baron.

The results are presented in Table 5.1, along with a visual representation in Figure
5.1. Columns 2 and 4 show the running time in seconds, and columns 3, 5, 6, and 7
show the objective function value in euros. For each test instance, the best objective
function value is displayed in bold. Note that the objective function value returned
by SA is written in bold only if it belongs to a solution found by SA—it is not
written in bold if it belongs to the initial solution provided to SA. If no solution
was found, the corresponding cell contains the symbol “-”, and if a solution method
proves that no solution exists, the corresponding cell contains the text “infeasible”.
Column 8 shows the relative gap between the best objective function value found
by either one of the solution methods and the lower bound reported by Baron. The
gap is computed as the difference between the objective function value and the lower
bound, divided by the lower bound.

It is important to note that if ALT or SA fails to find a feasible solution, it does
not imply infeasibility. Solutions found by these methods should be interpreted as
upper bounds on the optimal solution. The lack of a feasible solution simply means
that the upper bound is infinitely large. Baron is the only one among the considered
solution methods that can determine whether an instance is infeasible.

Table 5.1: Results comparing the running time and objective value of ALT and SA,
together with upper and lower bounds provided by Baron.

ALT SA Baron

Instance Time Obj. value Time Obj. value Upper b. Lower b. Gap

P1 U5D0 0 547,442 4 547,442 547,442 547,438 0.00
P1 U15D0 0 492,820 262 492,820 492,820 492,671 0.00
P1 U40D0 0 367,618 14 367,618 367,618 367,475 0.00

(Continued on next page)



Chapter 5. Computational experiments 46

Table 5.1 – continued from previous page

ALT SA Baron

Instance Time Obj. value Time Obj. value Upper b. Lower b. Gap

P1 U100D0 0 286,497 361 286,497 286,497 286,146 0.00
P1 U300D0 0 230,588 60 230,588 230,588 226,351 0.02
P3 U5D0 0 - - - infeasible infeasible -
P3 U5D10 0 - - - infeasible infeasible -
P3 U5D30 0 - - - infeasible infeasible -
P3 U15D0 0 1,256,358 17 1,256,358 1,256,358 1,255,910 0.00
P3 U15D10 0 1,301,902 21 1,301,902 1,301,902 1,294,400 0.01
P3 U15D30 0 1,346,834 12 1,346,834 1,346,834 1,334,470 0.01
P3 U15D0∗ 0 445,502 16 445,502 445,636 437,434 0.02
P3 U15D10∗ 0 447,688 14 447,688 448,384 439,707 0.02
P3 U15D30∗ 0 450,450 14 450,450 450,626 443,190 0.02
P3 U40D0 0 1,196,272 52 1,196,266 1,196,266 1,191,980 0.00
P3 U40D10 0 1,233,065 36 1,233,038 1,233,038 1,231,810 0.00
P3 U40D30 0 1,392,726 39 1,392,726 1,392,726 1,392,690 0.00
P3 U100D0 0 1,039,741 130 1,039,741 1,040,035 1,030,510 0.01
P3 U100D10 0 1,065,224 50 1,065,224 1,065,572 1,047,290 0.02
P3 U100D30 0 1,181,373 1,470 1,181,373 1,185,536 1,176,460 0.00
P3 U300D0 0 941,814 135 941,814 941,814 923,672 0.02
P3 U300D10 0 972,476 111 972,476 975,303 949,522 0.02
P3 U300D30 1 997,969 115 997,969 1,006,664 966,040 0.03
P10 U5D0 0 - - - infeasible infeasible -
P10 U5D10 0 - - - infeasible infeasible -
P10 U5D30 0 - - - infeasible infeasible -
P10 U15D0 0 4,441,115 31 4,441,115 4,447,567 4,406,620 0.01
P10 U15D10 0 4,647,035 49 4,647,035 4,647,035 4,631,850 0.00
P10 U15D30 0 - - - infeasible infeasible -
P10 U40D0 0 4,319,639 63 4,319,639 4,355,703 4,236,940 0.02
P10 U40D10 1 4,563,599 57 4,563,599 4,601,240 4,501,560 0.01
P10 U40D30 0 - - - infeasible infeasible -
P10 U100D0 1 3,629,311 192 3,629,311 3,651,154 3,558,160 0.02
P10 U100D10 1 4,106,276 213 4,106,276 4,116,773 4,071,480 0.01
P10 U100D30 1 - - - infeasible infeasible -
P10 U300D0 4 3,923,137 336 3,923,137 - 1,589,972 1.47
P10 U300D10 4 4,385,803 424 4,385,803 - 2,727,417 0.61
P10 U300D30 1 - - - infeasible infeasible -
P15 U5D0 0 - - - infeasible infeasible -

(Continued on next page)
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Table 5.1 – continued from previous page

ALT SA Baron

Instance Time Obj. value Time Obj. value Upper b. Lower b. Gap

P15 U5D10 0 - - - infeasible infeasible -
P15 U5D30 0 - - - infeasible infeasible -
P15 U15D0 0 6,342,925 43 6,342,925 6,363,018 6,279,850 0.01
P15 U15D10 0 - - - infeasible infeasible -
P15 U15D30 0 - - - infeasible infeasible -
P15 U40D0 1 6,807,110 87 6,807,110 6,872,438 6,672,640 0.02
P15 U40D10 0 - - - infeasible infeasible -
P15 U40D30 1 - - - infeasible infeasible -
P15 U100D0 1 5,982,884 197 5,977,339 6,016,655 5,836,720 0.02
P15 U100D10 1 - - - infeasible infeasible -
P15 U100D30 1 - - - infeasible infeasible -
P15 U300D0 6 5,361,786 576 5,361,786 - 1,113,329 3.82
P15 U300D10 6 6,466,810 676 6,466,810 6,484,165 6,156,720 0.05
P15 U300D30 4 - - - infeasible infeasible -
P50 U5D0 0 - - - infeasible infeasible -
P50 U5D10 0 - - - infeasible infeasible -
P50 U5D30 1 - - - infeasible infeasible -
P50 U15D0 1 21,160,672 268 21,160,288 21,221,801 20,865,000 0.01
P50 U15D10 2 - - - infeasible infeasible -
P50 U15D30 3 - - - infeasible infeasible -
P50 U40D0 3 21,078,835 286 21,078,835 21,373,853 20,691,600 0.02
P50 U40D10 2 - - - infeasible infeasible -
P50 U40D30 4 - - - infeasible infeasible -
P50 U100D0 6 19,369,622 597 19,369,622 - 5,786,498 2.35
P50 U100D10 9 - - - infeasible infeasible -
P50 U100D30 16 - - - infeasible infeasible -
P50 U300D0 27 18,645,219 2,155 18,645,219 - 5,714,325 2.26
P50 U300D10 71 - - - infeasible infeasible -
P50 U300D30 257 - - - infeasible infeasible -

5.3.2 Evaluation of the effect of solving the model exten-
sions

This experiment concerns the BP secondary objectives described in Section 2.3 and
their corresponding solution methods described in Section 3.4. For each feasible test
instance, we choose the best solution found by either ALT or SA. For this solution,
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we apply the maximization of the total rating τ followed by the minimization of the
largest discount split difference δ.

The results from this experiment are presented in Table 5.2. Columns 2 and 4 show
the running time in seconds, and columns 3 and 5 show the relative improvement of
solving the model extensions. The relative improvement of a solution method, with
respect to an objective function f , an initial solution x0 and a new solution x1, is
defined as

relative improvement =
f(x0)− f(x1)

f(x0)
.

The relative improvement of maximizing τ is the change in total rating, divided
by the total rating of the solution found by ALT or SA. Analogously, the relative
improvement of minimizing δ is the change in the largest discount split difference,
divided by the largest discount split difference in the solution found by ALT or SA.

Table 5.2: Results presenting the effect of maximizing the total rating τ and mini-
mizing the largest discount difference δ of the feasible test instances.

Maximizing τ Minimizing δ

Instance Time Rel. impr. Time Rel. impr.

P1 U5D0 0 0.0 0 0.996
P1 U15D0 36 0.0 0 0.993
P1 U40D0 56 0.0 0 0.995
P1 U100D0 152 0.0 0 0.996
P1 U300D0 126 0.0 0 0.991
P3 U15D0 11 0.0 0 0.996
P3 U15D10 13 0.0 0 0.996
P3 U15D30 11 0.0 0 0.996
P3 U15D0∗ 10 0.0 0 0.987
P3 U15D10∗ 9 0.0 0 0.987
P3 U15D30∗ 5 0.0 0 0.987
P3 U40D0 89 0.0 0 0.990
P3 U40D10 64 0.0 0 0.994
P3 U40D30 27 0.0 0 0.990
P3 U100D0 362 0.0 0 0.996
P3 U100D10 256 0.0 0 0.996
P3 U100D30 422 0.0 0 0.996
P3 U300D0 778 0.0 0 0.996
P3 U300D10 949 0.0 0 0.996
P3 U300D30 729 0.0 0 0.991

(Continued on next page)



49 5.4. Observations

Table 5.2 – continued from previous page

Maximizing τ Minimizing δ

Instance Time Rel. impr. Time Rel. impr.

P10 U15D0 54 0.0 0 0.990
P10 U15D10 17 0.0 0 0.990
P10 U40D0 287 0.0 0 0.991
P10 U40D10 124 0.0 0 0.991
P10 U100D0 466 0.0 0 0.990
P10 U100D10 538 0.0 0 0.990
P10 U300D0 4,842 0.0 0 0.990
P10 U300D10 2,314 0.0 0 0.990
P15 U15D0 69 0.0 0 0.991
P15 U40D0 283 0.0 0 0.992
P15 U100D0 877 0.0 0 0.992
P15 U300D0 5,756 0.0 0 0.992
P15 U300D10 4,998 0.0 0 0.990
P50 U15D0 197 0.0 0 0.990
P50 U40D0 986 0.0 0 0.990
P50 U100D0 3,202 0.0 0 0.990
P50 U300D0 39,495 0.0 1 0.990

5.4 Observations

We see from the results in Table 5.1 that among the three solution methods, ALT
is the method that most frequently finds the best solution. It returns the best
objective function value for 33 out of the 37 feasible test instances, 26 of which are
unique solutions. By a unique solution, we mean that none of the other solution
methods are able to find this solution. It is also able to find a solution to all 5
feasible instances for which Baron is unable to find a feasible solution during the 40
minutes of searching:

• P10 U300D0,

• P10 U300D10,

• P15 U300D0,

• P50 U100D0,

• P50 U300D0.
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ALT finds these solutions in at most 27 seconds, while Baron searches for 40 minutes
before terminating. SA returns the best objective function value for 4 instances, 2
of which are unique, and Baron returns the best objective function value for 13
instances, none of which are unique. Almost all of the solutions found by Baron are
also found by ALT.

As seen in Figure 5.1, the differences between the best objective function values
found by the three solution methods are modest. To visualize the size of the gaps,
we use a line plot even though we are visualizing discrete data. The largest gap
between the best objective function values found by ALT and SA is 0.001, for test
instance P15 U100D0. Between Baron and either ALT or SA the largest gap is 0.014,
for test instance P50 U40D0.
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Figure 5.1: The best solutions found by ALT, SA and Baron (upper bound) are
all close to the lower bounds. The three visibly large gaps correspond to instances
where Baron is unable to find a feasible solution.

In addition to finding the largest amount of best solutions, we see that ALT out-
performs both SA and Baron when it comes to running time. The longest running
time for ALT is 4 minutes, while SA runs for a maximal of 36 minutes. The median
running time of ALT is 0 seconds, while the median running time of SA is 87 sec-
onds. Baron often finds feasible solutions during a preprocessing phase, long before
the 40 minutes have elapsed. However, by stopping Baron from searching further
when reaching the corresponding running times for ALT, the number of instances
for which it is unable to find a solution increases from 5 instances to 28 instances.

Compared to SA and Baron, ALT is a light-weight solution method. It is easy to
implement, does not require parameter tuning, is intuitively easy to understand and
is very fast. Recall the possible disadvantages of ALT demonstrated in Example 3.1.
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The most serious disadvantage is arguably the possibility of bad initial solutions
leading to solutions far from optimality. For BP instances it appears that we have
found a good initial solution for ALT. The gaps between the lower limit provided
by Baron and the best solutions found by ALT are small. They range from 0.00 to
3.82, where the largest gaps are for the instances for which Baron is unable to find
a solution. For these instances, the lower bounds are considerably lower than for
instances of similar size for which Baron is able to find a feasible solution. Among
the instances for which Baron finds feasible solutions, the largest gap between the
solutions found by ALT and the lower bounds is 0.05.

We see from Table 5.2 that the maximization of the total rating τ fails to improve
any of the feasible instance solutions, even though it often runs for several minutes
or up to a couple of hours, and in the worst case for almost 11 hours. Recall that
in order to improve the total rating, it is necessary to remove an underwriter from
all the products it is included in. Since the heuristic used to maximize τ greedily
swaps underwriters for one product at a time, it is not unexpected that the heuristic
is unsuccessful more often than not. We would however expect that the total rating
could be improved occasionally, especially for the instances with only one product.

Table 5.2 shows that minimizing the largest discount split difference δ yields good
results. Not only is it very fast, it also consistently yields an improvement of 99 %
for all instances. The fact that a secondary objective is consistently improved to
such an extent clearly substantiates our belief that the BP instances typically have
several local optima with identical primary objective function values. In order to
visualize the effect this model extension has on the solution, we show the details of
the best solution to instance P3 U15D10∗ before and after the minimization of δ in
Table 5.3. We include several decimals to show the precision of the effect. The first
three columns contain information about the insurance products, the combination
of underwriters included in each product and the share distribution for each product.
Column 4 and 5 show the discount split between the customer (c discount) and the
broker (b discount) corresponding to the optimal solution of the primary objective
function. Column 6 and 7 show the discount split between the customer and the
broker after minimizing δ.

It is important to note that all the presented observations are connected to randomly
generated data. In real data instances, there are correlations between the parameter
values and subsets. For the generated instances, the values are chosen at random
and independently of each other.
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Table 5.3: The effect of minimizing δ displayed for test instance P3 U15 C10∗.

Before min. δ After min. δ

product underwriters share c discount b discount c discount b discount

HM uwr3 0.130 0.1000 0.0000 0.0533 0.0467
uwr9 0.100 0.0000 0.1000 0.0533 0.0467
uwr10 0.100 0.0000 0.1000 0.0533 0.0467
uwr11 0.050 0.0000 0.1000 0.0533 0.0467
uwr12 0.050 0.1000 0.0000 0.0533 0.0467
uwr14 0.200 0.0133 0.0892 0.0546 0.0479
uwr15 0.250 0.1025 0.0000 0.0546 0.0479

HIFI uwr2 0.100 0.0000 0.1000 0.0008 0.0992
uwr3 0.150 0.0000 0.1000 0.0008 0.0992
uwr5 0.100 0.0000 0.1000 0.0008 0.0992
uwr6 0.250 0.0000 0.1025 0.0008 0.1017
uwr9 0.100 0.0000 0.1000 0.0008 0.0992
uwr10 0.100 0.0000 0.1000 0.0008 0.0992
uwr11 0.050 0.0139 0.0861 0.0008 0.0992

LOH uwr1 0.245 0.0000 0.1000 0.0007 0.0993
uwr9 0.100 0.0000 0.1000 0.0007 0.0993
uwr10 0.100 0.0000 0.1000 0.0007 0.0993
uwr13 0.125 0.0000 0.1000 0.0007 0.0993
uwr14 0.200 0.0028 0.0997 0.0007 0.1018
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Chapter 6

Conclusion and future work

6.1 Conclusion

We have examined the possibility of using optimization as a tool for creating marine
insurance coverages at a minimal price. A thorough literature review indicated
no documentation of any similar optimization tool in the field of marine insurance
brokerage. The software we have developed is valuable for marine insurance brokers,
because it gives them a competitive advantage as it is both time saving and unique.

We have defined the problem of creating a marine insurance coverage with minimal
price as a mathematical model, and proved that finding a solution is NP-hard. To
solve the model for instances of significant size, it was necessary to consider differ-
ent solution methods. We have proposed an exact solution method, where we use
the proprietary solver Baron, and two solution methods that do not guarantee opti-
mality: the simple linearization method ALT, and the more complex metaheuristic
approach SA. ALT and SA were adapted to the problem at hand, and implemented
from scratch. By experimenting on instances of varying size, we found that ALT
performs best out of the three solution methods proposed. ALT found solutions
with objective function values close to corresponding theoretical lower bounds. For
most of the test instances these solutions were found in less than one second. In
at most 27 seconds, ALT found feasible solutions to large test instances for which
Baron was unable to find a feasible solution during a 40 minute search.

We expected that the problem instances typically contained several local optima with
equal objective function values. Because of this, we defined two model extensions
with the purpose of affecting the “choice” of such local optima with equal primary
objective function value (customer price). The first extension aims to maximize the
total rating of an insurance coverage and the second extension aims to minimize
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the largest discount split difference. We proposed a heuristic solution method for
maximizing the total rating, and a linear program for minimizing the largest dis-
count split difference. The linear program was highly effective for choosing local
optima, while the heuristic solution method did not affect the solution for any of
the test instances. We can not conclude whether the heuristic solution method was
unsuccessful, or whether the test instances did not contain several local optima with
equal primary objective function value and different total rating.

In the end, we were able to create an effective tool for the marine insurance brokers.
Solving the model using ALT followed by a minimization of the total discount split
provides good solutions, with the desirable property of an even total discount split,
in very little time.

6.2 Future work

There are especially two areas for which further exploration would be valuable.

Extending the computational experiments to include more real-life instances. Even
though the solution methods found good solutions to the test instances, all but
three of the instances were generated randomly. We do not have any reason to
believe that the solution methods should produce worse results on real instances.
They perform well on a large variety of instance sizes, and the results regarding the
instances based on real data do not stand out from the others. Even so, we encourage
experimentation on more instances from real data, in order to verify what we have
seen in randomly generated instances.

Other solution methods could be considered for maximizing the total rating. One
possibility is to design a new heuristic, which considers both the priority rating of
the underwriters and the number of products from which the underwriters must be
removed in order to improve the total rating. Another possibility could be to define
an objective function which favors high priority rating, and solve the model with
the customer price fixed at the current solution.
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