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Abstract 

The anthracycline drug daunorubicin (DNR) is, together with cytarabine, the most commonly 

used chemotherapeutic agents against acute myeloid leukemia (AML) and has been so for the 

last 40 years. AML is a disease with low survival rate, and is most common among the elderly 

with a median age of diagnosis at around 70 years. The current treatment method is impaired 

by low tolerance and severe dose-related side-effects, including myelosuppression. Improved 

treatment methods, especially for frailer patients, are needed.  

Previous studies has shown that the combination of a protein synthesis inhibitor 

(cycloheximide or emetine (EME)) with DNR is shown to act synergistic in inducing AML 

cell death. Furthermore, by introducing EME 30 minutes after DNR, the anti-AML effect was 

further enhanced. By incorporating EME and DNR in a dual-compound liposome, equal 

pharmacokinetics of the compounds and simultaneous release at the target are ensured. 

Incorporating anthracyclines in liposomes has shown to lower side-effects of the drugs, thus 

improving the current treatment method.  

An EME analog, FG1181, was developed in order to ensure sequential drug delivery to cells. 

FG1181 is expected to be metabolized into EME after 20-30 minutes, thus ensuring the 

advantageous delayed protein synthesis inhibition after exposure to DNR. This thesis presents 

the documentation of FG1181 with respect to chemical properties, cytotoxicity, and also the 

development of a method for producing liposomes loaded with both FG1181 and DNR. We 

demonstrate that FG1181 is less potent towards AML cells compared to EME, and has delayed 

toxic effect. Furthermore, the compound can be loaded into liposomes with a modified acid 

precipitation method, using incubation at low temperatures to prevent hydrolysis of FG1181 

into EME during production of liposomes. 

Finally, we found that liposomes loaded with FG1181 and DNR had higher anti-AML activity 

than liposomes loaded with EME and DNR, suggesting that the advantageous effect of 

sequential drug delivery is obtained by the prodrug concept. In conclusion, small molecules, 

here loaded into liposomes, are promising in the field of cancer therapy and can be expected to 

improve the treatment of AML.  
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1. Introduction 

1.1.  Acute myeloid leukemia 

Leukemia is a group of cancerous diseases defined by chromosomal translocation or mutation 

in the hematopoietic stem cells (HSCs) lineage (1, 2). During normal hematopoiesis,                                                                                                                                    

HSCs mature into different blood cells in the lymphoid and myeloid cell lineage, as illustrated 

in Figure 1.1 (3, 4). However, the leukemia stem cells (LSCs) do not lead to proliferation of 

healthy blood cells like their non-mutated counterparts HSCs (5). LSCs have terminated 

differentiation, meaning that there will be an accumulation of immature precursor cells, termed 

blasts, in the bone marrow and peripheral blood, or other hematopoietic or lymphoid organs 

(6).  

 

Figure 1.1 - The process of hematopoiesis. The figure illustrates the different lineages in hematopoiesis for 

HSCs. The red figure farthest to the left represents the common myeloid progenitor. Mutations in this progenitor 

could lead to myeloid leukemia, while mutations in the green lymphoid progenitor can lead to lymphoid cancers. 

Figure adapted from Lara and George (7).  
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Leukemia is classified based on the degree of blast proliferation and morphological 

differentiation, and on the clinical course of the patients (5, 8). Acute leukemia is mutations in 

the most immature precursor cells, characterized by a high degree of proliferation, lack of 

morphological differentiation, and rapid disease progress (4, 8). Acute leukemia develops 

rapidly during weeks or months, and requires immediate medical treatment (9). Chronic 

leukemia cells, on the other hand, derive from more mature blast cells. It is characterized by a 

low proliferation rate, slower clinical development, and accumulation of nonfunctional cells 

resisting apoptosis (1, 8).  

Acute leukemia leads to hematopoietic insufficiency because of the rapidly multiplying blasts 

consuming the nutrients and space in the blood marrow intended for normal hematopoiesis (8, 

10). This results in deficient production of erythrocytes, leukocytes and thrombocytes, causing 

insufficient oxygen transport, leading to perceptible symptoms like fatigue, shortness of breath, 

anemia and bone pain (8, 11). Other symptoms include cold sores or gingivitis, frequent 

infections, weight loss and fever of unknown origin, caused by the immune system being 

impaired by a subnormal level of leukocytes (11). An increase in hematomas and bleeding is 

caused by an insufficient number of thrombocytes.  

Half a century ago, acute leukemia was considered incurable and palliative care was the only 

option (3). Today there is multiple treatment methods depending on subclassification of the 

disease. Acute lymphatic leukemia (ALL) entails mutations in lymphoblasts line illustrated as 

green in Figure 1.1 and is the most common type of leukemia in children aged 0-19 (12). This 

thesis will focus on acute myeloid leukemia (AML), a condition with mutations in the most 

immature myeloblast line illustrated as red in Figure 1.1 (4). AML is the second most common 

type of leukemia for adults, and the most common acute leukemia for patients aged 20 years 

and over (4).  

Every year around 200 patients are diagnosed with acute leukemia in Norway, where 160 of 

these are AML (11). In the United States of America (USA), it was estimated that around 

19,520 new patients would be diagnosed in 2018, of which 10,670 would die as a result of the 

disease (12). Figure 1.2 shows the age distribution and incidence rate per 100,000 for diagnosis 

per year in the United Kingdom (UK), which is comparable to Norway (13). The figure shows 

that the incidence rate per 100,000 is higher for men compared to women. In the US, the median 

age for patients diagnosed with AML is 67 years and 75% of newly diagnosed patients are 

older than 60 years (4, 14, 15). As life expectancies in Norway have increased with 5 years for 
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women and 8 years for men in the last 30 years, it becomes apparent that an increase in AML 

incidences can be expected (16).  

 

 

Figure 1.2 – Age distribution of AML diagnosis. The figure indicates time of AML diagnosis separated by age 

and gender. The vertical columns indicate the number of diagnosis per year relative to the left y-axis. The 

incidence rate per 100,000 for age and gender is illustrated as continuous lines relative to the y-axis on the right 

side. The numbers are based on data for 2013-2015. Figure adapted from Cancer Research UK (13).  

 

The American Cancer Society assume a 24% overall survival rate of five years for adults 

diagnosed with AML (12). The European Union estimates a 5-year survival rate of 19%, with 

3-8% for patients aged ≥ 60 years, which is significantly less than for other cancer types (14, 

15, 17). Figure 1.3 shows disease and age dependent survival prognosis based on the National 

Cancer Research Institute of UK and the Swedish Acute Leukemia Registry (18, 19). The 

patients’ diseases are classified as favorable, intermediate or adverse based on factors like 

cytogenetics and blast differentiation status (20, 21). The graphs clearly indicate the need for 

improved treatment methods, especially for the patients of higher age and in the adverse group. 

Patients not receiving treatment usually die within weeks or months from sequelae infection or 

bleeding (22, 23). 
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Figure 1.3 – Survival prognosis of patients with AML based on age and disease characteristics. A, Overall 

survival according to age for AML patients. The data was collected from the Swedish database of diagnosis 

between 1997 and 2006, with follow up in 2008. Note the low survival rate for patients aged 65 years and older. 

Figure taken from Juliusson, Lazarevic (18). B, Survival rate based on disease characterized as favorable, 

intermediate or adverse for patients aged 16-59 in the UK. De novo is new mutation AML while therapy related 

acute myeloid leukemia (t-AML) showed in the scheme is AML caused by previous treatment with chemotherapy 

or radiation therapy. Figure adapted from Grimwade and Hills (24) and taken from Rowe and Tallman (19). 

 

The recommended treatment will be partly based upon which subgroup or genetic variation of 

the disease the patient is diagnosed with, according to classifications defined by the French-

American-British (FAB) or the World Health Organization (WHO) (25, 26). An example of 

one of the eight subgroups defined by FAB is an AML classified as AML FAB M5a, 

represented in this thesis by the cell line MOLM13 (22). MOLM13 was collected from a human 
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20-year-old male diagnosed with this specific subtype of AML. It has been shown that the 

patient’s age, comorbidity and cytogenetic and molecular abnormalities and thereby subgroup 

of disease should be considered when deciding treatment, as these factors will have a 

significant  impact on the patient’s recovery expectancies (27).   

The primary treatment recommended by the Norwegian Directorate of Health and most 

commonly used for patients up to 65 years is the “7+3”-regimen developed in 1973 (14). The 

regimen is a combination of infusions of the anthracycline drug daunorubicin (DNR) for 3 days 

and continuous infusions of the nucleoside metabolic inhibitor cytarabine (ara-C) for 7 days 

(9). In some cases, idarubicin (IDA) is used as an alternative to DNR (11). Because of the 

severity of the disease and the rapidness of its development, the cytostatic treatment should be 

started no longer than five days after diagnosis (11). For patients over 60 years of age, the 

dosages administered are reduced or palliative care considered if the patient has a poor general 

condition. This is to minimize drug-related side-effects, including myelosuppression (28). In 

addition, elderly patients have a high risk of developing complications and comorbidities (29). 

Thus, there is a dire need for treatments which is tolerable also for the weakest patients, and 

which also are more efficient to prevent relapse.  

An important factor when discussing AML treatment is the frequent relapses followed by 

treatment resistance. The presence of LSCs surviving the cytostatic treatment eventually leads 

to relapse and drug resistance for a high number of AML patients (6, 30). Many patients 

responding well to induction therapy, reaching complete remission, relapses within three years 

with poor prognosis and few treatment options (10).  

The development of alternative treatment options include stem cell transplantations and 

advanced drug delivery systems (DDSs) (14). Stem cell transplantation is a high-risk procedure 

that can be offered for patients with high relapse risk to avoid resistance (31). The risks of the 

operation and graft-versus-host disease associated with the procedure restricts usage to patients 

under 55-60 years in Norway (32). Liposomal DNR have been tested in the form of Daunoxome 

to minimize side-effects, but was discontinued as treatment of AML (33). Vyxeos (CPX-351) 

is a liposomal formulation containing DNR and ara-C in a 1:5 ratio approved for t-AML and 

AML with myelodysplasia-related changes (AML-MRC) (34). The drug was approved in the 

USA and the European Union in 2018, and shows a significantly higher overall survival rate 

than the “7+3”-regime, with less side-effects (17, 34). The liposomal formulation is given 
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intravenously three times over five days, and is currently undergoing clinical trials for use 

against other AML subtypes in the USA (35).  

 

1.2. Nanosized drug delivery systems 

In the last decades, nanoparticles have been introduced as possible DDSs to overcome 

difficulties in medical treatment. According to the European commission’s definition of 

nanoparticles, 50% of the total particle population should be in the size distribution of 1-100 

nm, but in nanomedicine particles up to 1000 nm in at least one dimension are commonly 

accepted as nanoparticles (36, 37). Nanoparticles are used in medicine for oral, local, topical 

and systemic (intravenous) use in the field of anesthetics, iron-replacement therapy, ultrasound 

enhancement, vaccines, fungal treatment and cancer therapy (28, 38). Figure 1.4 illustrates a 

selection of established nanotherapeutic platforms. Nanoparticles approved for use in Norway 

includes Abraxane, albumin-particle bound paclitaxel, used against multiple cancers and 

SonoVue, a phospholipid stabilized microbubble, used as an ultrasound contrast agent (38-40). 

 

Figure 1.4 - A collection of various nanoparticles in therapeutic use. The figure illustrates nanoparticles 

produced with different materials, both organic, like lipids, and inorganic, like metal. Figure collected from Wicki, 

Witzigmann (41). 
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For simplicity, the term nanocarrier (NC) will be used to describe all nano-sized drug 

delivery systems. Active ingredients can be encapsulated and protected inside the NCs, like 

liposomes, or attached on the outside, like for antibody-drug conjugates (38, 41). Advantages 

of utilizing NCs in drug delivery include the possibilities of targeted drug delivery and 

stabilizing active substances (42). Chemically unstable drugs or substances with poor water 

solubility can be encapsulated in NCs, for example liposomes, to improve bioavailability (43). 

NCs can also be used to ensure that active ingredients reach the drug target at the same time 

and in an advantageous ratio for drugs composed of multiple substances, for example the 

liposome Vyxeos (34, 44).   

Cytostatics is an example where NCs as a DDS can be advantageous because encapsulation of 

the toxic compounds can reduce the severe side-effects associated with cytostatic treatment. 

Cytostatics are often administered in intravenous or oral form, leading to the cytotoxic and 

cytostatic agents being distributed throughout the body, impacting both healthy and cancerous 

tissue (41, 43). NCs can minimize the toxic compounds’ interaction with healthy tissue, 

decrease drug resistance and improve targeted distribution. The NC can protect the drug from 

being prematurely metabolized or eliminated and being engulfed by the immune system (41, 

42).  

The circulating half-life can be extended by producing the NCs of biocompatible material to 

avoid triggering an immune response and thus increase the probability of making contact with 

the target of unhealthy cells (28, 42). Introducing targeting ligands on the NC contributes to it 

reaching specific receptors expressed on the surface of the cancer cells (14, 45). An example 

of this is immunoliposomes decorated with monoclonal antibodies binding to antigens on the 

surface of cancer cells (14). This can prolong the circulation time and therapeutic window by 

increasing the selective uptake and thereby reducing the needed dosage-effect ratio (37, 41, 

42). 

Introducing the inert polymer poly(ethylene glycol) [CH2CH2O]n (PEG) on the outsides of NCs 

will mask them from the immune system, thus avoiding opsonization and further macrophagic 

phagocytosis (10, 38). PEGylation will also keep the liposomes from agglomerating, as well 

as extend drug circulation time (46). Agglomeration leads to particles of dissimilar sizes and 

different drug concentrations, causing it to behave unexpectedly and uncontrollable in the 

body. Doxil/Caelyx was the first liposomal injection formula containing Doxorubicin (DOX) 

which utilized PEGylated liposome technology to improve biocompatibility, approved in USA 
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(33, 38). Studies of the drug showed that the area under the curve (AUC) was increased more 

than 60-fold compared to free DOX, providing higher probability of the liposomes reaching 

the target of interest (47). It was also shown that the volume of distribution for the PEGylated 

NC’s is almost identical to the blood volume, indicating that the drug is almost exclusively 

present in the circulation and very little in the tissue (48). The drug half-life and circulation 

half-life was increased compared to free DOX (47). A disadvantage of PEGylating liposomes 

is the association with dose- and frequency related hand-and foot syndrome which is shown to 

be higher compared to non-PEGylated liposomal formulations (14, 49). However, this might 

be explained by the PEGylated liposomes circulating longer compared to the non-PEGylated 

liposomes. 

 

1.2.1. Liposomes  

Liposomes are unilamellar vesicles in which an aqueous volume is enclosed by a membrane 

composed of lipids (50). Figure 1.5 illustrates a liposome where phospholipids with hydrophilic 

heads and hydrophobic tails form a bilayer. Compared to micelles, which consists of a single 

layer of lipids forming a hydrophobic core, liposomes will have both hydrophilic and 

hydrophobic hollows. These properties make them appropriate NCs for transporting both 

hydrophilic and lipophilic drugs and compounds (51). An example of a phospholipid used to 

produce liposomes is illustrated in Figure 2.3.  

 

 

Figure 1.5 - Illustration of a liposome. A cross section of a liposome with the lipid’s hydrophobic tails illustrated 

in light brown forming a lipophilic hollow, and the hydrophilic heads forming an aqueous core. Figure modified 

from Herfindal, Nilssen (52).  
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To overcome problems with instability, liposomes can be modified by enclosing cholesterol 

(Chol) into the membrane (50). Chol will make the membrane more rigid and thereby more 

stable in terms of leakage. Heat will make the membrane more permeable. By knowing the 

phase transition temperature, liposomes can be modified to ensure release of an incorporated 

compound at a desired temperature.  

The diameter size of liposomes can vary from tens of nm to several µm (37, 41). For medical 

purposes, it has been shown that liposomes with diameters around 150-200 nm remain in the 

bloodstream longer than those with diameters below 70 nm or above 300 nm (53). A 

compromise must thus be made between increased drug capacity and a higher degree of 

accurate targeted drug delivery. Generally, smaller liposomes will have reduced drug loading 

capacity compared to larger liposomes. However, experiments in rodents show that smaller 

particles evade the bloodstream and penetrate into the tumor interstitium to a higher degree 

than larger particles. The accumulation of NCs in the tumor interstitium is explained by the 

enhanced permeability and retention (EPR) effect. (53-56). The EPR effect is the accumulation 

of molecules inside the tumor because of its pathophysiological properties. The 

pathophysiological properties within the tumor typically include leaky vasculature and lack of 

lymph drainage caused by unorganized growing in epithelial tissue (14). However, preliminary 

studies in the clinic have shown that the EPR effect is tumor dependent and there are substantial 

individual differences between patients (56).  

In earlier research on DNR incorporated into liposomes, the liposomes have been 

approximately 120-130 nm to secure both an acceptable amount of drug incorporation and 

enough time spent in the bloodstream (23). The previously mentioned Vyxeos is a non-

PEGylated formulation with a liposome size around 100 nm (17). Vyxeos, showing a more 

positive outcome compared to free DNR and ara-C for t-AML and AML-MRC, gives hope for 

other liposomal formulations containing DNR to further improve the treatment of AML (17).  

 

1.3. Choice of compounds  

Previous research has shown that DNR in combination with a protein synthesis inhibitor 

(cycloheximide or emetine (EME)) have an increased effect compared to DNR alone (23, 57).  

Exploiting this synergism can lower the needed dose-effect bar and thereby give fewer dose-

related side-effects, such as myelosuppression (58). The synergism has earlier been tested both 
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as free drugs and incorporated into liposomes and has shown to enhance anthracycline-induced 

AML cell death in vitro and in small animal models (23, 57). Further research has shown that 

administering EME 30 minutes after DNR would increase the advantageous effect (23). This 

led Dr. Fabrice Anizon at the University of Clermont Auvergne to formulate an analog of EME, 

FG1181, shown in Figure 1.7 B. The rationale behind this molecule is that the liposomes will 

ensure that the two drugs will interact with the blasts at the same time in an optimal ratio. 

Conversion of FG1181 into EME will ensure that it is active 20-30 minutes after DNR is 

released. This delayed activation is believed to ensure the desired time difference between 

DNR and EME. The liposome will protect FG1181 from being metabolized in the blood. 

Liposomal inclusion of the two compounds would be advantageous as it ensures that both the 

active substances reach the same target simultaneously. Liposomal incorporation will also 

ensure equal pharmacokinetics for both compounds, which cannot be achieved if they are 

administered in separate formulations. Combining the compounds in the same liposomes will 

also reduce the amount of liposomes needed and thereby decrease the risk of liposomal toxicity 

such as foot-hand syndrome.  

 

1.3.1. Anthracyclines  

Anthracyclines are a class of cytostatic agents with multiple suggested mechanisms of actions 

(59, 60). The main hypothesis is that anthracyclines intercalate in deoxyribonucleic acid (DNA) 

and inhibits topoisomerase II, thereby halting mitosis (61). Another effect of anthracyclines is 

cellular loss of histones, delaying DNR repair in cancer cells (59). Further, anthracyclines 

generate free radicals which also induce DNA damage as well as damage proteins (62). All the 

above would affect rapidly dividing malignant cells but also affect several non-malignant cells, 

leading to the many drug-related side-effects associated with this drug class (6, 61).  

The major dose-limiting toxic side-effect of anthracyclines include myelosuppression and 

cardiotoxicity (14, 58). Especially for DOX, the risk of developing cardiomyopathy and 

congestive heart failure is increased because of the drug causing severe local tissue necrosis 

(62). Other drug-related side-effects include alopecia, nauseating and vomiting (63). The risk 

for cardiotoxicity, myelosuppression, vomiting and alopecia is shown to be significantly lower 

when incorporating DOX into PEGylated liposomes (63).  

The first anthracyclines, DNR and DOX, were isolated in the 1960s and the group has the 

broadest range of clinical use in oncology compared to other antitumor drugs, with only a few 
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cancers known to be unresponsive to treatment (58, 60, 64). Figure 1.6 shows the molecular 

structure of DNR (58). The anthracyclines have fluorescent properties because of its 

anthraquinone structure, facilitating easy detection in biological samples (65). DOX is still the 

most commonly used anthracycline in solid tumors, and DNR is generally used against 

hematological cancers as it currently shows the best results of the available treatment agents 

available (58).   

 

Figure 1.6 – The molecular structure of DNR. The drug is amphiphilic and amphoteric, containing a lipophilic 

anthracycline ring, hydrophilic hydroxyl groups, an acidic ring phenolic group and basic and lipophilic sugar 

amino groups (66). Figure adapted from Cortés-Funes and Coronado (58). 

 

Several anthracycline analogs have been developed in the hope of reducing the drug-related 

side-effects (58). These analogs have some advantages in comparison to the original 

anthracyclines, but less than anticipated during development. IDA is in some cases used in the 

“7+3” regime as a replacement for DNR and is the only anthracycline available for oral 

administration (58). IDA shows a broader spectrum of activity compared to DNR and is used 

against breast cancer as well as AML, but has the same severe side-effects as DNR (58). 

Epirubicin is shown to be less cardiotoxic compared to DOX, and shows increased effect 

against breast cancer in combination with paxitaxel (67).  
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1.3.2. Emetine and analogs  

Emetine (EME) shown in Figure 1.7 A, is a protein synthesis inhibitor derived from the plant 

ipecac (Carapichea ipecacuanaha) and is already approved for use in humans against protozoal 

infections (68, 69). The compound is a powerful emetic and expectorant, and inhibits the 

replication of DNA and RNA in viruses (70). EME is highly toxic to all cells and can be 

modified for use in targeted cancer treatment (71). The compound has relatively equal toxic 

profile across species, which helps in further investigations and drug development (23).  This 

is an advantage when it comes to cancer therapy because research on cells and small animal 

models can be translated to cancers in a high degree. 

 

 

Figure 1.7 – EME and FG1181. Molecular structures. A, and B, EME and the analog N2-acetoxymethyl-emetine, 

termed FG1181. The substituent side chain on the secondary amine is marked in green.  

 

A hypothesis is that exchanging the hydrogen on the N-2’ secondary amine of EME with a side 

chain can lead to an inactivating of the molecule (71). In vivo toxicity and anti-cancer activity 

with EME derivatives were tested with prostate specific antigen activation in 2017, and it was 

shown that modification with a non-toxic side group can render a non-toxic prodrug with a 

“cytotoxic switch” (71). The analog N2-acetoxymethyl-emetine termed FG1181, is shown in 

Figure 1.7 B. This is a modified version of EME where the hydrogen on the N-2’ secondary 

amine is substituted with a methylene diacetate side chain (green circle in Figure 1.7 B). The 

hypothesis is that when the side chain is cut off, the molecule will be metabolized to EME and 

thereby activated. This is estimated to happen 20-30 minutes after the liposome frees the 

incorporated compound, thus showing improved synergism with DNR compared to EME. 
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1.4. Aims 

The aim of this study was to find an improved treatment method for AML by combining DNR 

and FG1181 in a liposomal formulation. This can further be divided into three sub-aims. 

Firstly, to verify and identify the biological activity of FG1181 and compare its properties to 

that of EME.  

Secondly, to produce a liposomal formulation containing FG1181, both alone and in 

combination with DNR.  

Thirdly, to evaluate the effect of liposomal formulation containing DNR and FG1181 compared 

to liposomal formulations containing DNR and EME.  
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2. Experimental theory 

2.1. Spectroscopy 

Spectroscopy is the study of matter emitting and absorbing radiation, and particles interacting 

(72).  This includes the study of ultraviolet (UV) light, infrared (IR) light, radio waves, x-rays, 

gamma-rays and visible light, among others (72). Spectroscopy can be utilized to investigate 

molecular properties such as molecule size and structure, and are used as an analytical method 

in multiple fields including physics, biology, chemistry etc.  

 

2.1.1. Dynamic light scattering 

Dynamic light scattering (DLS) is a technique where the light scattered of a molecule is 

measured, allowing specific properties of the molecule to be studied (73). The light will interact 

with particles, where small particles with size ~0.3-10 000 nm (depending on the laser and DLS 

machine) can be detected as undergoing Brownian motion (74). Brownian motion is the 

continuous diffusion of a particle when suspended in a fluid as illustrated in Figure 2.1 (75, 

76).  

 

Figure 2.1 - A particle undergoing Brownian motion. The arrow shows which way the particle, marked in red, 

moves. The apparently random route is termed Brownian motion. Figure adapted from Leybold® (77). 

 

The relationship between the particles’ measured Brownian motion can be converted to size 

and size distribution with the Stokes- Einstein equation shown in Equation 2.1 (78). In the 

equation, DT is the diffusion, kb the Boltzmann constant, T the temperature, η is fluid viscosity 

and d is the diameter of a sphere with the same speed as the particle (79).   
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The DLS measures diffusion by exposing the sample to a monochromatic wave of light and 

has photon detectors on all sides measuring light intensity (79). The particles’ constant motion 

will cause a small change in wavelength frequency between unscattered and scattered light, 

termed a Doppler shift (79). As larger particles move slowly, these will cause a small Doppler 

shift, while the smaller ones exhibit a larger, more easily detected shift. The light intensity is 

measured for a period and processed into a mathematical function, identifying patterns where 

the exponential decay is constant. This gives the diffusion constant, DT, making it possible to 

calculate the sphere diameter, d.(79). 

A disadvantage to the DLS is that it measures size indirectly, and that the resulting diameter 

assumes that the particles are spheres. It also depends on high purity of the samples. Further, if 

the samples are polydisperse, i.e. that they consist of several size-populations, DLS may not be 

able to accurately determine individual size-populations, or average size. Therefore, the 

polydispersity index (PdI), the size population, is given in combination with measurements. 

However, for routine measurements of liposomes, DLS is a reliable method. Liposomes are 

spherical, do not interact with the reflected light and the measurements are quick and easily 

performed. 

 

2.1.2. Infrared spectroscopy 

IR spectroscopy measures the absorption of radiation when passing infrared light (700-1000 

nm) through a sample (80). An advantage for IR spectroscopy is that it can be used to examine 

liquids, solids and gases, depending on the instrument and its settings (72). The bonds in 

molecules and atoms can vibrate in different ways, divided into the subtypes stretching and 

bending (80). These subtypes can further be subdivided into symmetric and asymmetric 

stretching, and the bending subtypes into scissoring and rocking. Figure 2.2 illustrates a 

molecule undergoing symmetric stretching.   

 

Figure 2.2 - Illustration of a molecule undergoing symmetric stretching. Symmetric stretching of the carbon- 

hydrogen along the bonds. The red hydrogen atoms stretch to and from the carbon atom at a given frequency 

making it possible to identify this part of the molecule by IR measuring. Figure adapted from Stuart (80). 
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As different molecular bonds vibrate with different frequencies, IR measuring can be used to 

identify the presence of a structure, for example lipids (81). Lipid content can be identified by 

the vibration of carbon-hydrogen symmetric stretching at ~ 2850 cm-1 (80). Figure 2.3 indicates 

one of the methylene bonds in the phospholipid hydrogenated egg phosphorylcholine (HEPC), 

making it possible to identify it as a lipid. The resulting peaks at a given energy in an absorption 

spectrum will correlate to frequencies of a vibrating covalent bond in a molecule (80). IR 

detection can be used for quantitative analysis as well as for the qualitative analysis described 

by preparing a calibration curve and comparing the measurements of a sample with unknown 

concentration.   

 

 

Figure 2.3 - Hydrogenated egg phosphatidylcholine (HEPC). A phospholipid with one of the discussed 

methylene bonds marked red. Only one out of 34 methylene bonds are marked for simplicity. Figure adapted from 

Avanti® Polar Lipids (82).  

 

2.2. Western blotting  

Western blotting is a technique for detection and quantitation of proteins (83, 84). The 

technique uses three elements, protein separation by size, transfer of proteins to a solid 

membrane and target marking with primary and secondary antibody to visualize and quantitate 

proteins of interest (85). Here, cells were incubated with different compounds, rinses for excess 

compound, lysating the cells to get all protein in a mixture. The lysate was rinsed from the cell 

components by centrifugation. To separate by size, the cell lysates, are separated 

electrophoretically on SDS polyacrylamide gels where an electric force makes the negatively 

charged proteins migrate (86). Smaller proteins migrate fasten than larger protein, leading to 

separation.  
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The protein is further blotted to a polyvindylidene fluorene membrane before being blocked to 

prevent non-specific binding of applied antibodies. The primary antibody is specific to the 

protein of interest, and the secondary antibody is specific to the source of the primary antibody. 

The secondary antibody is often conjugated with an enzyme which will give a signal detectable 

for the binding. The antibodies will present themselves as bands, where the thickness of the 

band corresponds to the amount of protein present (85). At last, a loading control is used, for 

instance anti-β-actin, to control that equal amounts of protein are loaded into each well.  

 

2.3. Chromatography 

Chromatography is a collective term for analytical separation (87). The technique is used to 

separate and purify analytes based on properties like size, charge and hydrophobicity to 

mention a few (88). The technique is used for quantitative and qualitative analysis by injecting 

the mixture into a two-phase separating system. One phase is a stable stationary phase, while 

the other is a mobile phase aiding the analytes through the stationary phase. The mobile phase 

can be a gas or a liquid. Differences in the properties of the analytes and their interactions with 

the phases lead to the molecules being eluted separately.  

 

2.3.1. Size exclusion chromatography  

Size exclusion chromatography (SEC) separate analytes based on their sizes (89). The 

technique is also known as gel-filtration chromatography. The stationary phase consists of 

porous particles, for instance cross-linked dextran polymer gel. Small analytes diffuse into the 

pores, while larger analytes pass on the outside of the particles (87). The analytes which pass 

through the porous particles will be retained, and thus elute at a later point compared to the 

particles that are too large to enter the pores. Figure 2.4 illustrates the process of size exclusion 

chromatography. A segment of the column is enlarged and a porous particle, encapsulating 

multiple small and medium analytes in its pores, is shown. The particles will exit the column 

in order of decreasing size.  
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Figure 2.4 - Illustration of Size exclusion chromatography (SEC). A sample containing large (purple), medium 

(brown) and small (gold) analytes are added to a column with porous particles. The segment shows how the 

particles encapsulate the smaller and medium analytes while the larger pass on the outside. This happens multiple 

times throughout the column, causing the delayed elution. 

 

An important consideration when performing SEC is the ability to accurately separate the 

different particles as they emerge from the column. This can be done by visually inspecting 

whether the analytes emerging from the column differ in color, or by fractionation. It is also 

important to choose the right packaging materials because the analytes are separated based on 

the material’s pore size (89). A larger pore size leads to larger analytes diffusing into the pores.  

 

2.3.2. High-performance liquid chromatography   

High-performance liquid chromatography (HPLC) is an analytical technique using high 

pressure to accelerate the process of liquid chromatography (90). The mobile phase is a 

combination of two or more liquids. The stationary phase is a column consisting of fine 

particles with diameters ≤ 5 µm (87). The column has higher resolving power if the particles 

are finer, but this increases the back pressure of the column. These particles form a matrix, 

which the added sample are eluted through via the mobile phase.  

The most common stationary phases are normal and reversed phase, with polar or non-polar 

stationary phase, respectively (90). The most commonly used method in drug analyses is 

reverse phase HPLC (RP-HPLC), where non-polar analytes react with the non-polar functional 
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groups on the stationary phase. RP-HPLC is often used as the mobile phases can consist of 

simple, inexpensive and safe components, the elution order is easily predicted based on 

hydrophobicity and the column is reasonably stable (90). Commonly used mobile phases 

include water, acetonitrile or methanol. The most commonly used reverse phase columns are 

octadecylsilane (C18) columns. To prolong the life of the main column and prevent the column 

from clogging, a guard column can be used (90). The guard column should have a small internal 

volume to minimize peak broadening.  

Ultraviolet (UV) light is emitted through the detector, and as the UV radiation is absorbed by 

the sample components, the detector observes a reduced signal (90). The UV detector can be 

set to measure at a fixed wavelength, at variable wavelengths or with a diode array that 

measures a spectrum of wavelengths simultaneously. The resulting peaks can be further 

analyzed as wanted. 

 

2.4. Membrane permeability 

The parallel artificial membrane permeability assay (PAMPA) is a model for measuring 

passive diffusion across a membrane (91). An artificial membrane can be used to characterize 

a compound’s ability to passively diffuse across physiological membranes, for instance the 

blood-brain barrier or liposomal membranes (92). This is an important part of drug delivery 

development, because some drugs, for instance Daunorubicin (DNR), is known to be a 

substrate for active transport over membranes (93). This means that for DNR to cross the 

liposomal membrane, the temperature must exceed the phase transition temperature.  

Membranes for PAMPA can be purchased premade or be individually adapted to a specific 

assay by adding cholesterol. A setup can for instance consist of a plate with 96 wells with 

membranes of 0.45 µm pores made of Polyvinylidene fluoride (94). The bottom plate consists 

of donor wells filled with samples diluted in buffer. The top plate is placed onto the bottom 

plate. The top plate has a semipermeable membrane in the bottom of each well, which each are 

filled with buffer solution. The drugs can passively diffuse through the membrane into the 

acceptor wells, but not back to the donor wells. This is indicated by the one-sided arrows in 

Figure 2.6 which illustrates a well in a PAMPA plate. After 4-5 hours of incubation, acceptor 

and donor wells are analyzed to find effective permeability, log(Peff). A definition gives 

measured log(Peff)  < -6.14 as impermeable, -6.14< log(Peff) < -5.66 as low permeability and -
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5.66 < log(Peff) < -5.33 as intermediate permeability (95). Log(Peff) over < -5.33 are considered 

as highly permeable. An advantage when performing PAMPA is that it is easy, but it is 

important to consider the shortcomings- including the possibility of incorrect predictions and 

reproducibility difficulties (91).  

 

               

Figure 2.6 - Well in PAMPA-plate. The small purple particles indicate a drug able to diffuse through the 

membrane, while the yellow particles are a drug which cannot passively diffuse through the membrane. Figure 

adapted from Creative Bioarray (96). 

 

2.5. Assessment of cellular cytotoxicity 

In vitro assessments are necessary to carry out before conducting in vivo trials, but it is 

important to note that these will give different results. In vivo assays are more controlled, not 

including factors like the human immune systems. The use of knockout mice as models for 

cancer, for instance, does not take into consideration the fact that germline mutations often lead 

to embryonic or early postnatal death (97). Some cancers in humans are triggered by a somatic 

mutation leading to a centered tumor growth, while whole-body gene knockout mice can have 

the mutation in every gene. The in vitro assessments give valuable information regarding 

further development, but the results must be critically reviewed before concluding that the 

results apply for human cancers. 

 

2.5.1. Cell lines 

The use of cell lines for in vitro cell assessments gives the opportunity to test a compound on 

a specific cell type. However, the effect on healthy cells and the immune system’s response is 

not measured when testing a cytotoxic compound on a malignant cell line. Chemotherapy is 

known to damage the host immune cells, leaving the immune system impaired to fight 

remaining cancer cells and inhibit tumor growth (98).  
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The cell lines used in this study includes malignant and non- malignant cells, with a focus on 

the monocytic leukemia cell line MOLM13 (ACC, 554) (99). MOLM13 was collected from a 

human 20-year old male diagnosed with the AML subtype FAB M5a after relapse in 1995 

(100). The non-malignant cell lines NRK (ATCC, CRL-6509) and H9c2 (ATCC, CRL-1446) 

were used as non-malignant comparisons (99). NRK cells are rat kidney fibroblast cells (101). 

H9c2 cells are rat heart/myocardium myoblast cells (102). The non-malignant cell lines can be 

used to estimate a compound’s effect on non-mutated human cells and thereby drug-related 

side-effect. 

 

2.5.2. Assessment of cell viability 

Cell viability can be estimated using metabolic activity indicators. An example of this is 

performing colorimetric assays utilizing water soluble tetrazolium salt-1 (WST-1) as a 

proliferation agent (103). A colorimetric assay determined the metabolic activity in a sample 

by comparing the colored substances relative to control (104). The stable tetrazolium salt WST-

1 is cleaved enzymatically by NAD(P)H (noted as EC in Figure 2.5) reductase to a soluble 

formazan dye as shown in Figure 2.5. The formazan has a dark red color, thus making it 

possible to use a spectrophotometer to measure absorbance. The amount of formazan dye 

formed directly correlate to the number of metabolically active cells in cell culture, making it 

possible to estimate metabolic activity relative to untreated control cells (103).  

 

Figure 2.5 - Illustration of a cell proliferation reagent reaction. WST-1 is being reduced to Formazan. The 

WST-1 reagent has a slightly red color, while the Formazan is dark red. Formazan enters the nucleus, coloring it 

red. Figure adapted from product sheet at Merck (103).  
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A disadvantage of using the WST-1 colorimetric assay is that substances of strong (red) colored 

compounds can influence the spectrophotometer by giving a higher reading for metabolic 

activity. This makes it necessary to visually check the wells to ensure correct results. A 

fluorescence microscope can be used if the cells are stained with a fluorescent stain, for instance 

Hoechst 33342 which will color DNA blue (105). However, visually confirming if cells are 

normal or apoptotic can be difficult to accurately quantify. Combining the two methods of 

finding a ratio for living/dead cells can be combined to find an acceptable result.  
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3. Materials and methods 

3.1 Materials and reagents 

FG1181 precured from Dr. Fabrice Anizon (University of Clermont Auvergne, France). 

1,2-Disteraoyl-sn-glycero-3-Phosphoetanolamine-N- [Methoxy(Polyethylene glycol)-2000] 

(ammonium salt) (DSPE-PEG), Whatman® Nucleopore Track- Etched membrane filters and 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[folate(polyethylene glycol)-5000]  

(ammonium salt) (DPSE-PEG(5000)folate) from Avanti ® Polar Lipids (Alabaster, AL, USA). 

Quick StartTM Bradford 1x Dye Reagent (12% 10 well), 50 µL/well Mini-Protean® TGX™ 

Precast Gels, Precision Plus Protein Standard, immune-Blot® PVDF Membranes for Protein 

Blotting, 10x Tris/Glycine (TG) buffer and 10x Tris/Glycine/SDS (TGS) buffer from Bio-rad 

(Hercules, CA, USA). 

Corning® GentestTM Pre-coated PAMPA Plate system from Corning® (Corning, NY, USA). 

Chloroform and Dimethyl sulfoxide (DMSO) ≥ 99.5% from Honeywell chemicals (Morris 

Plains, NJ, USA). 

Hydrogenated egg phosphatidylcholine (HEPC) from Lipoid GmbH (Ludwigshafen, 

Germany). 

Sephadex™ G-50, ≥ 99.5% sodium chloride, cholesterol (Chol), ammonium sulphat, 

phosphate buffered saline (PBS), hydrochloric acid, sodium hydroxide, emetine (EME), 

trifluoroacetic acid (TFA), 37% formaldehyde,  0.01 mg/mL Hoechst 33342, RPMI medium, 

Dulbecco's modified Eagle's medium (DMEM), Penicillin, Streptomycin. L-Glutamine 

solution (L-glut), fetal bovine serum (FBS), Tween ® 20, ≥ 99.9% Trizma ® base (TBS), ≥ 

99.8% methanol, Ponceau S solution, Bromophenol Blue sodium salt, NP-40%, EDTA, DTT, 

NaF, MgCl2*6H2O, 86-89% glycerol solution, ≥ 99.9% Acetonitrile (ACN) and ≥ 99.9% 

Methanol for HPLC from Merck (Darmstadt, Germany). *Earlier Sigma/ Sigma-Aldrich (St. 

Louis, MO, USA). 

WST-1 Cell Proliferation Assay Reagent and cOmplete tablets, Mini EDTA-free EASYpack, 

protease Inhibitor Cocktail Tablets from Roche Applied Science (Penzberg, Germany). 
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UltraCruz® suspension culture bottles with vent cap from Santa Cruz Biotechnology, Inc. 

(Dallas, TX, USA). 

DNR (Cerubidine) from Sanofi Aventis (Lysaker, Norway).  

96-MicroWellTM plates with flat bottoms, NuncTM 12-well multidishes, PierceTM Bovine Serum 

Albumin Standard, Tropix® I-block™, SuperSignal® West Pico Chemiluminescent Substrate 

and West Pico PLUS chemiluminescent Substrate from Thermo Scientific (Waltham, MA, 

USA). 

 

3.2 Equipment and instrumentation 

DLS was measured with a Zetasizer Nano XS from Malvern Panalytical (Almelo, Netherland). 

The IR spectroscopy was performed with Direct Detect Assay-free Cards on a Direct Detect ® 

Spectrometer from Merck Millipore (Darmstadt, Germany). SEC was performed with an 

Econo- Column from BioRad (Hercules, CA, USA). Extrusion was performed with a mini 

extruder from Avanti ® Polar Lipids (Alabaster, AL, USA) and a LIPEX™ gas extruder from 

Northern Lipids (Burnaby, Canada). The fluorescence microscope used was a Diaphot 300 

Inverted Microsope from Nikon (Minato, Tokyo, Japan). 

HPLC was performed with a Merck-Hitachi LaChrome HPLC machine from VWR 

(WestChester, USA), consisting of a Merck L-7614 pump, a Rheodyne® 7725i manual 

injector, 250 µL 1725N syringe from Gastight® from Merck*(Darmstadt, Germany), a 

Kromasil 100-5C18 150-4.6 mm reverse phase column (Akzo Nobel, Sweden), a L-7455 diode 

array detector, Hitachi Interface D-7000 and the data processing software D-7000 HPLC 

system Manager (HSM) version 4.1. *Earlier Sigma/ Sigma-Aldrich (St. Louis, MO, USA) 

The thermomixer comfort was from Eppendorf AG (Hamburg, Germany), the Zentrifugen 

universal 32 centrifuge from Hettich (Tuttlingen, Germany), the humidified Steri-Cycle CO2 

incubator from Thermo Scientific (Waltham, MA, USA), the Olympus CKX31 microscope 

(Shinjuku, Tokyo, Japan), 2103 Envision Multilabel Plate Reader from PerkinElmer(Waltham, 

MA, USA), the Allegra™ X-22R Centrifuge from Beckman Coulter (Brea, CA, USA), the 

ImageQuant LAS 4000 camera system from GE Healthcare (Chicago, IL, USA) utilizing the 

program “Image Quant LAS400”, the Mini-Protean® Tetra system blotting chambers from 
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BioRad (Hercules, CA, USA) and the Scanlaf Laminar Air Flow (LAF) Mars safety benches 

from Labogene (Allerød, Denmark). 

 

3.3 Production of liposomes 

3.3.1 Preparation of liposomes   

HEPC, Chol and DSPE-PEG were dissolved in chloroform at concentrations of 2.37 mg/mL 

HEPC, 0.65 mg/mL Chol, and 0.71 mg/mL PEG-PE.  Ten mL from each of the stock solutions 

were mixed in a 200 mL round bottom flask, giving a molar ratio of 1.81 HEPC: 1 cholesterol: 

0.15 DSPE-PEG. For the production of folate decorated liposomes, DSPE-PEG(5000)folate 

was added at one tenth of the molar concentration of DSPE-PEG by adding 10 mL 0.16 mg/mL 

DSPE-PEG(5000)folate dissolved in chloroform to the round bottom flask in addition to the 

other lipids. 

A lipid film was produced by evaporation of the chloroform using a rotary evaporator at 200 

mbar and 60 RPM for 60-90 minutes without heating and then at 20℃ using a water bath until 

the film appeared dry. Residual chloroform was removed by running the vacuum pump at 

maximum pump capacity (7-8 mbar) for 30 minutes. The film was hydrated with 10 mL 250 

mM ammonium sulphate adjusted to pH 6-6.5 and heated to 60-65℃. To completely hydrate 

the lipid film, it was thoroughly vortexed at 60℃ until no lipid film was visible on the round 

bottomed flask. This produced large multilamellar vesicles (LMV) which were further extruded 

to produce small unilamellar vesicles, also called liposomes.  

Extrusion was performed by using a mini syringe-extruder for small volumes, or a gas extruder 

for large volumes. For the mini extruder, the LMV suspension were passed through 19 mm Φ 

membrane filters with decreasing pore size. The suspension was passed 11 times through 400 

nm filters, 11 times through 200 nm filters and finally 22 times through 100 nm filters. The gas 

extrusion was performed with 25 mm Φ membrane filters 5 times through 800 nm filters, 5 

times through 400 nm filters, 10 times through 200 nm filters and 10 times through 100 nm 

filters. This ensured liposomes with diameter of approximately 115-135 nm and acceptable 

polydispersity index (PdI), measured with DLS (see experimental theory section, chapter 

2.1.1). 
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SEC with degassed PBS adjusted to pH 8.0 was performed to change the buffer around the 

liposomes (see experimental theory section, chapter 2.3.1). If the column was left unused for 

more than a month, empty liposomes were sent through before use. The liposomal formulation 

was stored at 4℃ in the dark for up to nine days before being used in experiments and shaken 

vigorously before every use. The lipid content was measured using IR spectroscopy and 

calculated using a previously obtained standard curve with equation 3.1 where y are the 

readings from the IR spectroscope, and x the lipid concentration in mg/mL (see experimental 

theory section, chapter 2.1.2) (106). 

 

 

 

3.3.2 Compound loading of liposomes 

FG1181 was dissolved in DMSO, DNR and EME were dissolved in PBS. The liposomes were 

loaded with 1:10 DNR: lipid solution and/or 1:5 or 1:10 EME or FG1181 compound/lipid 

content by two methods, either leaving the solution in the dark at 4℃ overnight or under stirring 

for one hour at 60℃. After loading, the liposomes went through SEC to remove non-

encapsulated compound, the lipid contents were measured with IR and the sizes measured with 

DLS. 

 

3.3.3 Reverse phase high performance liquid chromatography 

Reverse phase high performance liquid chromatography (RP- HPLC) was used to separate and 

quantify the compounds in the liposomal formulations with equipment specified in the 

equipment and instrumentation chapter 3.2. Ten µL samples were loaded onto the column. The 

samples used were dissolved in 30% ACN and MilliQ (MQ). Two set ups for mobile phase 

composition and gradients were used. The gradients of the components are plotted in Figure 

3.1. The first mobile composition, A1 and B, were A1: 2:8 MeOH:MQ added 0.05% and B: 

ACN added 0.005% TFA. The second, A2 and B, were MQ added 0.05% TFA and B ACN 

added 0.005% TFA. Spectra from 190-550 nm were recorded every 0.2 sec, and integration of 

peaks was on chromatogram created at 280 nm.  
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Figure 3.1 – Mobile phase gradients. Scheme of the percentage of each component in the mobile phases. Note 

that the gradients extend over different time periods. 

 

3.4 Parallel artificial membrane permeability assay  

Parallel artificial membrane permeability assay (PAMPA) was performed to estimate if and to 

which extent FG1181 and EME passively cross over a phospholipid membrane. The assay was 

performed according to the manufacturer’s instructions. In brief, the compounds were 

dissolved to 50 µM in buffer, and added to the donor wells. The membrane plate was added, 

and buffer added to the acceptor wells. The buffers were PBS pH 7.4 or pH 8.0 in the donor 

wells and PBS pH 7.4 or 250 mm ammonium sulphate pH 6.4 in the acceptor wells. This would 

mimic the pH conditions during compound loading of liposomes. After assembly of the plate, 

it was left in the dark at room temperature for 5 hours before the constituents of the donor and 

acceptor wells were collected and the compound content analyzed by HPLC as described in 

section 3.3.3. The compounds were tested both alone and in combination under the different 

pH conditions.  The ratio between drug in the acceptor wells and donor wells were calculated. 
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The effective permeability, Peff, [cm/s] was calculated using Equation 3.3, where A is the area 

of the filter plate membrane, VD and VA are the volumes of the donor and acceptor wells, CA(t) 

is the concentration in the acceptor well at time t, and t is the time of incubations (107). Ceq 

was calculated using Equation 3.4, where CD(t) is the concentration in donor well at time t. 

 

 

3.5 Cell maintenance and experiments 

3.5.1 Cell maintenance 

The MOLM13 cell line are suspension cells which were cultured in RPMI-1640 growth 

medium, enriched with 100 IU/mL penicillin, 100 mg/L streptomycin, 0.2 mM L-Glut and 10% 

FBS. NRK and H9c2 are adherent cell lines which were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM), enriched with 100 IU/mL penicillin, 100 mg/L streptomycin and 

10% FBS. The cells were incubated at 37℃ in the dark with 5% CO2 in the air. The H9c2 and 

NRK were detached from the incubation flask by washing twice with room temperature PBS 

and incubating with 0.33 mg/mL trypsin for 2-3 minutes at 37℃. To resuspend all the cell 

lines, the cells were centrifuged at 200xG for 3 minutes and the cell pellet reseeded in fresh 

medium. All cell handling was performed in a LAF bench and inspected in a microscope.  

 

3.5.2 Metabolic activity measurements 

Dose-response assays were performed with 100 µL medium as blanks, and 50 µL medium and 

50 µL cells of approximately 400 000 cells/mL as control. Ten µL drug or 20 µL liposomal 

solutions were mixed in 80 µL medium before being sequentially diluted in 50 µL medium 

across the plate. 50 µL cells were added to all wells except the blanks. All parallels were carried 

out in triplets, including blanks and controls. The wells on the edges of microplates were not 

used for cells but filled with sterile liquid to avoid edge effect due to for instance liquid 

evaporation. 96-well microplates were used to carry out all cell assays. The plates were 
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incubated at 37℃, 5% CO2 for 22-24 hours. Ten µL WST-1 Cell Proliferation Reagent was 

added to each well and the plate was further incubated for two hours (see chapter 2.5.2). The 

plate was then analyzed using a spectrophotometer measuring absorbance at 450 nm, with a 

reference read at 620 nm. The measurements were adjusted relative to blanc and control with 

Equation 3.5.  

 

 

 

To visualize the nuclei of the cells, 100 µL 4% Fix, consisting of 4% formaldehyde and 0.01 

mg/mL Hoechst 33342 in PBS pH 7.4, was added to each well. Images were obtained using a 

fluorescence microscope fitted with a camera and the percent of apoptotic, necrotic and normal 

nuclei determined. The pictures were imported to ImageJ to calculate mortality depending on 

drug concentration.  

 

3.5.3 Kinetics assay 

To assess the induction of apoptosis over time, compounds were added to cells, and aliquots 

transferred to 2% formaldehyde in PBS pH 7.4, added 0.01 mg/mL Hoechst 33342 at different 

time-points for 24 hours. To compensate for cell death in the control, the data was adjusted 

with Equation 3.6. 

 

 

 

3.6 Protein detection 

After one-hour treatment at 37℃ with compounds, MOLM13 AML cells were rinsed twice 

with 4℃ 9 mg/mL NaCl by centrifugation at 1200 RPM for 5 minutes at 4℃. The cells were 

then lysed in 100 µL SHIEH-buffer consisting of 10 mM Tris HCl pH 7.5, 1 mM EDTA, 40 

mM natrium chloride, 10% glycerol, 0.5 % NP-40, 5 mM sodium fluoride, 0.5 mM sodium 

orthovanadate and 1 mM DTT in MQ. The lysis was performed by incubation on ice for 30 

minutes before being centrifuged at 13 000 RPM for 30 minutes at 4℃. 
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To determine the protein concentration of the lysate, a standard curve of Bovine Serum 

Albumin Standard and dye reagent were prepared with concentrations of 0, 2, 4, 6, 8 and 10 

mg/mL according to the manufacturer’s instructions. 2 µL lysate from each sample (described 

in Section 3.9.1) were dissolved in 998 µL dye reagent in Eppendorf tubes. Triplets of 200 µL 

standard curve and samples were prepared on a 96-well microplate and left for more than five 

minutes. The plate was introduced into a spectrophotometer reading at 595 nm, and the protein 

concentration calculated from the equation obtained from the standard curve.  

Before SDS-PAGE, 50 µL samples containing 1 mg/mL protein were prepared in 10% 5x 

loading buffer, consisting of 1% SDS solution, 12 mM Tris-HCl pH 6.8, 0.1% Bromophenol 

Blue, 50mM DTT and 10% glycerol in MQ, and 1 x protease synthesis inhibitor in SHIEH- 

buffer. The samples were heated for 10 minutes at 100℃, before being left on ice for 20 

minutes. Twenty µL of the standard Precision Plus Protein Standard All Blue was added to the 

second well, while the outermost wells were left open. Forty µL sample were introduced in 

every well of a 12% precast gel for 90 minutes on 100 V in an SDS-PAGE chamber with TGS 

as running buffer to transfer the proteins to a polyvinylidene fluoride membrane. The blotting 

was left running for 70 minutes in a blotting chamber at 100 V using a blotting buffer consisting 

of 10% MeOH and 10% TG in MQ. The membrane was thoroughly washed three times in 

TBS-T consisting of 1% TBS and 1% Tween in MQ. 

Ponceau S solution was added to the membrane and the excessive solution washed away with 

MQ to ensure the presence of protein bands. The membrane was photographed (Appendix I) 

before all the Ponceau S solution were rinsed away with 0.1 M Sodium hydroxide and MQ. 

The membrane was thoroughly washed three times in TBS-T. 

The blocking buffer was produced by adding 2.0 g I-Block powder in 1L TBS heat to 70℃, 

cool down to 20℃, add 2.18 g MgCl2*6H2O and 1 mL Tween. The membrane was blocked 

for 60 minutes on a shaker before being washed thoroughly with TBS-T three times. Five mL 

caspase-3 mouse monoclonal IgG2a from Santa Cruz Biotechnology (Dallas, TX, USA) was 

incubated with the membrane on rotation in the dark at 4℃ for 18 hours overnight (108). The 

next day, the membrane was thoroughly rinsed again with TBS-T, before incubation with the 

secondary antibody, donkey anti-mouse horseradish peroxidase (AB2340770, product nr. 711-

035-150) from Jackson ImmunoResearch Europe Ltd (Cambridgeshire, UK) for 60 minutes on 

rotation in room temperature. The antibody solution was removed and washed again with TBS-

T. 2 mL chemiluminescent substrate (SuperSignal™) was applied to the membrane for 3.5 
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minutes and a picture taken with a chemiluminescence and fluorescence digital imaging system 

for gels and blots. The (Appendix I).  

The TBS-T rinsing step was repeated, and the membrane left in mouse anti-β-actin antibody 

(AC-15 (ab6276)) from Abcam (Cambridge, UK) for one hour. The β-actin was removed, and 

the membrane rinsed with TBS-T. 2 mL chemiluminescent substrate (West Pico Plus) was 

added for one minute, and a new picture taken (Appendix I). 

 

3.7 In silico prediction, data analysis and presentation 

In silico prediction was performed by drawing the structures in ChemDraw Professional 

version 16.0 (PerkinElmer Informatics Inc. Waltham, MA, USA) and using the net charge 

prediction plug-in Marvin Sketch version 19.1 (ChemAxon Ltd., Budapest, Hungary).  

Fluorescent images were analyzed with NIH Image J version 1.52a. All data are presented as 

averages with standard deviation (n ≥ 3). The data was processed using Microsoft Office Excel 

version 16.0.   
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4 Results 

4.1 FG1181 chemical properties and anti-AML activity 

Before starting the work with loading the emetine analog FG1181 into liposomes, we needed 

to perform characterization of the chemical properties of the compound, as well as its cytotoxic 

potential. This, to ensure that the compound was a valid drug candidate for AML therapy. In 

silico predictions of net charge as a function of pH could give an indication of the ability of 

FG1181 to cross membranes. These showed that the protonated form was the dominating 

specie below pH 8.5, whereas the molecule became fully uncharged above pH 10.0. Note that 

while EME has a net charge of +2 at acidic conditions, FG1181 only has +1 due to the hydrogen 

being substituted at EME’s secondary amine (green circle in Figure 4.1 A). DNR is negatively 

charged above pH 9.0, and positively charged at pH below 8.5, but there is a pH window 

between 8.0 and 10.0 where the dominating specie of all molecules will be uncharged. This 

suggests that the same conditions for post-loading of liposomes could be used for FG1181 as 

was described for EME and DNR (23). 

 

 

Figure 4.1 – Net charge predictions of FG1181. A, The estimated molecular form of protonated FG1181 with 

the affected amine and added proton encircled red. The protonation leads to the compound getting a net charge of 

+1. The other nitrogen, marked green, indicates the amine where the substituent is attached on EME to produce 

FG1181. Emetine (EME) can be protonated at both the encircled nitrogens, giving a net charge of +2.  B, In silico 

net charge predictions for FG1181, EME and Daunorubicin (DNR), made using Marvin Sketch. 

 

Next, we wanted to verify the findings from the in silico prediction by using PAMPA. Here the 

drug content of the donor and acceptor wells are measured by RP-HPLC, and two sets of 

standard curves for DNR, EME and FG1181 were prepared to be able to quantify the 
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compounds. This was done with different mobile phase composition and gradients, as 

described in the Method section, chapter 3.3.3. The second set of standard curves with 

equations from linear regressions are presented in Figure 4.2. 

 

Figure 4.2 – Standard curves produced with RP-HPLC. A-C, Standard curves for Daunorubicin (DNR), 

emetine (EME) and FG1181, respectively. The given equations were used to calculate compound concentration 

in PAMPA and in compound-loaded liposomes. The standard curves were produced as described in Section 3.3.3 

and Figure 3.1 B. 
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PAMPA was performed to estimate the different compounds’ ability to cross the liposomal 

membrane. In the assay, two different pH conditions were examined. Examples of RP-HPLC 

spectra are shown in Figure 4.3 and the results presented in Figure 4.4 and Figure 4.5. Note 

that in all the FG1181 donor wells, an extra peak at approximately t ~ 5.60 was detected in the 

spectrums. This is marked with a black arrow in Figure 4.3 and as “FG1181*” in Figure 4.4. 

Note that more compound passes the membrane for pH 8.0 in the acceptor wells and 6.4 in the 

donor wells compared to pH 7.4 in both wells. This is particularly evident for FG1181, but 

there is also an increased proportion of DNR and EME in the acceptor wells. In line with this, 

we observed increased permeability (log(Peff)) with pH 8.0 in the donor wells, and 6.4 in the 

acceptor wells compared to pH 7.4 in both wells, as illustrated in Figure 4.5. 

 

 

Figure 4.3 – RP-HPLC spectra of FG1181, emetine (EME) and daunorubicin (DNR) from the PAMPA 

samples. One experiment in the PAMPA with examples of spectra detected from different wells. The arrows 

indicate the different compounds, with FG1181, EME and DNR marked as green, blue and red, respectively. The 

black arrows indicate the product noted as FG1181* in Figure 4.4. See respective figures for specification of well 

and pH- condition. Note that the values for the x-axes in A and B is lower than for C-F.  For details on the HPLC 

set-up and PAMPA, see chapters 3.3.3 and 3.4 in the methods section. 
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Figure 4.4 – Ability of compounds to cross phospholipid membranes. The bars represent the ratio of drugs 

present in the donor and acceptor wells of the PAMPA plate at different pH conditions in the acceptor and donor 

wells. The content of compounds was analyzed by RP-HPLC. A, B, and C represent the ratio of FG1181, Emetine 

(EME), and daunorubicin (DNR), respectively. The data presents the average of three experiments. For details on 

experimental conditions of the PAMPA and HPLC set-up, see chapters 3.4 and 3.3.3 in the methods section.  
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Figure 4.5 – Permeability of FG1181, emetine (EME) and daunorubicin (DNR) at different pH- conditions. 

The effective permeability Peff was calculated from RP-HPLC-quantification data applied to Equation 3.3 and 3.4, 

as described in chapter 3.4 in the Method section. Log(Peff)< -6.14 is defined as impermeable, -6.14 < log(Peff)< -

5.66 as low permeability, -5.66 < log(Peff)< -5.33 as intermediate permeability and log(Peff)over < -5.33 is 

considered as highly permeable (95). 

 

Introduction of a substituent on the secondary amine of EME is reported to yield an inactive 

molecule. It was therefore imperative to demonstrate cytotoxic effect of FG1181 to prove the 

prodrug concept. A dose response cell assays for FG1181 and EME as free drug was performed 

to compare the potency and the timescale of the cytotoxicity. EC50 and T50 are the values of the 

half maximal effective concentration and time, respectively, where half of all the cells appear 

dead. Figure 4.6 shows the measured metabolic activity after 24-hours incubation and images 

acquired with a fluorescence microscope to manually count the percentage of living versus 

dead cells. The non-apoptotic nuclei appear as evenly stained and bean-shaped (green arrows 

in Figure 4.6 C), whereas apoptotic nuclei are more brightly stained, and are fragmented (red 
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arrows). At very high concentrations of EME or FG1181, the cells appeared to have 

disintegrated and very few cells were present in the wells (Figure 4.6 D). Note that EME is 

more potent and kills the cells faster than FG1181. 

 

 

Figure 4.6 – Cytotoxicity of emetine and the analog FG1181 on MOLM13 AML cells. A, Dose-response 

curves comparing cell mortality after incubation for 24 hours and measuring of metabolic activity with the WST-

1-reagent. The curves are averages of the three experiments performed in triplicates and standard deviation.      B, 

Scheme showing a comparison of percentage apoptosis over time when treated with 2.5 µM FG1181 or 2.5 µM 

EME in a 24-hour kinetics assay described in chapter 3.5.3 in the Method section. Two images were acquired 

from each well, excluding images containing fewer than six cells. Each plot is an average of three experiments 

and standard deviation. The plots are adjusted for 30.49% cell death calculated from control. C and D, Images of 

untreated cells (C) and cells treated with FG1181 for 24 hours (D). Two examples of cells counted as apoptotic 

are marked with red arrows. Examples of cells counted as normal are marked with green arrows. Note that all the 

cells appear apoptotic in D.  
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FG1181, EME and DNR, alone and in combinations, were tested on the non-malignant cell 

lines NRK and H9c2 (Figure 4.7). This was done to evaluate each compound’s cytotoxicity 

and estimate drug-related side-effects. The NRK cells appear to not be as affected as H9c2 by 

the treatment. A small beneficial effect for FG1181 compared to EME, alone and in 

combination with DNR, can be observed by the data.  

 

Figure 4.7 – Cytotoxicity of free drug on myocardium myoblast and kidney epithelial cells. 50 000 cells/mL 

were prepared in wells of a 96-well microplates 24 hours before free drug was added in concentrations given by 

the x-axis. The microplates were further incubated for 24 hours and metabolic activity evaluated using WST-1 

reagent as described in chapter 3.5.2 of the Method section. The data is an average of three experiments.  

 

4.2 Liposomal formulations 

Liposomes containing DNR and EME has been shown to efficiently kill AML cell lines (23). 

We wanted to improve this by adding a prodrug of EME for delayed protein synthesis 

inhibition. Liposomes containing DNR, FG1181 or EME, or DNR in combination with EME 

or FG1181 were therefore produced. Four batches (A-D) were produced, here batch B and C 

were extruded with a gas extruder, and batch A and D with a syringe-driven mini extruder. 

Batch A was produced before FG1181 was available. The loading of the batch was performed 

with 1:10 compound-lipid weight ratio. Batch B had a larger average size because of some 

technical trouble with the gas extruder. For Batch B-D the loading of FG1181 and EME was 

performed with 1:5 compound-lipid weight ratio. Batch C was produced to compare liposomes 

loaded using shaking and heat and liposomes loaded overnight in the refrigerator. Batch D was 

produced with folate (DSPE-PEG(5000)folate). Further specifications of loading conditions 

are given in Figure 4.9. 
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4.2.1 Liposomal characteristics 

The liposome sizes were measured in triplicates before and after loading to ensure that the 

liposomes were intact, and also had not agglomerated during drug loading or gel filtration 

(Figure 4.8). The PdI was < 0.078 for all measurements. The measured sizes and lipid content 

for the different batches are shown in Figure 4.9. The liposome sizes were measured in 

triplicates before and after loading to ensure that the liposomes were intact and had not 

agglomerated during compound loading or gel filtration. The lipid contents of the empty 

liposomes were calculated using Equation 3.1 after measurement with IR. For the liposomes 

containing DNR, a red band could be visibly detected as the loaded liposomes eluted from the 

SEC-column. The liposomes loaded with only EME or FG1181 were colorless, and to identify 

the liposomes, fractions were collected, and the lipid content measured. 

 

 

Figure 4.8 - Size distribution of empty liposomes after gel filtration. Size distribution measured with DLS. 

The schemes show three measurements.  
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Figure 4.9 - Size and lipid content for the different liposome batches. Content of compounds and loading 

condition of the liposomes in the different batches are presented in the y-axes. The different batches are presented 

in different colors, as indicated. The blue indicates the batches produces with the mini-extruder and the green the 

batches produced with the gas-extruder. A, Lipid content measured with IR and calculated with Equation 3.1. B, 

Scheme of size measured with DLS for liposomes. The size is given as an average of three measurements of one 

sample after gel filtration. *The empty liposomes have a higher lipid content because they were only gel filtered 

once, compared to twice for the loaded liposomes. 
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4.2.2 Compound loading of liposomes 

The gradients were changed after Batch B showed that the peaks for DNR and FG1181 were 

very close and could not be separated using the mobile phase composition and gradient 

conditions presented in Figure 3.1 A. Figure 4.10 shows spectrums before and after gradient 

adjustment. The measured compound loading based on the RP-HPLC standard curves is 

presented in Figure 4.11. EME and DNR were loaded better with incubation at 60℃, while 

FG1181 was better loaded overnight at 4℃. DNR appear to hinder the uptake of EME and 

FG1181 when incubated at 60℃, as illustrated in Figure 4.11 A. 

 

Figure 4.10 – Examples of RP-HPLC-spectra of compounds from liposomes. Emetine (EME) is marked in 

blue, FG1181 in green and daunorubicin (DNR) in red. A, Analysis of a liposomal formulation containing FG1181 

and DNR from Batch B. The two peaks interject at t~5.60 minutes. Note the peak at t~4.20 minutes, indicating 

the presence of EME in the formulation. B, Example of a blank sample with gradient and background peaks at t 

~3.75, t~7.93 and t~11.41 minutes. These peaks were not evaluated in the measurements. C, Spectrum of a 

liposomal formulation containing FG1181 and DNR in Batch C. Note that the DNR and FG1181 peaks have base-

line separation due to the changed gradient (See Figure 3.1 in the Methods section) .  
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Figure 4.11 – Calculated compound loading for the liposomal formulations. The RP-HPLC standard curves 

were used to calculate compound loading. The x-axes specify batch and loading condition. A, Compound loading 

for FG1181 and EME liposomes. EME Batch A could not be quantified using RP-HPLC because of low 

compound content. B, Drug loading measured for the liposomes containing DNR. The loading of the combinations 

of FG1181 and DNR in Batch B is not given because of peak separation problems. The columns give the 

concentrations of DNR in the liposomal formulations. 

 

After producing some of the liposomal batches, we developed a hypothesis of FG1181 being 

degraded by high temperature. To investigate, the content of FG1181 and EME in equally 

prepared samples stored at different temperatures were compared. The compound was tested 

alone and in combination with DNR. The samples were analyzed using RP-HPLC to find the 

content of EME. Figure 4.12 shows RP-HPLC-spectrums obtained and the results from the 

quantifications of the content of EME in the samples.  
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Figure 4.12 – Content of EME in equally prepared samples stored at different temperatures. Samples 

containing free compound were either shaken at 60℃ for 60 minutes, illustrated in red, or stored dark at 4℃ 

overnight, illustrated in blue in E. The bars give the concentration of EME in samples with composition specified 

in the x-axis. The light- colored bars indicate where EME should be found, while the dark-colored bars are FG1181 

metabolized to EME. Note the difference between FG1181 alone and in combination with DNR. RP-HPLC was 

used to measure the contents in the samples. A-D, Spectrums of FG1181 alone treated with heat and cold, alone 

and in combination with DNR, respectively. EME is marked in blue, FG1181 in green and DNR in red. The 

content of each sample and storage condition is given in each figure. 
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All liposomal formulations were tested for cytotoxic potential towards MOLM13 cells. Dose 

response cell assays were performed to be able to compare EC50-values. Empty liposomes from 

all batches were tested for cytotoxic effect on MOLM13 cells as shown in Figure 4.13. Figure 

4.14 and 4.15 shows the cytotoxicity of free drug, as well as the different liposomal 

formulations and batches. Note the difference in EC50-values in Figure 4.14, indicating a 

synergistic effect of FG1181 and DNR compared to that of DNR alone or in combination with 

EME. For the liposomal formulations, this is especially clear for batch B and C where the 

FG1181-combination has EC50-values significantly lower than the EME-combination. The 

EC50-value for DNR as free drug is here 0.074 µM, while the value for a combination of DNR 

and FG1181 or EME is 0.002 µM, which is 37 times decrease in dosage.  

 

Figure 4.13 - Dose response cell assay with empty liposomes. Empty liposomes from every batch were tested 

on MOLM13 cells in three experiments. The scheme shows the average of Batches A-C and Batch D (folate). 

Twenty percent liposomal solution was added to the first well and diluted in a dose-response assay. The metabolic 

activity was measured after 24 hours of incubation utilizing WST-1 reagent. For details on cell assays, see chapters 

3.5.2 in the methods section. The data on PEGylated liposomes represent average and standard deviation of three 

separate experiments performed on three separate batches, while the data on folate decorated liposomes are the 

average and standard deviation of three experiments on one batch. 
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Figure 4.14 - Cytotoxicity of the different liposomal formulations and free compound combinations towards 

MOLM13 cells. All assays were performed in triplicates with standard deviation and incubated for 24 hours. The 

metabolic activity was measured with WST-1 reagent. Note that the plots are based on the concentration of DNR, 

not FG1181 or EME. See figure 4.11 A for concentration of FG1181 and EME in the different batches. A, Data 

from cell assays performed with DNR alone. B, Data from cell assays performed with a combination of DNR and 

EME. C, Data from cell assays performed with a combination of DNR and FG1181. 
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Figure 4.15 - Cytotoxicity of the different liposomal formulations and free compound towards MOLM13 

cells. All assays were performed in triplicates with standard deviation and incubated for 24 hours. The metabolic 

activity was measured with WST-1 reagent. A, Data from cell assays performed with FG1181. B, Data from cell 

assays performed with EME. 

 

4.2.3 Pulse test 

A pulse test was performed with liposomes from Batch D (folate decorated liposomes). The 

test was performed because folate receptor targeting is most evident in short-term exposures 

and furthermore, we cannot assume that the liposomes are available for cellular uptake 

continuously for 24 hours (23). The results and experimental set ups are presented in Figure 

4.16. The assays indicated that a short incubation was sufficient to produce a strong cytotoxic 

effect on the AML-cells. It also showed decreasing metabolic activity for the 60 minutes assay 

compared to the 30 minutes assay for the cells treated with liposomes loaded with FG1181 or 

DNR, and for the samples treated as shown in Figure 4.16 B. Note the different concentrations 
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given by the y-axes, as the assay were performed with equal volume of liposomal solution 

added to the cells, and not adjusted to produce equal concentrations of compounds.  

 

 

Figure 4.16 – Pulse cytotoxicity test of compound loaded folate decorated liposomes on MOLM13-cells. 

After treatment, the cells were incubated for a total of 24 hours and metabolic activity measured with WST-1 

reagent. Note the difference in drug concentrations for the liposomes specified in the x-axes as the assays were 

performed with the same percentage of liposomal formulation, not compound concentration. A and B, Schematic 

presentation of the timelines of the assay. From the wash-step, the cells were spinned down and resuspended in 

fresh medium. C and D, Results from the 30 minutes and 60 minutes tests, respectively. The data are an average 

and standard deviation of three experiments.   
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5 Discussion 

In this study, we evaluated the emetine (EME) analog FG1181 as a combination therapy with 

daunorubicin (DNR) against AML. The synergism with DNR and the novel analog FG1181 

was compared to that of DNR and EME. Furthermore, successful loading of liposomes with 

FG1181 was achieved both alone and together with DNR. The efficacy of the compound loaded 

liposomes was demonstrated on the AML cell line MOLM13 and finally, we demonstrated that 

FG1181 and DNR were superior on MOLM13 AML cells compared to EME and DNR. 

In silico predictions showed the protonation of the primary amine for FG1181 (Figure 4.1). 

However, after metabolization to EME, the compound can be further protonated on EME’s 

secondary amine (green circle, figure 4.1 A). The peak apparent in the RP-HPLC spectra in 

Figure 4.3 at t~5:30-6:20 minutes can be hypothesized to degradation products of the two 

compounds. The RP-HPLC spectra in Figure 4.10 showed several gradient and background 

peaks which might have affected the readings, especially for EME at t~4.20 minutes, but not 

the noted peak. The large gradient peak at t~3.75 minutes in all spectra caused by the 

acetonitrile can be assumed to have influenced the readings to some degree, even though it was 

present at the standard curve, because it differs some in value and thereby impact the result. 

This would not be a problem if the concentration of EME was higher, as the peaks then would 

be larger and less affected. It must also be noted that using an autosampler would lead to more 

equal injections.  

The different assays performed illustrates that there are differences between EME and FG1181 

in terms of ionization, lipophilicity, membrane permeability, cytotoxicity and stability as 

illustrated in Figures 4.1, 4.5-4.7 and 4.13-4.16. PAMPA presented in Figures 4.3-4.5 was 

performed to estimate whether FG1181, EME and DNR cross the liposomal barrier passively. 

The different pH conditions affected all three compounds, but particularly FG1181. The 

acceptor wells with pH 6.4 contained between 70 and 80% of the FG1181 (Figure 4.4), and the 

calculated log(Peff)-values were -4.25 and -4.30, alone and in combination with DNR (Figure 

4.5). These values show that the compound has high ability to cross membranes at the pH 

conditions where the majority of the compound is uncharged (Figure 4.1 and 4.5).  

Furthermore, the accumulation of FG1181 in the acceptor well suggest that the compound is 

trapped here presumably because the low pH protonates the primary amine (Figure 4.1). Both 

DNR and EME went from having low permeability to intermediate permeability when 
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comparing pH values of 7.4 to that of 8.0 in the donor and 6.4 in the acceptor wells (Figure 

4.5). Although not as dramatic as for FG1181, there was a notable higher drug content in the 

acceptor wells corresponding to the increase in permeability.  

For the PAMPA it must be noted that the membrane, unlike liposomes and cells, does not 

contain cholesterol. Cholesterol highly affects the stability and permeability of a membrane. 

This study shows, with the liposomal formulations that DNR and EME do cross the liposomal 

barrier given the same pH conditions as in the assay (PBS pH 8.0 and ammonium sulphate pH 

6.4). This highlights the fact that a pre-made PAMPA can only be used as an indicator for 

membrane permeability. Furthermore, the PAMPA was performed at room temperature, which 

did not exceed the membrane’s transition temperature. Still, we noted that with the same pH 

gradient as in the liposomes, there was an increase in permeability from -5.86 to -5.67 

(log(Peff)-values) for DNR alone (Figure 4.5) and an increase in the content in the acceptor well 

of 38% (Figure 4.4).  

The dose response and kinetics curves shown in Figure 4.6 compare the cytotoxic potential of 

FG1181 and EME as free compounds. They show that EME has lower EC50 and T50, compared 

to FG1181. Both compounds reach complete cell death at the same concentration (2.5 µM) 

after 24 hours (Figure 4.6 A). The difference in EC50-values could be explained by FG1181 

being less potent than EME. It can also be caused by the desired prodrug effect, meaning that 

it was degraded to the active compound EME after a certain time period. This was supported 

by the kinetics assay showing that the T50-value of FG1181 appeared approximately 150 

minutes after that of EME. In the assay, FG1181 used approximately 18 hours to reach 

complete cell death compared to 12 hours for EME. This might be caused by FG1181 being 

more lipophilic than EME, leading to the possibility of it binding to lipophilic binding site in 

plasma protein or lipoprotein and being less available for uptake in cells. Incorporating FG1181 

in liposomes will protect the compound from these bindings, thereby leading to a higher uptake 

of the compound into the cells. For the free compound in Figure 4.15, a higher EC50-value is 

observed compared to the liposomal formulations, but this might be caused by degradation to 

a more active EME. However, to fully establish that FG1181 is inactive and converted to active 

EME either in medium or intracellularly, liquid chromatography-mass spectroscopy (LC-MS) 

analyses of the compounds from cell lysates could be made. It must be noted that the control 

well in the time kinetics assay has an unusual high level of cell death. However, as the assay 

was performed using microscopy, the exact cell count of each well is not relevant.  
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FG1181 showed lower toxicity towards non-malignant cell lines compared with EME, both 

alone and in combination with DNR (Figure 4.7). This can be interpreted as an FG1181 being 

less cytotoxic for these cell lines and thereby will lead to less drug-related side-effects, for 

instance cardiomyopathy. DNR shows less toxicity for the H9c2 cell line alone at the given 

dose. However, the color of DNR interferes with the assay and high DNR concentrations might 

give positive results for metabolic activity, but for comparing DNR alone or in combination 

with a protein synthesis inhibitor, the color effect of DNR is expected to be equal. A decrease 

in side-effects would improve the treatment of AML, especially for frailer patients that do not 

tolerate the current treatment methods.  

Different conditions for liposomal production and drug loading were tested to find which 

method gave the optimal result with respect to size distribution and compound loading. The 

size distribution between the batches varied little, being between 113.7 nm and 140.4 nm 

(Figure 4.8 and Figure 4.9), which correlates well with clinical recommendations (53). Batch 

B, produced with the gas extrusion, gave the largest liposomes with the highest measured lipid 

content after the second gel filtering probably due to a faulty filter. The liposomal formulations 

with a combination of EME/FG1181 and DNR were shown to be larger than single compound 

loaded liposomes in average (Figure 4.9). 

RP-HPLC of the liposomal batches showed that more EME was loaded into the liposomes 

using incubation at 60℃, compared to diffusion overnight in the dark at 4℃ (Figure 4.11). 

This correlates well with the data from the PAMPA plate (Figures 4.4 and 4.5), which showed 

that FG1181 diffused over the membrane passively to a greater extent than EME. Both EME 

and DNR showed a higher degree of loading at temperatures exceeding the phase transition 

temperature of the lipid membrane (Figure 4.11). However, loading of both FG1181 and DNR 

proved difficult because of difference in optimal loading conditions. Studies showed that 

FG1181 seemed to be degraded to EME at high temperatures (≥ 60℃). The PAMPA was 

performed at room temperature and the loading at ≥ 60℃, which might have affected FG1181 

as further temperature studies (Figure 4.12) showed that the compound is highly affected by 

increased temperature (≥ 60℃). When comparing the FG1181 samples illustrated in Figure 

4.12, it became apparent that more EME was present in the sample incubated at 60℃ for one 

hour compared to the samples incubated at 4℃ overnight. For the heat-treated sample 

containing a combination of FG1181 and DNR, no FG1181 was detected compared to 0.2 µM 

for the sample stored in the dark at 4℃, suggesting that the presence of DNR facilitated 
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degradation of FG1181. It was also shown that more FG1181 was metabolized in the presence 

of DNR compared to alone (Figure 4.12).  

A compound´s lack of tolerance to temperature change can greatly affect its clinical use. As 

FG1181 has here been shown to be less stable at increased temperatures (≥ 60℃), but with 

unknown response to room temperature, the handling of a potential drug formulation before 

administrations needs to be done with extra care. Some cytostatics are prepared and heated 

before infusion to avoid discomfort for the patient, but in this case FG1181 would have to be 

prepared, stored and infused cold, perhaps as a freeze dried powder. The cytostatic Bortezomib 

is an example of an infusion in clinical use that needs to be administered no more than eight 

hours after reconstitution because it is unstable at room temperature (109). However, it must 

be emphasized that the purpose of this study was to develop a suggestion for improved 

treatment of AML, not to produce a standard operating procedure to produce a specific drug. 

The study was not performed at a pharmaceutical production facility, and some expected batch 

variations were observed.    

In Figure 4.11, “DNR+FG1181” was loaded overnight in the dark at 4℃ for Batch C (cold) 

and Batch D (folate decorated liposomes). These show a lower drug concentration than the 

batches loaded by incubation at 60℃. It must be noted that “EME+DNR” and DNR were 

loaded by heat incubation at 60℃ in Batch D, and therefore have a higher DNR concentration 

compared to “FG1181+DNR” which was loaded in the dark at 4℃. In the future, one might try 

to load the liposomes with DNR at 60℃ first, then cool the liposomal formulation down, before 

adding FG1181 in the dark overnight at 4℃. This might improve the loading. On the other 

hand, DNR seem to obstruct the uptake of EME and FG1181 when loaded at 60℃, which 

might indicate that this sequncial loading might not improve the uptake of compound (Figure 

4.16). 

An attempt of first loading liposomes with FG1181/EME for 30 minutes and then add DNR 

produced liposomes which were cytotoxic, but quantification by RP-HPLC was not successful 

for the FG1181 batch due to the lack of baseline separation of peaks (Figure in Appendix II). 

The liposomes first loaded with EME and then DNR did not show any improved loading for 

EME. The hypothesis was that by incorporating FG1181 into the liposomes first, the compound 

would be protected from degradation by DNR and ensure a higher uptake. The RP-HPLC 

spectrum (Appendix II) showed little EME in this sample compared to that found in Figure 

4.13 A where DNR and FG1181 were loaded together. This indicates that the liposomes protect 
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the FG1181 from being degraded by DNR and correlates well with the data from the PAMPA 

plate (Figure 4.4), which showed no EME in the FG1181 acceptor wells with pH 6.4, which 

can be compared to the interior of the liposomes.   

The liposomes loaded with DNR at 60℃ showed less variation in drug compared to liposomes 

loaded with EME and FG1181 alone. This can be partly explained by the liposomes loaded 

with DNR being colored red, thereby making them easier to detect during gel filtration. This 

became apparent for the folate decorated liposomes which had lower loading of FG1181 and 

EME compared to the PEGylated liposomes (Figure 4.11). The folate might have interfered 

with the compound loading, or the fractionation of liposomes loaded with the clear compounds 

might have been unsuccessful. The same column was used for all gel filtrations and was 

thoroughly rinsed between every filtration, but it would be optimal to have separate columns 

for each formulation to ensure that no compound was transferred. In many cases, targeted 

nanocarriers are added to the targeting ligand after production. It is therefore possible to first 

load the liposomes with drugs, and then add the targeting moieties, either small molecules or 

antibodies (110). This will prevent that surface molecules reduce loading efficiency. For the 

liposomal formulation created overnight at 4℃, Batch D (folate decorated liposome), the EC50-

value of FG1181 was lower than that of EME, contrary to what was seen with non-folate 

liposomes (Figure 4.15). One explanation for this can be that FG1181 was degraded to EME 

during preparation of the liposomes, and that EME is the main constituent of these liposomes.  

When comparing the results from DNR alone and in combination with a protein synthesis 

inhibitor, the combination appears favorable (Figure 4.14), which correlates well with earlier 

data (23, 47, 57). For free drug, EC50-values were 0.07 µM for DNR alone and 0.002 µM for 

DNR in combination with EME or FG1181 of different concentrations. Overall, FG1181 shows 

promising results for synergistic use with DNR. The EC50-values for the folate covered 

liposomes was almost twenty-fold higher for DNR alone compared to the combination of both 

FG1181 and EME (Figure 4.14). Both the batch incubated at 60℃ and the batch incubated at 

4℃ favors FG1181 (Figure 4.14 B and C). 

The pulse test was performed because in the circulating blood or in the bone marrow, the 

AML blasts might not be exposed to the liposomes continuously for 24 hours as is the case 

with our cell experiments. In order to mimic a shorter exposure time, we exposed the 

MOLM13 cells to the liposomes for a short pulse of 30 or 60 minutes, followed by wash 

and further incubation in a drug free medium for another 23 hours (Figure 4.16).  Increased 
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cytotoxicity was observed for the 60-minutes assay compared to the 30-minutes assay, but 

the assays both had substantial standard deviation. However, earlier research has shown that 

a short exposure period of liposomes is enough to ensure effect (111). As shown in Figure 

4.14, the same concentration of DNR in the folate decorated liposomes gave a metabolic 

activity of 0.18 relative to control, while it in the pulse test in Figure 4.16 gives values of 

0.63 and 0.48 for the 30- and 60-minutes assay, respectively. Liposomes containing both 

FG1181 and DNR did not show an increase in cell death compared to liposomes with DNR in 

Figure 4.16, but the low concentration of DNR in the combination liposomes must be noted. 

For future investigations, the test should be performed with the same compound concentration 

instead of identical liposomal concentrations.  

We also wanted to investigate whether FG1181 and EME had equal effects on cellular 

signaling, and studied cleavage of Caspase 3, an indication of apoptosis with Western blot. 

However, the results, presented in Appendix I, were inconclusive. 

 

 

 

 

 

 

  



63 

 

6 Concluding remarks and further investigations 

The aims of this master thesis were to investigate the biological activity of FG1181 and 

compare it to that of emetine (EME), incorporate it in liposomes and investigate synergism 

with daunorubicin (DNR). The combination of DNR and FG1181 appears to be beneficial for 

the patient, both as free drug and incorporated into liposomes. FG1181 was showed to have a 

time delayed cytotoxicity compared to EME, but its temperature instability can pose a problem 

in the production and handling of the liposomal formulation. Small molecules, here liposomes, 

show promising results in the field of cancer therapy and could be expected to decrease drug-

related side-effects. 

For further investigations, other analogs of EME could be developed to see if more heat-stable 

molecules could be produced. A more heat stable analog with prodrug effect would be easier 

to handle in the production and for administration of the liposomal formulation. It would also 

be easier to obtain sufficient and reliable loading of the liposomes with both DNR and an EME 

analog if the temperature could exceed the phase transition temperature of the liposomal 

membranes. Further temperature studies of the FG1181 could have been performed, for 

instance by loading the compound into liposomes at room temperature and at other 

temperatures to investigate if this led to a higher degree of compound loading. 

For future investigations, we would have liked to perform the pulse test with the same 

concentration of compound and in a dose-response assay with decreasing concentrations. It 

would be interesting to test liposomal formulations on the non-malignant cell lines and do a 

kinetics assay with liposomal FG1181 to compare with the results found for free drug. The 

kinetics assay could also have been repeated with the compounds’ EC50-concentrations. We 

would have liked to investigate and compare more ways to load FG1181 into liposomes, for 

instance by first loading FG1181 into the liposomes in the dark at 4℃ overnight and then load 

DNR at 60℃ for one hour, or vice versa with cooling the formulation to 4℃ before adding 

FG1181. LS-MS could be used to establish whether FG1181 is in fact an inactive compound 

being converted into a more active EME.  

Finally, the documentation provide in this thesis for a prodrug of EME for delayed activity is 

sufficient to pursue the concept in animal models of AML. If efficacy can be demonstrated in 

for instance a mouse AML xenograft model, it could very well be that the pharmaceutical 

industry sees potential in this treatment strategy.  
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Appendix I - Western blotting results 

 

Figure App.I – Bradford assay for calculation of protein concentration in the lysates. A, The standard curve 

used to calculate protein concentration in the lysates. B, Protein concentration in the lysates used for Western 

blotting. Note that blotting was performed with two concentrations of FG1181. 

 

Figure App. II – Western blotting images: Images of bonds on the membrane. The bonds are placed in the  

same order as the column in App.I.. A, Image after Ponceau staining of the membrane. B, Caspase 3.C, β-actin. 
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Appendix II – RP-HPLC spectra of FG1181 and daunorubicin loaded liposomes 

 

Figure App. III – RP-HPLC spectrum of FG1181 and Daunorubicin loaded liposomes form Batch B. The 

liposomes were loaded first with FG1181 for 30 minutes at 60℃ and then DNR was added. Note the low emetine 

top marked with the blue arrow. The green and red arrow indicate FG1181 and DNR without base peak separation.  


