DEPARTMENT OF INFOMEDIA

Master Thesis

On Common Beliefs

By:Vemund Ytrehus
Supervisor: Thomas Agotnes

June 1, 2019

Abstract

This thesis discusses how probabilistic multi-agent common belief can be defined. It
also attempts to provide insight into what constitutes belief. Further, it proposes an
algorithm to measure the strength of such common belief by redefining common belief
as a bayesian network in form of a directed cyclic graph, and discusses common belief in
terms of computational complexity and the depth of belief.

Contents

1 Introduction
1.1 Motivation
1.1.1 Example 1: Prisoner’s dilemma in game theory
1.1.2 Example 2: Two Army Problem
1.1.3 Example 3: A competitive hat puzzle
1.1.4 Example 4: A collaborative hat puzzle
1.2 Contributions of this thesis
1.3 Overview e

2 Terminology and Background

2.1 Formal logic
2.1.1 Propositional Logic 0 0
2.1.2 Predicate Logic

2.2 Multi-agent Epistemic logic
2.2.1 Definition of Multi-agent Epistemic Logic.
2.2.2 Semantics of Epistemic Logic
2.2.3 Group Knowledge

2.3 From knowledge to belief oo
2.4 Probability theory and Bayesian reasoning
2.5 Probabilistic Multi-agent Belief Logic
2.6 Basic information theory oL
2.7 Pearl’s algorithm and belief propagation
2.7.1 Pearl’s algorithm applied to small examples
Pearl’s algorithm applied to the hat problem in Section 1.1.3

3 Defining belief in a practical sense
3.1 Acquisition of Belief
3.2 Multi-Agent Belief Logic
3.3 Common Belief
3.4 Defining Common Belief L
3.5 The Strength of Another Agents Belief about Another Agents Belief
3.6 Combining the Probabilities of Beliefs and Nested Beliefs
3.7 Bayesian Networks as Common Belief
3.8 Acquisition of Common Belief

10
11
11
12
14
15
17
20
21
22
26
26

3.10 Why limit the calculation of the strength of common belief to AB17 38

3.11 Practical Application of the Algorithm 38

312 Overview 41

4 Out in the Wild: How to expand my work 43

4.1 Dependencies in the extended Pearl’s algorithm for cyclic graphs 43

4.2 Complexity 43

5 Wild thoughts 44

5.1 ABI1 in Relation to Human Common Belief. 44
5.2 Will the algorithm give the correct result given a bayesian network that is

not a tree? L. 44

6 Conclusion and further ideas 46

i

List of Figures

2.1 Binary entropy function h(p). 22
2.2 ADAGwhichisatree.. 23
2.3 A DAG whichisanotatree., 24
2.4 A Bayesian network for the hat problem in Section 1.1.3 27
3.1 A Bayesian network for the first level of common belief 33
3.2 One bayesian network for the second level of common belief 34
3.3 The other bayesian network for the second level of common belief 35
3.4 A Bayesian network for common belief 0000 37

3.5 The bayesian network for our example

Content Page Reference
List of Definitions:

Bayesian Network - 23
Directed Acyclic Graph - 23

Trust - 29

Outcome Belief - 29

Belief - 29

Belief Level - 31

Belief Depth - 32

Agent Belief (AB, ABi) - 32

List of Propositions:
Proposition 1, p.31:

The strength of all agents’ common belief of ¢, is the number greater than or equal to 0

and smaller or equal to 1, describing the mean likeliness that all agents believe ¢.
Proposition 2, p.38:

AB1,; is the same as AB;. Because of this, we do not need to know ABO0 for our approach

il

to common belief, only AB1.

List of Claims:
Claim 1, p.31:
An agent’s belief about another agents belief can not be formalized recursively. An agent
needs to explicitly calculate and remember each level of belief.
Claim 2, p.34:
Because of complexity issues, in practice common belief must be dealt with using belief
with a shallow depth, optimally with the lowest level being AB1.

List of Algorithms:

Pearl’s Belief Propagation Algorithm, p.25
Pearl’s Belief Propagation Algorithm for Common Belief, p.37

v

Chapter 1

Introduction

This thesis focuses on probabilistic belief in a multi-agent system. More specifically, it
focuses on common belief. Common belief is the belief version of common knowledge,
which in turn is knowledge that is known by everyone, that is known by everyone to be
know by everyone, and so on.

This can be important for deducing on behalf of an agent whether or not to act, in
a setting in which group belief affects how others act. For example, an agent deducing
whether or not to buy stocks, would benefit from such knowledge. Being able to deduce
based on probabilistic belief is essentially the same thing as knowledge, but with added
advantages.

Further, numerous well known examples illustrate situations in which knowledge of
what others know is necessary for success. The next section looks at some well known
dilemmas or puzzles that shows different aspects of the issues discussed in this thesis.

1.1 Motivation

The examples here are well known puzzles and problems related to common knowledge.
They can somewhat simply be cast onto the realm of belief, by introducing uncertainty
into them, e.g. by saying an agent can not see well and may therefore be mistaken in his
observation, or changes like that.

1.1.1 Example 1: Prisoner’s dilemma in game theory

Game theory [1] is a field of research which tries to explain how agents act in situations
where other agents may interfere with their own outcome. The theory deals with how
agents may behave in ways that may be bad for both the actor and all other individuals.

The Prisoner’s Dilemma is one of the most well known problems from game theory.
It is defined in [2] as: Two crooks, agent! and agent?, are arrested and face trial. The
prosecutors do not have sufficient evidence to convict on the more serious charges, so each
prisoner is independently offered a one-off deal of testifying in secret against the other, in
exchange for being released free of charges, so that the one who is being testified against
will get a much harsher sentence. However, if both prisoners accept the deal and testifies,
both prisoners will be convicted. The rules are specified for the prisoners as follows:

o If agentl and agent? each decide to testify against the other, each of them will be
sentenced to two years in prison.

o If agentl takes the deal and testifies against agent2, but agent2 remains silent, then
agentl will go free and agent2 will serve three years in prison (and vice versa). It
is assumed that the betrayed prisoner will not learn of the betrayal, or will not be
able to take revenge in any way.

e If neither agent! nor agent?2 testifies, both of them will only serve one year in prison.

We see that the socially optimal outcome is that both testify, with a mean of 1 year
of prison per crook. If both testify, the mean is 2 years of prison. If only one testify, then
the mean outcome is 1.5 year of prison. But since the rewards for betrayal outweighs the
rewards of collaborating, we tend to end up with the case that both testify and accept
the deal.

The game theoretic perspective is that each agent is governed only by self-interest, but
it ignores aspects such as trust, loyalty and such aspects. In real life, such concepts can
have great importance, as we would often see that prisoners will not betray each other
due to reasons such as loyalty, trust, or even fear of repercussions. Since trust and loyalty
sometimes happens and sometimes do not, a framework for representing the problem must
include some way to include it. Looking at such concepts as a probabilistic belief, is one
way to handle it.

If trust, or belief, is included into the solving of the problem, then the agents may
reason in a way so that the socially optimal outcome is reached.

1.1.2 Example 2: Two Army Problem

Also known as the Two Generals’ Problem, the Two Generals Paradox, and the Coordi-
nated Attack Problem, this problem is described in [3] as:

Two armies, each led by a different general, are preparing to attack a fortified
city. The armies are encamped near the city, each in its own valley. A third
valley separates the two hills, and the only way for the two generals to commu-
nicate is by sending messengers through the valley. Unfortunately, the valley is
occupied by the city’s defenders and there’s a chance that any given messenger
sent through the valley will be captured. While the two generals have agreed
that they will attack, they haven’t agreed upon a time for attack. It is required
that the two generals have their armies attack the city at the same time in
order to succeed, else the lone attacker army will die trying. They must thus
communicate with each other to decide on a time to attack and to agree to
attack at that time, and each general must know that the other general knows
that they have agreed to the attack plan. Because acknowledgement of message
receipt can be lost as easily as the original message, a potentially infinite series
of messages is required to come to consensus.

The two army problem is often used as an example that knowledge can be hard to
establish. Even if one of the sides receives a message that they should attack, they will not
know that the sender knows that the message is received. This is an example of a situation
in which you need to establish common knowledge before you can act. The problem here,
which makes it a well known problem, is that you can never have common knowledge
of an attack plan given this setup, as there is no closure in which everyone knows that
everyone knows that, etc. Such a closure would be infinite. If we assign the messengers a
distinct probability for their runs, this would illustrate how common (probabilistic) belief
could operate. This example shows that the message sending back and forth can not be
infinite but must be trimmed at some amount of backs and forths.

1.1.3 Example 3: A competitive hat puzzle

A simple competitive hat puzzle is described in [4] as follows:

Three players are told that each of them will receive either a red hat or a blue
hat. They are to raise their hands if they see a red hat on another player
as they stand in a circle facing each other. The first to guess the colour of
his or her hat correctly wins. All three players raise their hands. After the

players have seen each other for a few minutes without guessing, one player
announces "Red”, and wins. How did the winner do it, and what is the color
of everyone’s hats?

Solution:

"Pa.L ST INOT0D YT I9Y JRY) 9PN[OUOD
ued T 1aAe[d ‘INO[0O JeY UMO I0Y) SUl[[ed ¢ 10 g sioAr[d (noyjim possed sey oM e,
JU ‘90UOY "INOJ0D JRY UMO IPY) [SMSIUIISIP 0} d[qe o [[m ¢ IoAed pue g 1oierd yjoq
‘an)q st gey s T IoAed J -Suruosear repruuis ® wLiojred uwed sieAe(d 10710 o) ‘IeASMOH

“INoJ0o Jey s, T IoAerd
‘spuret] pasip.. ATUO (90uenbosuod ur) pue syey po.. A[UO sATesqo T 1oAr[d J1 jng "IMojod
1R UMO I9Y USISurIsip ueo 1 IoAe[d ‘ouo 1deoxo SUOI}RAISSO JO 39S JOUIISIP [ORD IO

PasID.L pasIoL poud pad | pad
PasID.L paswp.L po. pad | an)q
PasID.L paswoL pod on)q | pa.

PasIDAIoOU PISIDL PIL 9N)q | aN)q

pa. pasIpL 9nj)q pad | pa.
PasIDL PISIDAOU INJQ PI.L | IN)Q
PasiD.L paswoL 9njq onjq | po.

PIsIDAJOU PISIDAIOU IN]Q IN]Q | 2N)q

Epuvy Cpuny Epy Eoy | Yoy

‘A[eA1yoadsar ‘¢ pue g siode[d jo spuey o) jo
soye)s oY) Juosordor Epupy pur tpupy ‘¢ pur g sioArid Jo syey o) JO SINO[0D oY} oIv
€10y pue ¢y "SaAIesqo T IoAe[d jeym IoPISUO)) SIY) o¥I] $903 Yorordde 8d10f-09nIq Y

This example can also be be cast onto a probabilistic space, by for example saying
that the agents can see the raised hands with only a certain probability, or that some
agents are colorblind.

1.1.4 Example 4: A collaborative hat puzzle

The same Wikipedia article [4] also describes a simple collaborative hat puzzle:

According to the story, four prisoners are arrested for a crime, but the jail is
full and the jailer has nowhere to put them. He eventually comes up with the
solution of giving them a puzzle so if they succeed they can go free but if they
fail they are executed. The jailer seats three of the men into a line. B faces

4

the wall, C faces B, and D faces C and B. The fourth man, A, is put behind
a screen (or in a separate room). The jailer gives all four men party hats. He
explains that there are two black hats and two white hats, that each prisoner
18 wearing one of the hats, and that each of the prisoners see only the hats in
front of him but neither on himself nor behind him. The fourth man behind the
screen can’t see or be seen by any other prisoner. No communication among
the prisoners is allowed. If any prisoner can figure out what color hat he has
on his own head with 100 % certainty (without guessing) and tell the jailer, all
four prisoners go free. If any prisoner suggests an incorrect answer, all four
prisoners are executed. The puzzle is to find how the prisoners can escape.

Solution:

(ruoryeuriojur ssed o) [uueyD JFUIUI) ® SUISN JO ARM B SI SUII} JO

JUNOWR UTRLISD © I0J 20UIJ1s JRYY PONSIe o urd 11 ‘0S[y U0 sjey jnd 0} speay SurAry
wogj jdeoxe ‘owres oyj) ur ofor Aue Ae[d A[[esI jouU SPOp ¢ puUR Y ‘SPIOM IS0 U])
40109 9DY UMO

S1Y 2OMPIP UDI Y ‘IDY S, 995 01 GV JUALILJtp 99 ISNUL 1) PUD g UO $IDY 9y} buryIou
sfivs (1 Jo goyp 20npop uvd ‘op pinom (I pym buimouy puv a.djul 23viidoiddp up
buwmopo ua3fv) uouosiid oyy s fidy oy -buryjou fivs uvd (7 Uy} ‘S.40)09 JUILI[[1p
Jo spoy aavy) puv g [‘Uonomor 40]02 psoddo 2y} St DY UMO S JOY] IINPIP
pjnom (I ‘40j02 2wws 2Yyj [0 SIDY 2aDY) PUD g DY) $90495Q0 (T Ji 0§ 40]0D YIDI
Jo sy omy fijuo 2. 2.49Yy) DY) MOUY S4PUO0SILA 21], SMO[[O] Se UOIIN[OS A} SOAIS [f]

We can also here cast the problem onto a probability space, so that some agents for
example can not see color accurately.

1.2 Contributions of this thesis

This thesis contributes with the introduction of an algorithm to calculate the strength
of probabilistic common belief. It also contributes with arguments to limit the depth
at which common belief is calculated, attempts to better define a modal operator for
multilevel probabilistic belief, and explore complexity considerations and other aspects
with regards to common belief.

1.3 Overview

The rest of this thesis is structured as follows:

Chapter 2 goes through the theoretical background required for the thesis.
Chapter 3 discusses and defines logical belief.
Chapter 4 mentions how my work can be expanded.

Chapter 5 goes through some thoughts that occurred while writing the thesis such as
potential problems.

Chapter 6 gives a conclusion.

Chapter 2

Terminology and Background

For reference, the following table contains a list of some of the notation that will be used
throughout the thesis.

Term Meaning
- Logical not
V Logical or
A Logical and
= Logical implication
& /iff If and only if
3 Existential quantifier
v Universal quantifier
K,¢ Epistemic operator
B,a¢ Belief operator
akEb b is valid in a
fx(X = ;) or Pr; | probability mass functions
(used interchangeably for convenience)

2.1 Formal logic

This section gives an overview of basic formal logic. See, for example [5].

When holding certain information, we can often deduce other pieces of information.
For instance, let us say that we are privy to the following information:

A: We are in the city of Bergen. B: It does always rain in the city of Bergen.

From this, we can intuitively deduce the following:
C: It is currently raining where we are.

Formal logic denotes formal systems for reasoning and deduction based on information,
to formally make those deductions which was done informally when reasoning about C
given A and B. These systems can be divided into two subsystems: Propositional logic,
and predicate logic, the latter which is an extended version of the former.

2.1.1 Propositional Logic

Propositional logic deals with pieces of information which either is, or is not. A proposition
is a 1-bit piece of information which can be contained in one bit of information, which
is called a Boolean value. The proposition has whatever meaning we ascribe to it. For
example, we can have a proposition we just call p, which holds the meaning of whether
or not it is currently raining. If it is, then the value of p is true (or, 1), while if it is not,
the value of p is false (or 0).

We can bind these values together by means of simple, deductive operations. In
practice, all such operations can be constructed as a conjunction of three basic operations:
-, \/, and A. In fact, either of the last two ones are enough, since both can be constructed
with = and the other by means of De Morgan’s laws, which states that —(a\/b)=-a/ —b
and that —(a/A\b)=-a\/ —b.

e —: This is the negation operator in propositional logic. In essence, it says that the
proposition coming after it has the opposite value of that which it had previous to
the operator.

e \/: This is a disjunction operator which binds together the value on each side of it,
in essence saying that if either side is true, the whole is true.

e /\: This is a conjunction operator which binds together the value on each side of it,
but in a different way than the or-operator. If both sides are true, and only if both
sides are true, the total value will be true.

We can then use this propositional logic to make more complex propositions. For
example, if we use the example given above of p denoting whether or not it rains, we can
make the following claim:

pV-p

This simply means that either p is true, or p is false. Since p is the propositional value
of whether or not it is raining, what this means is simply the notion that either it rains,
or it does not.

Another important notion, is the notion of implication: If p then q. For example, we
might want to say that if it is raining, there is no party tomorrow: if p, then q, where p
denotes "it is raining” and q denotes ”there is no party tomorrow”. This can be done by
combining the disjunction and negation from above, and simply say:

-pVgq

Now this is rather annoying to read, as it says that either it is not raining or there
is no party tomorrow. But this is logically the same thing as saying that if it is raining,
there is no party tomorrow. We intuitively understand the latter better than the former,
and as such we would like an operator so that we can easily write it. We do this with the
the =, the implication operator in propositional logic, so that p = q says the same thing
as the statement above.

We will also often use the logical implication both ways. In this case, I will use < to
denote a bidirectional implication, which in effect has the meaning of if and only if. For
example, we can then express the following tautology: p < p. This simply means that p
is true, if and only if p is true.

A logical formula which is valid, is a formula which is true no matter which the
valuation of the propositions in the formula. For example, p\/ —p is a formula which is
valid, because no matter what value the proposition p has, the value of the entire formula
is true. a\/—b is not a valid formula, because depending on the value of a and b, the
total value of the formula may be true or false. Similarly, an argument can be said to be
valid, if every argument of that form necessarily is true.

With the operators introduced, we can take a look back at the previous section’s
statements, where:

e A: We are in the city of Bergen.
e B: It does always rain in the city of Bergen.

e C: It is currently raining where we are.

This argument can then be formally represented with propositional logic as the fol-
lowing, simple propositional argument:

(A A\ B)=C.

Notice that in using propositional logic here we have ignored some of the finely grained
information we had, because we could not express it. "We are in the city of Bergen.”,
"It does always rain in the city of Bergen.”, "It is currently raining where we are.” are
all atomic particles of the expression above, while they are each more complex than what
can be represented by a simple value of true or false. For example, ”We are in the city
of Bergen.” suggests that there is an actor, or agent we are referring to (namely ”We”),
and "It does always rain in the city of Bergen.” suggests a temporal aspect of "always” as
opposed to just now or the likes. Because propositional logic deals with simple, Boolean
values which can either be true or not true, a lot of information is simply ignored when
formalizing a logical reasoning. Predicate logic tries to handle some of these problems by
more finely graining the information.

2.1.2 Predicate Logic

Predicate logic builds on propositional logic, but infuses it with the concepts of a predicate
and of quantifiers.

A predicate is a function, P(z), which gives you a true or false value based on the
predicate variable x (or multiple predicate variables). In essence, then, a predicate is a
function which for any given input will give you a proposition (a true or false value).

For example, a simple predicate giving you the value true for all positive numbers
(0-exclusive) can be defined as P(z € R) = x > 0. As a side note, in pursuit of simplicity,
I will often leave the set membership of the variables to be left implicit unless there is a
reason not to do so, so the above will rather be written P(x) = x > 0 and it will be left
implicit that x is a real number, and not, say, a day of the week.

A quantifier is a construct allowing you to define truth values about a group of items.
There are two quantifiers: The existential quantifier, and the universal quantifier.

An existential quantifier, 3, contains a variable and a formula, and means that for said
variable, the formula following it is true for some value which the variable can hold. That
is, the existential quantifier over the quantified variable holds as true if and only if there
exists some value for the variable in the set the variable is an element of, for which the
formula holds true. For example, 3z € N(x > 5) means that there exists some natural
number which is greater than 5.

Similarly, a universal quantifier, V, contains a variable and a formula, and means that
for said variable, the formula following it is true for all values the variable can hold. A
formula in which a universal quantifier is the outermost part is true, if no matter which
value is assigned to the variable the formula holds true. For example, Vx € N(z > 0) is a
true formula, simply stating that all natural numbers are greater or equal to 0.

10

Going back to our previous example with:

e A: We are in the city of Bergen.
e B: It does always rain in the city of Bergen.

e (C: It is currently raining.

Using predicate logic we can now formalize this more accurately. Notice that there is
strictly speaking no need to clarify B with a universal quantifier, but we will do that here
anyway as an example.

Let P(x) be a predicate which is true if a is Bergen. Then

e A: P(a)
e B:Vz(P(a) = p)
e C:p

We can see that C is a valid conclusion of A and B, since given A and B, C must
necessarily be true.

2.2 Multi-agent Epistemic logic

This Section is based on [6].

2.2.1 Definition of Multi-agent Epistemic Logic

Epistemic logic is the logic for reasoning about knowledge. It is a modal logic, meaning
that it incorporates modalities into the logical language, such as possibility or necessity or
the like. In the case of epistemic logic, the modality incorporated into the language is that
of knowledge. Epistemic logic builds on propositional logic, but the epistemic operators
are also similar to predicates from predicate logic. That it is multi-agent means that it is
able to describe and deduce the knowledge of more than one actor in a system.

When defining a modal language, we need to have a set of facts, a set of modal
operators, and a set of agents. The set of facts is simply the set of propositions from

11

propositional logic, which can be true or false. In this case, let Prop be the set of
primitive propositions. The set of agents are all the actors which we want to describe as
having knowledge or belief within a setting. Let Ag be the set of all agents. For instance,
if all our agents are Alice, Bob, and Eve, then Ag = {Alice, Bob, Eve}. Finally, the set
of operators that are the modal operators in the language, is the set of operators which
exists in the language to define modal operations. In the context of a multi-agent system,
we need a set of operators that is the set of binary relations { K,g}, where K is the modal
operator to express knowledge possessed by an agent ag € Ag.

Epistemic logic with multiple agents can then be defined by the Backus normal form
in equation (2.1):

¢:=pe€Prop| ¢ | ¢1/\¢2 | K.¢ (2.1)

In addition, \/, =, and < are implicitly included in the fact that they can be derived
logically from — and A.

Using the logic defined here, we can now easily denote any agents’ knowledge by using
the modal operator K, and further reason semantically with these operators.

2.2.2 Semantics of Epistemic Logic

In propositional logic and predicate logic the semantic values of a given formula is usually
quite straight forwardly defined as true or false. With the epistemic operators, this is
made somewhat more difficult, as what an agent knows depends on the agent in question.

We can think of the semantics of the epistemic operator in the following way: Each
agent sees the world as having one or more possible state, depending on what that agent
knows. If an agent sees a value as having one of two possible actual values, but the agent
does not know which one, that agent considers both those worlds, or states, possible. For
example, if an agent a is sitting in an underground shelter, with no information about the
weather outside, he can consider both the case that it is raining outside or that it is not
raining outside as possible cases. If we denote the proposition of “it is raining” as p, then
as long as =K, ,p and —K,—p both hold true a considers both states as possibly true. If
either K,p or K,—p is true, then that agent will consider only the states in which either
p or —p holds true to be possible states.

The concept of possible states can be formalized in a Kripke model. A Kripke model
is a representation of the semantics within a non-classical logic, such as a modal logic.
The Kripke model includes three sets: A set of states, or worlds, a set of relationships
between those states, and a set of evaluations for each atomic proposition in each state.
Formally, a Kripke model M for epistemic logic is definable as:

12

M= (S,R,V)
where:

e S is the set of all possible states.

e R is the set of accessibility relations between the states in S for each agent a € Ag.
An accessibility relation (s,t) denotes that a sees state ¢t as a possible true state if
a is in state s. We let R, denote the accessibility relation for agent a. If there is a
relation between the states s and t, we say that ¢ is accessible from s. While each
accessibility relation is a binary relation, you can alternatively see it as consisting
of functions R,(s), giving all states reachable from s.

e VU is the set of evaluations to true or false for each atomic proposition in each state
S. V(s € S)(p € Prop) describes the value of the proposition p in state s.

When disregarding the evaluation set we can also be talking about a Kripke frame
F = (S R).

Furthermore, we will very often talk about a given model of a given state, M and s.
We write this simply as M, s. As a shorthand for validity in a model, we use F, simply
meaning that the right hand side is valid given the left hand side.

The semantics of a formula in epistemic logic can then be drawn from the Kripke
model as follows. Given p € Prop and the Kripke model M (S, R, V),

M, s E pif and only if V(s)(p) is true.
M, s E —p if and only if not M, s F p.
M, s E p\qif and only if both M, sE p and M, s E q.
M, s E K,p if and only if in every state ¢ that is accessible from s for the agent a, M, s F p.

As an example, say that we have the following facts:

e [t is not raining.

e Alice does not know if it is raining.

13

e Bob knows that it is not raining.

e Fve knows that Alice does not know that it is raining, but does not know that Bob
knows that it is raining.

This can now be formalized, using the epistemic logic defined, as:

Agents = {a, b, e}

o ~Ku(—p) A =Kai(p)
o Ky(—p)

L Ke(ﬁKa(_‘p) /\ ﬁ[(a(p)) /\ ﬁ[(e([(b(ﬁp))

2.2.3 Group Knowledge

Since we are dealing with groups of agents, where each agent may share the same knowl-
edge with other agents or have different knowledge from other agents, it is also natural
to speak about group knowledge. When talking about group knowledge, there are three
major kinds of group knowledge.

One kind of group knowledge is distributed knowledge. Given a group of agents, their
distributed group knowledge is the sum of all they know, including all bits of knowledge
that only one agent knows. If agent a knows p and ¢, and agent b knows ¢ and r, then
their distributed knowledge is p, ¢ and r. It is the knowledge every agent would have, if
all agents would tell all other agents what they know.

Another kind of group knowledge is knowledge shared by every agent in the group. If
agent a knows p and ¢, and agent b knows ¢ and r, then everyone knows q.

The other kind of group knowledge is common knowledge. Common knowledge is

knowledge which every agent in a group knows, but furthermore which every agent knows
that every other agent knows that every other agent knows, ad infinitum.

14

In the framework of epistemic logic, given a group of agents GG, let D denote an
operator for distributed knowledge, F denote an operator for something everyone knows,
and Cg denote an operator for what is commonly known as per the definitions above. I
will define Dg and Eg by my own definitions, while Cg by [6], as I both find my own
definitions of the two former as more intuitive and [6] as lacking the second part of both
definitions.

Let a € G. D¢ can be semantically defined within epistemic logic in model M =
(S,R,V) as:
M, s E Dg¢ if for some agent a, M, s F K,¢.
M,sE Dg(d1 \ ¢2) it M, s E Dgpy and M, s E Dgos.
Similarly, E; can be semantically defined as:
M,sE Eqg¢ if for all a, M, s E K,¢.
M,sE Eg(o1 \ ¢2) if M,sE Eqgpy and M, s E Egos.

Let Rp, denote the accessibility relation of E¢. This is simply the union of all acces-
sibility relations for all agents. We will call the transitive closure over Rg, for Rc,,.

[6] defines the semantics of C¢ as the following:
M, s E Cq¢ if and only if for all ¢ such that Rc, st, M,t F ¢

2.3 From knowledge to belief

This subsection is based on [7].

Knowledge is not the same thing as belief. To define a logical system for belief, we can
use the same logical system as for knowledge, but we need to impose on it some concept
of uncertainty:.

That uncertainty can be measured in different ways. I will discuss briefly some different
measures that can express this uncertainty. For more, see [7].

One measure we can use to express uncertainty, is the probability measure. We will
go further through this concept more in detail later, but in short, a probability measure
is a valuation from 0 to 1, grading the likeliness of an event to occur given a random
sample. Probability gives a simple way of numerically represent uncertainty, and is well
understood. In terms of epistemic logic, the weakness is that ignorance is not represented,
and computing all probabilities may be costly.

15

Another measure we can use is Dempster-Shafer belief functions. Dempster-Shafer
belief functions start with a set of subjectively chosen mass values, which sum to 1.
Based on these, belief is calculated, given W = all outcomes as

e Bel(d) =0
e Bel(W)=1
o BellU_,U;) > X5 C{1,...,n}: |I| = i}(—l)”lBel(ﬂjel U,)
Given the mass values we can also calculate a plausibility value of a set X as the sum of

the mass of all intersecting sets of W. One benefit of belief functions is that they handle
ignorance better than probability does.

Yet another way of representing uncertainty is the possibility measure. Possibility
is similar to probability but differs in that while the union of two disjoint elements in
probability is the sum of the the probability of each, the union of two disjoint sets (as
well as joint sets) using a possibility measure is the maximum of the two:

e Poss(0)=0
e Poss(W) =1
e Poss(U|JV) = max(Poss(U), Poss(V)), given U and V are disjoint.

An advantage of possibility measures is that they are less computationally demanding
than probability.

Yet another way of representing uncertainty is ordinal ranking functions, which assign
a value to all possible beliefs, and rank-order them from least believable to most believable,
so that something that is believed with certainty has the value 1 and something that is
believed to be impossible has the value 0. Define this as

e K(0)=0
e K(W)=1
e K(UYV)=min(K(U),K(V)), given U and V are disjoint.

Yet another possible measure is a non-numerical ranking order of relative likelihood.

16

Another possible measure is the plausibility measure, in which each world is assigned
a value from 0 to 1 (inclusive) and partially ordered. This is similar to probability, but
in addition there is a special value L <0 and T > 1.

As probability is well understood and intuitive to calculate with, I will be using a
probability measure in this thesis. But it is important to recognize that there does exist
flaws with it and that there also exists other alternatives.

2.4 Probability theory and Bayesian reasoning

Before going further, we should have a clear grasp of probability theory. This section
contains an introduction to basic probability theory, see for instance [8].

Some psychologists [9] believe that humans have evolved in such a way that belief
can be categorized into rough categories of probability, such as ”impossible”, ”unlikely”,
"likely”, ”certainly”. This is certainly the case for belief when discussed in everyday
conversation, in which case belief sometimes can not be directly quantified by means of
probability, although ”certainly” and ”impossible” sometimes fails. Nevertheless, as we
are not as much interested in belief as a cognitive aspect of humans but as a computational
device in multi-agent systems, we will be using numeric probability as the main tool for

reasoning about belief.

When measuring something, we need to know three things: What is being measured,
what part of it is being measured, and what are the specific measurements. In measure
theory, a measure space consists of a triple, (2, F, P).

Q2 is the set of all possible outcomes for a random experiment. A variable X that is
assigned value from a random experiment, is known as a stochastic variable.

F is a set of events which is a subset of €. An event is said to have occurred, if a
stochastic variable is assigned a value in F.

An algebra over € is a set F, that includes the empty set, all atomic elements of €2,
and all possible combinations of union of said atomic elements.

For example, if the experiment is the flipping of 4 coins, and X denotes the outcome,
where H denotes heads and T denotes tails, Q = {TTTT, TTTH, TTHT, TTHH, THTT,
THTH,THHT,THHH,HTTT, HITH,HTHT,HTHH, HHTT,HHTH HHHT HHHH}.
An event 7 X has at least 3 tails”, corresponds to X being assigned a value within the
subset {TTTT, TTTH,TTHT, THTT,HTTT}.

17

Finally, P is a mapping from events to a value, where P is a function F— > [0, oo].
P(X) is a measure of event X.

A probability space is a measure space in which the sum of the measures of all possible
outcomes is 1. That is, P(2) = 1. In a probability space, we can more formally call F a
probability mass function, or pmf for short.

In a probability space, the measure is called a probability, and denotes the relative
frequency, inclusively between 0 and 1, that an event will happen in a stochastic variable
for a random experiment. If for an event £, P(E) = 0, then the event E is impossible. If
P(E) = 1, then the event is necessary. Any other value of P(FE) will give an increasing
likeliness of event F occurring.

Within the theory of classical statistics, we can look at probability in terms of a
stochastic model. Within this model, we often assume that each elementary outcome is
equally probable. In this case, we have that

In terms of the example with 4 coin flips, each outcome has an equal probability of 1/16,
and P(”X has at least 3 tails”) = 5/16.

When we do not have a formal stochastic model, we can often estimate the probabilities
by relative frequencies of events when repeating an experiment a large number of times.

If event A and B are disjoint, then P(AU B) = P(A) + P(B). Further,

e P())=0,
e P(Q\A)=1-P(A).
e When A and B are not necessarily disjoint, P(AU B) = P(A)+ P(B) — P(AN B).

P(ANB) < P(AUB) < P(A) + P(B).
o If A C B, then P(B\ A) = P(B) — P(A).
¢ IfQ=A,U---UA,, then P(B) = P(A,NB) + -+ P(4,N B).

The conditional probability of A given B is defined as

P(ANB) -
P(A| B) 2 { e it P(B) >0,

0 otherwise.

18

The following multiplication rule:
P(ANB)=P(A)P(B|A)
is the basis of Bayes’ law:
P(A)P(B | A)
PB)
which is very useful for logic reasoning with probability-based knowledge, also called
inference, which is the operation of inferring the value of a variable by observing another.

P(A|B) =

Let X be a discrete! stochastic variable that is assigned values from the set of outcomes
Q = {x1,...,2,}. This assignment is obviously easy if all outcomes are equally likely,
as P(x;) = 1/n for i = 1,...n. If they are not all equally likely, then a probability mass
function fx : Q — [0, 1] is defined by fx(z;) = P(z;), for each i = 1, ..., n.

We can form a joint stochastic variable XY, based on the two variables X and Y. X
and Y are statistically independent, if and only if

Ixv (i, y5) = fx (i) fy (y;)

Probability mass functions of joint variables may be expressed in the more general
case by using the concept of conditional probability mass functions:

s Jxv(@iy;)

fxpv (zily;) Fr(y;)
and hence,
Fxv (@i, yy) = Iy (i) fxy (@ily;) = x (@) frix (ygl@)-
More generally, for a joint stochastic variable X1, ..., X,

fxx, (X1, X)) = H Ixx (X5 X0, 0, X o0) (2.2)
j=1

Unfortunately, all terms in (2.2) can be exceedingly hard to compute if the variables
Xq,..., X, are not independent. This computation can however be simplified when some
independencies between variables exist, as will be demonstrated in Section 2.7.

The expectation of an arbitrary function F(X) is the sum of each outcome Q =
{z1,..., 2} weighted by the probability, defined as:

E[F(X)] = F(X) 2) Flay)fx ().

Tn general, stochastic variables may also take values from a continuous range. For example, may
be a range of continuous real values. This means that a probability value will be formally zero for each
possible value, and this makes it necessary to represent probability distributions in terms of probability
densities, rather than probability mass functions. For simplicity and for the purpose of this thesis, the
case of continuous variables is ignored.

19

The variance of X, in turn, represents the average distance from the mean, defined as

Var(X) £ E [(X - E[X])’] = > (& — E[X])*fx(w:) = E [X?] - (E[X])*.

i=1

2.5 Probabilistic Multi-agent Belief Logic

This section briefly discusses the logic of belief. For more, see [7].

A probabilistic multi-agent belief logic incorporates a probability frame into the epis-
temic logical framework. Formally, given a set of agents {Ag, ..., Agn}, a probability
frame F has the structure (W, Pry, ..., Pr,) where W is the set of possible worlds and
each Pr is a probability assignment. Pr; is equivalent to the probability mass function
fx(X = z;)%. A probability assignment in this context is a function which associates each
possible world w with a probability space {W,,, Fy, ftw}, Wi being the world as seen from
that state, F, being the algebra over that world, and p being the probability mapping.

To avoid confusion with the technical definition, I will give a quick example. Consider
a situation where Alice and Bob are flipping a coin, and both Bob and Alice believe that
the coin has an 80% chance of landing heads up. In this case, we have the possible worlds
W = {heads, tails}, the algebra F = {{), heads, tails,{heads, tails}}, Prajice = Prpop =
{W,F,{0 = 0,tails = 0.2, heads = 0.8, {heads, tails} = 1}}. Here we let = in the
definition of the probability assignment denote the assignment of the left hand to the
right hand probability value. Notice that each possible world here (heads and tails) have
the same probability space, so the belief of the agents do not change from one to the
other, but this needs not be the case.

We can make some constraints upon our probability assignments. Common constraints
are:

Uniformity: If Pri(w) = (W, Fui, fhws) and v € Wy, ,;, then Pr;(v) = Pr;(w)
State-determined probability: If v € K;(w) then Pr;(v) = Pr;(w)

Consistency: If Pr;(w) = (W, Fui, fwi), then W, ; C K;(w)

We abuse K here to denote the operator from epistemic logic, so that it simple means
“agent ¢ knows”.

2The two different notations will be used interchangeably for convenience and for consistency with
two distinct strains of literature.

20

Uniformity is the notion that for each world agent ¢ sees as having a probability of
being the actual world, the probability space is the same.

State-determined probability is the notion that for any world an agent sees as possible
the probability space is the same.

Consistency is the notion that only those worlds an agent sees as possible are assigned
a probability.

2.6 Basic information theory

This section contains a brief introduction to information theory. A standard reference is

[10].

Information theory grew out of the landmark paper [11] by Claude Shannon. The
word “information” is used in everyday language in slightly different meanings. Shannon
formalized it to signify “the amount of reduction of uncertainty about a variable obtained
by observing the value of another variable.”

Let X be a discrete stochastic variable with pmf (probability mass function) fx(x;),j =
1,...,m as defined in Section 2.4. “Uncertainty” here refers to the situation when the
value of X is not yet known. Shannon used the word entropy, borrowed from thermo-
dynamics, to formalize this concept of uncertainty. The entropy of X is® the statistical
expectation of the negative of the logarithm of the probability of each outcome of X,

H(X) < E[—log X] = —fo(%‘)logfx(%) (2.3)

By convention, the logarithm is assumed to be calculated in base 2 (that is, if y = 27,
then logy = log, y = 2), in which case the unit of measure of the entropy is a binary digit
- a bit.

Example 1. When m = 2 and the probabilities of the two outcomes are p and 1 —
p, respectively, the entropy function is conveniently expressed as a function of p. It is
common to call this the binary entropy function h(p), where

h(p) = —plogy(p) — (1 — p)logy(1 — p).

The binary entropy function has a maximum value of 1 (bit) and is shown in Figure 2.1.

3Strange as it seems, this definition provides a useful measure of entropy which behaves consistent
with intuitive “axioms” that one may impose.

21

08

06

04

02

p

Figure 2.1: Binary entropy function h(p).

Analogously, one can also define the conditional entropy H(X|Y") of X with respect
to some other variable Y,

m

HX[Y) = - Z Z fxy (i, y5)1og fxpy (wily;),

i=1 j=1

where m and n, as before, are the number of possible values for X and Y, respectively.
The mutual information between the two discrete random variables X and Y is defined
as
f iy
I(X;Y) 2 E[I(X = szxy (z:,;)1 Ly (ily;) (2.4)
i=1 j=1 (e
It is easy to show that I(X;Y) = H(X) — H(X|Y) = HY) — H(Y|X). The symmetry
of this relation between X and Y accounts for the word “mutual”. In words, the mutual

information quantifies how much uncertainty about X (or Y, respectively) by observing
the value of Y (or X, respectively.)

The significance of the mutual information I(X;Y) with respect to inference is that
it quantifies how much one can learn about X by observing Y. This quantification makes
it possible to compare and select the most efficient among different methods of obtaining
information.

2.7 Pearl’s algorithm and belief propagation

Consider the competitive hat problem in Subsection 1.1.3 and its solution provided there.
Many problems of distributing and interchanging knowledge among group members will
take this form, although most practical problems will have a larger number of parameters

22

Figure 2.2: A DAG which is a tree.

involved. The brute force approach comes with an exponential complexity in the number
of parameters, which is of course prohibitive for its application.

Thus there is a need for a more efficient algorithm to this type of problems. This
section describes Pearl’s algorithm [12, 13].

Recall from (2.2) that pmfs of are hard to compute in general, if elementary variables
are not independent. If some variables are independent, however, the joint pmf can be
factored as follows:

Fxrxa (X1, X0) =] fxwex, (G1X0, - X0) = [i oparentx (X parent(X5)).
j=1 j=1

(2.5)
Here, parent(X;) informally informally refers to “variables” on which X; depends. More
precisely, parent(X;) is the set of predecessors of X; in the Bayesian network in Defini-
tion 2.

Definition 1. A directed acyclic graph (DAG) is a graph with a finite number of nodes,
directed edges, and no directed cycles (i.e.,, no directed paths from a node back to itself.
If the DAG contains no cycles at all, it is a tree (see Figure 2.2). In general a DAG is
not necessarily a tree (see Figure 2.3).

Definition 2. A Bayesian network is a DAG in which each node represents a unique
stochastic variable, and each edge represents probabilistic dependency. Thus if there is an
edge from node/variable Y to node/variable X in the Bayesian network, it means that
fxy(X|Y) is a factor in the joint probability distribution. Implicitly, fxy(X|Y) labels
this edge and must be a known conditional pmf, meaning that the calculation in (2.5) can
be carried out if and only if the conditional probabilities P(X = x|Y = y) must be known
for all possible outcomes x for X andy forY, and for all edges in the Bayesian network
representing (2.5).

23

Figure 2.3: A DAG which is a not a tree.

J. Pearl’s belief propagation algorithm [12, 13] works on a Bayesian network, which is
defined above as a DAG that represents stochastic variables and the statistical dependence
between pairs of them. The goal of the algorithm is to determine the a posterior: set
of pmfs corresponding to the initial pmfs, using these known statistical relations. The
description here is loosely based on [14].

Each node in the graph is associated with one stochastic variable X. Abusing notation,
the node will for convenience be referred to as “node X”. The node can perform calcu-
lations using and modifying a temporary estimate of the pmf fx(), including versions of
the pmf conditioned on other variables, as well as sending and receiving messages to and
from parent nodes and child nodes. For example, node X5 in Figure 2.3 will communicate
directly only with the parent nodes X5 and X3, and with the child node X;. Thus, the al-
gorithm is a decentralized message-passing algorithm. In principle this means that agents
in a group may act independently, cooperating according to the protocol imposed by the
algorithm, but of course the algorithm may also be implemented on a single computer
controlling all nodes.

Each node maintains a collection of local variables, including the pmf. For each
adjacent edge, the node is assumed to know the conditional pmf fx|y (z|y) for all neighbour
nodes Y and for all possible values of z and y. In case a node has no parent nodes, the
node will know its pmf.

When a node is activated, it “reads” the messages received from each of its parents
and children, updates its belief based on these messages, and then sends new messages
back to its parents and children. From its parent Y, a node X receives a message my_ x
which essentially contains Y'’s current estimate of its pmf, that is, a list of probabilities,
one for each possible outcome of Y. This estimate is based on the knowledge that has
already reached Y by the action of the algorithm. From its child Y, node X receives a
message Az, x which essentially contains a list of nonnegative real numbers (likelihoods),

24

one for each possible outcome of X. This represents a distribution on X conditioned on
what the child node Y knows so far.

Subsequently, node X updates its estimate of its own pmf using the input of all the
neighbours. For each neighbour Y, node X also creates one version of its pmf based on
the input from all the other neighbours of X, excluding Y, and sends this pmf to Y.

All nodes also keep track of some auxiliary variables which will be ignored for now,
but which will be mentioned when they are relevant in the discussion in Chapter ?77.

At the termination of the algorithm, the current estimate of each node’s pmf will be
used as an estimate of X’s pmf conditioned on all the other variables.

Algorithm 1 Pearl’s belief propagation algorithm.
Require: Bayesian network representing stochastic variables and their dependencies
Ensure: Output estimate of pmf.
while More nodes to process do
Select a node X that has received all messages from above, or all messages from
below
if the messages came from above then
Calculate and send message mx_,» for each child Z using equation (2.2)
else
Calculate and send message Ax_,y for each parent Y using equation (2.2)
end if
end while
Return current estimate f X|everyone clse () for each node X.

Kim and Pearl [12, 13] showed the following theorem:

Theorem 3. If the Bayesian network is a tree, i.e., does not contain any loops, and all
variables have at most q possible values and at most m parents, then Algorithm 1 termi-
nates with the correct probability mass function fx, x,(Xi,...,X,) in O(ng®) operations.

For a tree, the while-condition in the algorithm will become false after one pass in
each direction through the tree. If the algorithm is applied to a non-tree, the while
loop may be stopped by ad-hoc rules, for example if the results appear to be converging,
or after a predetermined number of iterations. Note that a brute-force approach would
require O(q") operations. If the graph is not a tree, then the problem of computing
the exact and correct pmf fy, x, (Xi,...,X,) is known to be NP-hard. It has been
observed empirically, however, that versions of the algorithm can perform well even if the
restrictions that the graphs are loop-free DAGs are relaxed. For example, unless there
are short cycles, the algorithm in practice performs excellently when applied to graphs
used for decoding of error correcting codes (see for example [14]), even if those graphs

25

are undirected and contains cycles. These modern versions of the algorithm are designed
to maximize the mutual information on edges, possibly modifying the graph through
pre-processing first[14].

2.7.1 Pearl’s algorithm applied to small examples
Pearl’s algorithm applied to the hat problem in Section 1.1.3

Let x; and y;, « = 1,...,3 represent the hat colours and state of arm raising of player
i. Player i wants to determine x; but can observe only the other variables (including its
own y; which is irrelevant since it is computed from the other variables.) The problem
can be solved through a crude invocation of Pearl’s algorithm on the graph in Figure 2.4,
where probabilities of the observable x; and y; are initially set to 0 or 1 according to
direct observations. If player ¢ reaches a conclusion, it will report to the Game over node
which will inform the other players that the game is over. If the game has not ended in
a reasonable time, players can claim a red hat.

Note that even this approach here is applied to the simple version of the problem, it
may also work on noisy versions: For example, assume that observations may be incorrect
due to foggy conditions, occurrences of the rather rare condition of red-blue daltonism,
or cheating participants. Pearl’s algorithm still provides a way to approach the correct
result provided that the game’s parameters are appropriately assessed.

26

Figure 2.4: A Bayesian network for the hat problem in Section 1.1.3

27

Chapter 3

Defining belief in a practical sense

3.1 Acquisition of Belief

In our definition of Probabilistic Belief Logic, we have not mentioned where an agent may
come about their probability. Before going further, we should dig into this subject as it
is important to define in a practical sense what we are talking about when we talk about

belief.

In a very loose sense, our definition of probabilistic belief is one which simply assigns
a numerical value inclusively between 0 and 1 to an alternative state of the world.

One obvious way an agent may come about probabilistic belief is by statistical obser-
vation. For example, if the weather in a city seemingly arbitrarily changes from day to
day so that it rains some days and is sunny other days, the agent may, in the most simple
way, conclude that the chance that it will rain tomorrow is the amount of times that it
has rained divided by the amount of days he has observed.

This would be an appropriate way to obtain probabilities at a lot of times, but not
necessarily in a direct sense in all. For instance, let’s say that Alice asks Bob out on a
date. Alice has never before asked Bob out on a date. What can Bob say about whether
or not Alice will be late for the date or not? Needless to say, Bob will not be able to
deduce this information simply from statistical evidence on Alice being late for dates,
apart from in the extreme circumstance where Alice has a vast history of being late for
dates with other people of which information Bob is privy to.

This being said, even if Bob does not have any experience of going on dates with

Alice, it still makes sense that Bob can have a belief of whether or not Alice would be late
for a date. This is because he can draw belief not only from direct situational statistics,

28

but also from the trust he holds towards Alice. This is, in essence just a special case of
statistical evidence. That is, Bob can conclude that given the statistical evidence of the
things Alice has said that (seemingly) was true, this new thing that Alice said should
have a likeliness of T' = C'/A, where T is a trust value for the agent Alice, C' =(all the
correct things Alice have said), and A =(all the things Alice have said).

In an analytical sense, it would then make sense to store and update such a T-value
for each agent in the system in which an agent operates.

As the acquisition of agent-specific belief probabilities is not the subject of this thesis,
I will not go much further into this subject than this, but will use the following definition
as the basis for what is meant by acquired probabilistic belief in this thesis:

Definition 1. Let an agent’s trust in another agent denote a value between (inclusive) 0
and 1, where 0 is a total disbelief and 1 is a total belief in that the other agent will act in
accordance with the agreed upon or socially optimal outcome.

Definition 2. Let an agent’s outcome belief denote a value inclusively between 0 and 1
acquired either through the result of an experiment relating to the probabilistic likeliness
of an event.

Definition 3. Belief is the union of the set of an agents trust and its outcome belief.

While belief is defined to be arguably two different things, I will assume that the two
will not occur simultaneously and also act in the same way when an agent is deducing
what to do. That is, I assume that if our agent trusts an agent to do x with a 0.5 likeliness,
this is essentially the same as having observed that the agent does x 50% of the time.

3.2 Multi-Agent Belief Logic

While we in the background chapters we have defined belief, we have not defined the
syntax nor semantics of a logical language. We will try to do that now. Let M be a model
(S, Pri,....,Pr,, V), ag € Ag, ..., Ag,, an agent corresponding to one of the Pry, ..., Pry,
and V' be a valuation V(s)(a), where a € At as described in 2.2.2.

To start with we will say that, with the first part being identical as in 2.2.2 from [6],
probabilistic multi-agent belief logic can be defined (loosely) as:

e M, sF pif and only if V(s)(p) is true.

e M, sk —pif and only if not M, s F p.

29

e M,sE p/qif and only if both M, s E p and M, s F q.
o M,sE By, (¢) if (¢ = y) € pag, so that y > x.

o M,sFE Bag, +(Buag,,(¢)) if agent n believes with a certainty of greater than or equal
to x that agent m believes with a certainty of greater than or equal to y that ¢.

3.3 Common Belief

Remember that common knowledge is not defined as being knowledge held by everyone
in a group; it is defined as knowledge held by everyone within a group, which everyone
in the group knows that everyone in the group holds, and which everyone in the group
knows that everyone in the group knows that everyone in the group holds, ad infinitum.

How should we then define common belief? The intuitive notion would be to define
it exactly as with common knowledge, but exchanging the 100% relationship with a a%
relationship. That is: Everyone believes x with a b% likeliness, and everyone believes that
everyone believes x with a b% likeliness, and everyone believes that everyone believes that
everyone believes x with a % likeliness, ad infinitum. Here, every belief relation has a
likeliness of at least a%.

Notice that we have defined the belief operator in a very loose way. But this definition
makes something clear. Going about defining the operations of belief in the same way as
in epistemic logic, we run into a problem. Namely, what can we say about the belief a
given agent has about other agents’ beliefs? To say anything about an agents’ belief about
another agents’ belief, it would seem like we would need to keep a database of knowledge
about all agents’ beliefs, and all agents’ beliefs about all agents’ belief, and all agents’
beliefs about all agents’ belief about all agents’ beliefs, and so on. This was somewhat
straightforward in epistemic logic when the probabilities of each step is the same (1), but
not when the probabilities of each step is different.

As an example, take the Two Army Problem. Say that at some point in the message
swapping back and forth, each general believes with a belief of 0.3 that the opposite
general believes with a belief of 0.3 that the opposite general, ..., believes with a belief
of 0.3 that the opposite general knows to attack at the specified time. If we were to
keep all of these values stored in some formal representation of the problem using the
same approach as when defining common knowledge in epistemic logic, we would at least
need to store the probability assignment for each agents belief. But what about the
belief about an agents belief? Since the belief value can be any value between 0 and
1, this value can take an infinite amount of values. You could cast this onto a discrete
space by partitioning the infinite values between 0 and 1 into a discrete set such as

30

{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. But for each next step, this blows up even
further, even if the probability space is made so that it is not infinite.

3.4 Defining Common Belief

The way I propose that common belief should be defined, is as a single inclusive number
from 0 to 1, representing how much all agents believe other agents believe something.

Proposition 1. The strength of all agents’ common belief of ¢, is the number greater
than or equal to 0 and smaller or equal to 1, describing the mean likeliness that all agents

believe ¢.

3.5 The Strength of Another Agents Belief about
Another Agents Belief

If each level of common belief is partitioned into n different segments of the same size of
probability values, reasoning about the first level of m other agents, belief would require
the explicit memorization of nm probability distributions. The second level of common
belief would then need nm? probability distributions. On the i’th level of common belief,
we have nm’ probability distributions. Common belief in its perfect form would need an
infinite such levels, which would require the explicit memorization or calculation of nm®>
probability distributions.

This leads us to the following claim:

Claim 1. An agent’s belief about another agents belief can not be formalized recursively.
An agent needs to explicitly calculate and remember each level of belief.

This suggests that somehow short-circuiting the probabilistic reasoning based on at
most a few levels of explicit beliefs is the only way to go about handling common be-
lief since explicitly calculating it is mathematically untenable. Two possible such short-
circuits jumps out as likely. Firstly, somewhat unlikely, is the possible that the probability,
or strength of the belief, goes towards 0 or 1 so that one at some point do not need to
calculate further. The second, perhaps more likely is that the strength of the belief goes
towards some limit value, in the case above that of 0.3, so that one at some point do not
need to calculate further.

Definition 4. Let a belief level, or level for short, denote the depth of belief about other
agent’s belief, that is, —1 plus the number of B’s involved in the belief logical statement

so that B(B(...(¢)...)).

31

Definition 5. Let belief depth, or depth for short, denote the amount of levels the main
agent has memorized.

Definition 6. Let AB be the set of probability spaces for each agent’s belief for the first
level of belief. Let AB,,, given ag € agents, be the probability distribution defining belief
for a specific agent. Let n be a fizred number of divisions of belief, within the probability
range 0 to 1 so that each part has the size % Then, let AB1 be a set of distributions
over the set {0, %, .., 2} (notice that since this is a probability distribution, the sum of
the probability of each chunk sums to 1), one for for each distribution in AB for each
other agent including the main agent. In the case of AB1, a single case is subscripted
with one more agent than AB, so that AB1,41 442 s the belief about agl’s belief about ag2.
Define ABi to be the i’th level, defined in the same way as AB1. A single case needs to

be subscripted with one more agent than the previous level of AB.

3.6 Combining the Probabilities of Beliefs and Nested
Beliefs

If we assume all agents are rational and honest, then we could multiply our own belief
about ¢ with all other agents’ belief, and divide it by the number of agents. The result
would be a mean of the beliefs.

Similarly we could make a calculation over AB1, averaging over all products of the
highest probability values of AB1,51ag2 and the probabilities from AB to get the mean
of what all agent’s believe about what all agents believe. Then for the next level we can
make the same calculations, down to our depths, to get a measure of common belief.

The problem with this, is that that it does not account for conditional dependencies.
So instead, let us use a slightly different approach.

3.7 Bayesian Networks as Common Belief

An alternative way to view the first level of common belief, would be as a bayesian
network, in which a node for each agent is represented as a dependency for an agents
common belief.

For example, let us say we have three agents, of which one is the one we are reasoning

for, call it a. Call the other two agents al and a2. Call what is being believed x. Then we
could think of the belief as the following bayesian network that describes the situation:

32

Figure 3.1: A Bayesian network for the first level of common belief

33

Figure 3.2: One bayesian network for the second level of common belief

A bayesian network shows us dependencies. Notice that we are abusing the terminol-
ogy a bit here; a here is our common belief. The common belief depends on z, or rather
agent a’s belief about x, of agent a’s belief about al’s belief, and of agent a’s belief about
a2’s belief.

Then what about the next level? The next level would then have to be represented
similarly by one similar bayesian network each for al and a2, which are depicted in Figure
3.2 and Figure 3.3.

The next level can further be derived from the second levels, and so on. We can
see that the complexity clearly would explode for each new level. Any agent reasoning
explicitly about common belief would have to limit the reasoning at some depth. Because
of the complexity increase each level, the depth at which the reasoning is limited must
also be at some shallow depth.

Claim 2. Because of complexity issues, in practice common belief must be dealt with using
belief with a shallow depth, optimally with the lowest level being AB1.

34

Figure 3.3: The other bayesian network for the second level of common belief

35

3.8 Acquisition of Common Belief

How does an agent come about common belief? One obvious way, would be that the
belief is proclaimed in such a way that an agent can assume that all other agents in a
group have heard it and are aware that the other members of the group also heard it. A
special case of this would be the meta information of rules given a game example, where
everyone knows that everyone else knows the rules.

But this is a very limited way of acquisitioning common belief, as some information
may not be proclaimed. It makes sense to assume that some, if not most, acquisition of
common belief is acquired through introspection of what other agents may believe.

3.9 Analyzing Common Belief through Pearl’s Algo-
rithm

When we think of group belief in terms of a bayesian network, we could potentially use
Pearl’s algorithm to come about a strength of common belief. There is one initial, possibly
big problem with this. Pearl’s algorithm is intended for use on a directed acyclic bayesian
network. Therefore it may give the wrong results when applied to a cyclic graph, such as
the graph for common belief must be. Keeping this in mind, let us move forward.

The graph of the bayesian network for common belief must be cyclic, since combining
all the levels and each level of belief into one, we get a bayesian network in which all
nodes are connected to all nodes except what is known. Figure 3.4 depicts such a bayesian
network given two other agents and a given belief X. Other probabilistic dependencies
could also be added.

Notice that 3.4 only uses belief down to AB1. While this may lead to inaccuracies,
this way of handling common belief is far more efficient than not making this limitation,
as it holds true to 2.

Since we are dealing with a directed cyclic graph, the algorithm needs to be tweaked
to accomodate that. The algorithm in Algorithm 2 is an attempt at making an algorithm
for a cyclic graph.

This algorithm calculates an averaged probability mass function based only on AB and

AB1, and not on further levels of ABi such as AB2 and so on. The resulting probability
mass function represents the strength of common belief.

36

Figure 3.4: A Bayesian network for common belief

Algorithm 2 Pearl’s belief propagation algorithm for common belief.
Require: Cyclic bayesian network representing stochastic variables and their dependen-
cies.
Ensure: Output estimate of pmf.
while More nodes to process do
Select a node X that has received all messages.
Calculate the mean of all probability distributions and send to all others.
has not changed since last iteration OR some time limit t is

if f X|everyone else()
overstepped then

Return sum of current estimate fX\everyone clse() for each node X, divided by
number of agents.
end if

Update estimate of fX|every0ne elseo
end while

37

3.10 Why limit the calculation of the strength of
common belief to AB17

In certain cases beside common knowledge, it makes sense to talk about levels of knowledge
deeper than AB1. For example, we may want to describe an agent who believes that agent
two believes that agent three believes that it is raining. Because of that, even if we do not
use those levels in calculations regarding common belief, it still makes sense for the agent
to remember and reason about knowledge deeper than AB1. Then why would we limit
our calculation of the strength of common knowledge to a bayesian network of AB17

The reason I have chosen to do this is that while each layer more finely grains the
beliefs, it also increases the complexity of the calculations by a factor of —agents— per
level you go. Any change in the beliefs at any point in the resulting tree would call for
a recalculation of the common belief, which would be immensely computationally costly.
My assumption is that the resulting strength would not change by much, even if you
perform a calculation including levels past ABI.

3.11 Practical Application of the Algorithm

Let a set of agents be {ay, as,as}, and let a; be the agent performing the reasoning. Let
X be a single bit stochastic variable of information, with the possible values {0,1}. Let
ABO = {{0.1,0.9},{0.2,0.8},{0.3,0.7}} be the first level of agent belief a; has, so that
the i’th element is the belief a; has for X. Let AB1 = {{{0.1,0.9},{0.2,0.8},{0.3,0.7}},
{{0.3,0.7},{0.2,0.8},{0.3,0.7} }, {{0.3,0.7},{0.3,0.7},{0.3,0.7} } }, where AB1,;; corre-
sponds to agent i’s belief about agent j’s belief. Notice that AB1,; is simply the same as
AB;:

Proposition 2. AB1,; is the same as AB;. Because of this, we do not need to know
ABO for our approach to common belief, only AB1.

This situation is the following: Agent 1 believes that X is 90% likely to be true. Agent
1 believes that Agent 2 believes it to be true with 80% likeliness. Agent 1 believes that
Agent 3 believes X to be true with 70% likeliness. For all unknown values, Agent 1 assigns
a 70% belief that X is true. This gives us the bayesian network in Figure 3.5. x1, x2 and
x3 constitute ABO while the rest constitute the rest of AB1.

In relation to this depiction, AB1 = {{z1, 26,29}, {z4, 22, 25}, {«7, 28, 23} }.

The algorithm then works like this: Choose an arbitrary node, say Al. Calculate
the mean of probability distributions from others: For Al, this is (z1 + 26 + 29)/3 =

38

X1 X3

Figure 3.5: The bayesian network for our example

39

{0.6,2.4}/3 = {0.2,0.8}. Replace x4 and x8 with this new value.

Next, for A2, sum {24, 22, x5}. This adds up to {{0.2,0.8} +{0.2,0.8} +{0.3,0.7}} =
{0.7,2.3} which divided by 3 is {0.23,0.77}. Send this as the new value for 26 and z7.

Then for A3, 7 + 28 + 23 = {0.23,0.77} + {0.2,0.8} + {0.3,0.7} = {0.73,2.27} which
divided by 3 is {0.24,0.76}. Send this again as the new values for x5 and z9.

After our first iteration we now have the new values:
x4 and z8: {0.2,0.8}
z6 and z7: {0.23,0.77}
xzb and 29: {0.24,0.76}

Now return to Al and repeat the calculations, so that z1 + 26 + 29 = {0.1,0.9} +
{0.23,0.77} 4+ {0.24,0.76} = {0.57,2.43} which divided by 3 gives {0.19,0.81}. Send this
as the new messages x4 and x8.

Next, for A2 we have x4 + 22 + x5 = {0.19,0.81} 4+ {0.2,0.8} + {0.24,0.76} divided
by 3 which gives us {0.21,0.79}. Send this as the new message to x5 and z9.

Next, for A3 we have 7 4+ 28 + 3 = {0.21,0.79} 4 {0.19,0.81} + {0.3,0.7} divided
by 3 which gives us {0.23,0.77}. Send this as the new message to x5 and z9.

After our second iteration we now have the new values:
x4 and x8: {0.19,0.81}
z6 and x7: {0.21,0.79}
x5 and x9: {0.23,0.77}

Again return to Al and repeat the calculations, so that x1 4+ 26 + 29 = {0.1,0.9} +
{0.21,0.79} +{0.23,0.77} = {0.54, 2.46} which divided by 3 gives {0.18,0.82}. Again, set
this as the new messages 4 and x8.

For A2 we have x4 + 22 + x5 = {0.18,0.82} 4+ {0.2,0.8} + {0.23,0.77} divided by 3
which gives us {0.2,0.8}. Send this as the new message to 26 and x7.

Next, for A3 we have 27 + 28 + 23 = {0.2,0.8} + {0.18,0.82} + {0.3,0.7} divided by
3 which gives us {0.23,0.77}. Send this as the new (unchanged) message to x5 and x9.

After our third iteration we now have the new values:
x4 and 28: {0.18,0.82}
x6 and x7: {0.2,0.8}
x5 and 29: {0.23,0.77}

40

Again return to Al to repeat the calculations, so that z1 4+ x6 + 29 = {0.1,0.9} +
{0.2,0.8} + {0.23,0.77} = {0.53,2.47} which divided by 3 gives {0.18,0.82}. Again, set
this unchanged value as the new messages x4 and 8.

For A2 we again have x4 + 22 4+ x5 = {0.18,0.82} + {0.2,0.8} + {0.23,0.77} divided
by 3 which gives us {0.2,0.8}. Send this unchanged value as the new message to 26 and
x7.

Next, for A3 we have 7 + 28 + 23 = {0.2,0.8} + {0.18,0.82} + {0.3,0.7} divided by
3 which gives us {0.23,0.77}. Send this as the new (unchanged) message to x5 and z9.

After our fourth iteration we now have the new values:
x4 and x8: {0.18,0.82}
x6 and 27: {0.2,0.8}
xzb and 29: {0.23,0.77}

Our values has now converged at these values, so we add together each pmf, and divide
by number:

rl+ a2+ 23+ 24+ 25+ 26 + 27+ 28+ 29 = {0.1,0.9} + {0.2,0.8} +
{0.3,0.7} + {0.18,0.82} + {0.23,0.77} + {0.2,0.8} +
{0.2,0.8} + {0.18,0.82} + {0.23,0.77} = {1.82,7.18}

{1.82,7.18}/9 = {0.2,0.8}

As a result of the analysis, we have that the (strength of the) common belief of X
being the case, is 0.8.

3.12 Overview

This section is intended as an overview of what has been discussed in this chapter.

To summarize, when talking about beliefs about beliefs we can divide such beliefs into
different levels. I use the terminology AB to denote the level, where ABO is the beliefs
the main agent has about all agents’ beliefs. AB1 denotes the beliefs which require a
two agent path to define, while AB2 denotes beliefs which require a three agent path to
define, and so on.

41

While explicit beliefs should deal with deep levels of AB, I postulate that you ONLY
need AB1 in the calculation of common belief strength (where AB is included in AB1).

If looking simply on AB1, you can formulate the situation as a bayesian network,

albeit a cyclic one. We can then perform a modified version of Pearl’s algorithm for belief
propagation, to calculate a good approximation of the strength of common belief.

42

Chapter 4

Out in the Wild: How to expand my
work

4.1 Dependencies in the extended Pearl’s algorithm
for cyclic graphs

Not much thought has been put in as to how and what dependencies for belief I should
use in the algorithm. The algorithm should be expanded by formalizing this.

4.2 Complexity

While the complexity of our analysis is quite low due to our insistence of limiting the depth
involved in analyzing common belief to AB1, one aspect can be possibly be improved
by going past AB1. By going past AB1, we can possibly improve the accuracy of the
calculation of the strength of common belief, but likely to no real benefit.

43

Chapter 5

Wild thoughts

5.1 AB1 in Relation to Human Common Belief

While I used AB1 mainly as a mechanism for keeping down complexity in calculating
a degree of common belief, it is still an interesting proposition whether or not this may
be the way human cognition treats common belief. People would almost certainly have
a limited capacity of going to deep levels of ABi to reason about common belief, but
certainly are able as groups of recognizing what a group believes as possible.

One thing I did not account for in my practical analysis of the modified Pearl’s algo-
rithm is the updating of the probability distributions for AB0. In our use, that was fine,
but ABO would certainly change in practice. An interesting context for this, would be the
rise of social media, in which people will be showered with opinions they agree with, both
because they choose their own friends and because the social medias also attempt to give
the users what they are likely to want. If we see the opinions visible on social media as
ABO, social media and the users all attempt to see opinions the users agree with. Then
this in effect may be seen as the values of ABO0 going towards the belief distribution of the
user. This may polarize the beliefs of groups, leading to factions of people with a belief
of what will happen and what should happen.

5.2 W.ill the algorithm give the correct result given
a bayesian network that is not a tree?

One particular concern with the algorithm is that Pearl’s algorithm is originally not
intended for use on a cyclic graph, but only on a tree. Will it give the correct result

44

if used on a cyclic graph? In the examples tested the algorithm has converged at a
meaningful number, but it may have flaws that I have not noticed that may occur in other
circumstances. Research remains to be done as to whether the algorithm will actually
work on a cyclic graph, but so far everything points in the direction that it does.

45

Chapter 6

Conclusion and further ideas

In conclusion, probabilistic belief in a multi-agent system can be given a degree, describing
how much all agents in the system believe that all other agents believe all other agents
believe, ad infinitum, that some proposed truth is the actual truth. In epistemic logic,
such common belief is defined inductively into the infinite, but since we with probabilistic
multi-agent belief are dealing with a multitude of different probability distributions, every
additional level we take into consideration when calculating a numerical probability dis-
tribution for common belief multiplies the complexity by at least a factor of the number
of agents.

Instead, this degree can be calculated by using our version of Pearl’s algorithm for
belief propagation on a cyclic bayesian network representing AB1. This certainly removes
some of the accuracy of the calculation of the probabilities, but is an inexpensive way to
calculate a the value that would otherwise be very expensive to calculate, with a result
which approximates the real value.

46

Bibliography

Martin J. Osborne. An Introduction to Game Theory. Oxford University Press, 2004.

Prisoner’s dilemma. Accessed at May 25, 2019. URL: https://en.wikipedia.org/
wiki/Prisoner’5C%27s_dilemma.

Two Generals’ Problem. Accessed at May 25, 2019. URL: https://en.wikipedia.
org/wiki/Two_Generalsy5C%27_Problem.

Hat puzzle. Accessed at May 24, 2019. URL: https://en.wikipedia.org/wiki/
Hat_puzzle.

L.T.F. Gamut. Logic, Language and Meaning: Volume I, Introduction to Logic. The
University of Chicago Press, 1991.

Hans van Ditmarsch et al. Handbook of Epistemic Logic. College Publications, 2015.
Joseph Y. Halpern. Reasoning About Uncertainty. The MIT Press, 2003.

Arnljot Hoyland. Sannsynlighetsregning og statistisk metodelere. Tapir, 1979.
Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory 2nd Edition.
Wiley, 2006.

Claude E. Shannon. “A Mathematical Theory of Communication.” In: Bell System
Technical Journal (1948), pp. 190-193.

J. H. Kim and J. Pearl. “A computational model for causal and diagnostic reasoning
in inference systems.” In: IJCAI (1983).

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, 1988.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng. “Turbo decoding as an instance
of Pearl’s ‘belief propagation’ algorithm.” In: IEEE Journal of Selected Areas in
Communication 16 (Feb. 1998), pp. 140-152.

47

