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Abstract 
 

Analogue plaster modelling is used to study the normal fault growth in the extensional regime 

in this MSc thesis. Using Plaster of Paris, which is well suited to produce small-scale 

structures illustrating the complexity of the evolution of faults in the extensional regime.  

 

The growth in length and maximum displacement is documented and tracked for several fault 

segments throughout the experiment and plotted in to a diagram showing the ratio between 

length and maximum displacement.  

 

Four stages are characterized by studying the displacement-length trajectories in detail. The 

first stage is defined by fault growth by lengthening with minimal displacement accumulation. 

Stage two constitute a period of displacement accrual and limited lengthening. The third stage 

is a renewed period with lengthening and a low-rate displacement accumulation. The last 

stage is defined by linkage and for these experimental models assembly of the main fault.  

 

The displacement-length trajectories are compared with the two well-known growth of 

normal fault models, the ‘propagating’ and the ‘constant-length’ fault growth models. The 

propagating fault growth model suggest that faults grows by increasing synchronously in 

length and displacement ratio. The constant length model propose that faults grows their near-

final length early in the deformation history and then enters a period with displacement 

accrual.   

An overall trend in the displacement-length diagram suggest that there are two main periods 

in the evolution in the fault growth. The first period is defined by the propagational fault 

growth model and the second period contains the constant-length fault growth model   
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CHAPTER 1 – INTRODUCTION 
 

1.1 Introduction 
 

In this thesis, analogue modelling of the extensional regime is used in this project to 

investigate the geometry and growth of normal faults.  

 

Normal fault growth is studied by investigating the tip-propagation and segment linkage 

between fault segments and subsegments. This also includes quantify the fault length and 

heave. There are mainly two growth models that are preferred, the ‘propagating’ and 

‘constant-length’ fault models (Fig. 2.3)(Rotevatn et al., 2018). The former fault growth 

model describes that the fault increases synchronously between length and displacement, 

while the latter propose that the fault establishes its almost full length early, thus enters a 

phase of displacement accruing.  

 

By using analogue models to study normal faults, is it possible to follow the whole evolution 

of the fault, from it nucleates through the surface and until it is fully developed. Every step of 

the experiment is documented by images, so it is possible to store information of the entire 

formation process to the fault. The material used in this experiment is made of plaster and 

barite. The plaster consists of fine-grained material which solidifies as the experiment 

continues. This provides the opportunity to study small-scale structures based on the 

experiment and also preserve information in the end result of the model 

 

The understanding of how faults grow is limited to observation of outcrops in nature and 

seismic interpretation. In nature are the information restricted to outcrops mainly in 2-

dimention, while seismic interpretation of fault can be observed both in 2- and 3-dimention 

but is limited by resolution. Both of these research methods show the end result of a 

geological event and not the evolution of the event. Restoration and balancing are often used 

to form a hypothesis for how they have occurred, but none of these options provides an 

accurate description of the occurrence of the events, and analogue modelling is therefore 

helpful to gain insight to the evolution of the faults. 
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The analogue experiments used for this project were performed in 2015 for a sister project 

also focusing on the extensional regime, and the results of this modelling is analysed in this 

thesis. The implementation took place at the Department of Earth Science at the University of 

Bergen. 

 
 

1.2 Aims and objectives 
 

The aim of this project is to study how normal faults grow to and to study their evolution in 

displacement-length (D-L) space. The main objectives are listed below: 

 

i)   Examine how the faults grow in the plaster model by studying the lengthening, 

displacement accruing and the linkage for several faults in detail  

ii)   Quantify the measurements extracted from the experiment, mainly the length and 

heave of the fault segments  

iii)   Compare the fault growth result to existing models for fault growth  

iv)   Compare the linkage and relay ramp breach 

v)   v) investigate the D-L growth behaviour of faults 

vi)   vi) Use the result from the model to compare with global D-L dataset 
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CHAPTER 2 - EXTENSIONAL FAULTING 
 

2.1 Introduction 
 

The aim of this chapter is to provide theory about the extensional faulting, focusing on the 

normal fault structures, their geometry and growth pattern. 

   

 

2.2 Extensional regime 
 

An extensional regime is an area that is stretched in the horizontal direction. This is often 

related to tectonic processes, but may also be caused by gravitational sliding. Normal faults 

are the main structure formed in this regime and forms in the brittle part of the crust (Fossen, 

2010). 

 

2.2.1 Architecture of a normal fault 

 

A normal fault forms when the hanging wall is lowered relative to the footwall. The offset 

between the hanging wall and footwall in horizontal direction is called heave and in the 

vertical direction is called throw (Fig. 2.1). The surface onto which offset is localised is the 

fault surface, which sits between the hanging wall and footwall (Fossen, 2016). A fault zone 

can be divided into regions based on its sum of properties of individual small-scale tectonic 

structure or combinations of structures (Braathen, et al., 2009).  

The fault core is a high-strain zone and is where most of the displacement are accommodated 

(Caine, Evans, & Forster, 1996). This zone can vary from smaller than a millimetre to several 

meters in thickness (Fossen, 2010)). The core contains elements of deformation band, slip 

surface, fracture, cleavage, stylolite, smear along fault etc (Braathen, et al., 2009).  Damage 

zone surrounds the core and contains the brittle deformation structure as deformation band, 

fracture, stylolite etc. (Braathen, et al., 2009). Occasionally deflected layers surround the 

damage zone, called a drag zone. It consists of the ductile deformation of strain zone 
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associated with the structure (Fossen, 2010)) and a protolith zone is the original rock without 

any deformation.  

 

 

 

 

Figure 2.1: Idealized normal fault architecture. 

The key dimensional parameters of a normal fault are represented by maximum displacement 

and length (J. Walsh et al., 2003). There is a positive correlation between displacement and 

length (Cowie & Scholz, 1992a). An elliptical fault plane can be used to illustrate the ideal 

normal fault (Fig. 2.2a). The elliptical circles represent fault-tip and distribution of 

displacement. The maximum displacement would be zero at the fault tip and usually increases 

towards the center of the fault (Fig. 2.2a), but the displacement varies within the fault surface 

(Barnett et al., 1987). 

 

Kim and Sanderson (2005) proposed a unified terminology for fault description that can be 

used regardless of their kinematics (Fig. 2.2a). The longest horizontal dimension in the ellipse 

is called fault length (L) and the plane that is exposed in the surface is characterized as the 

fault trace length (L’). The longest vertical dimension in the ellipse for the fault plane is 

measured as the fault height (H) and fault trace height (H’) is represent the exposed length in 

in cross-section.  
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a) 

 

b) 

 
Figure 2.2: a) shows an elliptical fault surface that illustrates the distribution of displacement within the fault plane. Also 

presenting where the maximum length (L) and height (H) along with the trace length (L’) and trace height (H’) are 

measured. b) Shows a displacement (D) – length (L) plot. From (Kim & Sanderson, 2005)  

 

Several factors are proposed to control the ratio of maximum displacement (Dmax) and fault 

length (L) (Kim & Sanderson, 2005). Different types of material properties can become 

effective barriers on propagation of small- scale faults. Scaling of fault in a sedimentary rock 

can be affected by its lithology (Steen and Andersen, 1999) (Wilkins & Gross, 2002). Normal 

and thrust faults has slightly smaller ratio than a strike-slip fault, when the position and 

direction of measurements are included (Kim & Sanderson, 2005). Fault propagation may 

alter the ratio between displacement and length, because the mechanical interaction and 

localization of strain on larger faults (e.g., Cowie and Scholz, 1992b; Willemse et at., 1996; 

Walsh et at., 2002, 2003b) in turn means that it depends on segmentation and linkage (Sibson, 

1989; Cowie and Scholz, 1992b) fault scale (Clark and Cox, 1996; Kim et al., 2000) and 

reactivation of faults.  
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2.2.2 Normal fault growth 

 

Normal faults start to grow from small weaknesses as fracture, joints, dikes, etc, in the rock. 

Forces affects these small structures and activates them to propagate and interact with nearby 

small structures and fault segments, creating larger fault segments.  

Two main fault growth models are presented on how the normal faults grows, the 

‘propagating’ and ‘constant-length’ fault model (Fig. 2.3) (Rotevatn et al., 2018). 

The propagating fault model (Fig. 2.3A) (also known as the isolated fault model) propose that 

the fault grows by increasing synchronously in length and displacement (Fig. 2.3c and 2.4) 

(Jackson et al., 2017; Rotevatn et al., 2018; J. Walsh et al., 2003; J. Walsh et al., 2002). These 

faults propagate geometrical and kinematically isolated from each other and links by 

overlapping and interacting (Giba et al., 2012).  

The constant-length fault model (B) (also known as the coherent fault model) establishes its 

near-final length early in its slip history and then moves in to a phase where the fault mainly 

accumulate a displacement (Fig. 2.3d and 2.4) (Jackson et al., 2017; Rotevatn et al., 2018; J. 

Walsh et al., 2003; J. Walsh et al., 2002). These fault segments depend on the surrounding 

fault segments and propagate kinematically and geometrical related to each other (Giba et al., 

2012).   

 

The fault growth models are shown in figure 2.3 and presents the breaching in the surface by 

normal fault growth by three timesteps (T1-T3).  The fault growth illustrates how normal fault 

propagate in the surface in map-view (i), strike -projection (ii) and in a displacement-ratio 

plot (iii). It is divided in to three timesteps (T1-T3). At the final timestep (T3) have the faults 

in both of the models the same length, displacement and shape. This makes it difficult to 

distinguish which of the illustrated models has occurred at T3. 

 

Also, both ‘propagating’ and ‘constant-length’ fault model can be schematic compared in the 

same diagram by using the displacement (heave for this project) and length diagram (Fig. 

2.4). Fault growth that fall in between these two fault growth models are called hybrids and 

consists of both the fault growth terms (Rotevatn et al., 2018). The gradient of the relationship 

between length and heave for hybrid growth is partitioned between sub-horizontal and sub-

vertical fault growth (Fig 2.4). By using a log-log plot of the relationship between the length 
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and displacement it is possible to compare fault growth in analogue modelling with faults that 

occur in the nature (Fig. 2.5). 
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Figure 2.3: Models illustrating the ‘propagating’ (A) and the ‘constant-length’ (B) normal fault growth. The geometrical and 

evolutionary aspects is presented in a map-view(i), strike-projection (ii) and in a D-L profiles(iii). Three faults (F1, F2 and 

F3) are described with three timesteps (T1, T2 and T3). At the end is the D-L plot for each of the model. From (Rotevatn et 

al., 2018) 
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Figure 2.4: Schematic illustration of a normal fault growth including the propagating trajectory and the constant-length 

trajectory. From (Rotevatn et al., 2018) 

 

 
Figure 2.5: is a global D-L dataset plotted by Rotevatn et al. (2018) for both analogue models and faults in the nature.  
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Linkage between fault segments occur through geometric linkage in the segmented surface or 

by kinematic linkage in approaching segments tips or relay ramps. Soft-linkage is presented 

as overlapping fault that intersect in the sub-surface achieved by strain distributed in the host 

rock (Fig. 2.6a-b, stage 2) (J. J. Walsh & Watterson, 1991). The linkage cannot be observed in 

the surface. Hard-linkage is characterized as physical intersection between two or more faults 

segments and is visible in the surface (Fig. 2.6a-b, stage 3) (J. J. Walsh & Watterson, 1991).  

 

 

 

 

  
Figure 2.6: a) shows three stages of fault growth. Stage 1 is two isolated fault segments growing, Stage 2 shows how the two 

fault segments overlapping and soft-linked, Stage 3 shows the two fault segments when they are hard-linked. b) Shows a 

displacement-distance diagram and illustrate the same stage for the fault segments in figure a). From (Kim & Sanderson, 

2005)  

 

 

 

 

These intersection points are categorised based on its geometry how the intersection occur. 

The abutting pattern (Fig. 2.7a) is described as a fault propagates towards a second fault and 

interact. The abutting fault have only opportunity to propagate in the opposite direction with 

the isolated fault tip (Fig 2.8) (Nixon et al., 2014). A splaying pattern (Fig 2.7b) occur when a 

new fault tip starts to propagate from an existing fault. These two terms for pattern can be 

used for several other description in a fault network. 
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Figure 2.7: illustrate different type of intersection that occur and the fault pattern in the surface. From (Nixon et al., 2014). 

 

 

 
Figure 2.8: shows how an already existing fault can control the propagation of a second fault From (Nixon et al., 2014) 

 

Stress affects the growth pattern to fault segments. Around a normal fault is the stress 

distribution located in different zones (Fig. 2.9). The stress is at its highest at the fault tip (Fig. 

2.9) and this region accommodates multiple microfracture. These fracture weakens the rock 

and influence the fault to grow in their favourable direction (Fossen, 2016). Along the fault 

plane reduces the stress further away from the fault plane (Fig. 2.9). If a second fault (Fig. 2.9 

Fault 2) enters the stress drop zone of the first fault (Fig. 2.9 Fault 1), the propagation of the 

fault is retarded.  
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Figure 2.9: Shows the distribution of stress around a normal fault. From (Fossen & Rotevatn, 2016) 

2.3 Relay ramp 
 

A relay ramp is presented as overlapping or underlapping sub-parallel faults segments in a 

zone of kinematic linkage (Peacock et al., 2016). They are geometrically uncoupled, with a 

ramp separating the fault segments (Fig. 2.10a). Relay ramps occur in all scales and settings 

and acts as a coherent system (Fossen & Rotevatn, 2016).  Ramp geometry includes the shape 

of the ramp and the variation of the displacement present in the overlapping tips of the faults 

(Fossen & Rotevatn, 2016).  

 

a) 

 

b) 

 
Figure 2.10: a) shows an illustration of an isolated fault and a relay ramp structure. From (Fossen & Rotevatn, 2016) b) 

Shows an illustration of a relay ramp with several fracture. Can these fractures indicate occurrence in the future? From 

(Fossen & Rotevatn, 2016) 
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Peacock and Sanderson (1991,1994) introduced four stages for the evolution of relay ramps 

regarding the deformation and displacement. The first stage (1) represents the isolated fault 

with no overlapping or interaction to other faults. In the second stage (2), faults propagate and 

start to interact through ductile strain, presenting soft-linked fault segments that create the 

relay ramp structure. The third stage (3) is characterized by fractures across the relay ramp 

(Fig. 2.10) causing the two fault segments to link. Several factors as strain, the availability of 

faults and their distribution and arrangements etc. controls the linkage and breaching of a 

relay ramp (Fossen & Rotevatn, 2016). The last stage (4) represent the breaching of the relay 

ramp and is divided in to three classes based on where the relay ramp breaches (Fig. 2.11) 

(Fossen & Rotevatn, 2016). The single-tip breach (b), where one of the faults tip curves 

towards the other and link the fault segments together. The ramp is then preserved in the 

hanging wall or the footwall. The second is a double breached (c) relay ramp and represent 

when both of the fault segments curving towards each other and both of the fault segments 

tips link together. In this case will a ‘lens’ be preserved in the slip surface. The third is a mid-

ramp breach (d), where it breaches between the two faults and links them together.     

 

 
Figure 2.11: illustrate a relay ramp (a) and potential ways to breach (b) a single-tip breach, (c) a double breach and (d) 

Mid-ramp breach. From (Fossen & Rotevatn, 2016) 

 

Rheology and mechanical layer properties and kinematic boundary controls the arrangement 

of faults in the population (Fossen and Rotevatn, 2016). The arrangement of faults is essential 

together with density and distribution for the accessibilities for faults to linkage (Fossen and 

Rotevatn, 2016). Fault segments start to interact if the faults are close enough. If the fault tip 

propagates into the stress drop region to an overlapping fault, the fault-tip will start to curve, 

propagating towards the stress drop zone (Fig. 2.9) (Fossen & Rotevatn, 2016).
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                                CHAPTER 3 – THEORETICAL BACKGROUND 
 

3.1 Introduction 
  
The aim of this chapter is to provide an overview of previous analogue experiments and 

present terminology and theory related to fault growth and the topology in an extensional 

regime.  

 

3.2 Theoretical background of analogue modelling 
  
3.2.1 Pioneering modelling work in the 1800´s 
  
Execution of different type of analogue models have been experimented with over several 

decades. Hall (1815) performed the first documented experiment (Graveleau et al., 2012). He 

took an interest in the folds that he observed in the east coast of Scotland and wanted to 

understand how these were formed. Clothing was used to illustrate different layers and a 

heavier material put on top of the clothes to control the vertical movement. To perform the 

experiment, he had two wooden boards on each side of the clothes. He used them to push the 

layers towards each other in horizontal direction. With this experiment he achieved to form a 

compressional regime and fold structures (Graveleau et al., 2012).  

 

 
Figure 4.3: a and b shows Hall (1815) first experiment setup. From (Graveleau et al., 2012) 
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Several pioneering modeling work of various complex geological events and structures were 

carried out in the period after. Some of the experiments performed were to investigate 

rheology and pressures performed on a single layer (A. Daubrée, 1879; G. A. Daubrée, 1878), 

also study how anticlinal and synclinal structures are formed (Favre, 1878) and some 

experiments to explore how mountains are formed and the structures that occur in 

compressional environment (Cadell & Edinburgh, 1889; Willis, 1894). 

In the middle of the 1900s was hydrocarbons found traps in structures that occurred in an 

extensional regime. This increased the interest of studying extensional faults by using 

different types of experiment that showed how these faults were formed and grew. At the 

same time as knowing what controlled these structures and which patterns they formed (E. 

Cloos, 1981; W. J. F. T. i. N. E. Horsfield, 1977; W. J. J. o. S. G. Horsfield, 1980; Mandl, 

1988).  

Various type of material has been used to find a product that is comparable to how different 

geological events occur. Some of the different materials used are plaster (Fossen & 

Gabrielsen, 1996; Lindanger et al., 2004; Mansfield & Cartwright, 2001; Sales, 1987), sand 

(Hus et al., 2005; McClay & Ellis, 1987; McClay & Scott, 1991), clay (Ackermann et al., 

2001; E. J. G. S. o. A. B. Cloos, 1955; Henza et al., 2010) and several other material as zinc, 

iron, lead rubber, wax, oil, honey putty etc. (A. Daubrée, 1879; G. A. Daubrée, 1878; Favre, 

1878),  

  3.2.2 Analogue plaster modelling 
  
Plaster have been used by Sales (1987) for analogue models for an extensional regime.   

Fossen and Gabrielsen (1996) used it in an extensional fault system experiment to study 

lense-shape geometry and small-scaled structures in relation to larger fault system.  

 

Mansfield and Cartwright (2001) used plaster in an experiment that shows a good overview 

over the experiments surface and show how the faults grow. This gives an opportunity to 

describe how fault grow. They studied mainly the accumulation of displacement and how the 

fault lengthening. This is the same experiment used in this thesis.  
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3.3 Scaling 
  
King Hubbert (1937) described three criteria that needed to take place in an analogue 

experimental model for giving it the right dimensional to compare it to a process in the nature.  

 

•   The two bodies need to be geometrically similar. This is obtained if the two bodies 

correspond proportional in lengths and angles (Hubbert, 1937).  

•   The two bodies need to be kinematically similar. This is achieved when the two bodies 

share the same change in shape and/or position. Also, the motion in the bodies need to 

have a constant time ratio (Koyi, 1997).  

•   The two bodies need to be dynamically similar. This is completed when the force 

acting on the two bodies is constant for all the particles in the bodies (Koyi, 1997). 

 

Hubbert (1937) found that a given material in a small body are stronger than larger body with 

the same material and that the body weakens with a larger size. This means that the strength 

and size of a body needs to be considered before it is used to perform an analogue model to 

get it most possible perfect to compare to the nature. Hubbert (1937) also found that if the 

pressure increases in the material, its strength will increase as well. Also, if the temperature 

increased in the body will the strength decrease. 
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3.4 Fault growth model 
 

The normal fault growth is investigated by exploring the relationship between length and 

displacement (Cowie & Scholz, 1992a, 1992b; J. J. Walsh & Watterson, 1988; Watterson, 

1986). Studies have documented that the displacement of the fault is zero at the fault tip and 

increases to a maximum close to the centre of the fault plane (Watterson, 1986) , but it is also 

known that the displacement varies in the fault plane (Barnett et al., 1987). The evolution of 

the fault growth is researched by investigated the fault propagation and the history of slip 

(Cowie & Scholz, 1992a, 1992b; Peacock & Sanderson, 1996; J. J. Walsh & Watterson, 

1988). The fault growth by displacement accruing is often associated with earthquake 

(Dawers & Anders, 1995; J. Walsh et al., 2002) 

 

The first recognized fault growth model was referred to as the ‘isolated fault model’ and was 

first described as kinematic independent segment propagating and by accident overlap, 

interact and forms a relay ramp (Cartwright et al., 1995; J. Walsh et al., 2003). An alternative 

model was provided by J. Walsh et al. (2002) called ‘coherent fault model’. He suggested that 

the fault lengthens rapidly and established it near final length before entering displacement 

accrual. These two fault growth models have got new terms the ‘propagating’ fault model 

have replaced the ‘isolated fault growth, and is described as synchronously growth between 

length and displacement, and the ‘constant-length’ fault growth model have replaced the term 

‘coherent fault model’ (Rotevatn et al., 2018). These models are described further in chapter 

2.  
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CHAPTER 4 – METHODOLOGY 
 

4.1 Introduction 
 

The aim of this chapter is to provide a detailed description of the method used for this project, 

i.e. analog modeling of an extensional regime.   

The set-up of the experiment is demonstrated and the performance and the various of material 

are explained. At the end of the chapter there is a small summary of why this type of method 

can provide limited information associated with natural structures 

 

4.2 Set-up and performance  
 

The experimental setup is similar to that Mansfield and Cartwright (2001) used in their paper, 

but there is a small difference between the measurements in width and height (Fig. 4.1). This 

is an open top wooden box with a moveable internal wall. The execution of the experiment 

starts when the handle attached to the moveable wall is rotated. This sequence creates an 

extensional regime by stretching the plaster (Fig. 4.1).  

 

  
Figure 4.1: illustrate the experimental box used to perform the analogue models. The handle is attached to an adjustable 

wall which makes it possible to control the extensional stretching in the plaster. Modified from (Mansfield & Cartwright, 

2001)   

 

45 cm 

45 cm 

15 cm
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The material used to perform the experiment are plaster of Paris, barite and canola oil.  

The canola oil is lubricated over all the side walls of the experiment to reduce the friction 

between the wooden walls and the plaster. The first layer in the experiment is the barite and is 

used as a basal layer for the plaster. The barite also seals the experimental box and prevents it 

from leaking during the experiment. The first two experiments feature a horizontal layer of 

barite and the last two experiment has the barite a wedge shape. 

The last material added to the experimental box before it starts is the plaster of Paris. The 

rheology of the plaster is very ductile when it is added and needs to settle before the 

experiment can start. A screw is used to determine that the rheology of the plaster is sufficient 

to start the experiment by making a pile on the surface, if the plaster retains the pile it forms 

for a short period of time it would establish that the plaster is settled.  

When the experiment starts, and the movable wall extends, extensional structures will start to 

breach the surface of the plaster. 

 

To highlight structure and details on the model, four different light sources are used. Two 

lamps were attached to the wall and two lamps were handheld throughout the experiment. 

The cameras are started manually when the experiment begins and documents the 

deformation that appears in the plaster. This makes it possible to follow the whole growth 

history of the structures in the models.  

 

 

4.3 Plaster of Paris 
 

Plaster of Paris is the main material in the experiment and contain the structure to be studied 

in this project. Plaster is beneficial to use in this experiment because it gives a good overview 

of small-scale structures and how these structures occur and evolve. The plaster used in this 

project is `Molda 3 normal` and consist of a high purity gypsum mineral and is a hemihydrate 

plaster (CaSO4 * ½ H2O)(Saint-Gobain, 2019). The plaster consists of at least 91% pure 

gypsum and have a white color. 97% of the grains exhibit a size less than 100µ, and the rest 

fall between 100-200µm (Saint-Gobain, 2019). The rheology of plaster is determined by the 

water and plaster ratio and the temperature on the mixture. These factors control when the 

plaster have the right rheology to start the experiment and the time needed for the plaster to 

solidify. 
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All of the experiments in this project have the same mixture of water and plaster. The water 

temperature was kept constant between experiments. The ratio between the water and plaster 

is 1.7:1. The plaster used 39 minutes from the point where it was added to the experimental 

box before it was completely solidified (Saint-Gobain, 2019). The models are then preserved 

to be used for analysis at a later occasion.    

Sales (1987) alleged that it is not possible to achieve a dynamically similar analogue model to 

a natural example. But plaster is the preferred method to study normal fault growth because it 

is similar to those observed in naturally extended crust (Fossen & Gabrielsen, 1996). 

Fossen and Gabrielsen (1996) found that 1cm in the plaster model represent 0.1-1 km in the 

nature.  

 

4.4 Basal layer  
  
All the experiments performed have a basal layer to give the plaster a surface to glide on and 

to shape a relief (Fossen, 1995). It was used to investigate whether different basement 

configurations give different extension result on the surface.  

The basal layer used is barite (BaSO4) mixed with water, which has been used in previous 

plaster modelling studies (Fossen & Gabrielsen, 1996; Mansfield & Cartwright, 2001; Sales, 

1987) The barite has a higher viscosity than the plaster. It deforms in a ductile manner and 

will not solidify to the plaster (Fossen, 1995). Two of the experiments (1 and 2) feature a 

horizontal layer of barite, whereas two of the experiments (3 and 4, Fig. 4.1) feature a wedge-

shaped layer of barite.  

 

Experiment 3 Experiment 4 

a) 

 

b) 

 
Figure 4.2: shows how the barite layer is formed for the two experiment with a wedge-shape, a) Experiment 3 and b) 

experiment 4.  
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4.5 Documentation 
 

To document the experiment, three different cameras are used. They are placed to capture the 

experiment from different angles and perspectives. One of the cameras is placed in front, one 

is placed on the side, and the last one is placed directly above the experimental box. The 

cameras are manually but remotely controlled. The cameras used for these experiments are 

high-resolution cameras (Nikon D800). All three cameras had an AF-S Nikkor 50 mm f/1.4G 

lens. The resolution used on the cameras is 7360*4912 pixels. This gives the opportunity to 

get a good overview of small-scale structure for each experiment. Each camera takes 4 

pictures per second during the experiment run.  

The experimental box is equipped with two rulers on both side parallel to the extension 

direction for all the experiments. These rulers are included in all of the images for scale, and 

they also contain information about the time and date for each image taken.  

 

4.6 Collecting and processing data 
 

The images documenting the experiment are essentially what is used to extract information 

and interpret each of the experiments. All of the images were edited in iPhoto (Mac) to 

elucidate the important details and prepared to be analysed in Adobe illustrator.  

Adobe illustrator is a program that design physical quantity with vectors. For this project is 

this program used to extract information and measurements from all the images in the 

different experiments and to create maps and figures. 
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4.6.1 Amount of extension 
  
A stepwise description of each experiment is distributed with percentage extension. Each step 

is selected based on the image that describe the evolvement in the model in the best way.  

 

 

This formula was used to calculate the extension percentage for each timesteps of the 

analogue models:  

 

𝜀 =
(𝑙 − 𝑙𝜊)
𝑙𝜊 × 100% 

 

 

𝜀 = Amount of extension in % 

l = Amount of extension in mm/extended model length 

l𝜊 = Initial length in mm  

 

The initial length is measured when the plaster is filled into the experiment box before the 

experiment starts. The amount of extension is measured for each step selected to describe the 

experiment. If the amount of extension is twice as long as the initial extension length, the 

experiment has prolonged by 100%. 

 

 

To find the rate of extension for each of the experiments used the following formula: 

 

𝜀̇ = -
.
 

 

 

𝜀̇ = average extension rate (mm/s) 

𝜀 = Extension length (mm) 

t = time (seconds) 

 

The average extension time is found by measuring the extension length and extracting the 

information about the time of the desired attempt 
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4.6.2 Length and heave 
 

All important and visible faults in the analogue model have been analysed in this project.  

Two measurements per seconds have been extracted for the length and heave from images of 

main faults, fault segments and sub-segments to be plotted in to the displacement-length 

diagram. The length is found by measure along the faults trace length and heave is proxy for 

displacement and is consequently used for all measurement in this project (Fig. 4.1).  

 

 

4.7 Limitations for this method  
  
Analogue modelling provides very good results compared to occurrences in nature, but 

there are still some disadvantages by using this method. The same experiment box is 

used for all experiments, yet there are several possibilities for it to be able to influence 

the outcome of the experiments.  

•   The internal movable wall moves unevenly as the wall itself is not completely 

fixed to the handle.  

•   The internal wall is also determined from the speed of the person who carries 

out the experiment and does not necessarily become the same for each 

experiment.  

•   When the experiment starts, the rheology of the plaster is determined by a 

screw. The plasters rheology and when to start the experiment is only 

determined from å subjective viewpoint and not an exact measurement.   

•   A frictional drag occurs between the plaster and the sidewall and can affect the flow 

and deformation in the plaster.  

•   The plaster mixture solidifies during the experiment and changes rheology of the 

plaster throughout the extensional process. This makes it difficult to quantify the 

properties plaster (Fossen & Gabrielsen, 1996). 

•   Water is released from the plaster along the way and deposited on the surface. This 

water erodes the structures that forms and can make it difficult to interpret the results. 

•   Air bubbles appears in the surface of the plaster. These can control how the structure 

shows on the surface, and perhaps the ability to control how the structure grows.  
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•   The plaster is a homogenous material and gives the best example for a smaller scale 

structure (Fossen & Gabrielsen, 1996). The larger scale rocks in nature usually have a 

natural bedding that the experiment does not take in to account.  

•   all the structures are measured in millimetres and are interpreted from a subjective 

point of view. 
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CHAPTER 5 – RESULTS 
 

5.1 Introduction 

 

This chapter describes four plaster experiment that emulates crustal extension. All of the 

experiment is produced in the same experimental box and documented using three different 

cameras. Images are used to give a stepwise documentation of the models in time and 

percentage extension.  

 

General information about each experiment is provided in tabularized format (Table 5.1). 

Initial length is the pre-kinematic length of the experiment, i.e. the length between the outer 

(north) wall and the moveable wall where the plaster is added. Final length is the post-

kinematic length of the experiment, i.e. the length between the outer (northern) wall and the 

movable wall after extension has ended. Total displacement is the difference between initial 

length and final length. Total extension (also see Ch. 4 – Methodology) is the extension of the 

experiment in percentage. The initial length is then described as 0 % extension and the final 

length are 100 % extension.  

 

Each of the experiments are divided into timestep from T1 to T5 and is described with time 

and extension. The timesteps are determined by the events that occurs in the experiment and 

pictures that gives the most information about the processes and events.  

 

The segments are divided in to three levels. A main fault is described with capital F, for 

example F1 for the first main fault. The precursor and/or subordinate segments of a fault F are 

denominated S for segment. For example, S1, S2 etc. may grow and link to become F1. Some 

of these are also described in smaller sub-segments, in which case they are referred to as S1a, 

S1b, etc. (Fig. 5.1) 
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Figure 5.4: illustrate the levels the (main) fault are divided into and how they are connected  

 

 

Two displacement-length (D-L) diagrams are shown for each experiment. They show the 

growth trajectory in D-L space for several of the segments in each experiments. The first 

diagram shows the linking of the main fault and the second diagram shows the growth of 

segments outside the proximity of the main fault.  
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5.2 Description of experiment 1 

 

Table 5.1: General information about experiment 1 

Date 14.10.2015 

Plaster to water ratio 1:1.7 

Basal layer Horizontal  

Initial length (mm) 151  

Final length (mm) 285  

Total displacement (mm) 134 

Total extension (%) 88,7 

Duration (second) 24  

Mean extension rate (mm/s) 11,9 

Notes  

 

 

 

General information of the evolving of the experiment 

 

From start to timestep T1 

Sub-segments of S1 and segments S2, nucleate and breach the surface after 5 seconds and 17 

% extension (Fig. 5.2a). They lengthen in east-west direction, perpendicular to the extension 

direction and the displacement to the segments is close to zero.  

Segment S1 grows in the eastern part of the model and segment S2 grows in the middle of the 

model (Fig 5.2 a-b).  

Segment S1 evolves from several isolated sub-segments that link by their segment tips (Fig. 

5.2 a-b). Segment S2 reaches over a larger area and is the first fault to accrue displacement, 

after 7 seconds and 21 % extension. The length of Segment S2 is 50 mm and the heave are 4 

mm at T1 (Fig. 5.2 a-b). 
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T1 to T2 – 21.9-30 %: 

Segment S1 has grown by smaller sub-segments that propagated and linked together by the 

segment-tips (Fig. 5.2 c-d). The fault nearest to the movable wall (south) has curved 

northwards and linked together with the fault to the north.  

Segment S2 has grown by segments propagating in length direction and linked with a segment 

to the west of it (Fig. 5.2 c-d). Segment S2 features a length of 121mm and a heave of 9 mm 

at T2.  

Sub-segments of S3 have nucleated and started growing at T2 (Fig 5.2 b-c).  

S1, S2 and S3 are separated by multiple relay ramps. The relay ramp (R1) separating S1 and 

S2 has the widest spacing between S1 and S2 (Fig. 5.1 c-d). Small fractures occur in the 

middle and upper part of the ramp. 

Segment S2 and S3 overlap each other developing relay ramp (R2). 

 

T2 to T3 – 30-40 %: 

In the northern part of the experiment nucleates segment S6 after 30 % extension (Fig 4.2 e-f). 

It reaches its full length after 40 % extension and subsequently accrues displacement without 

further lengthening.  

Relay ramp R1 breaches after 31 % extension by segment S2 splaying in the lower part in the 

west of the segment. 

New smaller segments nucleate after 8 seconds and 32.5 % extension near the east and the 

west wall in the middle of the experiment in the same direction as S1-S3. 

Relay ramp R2 breaches as the eastern tip of segment S3 propagates eastward in the lower 

part of R2 and curves northward towards segment S2. R2 breaches after 35.7 % extension and 

accrue a displacement (Fig 5.2 e-f). 

A relay ramp to the west in the experiment (not marked in Figure 5.2) breaches by fracturing 

in the middle part of ramp after 10 seconds and 37.3 % extension. All the segments S1-S3 are 

fully linked to comprise the main fault F1, extending east-west across the experiment (Fig. 5.2 

e-f). This is shown in the displacement vs. length (D-L) diagram (Fig. 5.3) where several 

segments exhibit a very steep D-L curve.   

At T3 are the maximum heave of the main fault F1 measured to 16 mm at the location of S2 

(Fig. 5.2).  
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T3 to T4 – 40-69.5 % 

Segment S6 stops accruing a displacement and stops growing after 50 % extension.  

After ~ 60 % extension nucleates new segments in the hanging wall of the main fault F1.  

Sub-segments of S4 is located to the east. The sub-segments to the west propagate in a 

northwest-southeast direction, while the other segment propagates in northeast-southwest 

direction towards the other segment (Fig. 5.2 g-h).  

Sub-segments of S5 is growing from the center of the hanging wall and transverse 

overlapping each other towards west direction. The segments lengthen mainly in an east-west 

direction (Fig. 5.2 g-h). 

 

T4 to T5 – 69.5-78.1 %: 

The sub-segments of S4 are connected by the segment propagating towards the middle of sub-

segment links and it stops growing, creating an abutting pattern at ~72 % extension. 

After ~ 78.1 % extension and 24 seconds has F1 reached its full maximum heave at 33 mm.  

Segments S5 and surrounding segments lengthen between T4 and T5 and several of these 

segments’ curves at the east of the segment-tip and grow northwards to link with the segment 

in the north of itself (Fig. 5.2 g-h). 
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Fault segment behaviours in D-L space 

 

Plotting the above described segments as well as all smaller segments in the experiments in 

D-L space (Fig. 5.3 and 5.4) shows that almost all of the segments in this experiment exhibit 

elements of staged growth , exhibiting (i) lengthening with minimal displacement 

accumulation, before (ii) entering a stage of displacement accrual and limited lengthening, 

which in turn is followed by (iii) renewed lengthening and low-rate displacement 

accumulation in concert. Another stage (iv) is seen upon linkage and assembly of F1, which is 

arrested (by the walls) when it reaches 400 mm in length. After this, displacement accrual 

continues to the end of the experiment.    

 

The first diagram (Fig. 5.3) Shows that segments start accruing a displacement between 10- 

and 40-mm. Segment S3b has the smallest length before accruing a displacement with the 

length ~10 mm, and segment S3c is the longest before accruing a displacement ~40 mm. 

Segments S2a is the only measured segment that start to grow both in length and 

displacement from the start.     

 

The second diagram (Fig. 5.4) shows segments growing proximity of F1. It shows the growth 

in a smaller scale, since these segments are smaller. The first segments measured start to 

accrue a displacement after lengthening 12 mm and the last segments lengthens 24 mm before 

accruing a displacement (Fig. 5.4).  

A closer look at the details of these diagrams shows that the segments grow in several periods 

in length and displacement.  
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Timestep Picture Map 
Extension  West                                        East 
 
T1 
T=6 sec 
E=21,9 % 

a) 

 

b) 

 

 
T2 
T=7 sec 
E=30 % 

c) 

 

d) 

 

 
T3 
T=10 sec 
E=40 % 

e) 

 

f) 

 

 
T4 
T=19 sec 
E=69,5 % 

g) 

 

h)  

 

 
T5 
T=21 sec 
E=78,1 % 

i) 

 

j) 

 

Figure 5.2: shows the evolution of an extensional regime in a plaster experiment. It is divided in to five timesteps (T1-T2) 
that accentuate the deformation that occur. The picture to the left shows the plaster model at given time and extension. To the 
right is an overview map of the deformation occurring in the picture beside. The moveable wall is to the south 
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Figure 5.3: shows faults and fault segments related to the growth and assembly of fault F1. Note that upon arrest of the tips 

at the experiment boundary the fault stops to lengthen and then accrues displacement (Fault F1). 

 

 

 

 
Figure 5.4: showing all measured segments that occur outside the proximity of F1. 
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5.3 Description of experiment 2 
 

Table 2: General information about experiment 2 

Date 30.10.2015 

Plaster to water ratio 1:1.7 

Basal layer Horizontal 

Initial length (mm) 168  

Final length (mm) 280  

Total displacement (mm) 11 

Total extension (%) 66.7 

Duration (s) 46 

Mean extension rate (mm/s) 6.1 

Notes A volume loss during the experiment was approximately 

50.4 cm3.  

 

 

General information of the evolving of the experiment 

 

From start to timestep T1 – 0-23,8 % 

After ~12 seconds and 23.2 % extension nucleate the first segment through the surface of the 

plaster. They grow mainly in an east-west direction perpendicular to the extensional direction 

(Fig. 5.5 a-b).  

Fault segments S1 is located in the west part of the model (Fig. 5.5 a-b). Mainly two 

segments, one with a northeast direction and one approaching the first segment with the tip on 

the westside propagating straight towards it 

Fault segment S2 is two segments approaching one another with the segment tips straight 

towards each other (Fig. 5.5 a-b).  

Fault segment S3 are at this timestep three small segment overlapping each other and is soft-

linked and creating relay zones (Fig. 5.5 a-b).  

Fault segment S4 is several segments overlapping each other transverse toward east direction 

(Fig. 5.5 a-b).  
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T1 to T2 – 23.8-28 % 

After 25 % extension and 14 seconds starts the first segment to accruing a displacement and 

the last segment to accruing a displacement at 28 % extension.  

At T2 (Fig. 5.5 c-d) has several new nucleates and already existing segments have propagated 

and some have linked since T1.  

Segment S1 shows how the two segments have linked. The segment to the west propagates 

and link together in the middle of the segment to the west and developed an abutting pattern. 

Segments S2 propagates and linked together by the segments tip. Segment S2 have then 

propagated both at the east and west side (Fig. 5.5 c-d) and started accruing a displacement.   

Several new segments nucleated between segment S2 and S3. These have propagating in 

length direction and accruing a displacement.   

Segment S3 are overlapping each other creating a relay ramp (Fig. 5.5 c-d).  

In location of fault segment S4 have segments grown and linked, creating three larger fault 

segments separated by soft-linked relay ramps. All the fault segments (S1-S4) define a 

dominant segment trend through the middle part of the model and are separated by soft-linked 

relay zones. 

 

T2 to T3 – 28-33.3 %  

At 29 % extension and 17 seconds an increase in slip rates occur in the experiment and 

segments enter into a stage of significant displacement accrual. This is shown in the 

displacement vs. length (D-L) diagram (Fig. 5.6) where several segments exhibit a very steep 

D-L curve.  

The relay ramp between segment S1 and S2 breaches by segment S2 propagates westward 

and linking in the mid part of segment S1 (Fig. 5.5 e-f). 

The relay ramp between segment S2 and S3 breaches in the middle of the ramp, arresting the 

segment tip to both segment S2 and S3 (Fig. 5.5 e-f).  

The relay ramp between segment S3 and S4 breaches by the segments to the east propagates 

northwards and through the lower part of the ramp. Also, some breaches in the upper part, 

creating lenses in the displacement plane (Fig. 5.5 e-f). 

After 21 seconds and 33 % extension are all the fault segments (S1-S4) linked together 

creating a fully linked fault (F1) from the east wall to the west wall (Fig. 5.5 e-f). This is 

shown in the displacement vs. length (D-L) diagram (Fig. 5.6) where all segments are linked 
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and only accruing a displacement. At T3 is the F1 maximum heave measured to be 11 mm 

and is located where S3 was created (Fig 5.5 f).  

A second stage of increased displacement accrual occurs when F1 reaches its full length. It 

went from ~1 mm/sec to 2 mm/sec.  

At the same extension and time several new segments nucleate in the hanging wall of F1 

(32.7 %).  

Fault segment S5 and S6 nucleate with an east-west direction (Fig. 5.5 e-f). Fault segment S5 

is comprised of two approaching segments and one of them is overlapping the last segments 

with soft-linkage (Fig. 5.5 e-f). Segment S6 is an isolated segment.  

 

T3 to T4 – 33.3-38.1 %  

Segment F1 continues to accrue a displacement, and at T4 is the heave measured to be 18 mm 

(Figure 5.6). Several new segments have nucleated in the hanging wall of F1 at T4.  

The sub-segments of S5 links at 35 % extension, and S5 subsequently initiates a stage of 

significant displacement accrual at 37.5 % extension.  

Segment S6 are the first segment to accrue a displacement of all segments in the hanging 

wall. This occurs when the model has reached 37 % extension.  

New segments (S7) nucleate between S5 and S6 after 36.3 %. They grow in the same 

direction as S5 and S6, parallel to the movable wall with an east-west orientation.  

 

T4 to T5 – 38.1-48.2 %: 

The maximum heave of Segment F1 is 41 mm at ~ 60 % extension and 40 second, measured 

where segment S2 were located (Fig. 5.5 j)  

Segment S7 and S6 propagates towards each other and links together by the tips.   

Segment S5 and S7 overlap each other. Segment S7 overlaps from the north and propagates 

southwards and link together with segment S5 to the south.  

As the extension proceeds are segment S5 still active and its segment tip propagate towards 

the segment to the north, linking the segments a second time together, creating a double-tip 

breached ramp.  

All segments S5-S7 are fully linked together after ~ 43 % extension and develops the major 

fault (F2) (Fig. 5.5 i-j).   

F2 is 175 mm in length and 4mm in maximum heave when all the segments S5-S7 are fully 

linked. This is shown in the displacement vs. length (D-L) diagram (Fig. 5.7) where all 
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segments are linked and only accruing a displacement. At 48.2 % extension and 32 seconds 

have F2 reached 180 mm in length and 5,5 mm in maximum heave.   

 

Fault segment behaviours in D-L space 

 

Plotting the above described segments as well as all smaller segments in the experiments in 

D-L space (Fig. 5.6 and 5.7) shows that almost all of the segments in this experiment exhibit 

elements of staged growth , exhibiting (i) lengthening with minimal displacement 

accumulation, before (ii) entering a stage of displacement accrual and limited lengthening, 

which in turn is followed by (iii) renewed lengthening and low-rate displacement 

accumulation in concert. Another stage (iv) is seen upon linkage and assembly of F1, which is 

arrested (by the walls) when it reaches 400 mm in length. After this, displacement accrual 

continues to the end of the experiment  

 

The first diagram (Fig. 5.6) shows that segments start accruing a displacement between 9- and 

38-mm. Segment S3 has the smallest length before accruing a displacement with the length 

~9 mm, and segment S1 is the longest before accruing a displacement ~38 mm.  

Segments S1 is the only measured segment that start to grow both in length and displacement 

from the start.  

All segments are linked when the segment reached 400 mm and 12.65 mm in heave.    

 

The second diagram (Fig. 5.7) shows segments growing proximity of F1. It shows the growth 

in a smaller scale, since these segments are smaller. The first segments measured start to 

accrue a displacement after lengthening 10 mm and the last segments lengthens 40 mm before 

accruing a displacement (Fig. 5.7).  

A closer look at the details of these to diagrams shows that the segments grow in several 

periods in length and displacement.  
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Timestep Picture Map 
Extension  West                                             East 
 
T1 
T=13 sec 
E= 23,8 % 

a) 

 

b) 

 

 
T2 
T=16 sec 
E=28 % 

c) 

 

d) 

 
 
T3 
T=21 sec 
E=33,3 % 

e) 

 

f) 

 
 

T4 
T=24 sec 
E=38,1 % 

g) 

 

h) 

 
 
T5 
T=32 sec 
E= 48,2 % 

i) 

 

j)

 
Figure 5.5: shows the evolution of an extensional regime in a plaster experiment. It is divided in to five timesteps (T1-T2) 
that accentuate the deformation that occur. The picture to the left shows the plaster model at given time and extension. To the 
right is an overview map of the deformation occurring in the picture beside. The moveable wall is to the south 
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Figure 5.6: shows faults and fault segments related to the growth and assembly of fault F1. Note that upon arrest of the tips 

at the experiment boundary, the fault stops to lengthen and then accrues displacement (Fault F1). 

 

 

 

 
Figure 5.7: shows all measured segments that occur outside the proximity of F1. 
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5.4 Description of experiment 3 

 

Table 5: General information about experiment 3 

Date 25.11.2015 

Plaster to water ratio 1:1.7 

Basal layer Wedge shape with () 15° slope 

Initial length 173 mm 

Final length 361 mm 

Total displacement 188 mm 

Total extension (%) 108.7 

Duration 49 s 

Mean extension rate 7.4 mm/s 

 

 

General information of the evolving of the experiment 

 

From zero to timestep T1 – 0-33 %:  

After ~20.8 % extension and 9 seconds nucleates the first segments in the surface of the 

plaster. They grow mainly in an east-west direction perpendicular to the extensional (movable 

wall) direction (Fig. 5.8 a-b). 

F1 grows along the northern wall and after 11 seconds and 25 % extension in to the 

experiment propagates its length from the wall in the east to the wall in the west.  

Segment S1 and surrounded segments starts to grow at the same time (extension) as F1. They 

propagate rapidly in length and displacement. Some of the segments in this location dips in 

the opposite direction to the dip direction of the majority of the segments in the model (Fig. 

5.8 a-b, marked with blue colour).  

After 25 % extension and 10 seconds breaches sub-segments of segments S3 through the 

surface in the middle part of the model with the same east-west direction at the same time as 

F1. The sub-segments propagate as isolated segments and grows parallel and overlapping 

each other (Fig. 5.8 a-b).  

After ~31 % extension and 13 seconds start segment S3 to accruing a displacement.  
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At the same time (extension) starts a single segment to grow in the west part of the model 

(S2), (Fig. 5.8 a-b). The segment grows by segments tip propagation.  

 

T1 to T2 – 33-68.2 %: 

After 35 % extension and 15 seconds breaches sub-segments of S4 through the surface near 

the east wall. They appear in parallel overlapping segments and start to grow in length with an 

east-west direction. The displacement is close to zero at this timestep. 

Segment S1 and surrounding segments curves in length direction. The orientation on the 

segment-tip to the east have a north-east direction and the orientation on the segment-tip to 

the west has a north-west direction (as a smile in map view, Fig. 5.8). Also, created by an 

antithetic segment (marked blue in Fig. 5.8). One of the sub-segments of S1 propagate rapidly 

and have the largest maximum displacement, without taking F1 into account at T2.  

Segment S2 and S3 is small single segments with a displacement close to zero. Nearly all the 

segmented faults (S2, S3 and S4) occurs in a line through the model.  

Segment S3 splays from its original segment and in to a new path at ~38 % extension. The 

segment-tip propagate westward and after ~ 42 % extension linking with the overlapping 

segment to the south. 

Relay ramp between segment S2 and S3 breaches in the lower part of the ramp by the 

segment-tip of S3. Segment S2 and S3 link together after 64.1 % extension. (This point where 

these segments links show very distinctly in the diagram (Fig. 5.9). Best shown where Fault 

3a (yellow curve) meets Fault 2a (orange)).  

Segments start to grow in the same place as segment S2 (to the north of the segment linking to 

F2) in the hanging wall F1 after ~ 48 % extension (Segment S2 a-c, Fig. 5.10).  

F1 is the largest fault both in length and displacement.  

 

 

T2 to T3 – 68.2-84.4 %: 

The segment in the hanging wall of the main fault F1 (to the north of segment S2)  

(Segment S2 a-c, Fig. 5.9), reaches its full length and displacement after 72.8 % extension. 

At 75 % extension and 29 seconds stops segment F1 accruing a displacement at 60 mm.  

Segments in the same located as segment S1 have grown and overlapping each other, creating 

structures of horst and graben. When the main fault F1 stops accruing a displacement, 

stagnating the segments surrounding S1 and then stops growing in length and displacement. 
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New sub-segments of S5 breaches through the surface in the hanging wall of S2 and S3 when 

the main fault F1 stops growing. They start to propagate from the east in the center of the 

hanging wall towards southwest. The sub-segments of S5 propagate in an east-west direction 

and overlap each other in a transverse north-east south-west direction. 

 

The segment-tip to S3 propagate rapidly, ~ 30mm in 1 second, towards segment S4.  

At ~77.5 % extension overlap segment S3 and S4 each other creating a relay ramp. The ramp 

features small fractures crossing it.  

The relay ramp breaches in the middle of the ramp after ~ 82 % and 32 seconds and fully link 

segment S2-S4 from the wall in the west to the wall in the east creating a main fault (F2). 

 

 

T3 to T4 – 84.4-94.2 %: 

F2 stops accruing a displacement after 93 % extension and have a maximum heave at 36 mm, 

measured to the west right above F2 in Fig 5.8f. 

F2 start growing a new segment-tip where S3 (Fig. 5.8 e-f) was located abutting in to its 

hanging wall 2 second after F2 is fully liked. The tip propagates in 2 seconds before it stops 

lengthening with a south-west orientation and 60 mm in length. 

 

The segments in the hanging wall of F1 are divided by (three) relay ramps.  

The relay ramp, in the north-east, breaches first after 90 % extension by the segment-tip 

propagating northwards.  

The seconds two relay ramps breaches after 92 % extension.  

The relay ramp in the middle part of F1 breaches by small fracture breaching the middle part 

of the ramp.  

The ramp, in the west, breaches by segment-tip propagating through the ramp, linking all the 

transverse sub-segments of S5 to each other (Fig. 5.8 g-h).  

 

 

T4 to T5 – 94.2-100 %: 

Segment S5 grows throughout the experiment and ends with ~257 mm in length direction and 

~11 mm in maximum heave, measured in the middle of the segment (Fig. 5.8 j)  
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Fault segment behaviours in D-L space 

 

Plotting the above described segments as well as all smaller segments in the experiments in 

D-L space (Fig. 5.9 and 5.10) shows that almost all of the segments in this experiment exhibit 

elements of staged growth, exhibiting (i) lengthening with minimal displacement 

accumulation, before (ii) entering a stage of displacement accrual and limited lengthening, 

which in turn is followed by (iii) renewed lengthening and low-rate displacement 

accumulation in concert. Another stage (iv) is seen upon linkage and assembly of F2, which is 

arrested (by the walls) when it reaches 400 mm in length. After this, displacement accrual 

continues to 75 % extension.  

 

The first diagram (Fig. 5.9) shows that segments start accruing a displacement between 15,9- 

and 77,5 -mm. Segment S4b has the smallest length before accruing a displacement with the 

length ~15,9 mm, and segment S2 is the longest before accruing a displacement ~77,5 mm. 

Segments S4a is the only measured segment that start to grow both in length and 

displacement from the start. All segments are linked when the segment reached 400 mm 

developing a main fault (F1) with a maximum heave at 31mm. F1 accruing a displacement to 

60 mm before it stops growing. 

 

The second diagram (Fig. 5.10) shows segments growing proximity of F1. It shows the 

growth in a smaller scale, since these segments are smaller. The first segments measured start 

to accrue a displacement after lengthening 16,7 mm and the last segments lengthens 56,6 mm 

before accruing a displacement (Fig. 5.10).  

A closer look at the details of these to diagrams shows that the segments grow in several 

periods in length and displacement.  
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Timestep Picture Map 
Extension  West                                          East 
 
T1 
T= 14 sec 
E= 33 % 

a) 

 

b) 

 
 
T2 
T=27sec 
E= 68,2 % 
 

c) 

 

d) 

 
 
T3 
T= 33 sec 
E= 84,4 % 
 

e) 

 

f) 

 
 
T4 
T= 36 sec 
E= 94,2 % 
 

g) 

 

h) 

 
 
T5 
T= 40 sec 
E= 100 %  
 

i) 

 

j) 

 
Figure 5.8: shows the evolution of an extensional regime in a plaster experiment. It is divided in to five timesteps (T1-T2) 
that accentuate the deformation that occur. The picture to the left shows the plaster model at given time and extension. To the 
right is an overview map of the deformation occurring in the picture beside. The moveable wall is to the south. Faults marked 
with blue colour dips in the opposite direction then the majority of the fault in the model    
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Figure 5.9: shows faults and fault segments related to the growth and assembly of fault F2. Note that upon arrest of the tips 

at the experiment boundary, the fault stops to lengthen and then accrues displacement (Fault F2). 

 

 

 
Figure 5.10: shows all measured segments that occur outside the proximity of F1. 
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5.5 Description of experiment 4 

 

Table 5.4: General information about experiment 4 

Date 10.12.2015 

Plaster to water ratio 1: 1.7 

Basal layer Wedge shape with a () 15° slope 

Initial length (mm) 148 

Final length (mm) 296  

Total displacement (mm) 148 

Total extension (%) 100 

Duration (second)  73 

Mean extension rate (mm/s) 4 

 

 

General information of the evolving of the experiment 

 

From start to timestep T1 – 0-60.3 % 

At ~ 43 % extension breaches the first visible fault segments through the surface. They are 

located in the middle part of the model as S1 and S2 (Fig. 5.11 a-b), both with an east-west 

orientation.  

Segment S1 lengthens rapidly and dips in the opposite direction to the dip direction of the 

majority of the segments in the model (Fig. 5.11 a-b).  

Segment S2 start to grow from the east wall and lengthens rapidly. It has reached its full 

length by timestep T1. 

At 50 % extension are segments starting to grow along the wall in the north (Fig. 5.11 a-b). 

They are accruing a displacement rapidly.  

The segment growing in the middle is formed as an V. It overlaps the segment to the west, 

that overlapping the segments between itself and the wall to the west.  

Several new small segments start to grow especial localized around segment S1 (Fig. 5.11 a-

b).  They grow in an east-west direction overlapping each other (Fig. 5.11 a-b).  
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T1 to T2 – 60.3-85.6 % 

After ~ 67 % extension are all the segments along the north wall fully linked from the wall in 

the east to the wall in the west (F1) (Fig. 5.11 c-d). 

At T1 has segment S1, an antithetic segment, propagates both in the west and east tip and 

accruing a displacement. Small segments surrounding segment S1 accruing a dip in the same 

direction as the majority (Fig. 5.11 c-d). 

Segment S2 are still accruing a displacement at this timestep.  

New smaller sub-segments of S3 and S4 breaches through the surface to the south parallel to 

the moveable wall with an east-west orientation.  

Segment S3 is the first of them to breach through the surface after ~ 80 % extension. In one 

second has it lengthens twice its own “start” length.   

Segment S4 breaches through the surface as several small sub-segments (S4a and S4b) to the 

south in the mid part of the experiment (Fig 5.11 c-d) after ~82 % extension.  

At ~ 84 % extension stops the main fault F1 to accruing a displacement at its west side, but 

still accruing a displacement in the east part of the fault.  

At the same extension stop segment S1 accruing a displacement.  

 

 

T2 to T3 – 85.6-89 %: 

Small sub-segments breaches through the surface after ~ 86 % extension in the south part of 

the model where segment S5 is located.  

Sub-segments of S4 overlapping each other (Fig 5.11 e-f). One of the small segments (S4a) 

propagates northwards towards a segment (S4b) to the north, creating a smile shown in the 

figure (Fig. 5.11 e-f).  

At ~ 87 % extension stops the main fault F1 accruing a displacement at its east side. At the 

same time/percent extension stops segment S2 to accruing a displacement.  

When main fault F1 has reached its maximum displacement breaches several new segments 

through the surface. Especially located to the south parallel to the moveable wall where 

segment S3, S4 and S5 is located.  
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T3 to T4 – 89-90.4 %: 

After ~ 90 % extension links segment S4a and S4b together. Segment S4a tip continues to 

propagate northwards towards segment S4b and links together in the middle of segments S4b, 

creating an abutting pattern.   

At the same extension are two sub-segments of S5 (S5a and S5b) propagating towards each 

other. They link together by their segment-tips (Fig. 5.11 g-h). 

 

T4 to T5 – 90.4-100 %: 

At ~ 91 % extension are all the sub-segments of S3 linked. This occurs when the segment to 

the west starts to curve and propagate northwards, breaching in the middle of the relay ramp 

dividing them.  

The relay ramp dividing segments S3 and S4 breaches at the same extension. This occurs by 

segment S3 tip curving and propagate northward towards segment S4. Segment S3 links in 

the middle of segment S4 and arrest the tip on its west side (Fig 5.11 i-j).  

At ~ 93 % extension breaches the ramp in between segment S4 and S5. Small already existing 

fracture accruing a displacement in the middle of the ramp and linking the two segments 

together.  

The last relay ramp, southeast in the model where segment S5 is located, breaches in the 

lower part of the ramp. The segment to the east propagates westward and links together with 

segment S5. Arresting segment S5 tip to the east.  This links all the segment S3, S4 and S5 

together. Creating a fully linked main fault (F2) from the wall to the east to the wall in the 

west (Fig. 5.11 i-j). This event occurs at the end of the extension. Fault F2 heave is 15.8 mm 

and is measured in the middle of where S3 and S4 would be in F2.  

Fault segment behaviours in D-L space 

 

Plotting the above described segments as well as all smaller segments in the experiments in 

D-L space (Fig. 5.12 and 5.13) shows that almost all of the segments in this experiment 

exhibit elements of staged growth , exhibiting (i) lengthening with minimal displacement 

accumulation, before (ii) entering a stage of displacement accrual and limited lengthening, 

which in turn is followed by (iii) renewed lengthening and low-rate displacement 

accumulation in concert. Another stage (iv) is seen upon linkage and assembly of F2, which is 
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arrested (by the walls) when it reaches 400 mm in length. After this, displacement accrual 

continues to in reaches 93 % extension of the experiment. 

 

The first diagram (Fig. 5.12) shows that segments start accruing a displacement between 24- 

and 47.5 -mm. Segment S4a has the smallest length before accruing a displacement with the 

length 24 mm, and segment S5a is the longest before accruing a displacement 47.5 mm. All 

segments are linked when the segment reached 400 mm in length and 15.8 mm in heave. 

 

The second diagram (Fig. 5.13) shows segments growing proximity of F1. The first segments 

measured start to accrue a displacement after lengthening 5.8 mm and the last segments 

lengthens 85.1 mm before accruing a displacement (Fig. 5.13).  
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Timestep Picture Map 
Extension  West                                                 East 
 
T1 
T=41 sec 
E=60,3 % 
 

a) 

 

b) 

 
 
T2 
T=52 sec 
E=85,6 % 
 

c) 

 

d) 

 
 
T3 
T=57 sec 
E=89 % 
 

e) 

 

f) 

 
 
T4 
T=58 sec 
E=90,4 % 
 

g) 

 

h) 

 
 
T5 
T=73 sec 
E=100 % 
 

i) 

 

j) 

 

Figure 5.11: shows the evolution of an extensional regime in a plaster experiment. It is divided in to five timesteps (T1-T2) 
that accentuate the deformation that occur. The picture to the left shows the plaster model at given time and extension. To the 
right is an overview map of the deformation occurring in the picture beside. The moveable wall is to the south. Faults marked 
with blue colour dips in the opposite direction then the majority of the fault in the model    
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Figure 5.12: shows faults and fault segments related to the growth and assembly of fault F2. Note that upon arrest of the tips 

at the experiment boundary, the fault stops to lengthen and then accrues displacement (Fault F2). 

 

 

 

 
Figure 5.13: shows all measured segments that occur outside the proximity of F2. 
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CHAPTER 6 – DISCUSSION 
 

6.1 Introduction 
  
Four analogue plaster models have been analysed for this master project. They have been 

studied and quantified to investigate the relationship between lengthening and displacement 

for several fault segments in the extensional regime and a detailed description of how the 

faults grow have been presented. The results are discussed and interpreted in this chapter and 

it will be focusing on the main objectives for this thesis.   

     

6.2 Basal layer geometry  
  
The experimental setup used for this project is a simple analogue model of an extensional 

regime.  

Experiments 1 and 2 have a horizontal arranged barite layer and experiments 3 and 4 have a 

wedge shape barite layer. Both experiment 1 and 2 have one main fault (F1) located in the 

middle of the model with an east-west direction when the experiments end (Fig. 5.2 and 5.7). 

When the displacement of the main fault (F1) stagnates or stop accruing, occurs an increase in 

the growth of smaller fault segments mainly in the hanging wall of F1.  

Experiments 3 and 4 have two main faults (F1 and F2) breaching through the models at the 

end of the experiments (Fig. 5.8 and 5.11). The first main fault (F1) that breaches through the 

surface is located along the north wall for both of the models. When the displacement of F1 

stagnates and/or stops accruing, occur an increase in the growth of the fault segments in the 

hanging wall, developing a second fully linked main fault (F2). This information indicates 

that the shapes of the barite basement influence the evolution of faults and how they are 

distributed in the surface. According to Fossen and Rotevatn (2016), the rheology and/or 

heterogeneity of the underlying crust may influence faulting, for example where a basal 

mobile salt layer affects the fault distribution and growth in the overburden, or where a pre-

existing network of faults controls the localisation and orientation of new generations of 

faults. The wedge-shaped barite has a great influence from the shear-stress due to the incline 

of its layer, while the horizontal layer has a greater affect from the normal stress. This affects 

the result of the fault growth in the experiments. The fault distribution is also restricted by the 

experiment boundary and the properties in the rheology of the plaster.  
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The rheology of the plaster is similar for experiment 1, 2 and 3 when the experiment starts, 

while the rheology of the plaster to experiment 4 are more ductile than the others. This 

appears clearly in the interpretation of the experiments. The first fault segments that starts to 

grow in experiment 4, shows signs that the plaster is still (very) ductile when the experiment 

starts. This is specially highlighted for the evolution of F1. The plaster exhibits no ´hard lines´ 

in the model to interpret. The structures have soft and curved shapes and leaves evidence to 

suggest that the faults have grown from plaster ‘sinking’ but still develops a fault segment 

structure. This is very likely since its only used a screw to control the plasters consistent and 

determine when the experiment is ready to start (ch. 4). 

 

There are distinct differences between the two main faults, F1 and F2, in experiments 3 and 4. 

F1 is established from one or linked by few large fault segments, while F2 is linked by several 

small fault segments. The properties of the rheology of the plaster has changed from the start 

of the experiment to the end. The faults evolving early in the experiment shows properties of 

a ductile rheology (F1), while the faults evolving at a later time shows signs that they have 

grown and linked in a brittle rheology (F2). The second main fault (F2) for experiments 3 and 

4 are more similar to the main fault (F1) in how they grow and their geometry in the surface.  

 

6.3 Normal fault growth 
  
6.3.1 Description of normal fault growth from the models 
  
The first fault segments nucleate through the surface between 17-43 % extension of the 

models. Experiments 1, 2 and 3 have a smaller difference between the nucleation of fault 

segments. The percentage extension for the first fault segments is only between 17-23,2 % for 

these experiments. The rheology of the plaster is more ductile for experiment 4, explained in 

the section above. In experiment 4 nucleates the first fault segment the surface after 43 % 

extension. The majority of the faults lengthens in an east-west orientation, perpendicular to 

the extension direction in all of the experiment in regards to the stress principle described by 

Anderson (1905). In both of the experiments 1 and 2 nucleates the first fault in the middle of 

the experiments and in the experiments 3 and 4 nucleates the first fault segment along the 

north wall. The first faults propagating in the models overlap and link together, developing 

the main fault (F1 and F2). The period after they are linked consist of a displacement accruing 
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phase. When the main fault stops accruing a displacement increases the fault growth in its 

hanging wall. These fault segments grow asymmetrical to each other, creating an echelon 

formation of fault segments (Fig. 6.3).  

 

6.3.2 Displacement – length relationship  
  
Two displacement – length diagrams are plotted for each of the experiments. The first 

diagram shows trajectories for fault segments creating the main fault (F1 or F2). The second 

diagram shows trajectories for fault segments growing outside the proximity of the main fault 

or faults.  

 

6.3.3 Displacement-length diagram compared to fault growth models 
 

By analysing the displacement-length diagrams in detail, is it clear that the fault segments 

grow different in relations with each other based on the length and displacement ratio.    

Four stages can be recognized based on the displacement-length diagrams. The first stage (i) 

exhibit the growth in the beginning when the fault propagating in length direction with 

minimal displacement accumulation. Then the faults enter the second stage (ii) where it 

consists of displacements accrual and limited lengthening. Some of the smaller fault segments 

measured in the experimental models stops growing in this stage. These two stages is 

comparable to the description of the constant-length fault growth model (Jackson et al., 2017; 

Rotevatn et al., 2018; J. Walsh et al., 2003; J. Walsh et al., 2002), which says that faults 

reaches its near final length early in the slip history before entering a phase with displacement 

accruing.  

Then enters the fault segments a third stage (iii) with renewed lengthening and low-rate 

displacement accruing. The last recognized stage (iv) consist of fault segments linkage and a 

fully linked fault. The fault can only grow by displacement accrual. The (iii) stage shows that 

the fault grows in a more synchronously trajectory than for the first stage (i) that mostly grow 

by lengthening. The last two stages (iii) and (iv) illustrate a renewed sub-vertical version of 

the constant-length fault growth model. Rotevatn et al. (2018) concludes that the normal fault 

growth is characterized by hybrid growth behaviour. By studying these trajectories in detail, it 

is clear that the faults grow more complex than the two models manage to provide of 

information in this environment, however they give a good foundation to illustrate the larger 

trends for fault growth. An overall description of the occurrence in the diagram can be staged 
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in two periods. The first period consists of a synchronously growth between the displacement 

and length relationship and is similar to the propagating fault model. The second stage which 

consist of displacement accruing can be compared to the constant-length fault growth model. 

This information extracted from the displacement-length ratio diagrams gives a greater 

confirmation to the conclusion suggested by Rotevatn et al. (2018).  

 

6.3.4 Displacement-length diagram compared with the evolution in the experimental 
models 
 

The four periods identified by tracing the trajectories of fault growth in the displacement – 

length diagrams can be compared to the four stages proposed for relay ramps by Peacock and 

Sanderson (1991). The first phase (i) exhibiting lengthening with minimal displacement 

accumulation. In the model is this recognized as the period when small isolated fault 

segments nucleate and breach the surface. The smallest nucleated fault length is measured to 

be 1,5 mm. This measurement illustrates how small the fault segments interpreted are for this 

project. The majority of the fault segments Majority of the fault segments stagnant or stop 

propagating in length direction between 5-50 mm. This period (i) can be compared to the first 

stage introduced by Peacock and Sanderson (1994) regarding the evolution of relay ramp and 

represents the growth of isolated fault with no overlapping or interaction with other fault 

segments. The second phase (ii) starts when the fault segments enters a stage of displacement 

accrual and limited lengthening. In the model is this compared to the period with overlapping 

and soft-linked fault segments (Fig. 6.1a) and when they propagate in nearby fault segments 

stress drop zone. This can be compared to stage two introduced by Peacock and Sanderson 

(1991) and represent the first interaction through ductile strain. The third phase identified (iii) 

is a renewed lengthening and low-rate displacement accumulation in concert. This is 

recognized in the model as the period when faults lengthening efficient by linking with 

adjacent fault segments. Peacock and Sanderson (1991) did also characterise this by 

fracturing across the relay ramp (Fig. 6.2a) resulting in linkage between the two fault 

segments. Several factors as strain, the availability of faults and their distribution and 

arrangements etc. controls the linkage and breaching of a relay ramp (Fossen & Rotevatn, 

2016). However, for this type of experiment is it the rheology of the plaster, shape of the basal 

layer, the extension distance and not at least the ratio of the extension of great importance as 

well. The last phase (iv) describes a fully linked fault with the fault tips in arrest. In the 

experimental models is this when the main faults (F1 and F2) is fully linked and arrested by 
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the walls with a length of 400 mm. These walls may not be natural to find in this kind of 

setting and geological events, but may illustrate other factors controlling the ability for a fault 

to lengthening. An example could be change in lithology for a sedimentary rock (Wilkins & 

Gross, 2002) or by the walls illustrating an already existing fault and that the main fault link 

together in the middle part of the existing fault, creating an abutting pattern (Fig. 2.8 ) (Nixon 

et al., 2014). The last stage in the evolution of a relay ramp by Peacock and Sanderson (1991) 

represents the breaching of the relay ramp. Although the four stages characterised by Peacock 

and Sanderson (1991) illustrate one structure were the for stages for the evolution of a relay 

ramp also useful to illustrate the four stages exhibit from the displacement – length diagram.  

 

6.3.5 Breached relay ramp 
 

Three types of relay ramp breach are observed in the experimental models. The majority of 

the relay ramps breaches in the lower part of the ramp in the hanging wall. This occur often 

by the fault tip to the segments to the south start curve towards the overlapping fault segment 

to the north, forming a ramp breach in the lower part of the ramp (similar to the single breach 

illustrated in fig. 2.5b and can also be recognized in figure 6.2 and 6.3). Mid-ramp breach is 

observed when the experiment has extended for some time (6.1 and 6.2). The relay ramp often 

contains fractures propagating in the ramp before a mid-ramp breaches and is shown in figure 

6.2. Fractures can be located in the upper-, middle- and the lower part of the relay ramp and 

can be of interest to illustrate future breach in the ramp, however it was no clear assumption 

for this in these experimental models.   

A few double breached relay ramps are observed in the experimental models as well. These 

have had the same starting point as the majority of the breached relay ramp (single-tip 

breach). If the two linked fault segments are allowed to continue to grow and accruing further 

displacement, starts the arrested fault tip of the segment to the north to propagate curving and 

link with the fault segments to the south a second time. This may or may not indicate that if 

the experiment had extended/lasted longer more faults would have the time to link a second 

time, creating double breached ramps. It can also be presumed that this only occurred for this 

situation and that the fault tips behave inactive after the single tip breach (Fossen & Rotevatn, 

2016).  

One of the factors that controls how the relay ramp breaches is the rheology of the plasters. 

The properties of the rheology changes throughout the experiment. In the beginning when the 
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experiment starts is the rheology more ductile, in this period breaches the ramp only by a 

single tip in the lower part of the experiment. The mid-ramp breach appears later when the 

rheology of the plaster is more brittle. It has been argued that the relay ramp needs a specific 

inclination to breach in the middle of the ramp, but this is not possible to investigate for these 

models since it is only the end result of the model that is preserved. 

 

 

 

 

Mid-ramp breach West                                                          East 
 
T1 
T = 0 sec 
Overlapping   
fault segments 
 

a)            Soft-linkage 

 
 

 
T2 
T = 2 sec 
Breached relay 
ramp 

b)             Hard-linkage 

 
 

 
T3 
T = 4 sec 

c)    

 
 

Figure 6.6: Shows how a relay ramp breaches with three timesteps (T1-T3) separated by 2 seconds. a) shows a relay ramp 
from experiment 3, b) shows how the ramp breaches in the middle, c) shows the further evolution for the breached ramp.  
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Fracture in the relay ramp 
 West                                                        East 
 
T1 
T = 0 sec 
Fracture in the 
relay ramp 

 

 
 

 
T2 
T = 3 sec 
Fractures crossing 
the relay ramp 

 

 
 

 
T3 
T = 6 sec 
 

 

 

Figure 6.7: illustrate fracturing in the ramp and where the ramp breach with timesteps separated with 3 seconds. a) shows 
fracture in the ramp, b) shows how the fracture crosscutting the relay ramp and c) shows how the relay ramp breaches in the 
lower part of the ramp 
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En echelon faults West                                                           East 
 
T1 
T = 0 sec 
Asymmetrical 
fault pattern 

 

 
 

 
T2 
T = 1 sec  
Lower-ramp 
breach 

 

 
 

 
T3 
T = 2 sec 

 

 
Figure 6.8: illustrate an echelon fault pattern separated with 1 second for each timestep. This is typical for fault segments 
occurring in the hanging wall of the main fault for several of the experiments. a) shows where the fault segments breach the 
surface and overlapping pattern, b) shows how the fault segments propagate towards each other and link, c) shows the 
evolution for this experiment. This fault can be recognized in the D-L plot (Fig. 5.10) as segment S5a. 

 
6.4 Topology 
  
It is important to study the fracture network because the topology can give new information to 

the fault network. Several fractures network can have the same geometrical factors as 

measurements, spatial orientation of the fault segment, trace length, area and volume, but 

without description of topology it easily could be misinterpreting the physical properties in 

the sub-surface (Sanderson & Nixon, 2015). 
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6.5 Nature 
 

6.5.1 Global D-L dataset 
  
The majority of the D-L trajectory from all of the experiments are plotted in to the log-log 

space from (Rotevatn et al., 2018). These D-L trajectories are marked with red colour (Fig. 

6.4) and fall within the cloud in global D-L dataset in the same area as the analogue models 

that have been studied before. This log-log plot shows limited information about the different 

D-L trajectories of fault growth (Rotevatn et al., 2018), but it provides more evidence on the 

existing theory about the relationship between fault length and maximum displacement over 

many orders plotted in the global D-L dataset (Kim & Sanderson, 2005).  

 

   
  

Figure 6.4: log-log space with plots from faults in nature and analogue models. Red lines demonstrate faults 

measured form this project. From (Rotevatn et al., 2018) 

 

 

Comparing and combining relationship between different environment and techniques needs 

to be considered carefully and with understanding.   
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CHAPTER 7 – CONCLUSION 
 

7.1 Conclusion 
  
The main focus of this project has been to study the fault growth in several plaster 

experiments. These models have been performed as analogue experiments for an extensional 

regime. Measurements from the length and heave of subsegments, fault segments and main 

fault have been retrieved in timesteps and plotted in diagrams to be analysed and hopefully 

give some new information for further research. The main conclusions for this project are as 

follows: 

 

•   The evolution of structures in the model when the experimental models are completed 

is highly dependent on the properties of the rheology of the plaster during the 

experimental performance.  

•   In the environment presented in these analogue experiments the majority of the relay 

ramp breaches in the lower part of the ramp, in the surface of the hanging wall, 

between two fault segments. 

•   A few relay ramp breaches through the middle of the ramp. This occur in the context 

of the fact that small fractures have already been formed in the ramp, which eventually 

link the two overlapping faults together. This is observed in the later phase of the 

experiments. 

•   A double breached relay ramp is observed as well. This formed first as a single 

breached relay ramp (same as the majority), but with further extension there are few 

fault segments that breaches the ramp for a second time. This is not consistent. 

•   Displacement-length diagrams studied in detail shows that almost all of the fault 

segment in the experimental models grows with exhibit elements of staged growth:   

(i)   lengthening with minimal displacement accruing 

(ii)   displacement accruing and limited lengthening 

(iii)   renewed lengthening and low-rate displacement accumulation 

(iv)   Fully linked faults (arrested fault tips) and displacement accruing 

•   The two points described above confirms that the growth pattern for the fault 

segments in this environment grows as a hybrid between the ‘propagating’ and 

‘constant-length’ fault growth models. 
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•   The trend of the displacement-length relationship studied overall consist of two stages. 

The first is a synchronously fault growth between heave and length, and the second 

stage consist of displacement accrual   

•   The displacement-length trajectories fall within the Global data set and support the 

fault growth analysed in plaster models to be trust worthy to scale faults occurring in 

nature. 

 

 

7.2 Proposal for further work 
 

By investigate already existing experimental models or/and perform new analogue models 

based on extensional regime it is possible to extract new information that can provide a 

greater understanding of the complexity in fault growth. Some suggestions for future work are 

listed below: 

 

•   Perform multiple experiments with different shapes of basal layers and study how the 

different models evolve in the extension regime based on the substrate and compare 

them to natural events. 

•   Quantify more structures based on geometry and kinematics to make the structures 

easier to compare both in analogue models and in nature, for example relay ramps. 

•   Analyse the topology and geometry of the evolution of fracture network  

•   Investigate and characteristics the connectivity in a fault network 

•   Investigate the evolution of length and displacement with quantification in the model 

by taking time in to consideration.   

•   Use other types of experiments, different type of material or new types of equipment 

to perform an extensional regime so it is possible to compare the structures to already 

existing information. 
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