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ABSTRACT 16 

Current interest and debate on pollen-assemblage richness as a proxy for past plant richness have prompted us 17 

to review recent developments in assessing whether modern pollen-assemblage richness reflects 18 

contemporary floristic richness. We present basic definitions and outline key terminology. We outline four 19 

basic needs in assessing pollen–plant richness relationships – modern pollen data, modern vegetation data, 20 

pollen–plant translation tables, and quantification of the co-variation between modern pollen and vegetation 21 

compositional data. We discuss three key estimates and one numerical tool – richness estimation, evenness 22 

estimation, diversity estimation, and statistical modelling. We consider the inherent problems and biases in 23 

assessing pollen–plant richness relationships – taxonomic precision, pollen-sample:pollen-population ratios, 24 

pollen-representation bias, and underlying concepts of evenness and diversity. We summarise alternative 25 

approaches to studying pollen–plant richness relationships. We show that almost all studies which have 26 

compared modern pollen richness with contemporary site-specific plant richness reveal good relationships 27 

between palynological richness and plant richness. We outline future challenges and research opportunities – 28 

interpreting past pollen-richness patterns, estimating richness from macrofossils, studying pollen richness at 29 

different scales, partitioning diversity and estimating beta diversity, estimating false, hidden, and dark richness, 30 

and considering past functional and phylogenetic diversity from pollen data. We conclude with an assessment 31 

of the current state-of-knowledge about whether pollen richness reflects floristic richness and explore what is 32 

known and unknown in our understanding of pollen–plant richness relationships. 33 

6 Keywords: alpha, beta, and gamma diversity; dark diversity and richness; equitability; Hill numbers; pollen 34 

equivalents; vegetation sampling 35 

 36 
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ABBREVIATIONS 39 

APSA absolute pollen-source area 40 

CoCA co-correspondence analysis 41 

PIE probability of interspecific encounter 42 

PPE pollen-productivity estimate 43 

RPSA relevant pollen-source area 44 

 45 

1. Introduction 46 

Does pollen-assemblage richness reflect floristic richness? Anyone who has counted modern 47 

pollen spectra or Quaternary (Q-time; Jackson, 2001) fossil pollen assemblages from, for example, 48 

the northern boreal forests, temperate deciduous forests, the Mediterranean region, or the tropics 49 

would answer yes, of course it does and might think that this is a trivial or uninteresting question.  50 

Many Quaternary palynologists have studied changes in pollen-assemblage diversity (hereafter 51 

called pollen diversity) using various diversity measures such as Shannon’s information index 52 

(entropy) (e.g. Moore, 1973; Küttel, 1984), Simpson’s index (e.g. Cwynar, 1982; Morley, 1982; 53 

Ritchie, 1982), or Williams (1964) α-index (Birks, 1973a; Morley, 1982), and changes in pollen 54 

richness through time from pollen-stratigraphical data using rarefaction analysis (Heck et al., 1975; 55 

Simberloff, 1978; Tipper, 1979; Birks and Line, 1992) (see Table 1 for selected examples of such 56 

rarefaction-based studies). There are, however, very few studies that explore how modern pollen 57 

richness or diversity relates to contemporary floristic richness or landscape diversity (see Birks, 58 

1973a; Flenley, 2005; Weng et al., 2006; Odgaard, 2008; Meltsov et al., 2011; 2013; Goring et al., 59 

2013; Jantz et al., 2014; Felde, 2015; Felde et al., 2015; Matthias et al., 2015).  60 

In contrast to other studies on pollen-floristic richness that find a positive relationship 61 

between pollen and floristic richness, Goring et al. (2013) report a slightly negative modelled 62 

relationship between smoothed pollen richness and smoothed floristic richness in the Pacific 63 

Northwest of North America. Their model shows a weak but statistically significant (p <0.001) 64 

negative relationship, suggesting that higher pollen richness is associated with lower regional plant 65 

richness. They write that “We believe this study is the first to empirically test the relationship 66 

between plant and pollen richness and fails to find a significant relationship” and conclude that “The 67 

fundamental inability to relate pollen richness to plant richness in this analysis does not invalidate 68 

other studies that show robust changes in pollen richness over time, but it calls into question 69 

whether these changes reflect underlying changes in plant richness, or some other change in plant 70 

composition or structure” and they suggest that “the lack of a meaningful statistical relationship 71 

between measures of plant and pollen richness … calls into question the use of fossil pollen 72 
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assemblages as a measure of species richness over time”. These findings contrast with results of 73 

other studies where statistically significant positive relationships between pollen and floristic 74 

richness have been found at a range of spatial scales (Birks, 1973a; Flenley, 2005; Odgaard, 2008; 75 

Meltsov et al., 2011; Felde, 2015; Felde et al., 2015). 76 

In the last 10–15 years there have been major developments within modern ecology and 77 

biogeography in the clarification and understanding of the theoretical basis of different estimators of 78 

taxon richness, evenness, and diversity (e.g. Olszewski, 2004; Jost, 2006, 2007, 2010a, 2010b, 2014; 79 

Jost et al., 2011; Gotelli and Ellison, 2013; Chao et al., 2014a, 2014b; Chiu and Chao, 2014), in the 80 

assessment of the strengths and weaknesses of the multitude of evenness and diversity measures 81 

(e.g. Smith and Wilson, 1996; Ricotta, 2003; Jurasinski et al., 2009; Tuomisto, 2010a, 2010b, 2012; 82 

Anderson et al., 2011), and in the increasing adoption and use of Hill’s (1973) unified notation of 83 

diversity indices and related evenness measures (e.g. Jost, 2006, 2007, 2009, 2010a, 2014; Hoffman 84 

and Hoffman, 2008; Chao et al., 2010, 2012, 2014a, 2014b; Colwell, 2010; Ellison, 2010; Jost et al., 85 

2011; Gotelli and Ellison, 2013; Chiu and Chao, 2014; Chiu et al., 2014; Koch and Juransinski, 2015). 86 

Few of these developments have, as yet, been adopted in Quaternary palynological research or 87 

literature, in contrast to Deep-time palaeoecology (e.g. Olszewski, 2004, 2010). 88 

Given the increased interest in documenting and understanding patterns of richness over a 89 

wide range of spatial and temporal scales being shown by palynologists and other palaeoecologists 90 

working in both Q-time and Deep-time (sensu Jackson, 2001) (see Box 1 for a selection of 91 

publications), and the important developments in how to estimate diversity and richness being made 92 

by ecologists and theoretical biologists (e.g. Hill, 1973; Jost, 2006; Dornelas et al., 2012; Gotelli and 93 

Ellison, 2013; Chao et al., 2014a, 2014b; Chiu and Chao, 2014; McGill et al., 2015), it is timely to 94 

review what data and numerical tools are needed to test whether there are statistically significant 95 

relationships between pollen and floristic richness and diversity today, as well as to outline recent 96 

developments within ecology in estimating diversity and richness that are relevant to Quaternary 97 

palynologists. 98 

We review what data and what summarisation statistics and numerical tools are needed to 99 

study modern pollen—plant richness relationships. We discuss the inherent problems in such data 100 

and associated estimators. We outline some alternative approaches in studying such relationships 101 

and in detecting richness and diversity patterns in time using fossil pollen. We conclude with a 102 

discussion of future challenges and potential research opportunities and some general comments. 103 

As a background to our review, we present definitions of the main terms we use. 104 
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2. Definitions and terminology 105 

Pollen richness (density) ( palynological richness, pollen-assemblage richness) – the number of 106 

terrestrial pollen and spore types present in a modern or fossil pollen assemblage or count (Birks and 107 

Line, 1992). 108 

Plant richness ( floristic richness, vegetation richness) – the number of terrestrial vascular plant taxa 109 

(usually species or their pollen equivalents) in a specified area (McIntosh, 1967). As Gaston (1996) 110 

comments about richness in general, its meaning is generally understood and there is no need to 111 

derive complex indices to express richness. It is simply one potentially useful measure of biodiversity. 112 

Pollen equivalents – the pollen or spore type(s) produced by a particular plant taxon (family, genus, 113 

species) (Birks, 1973a; Odgaard, 1994; Goring et al., 2013). 114 

Translation table – a table that lists all the known plant taxa for a region and their equivalent pollen 115 

or spore types and permits the translation or transformation of a plant taxon to its appropriate 116 

pollen or spore type (pollen equivalents) (Bennett, 1995-2007; Felde et al., 2012, 2014a, 2015; Felde 117 

2015). 118 

Diversity index – a measure that attempts to combine species (taxon) richness and species (taxon) 119 

relative abundances (evenness) (heterogeneity index: Peet, 1974; Pielou, 1975). Colwell (2010) and 120 

Tuomisto (2010a, 2010b, 2010c, 2011) favour measures of “true diversity” (cf. Gorelick, 2011; 121 

Boenigk et al., 2015) which treat, as Hill (1973) proposed, species (taxon) richness (Hill N0) and the 122 

‘numbers equivalents’ of Shannon’s (Hill N1) and Simpson’s (Hill N2) indices as points along a single 123 

mathematical continuum (e.g. Jost, 2006, 2010a; Colwell, 2010; Ellison, 2010; Gotelli and Ellison, 124 

2013). ‘Numbers equivalents’ is a term used by economists (Adelman, 1969) whereas ecologists most 125 

commonly use ‘effective number of species (taxa)’.  126 

Hill numbers – a family of diversity indices that overcome the problems of many of the most 127 

commonly used diversity indices. Hill numbers (1973) (see Box 2 for their general formula) preserve 128 

the doubling property, they quantify diversity in units of modified species (taxon) counts, and they 129 

are equivalent to algebraic transformations of most other diversity indices. They were first proposed 130 

as diversity measures by MacArthur (1965) and Hill (1973). They were discussed in a palynological 131 

context by Birks and Line (1992) but they have been barely used in palaeoecology for about 40 years 132 

(but see van Dam and ter Braak, 1981; van Dam, 1982; ter Braak, 1983). They were reintroduced to 133 

palaeoecology by Birks (2012a) and to ecology and expanded by Jost (2006, 2007, 2010a, 2014), Chao 134 

et al. (2012, 2014a, 2014b), and Chiu and Chao (2014) 135 
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Effective number of species (taxa) ( numbers equivalents, “true diversity” sensu Boenigk et al., 2015) 136 

– the basic unit of Hill (1973) numbers; the equivalent number of equally abundant species (taxa). If 137 

the observed species (taxa) richness in a sample is 12 but the effective number of species (taxa) is 6, 138 

the diversity is equivalent to that of a hypothetical assemblage with 6 equally abundant species 139 

(taxa) (Gotelli and Ellison, 2013, Boenigk et al., 2015). 140 

Evenness – the distribution of individual types of pollen grains or spores within a pollen assemblage 141 

or the variability in taxon abundances in a vegetation sample. Evenness, according to Tuomisto 142 

(2012) should only be used when evenness is assessed as diversity/richness. Other terms (e.g. 143 

‘equitability’) should be used for measures that estimate other features in the variability of taxon 144 

abundance (Tuomisto, 2012). 145 

3. Data needs 146 

There are four essential needs prior to studying modern pollen–plant richness relationships. 147 

Two are high quality pollen and floristic data, one is a tool to translate plant taxa into pollen or spore 148 

taxa (pollen equivalents), and one is a means of quantifying the degree of correspondence between 149 

modern pollen assemblages and contemporary vegetation composition in the study area. 150 

3.1. Modern pollen data 151 

All modern (and fossil) pollen data should be of consistent high quality, be at the lowest 152 

possible taxonomic level, have a consistent and defined nomenclature, be from the same 153 

sedimentary environment (e.g. small lakes), be sampled using consistent field methods, prepared 154 

using identical laboratory procedures, and counted using consistent analytical protocols. Thanks to 155 

improved microscopy and the ever-increasing quantity and quality of modern pollen reference 156 

material and of critical pollen floras, keys, and monographs (e.g. Punt et al., 1976-2009; Fægri et al., 157 

1989; Beug, 2004), the pollen and spore taxonomic level (e.g. Peglar, 1993; Odgaard, 1994; van der 158 

Knaap and van Leeuwen, 1994; Felde et al., 2012, 2014a, 2015) is steadily improving. Many data sets 159 

are not, however, of such high standards, having been analysed 20–30 years ago or to a lower 160 

taxonomic resolution. This is a major limitation in using data from large pollen databases to study 161 

pollen richness because such data are not usually internally consistent due to inevitable between-162 

analyst differences in field, laboratory, and analytical procedures, site selection criteria, and pollen 163 

and spore taxonomic resolution and nomenclature. Goring et al. (2013) who used such a database 164 

emphasise that “records in large databases contain a mixture of taxonomic levels that must, 165 

ultimately, be resolved to the lowest taxonomic equivalent. Effectively this coarsened taxonomic 166 

resolution can significantly affect the ecological interpretations of pollen data”. 167 
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3.2 Modern floristic and vegetation data 168 

Obtaining modern floristic and vegetation data at the appropriate spatial scale for comparison 169 

with modern pollen data is a challenge in all studies of modern pollen–plant relationships (e.g. 170 

Andersen, 1970; Birks, 1973a, 1973b; Hjelle, 1998, 1999; Broström et al., 2004, 2005, 2008; Bunting 171 

et al., 2005, 2013; Gaillard et al., 2008; Bunting and Hjelle, 2010; Hjelle and Sugita, 2012; Matthias et 172 

al., 2012, 2015; Matthias and Giesecke, 2014; Hjelle et al., 2015; Li et al., 2015). As all the flora and 173 

vegetation in the absolute pollen-source area (APSA) (sensu Sugita, 1993) for the site from which 174 

pollen data have been obtained cannot usually be realistically surveyed, the aim should be to obtain 175 

representative samples of the flora and vegetation within the relevant pollen-source area (RPSA) 176 

(sensu Sugita, 1994). If the modern pollen data reflect local pollen deposition (sensu Janssen, 1966, 177 

1973, 1981) and are derived from moss polsters (e.g. Birks, 1973a, 1973b; Hjelle, 1998, 1999) or 178 

surface soils (e.g. Wright et al., 1967), vegetation data from a 2  2 m or a 10  10 m plot within 179 

which the surface pollen sample(s) was(were) collected are appropriate. An alternative approach is 180 

to sample the surrounding vegetation in a series of concentric rings for different radii around the 181 

pollen sampling site (e.g. Broström et al., 2004, 2008; Bunting et al., 2005, Li et al., 2015). 182 

If the modern pollen data are derived from surface sediments from the deepest part of small- 183 

or medium-sized lakes (diameters ca 150–500 m, area ca 10–50 ha) and thus primarily reflect 184 

regional pollen deposition (sensu Janssen, 1966, 1973, 1981) (e.g. Odgaard, 2008; Meltsov et al., 185 

2011, 2013; Matthias et al., 2012, 2015; Felde et al., 2014a, 2015; Matthias and Giesecke, 2014), the 186 

extent and positioning of vegetation samples can be designed in light of results from model 187 

simulations of pollen deposition in basins of different sizes within a forested landscape and of the 188 

RPSA at the regional scale (Sugita, 1994, 2007, 2013; Davis, 2000). These simulations suggest that for 189 

a lake 500 m in diameter within a forested landscape, the likely RPSA may be within a 500–2000 m 190 

radius from the lake edge. Empirical studies (e.g. Nielsen and Odgaard, 2004; Nielsen and Sugita, 191 

2005; Gaillard et al., 2008; Soepboer et al., 2007; Poska et al., 2011; Hjelle and Sugita, 2012; Sugita, 192 

2013), generally support these model estimates with empirical estimates between 400 and 1500 m. 193 

Variables such as vegetation structure and composition, disturbance, and the mosaic nature and 194 

openness of the vegetation in the lake catchment can influence the RPSA (Hellman et al., 2009a, 195 

2009b; Mazier et al., 2012; Matthias and Giesecke, 2014). The RPSA for lakes in treeless arctic or 196 

alpine landscapes will be considerably larger than for lakes in forested landscapes. One of the 197 

assumptions of Sugita’s (1993, 1994, 2007, 2013) simulation model is “no pollen inputs from water 198 

inlets or surface run-off are considered”. Given the strong evidence for water-borne pollen being a 199 

major part of the pollen input into small- and medium-sized lakes, at least in north-west Europe (e.g. 200 
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Peck, 1973; Bonny, 1976, 1980; Jackson, 1994) it is possible that the RPSA in some regions may be 201 

smaller than the estimates from Sugita’s (1994, 2007, 2013) model that is based entirely on aerial 202 

pollen dispersal. 203 

Meltsov et al. (2011) in their detailed study of pollen richness in relation to floristic richness in 204 

southern Estonia surveyed vegetation within a 250 m radius around their nine study lakes. Felde et 205 

al. (2014a, 2015) compiled plant species lists and associated estimated frequency values for a 500 m 206 

radius from the edge of their 52 study lakes in southern Norway. Odgaard (2008, unpublished) 207 

collected vegetation data along eight transects running 2000 m from the edge of 16 lakes in Denmark 208 

(see also Nielsen, 2004; Nielsen and Odgaard, 2005). Parsons et al. (1980) and Prentice et al. (1987) 209 

used forest-inventory data from survey plots within 5, 10, 16, 20, 25, 50, and 100 km radii from each 210 

lake in their work in Finland and southern Sweden. In their study on pollen-accumulation rates in 211 

relation to tree abundance, Matthias and Giesecke (2014) used forest-inventory data from a 15 km 212 

radius of 18 lakes in north-east Germany using concentric rings of increasing radii from 25 m close to 213 

a lake and a 1 km radius at a distance of 5 km. Clearly vegetational sampling for lakes that record 214 

regional pollen deposition (sensu Janssen, 1966, 1973, 1981) is inevitably a compromise. The 215 

probability of pollen coming from a particular plant population within the RPSA or APSA decreases 216 

with increasing distance from the lake (Davis, 2000). If the vegetation within the lake’s catchment is 217 

relatively homogenous spatially, a 250–500 m sampling radius may be an adequate compromise 218 

between intensive studies of a few lakes and less extensive studies of many lakes. Each species in the 219 

vegetation should be given an estimated simple abundance or frequency value to allow numerical 220 

comparisons between the vegetation composition and the modern pollen-assemblage data by, for 221 

example, co-correspondence analysis (ter Braak and Schaffers, 2004; Felde et al., 2014a). This type of 222 

analysis is a useful preliminary before studying pollen‒plant richness relationships (see Section 3.4). 223 

Goring et al. (2013) adopt a different approach to obtaining plant-richness data which they use 224 

to assess modern pollen–plant richness relationships in the Pacific Northwest. Instead of collecting 225 

site-specific floristic or vegetational data, they obtain plant-richness data from a database of plant 226 

communities in British Columbia (Canada) containing 48,706 vegetation plots sampled with a 227 

standard 400 m2 plot design (except in alpine, grassland, or wetland habitats) and from a regional 228 

vascular plant richness database for British Columbia based on plots and herbarium records 229 

aggregated into 50  50 km grid cells. Because these vegetational and richness data are not directly 230 

matched to the 167 modern pollen sites, Goring et al. (2013) use spatial smoothing models to 231 

estimate plant richness using the 50  50 km grid cell data and the 400 m2 plot data reduced to 232 

14,529 plots (33,067 plots were removed because they had “low site quality flags”). After taxonomic 233 

harmonisation, these smoothed floristic richness estimates from British Columbia were compared 234 
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with smoothed richness of the modern pollen data from the 167 sites in British Columbia and also 235 

extrapolated for the 397 pollen sites in Washington, Oregon, Montana, and Idaho (USA). They also 236 

used modern pollen richness to predict plant richness using spatial modelling and smoothing 237 

techniques. 238 

Decisions about whether to use databases to obtain plant richness data (e.g. Goring et al., 239 

2013) or whether to collect site-specific vegetational and floristic data (e.g. Odgaard, 2008; Meltsov 240 

et al., 2011, 2013; Felde et al., 2014a, 2015) are critical in exploring modern pollen–plant richness 241 

relationships. For field surveys, decisions on the size, extent, and location of sampling plots 242 

immediately arise. Collecting modern detailed vegetation data is time-consuming; surveying the flora 243 

and vegetation of the catchment of a small lake usually requires at least one field day. Using 244 

‘secondary’ richness data from broad-scale vegetation or biodiversity databases clearly avoids time-245 

consuming fieldwork and the need for plant determinations. However, estimating plant richness 246 

from such sources with different spatial resolutions, field recorders, data qualities and quantities, 247 

and data sources and consistency rather than collecting site-specific field data in a consistent way 248 

may contribute to Goring et al.’s (2013) failure “to obtain clear and meaningful relationships 249 

between measures of plant richness and pollen richness at any spatial scale and at any taxonomic 250 

level”. 251 

3.3 Pollen–plant translation tables 252 

Because of the inherent limitations of current pollen and spore morphology, it is not (and 253 

probably never will be) possible to identify every plant species from its pollen or spores. It is 254 

therefore essential to be able to translate or transform plant species in modern vegetation into 255 

known distinguishable pollen or spore types, so-called pollen equivalents (sensu Goring et al., 2013). 256 

Felde et al. (2012) and Felde (2015) present such translation tables for the presumed native and non-257 

native flora of Norway (see also Bennett (1995-2007) for a comparable translation table for the 258 

British and Irish flora). As different pollen analysts, even those working in the same laboratory (e.g. 259 

Jackson et al., 2014), and different pollen-morphological monographs and keys sometimes differ in 260 

their morphological categories, Felde et al. (2012) and Felde (2015) provide translation tables (with 261 

synonyms) for the four most commonly used pollen-morphological texts (see Felde et al., 2014a). 262 

Some plant taxa (e.g. Oxyria digyna, Rumex conglomeratus, Athyrium distentifolium, Dryopteris filix-263 

mas, D. carthusiana) may produce two or more morphologically different pollen or spore types 264 

(Birks, 1973b). In such cases it is necessary to merge such morphological types into one general 265 

pollen or spore taxon (e.g. Dryopteris-type including spores of D. filix-mas, D. carthusiana, and 266 

Athyrium distentifolium, etc. – see Birks, 1973b) and to merge the corresponding plant species in the 267 



9 

 

vegetation into one corresponding plant taxon (Birks, 1973a, 1973b; Felde et al., 2014a, 2015). 268 

Inevitably all such translations and the creation of pollen equivalents result in the loss of taxonomic 269 

information and a decrease in taxonomic resolution (see Table 2) (Odgaard, 1994, 1999, 2007, 2013). 270 

Outside tropical areas, the ratio of plant species in the vegetation to identifiable pollen and spore 271 

taxa (pollen equivalents) is generally between 1.5 and 2.4 (Table 2), due to ecologically important 272 

species-rich families (e.g. Cyperaceae, Poaceae) producing only a few consistently identifiable pollen 273 

types, or families that either produce pollen that is rarely preserved (e.g. Juncaceae) or produce 274 

almost no pollen (e.g. Violaceae). The high ratio of 25.8 for Goring et al. (2013) (Table 2) suggests 275 

that using a translation table for the entire North American Modern Pollen Database (Whitmore et 276 

al., 2005) may result in a serious lack of taxonomic resolution in the modern floristic data from British 277 

Columbia when translated into identifiable pollen and spore types. It is also very unusual to have 278 

more identified pollen types (78) than potentially identifiable pollen equivalents (67) in the 279 

vegetation, as in Goring et al. (2013) (Table 2). They suggest that “one issue driving the lack of 280 

relationship between the richness measures may be the lack of taxonomic resolution in the pollen 281 

data set”. Whilst that is almost certainly the case, it is important to emphasise that the achieved 282 

taxonomic resolutions in the pollen data and the associated translation tables determine the 283 

taxonomic resolution of the modern floristic data when the plant species are translated into 284 

identifiable pollen equivalents. Using a translation table for British Columbia plant species and pollen 285 

types rather than for the entire North America may improve the taxonomic resolution in the Goring 286 

et al. (2013) study. Moreover, Goring et al. (2013) note that 21% (363 species) of the species in their 287 

modern vegetation data have no equivalent pollen taxon, highlighting the need for basic pollen-288 

morphological studies in their study area. ‘Taxonomic smoothing’ (sensu Mander, 2011; Goring et al., 289 

2013; Mander and Punyasena, 2014) plagues all Deep-time and Quaternary pollen analysis (e.g. Birks, 290 

1973a, 1973b; Odgaard, 1994, 1999, 2007, 2013), not only pollen–plant richness studies. Plant 291 

macrofossils can help to improve the taxonomic precision attainable from Quaternary plant 292 

assemblages (e.g. Birks HH, 1980, 2001, 2013; Birks and Birks, 2000; Birks HJB, 2014), but no fossil 293 

plant assemblage, microfossil or macrofossil or both, can ever have the taxonomic precision or 294 

comprehensiveness of modern vegetation assemblages (Mander and Punyasena, 2014). 295 

3.4 Co-variation between modern pollen and vegetation 296 

Before considering modern pollen–plant-richness patterns, it is important to quantify the 297 

degree of co-variation between modern pollen assemblages and vegetation composition and 298 

between modern pollen assemblages and pollen equivalents in the vegetation composition. Co-299 

correspondence analysis (Co-CA) (ter Braak and Schaffers, 2004; Schaffers et al., 2008; Müller et al., 300 
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2011) allows the direct comparison of two different multivariate compositional assemblage data sets 301 

derived from identical sampling sites (Felde et al., 2014a, 2015). Co-CA attempts to identify the 302 

underlying pattern that is common in both data sets by maximising the weighted covariance between 303 

the weighted averaged taxon scores of one data set with the weighted averaged taxon scores of the 304 

other data set (ter Braak and Schaffers, 2004). It can be used in both an asymmetric predictive mode 305 

and a symmetric descriptive mode. Only the symmetric mode is appropriate with modern pollen and 306 

vegetation data because the two data sets are not totally independent as the pollen assemblages are 307 

derived from the regional vegetation (Felde et al., 2015). Symmetric Co-CA is closely related to the 308 

more general approach of co-inertia analysis (Dolédec and Chessel, 1994; Dray et al., 2003) which 309 

could also be used to assess co-variation between modern pollen assemblages and modern 310 

vegetation data.  311 

Felde et al. (2014a, 2015) show the value of using CoCA to quantify co-variation between 312 

modern pollen assemblages and vegetation and/or their pollen equivalents before exploring richness 313 

relationships along an elevational gradient in southern Norway. There is strong co-variation until 314 

near the tree-line and in the low-alpine zone. This decreased co-variation at high elevation is 315 

presumably because of far-distance transport of pollen from lower elevations and the increasing 316 

number of palynological ‘blind-spots’ (sensu Davis 1963) or ‘silent areas’ (sensu Birks 1973a, 1973b) 317 

in alpine vegetation that is dominated by low-growing herbs and graminoids which are barely 318 

registered in the pollen assemblages.  319 

4. Data analytical needs 320 

We discuss three essential numerical estimates and one basic statistical tool in the analysis of 321 

modern pollen and plant data for establishing whether richness of modern pollen assemblages 322 

reflects floristic richness of contemporary vegetation. 323 

4.1 Richness estimation 324 

The most unambiguous measure of taxon richness is S, the total number of pollen and spore 325 

taxa in a pollen assemblage or plant species (or pollen equivalents) in a vegetation (floristic) sample 326 

(see Section 2 and Gaston, 1996). However, as S depends on the sample size (pollen count size and 327 

the vegetation area surveyed, and thus the time spent collecting the two data sets), S is of limited 328 

value as a comparative richness index (Rull, 1987; Ludwig and Reynolds, 1988). Richness indices have 329 

been proposed that estimate richness independently of sample size (e.g. Peet, 1974; Ludwig and 330 

Reynolds, 1988) but such indices generally make crippling assumptions about the functional 331 

relationship between S and N, where N is the total number of pollen grains counted. As these 332 
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assumptions are not met by pollen data, these indices are not appropriate for pollen–plant richness 333 

studies. 334 

The most robust estimate of richness is the expected number of taxa (E(Sn)) found in samples 335 

of equal size (n) as estimated by rarefaction analysis (Sanders, 1968; Hurlbert, 1971; Heck et al., 336 

1975; Simberloff, 1978; Birks and Line, 1992; Gotelli and Graves, 1996; Gotelli and Ellison, 2013). A 337 

rarefaction estimate is the expected number of taxa in a sub-sample of n individuals selected at 338 

random without replacement from an assemblage containing S taxa and N individuals (Hurlbert, 339 

1971). This is, in reality, what a palynologist achieves when counting to a pre-determined standard 340 

number of pollen grains (e.g. 500) in a sediment sample. Such estimates permit standardisation of 341 

count-size and hence comparisons of richness between samples (Malmgren and Sigaroodi, 1985). 342 

Rarefaction analysis was introduced into Quaternary palynology by Birks and Line (1992). It has been 343 

widely used (see Table 1) to estimate palynological richness for fossil pollen counts of different 344 

original sizes when scaled to a common size (‘base-sum’ or ‘individual index’ sensu Smith and Grassle 345 

(1977)) by considering the relative frequencies of individuals within categories (e.g. pollen or spore 346 

types). Rarefaction analysis can be used whenever individual objects (e.g. pollen grains) at one 347 

hierarchical level are classified into groups (e.g. pollen morphological types) at a higher level 348 

(Simberloff, 1978, 1979). Rarefaction does not assume any particular hierarchical distribution in 349 

contrast to log-series or log-normal distributions (Simberloff, 1979; Gotelli and Graves, 1996; Gotelli 350 

and Ellison, 2013). However, when used to compare S between samples or sites, the counts should 351 

be derived from the same underlying distribution. 352 

Rarefaction analysis makes various biological assumptions (Simberloff, 1978, 1979; Tipper, 353 

1979; Gotelli and Colwell, 2011; Gotelli and Ellison, 2013) that are discussed in a palynological 354 

context by Birks and Line (1992). The most critical are (1) the observed pollen count in each sample is 355 

a statistically adequate and representative sample of the underlying pollen assemblage in that 356 

sample and that this assemblage is a statistically representative sample of the total pollen input 357 

(pollen population) to the site under investigation (Odgaard, 1999, 2001, 2007, 2013) and (2) the 358 

pollen spectra being compared have been consistently sampled and analysed to comparable 359 

taxonomic detail (Raup, 1975; Simberloff, 1979) and are from similar depositional environments 360 

(Tipper, 1979). These assumptions are basic to all quantitative pollen analyses (Birks and Birks, 1980; 361 

Birks and Gordon, 1985; Birks HJB, 2013) and are not unique to rarefaction analysis of palynological 362 

data. Rarefaction can in theory result in loss of information (Magurran, 2004, 2011) because prior to 363 

rarefaction the number of taxa and their counts are known for each sample, whereas after 364 

rarefaction we only know E(Sn). However, given a sample of size N with S taxa and modern computing 365 

power it is possible to draw at random without replacement a large number (e.g. 1000) of 366 
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subsamples of base-sum n from the entire sample of size N (Simberloff, 1970, 1972; Gotelli and 367 

Graves, 1996; Gotelli and Ellison, 2013) and to use the mean or median of these subsamples as an 368 

estimate of E(Sn). The counts for the individual taxa in the 1000 random subsamples are estimates of 369 

the taxon frequencies for sample size n with E(Sn) pollen and spore types (Gotelli and Graves, 1996; 370 

Gotelli and Ellison, 2013). These randomly selected subsamples, all rarefied to the same base-sum 371 

can then be used to estimate diversity and evenness and their associated variances or inter-quartile 372 

ranges for the sample that is being rarefied (see Sections 4.2 and 4.3). 373 

Gotelli and Ellison (2013) suggest that taxon richness should be termed taxon density, the 374 

number of taxa per sample unit (James and Warmer, 1982) (e.g. estimated number of pollen taxa per 375 

base-sum, number of plant species present in a particular total area). Taxon density depends on two 376 

components (Gotelli and Ellison, 2013) 377 

𝑡𝑎𝑥𝑎

𝑠𝑎𝑚𝑝𝑙𝑒
=

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑠𝑎𝑚𝑝𝑙𝑒
×

𝑡𝑎𝑥𝑎

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
 

Two assemblages may differ in the value of taxa/sample because of differences in the number of 378 

taxa/individuals (which is quantified by the rarefaction curve with base-sums from 1 to N) or 379 

differences in the number of individuals/sample. Variation in the number of individuals/sample may 380 

result from differences in sampling effort (how many grains were counted or what proportion of the 381 

underlying population was sampled) (Odgaard, 2007, 2013) or detection probability (e.g. pollination 382 

type) (Meltsov et al., 2011, 2013; Giesecke et al. 2014) or other biological factors. Rarefaction is a 383 

straightforward means of controlling for differences in the number of individuals per sample and 384 

their effect of taxon richness (Gotelli and Ellison, 2013). Gotelli and Colwell (2011) discuss in detail 385 

the distinction between taxon richness and taxon density and conclude that “whenever sampling is 386 

involved, species density is a slippery concept that is often misused and misunderstood”. We do not 387 

encourage the use of the term taxon density in a palynological context to avoid confusion with the 388 

term flux density (Birks and Gordon, 1985; Thompson, 1980), the appropriate term for pollen influx 389 

or pollen-accumulation rates (Thompson, 1980). 390 

We return to the assumptions of rarefaction analysis in Section 5 when we discuss problems in 391 

assessing modern pollen‒plant-richness relationships. 392 

4.2 Evenness estimation 393 

As all ecology textbooks state, diversity (see Sections 2 and 4.3) is a complex function made up 394 

of taxon richness and taxon evenness (abundances) (e.g. Ludwig and Reynolds, 1988; Magurran, 395 

2004; Gotelli and Ellison, 2013). Focusing on taxon richness ignores differences in the abundance of 396 
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taxa, although the shape of a rarefaction curve depends on the commonness versus the rareness of 397 

taxa (Gotelli and Ellison, 2013). Jost (2010a) explores in detail the relation between evenness and 398 

diversity and concludes that “contrary to common belief, decomposition of diversity into 399 

independent richness and evenness components is mathematically impossible. However, richness 400 

can be decomposed into independent diversity and evenness or inequality components”. Evenness 401 

and richness are intimately related – the shape of the rarefaction curve is affected by the relative 402 

abundances of the taxa; almost all evenness measures are affected by the number of taxa in the 403 

assemblage; and the minimum value that evenness can obtain for a given data set depends on 404 

richness (Jost, 2010a; Tuomisto, 2012; Gotelli and Ellison, 2013). Tuomisto (2012) proposes that  405 

Diversity = Richness  Evenness   (1) 406 

and so 407 

Evenness = Diversity / Richness   (2) 408 

As Jost (2010a) shows, richness and evenness are not numerically independent of each other, 409 

whereas diversity and evenness are numerically independent because one does not constrain the 410 

range of values that can be taken by the other in any way (Tuomisto, 2012). Therefore Jost (2010a) 411 

proposes that richness rather than diversity can be partitioned as 412 

Richness = Diversity  Unevenness  (3) 413 

where 414 

Unevenness = Richness / Diversity 415 

       = 1 / Evenness   (4) (Tuomisto, 2012) 416 

Despite the simplicity of these four equations (Tuomisto, 2012) and the general (but not 417 

unanimous) agreement on how to estimate and express richness (Gotelli and Colwell, 2011), there is 418 

considerable disagreement on how to estimate and express diversity with its vast plethora of 419 

different diversity indices (e.g. Peet, 1974; Pielou, 1975; Routledge, 1979; Magurran, 2011). This has 420 

resulted in many different definitions and measures of evenness and equitability (e.g. Sheldon, 1969; 421 

Heip, 1974; Alatalo, 1981; Routledge, 1983; Molinari, 1989; Camargo, 1993, 1995; Bulla, 1994; Smith 422 

and Wilson, 1996; Hill, 1997; Ricotta, 2004; Gosselin, 2006; Tuomisto, 2012). Tuomisto (2012) 423 

proposes that because there is a logical and universally accepted definition of diversity (Hill, 1973) as 424 

Hill numbers or numbers equivalents (Ellison, 2010; Jost, 2006), a logical approach to defining 425 

evenness (or unevenness) is to use equations (2) or (4), respectively (Tuomisto, 2012). Tuomisto 426 
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(2012) also proposes that the term ‘evenness’ should only be used to refer to equations (2) or (4) and 427 

that other terms be used for equitability measures that estimate other properties of assemblage data 428 

sets. 429 

Since Odgaard (1999, 2001, 2007, 2008, 2013) highlighted the role of palynological evenness (= 430 

equitability) in influencing estimated values of palynological richness, palynologists have used several 431 

‘evenness’ measures or other measures to quantify palynological ‘evenness’ in modern (e.g. Räsänen 432 

et al., 2004; Odgaard, 2008, 2013; Peros and Gajewski, 2008; Meltsov et al., 2013) and fossil (e.g. van 433 

der Knaap, 2009; Mortensen et al., 2011; Fredh et al., 2012, 2013; Giesecke et al., 2012, 2014; 434 

Ammann et al., 2013; Colombaroli and Tinner, 2013; Colombaroli et al., 2013; Marquer et al., 2014; 435 

Schwörrer et al. 2015) pollen assemblages. ‘Evenness’ measures have also been used with plant 436 

macrofossil assemblages (Blarquez et al., 2013). Just as the concepts of evenness, richness, and 437 

diversity are confused in ecology, palynologists have shown confusion in what they have used as an 438 

‘evenness’ measure. Peros and Gajewski (2008) introduced into Quaternary palynology Hurlbert’s 439 

(1971) probability of interspecific encounter (PIE). This ranges from 0 to 1 and represents the 440 

probability that two individual pollen grains, randomly selected (without replacement) will be of 441 

different taxa. Those samples dominated by few taxa will have a PIE value close to 0 compared to 442 

samples where there is a greater variety of taxa. It is not biased by sample size (Bulinski, 2007) or 443 

taxon richness, unlike several other ‘evenness’ measures (Olszewski, 2004; Peros and Gajewski, 2008) 444 

and it is easily derived from Simpson’s (1949) diversity measure (Hill’s (1973) N2 is the inverse of 445 

Simpson’s measure when an adjustment is made for small sample sizes). PIE was first developed to 446 

estimate linguistic diversity (Greenberg, 1956). PIE has, however, been used as an ‘evenness’ 447 

measure by Peros and Gajewski (2008), van der Knaap (2009), Ammann et al. (2013), Blarquez et al. 448 

(2013), Colombaroli and Tinner (2013), Colombaroli et al. (2013) and Schwörrer et al. (2015). It has 449 

also been used as the basis for calculating “an evenness-detrended palynological richness” in which 450 

palynological richness (estimated by rarefaction) is regressed on palynological ‘evenness’ (estimated 451 

as PIE). The residuals (richness – ‘evenness’) are plotted as an “evenness-detrended palynological 452 

richness” (Colombaroli and Tinner, 2013; Schwörrer et al. 2015). A critical question is whether 453 

Hurlbert’s (1971) PIE should be used as a diversity measure as Greenberg (1956) and Gotelli and 454 

Ellison (2013) present it or as an ‘evenness’ measure as Olszewski (2004) and Peros and Gajewski 455 

(2008) present it? Hurlbert (1971) introduced PIE (and a corrected version of rarefaction estimation) 456 

not as a diversity or an ‘evenness’ measure but as a ‘species composition parameter’ with a 457 

straightforward biological interpretation as an alternative to the diversity-index approach which 458 

Hurlbert (1971) dubbed “the nonconcept of species diversity”. Gotelli and Ellison (2013) list three 459 

advantages of using PIE as a simple diversity measure: (1) it has easily interpretable units of 460 
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probability and corresponds intuitively to a diversity measure based on encountering novel taxa 461 

while sampling, (2) it is insensitive to sample size unlike taxon richness, as a rarefaction curve of PIE is 462 

a straight line, and (3) PIE measures the slope of a rarefaction curve measured at its base (Olszewski, 463 

2004). Smith and Wilson (1996) do not consider PIE as an ‘evenness’ index in their comprehensive 464 

“consumer’s guides to evenness” and related indices.  It is thus unclear what “evenness-detrended 465 

palynological richness” (Colombaroli and Tinner, 2013; Schwörrer et al. 2015) is actually estimating, 466 

especially in light of Jost’s (2010a) demonstration that richness and evenness are not numerically 467 

independent. 468 

Other than PIE, ‘evenness’ (equitability) measures commonly used by palynologists include (1) 469 

Pielou’s (1975; 1977) J′ which expresses the Shannon diversity (entropy) measure H′ relative to the 470 

maximum value that H′ can obtain when all the taxa in the sample are perfectly even with one 471 

individual grain per taxon (e.g. Räsänen et al., 2004; Odgaard, 2007; Mortensen et al., 2011; Fredh et 472 

al., 2012, 2013; Keen et al., 2014; Marquer et al., 2014); (2) E1/D which is the complement of 473 

Simpson’s (1949) index of dominance divided by S (Meltsov et al., 2011; Odgaard, 2013; Reitalu et al., 474 

2015) and is independent of species richness and theoretically ranges from almost zero (when one 475 

taxon is very dominant) to 1 (at maximum evenness); and (3) a modified version of Smith and 476 

Wilson’s (1996) EQ measure (Nee et al., 1992) which is –2/π arctan of the slope of the scaled rank of 477 

abundance in relation to log abundance fitted by least-squares regression (Giesecke et al., 2012). EQ 478 

and E1/D have been shown by Smith and Wilson (1996) to have excellent performances in their 479 

comparative tests, whereas J′ is poor in relation to these in not being independent of taxon richness. 480 

Odgaard (2008 and unpublished), Giesecke et al. (2012), and Matthias et al. (2015) have rarefied 481 

pollen assemblages to a low base-sum of 10–30 grains. In this rarefaction, numerically abundant taxa 482 

will dominate in such a small rarefied sample and the probability of including less abundant taxa is 483 

low. The E(Sn) in this case is strongly correlated to Hill’s N2 (Matthias et al., 2015), so E(Sn) to a low 484 

base-sum may be estimating diversity of very abundant taxa (e.g. N2) rather than their evenness. 485 

Hill’s (1973) diversity numbers (Box 2) are all expressed in the same units of effective number 486 

of taxa, the equivalent number of equally abundant taxa, but differ in their sensitivity to rare taxa 487 

(Ricotta, 2004). Hill (1973) proposes that evenness be estimated by a double continuum ratio of Hill 488 

numbers 489 

𝐸𝛼,𝛽 = 𝑁𝛼 𝑁𝛽⁄  

where E is evenness, N is a Hill number, and α and β are the orders of N and α ≠ β. Hill (1973) also 490 

argues that a meaningful evenness measure should be independent of taxon richness and proposes 491 

N2 / N1 as an appropriate measure (Sheldon, 1969). Alatalo (1981) modified this to be (N2 – 1) / (N1 492 
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– 1) so as “to give a better approach to intuitive evenness” (= index F2,1 in Smith and Wilson (1996)). 493 

Hill (1973) commented that “the difference N1 – N2 may be more characteristic of the community 494 

than is the evenness N2 / N1 … Fairly obviously, however, evenness should be regarded as secondary 495 

and in routine analysis the original diversity number N2 and N1, or N2 and N0 are to be preferred”. 496 

The computer program Canoco 5 (ter Braak and Šmilauer, 2012) gives as basic statistics of a 497 

compositional data-table not only sample mean, median, variance, total occurrences, and relative 498 

counts of species within samples but also sample values of N1, N2, N2 / N1, H′, and H′ / log(N0) (a 499 

Shannon entropy-related measure of compositional ‘evenness’), and the logarithm of the number of 500 

occurrences (the maximum achievable value of H′ for a given number of occurrences) and has a 501 

similar relation to H′ as the number of taxa (N0) has to N1. Felde et al. (2015) show with modern 502 

pollen assemblages that values of Hurlbert’s (1971) PIE measure are highly correlated to Hill’s (1973) 503 

N1 and N2, whereas PIE has lower but statistically significant correlations with evenness measures 504 

N1 / N2, N2 – 1 / N1 – 1, N1 / N0, N1 – 1 / N0 – 1, and N1 – N2. In that study, PIE behaves most 505 

closely to Hill’s N1 and N2 diversity measures. 506 

Hill’s (1973) N2 / N1 index and Alatalo’s (1981) modified Hill ratio are generally unaffected by 507 

richness (Smith and Wilson, 1996) but they fail Smith and Wilson’s (1996) requirement 2, namely that 508 

they must decrease when the abundance of the least abundant taxon in an assemblage is marginally 509 

reduced. Index E1/D (Smith and Wilson, 1996; Odgaard, 2013) is equivalent to the ratio of Hill 510 

numbers N2 / N0 and it performs well in Smith and Wilson’s (1996) tests. 511 

Ludwig and Reynolds (1988) present other evenness measures based on Hill numbers such as 512 

loge (N1) / loge (N0) (= Pielou’s (1975; 1977) J′), N1 / N0, and (N1 – 1) / (N0 – 1) (Heip, 1974). All these 513 

involve N0 and are thus not totally independent of the number of taxa in the assemblage unless N0 514 

(total number of taxa) is standardised first for all the samples being considered by rarefaction 515 

analysis and N1 (and N2) is estimated from a set of rarefied samples derived from repeated 516 

resampling without replacement to a standard base-sum (Sections 4.1 and 4.3). Gotelli and Ellison 517 

(2013) comment that “sample size effects are important for all the other Hill numbers [excluding N0], 518 

although their effect diminishes as q [the exponent in a Hill number] is increased”. Their example 519 

(see Fig. 13.7 and Tables 13.1 and 13.2 in Gotelli and Ellison (2013)) shows that the effects of sample 520 

size quickly diminish with sample size and the effective numbers of taxa (N1, N2, N3) are stable with 521 

a sample size of 75–100 individuals. 522 

Alatalo (1981) conclude that “there is no single way to measure evenness” and the 523 

comprehensive reviews by Smith and Wilson (1996) and Tuomisto (2012) show in detail how true 524 

Alatalo’s (1981) early conclusion is. 525 
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Because of the complexity of estimating evenness and of the underlying concepts of evenness 526 

and equitability, we suggest that numerically and conceptually simple estimates of evenness based 527 

on Hill numbers should only be used to characterise some basic numerical properties of “species 528 

composition parameters” (sensu Hurlbert, 1971) of a pollen assemblage, modern or fossil (e.g. Felde 529 

et al., 2015). 530 

4.3 Diversity estimation 531 

It is widely known that there is a bewildering plethora of diversity measures (e.g. McIntosh, 532 

1967; Peet, 1974, 1975; Pielou, 1975, 1977; Routledge, 1979; Washington, 1984; Ghent, 1991; 533 

Magurran, 2004; Maurer and McGill, 2011; Legendre and Legendre, 2012) that try to combine 534 

taxonomic richness and taxon abundances (‘evenness’) into a single index (see Section 2). As Ludwig 535 

and Reynolds (1988) emphasise, the biggest obstacle in using many such diversity measures is 536 

interpreting what this single summary statistic might mean biologically. A given value may, in one 537 

case, result from various combinations of richness and ‘evenness’ and thus the same value of a 538 

diversity index may result from an assemblage with low richness and high ‘evenness’ or from a 539 

different assemblage with high richness and low ‘evenness’. In addition we have the uncertainty 540 

about what ‘evenness’ actually comprises, as discussed above (see Section 4.2). The units of many 541 

diversity measures differ greatly, making comparisons very difficult and making interpretation 542 

virtually impossible (Ludwig and Reynolds, 1988). 543 

The idea of a family of diversity measures was formalised in ecology by Hill (1973) although 544 

MacArthur (1965) had first proposed Hill numbers as diversity measures. So-called Hill numbers or 545 

numbers equivalents originated in economics (Adelman, 1969; Ellison, 2010) and physics (Jost, 2006). 546 

They have recently undergone a major resurgence of interest amongst ecologists (e.g. Jost, 2006, 547 

2007, 2010a, 2010b, 2014; Colwell, 2010; Tuomisto, 2010a, 2010b; Chao et al., 2012; 2014a, 2014b; 548 

Gotelli and Ellison, 2013; Chiu and Chao, 2014; Skácelová and Lepš, 2014; Koch and Jurasinski, 2015) 549 

and evolutionary biologists and phylogeneticists (e.g. Jost, 2008; Chao et al., 2010; Chiu and Chao, 550 

2014; Chiu et al., 2014). Colwell (2010) describes Hill numbers as measures of “true diversity” which 551 

treat taxon richness and the numbers equivalents of the Shannon and the Simpson diversity 552 

measures (entropies sensu Jost, 2006) as points along a single mathematical continuum (Hill, 1973). 553 

They are one of several diversity-index families (Tóthmérész, 1995) and one of the most useful for 554 

ordering assemblages or communities of all sizes in terms of their diversity. 555 

Hill’s (1973) diversity measures (Box 2) are in units of taxa and are called ‘effective number of 556 

taxa’ of the assemblage according to the selected diversity measure. Most remarkably, irrespective 557 
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of which diversity measure one starts with (e.g. taxon richness, Shannon entropy, the exponential of 558 

Shannon entropy, Simpson concentration, inverse Simpson, Gini-Simpson index, Renyi entropy, and 559 

many others), a simple algorithm for the effective number of taxa always yields the same formula 560 

(Jost, 2006, 2014). The algorithm calculates the diversity measure for D equally-common taxa (each 561 

taxon therefore has a frequency of 1 / D), sets the resulting expression equal to the actual value of 562 

the diversity measure, and solves that equation for D. This value of D is the effective number of taxa 563 

or “true diversity” (Boenigk et al., 2015). The effective number of taxa is a measure of the degree to 564 

which proportional abundances are distributed among the taxa (Gotelli and Ellison, 2013) (see 565 

Section 2). N0 is the number of taxa in a sample regardless of their abundances, N1 (the exponential 566 

of the widely used Shannon diversity or entropy measure) estimates the number of abundant taxa in 567 

an assemblage as it weights each taxon exactly by its relative abundance, and N2 (the reciprocal of 568 

Simpson’s diversity or concentration measure) estimates the number of very abundant taxa in an 569 

assemblage (Box 2). It pays most attention to the most abundant taxa as it involves the sum of the 570 

squares of the species abundances. Uncommon taxa hardly contribute to N2. In other words, the 571 

effective number of taxa is a measure of the number of taxa in an assemblage when each taxon is 572 

unweighted (N0) or weighted by its abundance (N1) or its squared abundance (N2). As Gotelli and 573 

Ellison (2013) conclude, “Hill numbers provide a useful family of diversity indices that consistently 574 

incorporate relative abundances while at the same time express diversity in units of effective number 575 

of species”. One important property of Hill’s (1973) effective number of taxa is the so-called 576 

‘doubling property’ that ensures the ratios of effective numbers of taxa behave as one would expect 577 

intuitively. Thus if one assemblage is twice as diverse as another, the ratio of their effective number 578 

of taxa is always 2, regardless of the index on which this ratio is based. This is very different from the 579 

behaviour of the ratio of other diversity indices based not on effective numbers of taxa but on the 580 

taxa (Jost, 2014). Jost (2006, 2014) recommends the term “effective number of species [taxa]” or 581 

“numbers equivalents” because the term ‘diversity’ means so many different things to different 582 

biologists. Jost (2014) “hopes that someday biologists can all agree that the word ‘diversity’ should 583 

properly be applied only to quantities like qD [where the exponent q is a non-negative integer that 584 

defines the particular Hill number and D is the diversity index] which have the mathematical 585 

properties we intuitively expect of a diversity” (see Box 2). 586 

Despite Hill numbers being introduced (Hill, 1973) as a unifying notation for diversity measures 587 

in ecology and discussed in several different areas of ecology and palaeoecology (e.g. Peet, 1974; 588 

Daget, 1980; van Dam and ter Braak, 1981; van Dam, 1982; ter Braak, 1983; Birks and Line, 1992), 589 

they remained barely used until Jost (2006, 2007, 2010a) re-introduced Hill numbers in the context of 590 

diversity, evenness, and partitioning diversity. In a Forum of ‘Partitioning Diversity’ all the 591 
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contributing authors agreed that using “numbers equivalents instead of the classical diversity indices 592 

(or entropies) such as the H′ [Shannon index] should be used in any diversity partitioning … Even if 593 

interest is only on describing the diversity of a single assemblage, the numbers equivalent, not the 594 

entropy, should be the diversity measure of choice” (Ellison, 2010). Hill’s N2 has been widely used as 595 

a diversity measure in palaeolimnology, probably not because of its mathematical properties or 596 

ecological elegance but because it was (until Canoco 5; ter Braak and Šmilauer, 2012) the only 597 

diversity measure calculated in the widely-used CANOCO program (versions 2 to 4.5). The neglect of 598 

Hill numbers by ecologists until Jost (2006) is surprising in light of Routledge’s (1979) early review on 599 

“Diversity indices: which ones are admissible?” in which he concludes that “N2 is the best, single 600 

measure of diversity, and that the only other index worth considering is N1”. 601 

Gotelli and Ellison (2013) discuss two caveats in the use of Hill numbers. First, no diversity 602 

measure can completely separate taxon richness from taxon evenness (Jost, 2010a) (see Section 4.2). 603 

Second, Hill numbers can be influenced by sampling effects, for example N0 is influenced by the 604 

number of individuals in the count but this can be standardised by rarefaction analysis solved 605 

analytically (e.g. Heck et al., 1975) or by repeated random subsampling without replacement (Gotelli 606 

and Ellison, 2013) (see Sections 4.1 and 4.2). Sample sizes can also influence values of N1 and N2 but 607 

their impacts decrease as the exponent q in the general formula for calculating a Hill number 608 

increases (Soetaert and Heip, 1990). As q increases, the diversity measure places ever increasing 609 

weight on the most abundant taxa in the assemblage. With q = 5, the Hill number rapidly converges 610 

to the inverse of the relative abundance of the most common taxon. 611 

One potential solution to the possible effects of sample size on N1 and N2 is to estimate not 612 

only N0 but also N1 and N2 from a rarefied sample (or many randomised subsamples without 613 

replacement) of the original assemblage (Soetaert and Heip, 1990; Rühland et al., 2014; Felde et al., 614 

2015) (see Sections 4.1 and 4.2) and to do this for all the assemblages of interest, using the same 615 

appropriate base-sum, thereby providing estimates of N0, N1, and N2, and their associated variances 616 

for each assemblage independent of count size (see also Kindt et al., 2006; Chao et al., 2014a, 2014b; 617 

Colwell and Elsensohn, 2014). 618 

Pollen analysts have rarely used diversity measures and have concentrated on estimates of 619 

palynological richness (Birks and Line, 1992). Diversity measures that have been used include 620 

Shannon’s entropy (e.g. Moore, 1973; Küttel, 1984) and Simpson’s index (e.g. Cwynar, 1982; Morley, 621 

1982; Ritchie, 1982). These measures can be easily converted into Hill (1973) numbers for ease of 622 

comparison and interpretation. Hurlbert’s (1971) PIE (see Section 4.2) has also been used but as a 623 

measure of ‘evenness’ rather than of diversity (e.g. Peros and Gajewski, 2008; van der Knaap, 2009; 624 
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Colombaroli and Tinner, 2013; Colombaroli et al., 2013; Schwörrer et al., 2015). Meltsov et al. (2013) 625 

used Simpson’s diversity index (; N2 = 1 – ) and its related evenness measure (E1/D = N2 / N0) to 626 

quantify landscape diversity within eight radii (250–2500 m) around their study lakes in southern 627 

Estonia in order to investigate the role of landscape structure and mosaic and floristic richness in 628 

influencing palynological richness. 629 

The relation between Hill numbers and Hurlbert’s (1971) PIE measure has been clarified 630 

(Dauby and Hardy, 2012). Chao et al. (2014a, 2014b) show that these two classes of infinity orders 631 

are mathematically equivalent and thus they contain the same information about diversity. Given a 632 

reference assemblage, rarefaction and extrapolation formulae (Colwell et al., 2012) for taxon 633 

richness provide estimates of Hurlbert’s PIE measure. The approach of Chao et al. (2014a, 2014b) 634 

thus unifies Hill numbers and Hurlbert’s (1971) measures as tools for quantifying taxon richness and 635 

diversity. 636 

Jost (2014) recommends that when measuring diversity, the trio of diversity of order zero (N0, 637 

taxon richness), diversity of order one (N1, exponential of Shannon entropy), and diversity of order 638 

two (N2, reciprocal of the Simpson index) gives more information about the assemblages than any 639 

single measure. It makes good sense to present all three so that the degree of dominance in the 640 

assemblages can be seen by looking at the changes from N0 to N1, and from N1 to N2. Hill’s (1973) 641 

approach of using a continuous range of diversities (0, 0.5, 1, 1.5, 2) and graphing the results gives a 642 

clear visualisation of the degree of dominance in the assemblage. This is useful when comparing a 643 

small number of samples. N0, N1, and N2 or N0 and N2/N1 are more informative when considering a 644 

full pollen sequence. Diversity of order one (N1) should be used when estimating independent alpha 645 

and beta diversities of multiple assemblages (Jost, 2007, 2010b, 2014). Alpha and beta diversity and 646 

diversity partitioning are discussed below under Future challenges and research opportunities 647 

(Section 7). 648 

4.4 Statistical modelling techniques 649 

Quantifying and evaluating the numerical relationship between pollen richness and plant 650 

richness (both N0) and between pollen diversity (N1, N2), plant diversity (N1, N2), pollen evenness 651 

(N2 / N1, N2 – 1 / N1 – 1, etc.), and plant evenness (N2 / N1, N2 – 1 / N1 – 1, N1 – N2, etc.) when the 652 

floristic data have been translated into pollen equivalents involves statistical regression models 653 

within the general framework of generalised linear models (GLMs) with a Poisson (e.g. Goring et al., 654 

2013) or normal error function. The same regression approach can be used for evaluating 655 

relationships between pollen richness and landscape structure (Meltsov et al., 2013). For an 656 
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introduction to statistical modelling using GLM and model selection, see Birks (2012b). More detailed 657 

accounts of GLM modelling include Crawley (1993, 2005, 2007), Faraway (2005, 2006), and Fox and 658 

Weisberg (2011). As in all statistical modelling, the simplest statistically significant model should be 659 

the one favoured (Birks, 2012b). There are various criteria for jointly assessing model simplicity and 660 

statistical significance such as the Akaike Information Criterion and the related Bayes (Schwarz) 661 

Information Criterion where model fit, complexity, and sample size are all considered (see Burnham 662 

and Anderson, 2002; Anderson, 2008; Hastie et al., 2009; Murtaugh, 2009; Gotelli and Ellison, 2013 663 

for details). 664 

5. Problems in assessing modern pollen–plant relationships 665 

5.1 Introduction 666 

As in all Q-time and Deep-time palaeoecology, varying data quality creates problems in 667 

comparing and synthesising data sets, for example in assessing pollen–plant richness relationships, 668 

taxon-richness changes through time, and diversity patterns in space. The highest quality pollen data 669 

are required in evaluating pollen–plant richness relationships in terms of consistent site selection, 670 

careful and consistent field sampling, consistent laboratory and analytical procedures, and pollen 671 

taxonomic precision. How to obtain appropriate richness data for modern vegetation is not fully 672 

resolved (see Section 3.2). The studies that have compared modern pollen richness with 673 

contemporary plant richness  have all used very different approaches to acquiring modern plant 674 

richness values, some based on field vegetation surveys (e.g. Birks, 1973a; Odgaard, 2008; Meltsov et 675 

al., 2011, 2013; Felde et al., 2014a, 2015), others based entirely on regional databases (e.g. Goring et 676 

al., 2013). A similarly wide range of vegetational sampling approaches has also been used in 677 

collecting vegetation data for estimating pollen-representation values (‘R-values’) or pollen-678 

productivity estimates (PPEs) (e.g. Davis, 1963; Andersen, 1970; Parsons et al., 1980; Prentice and 679 

Parsons, 1983; Prentice et al., 1987; Broström et al., 2004, 2005, 2008; Räsänen et al., 2007; Gaillard 680 

et al., 2008; Bunting and Hjelle, 2010; Matthias et al., 2012; Bunting et al., 2013; Matthias and 681 

Giesecke, 2014). Sampling and surveying modern vegetation in appropriate and robust ways are keys 682 

in assessing quantitative relationships between pollen and modern floristic richness, vegetation 683 

composition, or plant abundances. 684 

5.2 Biases in pollen-assemblage records of richness 685 

Odgaard (1999, 2001, 2007, 2008, 2013) has emphasised that there are three major biases in 686 

interpreting changes in pollen richness from fossil assemblages as reflections of past floristic 687 
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richness. These biases also relate to assessing modern pollen–plant richness relationships. The biases 688 

are taxonomic precision, sample size, and pollen representation (Odgaard, 1999, 2001, 2007, 2013). 689 

5.2.1 Taxonomic precision 690 

Pollen and pteridophyte spores can often only be identified to a group of species (e.g. 691 

Ranunculus acris-type), to genus level (e.g. Quercus), or even only to family level (e.g. Poaceae). This 692 

restricted taxonomic precision results inevitably in a non-linear relationship between plant richness 693 

and pollen richness (Odgaard, 1994, 2007, 2013). The number of pollen and spore taxa in an 694 

assemblage—modern or fossil—is clearly not a direct reflection of plant richness in the vegetation 695 

that produced the pollen assemblage (see Table 2). With a very low number of plant species in the 696 

vegetation (e.g. middle boreal forest, heathland, arctic tundra) the ratio between plant and pollen 697 

richness may be close to 1:1 or 1.5:1. In vegetation with more taxa (e.g. temperate deciduous forests, 698 

grasslands) the ratio may be 2:1 or 3:1, or even higher (Odgaard, 2013). Odgaard (1994) shows that 699 

the modern relationship between plant and pollen richness is almost identical in three different 700 

vegetation types in western Denmark. He used this modern relationship to transform pollen richness 701 

(N0 based on rarefaction) into estimates of past floristic richness (Odgaard, 2013). It is not known 702 

whether the relationships between plant and pollen richness that Odgaard (1994) established hold 703 

for other vegetation types elsewhere. Preliminary studies in Norway (Felde, 2015) and Scotland 704 

(Birks, unpublished data) suggest broadly similar and robust relationships between plant richness and 705 

pollen richness. In this case pollen types can be thought of taxa ‘higher’ (broader) than plant species. 706 

In a very different context, namely conservation biogeography and contemporary biodiversity 707 

assessment, Mazaris et al. (2010) have shown that one can predict the number of plant species 708 

surprisingly well from the richness of a few common genera, families, or orders. Many biodiversity 709 

assessments today are based on genus or ‘higher’ taxa (e.g. Williams and Gaston, 1994; Andersen, 710 

1995; Pearman and Weber, 2007). These and other studies illustrate the robust nature of species‒711 

‘higher’ taxon relationships. 712 

An alternative approach to the problem of bias due to taxonomic precision is to construct 713 

pollen‒plant translation tables where plant species in the flora of interest (e.g. Norway) are grouped 714 

into the relevant pollen or spore morphological taxa, given our present knowledge of the pollen and 715 

spore morphology of the flora in the area of interest (Bennett, 1995-2007; Felde et al., 2012, 2014a, 716 

2015; Felde, 2015). There is clearly a loss of information in such translations as families such as 717 

Poaceae or Cyperaceae that contain many plant species produce only a small number (ca. 6) of 718 

distinctive pollen morphological types. This bias due to taxonomic imprecision will only be reduced 719 

by improved pollen morphology and  microscopy (e.g. Andersen, 1979; Odgaard, 1994; Beug, 2004; 720 
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Lacourse and May, 2012) and by alternative approaches to pollen identification and/or counting (e.g. 721 

Birks and Peglar, 1980; Lindbladh et al., 2002; Heintzmann and Ficz, 2006; Huang et al., 2009; 722 

MacLeod et al., 2010; Barton et al., 2011; Holt et al., 2011; May and Lacourse, 2012; Punyasena et al., 723 

2012; Sivaguru et al., 2012; Johnsrud et al., 2013; Mander et al., 2013, 2014; Holt and Bennett, 2014; 724 

Jan et al., 2015). 725 

5.2.2 Pollen-sample and underlying pollen-population magnitudes 726 

As the pollen richness of an assemblage—modern or fossil—is determined by the pollen-count 727 

size (Rull, 1987), all comparisons of pollen richness between assemblages must be based on richness 728 

estimated from samples of identical size. Rarefaction analysis (Tipper, 1979; Birks and Line, 1992) 729 

provides pollen-richness estimates for all assemblages as if they were all based on counts of identical 730 

size. Rarefaction does not allow extrapolation to numbers of taxa in a larger sample (but see Gotelli 731 

and Colwell, 2011; Colwell et al., 2012; 2004; Chao et al., 2014), only interpolation to a count size or 732 

base-sum smaller than the largest count size in the data set of interest (Birks and Line, 1992; 733 

Odgaard, 2013).  734 

Odgaard (1999, 2007, 2013) emphasises that pollen-richness estimates are strongly biased by 735 

the ‘evenness’ of the sampled pollen assemblage and by a varying underlying pollen population size. 736 

The high pollen production and wide dispersal of many wind-pollinated plants results in the 737 

dominance of these pollen types in pollen assemblages, whereas pollen from entomophilous species 738 

may be rare or even absent, despite the plants being frequent in the vegetation. This representation 739 

bias, a combination of differential pollen productivity and differential pollen dispersal, leads to a 740 

skewed abundance distribution with high unevenness (or low evenness) of pollen types (Giesecke et 741 

al., 2014). Räsänen et al. (2004) show that rarefaction estimates of pollen richness correlate strongly 742 

with evenness based on Pielou’s (1975) J′ which, in terms of Hill numbers is  743 

loge (N1) / loge (N0) 744 

It is possible that pollen richness and evenness are inherently correlated in the Räsänen et al. (2004) 745 

study because the evenness measure used is not independent of observed richness and hence count 746 

size as N0 forms the denominator. As discussed above (Section 4.3), it is important to use evenness 747 

measures that are independent of the number of taxa (and hence count size). N0 should be 748 

standardised for all the assemblages being considered and N1, N2, and derived evenness measures 749 

based on Hill numbers (see above) should be based on a rarefied sample (e.g. Rühland et al., 2014) or 750 

an ensemble of randomly drawn rarefied samples for fair comparisons of richness, diversity, and 751 

evenness, and their associated variances (Chao et al., 2014; Felde et al., 2015). 752 
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An important assumption of rarefaction analysis (Birks and Line, 1992; Gotelli and Colwell, 753 

2011; Gotelli and Ellison, 2013) is that the size of the underlying pollen population (all the pollen 754 

produced in the APSA) from which the pollen assemblage or sample is derived from is constant in 755 

space or time. This is probably rarely the case (Odgaard, 2007, 2013), for example between treeless 756 

late-glacial, tree-dominated mid-Holocene, and herb- and heath-dominated late-Holocene pollen 757 

assemblages. If the underlying pollen population size varies whilst the sample size is kept constant 758 

(by rarefaction), the sampled fraction of the vast (and unknown) underlying pollen population varies 759 

and pollen richness may change as a result of this effect (Odgaard, 2007, 2013). Odgaard (1999) and 760 

van der Knaap (2009) (see also Connor et al., 2012; Ammann et al., 2013; Colombaroli and Tinner, 761 

2013; Colombaroli et al., 2013) present some solutions to reduce the dependence of pollen richness 762 

on the sample-to-population ratio by using ‘quasi-absolute’ (Odgaard, 1999) or ‘absolute’ (van der 763 

Knaap, 2009) pollen-accumulation rates (flux density) to estimate the pollen richness that would 764 

have been recorded if the same fraction of the underlying pollen population (pollen production from 765 

the APSA) had been sampled. This problem of the changing size of the underlying pollen population is 766 

most acute in situations where vegetation and its resulting pollen population has changed markedly 767 

over time (e.g. in the late-glacial (van der Knaap, 2009; Ammann et al., 2013)) but it can also occur in 768 

modern assemblages from different vegetation types (e.g. tundra, boreal forest) which have very 769 

different modern pollen productivities (Ritchie and Lichti-Federovich, 1967; Birks, 1973a). 770 

5.2.3 Pollen-representation bias 771 

Giesecke et al. (2014) argue that pollen richness estimated from rarefaction analysis is a simple 772 

measure with many advantages. As discussed above, it is influenced by the detection probability of 773 

rare pollen types. Pollen types from plant taxa with a high pollen production and wide dispersal 774 

commonly dominate a pollen assemblage, thereby reducing the probability of detecting pollen types 775 

with a poorer representation and/or a low abundance in the RPSA or APSA (Odgaard, 1999, 2007, 776 

2013; Weng et al., 2006). Pollen counts can, however, be transformed using general purpose pollen-777 

representation values (e.g. Andersen, 1970, 1978) or more detailed pollen-productivity estimates 778 

(e.g. Broström et al., 2008; Gaillard et al., 2008; Poska et al., 2011; Hjelle and Sugita, 2012; Mazier et 779 

al., 2012; Hjelle et al., 2015; Mehl et al., 2015) in conjunction with the REVEALS model (Sugita, 2007) 780 

to reduce the inherent representation bias in pollen assemblages. The transformed counts can then 781 

be used in rarefaction to estimate N0 and subsequently N1, N2, and related evenness measures 782 

(Felde et al., 2015; Matthias et al., 2015). It is important to note, however, that recent work on 783 

deriving PPEs in different geographical areas or ecological landscapes (e.g. Abraham and Kozakova, 784 

2012; Abraham et al., 2014; Baker et al., 2015; Niemeyer et al., 2015), at different historical times 785 

(e.g. Theuerkauf et al., 2015), or based on different pollen dispersal models (e.g. Theuerkauf et al. 786 
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2012; Sjögren et al., 2015) is highlighting important differences in such estimates and the problems in 787 

deriving robust PPEs. Moreover, reducing pollen-representation bias will only really be achievable for 788 

the most abundant pollen taxa as obtaining reliable and robust representation values and PPEs is 789 

very difficult and extremely time consuming. Such values for the rare pollen taxa would have a high 790 

uncertainty and variance (Parsons and Prentice, 1981). 791 

Alternative approaches to minimising pollen-representation bias and thus estimating taxon 792 

abundances over space and time involve Bayesian hierarchical modelling (Paciorek and McLachlan, 793 

2009). These approaches have considerable promise because of their explicit spatio-temporal 794 

representation, quantification at the scale of trees and vegetation rather than pollen, and 795 

characterisation of the many uncertainties in estimating past plant abundances (Paciorek and 796 

McLachlan, 2009). 797 

5.3 Richness, evenness, and diversity concepts 798 

An inherent problem in any assessment of pollen–plant richness, evenness, or diversity 799 

relationships is that the three concepts are very closely linked (Jost, 2010a), with diversity consisting 800 

of components of richness and of evenness. If based on Hill numbers and estimated from rarefied 801 

samples to minimise bias due to count size (Felde et al., 2015), richness, evenness, and diversity are 802 

numerical summary statistics (sensu Birks HJB, 2013) of pollen assemblages, or “assemblage 803 

composition parameters” (Hurlbert, 1971). Following Hill (1973), plots of N0 richness, N1 and N2 804 

diversity, and N1 / N0, N2 / N1, and N2 – 1 / N1 – 1 evenness (all with their associated variances) for 805 

pollen assemblages in space or time can provide useful summaries of certain aspects of complex 806 

multivariate pollen-assemblage data (e.g. Felde, 2015; Felde et al., 2015). They are “mere numbers 807 

and should be distinguished from the theories which they support” (Hill, 1973). 808 

6. Other approaches to studying pollen-assemblage richness patterns 809 

Giesecke et al. (2012, 2014) experimented with the sample-based slope of the rank-order 810 

abundance as well as between-sample taxon abundance using fossil data from sites in different parts 811 

of Europe as a means of assessing equitability in pollen assemblages. Although Giesecke et al. (2012, 812 

2014) used these curves to detect patterns of pollen richness and equitability through time, the same 813 

approach can be applied to modern pollen data to assess palynological equitability visually and not 814 

based on Hill numbers or other diversity or equitability measures. When plotting log-transformed 815 

pollen percentages (proportions) of a sample against rank-order, the slope of the plot is an intuitive 816 

and graphical measure of palynological equitability (Nee et al., 1992). This slope is influenced by 817 

variations in the pollen count-size through changes in the probability of finding rare pollen taxa with 818 
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different count sizes (Rull, 1987; Weng et al., 2006). Giesecke et al. (2012, 2014) minimised this 819 

count-size dependency by setting thresholds for taxon inclusion (>1% (Giesecke et al., 2014) or >0.3% 820 

(Giesecke et al., 2012)) in a particular pollen assemblage. However, the value of the threshold 821 

determines the aspect of the abundance distribution of pollen types in the sample being 822 

investigated. When using a low threshold, the relationship in a pollen sample is driven by the number 823 

of taxa or richness, whereas a higher threshold evaluates the equitability of the abundant taxa which 824 

is close to what many diversity measures estimate. 825 

The accumulation of taxa over a consecutive series of modern samples (e.g. latitudinally within 826 

a broad vegetation type such as Setesdal in southern Norway (Felde et al., 2014a, 2015)) following 827 

Giesecke et al. (2012) permits plots of log-transformed taxon accumulation versus log-transformed 828 

accumulated numbers of grains counts for different vegetation types today. Such plots can help 829 

identify patterns of pollen richness and equitability between vegetation types due, for example, to 830 

shifts in the relative abundance of high and low pollen producers or changes in the evenness and 831 

diversity of the landscape mosaic (Giesecke et al., 2014). The same approach can be applied to an 832 

entire modern pollen data set and break-points in the taxon-accumulation curve identified by piece-833 

wise regression (Toms and Lesperance, 2003; Heegaard et al., 2006; Engels and Cwynar, 2011). The 834 

geographical location of these break-points along the transect of sites or along the first ordination 835 

axis (principal components analysis, (detrended) correspondence analysis, principal curves - Felde et 836 

al., 2014b) of the modern pollen data can then be compared with changes in the modern vegetation 837 

data, possibly also summarised as a major ordination axis. 838 

Taxon-accumulation curves can also be used to illustrate and quantify turnover (beta diversity) 839 

within modern assemblages from different vegetation or habitat types or geographical areas (e.g. 840 

Ricotta et al., 2002; Magurran, 2004; Kindt and Coe, 2005; Kindt, 2014; Terlizzi et al., 2014) and to 841 

compare richness, evenness, and diversity properties of different assemblages (e.g. Gotelli and 842 

Colwell, 2001; Ugland et al., 2003; Colwell et al., 2004; Magurran, 2004, 2011; Kindt et al., 2006; 843 

McGill, 2011). 844 

In the context of fossil pollen assemblages, Giesecke et al. (2012) emphasise that taxon-845 

accumulation curves showing the pollen taxa–pollen count relationship for a pollen-stratigraphical 846 

sequence are, in effect, illustrating taxon–time relationships. Such taxon–time curves have been 847 

shown to be valuable in ecological and Deep-time studies (e.g. McKinney and Frederick, 1999; Adler 848 

and Lauenroth, 2003; White et al., 2006). They may also be useful in Q-time studies (e.g. Giesecke et 849 

al., 2014) where their strength lies in using the many rare taxa and potentially in characterising 850 

changes in landscape patterns. They are simple to construct (Oksanen et al., 2013; Kindt, 2014) and 851 
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they should be used more widely to summarise compositional properties of pollen-assemblage data 852 

in time and space. 853 

7. Future challenges and research opportunities 854 

In this Section we outline six future challenges and potential research opportunities in studying 855 

pollen-assemblage richness patterns in space and time. These concern the interpretation of past 856 

pollen-assemblage richness changes; estimation of taxon richness from plant macrofossils; studying 857 

pollen richness at different ecological or spatial scales; partitioning diversity and estimating beta 858 

diversity; the concepts of the species pool, pollen pool, hidden diversity, dark diversity, and dark 859 

richness; and functional and phylogenetic diversity. 860 

7.1 Interpretation of past pollen-assemblage richness 861 

Recent studies have shown that modern pollen-assemblage richness does reflect, in part, 862 

contemporary floristic richness at both the local site and regional landscape scales. Odgaard (2007, 863 

2013) comments in discussing fossil pollen assemblages and past pollen richness that “rarefaction 864 

estimates are often inappropriately interpreted as an index of past species richness” and he 865 

concludes that “rarefaction estimates of pollen species are … a complex reflection of many processes 866 

such as pollen production, evenness, pollen dispersal, landscape pollen productivity, and possible 867 

floristic richness. Although more work is needed to resolve these complexities, pollen productivity 868 

seems a much more important control of palynological richness than does floristic richness”. In the 869 

same vein, Goring et al. (2013) question whether temporal changes in pollen richness reflect 870 

underlying changes in plant richness or some other change in plant composition or structure. 871 

When Birks and Line (1992) introduced rarefaction analysis to estimate pollen richness from 872 

late-Quaternary pollen-stratigraphical sequences, they suggested that “although factors such as local 873 

site characteristics and pollen production, dispersal, and input may influence temporal changes in 874 

richness, changes in palynological richness are interpreted as reflecting the changing floristic richness 875 

of the vegetation types in the pollen-source area of a lake and the changing mosaic structure of the 876 

landscape through time”. They emphasised that the “combination of a changing mosaic structure of 877 

the landscape through time and the floristic richness of the constituent vegetational types within the 878 

landscape” are the main drivers of the changing patterns of pollen richness through time. 879 

We now know that with high-quality pollen data and appropriate vegetation data and by 880 

reducing the taxonomic and, if possible, the pollen representation ( evenness) biases inherent in 881 

pollen assemblages (Odgaard 1999, 2001, 2007, 2013), there are statistically significant relationships 882 
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between pollen and plant richness (e.g. Felde et al., 2015). Meltsov et al. (2013) studied pollen and 883 

plant richness around nine lakes in southern Estonia along a land-cover gradient from semi-open to 884 

closed forest. They estimated landscape structure within eight radii (250–2000 m) around each lake 885 

on the basis of landscape openness and three summary statistics of landscape richness, evenness, 886 

and diversity. They show that pollen richness has a statistically significant positive relationship with 887 

landscape structure within radii greater than 1000 m. They conclude that within one floristic or 888 

climatic region “pollen richness gives reliable estimates about the variation in floristic richness and 889 

landscape structure; however, caution must be taken when comparing pollen-inferred vegetation 890 

diversities from different regions or when interpreting fossil pollen records from times with highly 891 

different vegetation associations”. This Estonian study is, as far as we know, the first study where 892 

modern pollen richness is considered specifically in relation to landscape structure. A second study in 893 

Germany by Matthias et al. (2015) confirms some of the trends in the Estonian study and shows that 894 

palynological richness to a rarefaction base-sum of 10 as an index of pollen diversity (highly 895 

correlated to N1 and N2) strongly reflects landscape diversity. The results of Meltsov et al. (2013), 896 

Felde et al. (2015), and Matthias et al. (2015) raise several questions: is the observed relationship 897 

between modern pollen richness and floristic richness at the regional scale (Felde et al., 2015) a 898 

reflection of a direct pollen–vegetation richness link; or alternatively, is it a result of a landscape 899 

mosaic-vegetation richness link and a vegetation-pollen richness link? A third hypothesis is that it is a 900 

result of complex and poorly understood interactions between landscape and vegetation dynamics, 901 

structure, and diversity, and hence pollen richness. Ecologists are increasingly recognising the 902 

importance of landscape structure and heterogeneity (‘geodiversity’) in influencing floristic and 903 

vegetation richness over a range of spatial scales (e.g. Burnett et al., 1998; Nichols et al., 1998; 904 

Carranza et al., 2007; Rocchini et al., 2010; Gray, 2013; Stein et al., 2014; Hjort et al., 2012, 2015). 905 

There is thus a clear need for many more such studies that take advantage of new quantitative 906 

approaches to estimate landscape structure and heterogeneity and habitat fragmentation (see Box 3 907 

for a selection of relevant publications) as a basis for comparing modern pollen richness, floristic 908 

richness, and landscape features. 909 

7.2 Estimating taxon richness from plant macrofossil assemblages 910 

There is renewed interest in Quaternary plant macrofossils and an increase in the quantity and 911 

quality of studies based on plant macrofossils (e.g. Birks HH, 2001, 2013; Birks HJB and Birks HH, 912 

2008; Jackson, 2012; Birks HH and Birks HJB, 2013; Birks HJB, 2014; Jackson et al., 2014). Quaternary 913 

macrofossil assemblages have, however, rarely been used to estimate taxon richness (Blarquez et al., 914 

2010, 2013; Leys et al., 2014) in contrast to Deep-time palaeobiological studies involving animal or 915 
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plant macrofossils (e.g. Foote and Miller, 2007; McElwain and Punyasena, 2007; McElwain et al., 916 

2007, 2009; Mander et al., 2010; Patzkowsky and Holland, 2012) or Quaternary palaeozoological 917 

studies (e.g. Lyman, 2008; Hadly and Barnosky, 2009; Blois et al., 2010; Macken and Reed, 2014). It is 918 

clearly not a simple task to estimate an ecologically useful richness measure from plant macrofossil 919 

data as there are even more potential sources of bias to be considered and accounted for, including 920 

taxonomic problems, the mixed nature of macrofossil data, count-size, productivity, dispersability, 921 

deposition, and preservation (Jackson, 2012; Birks, 2014) than with pollen data. This is an area where 922 

more work is clearly needed (e.g. Blarquez et al., 2013). 923 

7.3 Pollen richness at different ecological or spatial scales 924 

Whittaker (1977) proposes that plant richness or diversity can be studied as inventory diversity 925 

at the community (alpha diversity), landscape (gamma diversity), and regional (epsilon diversity) 926 

scales (see also Whittaker et al., 2001; Willis and Whittaker, 2002; Jurasinski et al., 2009; Tuomisto, 927 

2010a, 2010b; Anderson et al., 2011) along with changes or turnover (differentiation diversity) 928 

between communities (beta diversity) and between landscapes (delta diversity) (Odgaard 2007, 929 

2013) (see Table 3). Contemporary ecologists (e.g. Ellison, 2010) and Deep-time palaeobiologists (e.g. 930 

Sepkoski, 1988) have simplified Whittaker’s (1977) five components to three (Whittaker, 1972) – 931 

alpha, beta, and gamma. Alpha is local richness or diversity and is estimated or measured within a 932 

defined place such as a vegetation quadrat, a forest plot, or a single stream. Gamma is regional 933 

richness or diversity and it is the total diversity estimated or measured for a group of localities in an 934 

area, such as all quadrats in a study, all forest stands, or all streams in a catchment. Beta diversity 935 

links alpha and gamma, or local and regional, richnesses and diversities and is “the extent of 936 

differentiation of communities along habitat gradients” (Whittaker, 1972; Ellison, 2010; Beck et al., 937 

2013). Alpha and gamma richness or diversity can be estimated or measured directly either as 938 

numbers of species (richness) or as numbers of species weighted by their relative abundances in the 939 

sample (diversity). Beta diversity, in contrast, is a quantity derived from alpha and gamma richnesses 940 

or diversities (Ellison 2010). Odgaard (2007, 2013) suggests that pollen data may reflect the alpha, 941 

gamma, and epsilon scales (sensu Whittaker, 1977) or the alpha and gamma scales (sensu Whittaker, 942 

1972) depending on site size, location, and other features whereas plant macrofossil data are more 943 

local and primarily reflect the alpha scale. 944 

The estimation of beta diversity is discussed in Section 7.4 but here we outline possible future 945 

challenges in reconstructing and assessing past richness patterns at the gamma (landscape) and 946 

alpha (local) scales. Odgaard (2007, 2013) summarises the very detailed study of 13 pollen sequences 947 

from a 15 ha bog in south Wales by Smith and Cloutman (1988) in terms of the changing richness of 948 
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inferred vegetation types (based on pollen assemblages) through the Holocene and the progressive 949 

homogenisation and impoverishment of landscape diversity as blanket bog expanded in the 950 

landscape in the last 3000 years. This reconstruction is at the landscape (gamma diversity) scale. It is 951 

possible to shift to the local site scale (alpha diversity) and to study richness changes through time 952 

within the landscape scale, along the lines of the unique study of 11 very small upland pollen sites in 953 

Scotland by Hanley et al. (2008). The local changes in pollen richness were then related statistically to 954 

changes in land management, livestock grazing pressures driven by economic change, and land 955 

abandonment. By careful study design, rigorous site selection, and detailed pollen analyses, it would 956 

be possible to detect changes in richness in time and, to some extent, in space (Birks, 2012c) and 957 

hence to improve the application of palaeoecology in conservation and land management (Davies et 958 

al., 2014). 959 

Issues about ecological and spatial scales in palaeoecology and modern ecology (e.g. Whittaker 960 

et al., 2001; Willis and Whittaker, 2002; Birks, 2012c; Barton et al., 2013; Seddon et al., 2014) 961 

continue to create conceptual, methodological, and communication barriers between ecologists and 962 

palaeoecologists (Varela et al., 2015). Bennington et al. (2009) comment “The greatest barrier to 963 

communicating and collaborating with neoecologists is not that data collected from extant 964 

ecosystems are necessarily different or more complete than paleoecological data but, rather, that 965 

these two data sets commonly represent or are collected at different scales. If such differences of 966 

scale can be understood and quantified, then they can be reconciled and even exploited.” Questions 967 

of scale are critical in the interpretation of richness and diversity patterns in both ecology and 968 

palaeoecology (Odgaard 2007, 2013; Jackson, 2012; Birks, 2012c, 2014; Jackson et al., 2014) and 969 

appropriate definitions of scales of study need careful thought and further development if 970 

neoecologists and palaeoecologists are to communicate and collaborate effectively. 971 

7.4 Diversity partitioning and estimating beta diversity 972 

The basic idea of diversity partitioning or decomposition is that the total estimated diversity of 973 

a study area can be partitioned into the diversity inherent in its constituent parts (inventory diversity) 974 

plus the diversity due to the differences between these constituent parts (differentiation diversity) 975 

(Olszewski, 2010). Diversity partitioning is increasingly being used in ecology (e.g. Legendre et al., 976 

2005, 2009; Głowacki et al., 2011), biogeography (e.g. Qian et al., 2005), conservation biology (e.g. 977 

Jost et al., 2010), and Deep-time palaeoecology (e.g. Patzkowsky and Holland, 2007; Mander et al., 978 

2010), as a tool for directly addressing how the structure of higher-level systems reflect interactions 979 

between lower-level units in response to environmental and evolutionary changes. 980 
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As outlined above (Section 7.3) ecologists tend to work with three components of diversity 981 

(Table 3) – alpha (an inventory diversity), beta (a differentiation diversity), and gamma (an inventory 982 

diversity). Whilst alpha and gamma diversities can be measured (or at least estimated) as a result of 983 

surveys or inventories (Jurasinski et al., 2009), beta diversity is a derived quantity and there is no 984 

consensus about how to derive this quantity from alpha and gamma diversities and how to interpret 985 

beta diversity (Ellison, 2010). Whittaker (1960) proposes that gamma diversity is the product of alpha 986 

and beta diversity (multiplicative model) and thus beta diversity can be estimated by dividing gamma 987 

by alpha. Lande (1996) (see also Veech et al., 2002) suggests that an additive model of diversity 988 

(alpha + beta = gamma) provides a more natural means of estimating beta diversity as an additive 989 

concept (Ellison, 2010; Legendre, 2014). Jost (2007) and Jost et al. (2010) propose that by using Hill 990 

numbers, Whittaker’s multiplicative concept (alpha  beta = gamma) is true for all indices. In this 991 

case, Jost’s (2007) “true beta diversity” is the effective number of distinct communities or 992 

assemblage types (see Felde et al., 2015 for examples). Jost (2007) also shows that Shannon’s 993 

entropy is the only standard diversity measure that can be decomposed into meaningful alpha, beta, 994 

and gamma components when assemblage weights are unequal. Jost’s (2007) proposals have 995 

naturally led to considerable discussion, resulting in a Forum in Ecology (Ellison, 2010) with 996 

contributions by Baselga (2010), Jost (2010b), Ricotta (2010), Veech and Crist (2010a, 2010b), and 997 

Wilsey (2010). Little consensus emerged about how to partition diversity, as all the approaches 998 

discussed make demands on the underlying sampling and make simplifying assumptions about the 999 

real world (Ellison, 2010). Ellison (2010) concludes “a real breakthrough would require a method to 1000 

measure beta diversity independently of either alpha or gamma diversities” and “there is much yet 1001 

to be done to identify and characterise patterns of biological diversity”. Tuomisto (2010a, 2010b, 1002 

2010c, 2011) proposes that “true beta diversity” is obtained when the effective number of species in 1003 

a data set (“true gamma diversity”) is multiplicatively partitioned into the effective number of species 1004 

per compositionally distinct virtual sampling unit (“true alpha diversity” αd) and the effective number 1005 

of such compositional units (βmd = γ / αd) (Tuomisto, 2010a, 2010c, 2011). Partitioning “true gamma 1006 

diversity” multiplicatively rather than additively into alpha and beta components permits a unified 1007 

treatment not only of alpha and gamma diversities but also beta diversity as “a count of an effective 1008 

number of types of entities (Routledge 1977, 1979, Jost 2006, 2007)” (Colwell, 2010). Diversity 1009 

partitioning and beta diversity remain remarkably contentious issues in ecology (e.g. Pélissier and 1010 

Couteron, 2007; de Bello et al., 2010; Marcon et al., 2012; Baselga and Leprier, 2015) despite the 1011 

recent advances by Jost (2007, 2010b), the comprehensive reviews by Tuomisto (2010a, 2010b) and 1012 

Jurasinski et al. (2009), and the subsequent commentaries by Juransinki and Koch (2011), Tuomisto 1013 

(2011), and Moreno and Rodríguez (2010, 2011). 1014 
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An important attempt to try to resolve the debates about diversity partitioning (Chao et al., 1015 

2012) clarifies the terms “independence” and “statistical independence”. Multiplicative beta diversity 1016 

depends on the number of assemblages whereas additive beta diversity depends on alpha 1017 

(equivalently of gamma) diversity. They propose transformations to remove these dependencies and 1018 

demonstrate that the transformed multiplicative beta and additive beta diversities both lead to the 1019 

same classes of measures which are always in the range of 0–1. They can thus be used to compare 1020 

relative similarity or differentiation among assemblages or community types across one or more 1021 

regions (Chao et al., 2012). 1022 

Rarefaction analysis is another potentially useful approach to estimating beta diversity (e.g. 1023 

Olszewski, 2004, 2010; Crist and Veech, 2006). Olszewski (2010) suggests that the divergence 1024 

between sample-based (groups of samples or stratigraphic sequences – Gotelli and Colwell, 2001, 1025 

2011; Scarponi and Kowalewski, 2007; Chiarucci et al., 2008; Gotelli and Ellison, 2013) and individual-1026 

based (single assemblage or sequence) rarefaction curves of a composite collection (gamma 1027 

diversity) incorporating all the samples (alpha diversity) contributing to a specific hierarchical level 1028 

reflects the degree of non-random compositional difference within the smaller scale units (beta 1029 

diversity) (Scarponi and Kowalewski, 2007). When considering diversity sensu stricto based on taxon 1030 

relative abundances, Olszewski (2010) proposes that Shannon’s entropy (Jost, 2006) can be 1031 

partitioned additively with beta entropy equalling gamma entropy (based on a composite sample) 1032 

minus entropy equalling alpha diversity of the constituent samples. As entropy (Jost, 2006) can be 1033 

readily converted to effective richness of number of species (the number of taxa that would result in 1034 

the same entropy value if they were all equally abundant) (Jost, 2006, 2007), effective richness is 1035 

derived from Shannon’s entropy partitions multiplicatively and beta diversity is the number of 1036 

compositionally distinct smaller units that contribute to the total gamma diversity at the higher level 1037 

(see also Jost, 2007; Jost et al., 2010; Tuomisto, 2010a; Chao et al., 2012; Felde et al, 2015). 1038 

A recent study by Blarquez et al. (2014) applied diversity partitioning to Quaternary 1039 

palynological data. They selected 205 pollen sequences from 12 ecoregions, each with similar 1040 

environment, species composition, and ecological processes today, within the North American boreal 1041 

forest–taiga regions. They used Shannon’s entropies and following Jost (2007, 2010) they partitioned 1042 

diversity into independent alpha, beta, and gamma components. They used the alpha Shannon 1043 

entropy and for each ecoregion calculated the mean entropy per site for 1000 year time-windows. 1044 

The Shannon entropy was converted to its numbers equivalent to derive “true alpha diversity” (Jost, 1045 

2007). Shannon’s entropy was used because it is the only measure that satisfies Lande’s (1996) 1046 

condition that alpha diversity is less than or equal to gamma diversity when assemblage weights are 1047 

unequal. Gamma diversity was estimated by pooling the alpha entropies at all sites and for each 1048 
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time-window and converting this to its numbers equivalent. In the framework of numbers 1049 

equivalents, beta diversity could then be estimated by Whittaker’s (1972) multiplicative rule and 1050 

calculated as the gamma component divided by the alpha component (Blarquez et al., 2014). They 1051 

further investigated beta diversity by decomposing it into two components – nestedness and 1052 

turnover (Baselga, 2010; Baselga and Orme, 2012; Legendre, 2014). Nestedness (= richness 1053 

difference: Legendre, 2014) represents non-random loss of taxa, namely within a given region sites 1054 

with fewer taxa are the subset of sites with more taxa. Turnover (= replacement: Legendre, 2014) 1055 

represents the replacement of taxa as result of temporal or spatial sorting (Blarquez et al., 2014). 1056 

Pollen diversity of the North American boreal forest–taiga regions underwent substantial 1057 

changes in response to major climatic shifts in the late-glacial and early Holocene. The nestedness 1058 

component within beta diversity probably reflected plant migration as it generally peaked before the 1059 

turnover component. Turnover may result from various factors including spatial and temporal sorting 1060 

of assemblages in response to changing environmental conditions and habitat conditions (Blarquez et 1061 

al., 2014). Pollen diversity was generally maximal in the late-glacial and early Holocene and 1062 

progressively decreased during the Holocene (cf. Birks and Line, 1992). 1063 

Diversity partitioning has been more widely used in Deep-time palaeoecology (e.g. Layou, 1064 

2007; Patzkowsky and Holland, 2007; Heim, 2009; Holland, 2010; Mander et al., 2010; Olszewski, 1065 

2010; Vavrek and Larsson, 2010; Hautmann, 2014). Partitioning of diversity using richness is difficult 1066 

due to the sensitivity of richness to sample size (e.g. Scarponi and Kowalewski, 2007). 1067 

Just as variation partitioning in canonical ordination and multiple regression (Borcard et al., 1068 

1992; Legendre, 2008; Legendre and Legendre, 2012) has become a standard data-analytical tool in 1069 

ecology and palaeoecology (e.g. Legendre and Birks, 2012; Simpson and Hall, 2012), hierarchical 1070 

diversity partitioning has the potential to infer ecological processes from palaeoecological data when 1071 

the data are collected using a sampling strategy that balances sample size and distribution among 1072 

possible categories. The study on the effects of the Richmondian invasion on the structure of 1073 

invertebrate fossil assemblages in the Cincinnati Arch during the late Ordovician by Patzkowsky and 1074 

Holland (2007) (see also Olszewski, 2010) is an elegant example of how diversity partitioning at 1075 

multiple hierarchical levels in Deep-time palaeoecology can be used creatively to address current 1076 

issues in ecology. It also illustrates how palaeoecology can contribute to understanding ecological 1077 

processes acting over long time intervals, namely broad-scale invasions by taxa. It exemplifies Flessa 1078 

and Jackson’s (2005) review of exploiting “the geological record of ecological dynamics” to 1079 

understand the biotic effects of future environmental change. Patzkowsky and Holland (2007) 1080 

partitioned data from different depositional sequences into three levels of inventory diversity (sensu 1081 
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Magurran, 2004; Jurasinski et al., 2009 – see Table 3)—(1) collection diversity estimated as the 1082 

average Shannon entropy of all collections in each sequence (αc), (2) habitat diversity (αh) estimated 1083 

as the average Shannon entropy of habitats (shallow and deep) within each sequence (αh = αe + βw), 1084 

and (3) stratigraphic sequences (i.e. landscape) diversity (αs) estimated as the total Shannon entropy 1085 

of each sequence (αs = αc + βw + βb) separated by two levels of differentiation diversity (Table 3)—one 1086 

for between-collections–within-habitats (βw) and one for between-habitats–within-sequences (βb). 1087 

By the end of the Richmondian invasion, richness had increased by almost 40%, mainly as a result of 1088 

increases within habitats (αh) with a smaller contribution from among-collections–within-habitats 1089 

(βw) (Olszewski, 2010). The main ecological interpretation is that assemblages in local patches (i.e. 1090 

sampled by individual collections) accommodated new species without substantially changing their 1091 

diversity but that they became more distinct from one another within habitats (Olszewski, 2010). 1092 

Legendre (2014) discusses further approaches to partitioning beta diversity into replacement 1093 

(turnover) and richness-difference (nestedness) components. 1094 

Related to beta diversity (sensu Whittaker, 1972) is assemblage compositional turnover along 1095 

gradients in space or time (Jurasinski et al., 2009; Tuomisto, 2010a, 2010b). Tuomisto (2010c) 1096 

emphasises that as turnover does not quantify the effective number of taxa, it is not a true diversity 1097 

and should be specifically called what it is quantifying, in this case compositional turnover. 1098 

Detrended canonical correspondence analysis (ter Braak, 1986; Birks, 2007) with the ordination 1099 

constrained by sample age or depth as the sole predictor variable provides a comparative summary 1100 

of compositional turnover within and between stratigraphical sequences (e.g. Smol et al., 2005; Birks 1101 

and Birks, 2008; Feurdean et al., 2012; Colombaroli and Tinner, 2013, Colombaroli et al., 2013; Leys 1102 

et al., 2014). Other multivariate ordination approaches are also useful in displaying and quantifying 1103 

aspects of alpha and beta diversity, and assemblage composition and differentiation (e.g. ter Braak, 1104 

1983; Legendre et al., 2005; Anderson et al., 2006, 2011; Heegaard et al., 2006; Legendre, 2008; 1105 

Legendre and Legendre, 2012; Legendre and De Cáceres, 2013; Nieto-Lugilde et al., 2015). The use of 1106 

compositional (dis)similarity or distance measures to assess differences in taxon composition as a 1107 

means of estimating beta diversity is reviewed by Jost et al. (2011). Jurasinski et al. (2009) discuss 1108 

other facets of beta diversity and approaches to estimating it, including variation in taxon richness, 1109 

sum-of-squares or dispersion of a taxon matrix, the slope of distance-decay relationships or ‘halving 1110 

distances’, and the slope of taxon-area curves. 1111 

7.5 Pollen pools, dark richness, and hidden richness 1112 

Ecologists and biogeographers have long used the concept of the species pool in considering 1113 

contemporary and historical determinants of diversity at a range of spatial scales (e.g. Pärtel et al., 1114 
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1996; Zobel, 1992, 1997; Zobel et al., 2011; Carstensen et al., 2013; Lososová et al., 2015; Zobel, 1115 

2015). Pärtel et al. (1996) distinguished two types of species pool – the regional or potential pool 1116 

consisting of those species that occur in a specified geographical area and that can be expected on 1117 

the basis of their ecological requirements to occur in a particular vegetation type; and the actual or 1118 

realised species pool defined as the species that actually are present in the vegetation type of 1119 

interest. 1120 

Quaternary pollen analysts implicitly or explicitly use the concept of a potential species pool, 1121 

namely those plants that may contribute pollen to a particular site. A pollen pool can be defined as 1122 

consisting of plant taxa that produce morphologically distinctive pollen or spores in a specified 1123 

geographical area, such as a lake catchment, a vegetation-landform unit (Felde et al., 2014b), an 1124 

entire country (e.g. Birks, 1973b; Bennett, 1995-2007; Felde et al., 2012), or an entire continent 1125 

(Whitmore et al., 2005). This potential pollen pool is important not only in limiting the underlying 1126 

flora to be considered in pollen identifications (e.g. Birks, 1973b, Hansen and Cushing, 1973; Lacourse 1127 

and May, 2012) but also in the creation of plant–pollen translation tables and delimitation  of pollen 1128 

equivalents that are essential in assessing pollen–plant richness relationships. Although there is a 1129 

finite probability of finding a pollen grain of any taxon in the world (Cushing, 1963), about 40–70% of 1130 

the potential pollen pool for an area the size of Norway can be found in regional-scale pollen 1131 

assemblages (Table 2). Up to 85% of the pool may be found in local-scale pollen assemblages (Table 1132 

2). The 15–60% of the pollen pool that is rarely, if ever, found consists mainly of low-growing 1133 

entomophilous plants with very low pollen production, very poor pollen dispersal, and/or very poor 1134 

pollen preservation (e.g. Geranium, Oxalis, Viola, Linum, Calystegia, Primula, Malva, Euphorbia, 1135 

Orchidaceae, Juncus, Luzula). Just as there is so-called dark diversity in ecology (Pärtel et al., 2011; 1136 

Pärtel, 2014; Riiback et al., 2015) and biogeography (Ronk et al., 2015), namely species in the 1137 

potential species pool that can potentially inhabit particular ecological conditions or geographical 1138 

areas but are absent from a particular habitat, vegetation type, or area, there is ‘dark richness’ in 1139 

pollen analysis. This consists of pollen and spore types in the potential pollen pool whose parent 1140 

plants could occur in the past vegetation that produced a particular pollen assemblage but are 1141 

absent from the assemblage. Pärtel (2014) has recently distinguished in modern biotic assemblages 1142 

an additional type of absent taxa, so-called hidden diversity consisting of taxa that are absent from a 1143 

given survey such as plants in a dormant state or are so rare as to be overlooked in traditional field 1144 

sampling. They can be detected by, for example, modern environmental-DNA techniques applied to 1145 

soil samples (e.g. Valenti et al., 2008; Epp et al., 2012; Yoccoz et al., 2012). In the case of pollen 1146 

assemblages, the distinction between dark richness and hidden richness of pollen types is very fuzzy 1147 

as taxa such as Geranium and Juncus are generally “palynologically silent taxa” (Ritchie, 1987) but 1148 
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very occasionally their pollen is found. Strictly hidden richness in pollen assemblages refers to taxa 1149 

that produce no pollen or produce pollen that is not preserved (e.g. Najas, Zostera, Vallisneria, 1150 

Ceratophyllum). 1151 

A problem largely unique to pollen assemblages is false richness or false presences (Birks, 1152 

2014), namely pollen dispersed over far distances (extra-regional pollen; sensu Janssen, 1966, 1973, 1153 

1981) from areas well outside the RPSA of a site (e.g. Ephedra pollen in late-glacial assemblages from 1154 

western Scotland (Birks, 1973b)). Modern pollen assemblages from Svalbard (Birks et al., 2004) 1155 

contain 48 pollen and spore taxa. Twelve of these represent plants that do not grow on Svalbard 1156 

today. This extra-regional pollen must have been carried by wind as long-distance transport. Such 1157 

false presences are thus a source of bias in modern pollen assemblages from arctic, alpine, and other 1158 

treeless environments. False presences can also be a serious problem in interpreting last glacial or 1159 

late-glacial pollen assemblages because such assemblages often contain not only long-distance extra-1160 

regional pollen (e.g. Pinus, Ephedra) but also secondarily redeposited pollen such as Quercus, Alnus, 1161 

Ulmus, and Tilia (e.g. Andersen, 1961; Cushing, 1963, Birks, 1973b). 1162 

Table 4 summarises the various types of richness that arise when considering pollen-1163 

assemblage richness. 1164 

Dark diversity of plants and dark richness of pollen equivalents cannot be directly measured, 1165 

but their relative size can be approximately inferred. One simple approach (cf. Lewis et al., 2015) for 1166 

dark richness of pollen is to list those pollen and spore types present and their likely plant 1167 

equivalents, and consider the ecological indicator values of these plant equivalents for 1168 

environmental variables such as light, moisture, soil reaction, and soil fertility (nitrogen) (e.g. 1169 

Ellenberg et al., 1991; Hill et al., 2004) to derive approximate environmental scores for the past flora 1170 

and vegetation within the RPSA for the observed pollen assemblage. If we assume that these 1171 

environmental scores are representative of the past flora and vegetation, it is possible to use Hill et 1172 

al. (2004) or Ellenberg et al. (1991) in conjunction with plant distributional data and ecological 1173 

knowledge of the study areas to list all the likely plants and their pollen equivalents not found in the 1174 

fossil pollen assemblage. The total number of such pollen equivalents is the ‘dark richness’ (plus 1175 

‘hidden diversity’). For Holocene pollen assemblages from western and southern Norway, the dark 1176 

pollen richness is about 30–35% of the potential pollen pool for these areas (Birks, unpublished 1177 

data). For late-glacial pollen assemblages from the Isle of Skye (north-west Scotland) (Birks, 1973b), 1178 

the dark pollen richness is higher (Birks, unpublished data), about 50–60% of the potential pollen 1179 

pool defined on the basis of the present-day vascular plant flora and vegetation of the Isle of Skye 1180 

and neighbouring islands (Birks, 1973b; Murray and Birks, 2005). There are many possible reasons for 1181 
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the different relative sizes of the dark pollen richness in the late-glacial and the Holocene, such as 1182 

different proportions of anemophilous and entomophilous and tall-growing and low-growing plants 1183 

in the potential pollen pools, different taphonomies, different proportions of local, regional, and 1184 

extra-regional pollen (sensu Janssen, 1966, 1973, 1981), plant migration and local extinctions over 1185 

time, and the difficulties of defining realistic pollen pools for no-analogue late-glacial floras, 1186 

vegetation, and landscapes. There is the need for more sophisticated assessments of dark pollen 1187 

richness to help to provide a more realistic and complete view of past vegetation and ecosystems. 1188 

For modern vegetation, Pärtel et al. (2013) attempt to link realised local diversity and inferred dark 1189 

diversity within the general species-pool concept to derive a simple community completeness index 1190 

based on the log-ratio of observed richness to dark diversity. Developing and interpreting such an 1191 

index based on pollen-assemblage richness and dark richness is a challenge for future study, 1192 

especially to detect which taxa are absent from past assemblages and to infer possible reasons for 1193 

their absences. 1194 

7.6 Functional and phylogenetic diversity 1195 

Functional diversity (FD) is an important component of biodiversity that considers the range of 1196 

functions that organisms perform in communities and ecosystems (Purvis and Hector, 2000; Hooper 1197 

et al., 2002; Petchey and Gaston, 2002, 2006; Pakeman, 2011; Mace et al., 2014). It not only serves as 1198 

a descriptor of an assemblage or community but it also is an indicator of ecosystem function. It is the 1199 

extent of functional differences among species in a community (Tilman, 2001; Petchey and Gaston, 1200 

2002) and is thought to be an important determinant of ecosystem processes and functioning. As FD 1201 

is the diversity of species traits in a community or ecosystem, it captures information about 1202 

functional traits that may be missing in measures of taxonomic richness or diversity. There has been, 1203 

just as with the estimation of taxonomic diversity, a proliferation of measures to estimate the 1204 

different components of FD, namely functional richness, functional evenness, and functional 1205 

divergence (e.g. Petchley et al. 2004; Mason et al., 2005; Walker et al., 2008; Poos et al., 2009; 1206 

Schleuter et al., 2010; Casanoves et al., 2011). Estimating FD often requires analysis of several 1207 

different types of variables (continuous, ordinal, nominal, multi-choice nominal, circular, fuzzy, etc.). 1208 

Pavoine et al. (2009) extend Gower’s (1971) coefficient of similarity for mixed data to include new 1209 

data types. Not surprisingly, Hill numbers have now been generalised to consider not only taxonomic 1210 

diversity but also phylogenetic and functional diversity, thereby providing a unified framework for 1211 

measuring several aspects of biodiversity (Chao et al., 2010, 2014a, 2014b; Gotelli and Chao, 2013; 1212 

Chiu and Chao, 2014). FD (differences among taxon traits) and phylogenetic diversity (based on taxon 1213 

evolutionary history) (Chao et al., 2010, 2014a, 2014b; Chiu and Chao, 2014) have now been 1214 
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integrated into a single framework of attribute diversity based on Hill numbers of taxonomic entities, 1215 

functional entities, and /or phylogenetic entities, with each entity weighted by its relative abundance 1216 

(Chiu and Chao, 2014). FD has rapidly become an important part of community and ecosystem 1217 

studies as it attempts to quantify aspects of diversity that may influence community assembly and 1218 

function. FD is also being studied in Deep-time palaeobiology (e.g. Miller et al., 2014). The relation 1219 

between FD and taxonomic richness and diversity is complex as it appears to be context-dependent 1220 

(Cadotte et al., 2011). 1221 

To date, very few Quaternary palynologists have considered functional or phylogenetic 1222 

diversity. Collins et al. (2013) and Davis et al. (2015) explore temporal and spatial patterns in plant 1223 

functional type diversity during the Holocene using palynological data from across Europe. Other 1224 

attempts at linking functional traits with pollen data include Gachet et al. (2003), Barboni et al. 1225 

(2004), Lacourse (2009), and Kuneš et al. (2011) or with testate amoeba assemblages (Fournier et al. 1226 

2015). Goring et al. (2013) propose utilising functional trait or phylogenetic information “to unite […] 1227 

plant and pollen taxa, such that the richness values from pollen are not evaluated on their own, but 1228 

in a multivariate form that provides information about the structure of the pollen assemblage in an 1229 

evolutionary or functional manner. This information may be integrated in measures of functional 1230 

richness (Mason et al. 2005) but the choice of functional characters may strongly affect our ability to 1231 

detect a relationship”. Goring et al. (2013) suggest that this approach of using both taxa and traits 1232 

and taking account of phylogenetic constraints will result in “a greater integration of 1233 

palaeoecological data and analysis into macroecological research”. Clearly such an approach requires 1234 

not only high quality pollen and spore data but also reliable phylogenetic (Velland et al., 2011) and 1235 

functional trait (Weihar, 2011) information for all the taxa concerned. As with pollen-richness 1236 

estimation, problems of pollen taxonomic precision and ‘smoothing’ (sensu Mander, 2011), pollen-1237 

representation bias, and sampling considerations will also arise in considering functional diversity of 1238 

modern pollen-assemblages in relation to contemporary vegetation. Thus the exploration of 1239 

functional and phylogenetic diversity of modern and fossil pollen assemblages is a very considerable 1240 

challenge. 1241 

This challenge has recently been faced by Reitalu et al. (2015) who have explored temporal 1242 

patterns in taxonomic richness and evenness, functional diversity, and phylogenetic diversity, all 1243 

based on late-glacial and Holocene pollen data from 20 sites in Estonia and Latvia. They show that 1244 

shifts in the functional and phylogenetic diversity of the pollen data are closely related to climate 1245 

change and suggest that trait differences play an important role in long-term biotic responses to 1246 

climate change. Human impact in the last 2000 years has had a negative influence on functional and 1247 

phylogenetic diversity in the pollen assembalges due to the decline of plant taxa with certain traits 1248 
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leading to functional convergence and the expansion of some taxa from particular phylogenetic 1249 

lineages. Clearly there is a need for further such studies that simultaneously explore taxonomic, 1250 

functional, and phylogenetic diversity of modern and fossil pollen assemblages. 1251 

8. Conclusions 1252 

In answer to the question posed in the title of this review, recent detailed studies (e.g. 1253 

Odgaard, 2008; Meltsov et al., 2011; Felde, 2015; Felde et al., 2015) and earlier less detailed studies 1254 

(e.g. Birks, 1973a; Flenley, 2005) demonstrate that pollen-assemblage richness does reflect floristic 1255 

richness. However, this relationship is not a simple or exact 1:1 relationship. Pollen richness is also a 1256 

function of landscape structure, openness, and diversity within the APSA or RPSA (Meltsov et al., 1257 

2013; Matthias et al., 2015), as proposed and discussed by Birks and Line (1992), of the pollination 1258 

syndromes in the flora within the APSA (Meltsov et al., 2011), and of dispersal and other taphonomic 1259 

processes (Birks and Line, 1992). 1260 

Pollen richness, evenness, and diversity—expressed as Hill (1973) numbers—are estimates of 1261 

particular numerical characteristics of modern and fossil pollen assemblages (Birks HJB, 2013) or 1262 

“species composition parameters” (Hurlbert, 1971). Like all such estimates or summary statistics 1263 

derived from complex multivariate data, the estimates may be biased in various ways. In the case of 1264 

estimates of pollen richness, they are biased by factors such as count size, taxonomic precision, the 1265 

underlying pollen sample:underlying pollen population ratio, and pollen representation (productivity 1266 

and dispersal) (Odgaard, 1999, 2001, 2007, 2008, 2013). Several approaches reviewed above 1267 

(Sections 4.1 and 5.2) have been developed to minimise these biases but the biases cannot be fully 1268 

eliminated as they are inherent in all pollen-assemblage data. 1269 

As discussed above, assessing the relationship between modern pollen and floristic richness 1270 

requires high quality and consistent palynological data and site-specific floristic/vegetational data. 1271 

The findings of Goring et al. (2013) of a slightly negative modelled relationship between “smoothed 1272 

pollen richness” and “smoothed floristic richness” in the Pacific Northwest and thus that higher 1273 

pollen richness occurs with lower floristic richness may be a result of the absence of site-specific 1274 

floristic or richness data collected at a spatial scale appropriate for comparison with regional-scale 1275 

pollen deposition in lakes in their study area. 1276 

The recent developments in the clarification of the concepts of richness, evenness, and 1277 

diversity, in the unification of measures to estimate them, and in the distinction between concepts 1278 

and the measures used to estimate them has greatly simplified diversity research. Hill (1973) 1279 
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numbers provide a conceptually simple and mathematically rigorous basis for estimating richness, 1280 

evenness, and diversity. 1281 

Estimates as Hill numbers of pollen richness, evenness, and diversity can be calculated for 1282 

fossil pollen-assemblage data collected in comparable taxonomic and analytical detail as the modern 1283 

pollen-assemblage data and from sites of similar size and morphometry to the lakes at which the 1284 

modern assemblages were studied. These estimates and their variances can be plotted 1285 

stratigraphically to provide profiles of richness, diversity, and evenness through time (e.g. Felde, 1286 

2015). Estimates of richness, diversity, and evenness for assemblages from several sites can be 1287 

compared if all the data sets, possibly after transformations using pollen-representation values, are 1288 

rarefied to the same base-sum for estimating not only N0 but also N1 and N2 and their ratios as 1289 

evenness measures (e.g. Felde et al., 2015). 1290 

Flenley (2003) in his future-looking “Some prospects for lake sediment analysis in the 21st 1291 

century” identifies six possible developments based on his own research interests and experiences. 1292 

One is “palyno-richness and palyno-diversity” (see also Flenley, 2005). With the recent developments 1293 

reviewed here, we think that changes in pollen richness, evenness, and diversity through time can be 1294 

estimated and compared in space to explore their patterns in time and space. Potential drivers of 1295 

past changes can then be explored using the types of approaches of, for example, Hanley et al. 1296 

(2008), Lacourse (2009), and Reitalu et al. (2013), thereby helping to close “the gap between plant 1297 

ecology and Quaternary palaeoecology” (Reitalu et al., 2014). 1298 

As in all studies on the representation of flora and vegetation in Quaternary fossil assemblages 1299 

(Jackson, 2012) (and in almost any palaeoecological study), there are always several known knowns, 1300 

some known unknowns and unknown knowns, and probably an embarrassingly large number of 1301 

unknown unknowns. In the context of pollen–floristic richness relationships, what are these four 1302 

combinations of knowns and unknowns? An obvious example of a known known or more or less solid 1303 

fact, observation, or inference, is that Pinus trees produce more pollen and disperse their pollen 1304 

farther than Tilia trees do. Critical known unknowns concern sources of error, uncertainty, and bias 1305 

in pollen data. Attempts are being continually made to minimise and estimate them, but we do not 1306 

usually know enough about them and their interactions in nature to make realistic estimates of these 1307 

uncertainties. Unknown knowns are things we may know so well that we are no longer explicitly 1308 

aware that we know them (Jackson, 2012). What is an unknown known and what is a known known 1309 

is partly determined by education, research school, awareness of the older literature, and hence age 1310 

of the scientist concerned. For example, the rich literature on pollen production, dispersal, 1311 

deposition, and taphonomy from the 1960s–1980s, often published in books or symposium 1312 
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proceedings (e.g. Birks and West, 1973) is increasingly ignored in the literature of the 2010s. Much of 1313 

the older literature, not always written in English and often published as ‘local’ monographs is not 1314 

currently available in an electronic format and represents an important ‘loss of information’ (see also 1315 

Blois, 2012). This is sadly prevalent in much of the recent literature on quantitative pollen–plant 1316 

relationships and vegetation and landscape reconstructions. The fourth combination, unknown 1317 

unknowns, represents our ignorance at the present time but thanks to creative and critical scientific 1318 

research, unknown unknowns can become known knowns or known unknowns. Studies on pollen–1319 

plant richness relationships build on several well-founded known knowns, strive to reduce the known 1320 

unknowns, and try to convert some unknown unknowns into known knowns or known unknowns. 1321 

Given the vast old and ever-expanding relevant new literature on diversity, functional diversity, 1322 

phylogenetic diversity, functional traits, pollen representation, and handling uncertainties in 1323 

reconstructions, we all have to work to reduce important information loss and hence the unknown 1324 

knowns and to consider in more critical detail the known unknowns. 1325 
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Table 1 2474 

Selected examples of studies where pollen richness has been estimated from fossil pollen assemblages using rarefaction 2475 
analysis. The study country, time span, and in general research topic are given. 2476 

Publication Country Time span Research topic 

Berglund et al. (1991) Sweden Holocene Cultural landscape 
Bennett et al. (1992) Scotland Holocene Vegetation history 
Birks and Line (1992) UK LG, Holocene Methodological development 

and vegetation history 
Grönlund and Asikainen (1992a) Finland Holocene Land-use changes 
Grönlund and Asikainen (1992b) Finland Holocene Cultural landscape 
Grönlund et al. (1992) Finland Holocene Land-use history 
Andersen and Rasmussen (1993) Denmark Mid Holocene Ulmus decline 
Fossitt (1994) Ireland LG, Holocene Vegetation history 
Odgaard (1994) Denmark Holocene Intermediate disturbance 

hypothesis testing 
Ammann (1995) Switzerland Holocene Alpine history 
Andersen (1992-93) Denmark Holocene Vegetation history 
Bunting (1995) Scotland Holocene General history 
Lindbladh and Bradshaw (1995) Sweden Mid to late Holocene Cultural landscape 
Bunting (1996) Scotland Holocene Heathland development 
Fossitt (1996) Scotland Holocene Vegetation history 
Lagerås (1996) Sweden Holocene Cultural landscape 
Birks et al. (1988) UK, Sweden Holocene Cultural landscape 
Lindbladh and Bradshaw (1998) Sweden Holocene Forest history 
Seppä (1998) Norway, Finland Holocene Vegetational dynamics 
Odgaard (1999) Denmark Holocene Methodological development 
Veski et al. (2005) Estonia Holocene Cultural landscape 
Willis et al. (2007) Hungary Late Pliocene Water-energy dynamics 
Berglund et al. (2008a) Sweden LG, Holocene Vegetation history, cultural 

landscape 
Berglund et al. (2008b) Sweden Holocene Vegetation history, cultural 

landscape 
Birks and Birks (2008) Norway LG, early Holocene Revegetation, responses to 

climate 
Hanley et al. (2008) Scotland Late Holocene Land-use and farming history 
van der Knaap (2009) Switzerland LG Methodological development 
Saarse et al. (2009) Estonia LG, early Holocene Vegetation history 
Carcaillet et al. (2010) Canada Holocene Fire history 
Valsecchi et al. (2010) Switzerland Late Holocene Cultural landscape, 

conservation 
Willis et al. (2010) Norway LG, early Holocene Responses to climate 
Morales-Molino et al. (2011) Spain LG Vegetation history, fire 

dynamics 
Connor et al. (2012) Azores Holocene Invasions, vegetation history 
Fredh et al. (2012) Sweden Late Holocene Cultural landscape 
Giesecke et al. (2012) Sweden, Germany LG, Holocene Methodological development, 

migration impacts 
Ammann et al. (2013) Switzerland LG Revegetation dynamics 
Bjune et al. (2013) Norway Late Holocene Forest dynamics 
Clear et al. (2013) Finland Mid to late Holocene Fire history 
Colombaroli and Tinner (2013) Switzerland Mid to late Holocene Human impact 
Colombaroli et al. (2013) Switzerland Mid to late Holocene Human impact 
Feurdean et al. (2013) Romania Holocene Land use 
Fredh et al. (2013) Sweden Late Holocene Cultural landscape 
Giesecke et al. (2014) Sweden, Germany, 

Switzerland 
Holocene Methodological development 

Keen et al. (2014) Bolivia, Peru, Ecuador, 
Ghana 

LGM, Holocene Methodological development 

Ledger et al. (2014) Greenland Late Holocene Human impact and landscape 
history 

Majecka (2014) Poland Eemian Vegetation history 



66 

 

Morales-Molino and García-
Antón (2014) 

Spain LG, Holocene Vegetation history, fire 
dynamics 

Whitney et al. (2014) Bolivia 40 k Responses to climate 
Burrough and Willis (2015) Zambia Mid to late Holocene Vegetation resilience 
Clear et al. (2015) Finland Holocene Forest history and dynamics 
Felde (2015) Norway Holocene Vegetation history, 

methodological developments 
Mehl et al. (2015) Norway Holocene Vegetation history, cultural 

landscape 
Reitalu et al. (2015) Estonia LG, Holocene Methodological development, 

functional and phylogenetic 
diversity 

Schwörrer et al. (2015) Switzerland Mid Holocene Forest dynamics and human 
impact 

Stivrins et al. (2015) Latvia Late Holocene Human impact 
Åkesson et al. (2015) Sweden Holocene Vegetation history 

LG = Late-glacial; LGM = Last glacial maximum 2477 
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 Table 2 2479 

Effects of translation of terrestrial plant species recorded in modern vegetation to potentially identifiable terrestrial pollen 2480 
and spore types (‘pollen equivalents’) in relation to the actual number of pollen and spore types found 2481 

Area No. 
plant 
species 
recorded 

No. 
potentially 
identifiable 
pollen/spore 
types (‘pollen 
equivalents’) 

Ratio of plant 
species to 
identifiable 
pollen/spore 
types 

No. 
identified 
pollen/spore 
types found 

Ratio of identified 
to identifiable 
pollen/spore 
types 

Reference 

Estonia 307 127 2.4 52 0.41 Meltsov et al. 
(2011) 

S Norway 406 180 2.3 125 0.69 Felde et al. 
(2014a, 2015) 

Scotland 164 97 1.7 83 0.86 Birks (1973a, 
1973b) 

British Columbia 1729 67 25.8 78* 1.16* Goring et al. 
(2013) 

Denmark 
(woodland) 

82 44 1.9 - - Odgaard (1994) 

Denmark (oak 
scrub) 

93 42 2.2 - - Odgaard (1994) 

Denmark 
(heathland) 

110 58 1.9 - - Odgaard (1994) 

Denmark (weed 
vegetation) 

35 24 1.5 - - Odgaard (1994) 

* includes pollen samples from Washington, Oregon, Idaho, and Montana, as well as British Columbia where the floristic or 2482 

vegetational data are derived from 2483 

 2484 

Table 3 2485 

Different categories of inventory and differentiation diversity in relation to ecological scale of investigation (after Whittaker, 2486 
1972; Magurran, 2004) 2487 

 Inventory diversity Differentiation diversity 

Within sample Point diversity - 
Between samples within habitat or sediment core - Pattern diversity 
Within community, habitat, or sediment core Alpha diversity - 
Between communities, habitats, or sediment cores within 

landscape 
- Beta diversity 

Within landscape Gamma diversity - 
Between landscapes - Delta diversity 
Within biogeographical region, province, or biome Epsilon diversity - 

 2488 

Table 4 2489 

Different types of palynological richness relevant to pollen assemblages (after Birks and Line, 1992; Birks, 2014; Pärtel, 2490 
2014) 2491 

Type Sources Example 

False richness (false presences) Extra-regional pollen Pinus pollen in high-Arctic areas 
Hidden richness No pollen produced or preserved Najas, Vallisneria, Elodea, 

Ceratophyllum, Zostera 
Dark richness Generally palynologically ‘silent’ taxa Viola, Geranium, Oxalis, Malva 
Observed richness Pollen counts standardised to a constant 

count-size. Includes false richness (false 
presences) 

Hill N0; E(Sn) from rarefaction 
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𝐷 = (∑ 𝑝𝑖
𝑞

𝑆

𝑖=1

)

1 (1−𝑞)⁄

𝑞
 

Box 2. Hill numbers 

_________________________________________________________________ 

The general formula for a Hill number is 

where pi is the relative frequency of each taxon (pi = ni / N for i = 1 to S) in the 

assemblage, 

ni is the count for taxon i, 

N is the total count-size, 

S is the total number of taxa in the assemblage, and  

q is a non-negative integer that defines a particular Hill number. 

Changing q gives a family of diversity indices. If q = 0, the Hill number is N0; if q = 

1, the Hill number is N1. However, with q = 1 the general equation above cannot 

be solved directly as 1/(1 – q) is undefined but in the limit it approaches the 

exponential of the familiar Shannon entropy or diversity measure. Each species 

is weighted by its relative frequency; if q = 2, the Hill number is N2 (equivalent to 

the inverse of Simpson’s index of concentration) and common and abundant 

species receive greater weight than less abundant species (Gotelli and Ellison, 

2013) with rare species making almost no contribution to the summation. 

Box 1. Publications by palynologists and other palaeoecologists working on richness patterns in both Q-time and 

Deep-time (sensu Jackson, 2001)  

Sepkoski, 1988 
Odgaard, 1994, 2007, 2008, 2013 
Flenley, 2005 
Jaramillo et al., 2006, 2010 
Huntley and Kowalewski, 2007 
McElwain and Punyasena, 2007 
McElwain et al., 2007, 2009 
Scarponi and Kowalewski, 2007 
Willis et al., 2007, 2010 
Mayhew et al., 2008 
Yashura and Cronin, 2008 
Yasuhara et al., 2008, 2009, 2012a, 2012b, 2014 
Hadly and Barnosky, 2009 
Blois et al., 2010 
Hoorn et al., 2010 
Mander et al., 2010 
Terry, 2010 
Benton et al., 2011 
Hannisdal and Peters, 2011 
Smith and McGowan, 2011 
Willis and MacDonald, 2011 
 

Giesecke et al., 2012, 2014 
Rull, 2012 
Colombaroli et al., 2013 
Colombaroli and Tinner, 2013 
Fritz et al., 2013 
Sniderman et al., 2013 
Kocsis et al., 2014 
Lazarus et al., 2014 
Macken and Reed, 2014 
Seddon et al., 2014 
Vázquez-Riveira and Currie, 2015 
Boenigk et al., 2015 
Darroch and Wagner, 2015 
De Blasio et al., 2015 
Hunt et al., 2015 
McGill et al., 2015 
Nieto-Lugilde et al., 2015 
Noetinger, 2015 
Nürnberg and Aberhan, 2015 
Reitalu et al., 2015 
Schwörrer et al., 2015 
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Box 3. Publications on quantitative procedures to estimate landscape structure and heterogeneity and habitat 

fragmentation at the spatial scale of pollen-source areas  

Palmer, 1988, 1992 
Forman, 1995 
Gustafson, 1998 
Longley et al., 2001 
Turner et al., 2001 
Steiner and Köhler, 2003 
Wagner and Fortin, 2005 
Wiens and Moss, 2005 
Dufour et al., 2006 
Carranza et al., 2007 
 

Cushman et al., 2008 
Shao and Wu, 2008 
Uuemaa et al., 2008 
Jones and Vaughan, 2010 
Rocchini et al. 2010 
Hjort and Luoto, 2012 
Hjort et al., 2012 
Ewers et al., 2013 
Wang et al., 2014 
 

 


