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Abstract

The main objectives of this research project is to provide part of the mathematical
models and simulation technology required to assess large-scale deployment of thermo-
mechanical subsurface energy storage in the context of intermittent renewable energy.
Within this overarching framework, two main topics are discussed in this disserta-
tion: Thermo-poroelasticity, i.e., the coupling of geomechanics, flow, and heat within
a porous material, and phase field brittle fracture propagation, i.e., the temporal and
spatial tracking of brittle fracture evolution by creating a diffusive zone around fracture
surfaces through an auxiliary variable known as a phase field. These subjects are highly
relevant for e.g., applications involving injection of heated fluids at high pressures into
the subsurface, where the increased pressure may cause a fracturing of the rock matrix,
in addition to the induced temperature gradient affecting the poroelastic properties of
the surrounding medium.

The part of this dissertation focused on thermo-poroelasticity can again be separated
into three parts; (1) modeling, (2) analysis and (3) numerical implementation. In part
(1), formal upscaling techniques (i.e., homogenization) are employed in order to derive
the constitutive thermo-poroelastic equations from the known equations governing the
physical processes at the pore-scale. Homogenization is a well-known and trusted tech-
nique, which is applicable in situations where the physical processes in question can
be viewed from several scales, and where there is some uniformity or periodicity on
the smaller scale. Within the context of porous media, the two relevant scales are the
pore-scale and the macro-scale. Viewed from the pore scale, a porous medium consists
of solid grains (obeying the laws of solid mechanics), and a fluid which is saturating
the space in between the grains (obeying the laws of fluid mechanics), where the two
processes are coupled at the mutual interface (i.e., at the grain surfaces). At the macro-
scale, however, the porous medium is considered as a homogenous material obeying its
own set of physical laws, but which is still somehow implicitly dependent on (or rather,
the culmination of) the processes which are taking place at the pore-scale. Assuming
some uniformity in the distribution of grains (formally, periodicity), the technique of
homogenization allows for deriving the macro-scale model equations from the micro-
scale model equations.

Part (2) is concerned with analyzing the thermo-poroelastic system derived in part
(1). The existence and uniqueness of a weak solution to this model problem is estab-
lished in the fully mixed formulation, under some natural assumptions on the regularity
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of the source and initial data, as well as imposing some constraints on the effective coef-
ficients. Since the upscaled thermo-poroelastic system is a nonlinear one, this analysis is
done in two steps: First, a linearized system is analyzed using a standard Galerkin tech-
nique together with the weak compactness properties of the relevant function spaces.
Finally, the previously analyzed linearized system is used to design an iterative scheme
in order to approximate the original nonlinear system. By employing a contraction ar-
gument, the convergence of this iterative scheme is proved, which implies the existence
and uniqueness of a weak solution to the full nonlinear problem.

Part (3) covers the numerical analysis and implementation of the thermo-poroelastic
system derived in part (1). Here, six different iterative algorithms are proposed, all based
on the linearization technique employed in part (2) when analyzing the full nonlinear sys-
tem, as well as the stabilized splitting scheme known informally as the ‘𝐿-scheme’. These
six algorithms involve different combinations of coupling / decoupling of the three sub-
problems involved (flow, mechanics and heat), i.e., at each iteration either a linearized
system is solved monolithically, two subproblems are solved together decoupled from
the third, or all three subproblems are decoupled. As such, these six algorithms exhaust
all possibilities of coupling / decoupling of the three subproblems. The convergence of
all six algorithms are proved using a contraction argument, similar to the one employed
in part (2), except that only the fully discrete formulation is considered. Several nu-
merical tests validate the robustness and efficiency of the algorithms. Furthermore, the
performance of all six algorithms are compared with respect to a wide range of differ-
ent physical regimes (i.e., with respect to various coupling strengths between the three
subproblems).

Finally, the last part of this dissertation concerns brittle fracture propagation in a
quasi-static elastic medium, where the fracture evolution is tracked by a phase field
variable. In particular, the numerical approximation of such models. Phase field brit-
tle fracture problems are notoriously difficult to solve, and currently no universally ac-
cepted method exists. Hence, this work involves designing a novel iterative algorithm
for brittle fracture phase field models, analyzing its convergence, and testing it in detail
with several numerical benchmark problems. The proposed algorithm is based on a lin-
earization as well as stabilization of the model, where the two subproblems (phase field
and mechanics) are solved separately at each iteration, while sharing updated solution
information. Under the natural conditions that the mechanical elastic energy remains
bounded, and that the diffusive zone around crack surfaces must be sufficiently thick,
monotonic convergence of the proposed scheme is proved. These properties are also
confirmed by the extensive numerical tests.
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This dissertation consists of two parts. Part I gives an overview of the scientific theory
and mathematical methods that are relevant to this research project. Part II consists of
the papers that constitute the scientific results.

Part I is organized as follows: In Chapter 1, an introduction to the thesis is given,
where the different research topics are discussed, and placed within the overarching
framework of thermo-mechanical energy storage. In Chapter 2, the mathematical mod-
els employed in this thesis are discussed: First, an introduction to poroelasticity is given,
with an emphasis on the linear system of equations known as Biot’s quasi-static consoli-
dation model. The extension of this system to the non-isothermal case is also discussed.
Next, the theory of phase fields is presented. A brief overview of the general theory
is given, followed by a more detailed discussion about application of phase fields for
brittle fracture propagation. Next follows two chapters devoted to two specific mathe-
matical techniques which are central to research done in this dissertation: First, in Chap-
ter 3, the theory of homogenization is presented, specifically the method known as ‘two-
scale asymptotic expansions’. A model homogenization problem is then gone through is
some detail. Next, in Chapter 4 an overview of iterative numerical methods is presented.
Two specific such methods are then discussed in more detail; Newton’s method and the
Fixed Stress Splitting / 𝐿-scheme methods. Here, there is also provided a detailed exam-
ple where the 𝐿-scheme is used to design an algorithm for a nonlinear coupled model
problem. A convergence proof of this algorithm is also given, which demonstrates how
convergence rates usually are derived in the context of Fixed Stress Splitting / 𝐿-scheme
type methods. Chapter 5 contains the introductions to the papers A–D. Finally, in Chap-
ter 6 a summary of the dissertation is given, in addition to some conclusions and also a
discussion regarding future outlook.

Part II contains the scientific results, consisting of the following four papers:

Paper A Brun, Mats K and Berre, Inga and Nordbotten, Jan M and Radu,
Florin A (2018). Upscaling of the coupling of hydromechanical and
thermal processes in a quasi-static poroelastic medium. In Transport in
Porous Media, 124(1), p. 137–158, Springer.

Paper B Brun, Mats Kirkesæther and Ahmed, Elyes and Nordbotten, Jan
Martin and Radu, Florin Adrian (2019). Well-posedness of the fully
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coupled quasi-static thermo-poroelastic equations with nonlinear con-
vective transport. In Journal of Mathematical Analysis and Applications,
471(1–2), p. 239–266, Elsevier.

Paper C Brun, Mats Kirkesæther and Ahmed, Elyes and Berre, Inga and
Nordbotten, Jan Martin and Radu, Florin Adrian (2019). Mono-
lithic and splitting based solution schemes for fully coupled quasi-static
thermo-poroelasticity with nonlinear convective transport. In review
(2019).

Paper D Brun, Mats Kirkesæther and Wick, Thomas and Berre, Inga and
Nordbotten, Jan Martin and Radu, Florin Adrian (2019). An it-
erative staggered scheme for phase field brittle fracture propagation with
stabilizing parameters. In review (2019).
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Chapter 1

Introduction

The purpose of this chapter is to give an introduction to the different topics discussed in
this dissertation, and furthermore, to place these within the overarching framework of
the research project as a whole, which is geothermal energy storage, and in particular
thermo-mechanical subsurface energy storage.

In general, the subsurface consists of more or less permeable rock or sediment types,
and if the permeability is large enough, fluid can flow freely through these structures.
In the simplest description, (single phase) flow in the subsurface is modeled by a single
conservation law, which is the conservation of fluid mass flux (Darcy flow). However,
for geothermal applications, this model is too simple, and heat transfer must also be
included into the aforementioned model. Specifically, natural heat transfer in the sub-
surface occurs primarily due to diffusion and convection [9]. Thus, to account for this,
an energy conservation equation is introduced which is coupled to the mass conservation
equation through a convective transport term (i.e., the transfer of heat with the move-
ment of fluid particles) [19]. The energy conservation equation may also be coupled
back to the mass conservation equation by including fluid density variations with tem-
perature. A common simplification in this regard is the Boussinesq approximation (see
e.g., [56] for further details). If the fluid movement is only due to density differences of
the fluid in different spatial regions, then the flow is said to be a natural convection cur-
rent. These density differences in the fluid are due the fact that when heated, the fluid
becomes less dense. This spatial temperature variation is called the geothermal gradient,
and is the driving force of the natural convection currents. Moreover, when the natural
convection currents form closed curves, they are called natural convection cells. Such
natural convection cells are very important for applications of geothermal energy storage
in the subsurface, since these currents can be taken advantage of, and, given favorable
conditions, can keep injected fluids heated for long periods of time.

However, in these descriptions of the subsurface, the permeable solid skeleton is con-
sidered as fixed in space and time. A natural extension is therefore to include the elastic
response of the solid matrix into the modeling. This becomes very important when con-
sidering applications involving injection/extraction of heated fluids at high pressures,
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such as e.g., thermo-mechanical subsurface energy storage. In particular, when simulat-
ing subsurface-processes in the proximity of injection/extraction wells, where the pres-
sure differences are very large, a non-rigid solid skeleton may be necessary to include in
the mathematical model for an accurate simulation. Moreover, if the pressure differences
are large enough, an elastic solid may even be too simple a model, since fracturing of
the matrix can occur. This then necessitates further complexities in the modeling, such
as e.g., phase fields.

1.1 Geothermal energy storage

Thermo-mechanical subsurface energy storage is the process of injecting hot fluids at
high pressures into a subsurface reservoir, where upon extraction at a later time, both
thermal and mechanical energy may be recovered. This strategy is especially attractive
in areas where there is great variability in the energy output coming from intermittent
renewable energy: At times when there is a surplus in the energy output, effective means
for long time storage of this energy is available, and at a later time when there is a short-
age in the energy output, this stored energy may be recovered and utilized as electrical
power. Furthermore, areas where there additionally are favorable geological conditions
(such as permeable layers in the subsurface, depleted oil and gas reservoirs, or saline
aquifers) are especially well suited.

Upon extraction of the injected fluids, there will necessarily be a significant loss
during the conversion from thermo-mechanical energy to electric power. However, this
loss can be mitigated by employing thermo-mechanical energy storage in areas where
a large fraction of the power demand covers heating (hence, no such conversion is nec-
essary), or in areas where there is a lot of waste heat generated from e.g., industrial
processes (thus avoiding the conversion from electrical to thermo-mechanical energy
before injection into the subsurface). However, in order to optimize the effectiveness of
thermo-mechanical energy storage, there is also needed accurate and reliable models of
how the induced temperature gradients and increased pressures, which occur when in-
jecting heated fluids at high pressures, affect the natural processes in the subsurface. In
fact, even more fundamental is a good understanding of the natural heat transfer mech-
anisms which are taking place in the subsurface from before.

The key processes which must be accounted for in any accurate mathematical model
in this context is fluid flow, heat transfer and mechanical deformation (both elastic and
plastic, i.e., fracturing). These three processes are fully coupled, i.e., each one is de-
pending on the other two in some way. This leads to challenging problems, both from
the modeling and analysis point of view, but also from the point of view of numeri-
cal simulations. This dissertation concerns all of these topics, and hence provides new
insight into the fundamental science which is necessary for large-scale deployment of
thermo-mechanical subsurface energy storage.
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1.2 Relevant mathematical models
The simplest model for the coupling of flow and elastic deformation in a porous medium,
i.e., poroelasticity, is the famous Biot’s quasi-static consolidation model, which will be
discussed in some detail in the next chaper. In short, this is a linear model which ac-
counts for the fact that an increase in fluid pressure induces a dilation of the pores,
which again results in an elastic response of the solid matrix. Compared to the Darcy
flow model discussed above, there is now also a conservation of momentum equation,
and the flow (mass conservation) equation is modified to account for the fact that fluid
mass flux is balanced by a change in porosity. Biot’s model is also readily extended
to include thermal effects, thus resulting in a thermo-poroelastic system, i.e., the cou-
pling of flow, elastic deformation and heat transfer within a porous medium. Even with
constant fluid density, this system exhibits a fully coupled structure between all three
processes involved. A significant part of this dissertation concerns different aspects of
thermo-poroelasticity. In particular, the derivation of a thermo-poroelastic system us-
ing formal upscaling techniques, the mathematical analysis of this system, and finally
its numerical implementation.

The subsurface is not a homogenous environment, but rather a combination of dif-
ferent rock and sediment types, each with different material characteristics, resulting in
discontinuities in both variables and coefficients for any large-scale simulation. Frac-
tures in the matrix are special in this regard since, due to their small aperture, they can
be regarded as two-dimensional surfaces within a three-dimensional domain. The mod-
eling of a fractured reservoir thus entails dealing with surfaces of discontinuity in the
computational mesh. A common way to do this is to build the defect (fracture) into the
computational mesh from the beginning. However, injecting fluids at high pressures into
the subsurface may cause a fracturing of the matrix, or further extend the existing frac-
tures. The modeling of such phenomena then means simulating the spatial and temporal
evolution of a lower dimensional surface, over which the variables in question are discon-
tinuous. The theory of phase fields is commonly employed in the modeling of fracture
evolution, since the phase field creates a diffusive transition zone around fracture sur-
faces, thus avoiding the problem of an evolving lower dimensional surface. Phase fields,
especially in relation to brittle fracture propagation, will also be discussed in the follow-
ing sections. However, the evolution of fractures are herein only considered within the
context of a quasi-static elastic material, and not a (thermo-)poroelastic material.
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Chapter 2

Mathematical Models

In this chapter, and overview of the mathematical models employed in this research
project are presented. First, poroelasticity is discussed. In particular, the two-field cou-
pled linear model which is known as Biot’s quasi-static consolidation model. This model
has served as the backdrop during this research project for the extension to thermo-
poroelasticity (i.e., to a non-isothermal Biot-type model), which is discussed next. A
derivation of the Biot model is presented briefly in the context of mass and momen-
tum conservation. However, in this derivation, some linearized constitutive laws are
considered as given and not explained in full detail (for a justification of these, see
e.g. [23, 34, 36, 47, 86]). The non-isothermal extension of the Biot system is also dis-
cussed, but not in the context of conservation laws. A more involved derivation using
upscaling techniques is needed, which is in fact the strategy used in this research project.
Finally, an overview of the theory of phase fields is given, with emphasis on the use of
phase fields for brittle fracture propagation within a quasi-static elastic material. Fi-
nally, the advantages as well as the limitations of this theory are also discussed.

2.1 Poroelasticity
The field of poroelasticity concerns the interaction between elastic mechanical defor-
mation and viscous fluid flow within a porous material. Poroelasticity can therefore be
seen as a combination of porous media flow (diffusion) and classical linear elasticity,
i.e., the fluid flow (or more accurately, the fluid pressure) influences the elastic mechan-
ical deformation, and vice versa. This results in a coupled system of equations, which
is quite similar to the classical thermoelastic system (this comparison will be outlined
more carefully in the next sections). A number of comprehensive textbooks related to
the field of poroelasticity exists, see e.g. [36, 38, 94].

Fully detailed (or resolved) descriptions of saturated porous media is in general
quite complicated, i.e., the fluid and solid are considered as separate physical domains
wherein separate physical processes occur, but coupled through boundary conditions
at a mutual interface with a complicated geometry. For this reason, effective descrip-
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tions are most frequently employed. This means that the fluid saturated porous material
is considered as a homogenous medium, even though it is in fact microscopically het-
erogenous. The quantities of interest, such as elastic displacement and fluid pressure,
must therefore be interpreted as averaged or effective quantities, and single points in
the model domain must be interpreted as representative elementary volumes (REVs).
Poroelasticity has many similarities with solid mechanics, although a notable difference
(even in the simplest description) is the additional variable needed which is the fluid
pressure. Thus, in addition to the elastic momentum conservation equation there is also
needed a mass conservation equation. Further complications are also frequently con-
sidered, such as two- (or multi-) phase flow [37, 83, 84], unsaturated flow [63, 81, 81],
reactive flow [19, 20, 57], or thermal flow [18, 21, 59, 93] (or any combination of the
above).

A common assumption in poroelasticity is that of quasi-static deformation. This is
essentially the same as assuming inertia effects are negligible. When considering con-
solidation of a linearly elastic porous medium, which is saturated by a slightly com-
pressible viscous fluid, the time scale of the consolidation process is much longer than
that of the fluid flow, and thus the quasi-static assumption arises naturally for a wide
range of real-world scenarios. The classical mathematical model for linear poroelas-
ticity is known as Biot’s model for quasi-static deformation, which will be discussed
in the next section. An extension of this model which will also be discussed is that
of thermo-poroelasticity. In particular, a thermo-elastic solid is saturated by a slightly
compressible viscous fluid where heat is transported both by convection and diffusion.
In this sense, thermo-poroelasticity can be seen as both an extension of poroelasticity to
the non-isothermal case, and also as an extension of classical thermoelasticity to a fully
saturated porous material. (Thermo-)poroelasticity is an important subject with several
applications, e.g., geothermal energy storage, enhanced oil recovery, nuclear waste dis-
posal, and biomedical applications, to name a few.

2.1.1 Biot’s consolidation model
In this section the conservation equations and constitutive laws which model fluid dif-
fusion in a linearly elastic medium with negligible inertia effects, i.e. Biot’s model for
quasi-static consolidation, is presented. To this end, we denote the fluid pressure by
𝑝(𝑥, 𝑡), and the displacement vector of the solid structure by u(𝑥, 𝑡). The model is derived
as a set of conservation laws, combined with some constitutive relationships specific to
poroelasticity. The following presentation is based on [36, 80, 88].

Let Ω ⊂ R𝑑 , 𝑑 ∈ {2, 3}, be an elastic permeable body with density 𝜌 (assumed to
be constant), saturated by a slightly compressible viscous fluid. For an arbitrary control
volume 𝑉 ⊂ Ω, we have that the momentum of the corresponding part of the solid matrix
is given by

𝜌 ∫𝑉

𝜕u
𝜕𝑡 (𝑥, 𝑡)d𝑥. (2.1)

On the boundary of the control volume 𝑉 there is traction forces applied by the remaining
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Figure 2.1: Belgian-American applied physicist M. A. Biot (1905-1985). Biot made
important contributions in geophysics, thermodynamics and engineering. Most notably,
he wrote several founding works on poroelasticity. Picture from [12].

part of the body, i.e. by Ω ⧵ 𝑉 , given by

∫𝜕𝑉
𝜎𝜈d𝑠, (2.2)

where 𝜎 is the symmetric tensor valued poroelastic stress field, the components of which
represents the forces on arbitrary surfaces within Ω, and where 𝜈 is the outward unit
normal vector field of 𝜕𝑉 (the product [𝜎(𝑥, 𝑡)𝜈(𝑥)]𝑖 = 𝜎𝑖𝑗(𝑥, 𝑡)𝜈𝑗(𝑥) thus represents the
traction at the point 𝑥 ∈ 𝜕𝑉 at time 𝑡). If f(𝑥, 𝑡) is a vector representing the external body
forces acting on Ω, then the principle of conservation of momentum says that the change
in momentum of some arbitrary control volume must be balanced by the traction forces
acting on the same control volume, in addition to any external body forces. We can thus
write conservation of momentum for 𝑉 as

𝜌 𝜕
𝜕𝑡 ∫𝑉

𝜕u
𝜕𝑡 (𝑥, 𝑡)d𝑥 = ∫𝜕𝑉

𝜎𝜈d𝑠 + ∫𝑉
f(𝑥, 𝑡)d𝑥. (2.3)

Since the control volume 𝑉 is arbitrary within Ω, and by the Divergence Theorem, we
can write the above in differential form as

𝜌𝜕2u
𝜕𝑡2 − ∇ ⋅ 𝜎 = f, for all 𝑥 ∈ Ω, 𝑡 > 0, (2.4)

Let now 𝜂(𝑥, 𝑡) denote the fraction of the point (i.e., the REV) 𝑥 ∈ Ω at time 𝑡 which is
occupied by fluid, i.e., the fluid content, or equivalently, the porosity. The quantity of
fluid within the control volume 𝑉 is then obtained by the following integral

∫𝑉
𝜂(𝑥, 𝑡)d𝑥. (2.5)

The instantaneous flow rate of fluid relative to the solid matrix (i.e., the rate of fluid
mass per area) is the fluid flux, denoted by the vector q(𝑥, 𝑡). The rate at which fluid
accumulates (or leaves) the control volume 𝑉 is then given by integrating the normal
component of q over 𝜕𝑉 , i.e.

∫𝜕𝑉
q ⋅ 𝜈d𝑠. (2.6)
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If ℎ(𝑥, 𝑡) is a source density of fluid, then the principle of conservation of mass says
that the change in fluid mass in some arbitrary control volume must be balanced by the
amount of fluid flowing into (or out of) the same control volume, in addition to any fluid
source or sink within the same control volume. We can thus write conservation of mass
for 𝑉 as

𝜕
𝜕𝑡 ∫𝑉

𝜂(𝑥, 𝑡)d𝑥 + ∫𝜕𝑉
q ⋅ 𝜈d𝑠 = ∫𝑉

ℎ(𝑥, 𝑡)d𝑥. (2.7)

Again, since the control volume 𝑉 is arbitrary, and by the Divergence Theorem, we can
write conservation of mass in differential form as

𝜕𝜂
𝜕𝑡 + ∇ ⋅ q = ℎ, for all 𝑥 ∈ Ω, 𝑡 > 0. (2.8)

What remains now is some constitutive laws for the total poroelastic stress 𝜎(𝑥, 𝑡), fluid
content 𝜂(𝑥, 𝑡), and fluid mass flux q(𝑥, 𝑡). These should be such that in the end, we have
two equations where the only variables are the elastic displacement u and the fluid pres-
sure 𝑝. These constitutive laws should also necessarily introduce a coupling between the
momentum and mass conservation equations. Specifically, an increase in fluid pressure
should induce added stress in the matrix, which again should result in a dilation of the
porous structure, and vice versa; a compression of the medium should induce increased
pore pressure (if the compression is fast enough relative to the fluid flow rate). Moreover,
the driving force of the fluid mass flux is the pressure difference, i.e., the pressure gradi-
ent. We can therefore write the constitutive laws for the poroelastic stress, fluid content,
and fluid mass flux tentatively as 𝜎 = 𝜎(𝑝, u), 𝜂 = 𝜂(𝑝, u) and q = q(𝑝), respectively.

The constitutive laws for the poroelastic stress and the fluid content were first for-
mulated by K. Terzaghi [90] and M. A. Biot [11, 13], but we begin with the constitutive
law for the fluid mass flux, which is the famous Darcy’s law (somewhat older than the
works of Terzaghi and Biot), given by

q(𝑝) = − 1
𝜇𝑓

K∇𝑝, (2.9)

where 𝜇𝑓 is the fluid viscosity and K is the permeability tensor of the solid matrix.
Darcy’s law essentially states that fluid will flow from regions of low pressure to regions
of high pressure, i.e., the fluid is diffusing through the porous medium. The heterogeneity
of the porous medium is thus encoded in the permeability matrix, which in the case of a
perfectly isotropic porous medium reduces to a scalar. Introducing the standard Cauchy
stress tensor from linear elasticity �̃�(u), the constitutive law for the total poroelastic stress
tensor is

𝜎(𝑝, u) = �̃�(u) − 𝛼𝑝I, (2.10)

where I is the 𝑑 ×𝑑 identity tensor, and 𝛼 > 0 is the Biot-Willis constant, which accounts
for the coupling between the fluid pressure and the solid matrix deformation. The Cauchy
stress is usually given by Hooke’s law, which in the case of an isotropic solid material
takes the form �̃�(u) = 2𝜇e(u) + 𝜆∇ ⋅ uI, where e(⋅) = (∇(⋅) + ∇(⋅)⊤)/2 is the symmetric
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gradient, and 𝜇, 𝜆 are the material specific constants known as the Lamé parameters.
Finally, the constitutive law for the fluid content is

𝜂(𝑝, u) = 𝑐0𝑝 + 𝛼∇ ⋅ u, (2.11)

where the constant 𝑐0 ≥ 0 represents the combined compressibility of the fluid and
porosity of the solid matrix. An notable fact about the constitutive laws for the total
stress and fluid content is the appearance of the coefficient 𝛼 in both of these. This makes
the coupling between the momentum and mass conservation equations into a symmetric
one, and the full quasi-static Biot consolidation model (with suitable initial and bound-
ary data) into a saddle point problem [17]. These coupling terms should be interpreted
in the following way: The term 𝛼𝑝I results from the additional stress of the fluid pres-
sure within the structure, and 𝛼∇ ⋅ u represents the additional fluid content due to the
local volume change.

Before writing out the full Biot system, we mention that the inertia term in the mo-
mentum equation (2.1) (i.e., the acceleration term) is usually ignored on the basis of a
scaling argument, i.e., that the consolidation of the medium is happening slowly enough
that the system remains in internal equilibrium throughout. Thus, the characteristic time-
scale in (2.1) can be considered as very large, and the acceleration term therefore be-
comes negligible. This results in Biot’s quasi-static consolidation model taking the form
of the following mixed elliptic-parabolic system of equations

−(𝜆 + 𝜇)∇(∇ ⋅ u(𝑥, 𝑡)) − 𝜇Δu(𝑥, 𝑡) + 𝛼∇𝑝(𝑥, 𝑡) = f(𝑥, 𝑡), (2.12a)

𝜕𝑡(𝑐0𝑝(𝑥, 𝑡) + 𝛼∇ ⋅ u(𝑥, 𝑡)) − ∇ ⋅ 1
𝜇𝑓

K∇𝑝(𝑥, 𝑡) = ℎ(𝑥, 𝑡), (2.12b)

for all 𝑥 ∈ Ω, 𝑡 > 0. The above system was first analyzed by R. Showalter [88], where
the regularity of the solutions was shown to satisfy

‖𝑝(𝑡)‖𝐻2(Ω) + ‖u(𝑡)‖(𝐻2(Ω))𝑑 ≤ 𝐶
𝑡 , (2.13)

for some generic constant 𝐶 > 0. Mixed formulations of the quasi-static Biot system
has also been analyzed (taking the Darcy flux q and/or the total poroelastic stress 𝜎 as
additional variables), and can be found in e.g. [2, 80, 97]. The quasi-static Biot system
can also be derived using upscaling techniques. This is done by considering a ‘resolved’
porous medium with (Navier-)Stokes flow in the pore space and linear elasticity in the
solid grains, coupled at the mutual interface by demanding no-slip and balance of normal
forces, and then letting the size of the pores tend to zero (in some appropriate sense),
thus producing the above system of equations for the upscaled (homogenized) medium.
See e.g. [23, 34, 47, 66, 86] for more details.

Finally, we mention also the existence of the model known as the Biot-Allard
model [68]. This extends the above quasi-static model to the dynamic situation, i.e.,
acceleration terms are retained, in addition to introduction of memory effects which are
represented by integral terms.
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2.1.2 Thermo-poroelasticity
Biot’s model for quasi-static consolidation discussed in the previous section is formally
equivalent to the classical thermoelasticity system, which describes heat flow through
a linearly elastic solid. In this case, the variable 𝑝 is the temperature distribution of
the medium, the constant 𝑐0 is the specific heat capacity, and the tensor K/𝜇𝑓 is the
thermal conductivity. The term 𝛼𝑝I is then interpreted as the thermal stress induced by
the temperature gradient, and 𝛼∇ ⋅ u as the internal heating due to the dilation rate.
The constant 𝛼 is therefore in this context the thermal stress coefficient. Furthermore,
the diffusive conservation equation no longer gives conservation of mass, but rather
conservation of energy.

Linear thermoelasticity is also readily extended to the case of a porous medium, just
as Biot’s consolidation model can be seen as an extension of linear elasticity to a porous
medium. This will then necessarily lead to a coupled system three equations, since the
temperature is introduced as an additional third variable. For this three-field system to
be fully coupled, the constitutive laws for the total stress and fluid content should now
depend also on the temperature distribution of the medium, denoted by 𝑇 (𝑥, 𝑡), i.e., 𝜎 =
𝜎(𝑝, u, 𝑇 ) and 𝜂 = 𝜂(𝑝, u, 𝑇 ). Moreover, in accordance with linear thermoelasticity, and
in light of the discussion above, the energy conservation equation should be similar to
the mass conservation equation.

Introducing the constant 𝑏0 ≥ 0 which is the thermal dilation coefficient, and 𝛽 > 0
which is the thermal stress coefficient, the modified constitutive laws for the total stress
and fluid content reads as

𝜎(𝑝, u, 𝑇 ) ∶= �̃�(u) − 𝛼𝑝I − 𝛽𝑇 I, (2.14a)
and 𝜂(𝑝, u, 𝑇 ) ∶= 𝑐0𝑝 − 𝑏0𝑇 + 𝛼∇ ⋅ u, (2.14b)

respectively (see e.g. [21, 36, 59, 93]). However, the derivation of the energy equation
for the thermo-poroelastic system is not so easily done using conservation principles,
as was the case in the previous section for the isothermal system. We will instead argue
in the following way: If we expect the temperature couplings in the above constitutive
laws to have symmetric counterparts in the energy equation, then this should contain the
terms −𝑏0𝜕𝑡𝑝 and 𝛽∇ ⋅ 𝜕𝑡u. Thus, if we denote by 𝑎0 > 0 the combined thermal capacity
of the fluid and solid skeleton, and by y(𝑥, 𝑡) the thermal flux, we can write tentatively

𝜕
𝜕𝑡 ∫𝑉

𝜓(𝑥, 𝑡)d𝑥 + ∫𝜕𝑉
y ⋅ 𝜈d𝑠 = ∫𝑉

𝑧(𝑥, 𝑡)d𝑥, (2.15)

for some volumetric heat source density 𝑧(𝑥, 𝑡), and where we defined the heat content
by 𝜓(𝑝, u, 𝑇 ) ∶= 𝑎0𝑇 − 𝑏0𝑝 + 𝛽∇ ⋅ u. Assuming that the heat is diffusing through the
porous medium according to Fourier’s law of heat conduction, we have the following
constitutive law for the heat flux

y(𝑥, 𝑡) = −Θ∇𝑇 , (2.16)

where Θ is the effective thermal conductivity. However, heat is not only transported
through the porous medium by diffusion. It is also transported by the movement of the
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flow, i.e. by convection. Thus, writing the above tentative energy equation in differential
form, and also including an additional term which represents thermal convection yields

𝜕𝑡(𝑎0𝑇 (𝑥, 𝑡) − 𝑏0𝑝(𝑥, 𝑡) + 𝛽∇ ⋅ u(𝑥, 𝑡))

+
𝑐𝑓
𝜇𝑓

K∇𝑝(𝑥, 𝑡) ⋅ ∇𝑇 (𝑥, 𝑡) − ∇ ⋅ Θ∇𝑇 (𝑥, 𝑡) = 𝑧(𝑥, 𝑡), (2.17a)

for all 𝑥 ∈ Ω, 𝑡 > 0, and where 𝑐𝑓 > 0 is the volumetric specific heat capacity of the fluid.
A derivation of this equation using upscaling techniques can be found in e.g. [21, 59, 93].
The momentum and mass conservation equations (2.12a)-(2.12b) corresponding to the
constitutive laws (2.14a)-(2.14b) are then given by

−(𝜆 + 𝜇)∇(∇ ⋅ u(𝑥, 𝑡)) − 𝜇Δu(𝑥, 𝑡) + 𝛼∇𝑝(𝑥, 𝑡) + 𝛽∇𝑇 (𝑥, 𝑡) = f(𝑥, 𝑡), (2.17b)

𝜕𝑡(𝑐0𝑝(𝑥, 𝑡) − 𝑏0𝑇 (𝑥, 𝑡) + 𝛼∇ ⋅ u(𝑥, 𝑡)) − ∇ ⋅ 1
𝜇𝑓

K∇𝑝(𝑥, 𝑡) = ℎ(𝑥, 𝑡), (2.17c)

for all 𝑥 ∈ Ω, 𝑡 > 0. Thus, the full quasi-static thermo-poroelastic system is given
by equations (2.17a)-(2.17c). This system was analyzed in [22], where existence and
uniqueness of a weak solution was established in the fully mixed formulation. It is also
possible to consider a temperature dependent density in the above thermo-poroelastic
system. This was done in [93], where the previously mentioned Boussinesq approxi-
mation was employed. In this case, the resulting model exhibits an additional (linear)
temperature coupling in the mass conservation equation. Finally, we mention that the
above thermo-poroelastic model is only valid for small temperature variations. This is
due to the linearizations employed in obtaining the constitutive laws (2.14a)-(2.14b).
Systems involving high temperature differences and/or phase transitions necessitates a
more advanced model than the one described above.

2.2 Phase fields
The mathematical theory of phase fields is developed to be able to model and simulate
the development of some microstructure, without the need for explicitly tracking the
spatial and temporal evolution of individual interfaces between the microstructure and
the surrounding medium. The term ‘microstructure’ used here should be interpreted in a
broad sense, i.e., as the spatial arrangement of the defects and/or the spatial arrangement
of the phases that have a different structural and/or compositional character than the
surrounding matrix. As an example, consider some precipitate which is growing (or
shrinking). The precipitate is then separated from the surrounding matrix by an interface
which is evolving in space and in time. Thus, the mathematical modeling of such a
process involves keeping track of three distinct entities; the precipitate, the matrix, and
the interface. The classical approach in order to deal with this type of problem is to
consider the precipitate and the matrix as governed by distinct sets of equations, but
coupled at the mutual interface through physical boundary conditions (e.g., balance of
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normal forces, continuity of fluxes, etc.). This interface is then an evolving surface, the
driving force of which is the interaction between the precipitate and the matrix. Within
this description, the interface is a (𝑑 − 1)-dimensional surface within a 𝑑-dimensional
domain, and is thus characterized as a sharp interface. This type of modeling is very
challenging, especially if the evolution path of the sharp interface is not known a priori,
which generally is the case. The theory of phase field offers a way to simplify such
interfacial evolution problems, while still allowing the original sharp interface problem
to be approximated in an asymptotical fashion (at the cost of increasing computational
difficulty).

The phase field (usually denoted by the Greek letter 𝜑) is an order parameter which
is introduced into the relevant mathematical model as an additional variable (technically,
it is the set of values of the order parameter over the entire domain that is the phase field,
but the term is also commonly used to refer to the function itself). The boundary condi-
tions at the (problematic) interfaces can then be substituted with an evolution equation
for the phase field variable. Thus, the state of the microstructure as a whole is repre-
sented continuously by a single variable. However, this comes at the cost of the lower
dimensional sharp interface being ‘smeared out’ in space by the phase field function,
i.e., the phase field is designed to take the value zero at the interface, one in the matrix,
and varying smoothly between zero and one in a transition zone of some prescribed
non-zero (half-)thickness > 0 around the interface. The phase field is therefore contin-
uous across the interfacial regions, which is in contrast to the sharp interface description,
where the interfaces act as surfaces of discontinuity. The thickness of the artificial tran-
sition zone around the interface thus becomes an important model parameter in the new
phase field evolution problem; it determines the degree to which the original sharp in-
terface problem is approximated (formally, the original problem is recovered in the limit

→ 0). Although phase field models in theory are valid for arbitrarily small , the com-
putational time 𝑡 scales with interface thickness as 𝑡/𝑡0 ∼ ( / 0)−𝑑 [82], thus forming a
computational bottleneck in regards to the degree to which the original sharp interface
problem can be approximated. The figure 2.2 below shows a schematic illustration of a
snapshot in time of some evolving microstructure, which is represented by a phase field
function.

Early developments of phase field theory was in relation to the solidification dy-
namics of pure and binary materials [35, 41, 58]. Further developments investigated the
effects of anisotropy [24, 25], and the convergence of phase field models to the ‘sharp
interface’-limit [26]. Furthermore, in [78, 79] there is proposed a general framework
for deriving phase field models in a thermodynamically consistent way, thus providing
some universality between different phase field models. In many applications it suffices
to have only one phase field variable, e.g., when only two distinct phases are present (i.e.,
a binary model), or when tracking the evolution of some structural defects in a ‘pure’
material. However, it is also possible to consider any finite number of distinct phase
field variables for more complicated multi-phase situations [31, 54, 74]. Phase field the-
ory continues to be an active area of research, and is highly relevant for applications in
e.g., solidification dynamics, brittle fracture propagation and viscous fingering, to name



2.2 Phase fields 15

Figure 2.2: Profile of phase field function 𝜑 across the horizontal line in the domain. The
sharp interfaces of the microstructure is replaced by a diffusive transition zone which
is represented by {𝑥 ∈ Ω ∶ 0 < 𝜑(𝑥, 𝑡) < 1}. Source: wikipedia.org/wiki/Phase_
field_models.

a few. For more details regarding different applications of phase fields, see e.g. [10, 82]
There is a wide variety of phase field models, but common to all is the diffuse inter-

face description of some originally sharp interface problem. The focus here will be on
phase field descriptions of brittle fracture propagation in a quasi-static elastic material.
But first, another aspect of the general theory of phase fields is addressed, namely the
free energy functional.

2.2.1 Energy functional
When formulating a phase field model, a key ingredient is to define a free energy func-
tional of the system in terms of the phase field variable (and its derivatives). Common
choices are the Gibbs free energy (for an isothermal system at constant pressure) or the
Helmhotz free energy (for a system at constant temperature and volume). Note that for
an isolated system which is not isothermal, an entropy functional may turn out to be
the most appropriate choice. The necessary theory in this regard was first developed
by J. W. Cahn and J. E. Hilliard, by realizing that the free energy of an arbitrary con-
trol volume within a heterogenous system cannot depend only on the phase composition
within the control volume, but also on the phase composition of the surrounding envi-
ronment [27, 28]. This is due to the fact that control volumes with equal volume fractions
of phase compositions need not be energetically equivalent. Thus, the total free energy
of a heterogenous system depends not only on the phase field variable, but also on its
derivatives.
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In what follows, a simplified derivation of a free energy functional is presented: If
𝑓0(𝜑) is the free energy per unit volume of a homogenous system, then the heterogenous
energy density 𝑓(𝜑, ∇𝜑, ∇2𝜑, ⋯) can be approximated by performing the following Tay-
lor expansion

𝑓 = 𝑓0 + 𝜕𝑓0
𝜕∇𝜑∇𝜑 + 1

2
𝜕2𝑓0

𝜕(∇𝜑)2 (∇𝜑)2 + ⋯

+ 𝜕𝑓0
𝜕∇2𝜑

∇2𝜑 + 1
2

𝜕2𝑓0
𝜕(∇2𝜑)2 (∇2𝜑)2 + ⋯

⋮ ⋱ (2.18)

Since the heterogenous free energy density must be invariant to a change of sign in
the coordinates, the coefficients of the terms involving odd orders of differentiation of
the homogenous energy density must be equal to zero. Moreover, further simplification
of the above expression is achieved using the following formula, which is obtained by
integration by parts

∫𝑉

𝜕𝑓0
𝜕∇2𝜑

d𝑥 = 𝜕𝑓0
𝜕∇2𝜑

∇𝜑 ⋅ 𝜈 − ∫𝑉

𝜕
𝜕𝜑

𝜕𝑓0
𝜕∇2𝜑

(∇𝜑)2d𝑥, (2.19)

where 𝑉 is some arbitrary control volume, and 𝜈 its outward unit normal field. Since the
first term on the right hand side of (2.19) involves an odd order of differentiation of 𝑓0,
it must be equal to zero by the same argument as above. Since the control volume 𝑉 was
arbitrary, the Taylor expansion of the free energy density (2.18) thus reduces to

𝑓 = 𝑓0(𝜑) + 1
2 (

𝜕2𝑓0
𝜕(∇𝜑)2 − 2 𝜕

𝜕𝜑
𝜕𝑓0

𝜕∇2𝜑)
(∇𝜑)2 + ⋯ . (2.20)

Truncating this expansion after the first and second order terms yields the free energy
functional for an arbitrary control volume 𝑉 within a heterogenous system as

𝐸(𝜑) = ∫𝑉
𝑓0(𝜑) + 𝜆2

2 (∇𝜑)2d𝑥, (2.21)

where

𝜆2 = 𝜕2𝑓0
𝜕(∇𝜑)2 − 2 𝜕

𝜕𝜑
𝜕𝑓0

𝜕∇2𝜑
(2.22)

is the gradient energy coefficient. In order to have an accurate description of interface
properties such as e.g., anisotropy and surface energy density, an accurate value of this
coefficient is needed. In a more general setting than in the above simplified derivation,
e.g., if phase transformations occur in some elastic material which then induces dis-
placements, such that this mechanical energy must be accounted for in the energy func-
tional, then, the free energy functional must include a contribution from the induced
mechanical elastic energy, which yields a dependence on the displacement vector u,
i.e., 𝐸 = 𝐸(𝜑, u).
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2.2.2 Brittle fracture propagation
In the context of brittle fracture propagation, the backdrop is some brittle elastic material
to which a loading force is applied. If enough loading force is exerted, the brittle mate-
rial cracks, creating sharp surfaces of discontinuity in the displacement field. However,
in a phase field formulation, the phase field variable acts as an indicator function for
these surfaces of discontinuity, and creates a diffusive transition zone between the sharp
fracture surface and the elastic material. The figure 2.3 below shows a plot of the phase
field function for a brittle fracture propagation simulation. The following presentation
is based on [16, 42, 65].

Figure 2.3: Computation of phase field brittle fracture propagation [53]. Left: The crack
is beginning to evolve from the middle of the domain. Right: The crack has reached the
boundary of the domain. Diffusive zone around the fracture created by the phase field
is visible on both figures.

Let Ω ⊂ R𝑑 , 𝑑 ∈ {2, 3}, be a bounded, open domain, containing some brittle elastic
material, wherein 𝒞 ⊂ R𝑑−1 denotes the lower dimensional fracture surface(s), and
where the domain boundary 𝜕Ω is decomposed into two parts, Γ𝐷 and Γ𝑁 , both of strictly
positive measure. If u(𝑥, 𝑡) is the displacement vector, and if f(𝑥, 𝑡) is a force applied on
Γ𝑁 , and assuming that fracture surfaces are not reaching the domain boundary 𝜕Ω, we
define the following total energy functional according to Griffith’s criterion for brittle
fracture [48]

𝐸(u, 𝒞 ) = 1
2(Ce(u), e(u))Ω⧵𝒞 − (f, u)Γ𝑁 + 𝐺𝑐ℋ 𝑑−1(𝒞 ), (2.23)

where C = [𝐶𝑖𝑗𝑘𝑙]𝑖𝑗𝑘𝑙 is the fourth order tensor containing the elastic material coeffi-
cients, and ℋ 𝑑−1 is the (𝑑 − 1)-dimensional Hausdorff-measure. Furthermore, the con-
stant 𝐺𝑐 > 0 is the critical energy restitution rate, giving the critical value for the elastic
energy restitution rate at which fracture propagation occurs. In the above functional, the
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first term describes the bulk energy in the intact domain, the second term is the traction
boundary forces, and the last term is the surface fracture energy.

We now introduce the phase field function 𝜑(𝑥, 𝑡), which takes the value 0 in the
fracture, 1 in the intact domain, and varies smoothly from 0 to 1 in a transition zone of
(half-)thickness 0 < < 1 around the fracture. Using the phase field function, we can
regularize the sharp fracture surface, i.e., we replace the Hausdorff-measure of the crack
surface ℋ 𝑑−1(𝒞 ) by the following regularized fracture functional

Γ (𝜑) = 1
2 ‖1 − 𝜑‖2 + 2‖∇𝜑‖2. (2.24)

Furthermore, we would like to define the elastic energy (and thus the displacement) on Ω
rather than on Ω⧵{𝑥 ∈ Ω ∶ 𝜑(𝑥, 𝑡) = 0}. To this end, we introduce another regularization
parameter 0 < 𝜅 < , and define the so-called degradation function as

𝑔(𝜑) = (1 − 𝜅)𝜑2 + 𝜅. (2.25)

With these definitions, we replace the total energy functional (2.23) with the regularized
total energy (denoted as 𝐸 ), which takes the following form

𝐸 (u, 𝜑) = 1
2(𝑔(𝜑)Ce(u), e(u)) − (f, u) + 𝐺𝑐Γ (𝜑). (2.26)

With this formulation, we have essentially replaced the fracture by a softer material.
Finally, a crack irreversibility condition must be enforced (the crack is not allowed to
heal), which takes the form

𝜕𝑡𝜑 ≤ 0. (2.27)
The problem is then to find the displacement vector and phase field function {u(𝑡), 𝜑(𝑡)}
that minimizes the regularized energy functional (2.26), while also subject to the irre-
versibility constraint (2.27). The standard approach when dealing with this type of min-
imization problem is to restate it in terms of the corresponding Euler-Lagrange equa-
tions. Formally speaking, this involves differentiating the expression (2.26) with respect
to the arguments, and setting the resulting expressions equal to zero. To this end, we
begin by introducing the space of admissible displacements and phase field functions
as 𝑉 ∶= {v ∈ (𝐻1(Ω))𝑑 ∶ v|Γ𝐷 = 0} and 𝑊 ∶= 𝐻1(Ω) ∩ 𝐿∞(Ω), respectively. The
Euler-Lagrange equations are then obtained by evaluating the following limits

0 = lim
𝑠→0

1
𝑠 (𝐸 (u + 𝑠v, 𝜑) − 𝐸 (u, 𝜑)), ∀v ∈ 𝑉 , (2.28a)

0 = lim
𝑠→0

1
𝑠 (𝐸 (u, 𝜑 + 𝑠𝜓) − 𝐸 (u, 𝜑)), ∀𝜓 ∈ 𝑊 . (2.28b)

Incorporating also the irreversibility constraint (2.27), we obtain the following varia-
tional inequality problem: Find (𝑢(𝑡), 𝜑(𝑡)) ∈ 𝑉 × 𝑊 such that for all 𝑡 > 0 there holds

(𝑔(𝜑)Ce(u), e(v)) = (f, v), ∀v ∈ 𝑉 , (2.29a)

𝐺𝑐 (∇𝜑, ∇𝜓) − 𝐺𝑐 (1 − 𝜑, 𝜓) + (1 − 𝜅)(𝜑|Ce(u)|2, 𝜓) ≥ 0. ∀𝜓 ∈ 𝑊 . (2.29b)
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The time-discrete version of the above system was analyzed in [75], and there it was
shown that at least one global minimizer exists, provided sufficient regularity of domain
and loading force. We mention also that the analysis of a pressurized phase field brittle
fracture model can be found in [72, 73].

2.2.3 Limitations of phase fields
The theory of phase fields is particularly well suited for modeling and simulating the
development of microstructure, as introduction of the phase field variable(s) effectively
removes the biggest difficulties associated with the classical description of such mi-
crostructural (i.e. sharp interface) evolution problems. Many of the advantages of the
phase field description is discussed in the introduction of this chapter, but there are also
some important limitations associated with phase fields which are not easy to overcome.
Specifically, due to the approximating nature of phase fields, some limitations are in fact
‘built-in’ to the theory, and thus cannot be overcome.

The most obvious disadvantages of the theory relates to the thickness of the artifi-
cial diffusive zone around the sharp interfaces, i.e., to the universal model parameter .
This parameter may easily be set to unrealistic values. This may result in an unaccept-
able degree of loss of detail, and appearance of unphysical phenomena, even if this is
not clear from the modeler’s point of view. For any given problem, to determine exactly
for what values of the model becomes unphysical is very difficult, and may even be
impossible. On the other hand, if is chosen too small, computational issues become
apparent, and a lot of the difficulties associated with the original sharp interface model
resurface. This is especially true for large domain simulations. Consider e.g., a brittle
fracture evolution problem. In reality the fractures within the elastic body have an aper-
ture, but this is small enough that fractures are usually considered as lower dimensional
surfaces. Setting equal to the average fracture aperture should then produce a realistic
model, but for practical computations, such small values of necessitate an extremely
fine computational grid. Thus, the situation might be that an unphysical value of is de-
manded for a feasible practical computation. The simulation will nevertheless produce a
smooth looking phase field function, but if the result is quantitatively comparable to re-
ality is another question entirely. However, phase fields is still a powerful theory which
continues to receive a great amount of attention. Some of the limitations discussed in the
above may also be mitigated by development of more advanced simulation technology.
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Chapter 3

Homogenization

3.1 Introduction

Homogenization is an asymptotic analysis theory within the broader field of applied
mathematics, which has its origins in the field of material engineering, specifically from
subfields dealing with composite materials. In particular, homogenization theory orig-
inates from the attempt to understand how the constitutive equations of a composite
material can be derived from the constitutive equations of the components constitut-
ing the composite, and from the components’ topological and geometric distributions
within the composite. In other words, the aim of homogenization theory is to estab-
lish the macroscopic behavior of a system which is microscopically heterogenous, by
‘smoothing’ the microscopic heterogeneities. The development of this theory is due, at
least in part, to the realization that in many applications dealing with complex heteroge-
nous media, the relevant properties of the medium may only be the effective ones, i.e., the
average properties which does not depend explicitly on the microscopic heterogeneities,
and which only emerge at a scale much larger than said heterogeneities. Homogenization
theory provides the mathematical framework necessary to bridge the gap between the
(possibly prohibitively complex) microscopic description, and the (less complex) effec-
tive macroscopic description. Hence, given a micro-scale model of some heterogenous
material, homogenization can reveal the effective characteristics of this material by re-
placing the original complex heterogenous material by a new homogenous (fictitious)
one, possessing only effective properties.

They key idea in homogenization is that a heterogenous body, as long as the hetero-
geneities are sufficiently small and sufficiently evenly distributed, appears as homoge-
nous from the macroscopic point of view. Thus, regarded as a homogenous body from
a sufficiently ‘zoomed out view’, macroscopic properties of the (microscopically) het-
erogenous body emerge, which does not exist at the micro-scale (such as e.g., perme-
ability, porosity, etc.). The successful characterization of these macroscopic properties
by way of the microscopic properties is the remarkable utility of homogenization theory,
and the reason it continues to be an active field of research.
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Although beginning as a subfield within material engineering, homogenization the-
ory has steadily become more grounded in mathematics, and is now viewed purely as
a mathematical theory. Due to the works of Nguetseng [76, 77] and Allaire [3] there is
now even rigorous notions of weak compactness specifically tailored for dealing with
problems coming from homogenization. Thus, one can obtain the macroscopic model
as a limiting case when letting the size of the microscopic heterogeneities tend to zero.
However, this (rigorous) theory is beyond the scope of this dissertation; the focus here
will be on the formal ‘two-scale asymptotic expansion’ method.

For a comprehensive overview of homogenization, see the textbooks [33, 49]. For
an overview of the rigorous theory, see e.g. [43].

3.1.1 Applicability of homogenization
Application of homogenization theory is most effective for problems involving heteroge-
nous media with some uniformity of the heterogeneities, or more generally, for boundary
value problems involving coefficients with low-amplitude, high-frequency oscillations.
For some heterogenous body occupying a domain Ω, we can summarize the main re-
quirements for homogenization to be applicable in the following bullet points:

• That the heterogeneities are small compared to the size of Ω.

• That the heterogeneities are uniform in size.

• That the heterogeneities are evenly distributed throughout Ω.

Thus, two scales characterize the domain Ω: The scale of the heterogeneities, and the
global scale of Ω itself. As long as these two scales are separated by sufficient orders of
magnitude (usually 1𝑒6 – 1𝑒12), they can be considered as almost independent. Addi-
tionally, if the microscopic heterogeneities within Ω are sufficiently uniform in size and
sufficiently evenly distributed, they may be considered as being periodic, even if this is
strictly not the case in reality. As a rule of thumb, the greater the scale separation is, and
the greater the uniformity of the heterogeneities, the more reliable the results produced
by homogenization. The use of the word ‘sufficiently’ in the above must therefore be
interpreted within the specific context.

The heterogenous body occupying Ω may be a fine mix of several constituents, or it
may be a single material with many small perforations. Hence, e.g., porous structures are
excellent candidates for application of homogenization: In a large-scale porous structure,
say, a subsurface reservoir, the two characteristic scales would be the size of an average
pore and the size of the porous reservoir itself, leading to an exceptionally great scale
separation. As there is also usually some uniformity in the grains making up the porous
skeleton, we can consider the three bullet points above to be fulfilled.

Finally, we mention some of the literature on applications of homogenization in the
context of porous media: In [23] a formal upscaling leading to the quasi-static Biot model
was undertaken, and in the book [86] a rigorous upscaling can be found. In [34, 47]
the rigorous derivation of dynamic Biot-type models can be found, corresponding to
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different scalings of the micro-scale model. In [40] the case of an inviscid fluid filling
the pore space is treated.

3.1.2 The two-scale asymptotic expansion method
As mentioned earlier, the focus here will be on the homogenization technique known
as the two-scale asymptotic expansion method within the periodic framework [33, 49].
The periodicity assumption is very common in applications of the two-scale asymptotic
expansion method, and in homogenization in general. Although this assumption signifi-
cantly simplifies the technical procedure, it is not a necessary requirement. In particular,
at a certain point during the derivation, one partitions the original heterogenous domain
into small cells (or REVs in the context of porous media), which from the macro-scale
point of view can be regarded as infinitesimal points. The periodic assumption is then
essentially the same as assuming the heterogeneities behind each such (macro-scale)
point is always arranged in an identical fashion. Therefore, only one local description
of the micro-scale heterogeneities, known as a ‘reference cell’, is necessary in order
to complete the homogenization procedure. Without the periodic assumption there is
also needed information about how the arrangement of the micro-scale heterogeneities
change from (macro-scale) point to (macro-scale) point, i.e., a parametrization of the
reference cell is needed. In the upscaled model, however, this is only the difference be-
tween constant or spatially dependent effective coefficients. Throughout this chapter we
will always assume to be within the periodic framework.

More important than the absolute value of the two scales characterizing the relevant
model is their ratio, i.e., if 𝑙 > 0 is the characteristic scale of the microscopic hetero-
geneities and 𝐿 > 0 is the characteristic scale of the macroscopic domain, the dimen-
sionless parameter ∶= 𝑙/𝐿 << 1, known as the scale separation parameter is defined.
After a non-dimensionalization of the relevant model (i.e. the macro-scale domain is
now of 𝒪(1) while the microscopic heterogeneities are of 𝒪( )), the following two-scale
asymptotic expansion of the relevant variable(s) is postulated, i.e. if 𝑢 ∶ Ω → R is the
quantity in question, then

𝑢(𝑥) = 𝑢0(𝑥, 𝑥/ ) + 𝑢1(𝑥, 𝑥/ ) + 2𝑢2(𝑥, 𝑥/ ) + ⋯ , (3.1)

for some functions 𝑢𝑗 , 𝑗 = 1, 2, 3, ..., which are periodic in the second argument. The fact
that the 𝑢𝑗 depends on 𝑥 and 𝑥/ needs to be understood in the following sense: Since 𝑥 is
the dimensionless position of a point within the (dimensionless) domain Ω, we have that
the needed variations in 𝑥 when describing macroscopic changes is of 𝒪(1). Similarly,
the needed variations in 𝑥 when describing microscopic changes is of 𝒪( ), moreover,
these changes are periodic with period . The ‘blown-up’ variable 𝑥/ can therefore be
viewed as giving the position within one periodic reference cell, rescaled such that the
period is 1. The first term on the right hand side of (3.1), i.e. 𝑢0, thus represents the ‘slow’
macroscopic changes of 𝒪(1) in 𝑢, the next term, 𝑢1, represents the ‘faster’ changes in
𝑢 coming from the microscopic heterogeneities of 𝒪( ), and similarly for the higher
order terms. The figure 3.1.2 below illustrates the idea behind the postulated two-scale
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expansions.

Figure 3.1: Graph of 𝑓 (𝑥) = sin(𝑥)/2 + 1 + cos(𝑥/ ) for = 1/20 (left) and = 1/80
(right). These figures illustrate the idea behind the two-scale expansion: The function 𝑓
has ‘slow’ changes of 𝒪(1), and ‘fast’ changes of 𝒪( ), and therefore admits a two-scale
expansion (which is also evident from its formula). Example taken from [43].

3.2 A classic homogenization example
The details of the two-scale asymptotic expansion method is best outlined with an ex-
ample. Hence, this section will be devoted to going through a model homogenization
problem is some detail. The following presentation is based on [33].

3.2.1 Problem description

Let Ω ⊂ R𝑑 , 𝑑 ∈ {2, 3}, be an open and bounded set occupied by a heterogenous body
consisting of a fine mix of two constituents, which we hereby name constituent 𝐴 and
constituent 𝐵. The figure 3.2.1 below shows a schematic of the situation.

Figure 3.2: Schematic of the composite material. The domain Ω appears homogenous
from the macroscopic point of view, but when zooming in on a small area, the mi-
crostructure becomes visible, i.e., the material is microscopically heterogenous. In this
figure, constituent 𝐴 is colored grey, while constituent 𝐵 is the white part in between.
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We denote by Ω𝐴 and Ω𝐵 the open subdomains of Ω containing all of constituent 𝐴
and 𝐵, respectively, satisfying Ω𝐴 ∩ Ω𝐵 = ∅, and such that these subdomains and their
mutual interface make up the larger domain, i.e., Ω = Ω𝐴 ∪ Ω𝐵 ∪ (𝜕Ω𝐴 ∩ 𝜕Ω𝐵). Further-
more, we assume that both subdomains are isotropic and have constant thermal conduc-
tivities 𝛾𝐴 and 𝛾𝐵 , respectively. Let now 𝑢𝐴,𝐵 ∶ Ω𝐴,𝐵 → R and q𝐴,𝐵(𝑥) ∶= 𝛾𝐴,𝐵∇𝑢𝐴,𝐵(𝑥)
be respectively the temperature distributions and thermal fluxes in the two subdomains.
Using this, we define the global temperature distribution, thermal conductivity, and ther-
mal flux by

𝑢(𝑥) ∶=
{

𝑢𝐴(𝑥), 𝑥 ∈ Ω𝐴,
𝑢𝐵(𝑥), 𝑥 ∈ Ω𝐵 ,

(3.2)

and

𝛾(𝑥) ∶=
{

𝛾𝐴, 𝑥 ∈ Ω𝐴,
𝛾𝐵 , 𝑥 ∈ Ω𝐵 ,

(3.3)

and

q(𝑥) ∶=
{

q𝐴(𝑥), 𝑥 ∈ Ω𝐴,
q𝐵(𝑥), 𝑥 ∈ Ω𝐵 ,

(3.4)

respectively. From physical considerations we then have continuity of temperature and
thermal flux at the internal interface between composite 𝐴 and composite 𝐵, i.e.

𝑢𝐴 = 𝑢𝐵 on 𝜕Ω𝐴 ∩ 𝜕Ω𝐵 , (3.5a)
q𝐴 ⋅ 𝜈𝐴 = q𝐵 ⋅ 𝜈𝐵 on 𝜕Ω𝐴 ∩ 𝜕Ω𝐵 , (3.5b)

where we denote the unit normal fields of subdomains Ω𝐴 and Ω𝐵 by 𝜈𝐴 and 𝜈𝐵 , respec-
tively, satisfying 𝜈𝐴 = −𝜈𝐵 . If 𝑓 ∶ Ω → R is a heat source acting on the domain Ω, and
if zero temperature is prescribed at the outer boundary 𝜕Ω, then the global temperature
satisfies the following boundary value problem (assuming the system is equilibrium):
Find the temperature distribution 𝑢 ∶ Ω → R such that

−∇ ⋅ (𝛾∇𝑢) = 𝑓, in Ω, (3.6a)
𝑢 = 0, on 𝜕Ω. (3.6b)

Note that it follows from (3.5b) that the temperature gradient is a discontinuous function,
which implies that the problem (3.6a)-(3.6b) should be interpreted in the sense of weak
derivatives. However, for simplicity, we choose not to adapt the variational formulation
of this problem in the following presentation.

Due to the fine mixture of the two constituents, the global thermal conductivity is
now oscillating very rapidly between the two values, 𝛾𝐴 and 𝛾𝐵 . This makes the above
model problem very difficult to treat, especially from the numerical point of view. If the
mixture is fine enough, it even becomes impossible. The good news is, however, that we
are not interested in modeling the temperature distribution on Ω in a resolution that re-
solves the microscopic heterogeneities in full detail. We will instead use homogenization
to derive an upscaled version of the problem (3.6a)-(3.6b), posed on some new ‘zoomed
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out’ homogenous (fictitious) domain. Thus, in this new system, the variable will not be
the original temperature distribution 𝑢, defined on the original heterogenous domain, but
instead some effective temperature distribution (usually denoted the same way) which
is only valid on a scale much larger than the scale of the microscopic heterogeneities. In
other words, the effective variable will only ‘see’ the new homogenous domain, and not
the original heterogenous one. Furthermore, the effective (upscaled) thermal conductiv-
ity will no longer have rapid oscillations, but instead become a constant tensor. However,
information about the microscopic heterogeneities will still be encoded into this effec-
tive tensor coefficient. Thus, the fundamental assumption we make when deriving the
upscaled problem is that solving this should produce a temperature distribution which
is accurate enough, but without the rapid oscillations coming from the microscopic het-
erogeneities.

3.2.2 Homogenization ansatz
Homogenization usually requires careful dimensional considerations of the (micro-
scale) problem at hand, but we will here assume that this has been done, and simply
denote the characteristic micro- and macro-scales by 𝑙, and 𝐿, respectively, and their ra-
tio by ∶= 𝑙/𝐿. Thus, in this non-dimensional framework the macro-scale is of 𝒪(1),
while the micro-scale is of 𝒪( ). We now introduce the periodicity assumption: As-
sume we have a reference period 𝑌 , in which the reference heterogeneities are given,
but rescaled such that 𝑌 ∶= [0, 1]𝑑 . This means that the heterogeneities in Ω are now
periodic with period 𝑌 . The figure 3.2.2 below illustrates the idea behind the reference
period 𝑌 .

Figure 3.3: Periodicity of the micro-scale heterogeneities. Cells of periodicity indicated
on the ‘zoomed in’ domain on the left. On the right is the reference period 𝑌 .

To now make the -dependence on the problem (3.6a)-(3.6b) explicit, we rewrite it
as

−∇ ⋅ (𝛾 ∇𝑢 ) = 𝑓, in Ω , (3.7a)
𝑢 = 0, on 𝜕Ω , (3.7b)

where the -superscript on the variable and on the domain implies dependency on .
Furthermore, the coefficient function 𝛾 is now periodic with period 𝑌 , hence we can
write 𝛾 (𝑥) = 𝛾(𝑥/ ) for some 𝑌 -periodic function 𝛾 . We can thus think of Ω and 𝑢 as
being the ‘resolved’ domain and temperature distribution, respectively.
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In order to facilitate the homogenization procedure, we introduce now the ‘micro-
scopic variable’, 𝑦 by

𝑦 ∶= 𝑥/ , (3.8)
where 𝑥 is here the ‘macroscopic variable’. This is motivated by the fact that if 𝑥 ∈ Ω ,
then there exists 𝑛 ∈ Z𝑑 such that 𝑥/ = (𝑛+𝑦), where 𝑦 ∈ 𝑌 . Hence, 𝑥 gives the position
of a point in the domain Ω, while 𝑦 gives its position within the rescaled reference period
𝑌 . Note that the macroscopic variable 𝑥 does not live in the ‘resolved’ domain Ω , but
rather in some new homogenized domain Ω, where we can think there is a reference cell
𝑌 behind each point.

We have now arrived at the first key juncture in the homogenization process; to in-
voke the homogenization ansatz, i.e., to postulate that the solution to the ‘resolved’ prob-
lem (3.7) admits the following two-scale asymptotic expansion

𝑢 (𝑥) ∶= 𝑢0(𝑥, 𝑦) + 𝑢1(𝑥, 𝑦) + 2𝑢2(𝑥, 𝑦) + ⋯ , (3.9)

where each 𝑢𝑗 , 𝑗 = 1, 2, ..., is defined for 𝑥 ∈ Ω and 𝑦 ∈ 𝑌 , and is 𝑌 -periodic with
respect to 𝑦 for each 𝑥 ∈ Ω. The aim now is to substitute the expansion (3.9) into the
problem (3.7a)-(3.7b), and find some boundary value problem satisfied by 𝑢0, where the
dependency on micro-scale variable 𝑦 has been eliminated. Due to (3.8), we must first
reformulate the differential operators in (3.7a) according to the chain rule, i.e.,

∇ = ∇𝑥 + 1∇𝑦, (3.10)

and similarly for the divergence. Using this, together with (3.9) yields equation (3.7a) as

𝑓 = − −2∇𝑦 ⋅ (𝛾∇𝑦𝑢0)
− −1 [∇𝑥 ⋅ (𝛾∇𝑦𝑢0) + ∇𝑦 ⋅ (𝛾(∇𝑦𝑢1 + ∇𝑥𝑢0))]
− 0 [∇𝑥 ⋅ (𝛾(∇𝑥𝑢0 + ∇𝑦𝑢1) + ∇𝑦 ⋅ (𝛾(∇𝑥𝑢1 + ∇𝑦𝑢2))] + 𝒪( ). (3.11)

Note that we here discarded all terms of 𝒪( ) and higher order. In general, the choice of
where to truncate the expansion (3.9) depends on the specific problem at hand. Equating
terms of equal -power in (3.11) yields the following set of boundary value problems
(indexed by their respective -power):

−2 ∶
{

− ∇𝑦 ⋅ (𝛾∇𝑦𝑢0) = 0, in 𝑌 ,
𝑢0(𝑥, ⋅) is 𝑌 -periodic for all 𝑥 ∈ Ω,

(3.12a)
(3.12b)

and

−1 ∶
{

− ∇𝑥 ⋅ (𝛾∇𝑦𝑢0) − ∇𝑦 ⋅ (𝛾(∇𝑦𝑢1 + ∇𝑥𝑢0)) = 0, in 𝑌 ,
𝑢1(𝑥, ⋅) is 𝑌 -periodic for all 𝑥 ∈ Ω,

(3.13a)
(3.13b)

and

0 ∶
{

− ∇𝑥 ⋅ (𝛾(∇𝑥𝑢0 + ∇𝑦𝑢1) − ∇𝑦 ⋅ (𝛾(∇𝑥𝑢1 + ∇𝑦𝑢2)) = 𝑓 , in 𝑌 ,
𝑢2(𝑥, ⋅) is 𝑌 -periodic for all 𝑥 ∈ Ω.

(3.14a)
(3.14b)

Note that the macroscopic variable 𝑥 only acts as a parameter in the above boundary
value problems.
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3.2.3 The upscaled system
To derive the upscaled system, we must now successively solve the boundary value prob-
lems (3.12a)-(3.12b), (3.13a)-(3.13b), and (3.14a)-(3.14b). Firstly, observe that from
(3.12a)-(3.12b) we have that 𝑢0 must be independent of 𝑦, i.e.

𝑢0(𝑥, 𝑦) = 𝑢0(𝑥). (3.15)

Thus, we also get that the first term on the left hand side of (3.13a) vanishes, and the
boundary value problem for −1 therefore becomes

{
−∇𝑦 ⋅ (𝛾(∇𝑦𝑢1 + ∇𝑥𝑢0)) = 0, in 𝑌 ,
𝑢1(𝑥, ⋅) is 𝑌 -periodic for all 𝑥 ∈ Ω.

(3.16)

In order to solve this, we postulate the following form for the solution 𝑢1 using separation
of variables:

𝑢1(𝑥, 𝑦) =
𝑑

∑
𝑗=1

𝜕𝑢0

𝜕𝑥𝑗
(𝑥)𝑈 𝑗(𝑦), (3.17)

for some auxiliary functions 𝑈 𝑗(𝑦), 𝑗 = 1, ..., 𝑑, which are determined by solving the
following set of auxiliary boundary value problems (for 𝑗 = 1, ..., 𝑑)

{
− ∇𝑦 ⋅ (𝛾(∇𝑦𝑈 𝑗 + e𝑗)) = 0, in 𝑌 ,
𝑈 𝑗 is 𝑌 -periodic,

(3.18a)
(3.18b)

where {e1, e2, ..., e𝑑} is the canonical orthonormal basis for R𝑑 . We continue with the
boundary value problem (3.14a)-(3.14b), where we use both (3.15) and (3.17), and in-
tegrate over 𝑌 to obtain

−
𝑑

∑
𝑗,𝑘=1

𝜕
𝜕𝑥𝑗 ∫𝑌

𝛾(𝑦)(∇𝑦𝑈 𝑘(𝑦) + e𝑘)d𝑦𝜕𝑢0(𝑥)
𝜕𝑥𝑘

= 𝑓(𝑥)|𝑌 | = 𝑓(𝑥), for 𝑥 ∈ Ω. (3.19)

Defining the second order tensor Γ ∈ R𝑑×𝑑 componentwise as

[Γ]𝑖𝑗 ∶= ∫𝑌
𝛾(𝑦)(∇𝑦𝑈 𝑗(𝑦) + e𝑗)𝑖d𝑦, (3.20)

we can write (3.19) more compactly as

− ∇𝑥 ⋅ (Γ∇𝑥𝑢0) = 𝑓 , for 𝑥 ∈ Ω. (3.21)

Thus, we have found an equation satisfied by 𝑢0, and where the dependency on the micro-
scale variable 𝑦 has been eliminated. Furthermore, from (3.9) we see that 𝑢0 must vanish
on the boundary of Ω, and therefore the upscaled version of (3.7a)-(3.7b) is given by
(omitting now subscripts on differential operators and superscripts on variables)

−∇ ⋅ (Γ∇𝑢) = 𝑓, in Ω, (3.22a)
𝑢 = 0, on 𝜕Ω. (3.22b)
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Observe that the structure of this upscaled problem is the same as for the original prob-
lem (3.7a)-(3.7b) (i.e. an elliptic equation with a homogenous Dirichlet boundary condi-
tion), but now with a constant tensor valued coefficient Γ, instead of a rapidly oscillating
scalar valued coefficient function 𝛾 . This means that the complexity in the upscaled prob-
lem is significantly reduced, and practical computations are now feasible. However, in
order to determine the entries of Γ, one needs to solve the set of auxiliary boundary value
problems (3.18a)-(3.18b), usually referred to as cell problems in the homogenization lit-
erature, on some given reference cell geometry (e.g., such as illustrated in figure 3.3).

3.2.4 Properties of the effective coefficient
In terms of the solvability of (3.22a)-(3.22b), there are still some things which can be
said about Γ, even without solving the so-called cell-problems (3.18a)-(3.18b), and even
without specifying the reference cell geometry (although some constraints related to the
regularity is required, see e.g. [3] for more details). In particular, the symmetry and
positive definiteness properties of Γ are readily shown.

We begin by showing the symmetry property: Multiplying (3.18a) by 𝑈 𝑖 and inte-
grating over 𝑌 yields

∫𝑌
𝛾(𝑦)(∇𝑦𝑈 𝑗(𝑦) + e𝑗) ⋅ ∇𝑦𝑈 𝑖(𝑦)d𝑦 = 0. (3.23)

Using this, we can rewrite (3.20) as

[Γ]𝑖𝑗 = ∫𝑌
𝛾(𝑦)(∇𝑦𝑈 𝑗(𝑦) + e𝑗) ⋅ (∇𝑦𝑈 𝑖 + e𝑖)d𝑦, (3.24)

from which [Γ]𝑖𝑗 = [Γ]𝑗𝑖 follows immediately, thus establishing the symmetry of Γ.
Finally, we show the positive definiteness property: Let 0 ≠ 𝛼 ∶= [𝛼1, ..., 𝛼𝑑]⊤ ∈ R𝑑 be
non-zero constant vector. Then, using also (3.24) we can write

Γ𝛼 ⋅ 𝛼 =
𝑑

∑
𝑖,𝑗=1

[Γ]𝑖𝑗𝛼𝑖𝛼𝑗 (3.25)

=
𝑑

∑
𝑖,𝑗=1 ∫𝑌

𝛾(𝑦)(𝛼𝑗(∇𝑦𝑈 𝑗(𝑦) + e𝑗)) ⋅ (𝛼𝑖(∇𝑦𝑈 𝑖 + e𝑖))d𝑦 > 0, (3.26)

from which the positive definiteness of Γ follows.

3.3 Limitations of homogenization
As already mentioned, homogenization is a powerful tool for deriving effective math-
ematical models. In many cases, effective models can also be derived using heuristic
approaches, such as was originally done with e.g., Darcy’s law, and Biot’s model for
quasi-static consolidation. These models were also derived using homogenization at a
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later point in time, and thus homogenization in these situations, and in some sense, vali-
dated the previously taken heuristic approaches. There are however some notable differ-
ences in the upscaled models coming from heuristic/experimental approaches and from
the homogenization approach; the coefficients in the upscaled model are more accu-
rately understood in the case of homogenization. As the example in the previous section
demonstrates, there appear always formulas for the effective coefficients, and their de-
pendency on the micro-scale geometry is made explicit. Thus, at least in principle, as
long as the coefficients of the micro-scale problem are known, and a geometry of the
reference cell is specified, then the effective coefficients of the upscaled problem are
also known. In the heuristic approach, however, it may be difficult to interpret the effec-
tive coefficients, and it may even be impossible to quantify their precise dependency on
the micro-scale heterogeneities.

The drawback of homogenization, in particular within the periodic framework, is that
strictly speaking, it is only applicable for a perfectly periodic arrangement of the micro-
scale heterogeneities. For some human made composite material, which is designed to
be periodic in its microstructure, the periodicity requirement is of course not a drawback,
but for any naturally formed composite this will never fully be the case. Thus, although
the effective coefficients can be calculated explicitly, the geometry of the reference cell
of which this calculation depends, will in general only be a guess. Furthermore, even if
a realistic geometry for the reference cell is chosen, the periodicity assumption might
still be enough to produce unrealistic values for the effective coefficients.

In light of the above discussion, homogenization should not be viewed as a substitute
for the heuristic and experimental approaches for deriving upscaled models, but rather as
a supplement. One of the strengths of homogenization, even within the periodic frame-
work, is that the upscaled system may be derived without specifying the geometry of the
reference cell. In other words, the structure of the upscaled equations can be easily re-
vealed even if the coefficients are unknown. Furthermore, from the auxiliary problems
one can also try to deduce something about the relationship between the effective co-
efficients and the original (micro-scale) coefficients, which can be quite useful on its
own. For an accurate simulation of real world phenomena, however, the formulas for
the effective coefficients produced by homogenization should not be relied upon to give
realistic values.



Chapter 4

Iterative numerical methods

Iterative numerical methods are, broadly speaking, sequential procedures where an ini-
tial guess is used to generate a sequence of improving solutions, approaching the true
solution in an asymptotical fashion. Iterative methods can thus never be used to solve ex-
actly any given problem, but can approximate it to any desired degree. Iterative methods
are contrasted to direct methods, which attempts to solve the given problem by a finite
numbers of operations. In the absence of rounding errors, the direct method is thus char-
acterized by delivering the exact solution. However, in practical computations there are
always rounding errors, hence the best result one can hope for is to be within machine
precision of the true solution, direct method or not. In fact, good iterative methods can
easily reach the true solution within machine precision, and in many cases do so much
faster than a direct method can. The approximate nature of iterative methods is therefore
irrelevant.

Another thing to consider is the fact that direct methods are rarely applicable to
nonlinear problems, while iterative methods can be applied to both linear and nonlinear
problems. Thus, for many types of nonlinear problems, iterative methods are the only
option. Furthermore, iterative methods can also turn out to be the best choice for a linear
problem, especially if the linear problem involves a large number of variables (making
a direct method prohibitively computationally expensive). To elaborate on this point,
consider the problem of inverting a square matrix 𝐴, or solving a linear system 𝐴x = b.
Any direct method will necessarily require 𝒪(𝑛3) work (i.e., floating point operations)
for a matrix 𝐴 of rank 𝑛, since there are 𝒪(𝑛) steps to be performed, each requiring
𝒪(𝑛2) amount of work. If a linear system is to be solved, then an iterative method may
only need to compute 𝐴x for any given vector x ∈ R𝑛. If computing 𝐴x requires 𝒪(𝑛2)
amount of work, and the method reaches machine precision in less than 𝒪(𝑛) steps, then
the iterative method will beat a direct method. This is for example the case with Krylov
subspace methods [85, 92], where a basis of the form {𝐴b, 𝐴2b, 𝐴3b, ...} is computed,
and a solution sought in the span of this basis which minimizes the residual. It is evident
that this method will converge in 𝑛 steps, but if 𝑛 is very large, the iterative procedure may
reach sufficient accuracy long before that. Moreover, if the matrix under consideration
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has some structure which can be exploited, the amount of work may be reduced even
further. In particular, if the matrix 𝐴 is sparse, with 𝜇 nonzero entries per row, the amount
of work needed to compute 𝐴x is 𝒪(𝜇𝑛). The figure 4 below shows a schematic of how
an iterative method might beat a direct method.

Figure 4.1: Illustration of convergence of direct and iterative methods for solving a large
linear system. The direct method delivers the solution at machine precision when 𝒪(𝑛3)
amount of work is performed, while the iterative method converges (geometrically) from
the beginning, and reaches machine precision much faster than the direct method. Illus-
tration is copied from [92].

The focus in this chapter will be on iterative numerical methods for solving partial
differential equations (PDEs). Also in this case, an iterative method may be advanta-
geous over a direct method, even if the PDE in question is linear. In fact, the situation is
closely linked to the case of a linear system of equations described above: If the prob-
lem at hand is a coupled system of linear PDEs, with a large number of independent
variables, then solving monolithically the whole discretized system may lead to a pro-
hibitively large matrix. Solving instead each equation in a sequential fashion, while it-
eratively updating coupling terms, may turn out to be more accurate and faster than a
direct monolithic computation. Furthermore, linear systems arising from discretizations
of PDEs almost always has some exploitable structure (e.g., sparseness). There are sev-
eral iterative methods which are often applied to PDEs. In the following sections, we will
discuss the Newton method and the Fixed Stress Spitting / 𝐿-scheme method. Several
examples will also be provided.

4.1 Newton’s method...

Newton’s method was originally designed to find zeroes of real valued functions, but can
also be used in the context of PDEs. We describe first Newton’s method for real valued
functions, and then give an example with PDEs.
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Figure 4.2: English 16th century physicist and mathematician Sir Isaac Newton (1642-
1726), whose name among other things is attached to a popular iterative numerical
method. Picture is copy of a portrait made by Sir Godfrey Kneller (1689).

4.1.1 ...for a real valued function
Let 𝑓(𝑥) be a real valued function, defined on all of R. If 𝑥0 is a (good enough) initial
guess for a zero of 𝑓 , then

𝑥1 = 𝑥0 − 𝑓(𝑥0)
𝑓 ′(𝑥0) (4.1)

is a better approximation of that zero. By repeating this process according to

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)
𝑓 ′(𝑥𝑛) , (4.2)

the zero can be found to any degree of accuracy. Newton’s method is famous for its
quadratic convergence property, i.e., using Taylor’s Theorem, one can show that the
following estimate holds

𝑛+1 ≤ 𝐶 2
𝑛, (4.3)

for some generic constant 𝐶 > 0 (independent of 𝑛), where 𝑛 = |𝑥𝑛 −�̂�| and where �̂� ∶=
lim𝑛→∞ 𝑥𝑛 is the true zero. However, convergence of Newton’s method is not guaranteed.
The following conditions must be satisfied, where 𝐼 ∶= [�̂�−𝑟, �̂�+𝑟] for some 𝑟 ≥ |𝑥0+�̂�|:

• 𝑓 ′(𝑥) ≠ 0 for all 𝑥 ∈ 𝐼 .

• 𝑓 ″(𝑥) is continuous for all 𝑥 ∈ 𝐼 .

• 𝑥0 is chosen sufficiently close to �̂�.

Here, sufficiently close must be interpreted according to the situation, although it is pos-
sible to be more precise about this point (see e.g. [87]).

4.1.2 ...for PDEs
Consider now the following nonlinear PDE problem: Find 𝑢(𝑥) such that

−∇ ⋅ (𝐴(𝑢)∇𝑢) = 𝑓, in Ω, (4.4a)
𝑢 = 0, on 𝜕Ω. (4.4b)
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where 𝐴(𝑢) is some sufficiently smooth operator, and 𝑓(𝑥) is some given real valued
function defined on some open and bounded subset Ω ⊂ R𝑑 . Assuming now the above
problem has been discretized, and taking some 𝑉ℎ ⊂ 𝐻1

0 (Ω) to be an appropriate discrete
space (where ℎ is the mesh size parameter), we readily obtain the discrete variational
formulation as: Find 𝑢ℎ ∈ 𝑉ℎ such that

ℱ (𝑢ℎ)(𝑣) ∶= (𝐴(𝑢ℎ)∇𝑢ℎ, ∇𝑣) = (𝑓 , 𝑣), ∀𝑣 ∈ 𝑉ℎ. (4.5)

In order to apply Newton’s method to this problem, we need to calculate the Jacobian of
the differential operator ℱ , i.e., we need to compute the limit

ℱ ′(𝑢ℎ)(𝛿𝑢ℎ, 𝑣) = lim
𝑠→0

1
𝑠 (ℱ (𝑢ℎ + 𝑠𝛿𝑢ℎ)(𝑣) − ℱ (𝑢ℎ)(𝑣))

=(𝐴′(𝑢ℎ)∇𝑢ℎ, ∇𝑣) + (𝐴(𝑢ℎ)∇𝛿𝑢ℎ, ∇𝑣), 𝛿𝑢ℎ ∈ 𝑉ℎ. (4.6)

Newton’s method applied to the problem (4.5) (i.e., to the problem ℱ (𝑢ℎ)(𝑣)−(𝑓 , 𝑣) = 0)
then reads as follows: (1) Let 𝑢0

ℎ ∈ 𝑉ℎ be an initial guess. (2) For the iteration steps
𝑘 = 1, 2, 3, ..., we then solve the following (linear) problem: Find 𝛿𝑢𝑘

ℎ ∈ 𝑉ℎ such that

ℱ ′(𝑢𝑘
ℎ)(𝛿𝑢𝑘

ℎ, 𝑣) = −ℱ (𝑢𝑘
ℎ)(𝑣) − (𝑓 , 𝑣), ∀𝑣 ∈ 𝑉ℎ. (4.7)

(3) Update the solution by 𝑢𝑘+1
ℎ = 𝑢𝑘

ℎ + 𝛿𝑢𝑘
ℎ. Finally, either the algorithm is aborted if

convergence is reached, or steps (2)-(3) are repeated. The criterion for convergence is
given in terms of the specified tolerance TOL > 0, i.e., the method has converged if the
following criterion is satisfied

‖ℱ (𝑢𝑘+1
ℎ )(𝑣)‖ < TOL. (4.8)

Newton’s method can also be applied to a system of nonlinear PDEs, at the cost of the
Jacobian becoming increasingly complex. When dealing with a nonlinear PDE, New-
ton’s method is still often the first choice due to its quadratic convergence properties.
Also, because modern PDE solving software usually has some built-in differentiation
routine, calculating the Jacobian of the system by hand is rarely necessary (which can
also be quite tedious). If, for some reason one of the above bullet points in the previous
section are not fulfilled such that Newton’s method does not converge, a more robust lin-
early convergent method can be chosen instead. For practitioners, usually some balance
between robustness and efficiency is sough when choosing which numerical method to
apply. If the emphasis is on efficiency, then Newton’s method cannot be beat (assuming
the method does in fact converge). If robustness is the most important factor, however,
then Newton’s method will rarely be a good choice. It is worth mentioning also that
several modifications to Newton’s method have been developed in order to increase its
robustness, see e.g [39] for more details.

4.2 The 𝐿-scheme / Fixed Stress Splitting scheme
The 𝐿-scheme is an iterative scheme which generalizes the Fixed Stress Split and
Undrained Split algorithms. These algorithms originate from the field of poroelastic-
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ity, where they were originally designed for solving Biot’s equations. In general, it-
erative splitting procedures for linear poroelasticity have been studied extensively (see
e.g., [1, 15, 30, 50, 51, 55, 91]), and amongst them, the Fixed Stress Split and Undrained
Split algorithms stand out as particularly robust choices. Both these algorithms involve
decoupling the Biot system into two subproblems; mechanics and flow. These subprob-
lems are then solved sequentially with mutually updated solution information. Specifi-
cally, the former method involves keeping a constant volumetric mean total stress during
solution of flow problem, while the latter involves keeping constant fluid mass during
the elastic structure deformation. The reason for the popularity of these two algorithms
is the unconditional stability property, which was first shown in [51]. It is also worth
mentioning that these algorithms are significantly easier to analyze than, say, a Newton
method, which may involve complicated derivatives. In [67, 69] the convergence rates
of these two algorithms were derived.

In the context of coupled problems, the 𝐿-scheme involves adding artificial stabiliza-
tion terms to one or more of the subproblems with one or more stabilization parameters
which are free to be chosen. Thus, in contrast to the two previously mentioned algo-
rithms, the quantities held constant during solving of the subproblems need not have
any physical interpretation. Furthermore, the 𝐿-scheme also has the property that it is
easily analyzed. For these reasons, the 𝐿-scheme allows for further optimization than
does the Undrained Split / Fixed Stress Split algorithms. However, good choices for the
stabilization parameters is crucial for the 𝐿-scheme to perform efficiently and robustly.
Therefore, some analysis is usually necessary in order to get an estimate for these. An-
other advantage of the 𝐿-scheme is that it can be used both as a stabilization technique,
and as a linearization of nonlinear problems. In [63, 81] the 𝐿-scheme was used to solve
Richard’s equation. In [14, 15] it was used to solve both linear and nonlinear coupled
flow and geomechanics, and in [52] variations of the 𝐿-scheme was used to solve non-
linear thermo-poroelasticity.

4.2.1 The 𝐿-scheme in practice

As a first application of the 𝐿-scheme, we employ the it on the discrete variational prob-
lem from the previous section (4.5): Let 𝑢0

ℎ ∈ 𝑉ℎ be some initial guess. Then, for the
iteration steps 𝑘 = 1, 2, 3, ..., we have given 𝑢𝑘−1

ℎ , and seek 𝑢𝑘
ℎ such that

𝐿(𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ , 𝑣) + (𝐴(𝑢𝑘−1
ℎ )∇𝑢𝑘

ℎ, ∇𝑣) = (𝑓 , 𝑣), ∀𝑣 ∈ 𝑉ℎ, (4.9)

where 𝐿 > 0 is some parameter which should be chosen with care. The first term on
the left hand side is an artificial stabilization term, and tends to zero as the iterates
approaches the solution. Before convergence is achieved, however, this term acts to sta-
bilize the problem and may improve the convergence rate (depending on the choice of
𝐿).

To illustrate the 𝐿-scheme further, we employ it on a nonlinear coupled problem



36 Iterative numerical methods

(taken from [8]), which reads as follows:
d𝑋(𝑡)

d𝑡 − 𝐴𝑋(𝑡) − 𝐵𝑢(1, 𝑡) = 0, 𝑡 > 0, (4.10a)

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡 − 𝛾 𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2 = 0, 𝑥 ∈ (0, 1], 𝑡 > 0, (4.10b)

𝑢(0, 𝑡) = 𝑋(𝑡), 𝑡 > 0, (4.10c)
𝜕𝑢(1, 𝑡)

𝜕𝑥 = 0, 𝑡 > 0, (4.10d)

with initial data 𝑢(𝑥, 0) = 𝑢0(𝑥) and 𝑋(0) = 𝑋0. The coefficients 𝐴, 𝐵, 𝛾 are all assumed
to be real positive constants. Before giving the discrete formulation of this problem,
we define the following solution space 𝑉 ∶= {𝑣 ∈ 𝐻1(0, 1) ∶ 𝑣|𝑥=0 = 0}, and let

̃𝑢(𝑥, 𝑡) ∶= 𝑢(𝑥, 𝑡) − 𝑢𝐷(𝑥, 𝑡), where 𝑢𝐷(𝑥, 𝑡) ∶= 𝑋(𝑡) (i.e., 𝑢𝐷 is defined to be constant in
space). The variational formulation of (4.10b) is then given by: Find 𝑢(𝑡) = ̃𝑢(𝑡) + 𝑢𝐷(𝑡)
such that ̃𝑢(𝑡) ∈ 𝑉 satisfying for all 𝑡 > 0

(𝜕𝑡 ̃𝑢(𝑡), 𝑣) + 𝛾(𝜕𝑥 ̃𝑢(𝑡), 𝑣) = −(𝜕𝑡𝑢𝐷(𝑡), 𝑣), ∀𝑣 ∈ 𝑉 . (4.11)

Here, the Dirichlet boundary condition (4.10c) depends on 𝑋(𝑡), which is given by solv-
ing the ODE (4.10a), which again depends on 𝑢(1, 𝑡). To solve this system numerically,
we will employ a variant of the 𝐿-scheme, which involves adding artificial stabiliza-
tion terms (with stabilization parameters 𝐿𝑢, 𝐿𝑋 > 0) to both the PDE (4.10b) and ODE
(4.10a), in addition to a linearization of the nonlinear coupling between these equations.

Before presenting the iterative scheme, we discretize the above coupled problem in
space and time, in particular we let 𝑉ℎ ⊂ 𝑉 be an appropriate finite dimensional space
for the spatial discretization of the PDE (4.10b), where ℎ is the mesh size of a uniform
partition of [0, 1], and we employ a backward Euler method in time for both the PDE
(4.10b) and ODE (4.10a) where 𝜏 > 0 is the size of the time increment. With these
definitions, the iterative scheme reads as follows: At time step 𝑛 ≥ 1, let 𝑢𝑛,0 and 𝑋𝑛,0 be
initial guesses. At the iteration 𝑘 ≥ 1, let ̃𝑢𝑛,𝑘−1

ℎ and 𝑋𝑛,𝑘−1 be given, and find ̃𝑢𝑛,𝑘
ℎ such

that

𝐿𝑢( ̃𝑢𝑛,𝑘
ℎ − ̃𝑢𝑛,𝑘−1

ℎ , 𝑣) + ( ̃𝑢𝑛,𝑘
ℎ , 𝑣) + 𝜏𝛾(𝜕𝑥 ̃𝑢𝑛,𝑘

ℎ , 𝜕𝑥𝑣)
= (𝑢𝑛−1

ℎ , 𝑣) − (𝑢𝑛,𝑘−1
𝐷 , 𝑣) + (𝑢𝑛−1

𝐷 , 𝑣), ∀𝑣 ∈ 𝑉ℎ. (4.12)

Then, given ̃𝑢𝑘, find 𝑋𝑘 such that

𝐿𝑋(𝑋𝑛,𝑘 − 𝑋𝑛,𝑘−1) + 𝑋𝑛,𝑘 − 𝜏𝐴𝑋𝑛,𝑘 − 𝜏𝐵𝑋𝑛,𝑘 = 𝑋𝑛−1 + 𝜏𝐵 ̃𝑢𝑛,𝑘
ℎ (𝑥 = 1). (4.13)

The above procedure is then repeated until convergence, and then either the time step is
incremented or the computation is terminated. If we let aTOL, rTOL > 0 be the chosen
absolute and relative tolerances, respectively, then the method has converged (for the
current time step) if the following criterion is satisfied

‖ ̃𝑢𝑛,𝑘
ℎ − ̃𝑢𝑛,𝑘−1

ℎ ‖ ≤ aTOL + rTOL‖ ̃𝑢𝑛,𝑘
ℎ ‖, (4.14)

and |𝑋𝑛,𝑘 − 𝑋𝑛,𝑘−1| ≤ aTOL + rTOL|𝑋𝑛,𝑘|. (4.15)
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4.2.2 Convergence rates
A convergence proof for the algorithm described above is readily obtained. In particular,
if ̃𝑢𝑛 and 𝑋𝑛 are the exact solutions to (4.10a)-(4.10d) at time step 𝑛, then we will show
a contraction of successive differences, defined by 𝑒𝑘

̃𝑢 ∶= ̃𝑢𝑛,𝑘
ℎ − ̃𝑢𝑛 and 𝑒𝑘

𝑋 ∶= 𝑋𝑛,𝑘 − 𝑋𝑛,
which will imply convergence of the scheme by the Banach Fixed Point Theorem (see
e.g., [32]). This analysis will also reveal the convergence rate of the scheme. We state it
as the following theorem:

Theorem 4.2.1 (Convergence). If 𝐿𝑢, 𝐿𝑋 > 0 and if the time step 𝜏 satisfies

0 < 𝜏 < 3
4 (

𝐴 + 𝐵𝐶 + 𝐵2𝑐tr
2𝛾 )

−1

, (4.16)

then the following contraction estimate can be obtained from the scheme (4.12)-(4.13)

(
𝐿𝑢
2 + 𝜏 𝛾

2𝑐𝑃 ) ‖𝑒𝑘
̃𝑢ℎ
‖2 +

(
𝐿𝑋
2 + 1 − 𝜏

(
𝐴 + 𝐵 + 𝐵2𝑐tr

2𝛾 ))
|𝑒𝑘

𝑋|2

≤ 𝐿𝑢
2 ‖𝑒𝑘−1

̃𝑢ℎ
‖2 + (

𝐿𝑋
2 + 1

4) |𝑒𝑘−1
𝑋 |2, (4.17)

where 𝑐tr > 0 and 𝑐𝑃 > 0 are domain specific constants coming from the trace and
Poincaré inequalities, respectively.

Proof. We begin by subtraction equations (4.12)-(4.13) solved by the exact solutions
( ̃𝑢𝑛, 𝑋𝑛) from the same equations solved by the iterate solutions. Defining the following
difference functions 𝑒𝑘

̃𝑢 ∶= ̃𝑢𝑛,𝑘
ℎ − ̃𝑢𝑛, 𝑒𝑘

𝐷 ∶= 𝑢𝑛,𝑘
𝐷 − 𝑢𝑛

𝐷, and 𝑒𝑘
𝑋 ∶= 𝑋𝑛,𝑘 − 𝑋𝑛, we obtain

for all 𝑛 ≥ 1 the corresponding set of difference equations as

𝐿𝑢(𝑒𝑘
̃𝑢 − 𝑒𝑘−1

̃𝑢 , 𝑣) + (𝑒𝑘
̃𝑢 , 𝑣) + 𝜏𝛾(𝜕𝑥𝑒𝑘

̃𝑢 , 𝜕𝑥𝑣) = (𝑒𝑘−1
𝐷 , 𝑣), ∀𝑣 ∈ 𝑉 , (4.18a)

𝐿𝑋(𝑒𝑘
𝑋 − 𝑒𝑘−1

𝑋 ) + 𝑒𝑘
𝑋 − 𝜏(𝐴 + 𝐵)𝑒𝑘

𝑋 = 𝜏𝐵𝑒𝑘
̃𝑢 (𝑥 = 1). (4.18b)

Taking 𝑣 = 𝑒𝑘
̃𝑢 in equation (4.18a), and multiplying equation (4.18b) by 𝑒𝑘

𝑋 , and adding
together the resulting equations yields the following inequality

(
𝐿𝑢
2 + 1) ‖𝑒𝑘

̃𝑢‖2 + 𝜏𝛾‖𝜕𝑥𝑒𝑘
̃𝑢‖2 + (

𝐿𝑋
2 + 1 − 𝜏(𝐴 + 𝐵)) |𝑒𝑘

𝑋|2

≤ 𝐿𝑢
2 ‖𝑒𝑘−1

̃𝑢 ‖2 + 𝐿𝑋
2 |𝑒𝑘−1

𝑋 |2 + ‖𝑒𝑘−1
𝐷 ‖‖𝑒𝑘

̃𝑢‖ + 𝜏𝐵|𝑒𝑘
𝑋||𝑒𝑘

̃𝑢 (𝑥 = 1)|, (4.19)

where we also used the Cauchy-Schwarz inequality. Since by the trace-inequality we
have

|𝑒𝑘
̃𝑢 (𝑥 = 1)|2 ≤ 𝑐tr‖𝜕𝑥𝑒𝑘

̃𝑢‖2, (4.20)

for some generic (domain-specific) constant 𝑐tr > 0, and since ‖𝑒𝑘−1
𝐷 ‖ = |𝑒𝑘−1

𝑋 | (due to
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the spatial domain being the unit interval), we can write (4.19) as

(
𝐿𝑢
2 + 1 − 𝛿1

2 ) ‖𝑒𝑘
̃𝑢‖2 + (𝜏𝛾 − 1

2𝛿2
𝜏𝐵𝑐tr) ‖𝜕𝑥𝑒𝑘

̃𝑢‖2

+ (
𝐿𝑋
2 + 1 − 𝜏 (𝐴 + 𝐵 + 𝐵 𝛿2

2 )) |𝑒𝑘
𝑋|2

≤ 𝐿𝑢
2 ‖𝑒𝑘−1

̃𝑢 ‖2 + (
𝐿𝑋
2 + 1

2𝛿1 ) |𝑒𝑘−1
𝑋 |2, (4.21)

where the constants 𝛿1, 𝛿2 > 0 are coming from application of the Young inequality.
Choosing 𝛿1 = 2 and 𝛿2 = 𝐵𝑐tr/𝛾 yields

𝐿𝑢
2 ‖𝑒𝑘

̃𝑢‖2 + 𝜏𝛾
2 ‖𝜕𝑥𝑒𝑘

̃𝑢‖2 +
(

𝐿𝑋
2 + 1 − 𝜏

(
𝐴 + 𝐵 + 𝐵2𝑐tr

2𝛾 ))
|𝑒𝑘

𝑋|2

≤ 𝐿𝑢
2 ‖𝑒𝑘−1

̃𝑢 ‖2 + (
𝐿𝑋
2 + 1

4) |𝑒𝑘−1
𝑋 |2. (4.22)

Finally, by employing the Poincaré inequality on the second term on the left hand side,
i.e.

‖𝑒𝑘
̃𝑢‖2 ≤ 𝑐𝑃 ‖𝜕𝑥𝑒𝑘

̃𝑢‖2, (4.23)

for some generic (domain-specific) constant 𝑐𝑃 > 0, we obtain

(
𝐿𝑢
2 + 𝜏 𝛾

2𝑐𝑃 ) ‖𝑒𝑘
̃𝑢‖2 +

(
𝐿𝑋
2 + 1 − 𝜏

(
𝐴 + 𝐵 + 𝐵2𝑐tr

2𝛾 ))
|𝑒𝑘

𝑋|2

≤ 𝐿𝑢
2 ‖𝑒𝑘−1

̃𝑢 ‖2 + (
𝐿𝑋
2 + 1

4) |𝑒𝑘−1
𝑋 |2. (4.24)

Thus, if the time step satisfies the constraint (4.16), the estimate (4.24) is a contraction,
and convergence of the sequences { ̃𝑢𝑛,𝑘

ℎ }𝑘 and {𝑋𝑛,𝑘}𝑘 for each 𝑛 ≥ 1 follows.

It is worth noting that convergence of the 𝐿-scheme in this case is only conditional,
i.e., if the time increment 𝜏 is too big, the method will not converge. This is a typical
situation for nonlinear coupled problems.



Chapter 5

Introduction to the papers

This chapter provides an introduction to the included papers, all of which are either
published or submitted for publication in scientific journals.

5.1 Paper A

Title: Upscaling of the coupling of hydromechanical and thermal processes in a
quasi-static poroelastic medium

Authors: Brun, Mats Kirkesæther and Berre, Inga and Nordbotten, Jan Martin and
Radu, Florin Adrian

Journal: Transport in Porous Media 124, 1 (2018).

Pages: 137–158

Publisher: Springer

This paper concerns the upscaling of a thermal fluid-structure interaction problem in
the context of porous media. The resulting system of equations on the macro-scale (i.e.,
the scale at which the fluid saturated elastic matrix can be replaced by a homogenized
‘fictitious’ material) extends the well-known linear poroelastic model known as Biot’s
quasi-static consolidation model to the non-isothermal case. This derivation provides a
precise understanding of the coupling terms at the macro-scale, and forms a justification
for previous heuristically derived models which are present in the literature [36, 45, 89].
In particular, we undertake a formal derivation of a poro-thermo-elastic system within
the framework of quasi-static deformation. This work is based upon the well-known
derivation of the quasi-static poroelastic equations (i.e., the previously mentioned Biot
model) by homogenization of the fluid-structure interaction at the pore-scale [23, 34,
86]. However, compared to these works, we now include energy conservation at the
pore-scale, which is coupled to the fluid-structure model by using linear thermoelasticity
for the solid structure, coupled with thermal flow in the fluid saturated void space. The
resulting upscaled model is similar to the Biot model, but with an added conservation of
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energy equation, fully coupled to the momentum and mass conservation equations. In
particular, we obtain a system of equations on the macro-scale accounting for the effects
of elastic mechanical deformation, heat transfer, and fluid flow within a fully saturated
porous material. Moreover, two different scaling regimes of the pore-scale system are
considered: One where the Péclet number is small (resulting in heat transfer dominated
by thermal diffusion), and another where it is unity (resulting in heat transfer both by
thermal diffusion and thermal convection). The upscaled models corresponding to both
choices of scaling are presented.

The most important limitation of the formal approach taken herein is the assump-
tion of a perfectly periodic geometry within the porous medium. This is a common as-
sumption in applications of homogenization (especially in the context of porous media),
although this is rarely satisfied in practice. However, it has been shown for similar prob-
lems that the periodicity assumption can be relaxed, and we expect that these results are
possible to extend to the present setting as well. As such, we expect the structure of the
equations derived in this paper to be valid, in particular for non-periodic natural porous
media, at least when there is some uniformity on the sizes and shapes of the solid grains
making up the porous structure. Furthermore, the combined Lagrangian-Eulerian sys-
tem employed at the pore-scale is transformed into a purely Lagrangian formulation.
Thus, due to the use of linear thermoelasticity as the governing equations for the solid at
the pore-scale, it is only the elastic mechanical strain which is assumed to be small, and
not the displacement itself. Alternatively, if an Eulerian framework was used, it would
be necessary to assume that the displacement of the solid structure is small relative to
the pore-scale, which would then preclude meaningful macroscopic deformations.

In this work we have chosen to a large extent to linearize the governing equations al-
ready at the pore-scale. This is in accordance with the pore-scale model leading to the
(isothermal) Biot system, and in part explains the linear structure of the majority of terms
on the macro-scale. Nonlinear constitutive relationships could be accommodated at the
cost of technical and notational complexity, varying from relatively straight-forward
(i.e., nonlinear constitutive laws for fluid density) to complex (nonlinear elastic or plas-
tic constitutive laws for material deformation). However, in the case of a Péclet number
of order one, there is introduced a nonlinear coupling in the upscaled model, which
accounts for the non-negligible thermal convection. Its presence makes the upscaled en-
ergy conservation equation a nonlinear one, and therefore complicates the model com-
pared to the isothermal situation (i.e., to Biot’s model). Thus, the multitude of results
regarding the isothermal system (e.g. well-posedness, numerical schemes, precondition-
ers, etc.) can not be directly transferred to the thermal situation as long as there appears
thermal convection. On the other hand, if thermal convection is neglected, the upscaled
system becomes fully linear, and very similar to the isothermal system. In fact, by defin-
ing a new variable 𝜉 ∶= 𝑝−𝑇 , where 𝑝 and 𝑇 are the pressure and temperature variables,
respectively, the three-field thermo-poroelastic system is reduced to a two-field system,
which is formally equivalent to the isothermal system.

The derived effective coefficients of the upscaled system can be explicitly calculated
in terms of the microstructure of the porous material, by solving so-called auxiliary
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problems. It is here that the periodicity assumption becomes most relevant; in order to
solve these auxiliary problems, one must specify a reference geometry, which then in
part determines the calculated value of the effective coefficients. Thus, the periodicity
assumption results in having constant effective coefficients, and not spatially dependent
ones. The derived effective coefficients herein are not computed, but we do establish
the symmetry and positive definiteness properties for the ones which are new in the
literature. We mention also that while finalizing this work, we were made aware that a
similar derivation was undertaken simultaneously by other authors [93].

5.2 Paper B

Title: Well-posedness of the fully coupled quasi-static thermo-poroelastic equa-
tions with nonlinear convective transport

Authors: Brun, Mats Kirkesæther and Ahmed, Elyes and Nordbotten, Jan Martin and
Radu, Florin Adrian

Journal: Journal of Mathematical Analysis and Applications 471, 1–2 (2019).

Pages: 239–266

Publisher: Elsevier

This paper concerns the mathematical analysis of thermo-poroelasticy within the con-
text of quasi-static deformation. This model problem is nonlinear and includes thermal
effects compared to the classical quasi-static poroelastic model, i.e. to Biot’s consoli-
dation model. Biot’s model constitutes (in primal form) a two-field elliptic-parabolic
system, of which there is an extensive literature, both in terms of mathematical anal-
ysis and numerical approximation. To mention a few, the well-posedness based on the
canonical two-field formulation was first carried out in [88], while three and four-field
formulations have also been analyzed (introducing Darcy flux and/or total poroelastic
stress as independent variables), and can be found in several studies, e.g. [2, 80, 97].
Robust discretizations and preconditioners can be found in e.g. [6, 61]. A key feature
of Biot’s model, one which greatly facilitates its analysis, is the symmetric coupling
between the two equations.

Compared to Biot’s model, we now have a three-field coupled system, consisting of
a momentum balance equation, a mass balance equation, and an energy balance equa-
tion, fully coupled and nonlinear due to a convective transport term in the energy bal-
ance equation. In this model, there also appears symmetric couplings between the heat
and flow, and between the heat and mechanics, similar to the couplings found in the
isothermal system. However, there also appears the non-symmetric coupling between
the heat and flow, which is the previously mentioned thermal convective term. The aim
of this article is to investigate, in the framework of mixed formulations, the existence
and uniqueness of a weak solution to this model problem. The primary variables in these
formulations are the fluid pressure, temperature and elastic displacement as well as the
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Darcy flux, heat flux and total (thermo-poroelastic) stress. The well-posedness of a lin-
earized formulation is addressed first, using the theory of DAEs (Differential Algebraic
Equations), a Galerkin method, and suitable a priori estimates. This is used next to study
the well-posedness of an iterative solution procedure, based on the previous linearized
formulation, in order to approximate the full nonlinear problem. A convergence proof
for this iterative algorithm is then inferred for small time intervals by a contraction of
successive difference functions of the iterates using suitable norms, and by application
of the Banach Fixed Point Theorem. Having obtained local solutions in time for the non-
linear problem, and due to the continuity in time of the convergent (local) solutions, we
can infer a (global) convergence proof of the iterative procedure, thus establishing the
well-posedness of the original nonlinear problem for arbitrary (finite) final time.

The main difficulty we encounter in this analysis is the regularity of the nonlinear
term. In particular, in the fully mixed formulation, the convective term takes the form
w ⋅ Θ−1r, where w is the Darcy flux, r is the heat flux, and Θ is the thermal conductivity
coefficient. A priori, the regularity of the fluxes satisfy ‖w(𝑡)‖𝐻(div) + ‖Θ−1r(𝑡)‖𝐻(div) ≤
𝐶 , where 𝐶 > 0 is a generic constant. However, in the variational formulation of the
energy balance equation there appears the 𝐿2-inner product (w ⋅Θ−1r, 𝑆), where 𝑆 ∈ 𝐿2

is a test function for the temperature. Thus, for this inner product to be well-defined, there
is needed either w(𝑡) ∈ 𝐿∞ or Θ−1r(𝑡) ∈ 𝐿∞, or w(𝑡), Θ−1r(𝑡) ∈ 𝐿4. In order to deal with
this issue, we consider two approaches: First, we consider the required 𝐿∞-regularity
for either of the fluxes to be given a priori. Second, consider sufficiently regular initial
and source data is given, such that the solution to the linearized formulation admits 𝐿4-
regularity for both of the fluxes, thus allowing the same regularity to be inferred for the
converged solution. We chose to include the latter approach only as an appendix, since
with the former approach, only ‘standard’ energy estimates are necessary.

Although the literature on (isothermal) poroelasticity is extensive, there is not much
literature on the analysis of thermo-poroelastic models; in [93] a corresponding en-
ergy functional for the thermo-poroelastic model was derived. This functional was then
shown to be monotonically decreasing in time for a small enough characteristic tem-
perature difference. For this reason, the analysis undertaken in Paper B addresses an
important gap in the literature on thermo-poroelasticity.

5.3 Paper C

Title: Monolithic and splitting based solution schemes for fully coupled quasi-
static thermo-poroelasticity with nonlinear convective transport

Authors: Brun, Mats Kirkesæther and Ahmed, Elyes and Berre, Inga and Nordbotten,
Jan Martin and Radu, Florin Adrian

Journal: In review (2019).
Preprint: https://arxiv.org/abs/1902.05783

This paper concerns monolithic and splitting-based iterative numerical procedures for
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the coupled nonlinear thermo-poroelasticity model problem as described in [21, 59, 93].
This model problem is formulated as a three-field system of partial differential equations
(PDEs), consisting of an energy balance equation, a mass balance equation and a mo-
mentum balance equation, where the primary variables are temperature, fluid pressure,
and elastic displacement. However, due to the presence of a nonlinear convective trans-
port term in the energy balance equation, it is convenient to have access to both the pres-
sure and temperature gradients. Hence, we introduce these as two additional variables
and extend the original three-field model to a five-field model. For the numerical solution
of this five-field formulation, we compare six approaches that differ by how we treat the
coupling/decoupling between the flow and/from heat and/from the mechanics, suitable
for varying coupling strength between the three physical processes. These approaches
have in common a simultaneous application of the linearization and stabilization treat-
ments warranted by the structure of the problem. More precisely, the derived procedures
transform a nonlinear and fully coupled problem into a set of simpler subproblems to
be solved sequentially in an iterative fashion. We provide convergence proofs for the
derived algorithms, and demonstrate their performance through several numerical ex-
amples. In particular, we pay special attention to investigating different strengths of the
coupling between the flow, mechanics and heat.

The proposed six algorithms are all based on recent developments on iterative split-
ting schemes coming from linear poroelasticity, extended here to accommodate for non-
linear thermo-poroelasticity. These algorithms use stabilization and linearization tech-
niques similar to [15, 63], which is known in the literature as the ‘𝐿-scheme’. The 𝐿-
scheme can itself be seen as a generalization of the Undrained and Fixed-Stress Split
algorithms [1, 15, 30, 50, 51, 55, 67, 69, 91], and works both to stabilize iterative split-
ting as well as to linearize nonlinear problems. The thermo-poroelastic problem we
consider can be viewed as a coupling of three physical processes (or subproblems):
Flow, mechanics and heat. Thus, solving this system either monolithically (all three
subproblems simultaneously), partially decoupled (two subproblems simultaneously),
or fully decoupled (each subproblem separately), yields six possible combinations of
coupling/decoupling, which serves as the backdrop for the design of the six algorithms.
All of these involve a linearization of the convective term and added stabilization terms
to both the flow and heat subproblems. In this sense, our use of the 𝐿-scheme is both as
a stabilization for iterative splitting, and as a linearization of nonlinear problems.

For any given situation the coupling strength between the three subproblems may
vary. A-priori, the expectation is that solving together subproblems that are strongly
coupled will yield better efficiency properties than does splitting. On the other hand,
if the coupling between two or more subproblems is weak, a splitting procedure might
be beneficial. For this reason, and due to the fact that splitting the three-way coupled
multi-physics problem into smaller subproblems allows for combining existing codes
that separately can handle any of the three processes involved (or two of them combined),
six different algorithms are presented. In this sense, we provide a complete framework
for splitting-type solution strategies for thermo-poroelasticity. Furthermore, using the
well-posedness of the continuous problem, we obtain lower bounds on the stabilization
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parameters, and prove the convergence of our proposed algorithms under a constraint
on the size of the time step. In practice, however, we find that this bound is not tight; as
long as the fluxes are not becoming unbounded (e.g., due to a singularity), a ‘reasonable’
time step can safely be chosen.

Our algorithms are tested in detail with several numerical examples. In particular, we
find that all six algorithms are performing robustly with respect to both mesh refinement
and different parameter regimes (i.e., strong/weak coupling between the subproblems
and strong/weak nonlinear effects), using the stabilization revealed by our analysis. We
also find that using no stabilization results in the algorithms being more sensitive to the
parameter regimes, i.e. splitting subproblems that are strongly coupled yields high iter-
ation numbers compared to solving these subproblems together. This phenomena is also
observed in the stabilized algorithms, but to a significantly lesser extent. In particular,
our conclusion is that with no stabilization, each of the algorithms is suitable only for
a certain parameter regime (i.e., one that corresponds to the coupling/decoupling struc-
ture present in the algorithm), in contrast to the stabilized algorithms, which can handle
a much wider range of different parameter regimes.

5.4 Paper D

Title: An iterative staggered scheme for phase field brittle fracture propagation
with stabilizing parameters

Authors: Brun, Mats Kirkesæther and Wick, Thomas and Berre, Inga and Nordbot-
ten, Jan Martin and Radu, Florin Adrian

Journal: In review (2019).
Preprint: https://arxiv.org/abs/1903.08717

This paper concerns the analysis and implementation of a novel iterative staggered
scheme for brittle fracture propagation within a quasi-static elastic medium, where the
fracture evolution is tracked by a phase field variable. Herein, the phase field creates a
diffusive transition zone around fracture surfaces with (half-)thickness > 0. The pro-
posed algorithm employs stabilization and linearization techniques known in the litera-
ture as the ‘𝐿-scheme’, which is a generalization of the ‘Fixed Stress Splitting’ algorithm
coming from the field of poroelasticity. The model problem we consider is a two-field
variational inequality system, with the phase field function 𝜑(𝑥, 𝑡), and the elastic dis-
placements of the solid material 𝑢(𝑥, 𝑡), as independent variables. Using a penalization
strategy, this variational inequality system is transformed into a variational equality sys-
tem, which is the formulation we take as the starting point for our algorithmic develop-
ments. The proposed scheme involves a partitioning of this model into two subproblems;
phase field and mechanics, and with added stabilization terms to both subproblems (with
stabilization parameters 𝐿𝜑, 𝐿𝑢 > 0) for improved efficiency and robustness.

Under the natural assumptions that the elastic mechanical energy remains bounded,
and that the model parameter > 0 is sufficiently large (i.e., that the diffusive transi-
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tion zone around crack surfaces must be sufficiently thick), we show that a contraction
of successive difference functions in energy norms can be obtained from the proposed
scheme. This result implies that the algorithm is converging monotonically with a linear
convergence rate. However, in the convergence analysis there appears some unknown
constants which makes the precise convergence rate, as well as the precise lower bound
on , difficult to determine in practice.

We provide several numerical tests where our proposed scheme is tested in detail. In
particular, the proposed scheme is employed on several numerical benchmark problems
within the context of phase field brittle fracture propagation. Moreover, for each numer-
ical example we provide results for different values of stabilization parameters, i.e., for
most cases we let 𝐿𝑢 = 𝐿𝜑 > 0, but for comparison we include also the stabilization
configurations 𝐿𝑢 = 0 with 𝐿𝜑 > 0, and 𝐿𝑢 = 𝐿𝜑 = 0. These tests reveal that stabilizing
both subproblems is necessary for a robust algorithm, which confirms our theoretical re-
sults coming from the convergence analysis. However, further work is needed to find an
optimal configuration of 𝐿𝑢, 𝐿𝜑. Furthermore, for all numerical tests we provide com-
putational justification for the assumption of bounded elastic mechanical energy (i.e. we
provide plots tracking the elastic mechanical energy with respect to iteration numbers).

A slight dependency on the mesh parameter ℎ in the iteration numbers is observed
in the numerical tests, but this is to be expected since we use = 2ℎ, and as our analysis
demonstrates, the convergence rate is dependent on . The variation in iteration numbers
with mesh refinement is in any case sufficiently small enough that we can conclude our
algorithm is robust with respect to mesh refinement. Furthermore, it is well known that
in numerical simulations of brittle fracture propagation using phase fields, there appear
spikes in iteration numbers (typical iteration counts are on the order of 1000 [46, 64,
95, 96]) at the critical loading steps, i.e. when the crack starts to propagate or is further
propagating. We also observe such iteration spikes at the critical loading steps using
the proposed scheme. For this reason, we have also included, for comparison, several
results in which the iteration is truncated before convergence is reached. Due to the
monotonic convergence property of the proposed scheme, this strategy still produces
acceptable results (even when truncating the scheme at iteration numbers as low as 20),
while effectively avoiding the iteration spikes. We therefore conclude, at least for the
particular examples presented here, that a truncation of the proposed 𝐿-scheme may be
employed for greatly improved efficiency with only minor loss of accuracy.
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Chapter 6

Summary and outlook

Within the overarching framework of thermo-mechanical subsurface energy storage,
two primary topics have been discussed in this dissertation: Thermo-poroelasticity and
phase field brittle fracture propagation. While both are important subjects in their own
right, and have a multitude of applications in various engineering fields, they are both
particularly relevant for geothermal applications in the subsurface.

The part of this dissertation devoted to thermo-poroelasticity concerns both the
derivation, analysis, and numerical implementation of a thermo-poroelastic system. In
particular, a thermo-poroelastic system was derived with the purpose of extending the
(isothermal) linear Biot system for quasi-static deformation to the non-isothermal case,
i.e., to couple the Biot system to an energy conservation equation, with an additional
variable representing the temperature distribution of the medium. This derivation was
done using formal upscaling, i.e., the homogenization method of two-scale asymptotic
expansions within the periodic framework. The emphasis here was on the structure of
the upscaled model as a fully coupled and nonlinear system of PDEs. Formulas for the
effective coefficients were derived, but not calculated explicitly. However, for the de-
rived effective coefficients which were new in the literature, i.e., not part of the orig-
inal isothermal Biot-system, their symmetry and positive definiteness properties were
shown. In particular, in the upscaled system, these appeared as the coupling coefficients
between the heat and flow, and between the heat and mechanics. The coupling coeffi-
cient between the flow and mechanics remained unchanged from the isothermal system.

The thermo-poroelastic model problem was then analyzed in the context of mixed
formulations, i.e., the original three-field model (with temperature, fluid pressure and
elastic displacements as variables) was extended to a six-field model (introducing the
heat flux, Darcy flux and total stress as new variables). This was done in order to facilitate
a future mixed finite element discretization of the thermo-poroelastic problem, since it is
well-known that mixed formulations of elliptic and parabolic problems are locally mass
conservative when discretized using mixed finite elements, e.g., the Raviart-Thomas [7,
44] and Arnold-Winther [4, 5, 29] elements. Another reason to consider the fully mixed
formulation for the analysis was to take advantage of the recent developments in the
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literature on fully mixed formulations of the Biot system [2, 60, 97]. This analysis was
done in two steps: First, a linearized system was analyzed using a Galerkin technique
together with weak compactness. Then, this linearized system was used to design an
iterative procedure which was shown to converge to the solution of the original nonlinear
problem.

Finally, six iterative numerical schemes were proposed for the thermo-poroelastic
model problem. These schemes are all based on the linearization technique employed
in the analysis part, and on the iterative scheme known as the 𝐿-scheme/Fixed Stress
Splitting scheme. Thermo-poroelasticity can be viewed as a coupling of three physical
processes; heat, flow and mechanics. This is also reflected in the equations which make
up the system, which are readily divided into three corresponding subproblems. A natu-
ral approach to consider when faced with solving such a problem is therefore to decou-
ple the three subproblems and solve them sequentially, while at the same time updating
coupling terms. Thus, in order to provide a complete framework for this type of solu-
tion strategy in the context of thermo-poroelasticity, the proposed six algorithms were
designed to cover all possibilities of coupling/decoupling of the three subproblems. In
practice, this means either all three subproblems are decoupled and solved sequentially,
or two subproblems are solved together decoupled from the third, or finally a linearized
system is solved monolithically.

The second primary topic of this dissertation is phase field descriptions of brittle
fracture propagation within a quasi-static elastic material. In particular, the numerical
solution algorithms of such models. Based on developments on iterative splitting proce-
dures coming from poroelasticity, a novel iterative splitting scheme for phase field brittle
fracture propagation was proposed. This algorithm also employs stabilization and lin-
earization techniques which are based on the 𝐿-scheme, as well as a decoupling of the
two subproblems involved; phase field and mechanics. The convergence of this algo-
rithm was proved under a natural condition that the diffusive transition zone around
fracture surfaces must be sufficiently thick, and that the elastic mechanical energy re-
mains bounded. Detailed numerical examples confirm these theoretical findings, and
demonstrate the robustness of the proposed algorithm in practice.

A natural extension of this research project is to combine the results on thermo-
poroelasticity with the results on phase field brittle fracture propagation. Specifically,
the phase field description of brittle fracture propagation can be extended from a quasi-
static elastic material to a quasi-static thermo-poroelastic material. Using phase field
descriptions of brittle fracture propagation in connection with poroelasticity is nothing
new [62, 70, 71], but so far there does not exist in the literature a phase field description
of brittle fracture propagation in a thermo-poroelastic medium. In this context, the free
energy functional related to the phase field should be of the form 𝐸(𝜑, 𝑇 , 𝑝, u). This will
lead to a more complicated phase field equation, but the same linearization techniques
used for the quasi-static elastic model will in all likelihood be applicable with some
modifications. Moreover, the six iterative schemes proposed for thermo-poroelasticity
can then be extended to the phase field thermo-poroelastic model, giving further pos-
sibilities of coupling/decoupling of the now four subproblems. A convergence proof of



49

such algorithms might also be achieved by combining the convergence proofs from the
thermo-poroelasticity schemes with the phase field brittle fracture propagation scheme,
since the same linearization and stabilization techniques are employed in both contexts.
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1 Introduction

The theory of consolidation of soils goes back to the work of Terzaghi (1944) and Biot
(1941, 1972, 1977), and since then numerous authors have contributed to the field, extending
the models to different situations and providing more rigorous results for the equations.
Today, this field is better known as ‘poroelasticity’, and is of great importance in a range of
different engineering disciplines, such as reservoir engineering and biomechanics. Notable
contributions are Burridge and Keller (1981), where a formal upscaling leading to the quasi-
static Biot-model was undertaken, and the book Sanchez-Palencia (1980) where a rigorous
derivation can be found. In Clopeau et al. (2001) and Gilbert andMikelić (2000) the rigorous
derivation of a dynamic Biot-model corresponding to different choices of scalings of the
microstructure is undertaken, and in Ferrin and Mikelić (2003) the case of an inviscid fluid
filling the pore space is treated. In Lévy (1979) elastic wave propagation is considered.
Additional cases and results can also be found in the references of these works.

The motivation for the present article is to better understand how thermal stresses in
the solid structure of a porous medium are influenced by the forces exerted on the pore
walls by the fluid. We consider a porous medium on the macroscopic scale such that the
continuum hypothesis is valid, and derive the pointwise continuum model by upscaling the
fluid-structure interaction at the microscopic scale where the complex geometry is resolved.
We shall focus on a natural system, such as the subsurface, where flow velocity, mechanical
strain, and temperature changes are small. This also allows for linearization of the constitutive
laws of thermoelasticity, as well as linearization of the fluid-structure coupling conditions.
Topics such as nonlinear deformation and high flow rates are beyond the scope of this article.
Previously, the homogenization of a similar model problem was undertaken by Lee and
Mei (1997), but with a different scaling, and with the fine-scale model defined in terms
of Eulerian coordinates. This approach leads to relatively strict conditions on the allowable
deformations. It also makes a direct comparison of models difficult. In Bringedal et al. (2016)
a formal upscaling of non-isothermal reactive flow in porous media was undertaken, but the
solid matrix was assumed rigid. In Eden and Muntean (2017) homogenization of a fully
coupled thermoelasticity problem was undertaken, but not in the context of fluid-structure
interaction. In the book Coussy (1995) there is also a section on linear thermo-poroelasticity,
where the macroscale equations are derived using principles from continuum mechanics
and thermodynamics. While finalizing this work, we have been made aware that a similar
derivation has been undertaken simultaneously by the authors van Duijn et al. Their work is
currently under review and exists as a preprint (Van Duijn et al. 2017).

Our microscale model consists of a fluid-structure interaction model, and energy con-
servation for both phases (the solid and fluid), where we scale the fluid-structure equations
corresponding to the biphasic macroscopic behavior of the system (i.e., fluid pressure in
balance with the normal forces coming from the solid matrix, and small viscous forces in the
fluid). A rigorous study of this situation in the isothermal case can be found in Clopeau et al.
(2001). Different scalings are of course possible, and for different values of the reference
quantities, the homogenization process may result in vastly different macroscale models.
A discussion around the characterization of the behavior of porous media according to the
values of such reference quantities can be found in Auriault (1991). Regarding the energy
conservation, we consider two different scaling regimes; one corresponding to a Péclet num-
ber of order one, giving a (nonlinear) convective term in the upscaled energy conservation
equation, and one corresponding to a small Péclet number, resulting in no convective term,
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giving a fully linear upscaled system. Depending on the flow rate and the thermal conductive
properties of the fluid, both may be relevant.

The upscaling procedure is done via the formal two-scale asymptotic expansionmethod of
homogenization.This is awell-known technique for qualitatively assessing the structure of the
upscaled equations. For a detailed explanation of this method we refer to the books Hornung
(2012) and Cioranescu and Donato (2000). For an accurate physical model, the values of the
homogenized coefficients should be confirmed by experiments, as the asymptotic expansion
method only provides formulas for these in the case of simple microscale geometries. Our
justification for the upscaled model comes from the similarity with the isothermal poroelastic
equations, and the analogy to the thermoelasticity equations in mechanics.

2 The Pore-Scale Model

2.1 Notation

A short remark on the notation used in this article is in order. We denote by : the scalar
product of two second-order tensors, i.e., A : B = ∑3

i, j=1 Ai j Bi j , and by ⊗ the vector outer
product, which given two vectors produce a second-order tensor, i.e., (u⊗v)i j = uiv j . Note
also that we shall reserve the use of bold fonts for tensors of second order or more.

2.2 Presentation of the Equations

In this and the next section we present the governing equations to be used throughout the
rest of this article. This will include a brief discussion of the constitutive relations of linear
thermoelasticity for an anisotropic solid, relevant for the present work. For a detailed deriva-
tion of the equations of linear thermoelasticity, we refer to the book Silhavy (2013). We also
mention Pabst (2005) where a more compact presentation is given.

Our physical domain is Ω = (0, L)3, which consists of a solid skeleton, Ωs , and a fluid
filled void space,Ω f , where the internal boundary between the solid and void parts is denoted
by Γ , i.e., in the reference configuration we have: Ω = Ωs ∪ Ω f ∪ Γ where Ωs ∩ Ω f = ∅,
and Γ = ∂Ωs ∩ ∂Ω f . We let J = (0, Tend] be the time interval, where Tend > 0 is the final
time. We denote by x = (x1, x2, x3) the coordinates of the reference configuration, and by t
the time coordinate.

We let w be the displacement vector of the solid, defined on the reference configuration,
and assume it can be decomposed as w(x, t) = ŵ(x, t) + w0(t), where ŵ corresponds
to the local deformation, and w0 corresponds to a rigid body motion. We let the v be the
flow velocity of the fluid, defined on the current configuration, which we then can write as

v(x + ŵ, t) = v̂(x + ŵ, t) + dw0

dt
(t), using the reference coordinates.

Given a body force b, the linear momentum balance for an elastic solid is given by

ρs
∂2w

∂t2
− ∇ · σ = b in Ωs × J, (1)

where ρs is the solid density. In the non-isothermal case, the constitutive equation for the
stress is

σ = σ (F, Ts), (2)

where Ts is the temperature distribution of the solid, and F is the deformation gradient.
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Denoting by cs the specific heat capacity of the solid, the conservation of energy is given
by

ρscs
∂Ts
∂t

= σ : e(∂tw) − ∇ · hs, (3)

where hs is the heat flux within the solid.
In the pore space, the flow is governed by the Navier–Stokes equations

ρ f

(
∂v

∂t
+ v · ∇v

)

− ∇ p + μΔv = b, in Ω f (t) × J, (4)

with the mass conservation

∇ · v = 0, in Ω f (t) × J, (5)

where ρ f is the fluid density, p is the fluid pressure, and μ is the fluid viscosity.
Since there is no heat generation from dissipative effects in the fluid, we use a simple

convection-diffusion equation for the energy conservation

ρ f c f

(
∂T f

∂t
+ v · ∇T f

)

− ∇ · h f = 0, in Ω f (t) × J, (6)

where T f is the temperature distribution of the fluid, c f is the specific heat capacity of the
fluid, and h f is the heat flux within the fluid.

We now turn to the fluid-structure coupling conditions at the internal interface and denote
by ν the outward unit normal field of Ω f (i.e., pointing into the solid).

By Newton’s third law we must have a balance of normal forces coming from both sides

(pI + 2μ e(v)) |x+ŵν = σ ν, on Γ × J, (7)

where I denotes the 3 × 3 identity tensor.
The no-flow condition at the internal interface now takes the form

v|x+ŵ = ∂tw, on Γ × J. (8)

Finally, continuity of heat flux and continuity of temperature at the internal interface gives
(due to our assumption of the two phases being in local thermodynamic equilibrium)

h f |x+ŵ · ν = hs · ν, on Γ × J, (9)

and
T f |x+ŵ = Ts, on Γ × J. (10)

2.3 Constitutive Equations

We let (F0, θ0) denote the reference values of the deformation gradient and the temperature of
the medium (considered here to be uniform, i.e., constant), and assume that for all t ∈ J the
deviations from this reference state are small. Within this framework, a physical linearization
of the constitutive equations is justified (see Pabst (2005) for more details). The deformation
gradientF, however, is still a nonlinearmeasure of deformation; hence, we assume in addition
that the displacement gradients, or more precisely the local deformations, ŵ, are small such
that F can be considered approximately identity. This amounts to a geometric linearization
of the kinematic measures, and consequently, the first Piola–Kirchoff stress and the Cauchy
stress tensors coincide. The strains in the solid are therefore given by the symmetric gradient
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of the displacements, i.e., e(w) = 1
2 (∇w + (∇w)T ). The constitutive equation for the stress,

Eq. (2) then takes the form

σ (w, Ts) = Ce(w) − M(Ts − θ0), (11)

which is a generalized Hooke’s law, extended to include thermal effects. The stiffness tensor
of the material (or more precisely, the referential tensor of isothermal elasticities) is given
by C = (Ci jkl)

3
i, j,k,l=1, which satisfies Ci jkl = Ckli j = C jikl = Ci jlk , and the thermal

stress tensor (or the referential coefficient of thermal stress) is M = (Mi j )
3
i, j=1, satisfying

Mi j = Mji . In order to have symmetric positive definite coefficients in the upscaled problem,
the same must be true for C and M, i.e.,

Ce : e > 0,∀ e ∈ R
3×3 \ {0}, and Mx · x > 0,∀ x ∈ R

3 \ {0}. (12)

Further, we assume the heat fluxes within the solid and the fluid obey Fourier’s law of
heat conduction, i.e.,

hs = −Ks ∇Ts and h f = −K f ∇T f , (13)

where Ks = (Ks
i j )

3
i, j=1 and K f = (K f

i j )
3
i, j=1 are the thermal conductivity tensors of the

solid and fluid, respectively, which are assumed to be both symmetric and positive definite,
i.e., Ks, f

i j = Ks, f
j i , and Ks, f x · x > 0,∀ x ∈ R

3 \ {0}.
Within this completely linearized framework (physically and geometrically), the densities,

ρs and ρ f , are constants taking the values of the reference densities. We assume in addition
that the fluid viscosity, μ, is a constant.

We note that in a consistent linear theory, the material coefficients cannot depend on the
current temperature, but only on the (uniform) reference temperature, θ0.

2.4 The Domain

Before undertaking the scaling analysis,weprovide amore detailed description of the domain,
specifically that it ismade up of a periodic repetition of a single pore, such that the geometry of
the whole solid skeleton is determined by the geometry inside a singe microscopic cell. This
is a valid assumption since we are modeling a fine grained porous media with microstructure
on a scale much smaller than the continuum scale of interest. Thus, although the material
is heterogenous on the microscale, it appears locally homogenous on the macroscale. We
follow Allaire (1989) in this description.

Let l be a typical pore size, and let L be the size of the macroscale domain, and define as
usual ε = l/L . We let Ωε = 1

L Ω be the dimensionless domain, which now is Ωε = (0, 1)3,
such that Ωε

s and Ωε
f are the corresponding dimensionless solid and void parts, respectively,

and Γ ε is the corresponding dimensionless internal interface. We continue with the notation
J for the time interval; keeping in mind time is now also dimensionless.

Let Y = (0, 1)3 be the rescaled unit cube in R
3, consisting of a solid part, Ys ⊂ Ȳ , which

is a closed subset of strictly positive measure, and a void space, Y f = Y \ Ys , which is an
open and connected subset of strictly positive measure. We let now Γ = ∂Ys ∩ ∂Y f denote
the internal interface of the unit pore cell, and assume the configuration is such that Γ is a
smooth surface.Wemake a periodic repetition of Ys overR

3, and set Y ε
s,k = ε(Ys +k), where

k ∈ Z
3. Let K = {k ∈ Z

3 : Y ε
s,k ⊂ Ω̄ε}, such that Ω̄ε

s = ⋃
k∈K Y ε

s,k is the solid skeleton,
and Ωε

f = Ωε \ Ωε
s is the fluid filled void space. The fluid/solid internal interface can now

be written Γ ε = ∂Ωε
s \ ∂Ωε. By construction, both Ωε

s and Ωε
f are now connected sets of

strictly positive measure, and Γ ε is a smooth surface.
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Fig. 1 Example of geometry inside unit cell. (Picture from Mikelić and Wheeler 2012)

The epsilon-superscript on Ωε implies the implicit dependence of the domain on both
length scales, l and L , but later when we impose the homogenization ansatz, we separate
these two scales, and let the size of the domain become arbitrarily large (that is, we let ε → 0).
Then, behind each infinitesimal point x (seen from the macro scale) there is a pore cell with
its own geometry which can only be seen by the fast variable y. When this scale separation
is done, we shall denote the macro scale domain simply by Ω , which is no longer possible
to separate into solid and void parts because the porous structure is now seen as a single
(fictitious) uniform material. An example of a pore cell geometry which satisfies the above
assumptions is shown in Fig. 1.

2.5 Scaling Analysis

In this section, we introduce dimensionless variables and scale the system according to the
quasi-static biphasic macroscale behavior (see Auriault (1991) for more details). In short,
this means the fluid pressure should be of the same order as the normal stress coming from
the elastic matrix and that the viscous forces are small.

Themodeling of fluid and elastic solid structure interaction is in general challenging, since
for an elastic solid Lagrangian coordinates are the preferred reference frame, while for the
fluid it is the Eulerian one. Thus, when coupling the two processes at the mutual interface,
one needs to take into account the movement of the interface itself, as seen in Sect. 2.2. For
more details on this type of modeling we refer to Iliev et al. (2008). In the present work we
shall avoid this difficulty by linearizing the fluid-structure coupling conditions, and thereby
transform the fluid problem into Lagrangian coordinates based on the material deformation.

We let l = 10−5 m and L = 10m, which results in ε = l/L = 10−6. With a slight abuse
of notation we write now the dimensional variables with a tilde, and the new dimensionless
quantities in the same way as before
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Table 1 Reference values. Source https://www.engineeringtoolbox.com

Quantity Value Unit

Material stiffness (Young’s modulus) Cref = 4 × 1010 N/m2

Fluid density ρ f = 103 kg/m3

Solid grain density ρs = 2.65 × 103 kg/m3

Fluid viscosity μref = 10−3 Pa·s
Thermal stress coefficient Mref = 4 × 105 N/m2K

Solid grain specific heat cs = 920 J/kgK

Fluid specific heat c f = 4182 J/kgK

Thermal conductivity solid grain Ks
ref = 1.7 W/mK

Thermal conductivity fluid K f
ref = 0.58 W/mK

x̃ = Lx, t̃ = τ t, ˜̂w = lŵ, w̃0 = Wrefw0, ˜̂v = Vrefv,

T̃s = TdiffTs, T̃ f = TdiffT f , p̃ = Pref p, μ̃ = μrefμ,

C̃ = Cref C, M̃ = MrefM, K̃ f = K f
refK f , K̃s = Ks

refKs,

where we choose the time scale, τ = L
Vref

, as the characteristic transport time. As we con-

sider a system in equilibrium with only natural convection, we set τ = 104 s, which is the
time it takes a fluid particle to traverse the distance L . This gives the reference velocity as
Vref = 10−3 m/s. This is a realistic value, as flow velocities coming from natural convec-
tion in a geological permeable layer can be as low as 1m/year Wood and Hewett (1982).
We let the size of the rigid displacements be Wref = 1m, while the local deformation is no
larger than the pore size. We set the characteristic temperature as the maximum difference
between the reference temperature and the current temperature as Tdiff = 10K. Linearizing
the fluid/solid coupling conditions then amounts to discarding terms of ŵ · ∇v and ŵ · ∇T f

and higher order ones (this can be seen by expanding the fluid side about x + ŵ = x).
Thus, since the spatial differential operators are acting with respect to the scale L , we are
introducing errors of the order εVref = 10−9 m/s and εTdiff = 10−5 K, which we deem
negligible.

The table below shows reference values for the coefficients, in the case of water and
sandstone at room temperature (we note that some are only approximate, but good enough
for our purposes, as we are only interested in identifying terms which differ by an order of ε

or more) (Table 1).
The balance of contact forces at the interface, Eq. (7), in dimensionless variables reads
(

−Pref pI + Vrefμref

L
2μ e(v)

)

ν = (CrefεCe(w) − MrefTdiffM Ts)ν, on Γ ε × J. (14)

Due to the biphasic scaling regime, we have Pref ∼ Crefε ∼ MrefTdiff ∼ 105N/m2.
Dividing by this factor, we get Vrefμref

LPref
∼ O(ε2) in front of the viscous term. Thus, we can

simplify the above equation and get the dimensionless form of Eq. (7) as
(
pI + 2με2 e(v)

)
ν = (Ce(w) − M Ts)) ν, on Γ ε × J. (15)
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The momentum equation for the solid (1) in dimensionless form is

ρs

τ 2

(

l
∂2ŵ

∂t2
+ Wref

d2w0

dt2

)

− 1

L
∇ · (CrefεCe(w) − MrefTdiffM Ts) = b, on Γ ε × J.

(16)

Multiplying with L
Pref

, we get a new dimensionless body force (still denoted b) and the

dimensionless constants ρs l L
τ 2Pref

∼ O(ε2) and ρsWrefL
τ 2Pref

∼ O(ε) multiplying the acceleration
terms. Thus, we discard these and get the dimensionless form of Eq. (1) as

− ∇ · (Ce(w) − M Ts) = b, on Γ ε × J. (17)

The dimensionless form of the momentum equation for the fluid, (4), is

ρ f
L

τ 2

(
∂v̂

∂t
+ v̂ · ∇v̂

)

+ ρ f
Wref

τ 2

(
d2w0

dt2
+ dw0

dt
· ∇v̂

)

− Pref
L

∇ p + Vrefμref

L2 μΔv = b, in Ωε
f × J.

(18)

Multiplying by L
Pref

, we again get a new dimensionless body force (still denoted by b)

and the dimensionless constants
ρ f L2

τ 2Pref
∼ O(ε) and

ρ f WrefL
τ 2Pref

∼ O(ε) multiplying the inertial

terms. Multiplying the viscous term we have Vrefμref
LPref

∼ O(ε2). Thus, we discard the inertial
terms and get the dimensionless form of Eq. (4) as

− ∇ · (pI − 2με2 e(v)) = b, in Ωε
f × J. (19)

The mass conservation equation for the fluid, Eq. (5) and the no-flow condition at the
boundary, Eq. (8), in dimensionless variables are

∇ · v = 0, in Ωε
f × J, (20)

and
v = ∂tw, on Γ ε × J, (21)

respectively.
We now turn to the energy conservation equations. The one for the fluid, Eq. (6), in

dimensionless variables reads as

ρ f c f

(
1

τD

∂T f

∂t
+ 1

L

(

Vrefv̂ + Wref

τ

dw0

dt

)

· ∇T f

)

− K f
ref

L2 ∇ · (K f ∇T f ) = 0, in Ωε
f × J,

(22)
where τD = τ/ε is the characteristic heat diffusion time. Multiplying by L2

K f
ref

, we get the

Péclet number in front of the convective term,which in this case is given by Pe = c f ρ f VrefL

K f
ref

∼
c f ρ f WrefL

τK f
ref

∼ O(1), meaning heat is transportedwithin the fluid by convection and diffusion at

an approximately equal rate. In the following, we shall also look at the case Pe = O(ε), such
that heat is mainly transported within the fluid through diffusion. This could be realized,
e.g., in a system with a lower flow velocity or a fluid with a higher thermal conductivity.
However, when we undertake the upscaling procedure, it will become clear that this choice
can be seen just as a special case of the more general Pe ∼ O(1). In the concluding section
we will however present the homogenized model corresponding to both choices of scaling.
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In front of the time derivative term, we get the dimensionless constant
ρ f c f L2

τDK f
ref

∼ O(ε). Thus,

we discard this term and get the dimensionless form of Eq. (6) as

v · ∇T f − ∇ · (K f ∇T f ) = 0, in Ωε
f × J. (23)

In the dissipative term of the energy conservation equation for the solid, Eq. (3), we neglect
the contribution from the mechanical stress (which is second order in the gradient of w), and
assume the heat generation from the thermal stress can be approximated by using a constant
value for the temperature difference, i.e., −M(Ts − θ0) : e(∂tw) ≈ −TdiffM : e(∂tw) (see,
e.g., Kupradze et al. 1979). Thus, we get Eq. (3) in dimensionless variables as

ρscs
1

τD

∂Ts
∂t

+ Mrefl

τ L
M : e(∂tw) − Ks

ref

L2 ∇ · (Ks ∇Ts) = 0, in Ωε
s × J. (24)

We multiply by L2

Ks
ref
, and get the dimensionless constants, ρs cs L2

τDKs
ref

∼ O(ε), multiplying the

time derivative term, and Mrefl L
τKs

ref
∼ O(1), multiplying the dissipative term. Thus, we discard

the time derivative term and can write Eq. (24) as

M : e(∂tw) − ∇ · (Ks ∇Ts) = 0, in Ωε
s × J. (25)

The reference values of the thermal conductivities of the two phases can be regarded as
approximately the same order (i.e., K f

ref ∼ Ks
ref), and we therefore write the dimensionless

form of Eqs. (9) and (10) as

K f ∇T f · ν = Ks ∇Ts · ν, on Γ ε × J, (26)

and
T f = Ts, on Γ ε × J, (27)

respectively.

2.6 The Complete Dimensionless Pore-Scale Model

For convenience, we summarize the dimensionless equations at the microscale below:

− ∇ · (Ce(wε) − M T ε
s ) = b, in Ωε

s × J, (28a)

− ∇ · (pεI − 2με2 e(vε)) = b, in Ωε
f × J, (28b)

∇ · vε = 0, in Ωε
f × J, (28c)

(−pεI + 2με2 e(vε))ν = (Ce(wε) − M T ε
s )ν, on Γ ε × J, (28d)

vε = ∂tw
ε, on Γ ε × J, (28e)

M : e(∂twε) − ∇ · (Ks ∇T ε
s ) = 0, in Ωε

s × J, (28f)

vε · ∇T ε
f − ∇ · (K f ∇T ε

f ) = 0, in Ωε
f × J, (28g)

K f ∇T ε
f · ν = Ks ∇T ε

s · ν, on Γ ε × J, (28h)

T ε
s = T ε

f , on Γ ε × J. (28i)

We impose periodic boundary conditions on the outer boundary (i.e., ∂Ωε) and omit initial
conditions since they are not important for the homogenization procedure. Note also that we
have included an epsilon-superscript on the dependent variables to emphasize the implicit
dependence on both the slow and fast scales.
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Finally, we mention that the upscaling of Eqs. (28a) (without the thermal stress term),
(28b), (28c), (28d), and (28e), leads to the quasi-static poroelastic equations as described in,
e.g., Biot (1941) and Coussy (1995).

3 Two-Scale Asymptotic Expansions

3.1 Homogenization Ansatz

We now undertake the separation of scales and introduce the homogenization ansatz for the
unknowns

vε(x, t) = v0(x, y, t) + εv1(x, y, t) + ε2v2(x, y, t) + · · · ,

wε(x, t) = w0(x, y, t) + εw1(x, y, t) + ε2w2(x, y, t) + · · · ,

T ε
f (x, t) = T 0

f (x, y, t) + εT 1
f (x, y, t) + ε2T 2

f (x, y, t) + · · · ,

T ε
s (x, t) = T 0

s (x, y, t) + εT 1
s (x, y, t) + ε2T 2

s (x, y, t) + · · · ,

pε(x, t) = p0(x, y, t) + εp1(x, y, t) + ε2 p2(x, y, t) + · · · .

Note that we now have an added dependence on the spatial variable y ∈ Y , in which
all terms of the above expansions are Y -periodic due to the scaling and the periodic
arrangement of the porous structure. This is the key step in the two-scale asymptotic
expansion method of homogenization. For a detailed review of this method and its appli-
cations to porous media, we refer to the books Hornung (2012) and Cioranescu and Donato
(2000).

Since y = x/ε, we reformulate the differential operators according to the chain rule, i.e.,
∇ = ∇x + ε−1∇y, and e(·) = ex (·) + ε−1 ey(·).

We now insert the asymptotic expansions into the governing equations and discard all
therms of O(ε) or higher. We furthermore assume that the governing equations of the last
section are applicable in the product domain. We start with Eq. (28a) for the elastic solid
structure

b = − ε−2∇y · (Cey(w0))

− ε−1 [∇y · (
C

(
ex (w0) + ey(w1)

) − M T 0
s

) + ∇x · (
Cey(w0)

)]

− ε0
[∇y · (

C
(
ex (w1) + ey(w2)

) − M T 1
s

)

+∇x · (
C

(
ex (w0) + ey(w1)

) − M T 0
s

)]

+ O(ε), in Ω × Ys × J,

(29)

The conservation of momentum and mass for the fluid, Eqs. (28b) and (28c), yields

b = ε−1∇y p
0 + ε0

[∇x p
0 + ∇y p

1 − μΔyv
0] + O(ε), in Ω × Y f × J, (30)

and
0 = ε−1∇y · v0 + ε0

[∇x · v0 + ∇y · v1
] + O(ε), in Ω × Y f × J. (31)

At the internal interface, continuity of contact forces and continuity of displacement
velocity, Eqs. (28d) and (28e), gives

0 = ε−1 Cey(w0)ν

+ ε0
[
C(ex (w0) + ey(w1)) − M T 0

s + p0I
]
ν
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+ ε1
[
C(ex (w1) + ey(w2)) − M T 1

s + p1I − 2 ey(v0)
]
ν

+O(ε2), on Ω × Γ × J, (32)

and
0 = (v0 − ∂tw

0) + ε(v1 − ∂tw
1) + O(ε2) on Ω × Γ × J. (33)

The energy conservation equations for the solid and fluid, Eqs. (28f) and (28g), yields

0 = − ε−2∇y · (Ks ∇yT
0
s )

+ ε−1 [
M : ey(∂tw0) − ∇y · (

Ks(∇x T
0
s + ∇yT

1
s )

) − ∇x · (
Ks ∇yT

0
s

)]

+ ε0
[
M : (

ex (∂tw0) + ey(∂tw1)
) − ∇x · (

Ks(∇x T
0
s + ∇yT

1
s )

)

−∇y · (
Ks(∇x T

1
s + ∇yT

2
s )

)] + O(ε), in Ω × Ys × J,

(34)

and

0 = − ε−2∇y · (K f ∇yT
0
f )

+ ε−1
[
v0 · ∇yT

0
f − ∇y ·

(
K f (∇x T

0
f + ∇yT

1
f )

)
− ∇x · (K f ∇yT

0
f )

]

+ ε0
[
∂t u

0 · ∇x T
0
f − ∇x ·

(
K f (∇x T

0
f + ∇yT

1
f )

)
+ v0 · ∇yT

1
f

+ v1 · ∇yT
0
f − ∇y ·

(
K f (∇x T

1
f + ∇yT

2
f )

)]
+ O(ε), in Ω × Ys × J.

(35)

At the internal interface, continuity of energy and temperature, Eqs. (28h) and (28i), gives

0 =ε−1
[
K f ∇yT

0
f − Ks ∇yT

0
s

]
· ν

+ ε0
[
K f (∇x T

0
f + ∇yT

1
f ) − Ks(∇x T

0
s + ∇yT

1
s )

]
· ν

+ ε1
[
K f (∇x T

1
f + ∇yT

2
f ) − Ks(∇x T

1
s + ∇yT

2
s )

]
· ν

+ O(ε2), on Ω × Γ × J,

(36)

and
(T 0

s − T 0
f ) + ε(Ts − T 1

f ) + O(ε2) = 0 on Ω × Γ × J. (37)

It is evident from the above equations that at the lowest order, the displacement, pressure,
and temperature has no y-dependence, so we write

p0(x, y, t) = p0(x, t), in Ω × J, (38a)

w0(x, y, t) = w0(x, t), in Ω × J, (38b)

T 0
s (x, y) = T 0

f (x, y) = T 0(x, t), in Ω × J. (38c)

However, as seen from Eqs. (30) and (31), at the lowest order, there is still a y-dependence
in the fluid velocity.

3.2 The Flow

We now consider Eq. (30) at order O(ε0), Eq. (31) at order O(ε−1), and the boundary
condition, Eq. (33) at order O(ε0), which gives the problem

∇x p
0 − μΔyv

0 = b − ∇y p
1, in Y f ,

∇y · v0 = 0, in Y f ,
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v0 = ∂tw
0, on Γ,

v0(x, ·, t) and p1(x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J.

Note that since ∇yv
0 = 0 for y ∈ Y f , we have: ∇y · 2 ey(v0) = Δyv

0. By defining
q = v0 − ∂tw

0, we can rewrite the above problem as

∇x p
0 − μΔyq = b − ∇y p

1, in Y f , (39a)

∇y · q = 0, in Y f , (39b)

q = 0, on Γ, (39c)

q(x, ·, t) and p1(x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J, (39d)

which is the well-known cell problem in the homogenization of the filtration through rigid
porous media, see, e.g., Hornung (2012) pp. 16–18. By using the identities b = ∑3

j=1 b j e j ,

and∇x p0 = ∑3
j=1

∂p

∂x j
e j , where b j is the j’th component of the body force, and {e j } j=1,2,3

the canonical basis of R
3, we can solve for q and p1 as follows

q(x, y, t) = 1

μ

3∑

j=1

Λ j (y)

(

b j (x, t) − ∂p0

∂x j
(x, t)

)

, (40)

p1(x, y, t) =
3∑

j=1

Π j (y)

(

b j (x, t) − ∂p0

∂x j
(x, t)

)

, (41)

whereΛ j andΠ j (Λ j (y) ∈ R
3,Π j (y) ∈ R), are determined by the following cell problems

(for j = 1, 2, 3)

− ΔyΛ
j + ∇yΠ

j = e j , in Y f , (42a)

∇y · Λ j = 0, in Y f , (42b)

Λ j = 0, on Γ, (42c)

Λ j and Π j are Y -periodic. (42d)

We integrate over Y f and obtain the Darcy flux

qD(x, t) :=
∫

Y f

q(x, y, t)dy = − 1

μ
KH (∇x p

0(x, t) − b(x, t)), (43)

where the effective coefficient, KH , (known as the permeability tensor) is given by:

(
KH

)

i j
=

∫

Y f

(Λ j (y))idy, i, j = 1, 2, 3. (44)

We get a similar expression for the average of v0

∫

Y f

v0(x, y, t)dy = ∂tw
0(x, t)|Y f | − 1

μ
KH (∇x p

0(x, t) − b(x, t)). (45)

It can be shown that the tensorKH is symmetric and positive definite. We refer to Mikelić
(1994) for a proof.
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By using the expressions for q0 and p1, we also obtain the following which will be useful
later

(
2μ ey(v0) − p1I

) · ν =
3∑

j=1

(2 ey(Λ j ) − Π j I)
(

b j − ∂p0

∂x j

)

· ν on Ω × Γ × J. (46)

3.3 Momentum Conservation

From Eqs. (29) and (32) at order O(ε−1) we obtain

∇y · (C(ex (w0) + ey(w1)) − M T 0) = 0, in Ω × Ys × J (47a)

(C(ex (w0) + ey(w1)) − M T 0)ν = −p0 I ν, on Ω × Γ × J, (47b)

w1(x, ·, t) is Y -periodic, ∀(x, t) ∈ Ω × J. (47c)

Using the tensor outer product (denoted “⊗”), we now make use of the following identity

ex (w0) =
3∑

i, j=1

1

2

∂w0
i

∂x j
(ei ⊗ e j + e j ⊗ ei ),

such that we can use
∂w0

i

∂x j
as scalars in the expression for w1

w1(x, y, t) =
3∑

i, j=1

∂w0
i

∂x j
(x, t)Ui j (y) + T 0(x, t)V (y) + p0(x, t)W (y), (48)

where the functions Ui j , V , and W , (Ui j (y), V (y),W (y) ∈ R
3), are determined by the

following cell problems (for i, j = 1, 2, 3)

∇y ·
(
Cey(Ui j )

)
= 0, in Ys, (49a)

C
(

ey(Ui j ) + ei ⊗ e j + e j ⊗ ei
2

)

ν = 0, on Γ, (49b)

Ui j is Y -periodic, (49c)

and

∇y · (
Cey(V )

) = 0, in Ys, (50a)

Cey(V )ν = M ν, on Γ, (50b)

V is Y -periodic, (50c)

and

∇y · (
Cey(W )

) = 0, in Ys, (51a)

Cey(W )ν = −Iν, on Γ, (51b)

W is Y -periodic. (51c)

We now continue with the solid at orderO(ε0), where we make use of the expression (46)
from the last section. We thus obtain the following problem
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∇x · (C(ex (w0) + ey(w1)) − M T 0) + b = −∇y · (C(ex (w1) + ey(w2)) − M T 1
s ), in Ω × Ys × J,

(C(ex (w1) + ey(w2)) − M T 1
s )ν =

3∑

j=1

(2 ey(Λ j ) − Π j I)
(

b j − ∂p0

∂x j

)

ν, on Ω × Γ × J,

w2(x, ·, t) is Y -periodic, ∀(x, t) ∈ Ω × J.

Integrating the right hand side of the first equation over Ys , using also Eq. (42a), yields

−
∫

Ys
∇y · (C(ex (w1) + ey(w2)) − M T 1

s )dy =
∫

Γ

(C(ex (w1) + ey(w2)) − M T 1
s )νdsy

=
3∑

j=1

∫

Y f

∇yΠ
j − ΔyΛ

jdy

(
∂p0

∂x j
− b j

)

=
3∑

j=1

∫

Y f

e jdy

(
∂p0

∂x j
− b j

)

= (∇x p
0 − b)|Y f |.

Using the expression for w1, Eq. (48), we get for the left hand side

b|Ys | + ∇x ·
∫

Ys
(C(ex (w0) + ey(w1)) − M T 0)dy

= b|Ys | + ∇x ·
(

p0
∫

Ys
Cey(W )dy

)

+ ∇x ·
(

T 0
∫

Ys
Cey(V ) − M dy

)

+ ∇x ·
⎛

⎝
3∑

i, j=1

∂w0
i

∂x j

∫

Ys
C

(

ey(Ui j ) + ei ⊗ e j + e j ⊗ ei
2

)

dy

⎞

⎠ .

Putting the two sides together gives the upscaled momentum equation

− ∇x ·
(
AH ex (w0) − (|Y f | I−BH )p0 − (|Ys |M−UH )T 0

)
= b, in Ω × J, (52)

where (for i, j, k, l,= 1, 2, 3)

(AH )i jkl =
∫

Ys

(

C
(

ey(Ui j (y)) + ei ⊗ e j + e j ⊗ ei
2

))

kl
dy, (53)

(BH )i j =
∫

Ys

(
Cey(W (y))

)
i j dy, (54)

(UH )i j =
∫

Ys

(
Cey(V (y))

)
i j dy. (55)

The effective tensorsAH andBH are symmetric and positive definite.We refer to Sanchez-
Palencia (1980) for a proof. That UH is symmetric and positive definite is shown the same
way as for BH , except that it now relies on the same properties forM.

123



Upscaling of the Coupling of Hydromechanical and Thermal… 151

3.4 Mass Conservation

In order to derive the upscaled mass conservation equation, we take terms of O(ε0) from
Eq. (31), together with O(ε1) terms from the boundary condition (33), and obtain the fol-
lowing problem

∇y · v1 = −∇x · v0, in Ω × Y f × J, (56a)

v1 = ∂tw
1, on Ω × Γ × J, (56b)

v1(x, ·, t) is Y -periodic, ∀(x, t) ∈ Ω × J. (56c)

Integrating the left hand side of the first equation over Y f , and using the expression for
w1, Eq. (48), yields

∫

Y f

∇y · v1dy = −
∫

Ys
∇y · ∂tw

1dy

= −∂t

⎛

⎝
3∑

i, j=1

∂w0
i

∂x j

∫

Ys
∇y ·Ui jdy + T 0

∫

Ys
∇y · V dy + p0

∫

Ys
∇y · Wdy

⎞

⎠

= −DH : ex (∂tw0) − ∂t T
0EH + ∂t p

0GH ,

where

DH
i j =

∫

Ys
∇y ·Ui jdy,

EH =
∫

Ys
∇y · V dy,

GH = −
∫

Ys
∇y · Wdy.

Integrating the right hand side of (56a) over Y f , and using the expression for the average
of v0, Eq. (45), yields

−∇x ·
(∫

Y f

v0dy

)

= −∇x · (
∂tw

0|Y f | + qD
)
.

Putting the two sides together, we obtain the upscaled mass conservation equation

DH : ex (∂tw0) + ∂t T
0EH − ∂t p

0GH = ∇x · (
∂tw

0|Y f | + qD
)
. (57)

By testing with W in the cell problems (50) it is easily shown that GH > 0, i.e.,

GH = −
∫

Ys
∇y · Wdy =

∫

Ys
Cey(W ) : ey(W )dy > 0 (58)

The identification DH = BH is shown by testing first with Ui j in the cell problem (50)
to obtain

DH
i j =

∫

Ys
∇y ·Ui jdy = −

∫

Ys
Cey(W ) : ey(Ui j )dy, (59)

and on the other hand, by testing with W in cell problem (49)

BH
i j =

∫

Ys
(Cey(W ))i jdy = −

∫

Ys
Cey(Ui j ) : ey(W )dy. (60)

123



152 M. K. Brun et al.

Using this, we can rewrite Eq. (57) as

∂t

(
p0GH − T 0EH

)
+ ∇x ·

(
(|Y f | I−BH )∂tw

0 + qD
)

= 0. (61)

3.5 Energy Conservation

In this section we derive the upscaled energy conservation equation.
We consider the terms of order O(ε−1) from Eqs. (34), (35) and (36), and obtain the

following problem

∇y ·
(
K f

(
∇x T

0 + ∇yT
1
f

))
= 0, in Ω × Y f × J, (62a)

∇y · (
Ks

(∇x T
0 + ∇yT

1
s

)) = 0, in Ω × Ys × J, (62b)

K f

(
∇x T

0 + ∇yT
1
f

)
· ν = Ks

(∇x T
0 + ∇yT

1
s

) · ν, on Ω × Γ × J, (62c)

T 1
f = T 1

s on Ω × Γ × J, (62d)

T 1
f (x, ·, t) and T 1

s (x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J. (62e)

Using the identity ∇x T 0 = ∑3
j=1

∂T 0

∂x j
e j , we can solve for T 1

f and T 1
s as

T 1
f (x, y, t) =

3∑

j=1

∂T 0(x, t)

∂x j
θ
j
f (y) and T 1

s (x, y, t) =
3∑

j=1

∂T 0(x, t)

∂x j
θ
j
s (y), (63)

where θ
j
f and θ

j
s (θ j

f (y), θ
j
s (y) ∈ R) are determined by (for j = 1, 2, 3)

∇y · (K f ∇yθ
j
f ) = 0, in Y f ,

∇y · (Ks ∇yθ
j
s ) = 0, in Ys,

K f (e j + ∇yθ
j
f ) · ν = Ks(e j + ∇yθ

j
s ) · ν, on Γ,

θ
j
f = θ

j
s , on Γ,

θ
j
f and θ

j
s are Y -periodic.

By defining

θ j (y) =
{

θ
j
f (y), if y ∈ Y f ,

θ
j
s (y), if y ∈ Ys,

(64)

due to the boundary condition, and using the properties of Ks and K f , we can write the
more convenient problem

Δyθ
j = 0, in Ys ∪ Y f , (65a)

(
e j + ∇yθ

j
)

· ν = 0, on Γ, (65b)

θ j is Y -periodic. (65c)
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Continuing to the next order, O(ε0), we obtain the problem

v0 · ∇x T
0 + v0 · ∇yT

1
f − ∇x ·

(
K f

(
∇x T

0 + ∇yT
1
f

))

= ∇y ·
(
K f

(
∇x T

1
f + ∇yT

2
f

))
, in Ω × Y f × J,

M : (
ex

(
∂tw

0) + ey
(
∂tw

1)) − ∇x · (
Ks

(∇x T
0 + ∇yT

1
s

))

= ∇y · (
Ks

(∇x T
1
s + ∇yT

2
s

))
, in Ω × Ys × J,

K f

(
∇x T

1
f + ∇yT

2
f

)
· ν = Ks

(∇x T
1
s + ∇yT

2
s

) · ν, on Ω × Γ × J,

T 2
f = T 2

s on Ω × Γ × J,

T 2
f (x, ·, t) and T 2

s (x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J.

Integrating the first equation over Y f , and using the expressions for T 1
f and the average

of v0, Eqs. (63) and (45), together with the boundary conditions (62d) and (39a) yields

∫

Γ

K f

(
∇x T

1
f + ∇yT

2
f

)
· νds

=
(
|Y f |∂tw0 + q

)
· ∇x T

0 +
∫

Y f

v0 · ∇yT
1
f dy − ∇x ·

(∫

Y f

K f

(
∇x T

0 + ∇yT
1
f

)
dy

)

= qD · ∇x T
0 + ∂tw

0 ·
3∑

j=1

∂T 0

∂x j

∫

Y f

e j + ∇yθ
j
f dy − ∇x ·

⎛

⎝
3∑

j=1

∂T 0

∂x j

∫

Y f

K f

(
e j + ∇yθ

j
f

)
dy

⎞

⎠ .

Integrating the second equation overYs , using also the expressions for T 1
s andw1, Eqs. (63)

and (48), yields

∫

Γ

Ks

(
∇x T

1
f + ∇yT

2
f

)
· νds

= ∇x ·
(∫

Ys
Ks

(∇x T
0 + ∇yT

1
s

)
dy

)

− |Ys |M : ex
(
∂tw

0) −
∫

Ys
M : ey

(
∂tw

1) dy

= ∇x ·
⎛

⎝
3∑

j=1

∂T 0

∂x j

∫

Ys
Ks

(
e j + ∇yθ

j
s

)
dy

⎞

⎠ − |Ys |M : ex
(
∂tw

0)

− ex
(
∂tw

0) :
3∑

i, j=1

∫

Ys
M : ey

(
Ui j

)
dy − ∂t T

0
∫

Ys
M : ey(V )dy − ∂t p

0
∫

Ys
M : ey(W )dy.

Since the left hand sides of the two above equations are equal, we put them together and
obtain the upscaled energy conservation equation

∂t T
0MH + ∂t p

0NH + ∂tw
0 · Ξ H ∇x T

0 + qD · ∇x T
0

+ ∇x ·
(
(RH + |Ys |M)∂tw

0 − ΘH ∇x T
0
)

= 0
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where (for i, j = 1, 2, 3)

(ΘH )i j =
∫

Y f

(
K f (e j + ∇yθ

j
f )

)

i
dy +

∫

Ys

(
Ks(e j + ∇yθ

j
s )

)

i
dy,

(Ξ H )i j =
∫

Y f

(e j + ∇yθ
j
f )idy,

(RH )i j =
∫

Ys
M : ey(Ui j )dy,

MH =
∫

Ys
M : ey(V )dy,

NH =
∫

Ys
M : ey(W )dy.

Again, some properties of the coefficients can be established. By testing with V in the cell
problems (50) we obtain

MH =
∫

Ys
M : ey(V )dy =

∫

Ys
Cey(V ) : ey(V )dy > 0. (66)

The identification RH = −UH can also be shown by testing first with Ui j in the cell
problem (50) to obtain

(RH )i j =
∫

Ys
M : ey(Ui j )dy =

∫

Ys
Cey(V ) : ey(Ui j )dy, (67)

and then with V in the cell problem (49)

(UH )i j =
∫

Ys

(
Cey(V )

)
i j dy = −

∫

Ys
Cey(Ui j ) : ey(V )dy. (68)

Further, we can also show NH = −EH , by testing first with V in the cell problem (51)

EH =
∫

Ys
∇y · V dy = −

∫

Ys
Cey(W ) : ey(V )dy, (69)

and with W in the cell problem (51)

NH =
∫

Ys
M : ey(W )dy =

∫

Ys
Cey(V ) : ey(W )dy. (70)

Lemma 1 ΘH and Ξ H are symmetric and positive definite.

Proof Test with θ i in the j’th cell problem (65), and by θ j in the i’th problem to obtain
∫

Y f

K f

(
e j + ∇yθ

j
)

· ∇yθ
idy =

∫

Y f

K f

(
ei + ∇yθ

i
)

· ∇yθ
jdy = 0,

and ∫

Ys
Ks

(
e j + ∇yθ

j
)

· ∇yθ
idy =

∫

Ys
Ks

(
ei + ∇yθ

i
)

· ∇yθ
jdy = 0.

Thus, we can write ΘH as:

(ΘH )i j =
∫

Y f

K f

(
e j + ∇yθ

j
)

·
(
ei + ∇yθ

i
)
dy+

∫

Ys
Ks

(
e j + ∇yθ

j
)

·
(
ei + ∇yθ

i
)
dy,
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and it follows thatΘH is symmetric. For the positive definiteness, observe that for nonnegative
α1,2,3 ∈ R not all equal to zero we have

3∑

i, j=1

(ΘH )i jαiα j =
3∑

i, j=1

∫

Y f

K f ∇y

(
α j (y j + θ j )

)
· ∇y

(
αi (yi + θ i )

)
dy

+
3∑

i, j=1

∫

Ys
Ks ∇y

(
α j (y j + θ j )

)
· ∇y

(
αi (yi + θ i )

)
dy > 0.

That Ξ H is symmetric and positive definite is shown in the same way. �
We can now rewrite the upscaled energy conservation equation as

∂t (T
0MH−p0EH )+(Ξ H ∂tw

0+qD)·∇x T
0+∇x ·

(
(|Ys |M−UH )∂tw

0 − ΘH ∇x T
0
)

= 0.

(71)

4 Summary

4.1 The Upscaled Quasi-static Thermo-poroelastic System

We now summarize the upscaled equations derived in the previous sections. We omit all
superscripts in the variables, subscripts in the differential operators (with the understanding
they are now all taken with respect to the slow variable x), and introduce a more familiar
notation for the coefficients, similar to what is commonly used in the literature on the quasi-
static poroelastic equations:

α := (|Y f | I−BH ), β := (|Y f |M−UH ), A := AH

K := KH , Θ := ΘH , Ξ := Ξ H ,

c0 := GH , a0 := MH , b0 := EH ,

whereα is the Biot–Willis constant, c0 is the specific storage coefficient, andA is the effective
elastic moduli, containing the elastic coefficients of the porous medium.

Thus, we write the upscaled system as:

qD = − 1

μ
K(∇ p − b), in Ω × J,

(72a)

− ∇ · (Ae(w) − α p − β T ) = b, in Ω × J,
(72b)

∂t (c0 p − b0T + ∇ · α w) + ∇ · qD = 0, in Ω × J,
(72c)

∂t (a0T − b0 p + ∇ · β w) + (Ξ ∂tw + qD) · ∇T − ∇ · (Θ ∇T ) = 0, in Ω × J.
(72d)

Compared to the linear poroelastic equations, we see that the stress in the momentum
Eq. (72b) nowhas an additional linear dependency on the temperature of themedium, i.e.,σ =
σ (w, p, T ) = Ae(w)−α p−β T . This is completely analogous to the linear thermoelastic
equations in mechanics, see, e.g., Pabst (2005). The homogenized tensor β can be interpreted
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as an upscaled thermal stress coefficient, giving the induced thermal stress coming from a unit
temperature gradient. In the mass conservation Eq. (72c) we see that the porosity (denoted by
η) is also linearly dependent on the temperature, i.e., η = η(w, p, T ) = c0 p−b0T +∇ ·α w.
In other words, the amount of fluid that can be injected into an arbitrary fixed control volume
is now given by: c0 p − b0T , where the homogenized coefficient b0 can be interpreted as a
thermal expansion coefficient.

It remains to discuss the energy conservation Eq. (72d). If we had used the different
scaling corresponding to a small Péclet number, i.e., Pe ∼ O(ε), the dimensionless energy
conservation equation for the fluid at the microscale, Eq. (28g), would take the form:

ε

(
∂T ε

f

∂t
+ ∂t u

ε · ∇T ε
f

)

− ∇ ·
(
K f ∇T ε

f

)
= 0, in Ωε

f × J. (73)

Then, after separating the scales, the terms: ε(
∂T ε

f
∂t + ∂t uε · ∇T ε

f ) give no contribution to

theO(ε−1)-problem, and for theO(ε0)-problem, we only retain the term: ∂t u0 ·∇yT 0, which
is evidently equal to zero. Thus, the upscaled energy conservation equation corresponding to
a small Péclet number is:

∂t (a0T − b0 p + ∇ · β w) − ∇ · (Θ ∇T ) = 0, in Ω × J, (74)

and we have a fully linear upscaled system.
Denoting by: ξ = ξ(w, p, T ) = a0T − b0 p + ∇ · β w, the energy present in some

arbitrary control volume, we see from Eq. (72d) that the rate of change of energy present,
∂tξ , is balanced by the net energy flux into the same control volume, either by conduction:
−∇ · (Θ ∇T ), or convection: (Ξ ∂tw + qD) · ∇T . We see also from Eq. (73) that in the
case of a small Péclet number, the rate of change in energy present is balanced only by
the conduction. The homogenized tensors Θ and Ξ can be interpreted as a kind of upscaled
thermal conductivities, while a0 gives the energy present by a unit temperature rate of change.

An important property of the linear poroelastic equations is that the Biot–Willis coefficient
appears both in front of the pressure term in themomentumEq. (72b) (i.e.,α p), and in front of
the volumetric term in the mass conservation Eq. (72c) (i.e.,∇ ·α w). As described in Coussy
(1995) p. 75, a similar situation is expected with the temperature term in the momentum
equation and the volumetric term in the energy equation. As we see from Eqs. (72b) and
(72d), this is indeed the case, as the thermal stress coefficient, β, appears in both places.
Another interesting fact is the coefficient b0 which appear both in front of the temperature
term in the mass conservation Eq. (72c) and in front of the pressure term in the energy
Eq. (72d). This is indeed also the case in Coussy (1995), where they refer to the coefficient
b0 as the “volumetric thermal dilation coefficient related to the porosity.”

In the article Lee and Mei (1997), the allowable deformations at the microscale are much
smaller than the microscale length (i.e., l), which makes a direct comparison of our models
difficult. However, we note that also here there is a linear dependency on temperature in the
upscaled solid stress, and thus, Eq. (72c) matches that of Lee and Mei (1997). Our energy
equations differ significantly, on the other hand, as in Lee and Mei (1997) there appears no
pressure term.

4.2 Conclusions

We have presented a formal upscaling of the microscale thermal fluid-structure problem in
porous media, leading to thermal Biot equations at the macroscale. This derivation gives a
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precise understanding of the coupling terms at the macroscale and forms a justification for
heuristically derived models.

The most important limitation of the formal approach taken herein is the use of a perfectly
periodic geometry. This limitation will not affect the applicability of the results to some
human-made porous media, but will invalidate the approach for natural porous media. How-
ever, it has been shown for similar problems that the periodicity assumption can be relaxed,
and we expect that these results would be possible to extend to the present setting. As such
we expect the structure of the equations summarized in the preceding section to be valid also
for non-periodic porous media, at least when there is some uniformity on the sizes of the
solid grains.

All homogenization results are based on a series of “smallness” assumptions. We empha-
size the important understanding that the results presented herein are based on ε being “small,”
but not tending to zero. This distinction is important, since some of the parameters defined
in the homogenization procedure (such as i.e., permeability) may depend on ε, depending
on the choice of characteristic macroscopic length scales. A further comment in this regard
is that the Lagrangian formulation used herein implies that we only assume that the strain is
small, and not that the displacement itself is small. Alternatively, if an Eulerian framework
was used, it would be necessary to assume that the displacement is small relative to the
microscale, which would preclude meaningful macroscopic deformations.

In this work we have chosen to a large extent to linearize the governing equations already
at the microscale. This in part explains the linear structure of the majority of terms on
the macroscale. Nonlinear constitutive relationships could be accommodated at the cost of
technical and notational complexity, varying from relatively straight-forward (i.e., nonlinear
constitutive laws for fluid density) to complex (nonlinear elastic or plastic constitutive laws
for material deformation).
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This paper is concerned with the analysis of the quasi-static thermo-poroelastic 
model. This model is nonlinear and includes thermal effects compared to the 
classical quasi-static poroelastic model (also known as Biot’s model). It consists 
of a momentum balance equation, a mass balance equation, and an energy balance 
equation, fully coupled and nonlinear due to a convective transport term in the 
energy balance equation. The aim of this article is to investigate, in the context 
of mixed formulations, the existence and uniqueness of a weak solution to this 
model problem. The primary variables in these formulations are the fluid pressure, 
temperature and elastic displacement as well as the Darcy flux, heat flux and total 
stress. The well-posedness of a linearized formulation is addressed first through the 
use of a Galerkin method and suitable a priori estimates. This is used next to study 
the well-posedness of an iterative solution procedure for the full nonlinear problem. 
A convergence proof for this algorithm is then inferred by a contraction of successive 
difference functions of the iterates using suitable norms.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The field of poroelasticity is concerned with describing the interaction between viscous fluid flow and 
elastic solid deformation within a porous material, and goes back to the works of K. Terzhagi [32] and 
M.A. Biot [6,7]. Porous materials are by definition solid materials comprising a great number of intercon-
nected pores, typically at the order of micrometers, where the interconnectivity of the pores is sufficient 
to allow for fluid flow through the material. For this reason, porous materials are usually modeled at the 
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continuum scale, such that the complex micro-structure needs not be explicitly accounted for in the mod-
eling, but rather implicitly through so-called effective parameters such as e.g. porosity and permeability. 
Porous materials are primarily associated with objects such as rocks and clays, but biological tissue, foams 
and paper products also fall within this category. Consequently, the field of poroelasticity is of great im-
portance in a range of different engineering disciplines, such as petroleum engineering, agricultural science 
and biomedicine, among others. A number of comprehensive text books related to the field exists; see 
e.g. [13,14,36].

Mathematical modeling of fluid saturated deformable porous media on the continuum scale relies on the 
theory of linear elasticity, adapted to porous materials by using the so-called total stress tensor instead 
of the Cauchy stress in the momentum balance equation. In particular, the total stress tensor is a linear 
combination of the Cauchy stress for the empty elastic skeleton and the isotropic stress coming from the 
fluid, i.e. the pore pressure. Within the quasi-static framework inertial terms are ignored, thus giving a 
purely elliptic equation for the momentum balance. A second equation of parabolic type accounts for the 
mass balance as fluid is displaced by the deformation of the solid, and relates change in porosity to volumetric 
fluid flow, i.e. the Darcy flux. This is essentially Biot’s poroelastic model for quasi-static deformation (see 
e.g. [6,13]). There is an extensive literature on this model problem and on its numerical approximation. 
To mention a few, the well-posedness based on the canonical two-field formulation with displacement and 
pressure as variables was carried out in [30], while three and four-field formulations have also been analyzed 
(taking Darcy flux and total stress as independent variables), and can be found in several studies, e.g. [1,
26,37]. A key feature of this model, one which greatly facilitates the analysis, is the symmetric coupling 
between the equations.

In many important applications, such as geothermal energy extraction, nuclear waste disposal and carbon 
storage, temperature also plays a vital role and must therefore be included in the modeling. Using the method 
of formal two-scale expansions (see e.g. [12,18] for a detailed review of this method), a thermo-poroelastic 
model was derived in [10], which accounts for fluid pressure, elastic displacement, and temperature dis-
tribution within a fine-grained, fully saturated poroelastic material within the framework of quasi-static 
deformation. This model is similar to other thermo-poroelastic models which exists in the literature; see e.g. 
[13,16,22,31,34], although there are also some notable differences among these works, in particular from the 
modeling point of view; i.e. allowable flow rates and deformation, choice of coordinate frames etc. (see [10,34]
for a comparison of existing thermo-poroelastic models). However, from the point of view of analysis the 
important factor is the coupling structure between the equations, and the model we analyze exhibits a fully 
coupled structure.

The aim of the present work is to establish the well-posedness of the nonlinear thermo-poroelastic model 
as described in [10], where we also provide a priori energy estimates and regularity properties of the 
solutions. We restrict our attention to an isotropic material such that the elastic coefficients are given by 
the Lamé parameters, and the Biot coefficient and thermal stress coefficient are given by scalar quantities. 
Some algebraic constraints on these coefficients must be imposed in order to obtain our results. Although 
the literature on the analysis of poroelastic models is quite extensive, there is not much literature on the 
analysis of thermo-poroelastic models; in [34] a corresponding energy functional for the thermo-poroelastic 
model was derived. This functional was then shown to be monotonically decreasing in time for a small 
enough characteristic temperature difference.

We undertake our analysis with a future mixed finite-element implementation in mind, and therefore 
double the number of variables from three to six, and investigate the existence and uniqueness of a weak 
solution corresponding to this fully coupled six-field model. The primary variables in this model are; fluid 
pressure, temperature, elastic displacement, Darcy flux, heat flux, and total stress. This makes the problem 
suitable for combinations of well-known stable finite-elements, such as Raviart-Thomas(-Nédélec) [25,29]
and Arnold–Winther [2,3]. From an implementation point of view there are several advantages of a mixed 
formulation over the canonical three-field formulation; the discretization respects mass and energy conser-
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vation, produces continuous normal fluxes regardless of mesh quality, and in general a mixed formulation is 
advantageous for domain decomposition techniques. We restrict our attention to two spatial dimensions, as 
this will be the most relevant case for the subsequent work, although the results we present can be extended 
to higher dimensions in a straightforward manner. In particular, the definition of the isotropic compliance 
tensor must reflect the choice of spatial dimension.

The main difficulty we face in the following analysis is the nonlinear coupling between the equations, 
i.e. the nonlinear convective transport term in the energy balance equation, which takes the form ∇T · w, 
where w is the Darcy flux, and T is the temperature distribution. The first part of the paper is therefore 
concerned with analyzing a linearized version of the model, where we write the convective transport term 
as η · w, for some given η ∈ L∞ (the remaining coupling terms are retained). Once we have obtained the 
existence and uniqueness of a weak solution to this problem, we introduce an iterative algorithm where 
we approximate the convective transport term as ∇T m−1 · wm, where m ≥ 1 is the iteration index. Due 
to the results we obtained for the linearized problem, and by a natural assumption that the temperature 
gradient admits L∞-regularity in space, we construct a well defined sequence of iterates as m → ∞. This 
we show to converge in adequate norms to the solution of the original nonlinear problem, thus establishing 
the existence and uniqueness of its weak solution. The convergence proof relies on the Banach Fixed Point 
Theorem, which we use to obtain local solutions in time. Here, the time interval is supposed to be small to 
ensure a contraction of the successive difference functions of the iterates. Then, using piecewise continuation 
in time, we extend these local solutions to global solutions for any finite final time. The idea is that such an 
iterative scheme can also be applied numerically to a discretized formulation, and in this sense our analysis 
sets the stage for subsequent numerical experiments. We mention also some of the literature on iterative 
schemes in poroelasticity; in [5,8,20,24] there can be found several iterative procedures for solving Biot’s 
equations, and in [23,27,28] iterative methods for solving Richards’ equation were analyzed.

We summarize the main contribution of the article as follows: under a natural hypothesis on the regularity 
of the convective term, we give a proof of existence and uniqueness of a weak solution to the fully coupled 
six-field thermo-poroelastic problem within the quasi-static framework.

The article is organized as follows: Section 2 recalls the physical model and the assumptions on the data, 
introduces the relevant function spaces and introduces the mixed weak formulations. In section 3 we define a 
linear version of the original mixed variational problem, and proceed to analyze this in the following way; we 
construct approximate solutions using a Galerkin method, the existence of which is established by the theory 
of DAEs (Differential Algebraic Equations). Suitable a priori estimates are then derived which enables us to 
pass to the limit, thanks to the weak compactness of the spaces. Section 4 is devoted to analyzing an iterative 
solution procedure for the original nonlinear problem and to establish the convergence of the algorithm in 
suitable norms. In Appendix A we propose an alternative to the hypothesis on the temperature gradient, i.e. 
we show how the required regularity can be obtained by sufficient regularity of the data. For easy reference 
of the notation used in this article we provide some tables in Appendix B.

2. Presentation of the problem

Let Ω ⊂ R
d, for d ∈ {2, 3}, be an open and bounded domain, where we denote the boundary by Γ := ∂Ω, 

which is assumed to be Lipschitz continuous. Let a time interval J = (0, Tf ) be given with Tf > 0 and 
define Q := Ω × (0, Tf ] to be the space–time domain. The thermo-poroelastic model problem we consider, 
as it is exposed in [10], is as follows: given a heat source h, a body force f , and a mass source g, find (T, u, p)
such that

∂t(a0T − b0p + β∇ · u) − ∇T · (K∇p) − ∇ · (Θ∇T ) = h, in Q, (2.1a)

−(λ + μ)∇(∇ · u) − μ∇2u + α∇p + β∇T = f , in Q, (2.1b)
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∂t(c0p − b0T + α∇ · u) − ∇ · (K∇p) = g, in Q, (2.1c)

where a0 is the effective thermal capacity, b0 is the thermal dilation coefficient, β is the thermal stress 
coefficient, K = (Kij)d

i,j=1 is the permeability divided by fluid viscosity, Θ = (Θij)d
i,j=1 is the effective 

thermal conductivity, μ and λ are the Lamé parameters, α is the Biot–Willis constant and c0 is the specific 
storage coefficient. The primary variables are the temperature distribution T , displacement u and fluid 
pressure p. To close the system, we prescribe homogeneous Dirichlet conditions on the boundary, i.e.,

T = 0, u = 0, and p = 0, on Γ × J, (2.1d)

and we assume the following initial conditions

T (·, 0) = T0, u(·, 0) = u0, and p(·, 0) = p0, in Ω × {0}, (2.1e)

for some known functions T0, u0 and p0. In practice, we may use nonhomogeneous Dirichlet and Neumann 
boundary conditions for which the analysis remains valid. Note also that if β = b0 = 0, the above system 
decouples from the energy equation, and the well-known quasi-static Biot equations are recovered (see e.g. [1]
where both the two- and four-field formulations are presented).

2.1. Preliminaries

We now define the function spaces that will be used throughout this article, see e.g. [15,38] for more details. 
For 1 ≤ p < ∞ let Lp(Ω) = {u : Ω → R :

∫
Ω |u|pdx < ∞}, with the associated norm ‖·‖p. In particular, 

L2(Ω) is the Hilbert space of square integrable functions defined on Ω, endowed with the inner product 
(·, ·), and the norm ‖·‖ := ‖·‖2. For p = ∞, L∞(Ω) is the space of uniformly bounded measurable functions 
defined on Ω, i.e. L∞(Ω) = {u : Ω → R : ess supx∈Ω |u| < ∞}, endowed with the norm ‖u‖∞ = inf{C : |u| ≤
C a.e. on Ω}. We denote by W k,p(Ω) the Sobolev space of functions in Lp(Ω), admitting weak derivatives up 
to order k in the same space. In particular, we denote by H1(Ω) := W 1,2(Ω) = {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))d}, 
and designate by H1

0 (Ω) its zero-trace subspace. Let H(div, Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)} be the 
space of vector valued functions, where each component belongs to L2(Ω), along with the weak divergence. 
We endow this space with the norm ‖v‖2

H(div;Ω) := ‖v‖2 + ‖∇ · v‖2. Let Hs(div, Ω) = {τ ∈ (L2(Ω))d×d :
∇ · τ ∈ (L2(Ω))d, τ ij = τ ji for 1 ≤ i, j ≤ d} be the space of symmetric tensor valued functions defined on 
Ω, where each component belongs to L2(Ω), and admitting a weak divergence in (L2(Ω))d. We denote by 
C1(Ω) the space of continuous functions defined on Ω, admitting continuous partial derivatives. Finally, let 
X be a Banach space and let Lp(J ; X) be the Bochner space of functions in Lp defined on J with values 
in X. Let ‖·‖X be a norm on X, then for u ∈ Lp(J ; X), p < ∞, we have ‖u‖p

Lp(J;X) :=
∫ Tf

0 ‖u(t)‖p
X dt. In 

particular, we will make use of the spaces H1(J ; L2(Ω)) = {u(t) : Ω → R :
∫ Tf

0 (‖u(t)‖2 +‖∂tu(t)‖2)dt < ∞}
and L∞(J ; L2(Ω)) = {u(t) : Ω → R : ess supt∈J ‖u(t)‖ < ∞}. Note that if u(t) ∈ (L2(Ω))d is square 
integrable in time, we shall still write u ∈ L2(J ; L2(Ω)), but this should not cause any confusion as we will 
always utilize bold fonts for vector (or tensor) valued functions.

We will also frequently apply classical inequalities, i.e. Cauchy–Schwarz (C–S), Young, and Grönwall (see 
e.g. [17]).

2.2. Assumptions on the data

Before transcribing the mixed variational formulation of the problem (2.1), we make precise the assump-
tions on the data (further generalizations are possible, bringing more technicalities):
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Assumption 1 (Data).

A.1 The source terms are such that g, h ∈ L2(J ; L2(Ω)), and f ∈ H1(J ; L2(Ω)).
A.2 The initial conditions are such that p0, T0 ∈ H1

0 (Ω), and u0 ∈ (L2(Ω))d.
A.3 The permeability and heat conductivity tensors are such that K, Θ ∈ (L∞(Ω))d×d. Furthermore, we 

assume there exists kM , km > 0 such that for a.e. x ∈ Ω there holds

km|ζ|2 ≤ ζT K−1(x)ζ and |K−1(x)ζ| ≤ kM |ζ|, ∀ζ ∈ R
d \ {0},

and there exists θM , θm > 0 such that for a.e. x ∈ Ω there holds

θm|ζ|2 ≤ ζT Θ−1(x)ζ and |Θ−1(x)ζ| ≤ θM |ζ|, ∀ζ ∈ R
d \ {0}.

A.4 The constants c0, b0, a0, α, β, μ, and λ, are strictly positive.

2.3. Mixed variational formulation

We now give the mixed variational formulation of the problem (2.1), for which we need to introduce the 
total stress tensor; σ(u, p, T ) := 2με(u) + λ∇ · uI − αpI − βT I, where I is the identity tensor and ε(u) is 
the linearized strain tensor given by ε(u) := (∇u + ∇Tu)/2, the Darcy flux w := −K∇p, and the heat flux 
r := −Θ∇T . For simplicity, we now restrict our attention to the case d = 2, in which case the fourth order 
compliance tensor, A, is given by

Aτ := 1
2μ

(
τ − λ

2(μ + λ) tr(τ )I
)

, τ ∈ R
d×d, (2.2)

as seen in [37] (see also [20] for the general formula). Note that A is bounded and symmetric positive definite 
uniformly with respect to x ∈ Ω, and defines an L2-equivalent norm, i.e.

1
2(μ + λ) ‖τ‖2 ≤ ‖τ‖2

A ≤ 1
2μ

‖τ‖2
, ∀τ ∈

(
L2(Ω)

)d×d
, (2.3)

where ‖τ‖2
A =

∫
Ω Aτ : τdx. Applying A to the total stress tensor, it is inferred that

Aσ = ε(u) − 1
2(μ + λ) (αp + βT )I, (2.4)

and by taking the trace on both sides, we get the following relationship

∇ · u = 1
2(μ + λ) tr(σ) + 1

μ + λ
(αp + βT ). (2.5)

We also introduce the following notation

cr := α2

μ + λ
, br := b0 − αβ

μ + λ
, ar := β2

μ + λ
. (2.6)

The above definitions yields an equivalent mixed form to (2.1):

∂t(a0T − b0p + β∇ · u) + ∇T · w + ∇ · r = h, in Q, (2.7a)

Θ−1r + ∇T = 0, in Q, (2.7b)
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∂t(c0p − b0T + α∇ · u) + ∇ · w = g, in Q, (2.7c)

K−1w + ∇p = 0, in Q, (2.7d)

Aσ − ε(u) + cr

2α
Ip + ar

2β
IT = 0, in Q, (2.7e)

−∇ · σ = f , in Q. (2.7f)

We now set

T := L2(Ω), R := H(div, Ω), P := L2(Ω), W := H(div, Ω), S := Hs(div, Ω), U := (L2(Ω))d.

The following mixed variational formulation of the problem (2.1) can be obtained by multiplying by adequate 
test functions and then integrating by parts: find (T (t), r(t), p(t), w(t), σ(t), u(t)) ∈ T ×R ×P ×W ×S ×U , 
such that a.e. for t ∈ J there holds

(a0 + ar)(∂tT, S) − br(∂tp, S) + ar

2β
(∂tσ, SI) + (Θ−1r · w, S) + (∇ · r, S) = (h, S), ∀S ∈ T , (2.8a)

(Θ−1r, y) − (T, ∇ · y) = 0, ∀y ∈ R, (2.8b)

(c0 + cr)(∂tp, q) − br(∂tT, q) + cr

2α
(∂tσ, qI) + (∇ · w, q) = (g, q), ∀q ∈ P, (2.8c)

(K−1w, z) − (p, ∇ · z) = 0, ∀z ∈ W, (2.8d)

(Aσ, τ ) + (u, ∇ · τ ) + cr

2α
(Ip, τ ) + ar

2β
(IT, τ ) = 0, ∀τ ∈ S, (2.8e)

−(∇ · σ, v) = (f , v), ∀v ∈ U , (2.8f)

and such that the initial conditions (2.1e) holds true in the weak sense, i.e.

(p(0), q) = (p0, q) ∀q ∈ P, (u(0), v) = (u0, v) ∀v ∈ U , and (T (0), S) = (T0, S) ∀S ∈ T . (2.8g)

Remark 2.1. Note that a different variational formulation of the problem (2.7) is possible, using a weakly 
symmetric space for the stress tensor. This formulation will then involve a new variable acting as a Lagrange 
multiplier which is enforcing the symmetry of the stress (see e.g. [2,4,20]). For simplicity of presentation we 
shall keep the formulation (2.8) throughout. The analysis presented next can nevertheless also be extended 
to the previously mentioned formulation using the same techniques, as done in [1] for the four-field Biot 
equations.

Remark 2.2. The nonlinear coupling in the above problem makes the analysis difficult. The next section is 
therefore devoted to analyzing a linearized problem, the results from which will be helpful when analyzing 
the full nonlinear problem in the last section. We mention also that other nonlinearities can be added, e.g. 
nonlinear compressibility or nonlinear Lamé parameters.

3. Analysis of the linear problem

In this section we introduce a linear version of the problem (2.8). Precisely, we replace the convec-
tive transport term (Θ−1r · w, S) in the energy balance equation (2.8a), by −(η · w, S), for some given 
η ∈ L∞(Ω). We denote by γ := ‖η‖∞. We introduce the resulting linear problem which reads: find 
(T (t), r(t), p(t), w(t), σ(t), u(t)) ∈ T × R × P × W × S × U , such that for a.e. t ∈ J there holds
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(a0 + ar)(∂tT, S) − br(∂tp, S) + ar

2β
(∂tσ, SI) − (η · w, S) + (∇ · r, S) = (h, S), ∀S ∈ T , (3.1a)

(Θ−1r, y) − (T, ∇ · y) = 0, ∀y ∈ R, (3.1b)

(c0 + cr)(∂tp, q) − br(∂tT, q) + cr

2α
(∂tσ, qI) + (∇ · w, q) = (g, q), ∀q ∈ P, (3.1c)

(K−1w, z) − (p, ∇ · z) = 0, ∀z ∈ W, (3.1d)

(Aσ, τ ) + (u, ∇ · τ ) + cr

2α
(Ip, τ ) + ar

2β
(IT, τ ) = 0, ∀τ ∈ S, (3.1e)

−(∇ · σ, v) = (f , v), ∀v ∈ U , (3.1f)

and such that initial conditions (2.8g) holds true. The remaining part of this section is devoted to proving 
the well-posedness of this system. In what follows, we assume the following hypothesis on the effective 
thermal capacity a0, the thermal dilation coefficient b0, the specific storage coefficient c0 and the Lamé 
parameters μ, λ;

b0 − αβ

μ + λ
> 0, c0 − cr

2 − b0 − 1
6(μ + λ) > 0, a0 − ar

2 − b0 − 1
6(μ + λ) > 0. (3.2)

These constraints are typically needed in order to ensure a gradient flow structure. Similar constraints 
were used to analyze the Biot equations in mixed form in [1]. We also refer the reader to [21] for a more 
detailed discussion about the scaling of Biot’s (isothermal) equations. However, compared to these works, 
our constraints involve also the thermal coefficients. We omit any further discussion on the justification 
for these constraints, other than they are necessary to prove the results we present. The well-posedness of 
problem (3.1) is then given in the following result.

Theorem 3.1 (Well-posedness of the linear problem). Under Assumption 1, the problem (3.1), (2.8g) has a 
unique solution

(T, r) ∈ H1(J ; L2(Ω)) ×
(
L2(J ; H(div; Ω)) ∩ L∞(J ; L2(Ω))

)
, (3.3a)

(p, w) ∈ H1(J ; L2(Ω)) ×
(
L2(J ; H(div; Ω)) ∩ L∞(J ; L2(Ω))

)
, (3.3b)

(u, σ) ∈ H1(J ; L2(Ω)) ×
(
L2(J ; Hs(div; Ω)) ∩ H1(J ; L2(Ω))

)
. (3.3c)

Moreover, if g, h ∈ H1(J ; L2(Ω)), f ∈ H2(J ; L2(Ω)) then

(T, r) ∈ W 1,∞(J ; L2(Ω)) ×
(
L∞(J ; H(div; Ω)) ∩ H1(J ; L2(Ω))

)
, (3.4a)

(p, w) ∈ W 1,∞(J ; L2(Ω)) ×
(
L∞(J ; H(div; Ω)) ∩ H1(J ; L2(Ω))

)
, (3.4b)

(u, σ) ∈ W 1,∞(J ; L2(Ω)) ×
(
L∞(J ; Hs(div; Ω)) ∩ W 1,∞(J ; L2(Ω))

)
. (3.4c)

The proof will follow from a series of partial results to be done in the sequel. The analysis uses a Galerkin 
method together with the theory of differential algebraic equations (DAEs), as well as weak compactness 
arguments (cf. [1,37,26,15]).

3.1. Construction of approximate solutions

In order to employ Galerkin’s method we introduce a finite dimensional approximation of the problem 
(3.1). We need to introduce the following finite dimensional subspaces. Let (i, j, k, l, m, n) ∈ N

6 be fixed 
and strictly positive, and let Ti := span{S� ∈ T : 
 = 1, · · · , i}, Rj := span{y� ∈ R : 
 = 1, · · · , j}, 
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Pk := span{q� ∈ P : 
 = 1, · · · , k}, Wl := span{z� ∈ W : 
 = 1, · · · , l}, Sm := span{τ � ∈ S : 
 = 1, · · · , m}
and Un := span{v� ∈ U : 
 = 1, · · · , n}, where the functions S�, y�, q�, z�, τ � and v�, for 
 ∈ N, constitute 
Hilbert bases for the spaces T , R, P, W, S and U , respectively. Let now (Ti, rj , pk, wl, σm, un) : [0, Tf ]6 →
Ti × Rj × Pk × Wl × Sm × Un be the solution to the following problem:

(a0 + ar)(∂tTi, S�) − br(∂tpk, S�) + ar

2β
(∂tσm, S�I)

−(η · wl, S�) + (∇ · rj , S�) = (h, S�), 
 = 1, · · · , i, (3.5a)

(Θ−1rj , y�) − (Ti, ∇ · y�) = 0, 
 = 1, · · · , j, (3.5b)

(c0 + cr)(∂tpk, q�) − br(∂tTi, q�) + cr

2α
(∂tσm, q�I) + (∇ · wl, q�) = (g, q�), 
 = 1, · · · , k, (3.5c)

(K−1wl, z�) − (pk, ∇ · z�) = 0, 
 = 1, · · · , l, (3.5d)

(Aσm, τ �) + (un, ∇ · τ �) + cr

2α
(Ipk, τ �) + ar

2β
(ITi, τ �) = 0, 
 = 1, · · · , m, (3.5e)

−(∇ · σm, v�) = (f , v�), 
 = 1, · · · , n. (3.5f)

We introduce the coefficient vectors of the solutions: let Ti(t) := [T1(t), · · · , Ti(t)]T where Ti(x, t) =∑i
�=1 T�(t)S�, Rj(t) := [r1(t), · · · , rj(t)]T where rj(x, t) =

∑j
�=1 r�(t)y�, Pk(t) := [p1(t), · · · , pk(t)]T

where pk(x, t) =
∑k

�=1 p�(t)q�, Wl(t) := [w1(t), · · · , wl(t)]T where wl(x, t) =
∑l

�=1 w�(t)z�, Σm(t) :=
[σ1(t), · · · , σm(t)]T where σm(x, t) =

∑m
�=1 σ�(t)τ � and Un(t) := [u1(t), · · · un(t)]T where un(x, t) =∑n

�=1 u�(t)v�.
Thus, we impose the initial conditions by

T�(0) = (T0, S�), 1 ≤ 
 ≤ i, u�(0) = (u0, v�), 1 ≤ 
 ≤ n, p�(0) = (p0, q�), 1 ≤ 
 ≤ k. (3.5g)

We also define the following linear operators: (Aσσ)ıj := (Aτ ı, τ j), for 1 ≤ ı, j ≤ m, (App)ıj := (c0 +
cr)(qı, qj), for 1 ≤ ı, j ≤ k, (AT T )ıj := (a0 + ar)(Sı, Sj), for 1 ≤ ı, j ≤ i, (Aww)ıj := (K−1zı, zj), for 
1 ≤ ı, j ≤ l, (Arr)ıj := (Θ−1yı, yj), for 1 ≤ ı, j ≤ j, (Auσ)ıj := (vı, ∇ · τ j), for 1 ≤ ı ≤ n, 1 ≤ j ≤ m, 
(Apσ)ıj := cr

2α
(Iqı, τ j), for 1 ≤ ı ≤ k, 1 ≤ j ≤ m, (AT σ)ıj := ar

2β
(ISı, τ j), for 1 ≤ ı ≤ i, 1 ≤ j ≤ m, 

(AT p)ıj := −br(Sı, qj), for 1 ≤ ı ≤ i, 1 ≤ j ≤ k, (Awp)ıj := (∇ · zı, qj), 1 ≤ ı ≤ l, 1 ≤ j ≤ k, (ArT )ıj :=
(∇ · yı, Sj), for 1 ≤ ı ≤ l, 1 ≤ j ≤ i, and (AwT )ıj := (η · zı, Sj), for 1 ≤ ı ≤ l, 1 ≤ j ≤ i.

Finally, we define the vectors: (L1)� := (f , v�), for 1 ≤ 
 ≤ n, (L2)� := (g, q�), for 1 ≤ 
 ≤ k and 
(L3)� := (h, S�), for 1 ≤ 
 ≤ i. We rewrite using the above notation the problem (3.5) as a system of ODEs

AT T
d
dt

Ti + AT p
d
dt

Pk + AT σ
d
dt

Σm − AwT Wl + AT
rT Rj = L3, (3.6a)

ArRj − ArT Ti = 0, (3.6b)

App
d
dt

Pk + AT
T p

d
dt

Ti + Apσ
d
dt

Σm + AT
wpWl = L2, (3.6c)

AwWl − AwpPk = 0, (3.6d)

AσσΣm + AT
uσUn + AT

pσPk + AT
T σTi = 0, (3.6e)

− AuσΣm = L1. (3.6f)

After rearranging, these ODE equations can be written in the form of a DAE system

Φ d
dt

X(t) + ΨX(t) = L(t), (3.7)
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where X(t) := (Pk(t), Σm(t), Ti(t), Wl(t), Un(t), Rj(t))T , L(t) := (L2(t), 0, L3(t), 0, L1(t), 0)T and

Φ :=

⎛
⎜⎜⎜⎜⎜⎝

App Apσ AT
T p 0 0 0

0 0 0 0 0 0
AT p AT σ AT T 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (3.8)

and

Ψ :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 AT
wp 0 0

AT
pσ Aσσ AT

T σ 0 AT
uσ 0

0 0 0 −AwT 0 AT
rT

−Awp 0 0 Aww 0 0
0 −Auσ 0 0 0 0
0 0 −ArT 0 0 Arr

⎞
⎟⎟⎟⎟⎟⎠ . (3.9)

From the theory of DAEs, equation (3.7) together with initial conditions (3.5g) has a solution if the 
matrix pencil, sΦ + Ψ, is nonsingular for some s �= 0 (see [9]). Note that we can write sΦ + Ψ as a block 
2 × 2 matrix as follows

sΦ + Ψ =
(

A B
−C D

)
,

where

A =

⎛
⎝ sApp sApσ sAT

T p

AT
pσ Aσσ AT

T σ
sAT p sAT σ sAT T

⎞
⎠ , B =

⎛
⎝ AT

wp 0 0
0 AT

uσ 0
−AwT 0 AT

rT

⎞
⎠ ,

C =
(Awp 0 0

0 Auσ 0
0 ArT

)
, D =

(Aww 0 0
0 0 0
0 0 Arr

)
.

Let B = Sm × Pk × Ti and C = Un × Wl × Rj , such that the bilinear form associated with sΦ + Ψ can 
be decomposed into the bilinear forms associated with each block, i.e. φA : B × B → R, φB : C × B → R, 
φC : B × C → R, and φD : C × C → R, where

φA((σm, pk, Ti), (τ , q, S)) := s(c0 + cr)(pk, q) + cr

2α
(Ipk, τ ) + s

cr

2α
(σm, qI) − sbr(pk, S)

− sbr(Ti, q) + (Aσm, τ ) + s
ar

2β
(σm, SI)

+ ar

2β
(ITi, τ ) + s(a0 + ar)(Ti, S), (3.10a)

φB((τ , q, S), (un, wl, rj)) := (∇ · wl, q) + (un, ∇ · τ ) − (η · wl, S) + (∇ · rj , S), (3.10b)

φC((σm, pk, Ti), (v, z, y)) := (pk, ∇ · z) + (∇ · σm, v) + (Ti, ∇ · y), (3.10c)

φD((un, wl, rj), (v, z, y)) := (K−1wl, z) + (Θ−1rj , y). (3.10d)

The following Lemma will imply the invertibility of sΦ + Ψ for some s �= 0.

Lemma 3.2. For any tuple (i, j, k, l, m, n) ≥ 1, there exists an s �= 0 such that the bilinear form associated 
with sΦ + Ψ is strictly positive, i.e.
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φA + φB − φC + φD > 0,

for all nonzero (τ , q, S) ∈ B and (v, z, y) ∈ C.

Proof. Denoting by τ =
(

τ11 τ12
τ21 τ22

)
, and using the definition of the compliance tensor (2.2), together with 

the C–S, Young, and triangle inequalities yields

φA((τ , q, S), (τ , q, S)) + φB((v, z, y), (τ, q, S)) − φC((τ, q, S), (v, z, y)) + φD((v, z, y), (v, z, y))

= s(c0 + cr) ‖q‖2 + s(a0 + ar) ‖S‖2 + (1 + s) cr

2α
(Iq, τ ) − 2sbr(q, S) + (1 + s) ar

2β
(τ , SI)

+ (Aτ , τ ) − (η · z, S) + (K−1z, z) + (Θ−1y, y)

≥
(

s(c0 + cr − br) − (1 + s) cr

2α

ε1

2

)
‖q‖2 +

(
s(a0 + ar − br) − (1 + s) ar

2β

ε2

2 − γ

2km

)
‖S‖2

+
(

1
2(μ + λ) − (1 + s) cr

2α

1
2ε1

− (1 + s) ar

2β

1
2ε2

) (
‖τ 11‖2 + ‖τ 22‖2

)

+ θm ‖y‖2 + km

2 ‖z‖2 + 1
μ

‖τ 12‖2
. (3.11)

What remains is to show if there exist parameters ε1, ε2, and s such that the following six constraints are 
satisfied

0 ≤ s(c0 + cr − br) − (1 + s) cr

2α

ε1

2 , (3.12a)

0 ≤ s(a0 + ar − br) − (1 + s) ar

2β

ε2

2 − γ

2km
, (3.12b)

0 ≤ 1
2(μ + λ) − (1 + s) cr

2α

1
2ε1

− (1 + s) ar

2β

1
2ε2

, (3.12c)

0 < ε1, ε2, and s �= 0. (3.12d)

It is easily verified that the following choices are satisfactory; s = −2, ε1 = 4α

cr(1 + s)s(c0 + cr − br), and 

ε2 = 4β

ar(1 + s)

(
s(a0 + ar − br) − γ

2km

)
. We use these choices in (3.11), and letting

ξ := 1 + 1
16(μ + λ)(c0 + cr − br) + 1

16(μ + λ)(a0 + ar − br + γ/(2km)) > 0, it is inferred that

φA((τ , q, S), (τ , q, S)) + φB((v, z, y), (τ, q, S)) − φC((τ, q, S), (v, z, y)) + φD((v, z, y), (v, z, y))

≥ ξ

2(μ + λ)

(
‖τ 11‖2 + ‖τ 22‖2

)
+ km

2 ‖z‖2 + θm ‖y‖2 + 1
μ

‖τ12‖2
> 0, (3.13)

for all nonzero (τ , q, S) ∈ B, (v, z, y) ∈ C. Thus, there exists an s �= 0 such that sΦ + Ψ is nonsingular, and 
the equation (3.7) has a solution. �
3.2. A priori estimates

In this section, we derive a priori estimates for the unknowns which will allow us to pass to the limit 
in problem (3.5) by weak compactness arguments [38,15]. Throughout this section we denote by C > 0 a 
generic positive constant which may change value from one line to the next, but it will always be independent 
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of the relevant parameters, i.e. of the tuple (i, j, k, l, m, n). We summarize these estimates in the following 
theorem.

Theorem 3.3 (A priori estimates). Under the Assumption 1, there exists a constant C > 0, independent of 
(i, j, k, l, m, n) ≥ 1, such that

(i)

‖pk‖2
L∞(J;L2(Ω)) + ‖Ti‖2

L∞(J;L2(Ω)) + ‖wl‖2
L2(J;L2(Ω)) + ‖rj‖2

L2(J;L2(Ω)) + ‖σ(0)‖2
A

≤ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
,

(ii) ‖∂tpk‖2
L2(J;L2(Ω)) + ‖∂tTi‖2

L2(J;L2(Ω)) + ‖wl‖2
L∞(J;L2(Ω)) + ‖rj‖2

L∞(J;L2(Ω))

≤ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
,

(iii) ‖σm‖2
L∞(J;L2(Ω)) + ‖∂tσm‖2

L2(J;L2(Ω)) + ‖un‖2
L∞(J;L2(Ω)) + ‖∂tun‖2

L2(J;L2(Ω))

≤ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
,

(iv) ‖wl‖2
L2(J;H(div,Ω)) + ‖rj‖2

L2(J;H(div,Ω)) + ‖σm‖2
L2(J;Hs(div,Ω))

≤ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
.

Proof. By Thomas’ Lemma [33] there exist σ̃ ∈ H1(J ; Sm) such that −∇ · σ̃(·, t) = un(·, t) on Ω for t ∈ J , 
and with ‖σ̃(t)‖ ≤ C ‖un(t)‖. Thus, we set τ � = σ̃(t) in (3.5e) and obtain

‖un‖2 = −(un, ∇ · σ̃) = (Aσm, σ̃) + cr

2α
(Ipk, σ̃) + ar

2β
(ITi, σ̃)

≤
(

1
2μ

‖σm‖ + cr

2α
‖pk‖ + ar

2β
‖Ti‖

)
‖σ̃‖

≤
(

1
2μ

‖σm‖ + cr

2α
‖pk‖ + ar

2β
‖Ti‖

)
C ‖un‖ , (3.14a)

which implies

‖un‖2 ≤ C
(

‖σm‖2 + ‖pk‖2 + ‖Ti‖2
)

. (3.14b)

Next, we take τ � = σm in (3.5e) and v� = un in (3.5f), and add the resulting equations together to obtain

‖σm‖2
A = − cr

2α
(Ipk, σm) − ar

2β
(ITi, σm) + (f , un). (3.15a)

Applying the C–S and Young inequalities together with the above estimate (3.14b) yields

‖σm‖2
A ≤ cr

2α

(
1

2ε1
‖pk‖2 + ε1

2 ‖σm‖2
)

+ ar

2β

(
1

2ε2
‖Ti‖2 + ε2

2 ‖σm‖2
)

+ 1
2ε3

‖f‖2 + ε3

2 ‖un‖2

≤
(

α

2 ε1 + β

2 ε2 + C(μ + λ)ε3

)
‖σm‖2

A +
(

cr

4αε1
+ C

ε3

2

)
‖pk‖2

+
(

ar

4βε2
+ C

ε3

2

)
‖Ti‖2 + 1

2ε3
‖f‖2

. (3.15b)
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Choosing suitable values for the epsilons, i.e. ε1 = 1
3α

, ε2 = 1
3β

and ε3 = 1
6C(μ + λ) , we obtain

‖σm‖2
A ≤

(
3
2cr + 1

6(μ + λ)

)
‖pk‖2 +

(
3
2ar + 1

6(μ + λ)

)
‖Ti‖2 + C ‖f‖2

. (3.15c)

It then follows immediately that

‖un‖2 ≤ C
(

‖pk‖2 + ‖Ti‖2 + ‖f‖2
)

. (3.16)

Take now σ̃ ∈ L2(J ; Sm) such that −∇ · σ̃(·, t) = ∂tun(·, t) on Ω, for t ∈ J , and with ‖σ̃(t)‖ ≤ C ‖∂tun(t)‖. 
Then, by differentiating equation (3.5e) with respect to time, and setting τ � = σ̃, we get in the same way 
as before

‖∂tun‖2 ≤ C
(

‖∂tσm‖2 + ‖∂tpk‖2 + ‖∂tTi‖2
)

. (3.17)

We continue by differentiating equations (3.5e) and (3.5f) with respect to time, and take ∂tσm and ∂tun as 
test functions, respectively, and get analogously

‖∂tσm‖2
A ≤

(
3
2cr + 1

6(μ + λ)

)
‖∂tpk‖2 +

(
3
2ar + 1

6(μ + λ)

)
‖∂tTi‖2 + C ‖∂tf‖2

, (3.18)

and

‖∂tun‖2 ≤ C
(

‖∂tpk‖2 + ‖∂tTi‖2 + ‖∂tf‖2
)

. (3.19)

Next, we take ∂tσm, pk, wl, Ti and rj as a test functions in (3.5e), (3.5c), (3.5d), (3.5a) and (3.5b), 
respectively. We differentiate then (3.5f) with respect to time, and take un as a test function. Adding 
together the resulting equations yields

(c0 + cr)(∂tpk, pk) + (a0 + ar)(∂tTi, Ti) + (K−1wl, wl) + (Θ−1rj , rj)

= (Aσm, ∂tσm) + br(∂tTi, pk) + br(∂tpk, Tj) + (η · wl, Ti)

− (∂tf , un) + (g, pk) + (h, Ti). (3.20a)

Using the properties of K and Θ, in addition to the C–S and Young inequalities yields

(c0 + cr − br)1
2

d
dt

‖pk‖2 + (a0 + ar − br) 1
2

d
dt

‖Ti‖2 +
(

km − γ
1
2ε

)
‖wl‖2 + θm ‖rj‖2

≤ 1
2

(
d
dt

‖σm‖2
A + (ε + 1) ‖Ti‖2 + ‖un‖2 + ‖pk‖2 + ‖∂tf‖2 + ‖g‖2 + ‖h‖2

)
. (3.20b)

Choosing ε = γ

km
, integrating from 0 to t and substituting the inequalities (3.14b) and (3.15c), we deduce

(
c0 − cr

2 − br − 1
6(μ + λ)

)
‖pk(t)‖2 +

(
a0 − ar

2 − br − 1
6(μ + λ)

)
‖Ti(t)‖2

+
t∫

0

(
km ‖wl(τ)‖2 + θm ‖rj(τ)‖2

)
dτ
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≤ C

t∫
0

(
‖pk(τ)‖2 + ‖Ti(τ)‖2

)
dτ − ‖σm(0)‖2

A

+ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖pk(0)‖2 + ‖Ti(0)‖2

)
. (3.20c)

Since from (3.5g) we have

‖Ti(0)‖2 ≤ ‖T0‖2 and ‖pk(0)‖2 ≤ ‖p0‖2
, (3.21)

we obtain the first estimate (i) using Grönwall’s inequality, i.e.

‖pk‖2
L∞(J;L2(Ω)) + ‖Ti‖2

L∞(J;L2(Ω)) + ‖wl‖2
L2(J;L2(Ω) + ‖rj‖2

L2(J;L2(Ω) + ‖σm(0)‖2
A

≤ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2 + ‖T0‖2

)
. (3.22)

For the second estimate, we differentiate (3.5e), (3.5f), (3.5d) and (3.5b) with respect to time and use 
∂tσm, ∂tun, wl and rj as test functions, respectively. In (3.5c) and (3.5a), we use ∂tpk and ∂tTi as test 
functions, respectively. Summing the resulting equations yields

(c0 + cr) ‖∂tpk‖2 + (a0 + ar) ‖∂tTi‖2 + (K−1∂twl, wl) + (Θ−1∂trj , rj)

= ‖∂tσm‖2
A + 2br(∂tTi, ∂tpk) + (η · wl, ∂tTi) − (∂tf , ∂tun) + (g, ∂tpk) + (h, ∂tTi). (3.23a)

By applying the C–S and Young inequalities, and substituting the estimates (3.17) and (3.18), we deduce

(
c0 − cr

2 − br − 1
6(μ + λ) − ε2

2

)
‖∂tpk‖2

+
(

a0 − ar

2 − br − 1
6(μ + λ) − ε4

2 − ε3

2

)
‖∂tTi‖2 + km

2
d
dt

‖wl‖2 + θm

2
d
dt

‖rj‖2

≤ ε1

2
C

(
‖∂tpk‖2 + ‖∂tTi‖2 + ‖∂tf‖2

)

+ γ
1

2ε4
‖wl‖2 + 1

2ε1
‖∂tf‖2 + 1

2ε2
‖g‖2 + 1

2ε3
‖h‖2

. (3.23b)

Choosing suitable values for the epsilons, i.e. ε1 = αβ

C(μ + λ) , ε2 = αβ

μ + λ
, ε3 = αβ

2(μ + λ) , and ε4 = αβ

2(μ + λ) , 

we infer
(

c0 − cr

2 − b0 − 1
6(μ + λ)

)
‖∂tpk‖2 +

(
a0 − ar

2 − b0 − 1
6(μ + λ)

)
‖∂tTi‖2

+ km

2
d
dt

‖wl‖2 + θm

2
d
dt

‖rj‖2

≤ C
(

‖wl‖2 + ‖∂tf‖2 + ‖g‖2 + ‖h‖2
)

. (3.23c)

Simplifying the above expression, integrating over (0, t) and using the initial conditions yields

‖wl(t)‖2 + ‖rj(t)‖2 +
t∫

0

(
‖∂tpk(τ)‖2 + ‖∂tTi(τ)‖2

)
dτ
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≤ C

⎛
⎝ t∫

0

‖wl(τ)‖2 dτ + ‖∂tf‖2
L2(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖wl(0)‖2 + ‖rj(0)‖2

⎞
⎠ .

(3.23d)

It remains to provide estimates for ‖wl(0)‖2 and ‖rj(0)‖2. To this end, take wl as a test function in 
equation (3.5d), and set t = 0. This gives

(K−1wl(0), wl(0)) = (pk(0), ∇ · wl(0)), (3.24a)

which holds true for any k, l ≥ 1. Use now the properties of K to bound the left-hand side, tend k → ∞
and then integrate by parts in the right-hand side to obtain

km ‖wl(0)‖2 ≤ (p0, ∇ · wl(0)) = −(∇p0, wl(0)) ≤ ‖∇p0‖ ‖wl(0)‖ . (3.24b)

Thus, we have

‖wl(0)‖2 ≤ C ‖p0‖2
H1

0 (Ω) . (3.24c)

Similarly, using (3.5b), we obtain

‖rj(0)‖2 ≤ C ‖T0‖2
H1

0 (Ω) . (3.24d)

Taking now (3.24c) and (3.24d) in (3.23d), and applying Grönwall’s lemma, we obtain the second estimate 
(ii), i.e.

‖∂tpk‖2
L2(J;L2(Ω)) + ‖∂tTi‖2

L2(J;L2(Ω)) + ‖wl‖2
L∞(J;L2(Ω)) + ‖rj‖2

L∞(J;L2(Ω))

≤ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
. (3.25)

Now we sum the estimates (3.15c), (3.16), (3.18), and (3.19), and substitute the estimates (3.22) and (3.25), 
to obtain (iii), i.e.

‖σm‖2
L∞(J;L2(Ω)) + ‖∂tσm‖2

L2(J;L2(Ω)) + ‖un‖2
L∞(J;L2(Ω)) + ‖∂tun‖2

L2(J;L2(Ω))

≤ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
. (3.26)

It remains to obtain the estimate (iv), for which we need just to bound the divergences. Since ∇ ·rj(t) ∈ L2(Ω)
for t ∈ J , we can write ∇ · rj(t) =

∑∞
�=1 ξ�(t)S�, for some functions ξ�(t) ∈ R. Now, we multiply equation 

(3.5a) with ξ�, sum over 
 = 1, .., i and use the C–S and Young inequalities to obtain

(∇ · rj ,
i∑

�=1

ξ�S�)

= (h,

i∑
�=1

ξ�S�) − (a0 + ar)(∂tTi,

i∑
�=1

ξ�S�) − ar

2β
(∂tσl,

i∑
�=1

ξ�S�) + br(∂tpk,

i∑
�=1

ξ�S�) + (η · wl,

i∑
�=1

ξ�S�)

≤ 1
2

( ∥∥∥∥∥
i∑

�=1

∂tξ�q�

∥∥∥∥∥
2

+ 5 ‖h‖2 + 5(a0 + ar)2 ‖∂tTi‖2 + 5a2
r

4β2 ‖∂tσm‖2 + 5b2
r ‖∂tpk‖2 + 5γ ‖wl‖2

)
. (3.27a)
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Using (3.18), integrating in time and using (3.25) we get

Tf∫
0

(∇ · rj ,
i∑

�=1

ξ�S�)dt ≤ 1
2

Tf∫
0

∥∥∥∥∥
i∑

�=1

ξ�S�

∥∥∥∥∥
2

dt

+ C
(

‖f‖2
H1(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
. (3.27b)

It remains to tend i → ∞ to obtain

‖∇ · rj‖2
L2(J;L2(Ω)) ≤ C

(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
.

(3.27c)

Similarly, we obtain the following from equations (3.5c) and (3.5f)

‖∇ · wl‖2
L2(J;L2(Ω)) ≤ C

(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(3.27d)

and

‖∇ · σm‖2
L2(J;L2(Ω)) ≤ C ‖f‖2

L2(J;L2(Ω)) . (3.27e)

Combining the estimates (3.27c)–(3.27d) with (i) and (iii), we get the estimate (iv). This ends the proof. �
The following estimates prove that the solution has improved regularity given some additional regularity 

on the data. We state the result as a lemma:

Lemma 3.4 (Estimates for improved regularity). Assume that f ∈ H2(J ; L2(Ω)) and g, h ∈ H1(J ; L2(Ω)). 
Then there exists a constant C > 0 independent of (i, j, k, l, m, n) such that

(i)

‖pk‖2
W 1,∞(J;L2(Ω)) + ‖Ti‖2

W 1,∞(J;L2(Ω)) + ‖wl‖2
H1(J;L2(Ω)) + ‖rj‖2

H1(J;L2(Ω)) + ‖∂tσm(0)‖2

≤ C
(

‖f‖2
H2(J;L2(Ω)) + ‖g‖2

H1(J;L2(Ω)) + ‖h‖2
H1(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
,

(ii) ‖σm‖2
W 1,∞(J;L2(Ω)) + ‖un‖2

W 1,∞(J;L2(Ω))

≤ C
(

‖f‖2
H2(J;L2(Ω)) + ‖g‖2

H1(J;L2(Ω)) + ‖h‖2
H1(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
,

(iii) ‖wl‖2
L∞(J;H(div,Ω)) + ‖rj‖2

L∞(J;H(div,Ω)) + ‖σm‖2
L∞(J;Hs(div,Ω))

≤ C
(

‖f‖2
H2(J;L2(Ω)) + ‖g‖2

H1(J;L2(Ω)) + ‖h‖2
H1(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
.

Proof. We begin by differentiating equations (3.5e), (3.5c), (3.5d), (3.5a) and (3.5b) with respect to time, 
and take ∂ttσm, ∂tpk, ∂twl, ∂tTi and ∂trj as a test functions respectively. Then, we differentiate (3.5f) twice 
with respect to time, and take ∂tun as a test function. Summing the resulting equations yields
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(c0 + cr)1
2

d
dt

‖∂tpk‖2 + (a0 + ar)1
2

d
dt

‖∂tTi‖2 + (K−1∂twl, ∂twl) + (Θ−1∂trj , ∂trj)

= 1
2

d
dt

‖∂tσm‖A + br
d
dt

(∂tTi, ∂tpk) + (η · ∂twl, ∂tTi)

− (∂ttf , ∂tun) + (∂tg, ∂tpk) + (∂th, ∂tTi). (3.28a)

Using the properties of K and Θ, in addition to the C–S and Young inequalities, we get

(c0 + cr − br) 1
2

d
dt

‖∂tpk‖2 + (a0 + ar − br) 1
2

d
dt

‖∂tTi‖2 + km

2 ‖∂twl‖2 + θm ‖∂trj‖2

≤ 1
2

(
d
dt

‖∂tσm‖2
A + γ

km
‖∂tTi‖2 + ‖∂tpk‖2 + ‖∂tun‖2 + ‖∂ttf‖2 + ‖∂tg‖2 + ‖∂th‖2

)
. (3.28b)

By integrating over (0, t), using the initial conditions and substituting the inequalities (3.18) and (3.19), it 
is inferred that

(
c0 − cr

2 − br − 1
6(μ + λ)

)
‖∂tpk(t)‖2 +

(
a0 − ar

2 − br − 1
6(μ + λ)

)
‖∂tTi(t)‖2

+
t∫

0

(
km ‖∂twl(τ)‖2 + θm ‖∂trj(τ)‖2

)
dτ + ‖∂tσm(0)‖2

A

≤ C

t∫
0

(
‖∂tpk(τ)‖2 + ‖∂tTi(τ)‖2

)
dτ

+C
(

‖f‖2
H2(J;L2(Ω)) + ‖g‖2

H1(J;L2(Ω)) + ‖h‖2
H1(J;L2(Ω)) + ‖∂tp(0)‖2 + ‖∂tT (0)‖2

)
. (3.28c)

We proceed to bound ‖∂tpk(0)‖ and ‖∂tTi(0)‖. To this end, we discard the terms under the time differential 
on the left-hand side of (3.23c) and set t = 0 to obtain

(
c0 − cr

2 − b0 − 1
6(μ + λ)

)
‖∂tpk(0)‖2 +

(
a0 − ar

2 − b0 − 1
6(μ + λ)

)
‖∂tTi(0)‖2

≤ C
(

‖wl(0)‖2 + ‖∂tf(0)‖2 + ‖g(0)‖2 + ‖h(0)‖2
)

. (3.29a)

We use (3.24c) to bound the initial value of the Darcy flux, i.e.,

‖∂tpk(0)‖2 + ‖∂tTi(0)‖2

≤ C
(

‖p0‖2
H1

0 (Ω) + ‖f‖2
H2(J;L2(Ω)) + ‖g‖2

H1(J;L2(Ω)) + ‖h‖2
H1(J;L2(Ω))

)
. (3.29b)

Now we substitute this in (3.28c), using also (i) from Theorem 3.3 and apply Grönwall’s Lemma to obtain

‖∂tpk‖2
L∞(J;L2(Ω)) + ‖∂tTi‖2

L∞(J;L2(Ω)) + ‖∂twl‖2
L2(J;L2(Ω)) + ‖∂trj‖2

L2(J;L2(Ω)) + ‖∂tσm(0)‖2
A

≤ C
(

‖f‖2
H2(J;L2(Ω)) + ‖g‖2

H1(J;L2(Ω)) + ‖h‖2
H1(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
. (3.30)

Summing with (i) from Theorem 3.3 produces the estimate (i). We continue by summing (3.18) and (3.19), 
and combine with (3.30) to obtain
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‖∂tσm‖2
L∞(J;L2(Ω)) + ‖∂tun‖2

L∞(J;L2(Ω))

≤ C
(

‖f‖2
H2(J;L2(Ω)) + ‖g‖2

H1(J;L2(Ω)) + ‖h‖2
H1(J;L2(Ω)) + ‖p0‖2

H1
0 (Ω) + ‖T0‖2

H1
0 (Ω)

)
. (3.31)

Summing the above estimate with estimate (iii) from Theorem 3.3 produces the estimate (ii). Going back 
to the estimate (3.27a), we now substitute in the right-hand side with (3.30) and (3.31), let i → ∞ to obtain

‖∇ · rj‖2
L∞(J;L2(Ω)) ≤ C

(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
.

(3.32)

From equations (3.5c) and (3.5f) we obtain using the same technique

‖∇ · wl‖2
L∞(J;L2(Ω)) ≤ C

(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(3.33)

and

‖∇ · σm‖2
L∞(J;L2(Ω)) ≤ C ‖f‖2

L∞(J;L2(Ω)) . (3.34)

Summing the estimates (3.32)–(3.34) and combining with (ii) and (iii) from Theorem 3.3 produces the 
estimate (iii). This ends the proof. �
3.3. End of the proof of Theorem 3.1:

The proof of the first part of Theorem 3.1 follows the steps below:
• Lemma 3.3 implies that for the sequences {σm}∞

0 , {un}∞
0 , {pk}∞

0 , {wl}∞
0 , {Ti}∞

0 and {rj}∞
0 defined by 

(3.5): {σm}∞
0 is bounded in L∞(J ; Hs(div, Ω)) ∩ H1(J ; L2(Ω)), {un}∞

0 is bounded in H1(J ; L2(Ω)), {pk}∞
0

is bounded in H1(J ; L2(Ω)), {wl}∞
0 is bounded in L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)), {Ti}∞

0 is bounded in 
H1(J ; L2(Ω)), and {rj}∞

0 is bounded in L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)).
By the weak compactness properties of the spaces there exist subsequences (denoted the same way 

as before) and functions σ ∈ L∞(J ; Hs(div, Ω)) ∩ H1(J ; L2(Ω)), u ∈ H1(J ; L2(Ω)), p ∈ H1(J ; L2(Ω)), 
w ∈ L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)), T ∈ H1(J ; L2(Ω)), and r ∈ L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)), such 
that

• Ti ⇀ T in H1(J ; L2(Ω)),
• rj ⇀ r in L2(J ; H(div, Ω)),
• pk ⇀ p in H1(J ; L2(Ω)),
• wl ⇀ w in L2(J ; H(div, Ω)),
• σm ⇀ σ in L2(J ; Hs(div, Ω)),
• ∂tσm ⇀ ∂tσ in L2(J ; L2(Ω)),
• un ⇀ u in H1(J ; L2(Ω)).

In order to pass to the limit in problem (3.5), we fix a tuple (i, j, k, l, m, n) ≥ 1 and take (S, y, q, z, τ , v) ∈
C1(J ; Ti ×Rj ×Pk ×Wl ×Sm ×Un) as test functions, and then integrate equations (3.5a)–(3.5f) with respect 
to time to obtain

Tf∫
0

{(a0 + ar)(∂tTi, S) − br(∂tpk, S) + ar

2β
(∂tσm, SI) + (η · wl, S) + (∇ · rj , S)}dt
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=
Tf∫
0

(h, S)dt, (3.35a)

Tf∫
0

{(Θ−1rj , y) − (Ti, ∇ · y)}dt = 0. (3.35b)

Tf∫
0

{(c0 + cr)(∂tpk, q) − br(∂tTi, q) + cr

2α
(∂tσm, qI) + (∇ · wl, q)}dt =

Tf∫
0

(g, q)dt, (3.35c)

Tf∫
0

{(K−1wl, z) − (pk, ∇ · z)}dt = 0, (3.35d)

Tf∫
0

{(Aσm, τ ) + (un, ∇ · τ ) + cr

2α
(Ipk, τ ) + ar

2β
(ITi, τ )}dt = 0, (3.35e)

−
Tf∫
0

(∇ · σm, v)dt =
Tf∫
0

(f , v)dt. (3.35f)

Passing to the limit yields

Tf∫
0

{(a0 + ar)(∂tT, S) − br(∂tp, S) + ar

2β
(∂tσ, SI) + (η · w, S) + (∇ · r, S)}dt =

Tf∫
0

(h, S)dt, (3.36a)

Tf∫
0

{(Θ−1r, y) − (T, ∇ · y)}dt = 0. (3.36b)

Tf∫
0

{(c0 + cr)(∂tp, q) − br(∂tT, q) + cr

2α
(∂tσ, qI) + (∇ · w, q)}dt =

Tf∫
0

(g, q)dt, (3.36c)

Tf∫
0

{(K−1w, z) − (p, ∇ · z)}dt = 0, (3.36d)

Tf∫
0

{(Aσ, τ ) + (u, ∇ · τ ) + cr

2α
(Ip, τ ) + ar

2β
(IT, τ )}dt = 0, (3.36e)

−
Tf∫
0

(∇ · σ, v)dt =
Tf∫
0

(f , v)dt. (3.36f)

Finally, by the density of the test function space, C1(J ; Ti × Rj × Pk × Wl × Sm × Un) in L2(J ; T × R ×
P × W × S × U) as (i, j, k, l, m, n) → ∞, the equations (3.1) hold true for a.e. t ∈ J . It remains now to show 
that the initial conditions are satisfied, i.e. T (0) = T0, u(0) = u0 and p(0) = p0, in the weak sense. To this 
end, take q ∈ C1(J ; Pk) such that q(Tf ) = 0 as a test function in (3.35c) and integrate the first term by 
parts in time
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Tf∫
0

{−(c0 + cr)(pk, ∂tq) − br(∂tTi, q) + cr

2α
(∂tσm, qI) + (∇ · wl, q)}dt

=
Tf∫
0

(g, q)dt + (c0 + cr)(pk(0), q(0)). (3.37)

On the other hand, from (3.36c) we obtain

Tf∫
0

{−(c0 + cr)(p, ∂tq) − br(∂tT, q) + cr

2α
(∂tσ, qI) + (∇ · w, q)}dt

=
Tf∫
0

(g, q)dt + (c0 + cr)(p(0), q(0)). (3.38)

Since q(0) was arbitrary, and since pn(0) → p0 in L2(Ω), we get that p(0) = p0. We obtain in the same way 
that u(0) = u0, and T (0) = T0.

• To finish the proof we show the uniqueness of a weak solution to problem (3.1). To this end, we assume 
that (T1(t), r1(t), p1(t), w1(t), σ1(t), u1(t)) and (T2(t), r2(t), p2(t), w2(t), σ2(t), u2(t)) are two solution tuples 
in T × R × P × W × S × U , and let (eT (t), er(t), ep(t), ew(t), eσ(t), eu(t)) be the corresponding difference. 
This then satisfies the following variational problem: find (eT (t), er(t), ep(t), ew(t), eσ(t), eu(t)) ∈ T × R ×
P × W × S × U such that for a.e. t ∈ J there holds

(a0 + ar)(∂teT , S) − br(∂tep, S) + ar

2β
(∂teσ, SI) − (η · ew, S) + (∇ · er, S) = 0, ∀S ∈ T , (3.39a)

(Θ−1er, y) − (eT , ∇ · y) = 0, ∀y ∈ R, (3.39b)

(c0 + cr)(∂tep, q) − br(∂teT , q) + cr

2α
(∂teσ, qI) + (∇ · ew, q) = 0, ∀q ∈ P, (3.39c)

(K−1ew, z) − (ep, ∇ · z) = 0, ∀z ∈ W, (3.39d)

(Aeσ, τ ) + (eu, ∇ · τ ) + cr

2α
(Iep, τ ) + ar

2β
(IeT , τ ) = 0, ∀τ ∈ S, (3.39e)

(∇ · eσ, v) = 0, ∀v ∈ U , (3.39f)

together with homogeneous initial conditions. Take now τ = ∂teσ in (3.39e), differentiate (3.39f) with 
respect to time and set v = eu, q = ep in (3.39c), z = ew in (3.39d), S = eT in (3.39a), and y = er in 
(3.39b), and add the resulting equations together

(c0 + cr)1
2

d
dt

(ep, ep) + (a0 + ar)1
2

d
dt

(eT , eT ) + (K−1ew, ew) + (Θ−1er, er)

= 1
2

d
dt

(Aeσ, eσ) + br
d
dt

(ep, eT ) + (η · ew, eT ). (3.40)

Integrating the above equation from 0 to t and using the properties of K and Θ, in addition to the C–S 
and Young inequalities yields

(c0 + cr)1
2 ‖ep(t)‖2 + (a0 + ar)1

2 ‖eT (t)‖2 +
t∫

0

(
km ‖ew(τ)‖2 + θm ‖er(τ)‖2

)
dτ
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≤ 1
2 ‖eσ(t)‖2

A + br

2 ‖ep(t)‖2 + br

2 ‖eT (t)‖2 +
t∫

0

(
γ

ε

2 ‖ew(τ)‖2 + 1
2ε

‖eT (τ)‖2
)

dτ, (3.41)

for some ε > 0. On the other hand, from (3.39e) and (3.39f) we obtain

‖eσ‖2
A = − cr

2α
(Iep, eσ) + ar

2β
(IeT , eσ)

≤
(

cr

2α

ε1

2 + ar

2β

ε2

2

)
2(μ + λ) ‖eσ‖2

A + cr

2α

1
2ε1

‖ep‖2 + ar

2β

1
2ε2

‖eT ‖2
. (3.42)

Choosing ε1 = 1
2α

and ε2 = 1
2β

, we get

1
2 ‖eσ‖2

A ≤ cr

2 ‖ep‖ + ar

2 ‖eT ‖ . (3.43)

Combining now (3.41) and (3.43), and choosing ε = km

γ
, we get

1
2

(
(c0 − br) ‖ep(t)‖2 + (a0 − br) ‖eT (t)‖2

)
+

t∫
0

(
km

2 ‖ew(τ)‖ + θm ‖er(τ)‖2
)

dτ ≤ γ

2km

t∫
0

‖eT (τ)‖2 dτ,

(3.44)

which after application of the Grönwall inequality yields

(c0 − br) ‖ep(t)‖2 + (a0 − br) ‖eT (t)‖2 +
t∫

0

(
km ‖ew(τ)‖2 + 2θm ‖er(τ)‖2

)
dτ ≤ 0. (3.45)

Then, using Thomas’ Lemma [33] we take τ = σ̃(·, t) ∈ S in (3.39e), such that for t ∈ J , −∇ · σ̃(t) = eu(t)
in Ω, with ‖σ̃(t)‖ ≤ C ‖eu(t)‖ for some constant C > 0. Thus, we obtain

‖eu‖2 = −(eu, ∇ · σ̃) = (Aeσ, σ̃) + cr

2α
(Iep, σ̃) + ar

2β
(IeT , σ̃)

≤ ‖σ̃‖
(

1
2μ

‖eσ‖ + cr

2α
‖ep‖ + ar

2β
‖eT ‖

)
(3.46)

=⇒ ‖eu‖ ≤ C(‖eσ‖ + ‖ep‖ + ‖eT ‖). (3.47)

This implies that eT (t) = er(t) = ep(t) = ew(t) = eσ(t) = eu(t) = 0, in Ω, for a.e. t ∈ J , implying the 
uniqueness of a weak solution to problem (3.1). Finally, thanks to Lemma 3.4, we can finish the proof of 
the second part of Theorem 3.1 using similar arguments. �
4. Analysis of the non-linear problem

We now consider the analysis of the mixed variational formulation for the original nonlinear problem (2.8). 
The analysis uses the results derived previously for the linear case, in addition to the Banach Fixed Point 
Theorem (see e.g. [11]) in order to obtain a local solution to (2.8) in time. We then proceed to extend this local 
solution by small increments until a global solution is obtained for any finite final time (see e.g. [19,35] where 
similar techniques are used). Precisely, an iterative solution procedure is introduced based on linearizing 
the heat flux term in (2.8a), which is shown to be well-defined, and which converges to the weak solution of 
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the nonlinear problem in adequate norms. Note that we now must require the iterates to be continuous in 
time, hence we shall invoke Lemma 3.4. The iterative linearization algorithm we consider is then as follows: 
let m ≥ 1, and at the iteration m, we solve for (T m, rm, pm, wm, σm, um) ∈ T × R × P × W × S × U such 
that for t ∈ J there holds

(a0 + ar)(∂tT
m, S) − br(∂tp

m, S) + ar

2β
(∂tσ

m, SI)

+(∇ · rm, S) + (wm · Θ−1rm−1, S) = (h, S), ∀S ∈ T , (4.1a)

(Θ−1rm, y) − (T m, ∇ · y) = 0, ∀y ∈ R, (4.1b)

(c0 + cr)(∂tp
m, q) − br(∂tT

m, q) + cr

2α
(∂tσ

m, qI) + (∇ · wm, q) = (g, q), ∀q ∈ P, (4.1c)

(K−1wm, z) − (pm, ∇ · z) = 0, ∀z ∈ W, (4.1d)

(Aσm, τ ) + (um, ∇ · τ ) + cr

2α
(Ipm, τ ) + ar

2β
(IT m, τ ) = 0, ∀τ ∈ S, (4.1e)

−(∇ · σm, v) = (f , v), ∀v ∈ U , (4.1f)

together with initial conditions, (2.8g), and where the algorithm is initialized by given initial guess r0. We 
consider the following hypothesis on the heat flux:

Hypothesis 1 (The heat flux). We suppose that for all m ≥ 1, the heat flux is such that rm(t) ∈ L∞(Ω), for 
t ∈ J .

The above hypothesis is a natural one, and it is necessary for the solution to the iterative procedure (4.1)
to be well-defined for each m ≥ 1. This hypothesis is satisfied with sufficiently regular data and domain 
boundary. We provide some formal arguments in Appendix A on the specific requirements such that the 
solution to the problem (3.1) yields r ∈ C([0, Tf ], L∞(Ω)) (or alternatively w, r ∈ C([0, Tf ]; L4(Ω))), thus 
making the above hypothesis superfluous. We delegate this discussion to the Appendix in order to avoid 
overly strict assumptions on the data.

Remark 4.1. Note that if we had approximated the convective term in equation (4.1a) instead as (wm−1 ·
Θ−1rm, S), Hypothesis 1 would be on the regularity of the Darcy flux w, and the above algorithm would 
be initialized by some w0. However the analysis presented next remains true and follows exactly the same 
lines.

Based on the development of the previous sections, we now state the main result of this article.

Theorem 4.1. Assume that f is in H2(J ; L2(Ω)), g, h in H1(J ; L2(Ω)), p0, T0 in H1
0 (Ω), and u0 in (L2(Ω))d, 

then the algorithm (4.1), initialized by any r0 ∈ C([0, Tf ]; L∞(Ω)), defines a unique sequence of iterates

(T m, rm) ∈ W 1,∞(J ; L2(Ω)) ×
(
L∞(J ; H(div; Ω)) ∩ H1(J ; L2(Ω))

)
, (4.2a)

(pm, wm) ∈ W 1,∞(J ; L2(Ω)) ×
(
L∞(J ; H(div; Ω)) ∩ H1(J ; L2(Ω))

)
, (4.2b)

(um, σm) ∈ W 1,∞(J ; L2(Ω)) ×
(
L∞(J ; Hs(div; Ω)) ∩ W 1,∞(J ; L2(Ω))

)
, (4.2c)

that converges to the weak solution (T, r, p, w, σ, u) of (2.8), admitting the following regularity

(T, r) ∈ H1(J ; L2(Ω)) ×
(
L2(J ; H(div; Ω)) ∩ L∞(J ; L2(Ω))

)
, (4.3a)

(p, w) ∈ H1(J ; L2(Ω)) ×
(
L2(J ; H(div; Ω)) ∩ L∞(J ; L2(Ω))

)
, (4.3b)
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(u, σ) ∈ H1(J ; L2(Ω)) ×
(
L2(J ; Hs(div; Ω)) ∩ H1(J ; L2(Ω))

)
. (4.3c)

Proof. According to Theorem 3.1 and recalling Hypothesis 1, the iterates (T m, rm, pm, wm, σm, um) are 
well-defined for all m ≥ 1, admitting the improved regularity specified in Lemma 3.4. In particular, this 
guarantees continuity in time for the iterates. Keeping this in mind, we define γ1 := supt∈J ‖em

w(t)‖2 and 
γ2 := supt∈J ‖em

r (t)‖2. It remains to show the convergence of the iterates to the weak solution of (2.8)
using suitable norms. To this aim, let m ≥ 2, and take the difference of equations (4.1) at the iteration 
step m, with the corresponding equations at iteration step m − 1 to obtain the following problem: find 
(em

T , em
r , em

p , em
w , em

σ , em
u ) ∈ T × R × P × W × S × U such that for t ∈ J there holds

(a0 + ar)(∂te
m
T , S) − br(∂te

m
p , S) + ar

2β
(∂tem

σ , SI) + (∇ · em
r , S)

−(wm · Θ−1em−1
r , S) − (em

w · Θ−1rm−1, S) = 0, ∀S ∈ T , (4.4a)

(Θ−1em
r , y) − (em

T , ∇ · y) = 0, ∀y ∈ R (4.4b)

(c0 + cr)(∂te
m
p , q) − br(∂te

m
T , q) + cr

2α
(∂tem

σ , qI) + (∇ · em
w , q) = 0, ∀q ∈ P, (4.4c)

(K−1em
w , z) − (em

p , ∇ · z) = 0, ∀z ∈ W, (4.4d)

(Aem
σ , τ ) + (em

u , ∇ · τ ) + cr

2α
(Iem

p , τ ) + ar

2β
(Iem

T , τ ) = 0, ∀τ ∈ S, (4.4e)

−(∇ · em
σ , v) = 0, ∀v ∈ U , (4.4f)

together with homogeneous initial conditions, i.e.

(em
T (0), S) = 0, ∀ ∈ T , (em

u (0), v) = 0, ∀v ∈ U , and (em
p (0), q) = 0, ∀q ∈ P. (4.4g)

The solution tuple (em
T , em

r , em
p , em

w , em
σ , em

u ) denotes the error functions between the solution to (4.1) at the 
mth and (m − 1)th iterations, i.e. em

T = T m − T m−1, and similarly for the other variables. We continue to 
denote by C a generic positive constant which may change value from one line to the next, but in this section 
the relevant parameter is m. First, take τ = em

σ and v = em
u in equations (4.4e) and (4.4f), respectively, 

and sum to obtain

‖em
σ ‖2

A = − cr

2α
(Iem

p , em
σ ) − ar

2β
(Iem

T , em
σ )

≤
(

α
ε1

2 + β
ε2

2

)
‖em

σ ‖2
A + cr

2α

1
2ε1

∥∥em
p

∥∥2 + ar

2β

1
2ε1

‖em
T ‖2

.

(4.5a)

Setting ε1 = 1
2α

and ε2 = 1
2β

yields

‖em
σ ‖2

A ≤ cr

∥∥em
p

∥∥2 + ar ‖em
T ‖2

. (4.5b)

Similarly, by differentiating equations (4.4e) and (4.4f) with respect to time and setting τ = ∂tem
σ and 

v = ∂tem
u we obtain

‖∂tem
σ ‖2

A ≤ cr

∥∥∂te
m
p

∥∥2 + ar ‖∂te
m
T ‖2

. (4.6)

Using Thomas’ lemma [33], we take τ = σ̃(·, t) in equation (4.4e) such that em
u (·, t) = ∇ · σ̃(·, t) with 

‖σ̃(t)‖ ≤ C ‖em
u (t)‖ for t ∈ J , and combine with (4.5b) to obtain
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‖em
u ‖2 ≤ C

(∥∥em
p

∥∥2 + ‖em
T ‖2

)
, (4.7)

and similarly using (4.6)

‖∂tem
u ‖2 ≤ C

(∥∥∂te
m
p

∥∥2 + ‖∂te
m
T ‖2

)
. (4.8)

Now, write ∇ · em
r (t) =

∑∞
�=1 ζ�(t)S� for some functions ζ�(t) ∈ R, where span{S� : 1 ≤ 
 ≤ ∞} = T . Then, 

we take S� as a test function in equation (4.4a), multiply by ζ� and sum over 
 = 1, ..., k to obtain

(∇ · em
r ,

k∑
�=1

ζ�S�) = br(∂te
m
p ,

k∑
�=1

ζ�S�) − (a0 + ar)(∂te
m
T ,

k∑
�=1

ζ�S�) − ar

2β
(∂tem

σ ,
k∑

�=1

ζ�S�)

+ (wm · Θ−1em−1
r ,

k∑
�=1

ζ�S�) + (em
w · Θ−1rm−1,

k∑
�=1

ζ�S�). (4.9a)

Using the C–S and Young inequalities, tending k → ∞, and using also the estimate (4.6) we get

‖∇ · em
r ‖2 ≤C

(∥∥∂te
m
p

∥∥2 + ‖∂te
m
T ‖2 + ‖em

w‖2 +
∥∥em−1

r
∥∥2

)
. (4.9b)

In the same way we get from equation (4.4c) that

‖∇ · em
w‖2 ≤C

(
‖∂te

m
T ‖2 +

∥∥∂te
m
p

∥∥2
)

. (4.10)

From (4.4f) we also have that

‖∇ · em
σ ‖2 = 0. (4.11)

We continue by setting S = em
T , y = em

r , q = em
p , z = em

w , τ = ∂tem
σ in equations (4.4a)–(4.4e), and 

differentiate equation (4.4f) with respect to time and set v = em
u . Summing the resulting equations yields

(c0 − br)1
2

d
dt

∥∥em
p

∥∥2 + (a0 − br)1
2

d
dt

‖em
T ‖2 + km ‖em

w‖2 + θm ‖em
r ‖2

≤ γ1
θM

2
∥∥em−1

r
∥∥2 + γ2θM

ε

2 ‖em
w‖2 +

(
1
2 + 1

2ε

)
‖em

T ‖2
, (4.12a)

where we also used the estimate (4.6). Integrating from 0 to t, applying the Grönwall inequality and setting 

ε = km

γ2θM
yields

(c0 − br)
∥∥em

p (t)
∥∥2 + (a0 − br) ‖em

T (t)‖2 +
t∫

0

(
km ‖em

w(τ)‖2 + θm ‖em
r (τ)‖2

)
dτ ≤ C

t∫
0

∥∥em−1
r (τ)

∥∥2 dτ.

(4.12b)

Take now S = ∂te
m
T and q = ∂te

m
p in equations (4.4a) and (4.4c), respectively. Then, differentiate equations 

(4.4e) and (4.4f) with respect to time and let τ = ∂tσ
m and v = ∂tum. Finally, we let y = ∂tem

r and 
z = ∂tem

w in equations (4.4b) and (4.4d), respectively. Summing yields
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(c0 + cr − br)
∥∥∂te

m
p

∥∥2 + (a0 + ar − br) ‖∂te
m
T ‖2 + km

2
d
dt

‖em
w‖2 + θm

2
d
dt

‖em
r ‖2

≤ ‖∂tem
σ ‖2

A + (wm · Θ−1em−1
r , ∂te

m
T ) + (em

w · Θ−1rm−1, ∂te
m
T )

≤ ‖∂tem
σ ‖2

A +
(ε1

2 + ε2

2

)
‖∂te

m
T ‖2 + γ1θM

1
2ε1

‖em
w‖2 + γ2θM

1
2ε2

∥∥em−1
r

∥∥2
, (4.13a)

for some ε1, ε2 > 0. Combining this with the previous estimate (4.6) and setting ε1 = ε2 = αβ

μ + λ
leads to

(c0 − b0)
∥∥∂te

m
p

∥∥2 + (a0 − b0) ‖∂te
m
T ‖2 + km

2
d
dt

‖em
w‖2 + θm

2
d
dt

‖em
r ‖2

≤ θM

2
μ + λ

αβ

(
γ1 ‖em

w‖2 + γ2
∥∥em−1

r
∥∥2

)
. (4.13b)

Integrating (4.13b) from 0 to t and applying the Grönwall inequality yields

(c0 − b0)
t∫

0

∥∥∂te
m
p (τ)

∥∥2 dτ + (a0 − b0)
t∫

0

‖∂te
m
T (τ)‖2 dτ + km

2 ‖em
w(t)‖2 + θm

2 ‖em
r (t)‖2

≤ ξγ2

2 exp
(

ξγ1

km
Tf

) t∫
0

∥∥em−1
r (τ)

∥∥2 dτ ≤ ξγ2

2 exp
(

ξγ1

km
Tf

) t1∫
0

∥∥em−1
r (τ)

∥∥2 dτ , (4.13c)

for t ≤ t1 where t1 > 0 will be fixed later, and where ξ := θM
μ + λ

αβ
. Integrating in time once more from 0

to t1 yields

t1∫
0

‖em
r (τ)‖2 dτ ≤ t1L

t1∫
0

∥∥em−1
r (τ)

∥∥2 dτ, (4.13d)

where the constant L = ξγ2

2 exp
(

ξγ1

km
Tf

)
is such that 0 < L < ∞ provided Tf < ∞, and is independent of 

m and of the local final time t1. Thus, for t1 = 1
2L

the above expression implies that the map em−1
r (t) �→

em
w(t) is a contraction map for t ∈ (0, t1]. In particular, this implies that as m → ∞ we have from the Banach 

Fixed Point Theorem [11] and (4.5b)–(4.8), (4.9b)–(4.11), (4.12b) and (4.13c) the following convergences

• em
w , em

r → 0 in L2(0, t1; H(div, Ω)) ∩ L∞(0, t1; L2(Ω)),
• em

p , em
T → 0 in H1(0, t1; L2(Ω)),

• em
σ → 0 in H1(0, t1; L2(Ω)) ∩ L2(0, t1; Hs(div, Ω)),

• em
u → 0 in H1(0, t1; L2(Ω)).

Therefore, the existence of the solution to problem (2.8) is established for t ∈ (0, t1]. The question now is 
how to continue the local solution (T, r, p, w, σ, u) to the system (2.8) globally in time. To this aim, we let 
(T m, rm, pm, wm, σm, um) be the solution of (4.1) on the time interval [tk−1, tk], k ∈ N, with tk −tk−1 = 1

2L
, 

and starting with the initial data (T m, rm, pm, wm, σm, um)(·, tk−1) = (T, r, p, w, σ, u)|[tk−2,tk−1](·, tk−1); 
thanks to the continuity in-time of the convergent solution. The iterates (T m, rm, pm, wm, σm, um) are 
again well-defined using Theorem 3.1. The iterates also result a contraction, i.e.,
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tk∫
tk−1

‖em
r (τ)‖2 dτ ≤ 1

2

tk∫
tk−1

∥∥em−1
r (τ)

∥∥2 dτ, ∀k ≥ 2. (4.14)

Therefrom, we proceed as on done in the first time interval [0, t1] to show the convergence of the succes-
sive approximations (T m, rm, pm, wm, σm, um)|[tk−1,tk], k ∈ N, to (T, r, p, w, σ, u)|[tk−1,tk]. This solution is 
similarly extended to any time t� ≥ tk given by

t� =
�∑

k=1

tk − tk−1 =
�∑

k=1

1
2L

.

Finally, since the series 
∑∞

k=1
1

2L
diverges, the sequence of local solutions is extended to arbitrary finite 

final time 0 < Tf < ∞ by incrementing the values 
 (if Tf is not identically an integer multiple of 1
2L

take 

instead tk − tk−1 = 1
NL

where N > 1). This concludes the proof of Theorem 4.1. �
Some remarks on the above proof are in order.

Remark 4.2. We could also define a fully explicit iterative scheme where both the Darcy and heat fluxes 
in the convective term are given at the previous iteration. If such an explicit scheme was chosen we would 
have the advantage of a symmetric linearized problem, as the convective terms in the iterative procedure 
can be viewed as part of the source term on the right hand side.

Remark 4.3. Assume that f is in H1(J ; L2(Ω)), g, h in L2(J ; L2(Ω)), p0, T0 in H1
0 (Ω), and u0 in (L2(Ω))d. 

Suppose that instead of Hypothesis 1, we have rm, wm in ∈ H1(0, T ; L∞(Ω)). Then, we can reproduce 
the proof of Theorem 4.1 to prove the convergence of the scheme given by (4.1) to a weak solution of the 
nonlinear problem (2.8).

5. Conclusions

In this article we have given mixed formulations for the fully coupled quasi-static thermo-poroelastic 
model. The model is nonlinear, with the nonlinearity appearing on a coupling term. This makes the analysis 
challenging. A linearization of the model was therefore employed as an intermediate step in analyzing the 
full nonlinear model. For the linear case, the well-posedness is established using the theory of DAEs, and 
energy estimates together with a Galerkin method. This result together with derived energy estimates are 
combined with the Banach Fixed Point Theorem to obtain local solutions in time of the nonlinear problem. 
Due to the continuity in time of the convergent (local) solutions, we can infer a (global) convergence proof of 
an iterative procedure approximating the weak solution to the original nonlinear problem. Work underway 
addresses discretization of this model problem using an appropriate mixed finite element method as well as 
a priori and a posteriori error analysis.
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Appendix A. Alternative to Hypothesis 1

We outline some formal calculations which reveal the assumptions necessary on the data in order to avoid 
the Hypothesis 1. In particular, we aim to solve the linear Problem 3.1 with sufficiently regular data such 
that r ∈ C([0, Tf ]; L∞(Ω)) (or, alternatively such that w, r ∈ C([0, Tf ]; L4(Ω)). The following arguments 
indicate that this is easily done. First, note that from Theorem 3.1 and the Sobolev Embedding Theorem 
(see e.g. [15]) it follows that the functions (T (t), r(t), p(t), w(t), σ(t), u(t)) are continuous for t ∈ [0, Tf ], if 
g, h ∈ H1(J ; L2(Ω)) and f ∈ H2(J ; L2(Ω)). Thus, going back to the problem (3.1), we can choose smooth 
test functions with compact support in Ω and find that (T, r, p, w, σ, u) solves the following initial boundary 
value problem

a0
dT

dt
(t) − b0

dp

dt
(t) + ar

2β

d tr σ

dt
(t) − η · w(t) + ∇ · r(t) = h(t), in Ω, (A.1a)

Θ−1r(t) + ∇T (t) = 0, in Ω, (A.1b)

c0
dp

dt
(t) − b0

dT

dt
(t) + cr

2α

d tr σ

dt
(t) + ∇ · w(t) = g(t), in Ω, (A.1c)

K−1w(t) + ∇p(t) = 0, in Ω, (A.1d)

Aσ(t) − ε(u)(t) + cr

2α
Ip(t) + ar

2β
IT (t) = 0, in Ω, (A.1e)

−∇ · σ(t) = f(t), in Ω, (A.1f)

for a.e. t ∈ J , and with boundary conditions

T = 0, u = 0, p = 0, on Γ × J, (A.1g)

and initial conditions

T (0) = T0, u(0) = u0, and p(0) = p0, in Ω × {0}. (A.1h)

Since Θ−1r, K−1w ∈ L2(J ; L2(Ω)) we have from (A.1b) and (A.1d) that T, p ∈ L2(J ; H1
0 (Ω)). Thus, we 

can write (A.1a) and (A.1c) in non-mixed form, i.e.

a0
dT

dt
(t) − b0

dp

dt
(t) + ar

2β

d tr σ

dt
(t) − η · w(t) − ∇ · (Θ∇T (t)) = h(t), (A.2a)

c0
dp

dt
(t) − b0

dT

dt
(t) + cr

2α

d tr σ

dt
(t) − ∇ · (K∇p(t)) = g(t), (A.2b)

and use the theory of linear parabolic equations (see [15] p. 349 for details) to get increased regularity for T (t)
and p(t), and then use (A.1b) and (A.1d) to infer increased regularity for r(t) and w(t). In particular, if the 
domain boundary Γ is of class C1, h, g ∈ C1([0, Tf ]; H1(Ω)), f ∈ C2([0, Tf ]; L2(Ω)) and T0 ∈ H1

0 (Ω) ∩H2(Ω), 
then T ∈ H1(J ; H2(Ω)) and thus r ∈ H1(J ; H1(Ω)). Due to the special case of the Sobolev embedding 
theorem for d = 2, i.e. H1(Ω) ⊂ L∞(Ω) ([15] p. 270), we get that r ∈ C([0, Tf ]; L∞(Ω)). Alternatively, 
if also p0 ∈ H1

0 (Ω) ∩ H2(Ω), then we have additionally w ∈ H1(J ; H1(Ω)), and since H1(Ω) ⊂ L4(Ω)
(independently of spatial dimension), we get r, w ∈ C([0, Tf ]; L4(Ω)).

Appendix B. Tables

For easy reference we list some of the notations used in this article (Tables 1, 2).
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Table 1
Data and parameters.

Data/Parameter Description
h heat source
f body force
g mass source
T0 initial temperature distribution
u0 initial displacement
p0 initial fluid pressure
a0 effective thermal capacity
b0 thermal dilation coefficient
β thermal stress coefficient
K matrix permeability divided by fluid viscosity
Θ effective thermal conductivity
μ, λ Lamé parameters
α Biot–Willis constant
c0 specific storage coefficient

Table 2
Variables.

Variable Description Spaces
T temperature distribution T := L2(Ω)
u solid displacement U := (L2(Ω))d

p fluid pressure P := L2(Ω)
σ total stress S := Hs(div; Ω)
w Darcy flux W := H(div; Ω)
r heat flux R := H(div; Ω)
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MONOLITHIC AND SPLITTING SOLUTION SCHEMES FOR FULLY1
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Abstract. This paper concerns monolithic and splitting-based iterative procedures for the cou-6
pled nonlinear thermo-poroelasticity model problem. The thermo-poroelastic model problem we7
consider is formulated as a three-field system of PDE’s, consisting of an energy balance equation,8
a mass balance equation and a momentum balance equation, where the primary variables are tem-9
perature, fluid pressure, and elastic displacement. Due to the presence of a nonlinear convective10
transport term in the energy balance equation, it is convenient to have access to both the pressure11
and temperature gradients. Hence, we introduce these as two additional variables and extend the12
original three-field model to a five-field model. For the numerical solution of this five-field formula-13
tion, we compare six approaches that differ by how we treat the coupling/decoupling between the14
flow and/from heat and/from the mechanics, suitable for varying coupling strength between the three15
physical processes. The approaches have in common a simultaneous application of the L-scheme,16
which works both to stabilize iterative splitting as well as to linearize nonlinear problems, and can17
be seen as a generalization of the Undrained and Fixed-Stress Split algorithms. More precisely, the18
derived procedures transform a nonlinear and fully coupled problem into a set of simpler subprob-19
lems to be solved sequentially in an iterative fashion. We provide a convergence proof for the derived20
algorithms, and demonstrate their performance through several numerical examples investigating21
different strengths of the coupling between the different processes.22

Key words. Quasi-static thermo-poroelasticity, nonlinear convective transport, porous me-23
dia, monolithic scheme, fixed-stress splitting iterative coupling, L-scheme linearization, contraction24
mapping, mixed finite elements.25

AMS subject classifications. 65M02, 65Z02, 74F0226

1. Introduction.27

1.1. Problem statement. The field of poroelasticity aims to describes the in-28

teraction between viscous fluid flow and elastic solid deformation within a porous ma-29

terial, and was pioneered through the works of K. Terzhagi [43] and M. A. Biot [5, 6].30

In the fully-saturated, quasi-static regime, the mathematical modeling of such pro-31

cesses constitutes a coupled two-field linear model where the primary variables are32

the fluid pressure and the elastic displacement of the solid. This is known as the33

quasi-static Biot’s model.34

In many important applications, such as geothermal energy extraction, nuclear35

waste disposal and carbon storage, temperature also plays a vital role and must36

therefore be included in the aforementioned model. Thus, we consider here a thermo-37

poroelastic system which can be seen as a generalization of the Biot system to the non-38

isothermal case; i.e., the coupled processes are heat, flow, and geomechanics. Since it39

is the cornerstone of many complex models, we focus on the following nonlinear and40

coupled quasi-static thermo-poroelastic equations as described in [10, 30, 46]: Find41
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the temperature T , the pressure p, and the displacement u such that42

∂tψ(p,u, T ) + cf (K∇p) · ∇T −∇ · (Θ∇T ) = z, in Ω× (0, tf ),(1a)43

−∇ · θ(u) + α∇p+ β∇T = f , in Ω× (0, tf ),(1b)44

∂tϕ(p, T,u)−∇ · (K∇p) = g, in Ω× (0, tf ),(1c)45

T (·, 0) = T0, u(·, 0) = u0, p(·, 0) = p0, in Ω,(1d)46

T = 0, u = 0, p = 0, on ∂Ω× (0, tf ).(1e)4748

In the above model, Ω is a bounded (connected and open) domain in Rd, d = 2 or 3,49

and tf > 0 is the final time. The function z is the heat source, g is the mass source, and50

f is the body force. The functionals ψ and ϕ denote the heat content and fluid content,51

respectively; i.e., ψ(p,u, T ) := a0T −b0p+β∇·u, and ϕ(p,u, T ) := c0p−b0T +α∇·u,52

where c0 is the constrained-specific storage coefficient, a0 is the effective thermal53

capacity, b0 is the thermal dilation coefficient, α is the Biot–Willis constant, and β is54

the thermal stress coefficient. The parameter cf is the volumetric heat capacity of the55

fluid, K = (Kij)
d
i,j=1 is the permeability divided by fluid viscosity, and Θ = (Θij)

d
i,j=156

is the effective thermal conductivity. The function θ denotes the effective stress tensor,57

i.e., θ(u) := 2µε(u) + λ∇ · uI, where ε(u) := (∇u +∇u>)/2 the symmetric part of58

∇u, and I is the identity tensor. Finally, T0 is the initial temperature, u0 is the initial59

displacement and p0 is the initial pressure.60

Note that the above model introduces a nonlinearity in a coupling term, which61

is the convective transport term in the energy balance equation (1a). The presence62

of this nonlinear coupling term strongly complicates the problem compared to the63

isothermal case (i.e., the linear Biot’s model). Note that if b0 = β = 0, the flow and64

mechanics decouples from the heat, and Biot’s model is recovered. For the derivation65

of the constitutive equations of thermo-poroelasticity we refer to the works [23, 42,66

46], and particularly to [10, 30, 46] where the above model was derived within the67

framework of the two-scale asymptotic expansion method (see, e.g., [24] for a review68

of this technique).69

Remark 1.1 (Conservative energy). The energy balance equation (1a) can equiv-70

alently be written in conservative form [16], whence the second term takes the form71

∇ · (cf (K∇p)T ). All results presented in the following remain valid for both formula-72

tions.73

1.2. Weak solution and well-posedness of the continuous problem. The74

common structure of mathematical models which are based on (systems of) scalar75

conservation laws of the form (1a) and where nonlinear gradient terms appear, sug-76

gests introducing the heat flux, r := −Θ∇T , or the Darcy flux, w := −K∇p, as77

an additional variable. Thus, either the term cf (K∇p) · ∇T becomes [−cf (w · ∇T )]78

or
[
−cf ((K⊗Θ−1)r · ∇p)

]
, e.g. [41, 40]. Precisely, it is well known that such terms,79

dealing non-linearly with the coupled convection, can be quite difficult to approximate80

correctly in their actual forms. This altogether leads to challenging numerical issues.81

Furthermore, the choice to introduce the heat flux or the Darcy flux as a new variable82

depends strongly on which process (flow or heat) that dominates, and may result in a83

different treatment of the convective term. Here, to avoid some of these complexities,84

we adopt from [9] the mixed form for both the heat and flow subproblems (1a) and85

(1b), taking in mind that Mixed Finite Element (also Finite Volume) literature has86

developed techniques to handle convective terms [17, 14]. Throughout the paper, we87

assume that the following assumptions hold true:88

This manuscript is for review purposes only.
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(A1) K : Rd → Rd×d is assumed to be constant in time, symmetric, definite89

and positive; there exist km > 0 and kM such that km|ζ|2 ≤ ζ>K(x)ζ and90

|K(x)ζ| ≤ kM |ζ|, ∀ζ ∈ Rd \ {0}.91

(A2) Θ : Rd → Rd×d is assumed to be constant in time, symmetric, definite92

and positive; there exist θm > 0 and θM such that θm|ζ|2 ≤ ζ>Θ(x)ζ and93

|Θ(x)ζ| ≤ θM |ζ|, ∀ζ ∈ Rd \ {0}.94

(A3) The coefficients a0, b0, c0, cf , α and β are strictly positive constants.95

(A4) The coefficients a0, b0 and c0 are such that c0 − b0 > 0 and a0 − b0 > 0.96

(A5) The source terms are such that z, g ∈ L2(0, tf ;L2(Ω)) and97

f ∈ H1(0, tf ;L2(Ω)). We further assume that z, g and f are piecewise constant98

in time with respect to the temporal mesh of Section 2.99

(A6) The initial data are such that p0, T0 ∈ H1
0 (Ω) and u0 ∈ (L2(Ω))d.100

Before transcribing the mixed variational formulation of the problem, we introduce
some notations:

T := L2(Ω), R := H(div,Ω), P := L2(Ω), W := H(div,Ω), U := (L2(Ω))d,

where we denote by (·, ·) the standard L2(Ω) inner product, and by ‖·‖ the induced101

L2(Ω) norm. Due to (A1) and (A2), the tensors K and Θ (and their inverses) define102

L2(Ω)-equivalent norms, which we denote by ‖v‖K := (Kv,v)1/2 (and ‖v‖K−1 :=103

(K−1v,v)1/2), and similarly with Θ. With this, we define the variational formulation104

of (1a)–(1d) as follows:105

Definition 1.1 (The continuous formulation [9]). Assuming (A1)–(A6) holds106

true, the fully coupled mixed-primal formulation of (1) reads:107

Find (T (t), r(t), p(t),w(t),u(t)) ∈ T ×R×P ×W ×U , such that for a.e. t ∈ (0, tf )108

(∂tψ(p, T,u), S) + cf (w ·Θ−1r, S) + (∇ · r, S) = (z, S), ∀S ∈ T ,(2a)109

(Θ−1r,y)− (T,∇ · y) = 0, ∀y ∈ R,(2b)110

(∂tϕ(p, T,u), q) + (∇ ·w, q) = (g, q), ∀q ∈ P ,(2c)111

(K−1w, z)− (p,∇ · z) = 0, ∀z ∈ W ,(2d)112

(θ(u), ε(v))− (βT + αp,∇ · v) = (f ,v), ∀v ∈ U ,(2e)113114

together with the initial conditions (1e).115

The above variational problem was analyzed in [9]. There, it was shown that under116

the assumption that the heat flux (or Darcy flux) is such that r(t) ∈ (L∞(Ω))d, for117

t ∈ (0, tf ), the problem (2) has a unique weak solution. Moreover, it was shown118

that with additional regularity on the data, i.e., f ∈ H2
(
0, tf ; (L2(Ω))d

)
, h, g ∈119

H1(0, tf ;L2(Ω)), and T0, p0 ∈ H1
0 (Ω) ∩H2(Ω), the fluxes are bounded functions.120

1.3. Goal and positioning of the paper. The simulation of thermo-121

poroelasticity problems is challenging due to the coexistence of different physics, ne-122

cessitating a coupled set of equations. For these types of problems, there are typically123

three different approaches employed in modeling fluid flow coupled with reservoir ge-124

omechanics. They are known as the fully implicit, the explicit (loosely or weakly) cou-125

pling, and the splitting-iterative approaches. The main problem for the applicability126

of the fully implicit approach, which solves simultaneously the above three-processes127

(flow, heat and mechanics) problem, is that it results in a very large system of equa-128

tions to be solved at each time step. Moreover, it does not facilitate the (re-)use of129

existing codes dedicated to the various subproblems. On the other hand, the fully130
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coupled approach has excellent stability properties [4, 18]. An alternative is weakly131

coupled approaches, which results in smaller systems and a lower computational cost132

compared to the fully implicit (monolithic) approach. On the other hand, accuracy133

may be sacrificed, and the sequential approach is only conditionally stable [20, 34].134

Herein, we adopt an iterative coupling approach, which provides a compromise be-135

tween the implicit and explicit: At each iteration it has the cost of the sequential136

approach, yet it converges to the fully coupled implicit approach. We implement the137

idea of iterative coupling by resolving iteratively the two/three subsystems (depend-138

ing on the choice of splitting procedure) and by exchanging the values of the shared139

state variables in an iterative fashion using a general framework of linearly stabilized140

schemes [8, 32].141

We argue that adopting an iterative method for the nonlinear and fully coupled142

three-processes problem, can be considered almost essential for efficient simulation,143

since the fully coupled approach leads to a prohibitivily large system (particularly if144

MFE methods are adopted [1, 12, 21, 47]), incorporating different equations varied in145

type and with nonlinearities. The advantage of the iterative approaches considered146

in this paper is that, at each iteration, smaller, easier-to-solve systems cooperate147

iteratively through algorithms [21, 11]. Another advantage that distinguishes our148

approaches is the possibility to reuse existing codes for different numerical schemes and149

coupling techniques specialized to each component of the problem (see e.g. [2, 35]). For150

classical linear poroelasticity, the iterative coupling procedures mentioned in the above151

has been studied extensively [3, 8, 13, 25, 27, 28, 32, 33, 45]. In particular, two such152

algorithms have received considerable attention: The “Undrained Split”(constant fluid153

mass during structure deformation), and the “Fixed Stress Split”(constant volumetric154

mean total stress during solution of flow problem). In [27] these were first shown to155

be unconditionally stable. In [32, 33] contraction estimates and rates of convergence156

were derived.157

The Undrained Split/Fixed Stress Split algorithms have been generalized in the158

context of the so-called L-schemes. In the context of coupled problems, these schemes159

involves adding an artificial stabilization term to one or more of the subproblems with160

a parameter L > 0. Here, the quantity held constant during solving of one of the161

subproblems needs not have any physical interpretation. In this sense, the L-scheme162

generalizes the Undrained Split/Fixed Stress Split algorithms and, due to the removal163

of physical constraints on the stabilization terms, allows for further optimization. The164

L-scheme can also be employed as a linearization procedure for nonlinear problems,165

with the parameter L > 0 mimicking the Jacobian from Newton iteration. However,166

in order to determine the parameter L > 0 for any given problem, derived conver-167

gence estimates are necessary. The L-scheme has been shown to perform robustly168

for Richards equation [31, 38] and for both linear and nonlinear coupled flow and169

geomechanics [7, 8]. In this paper, we will utilize the L-scheme framework both as a170

decoupling strategy and as a linearization method.171

Although the literature on iterative coupling procedures for (isothermal) poroe-172

lastic problems is quite extensive, thermo-poroelastic problems have not received the173

same amount of attention. Sequential iterative methods for linear thermo-174

poroelasticity was considered in [26]. Iterative splitting schemes for separate poroelas-175

ticity and thermoelasticity problems were considered in [29]. Compared to problems176

of (two-field) coupled flow and mechanics (which can be solved either sequentially or177

monolithically) we now have additional options in partial decoupling, i.e., solving two178

of the subproblems together decoupled from the third. Combinatorially, this yields179

six combinations of iterative procedures, ranging from monolithic to fully decoupled.180
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In this work, we propose and analyze all six iterative algorithms for nonlinear thermo-181

poroelasticity based on these six combinations of coupling/decoupling. In particular,182

we employ variations of the L-scheme in all six algorithms, with artificial stabilization183

terms added to both the flow and heat sub-problems. By proving a contraction of184

all schemes, we obtain explicit expressions for the linearization parameters L that185

guarantees the stability and convergence of all schemes. The main advantage of the186

L-scheme is that it treats simultaneously the coupling and the non-linearity effects.187

Thus, no inner iterative approaches are required, see e.g. [39] where L-scheme type188

approaches are developed to treat iteratively a combined domain decomposition and189

nonlinearity problem. In most cases, the convergence is linear in the required energy190

norms. Furthermore, the necessary constraint on the time step is not severe.191

The reason we propose six algorithms is the following: The coupling strength of192

the heat, flow and mechanics may vary depending on the physics at hand. More-193

over, the practitioner may have access to existing software of various capabilities.194

Precisely, to develop robust and efficient solution procedures for the three-processes195

problem at hand, one should in principle take into account which process (the me-196

chanics and/or flow and/or heat flow) dominate the full problem. In practice, one197

must also take into account implementation time and available frameworks. Thus,198

to be agnostic towards the dominating processes and other real-world constraints,199

we derive a complete framework for this model problem. The six variations of iter-200

ative coupling/decoupling algorithms for thermo-poroelasticity, cover all possibilities201

of varying coupling strength between the three physical processes involved. Note that202

developed algorithms are applicable on any numerical schemes used to obtain the203

solutions of the different processes [37, 48]. For the convergence analysis, we derive204

energy-type estimates, from which we infer the convergence of the iterate solutions205

as well as obtaining strict lower bounds on the stabilization parameters, and an up-206

per bound on the time step. However, a ”cut-off“ operator M is introduced in the207

mixed setting in order to make the iterative schemes converge. Several numerical208

tests validate our proposed algorithms. In particular, we show that by using the de-209

rived stabilization estimates, the proposed algorithms perform robustly with respect210

to both mesh refinement and a wide range of different problem parameters.211

The article is organized as follows: In Section 2 we present the fully discretiza-212

tion of the thermo-poroelasticity model, and in Section 3 we present all six iterative213

algorithms. In Section 4, convergence analysis based on contraction estimates are214

derived, from which the well-posedness of the discrete scheme is inferred in addition215

to the bounds on the stabilization parameters and time step. In Section 5 we provide216

several numerical experiments, and finally in Section 6 some concluding remarks.217

2. Discrete setting. Let Xh be a simplicial mesh of Ω, matching in the sense218

that for two distinct elements of Xh their intersection is either an empty set or their219

common vertex or edge. Let hK denote the diameter of K ∈ Xh and let h be the largest220

diameter of all such triangles, i.e., h := maxK∈Xh
hK . For the time partition, we let221

{tn : n = 0, 1, · · · , N} be the discrete time steps, where 0 := t0 < t1 < · · · < tN = tf ,222

and let τn = tn − tn−1, n ≥ 1, be the difference between consecutive discrete times.223

In other words, we have tn :=
∑n
`=1 τ

`, 1 ≤ n ≤ N , and therefrom tf =
∑N
n=1 τ

n.224

For the discrete spaces, we let Th,Rh,Ph,Wh and Uh be suitable finite element225

spaces corresponding to the infinite dimensional spaces of subsection 1.2, where we226

assume that227

(3) divRh = Th and divWh = Ph.228
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For the time discretization we employ a backward Euler scheme. For the sake of229

simplicity, we take the source terms f , g and z to be piecewise constant in time.230

We denote by (Tnh , r
n
h, p

n
h,w

n
h ,u

n
h) the discrete counterpart of the solution tuple to231

problem (2) at time tn.232

Definition 2.1 (The coupled mixed×mixed and Galerkin finite element scheme).233

The discrete formulation of the problem (2) reads: Given ψ(p0
h, T

0
h ,u

0
h) and234

ϕ(p0
h, T

0
h ,u

0
h), then, for n = 1, · · · , N , find (Tnh , r

n
h, p

n
h,w

n
h ,u

n
h) ∈ Th × Rh × Ph ×235

Wh × Uh such that236

(ψ(pnh, T
n
h ,u

n
h), Sh) + τncf (wn,M

h ·Θ−1rn,Mh , Sh) + τn(∇ · rnh, Sh)237

= τn(zn, Sh) + (ψ(pn−1
h , Tn−1

h ,un−1
h ), Sh), ∀Sh ∈ Th,(4a)238

(Θ−1rnh,yh)− (Tnh ,∇ · yh) = 0, ∀yh ∈ Rh,(4b)239

ψ(pnh, T
n
h ,u

n
h), qh) + τn(∇ ·wn

h , qh)240

= τn(gn, qh) + (ψ(pn−1
h , Tn−1

h ,un−1
h ), qh), ∀qh ∈ Ph,(4c)241

(K−1wn
h , zh)− (pnh,∇ · zh) = 0, ∀zh ∈ Wh,(4d)242

2µ(ε(unh), ε(vh)) + λ(∇ · unh,∇ · vh)243

− (βTnh + αpnh,∇ · vh) = (fn,vh), ∀vh ∈ Uh.(4e)244245

where the functions (wn,M
h , rn,Mh ) are defined as246

wn,M
h := min(|wn

h |,M)
wn
h

|wn
h |
, and rn,Mh := min(|rnh|,M)

rnh
|rnh|

,(5)247
248

where M is a fixed positive real number and |v| :=
√∑d

i=1(v)2
i .249

In the above scheme, we used (wn,M
h · Θ−1rn,Mh , Sh) for the approximation of the250

convective coupling term instead of the original (wn
h · Θ

−1rnh, Sh). The reason for251

this approximation will be clarified later. The equations (4a)-(4b) form the discrete252

mixed scheme of the heat subproblem, (4c)-(4d) form the discrete mixed scheme for253

the flow subproblem, and (4e) is the discrete form of the mechanics subproblem with254

the Galerkin finite element method. Together, these subproblems make up the nonlin-255

ear and fully coupled discrete version of the thermo-poroelastic problem to be solved256

iteratively in the next section.257

Remark 2.1 (Convective coupling term). The convective coupling term (wn
h ·258

Θ−1rnh, Sh) can also be approximated by (wn,M
h · Θ−1rn,Rh , Sh), where two different259

constants M and R are used in the definitions (5). In that case, the underlying260

iterative methods of Section 3 as well as the convergence analysis of Section 4 remains261

true with minor modifications in the proofs. For simplicity, we let M = R.262

3. The L-type iterative schemes. We now present six iterative (splitting) al-263

gorithms for the discrete thermo-poroelastic problem (4). These algorithms involve264

either decoupling all the subproblems and solving each separately at every iteration265

(three-step algorithm), or decoupling only one subproblem from the other two which266

are then solved together (two-step algorithm), or solving a linearized problem mono-267

lithically at every iteration (one-step algorithm). We use the letters H (Heat), F268

(Flow), and M (Mechanics), to abbreviate the algorithms, e.g. a two-step algorithm269

where the heat and flow subproblems are solved together decoupled from the me-270

chanics subproblem is referred to as (HF-M), and similarly for other combinations271
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of coupling/decoupling of the subproblems. Throughout the rest of the article we272

will mostly refer to the discrete problems, and therefore omit the h-subscript on the273

variables and test functions for cleaner notation. We shall also denote the time step274

simply by τ , keeping in mind it may depend on n.275

At the time step n ≥ 1, let (Tn−1, rn−1, pn−1,wn−1,un−1) be given. We then276

approximate the solution at the actual time step n ∈ {1, · · · , N}, using the sequence277

(Tn,k, rn,k, pn,k,wn,k,un,k) for k ≥ 0, defined in an iterative fashion, and where the it-278

erate (Tn,0, rn,0, pn,0,wn,0,un,0) is an initial guess. All the algorithms involve adding279

the stabilization terms LT (Tn,k−Tn,k−1, S) and Lp(p
n,k− pn,k−1, q) to the left hand280

sides of equations (4a) and (4c), respectively, where LT , Lp > 0 are the stabilization281

parameters (to be chosen later). Furthemore, to make the notation easier, we intro-282

duce the parametrized fluid and heat content functionals: For a given LT , Lp > 0, we283

define284

ψLT
(p,u, T ) := (a0 + LT )T − b0p+ β∇ · u,(6a)285

ϕLp
(p,u, T ) := (c0 + Lp)p− b0T + α∇ · u.(6b)286287

For the analysis of the coupled mixed formulation (4a)–(4e) and the corresponding288

iterative approach introduced in this section, we need to introduce the cut-off operator289

M as described in e.g. [41, 40] as290

(7) M(z)(x) :=

{
z(x), |z(x)| ≤M,

Mz(x)/|z(x)|, |z(x)| > M,
291

where M is a (large) positive constant. The notation (wn,M
h , rn,Mh ) used in Defini-292

tion 2.1 is then equivalent to (M(wn
h),M(rnh)). Note that the use of (wn,M

h , rn,Mh )293

instead of (wn
h , r

n
h) has little or no practical implications, but is necessary in or-294

der to facilitate the convergence analysis; obviously, if the exact fluxes are bounded,295

i.e., wn, rn ∈ (L∞(Ω))d, then if we picked M large enough, we have practically296

M(wn)(x) = wn(x) and M(rn)(x) = rn(x). We are now able to present our six297

iterative algorithms:298

3.1. The monolithic scheme (HFM). At the each iteration k ≥ 1 of the L-299

type monolothic scheme, we solve the linearized thermo-poroelastic problem: Given300

(Tn,k−1, pn,k−1,wn,k−1,un,k−1), find (Tn,k, rn,k, pn,k,wn,k,un,k) such that301

(ψLT
(Tn,k, pn,k,un,k), S)302

+ τcf (M(wn,k−1) ·Θ−1M(rn,k), S) + τ(∇ · rn,k, S)303

= τ(zn, S) + (ψ(Tn−1, pn−1,un−1), S)304

+ LT (Tn,k−1, S), ∀S ∈ Th,(8a)305

(Θ−1rn,k,y)− (Tn,k,∇ · y) = 0, ∀y ∈ Rh,(8b)306

(ϕLp
(Tn,k, pn,k,un,k), q) + τ(∇ ·wn,k, q)307

= τ(gn, q) + (ϕ(Tn−1, pn−1,un−1), q)308

+ Lp(p
n,k−1, q), ∀q ∈ Ph,(8c)309

(K−1wn,k, z)− (pn,k,∇ · z) = 0, ∀z ∈ Wh,(8d)310

2µ(ε(un,k), ε(v))311

+ λ(∇ · un,k,∇ · v)312

= (fn,v) + (βTn,k + αpn,k,∇ · v), ∀v ∈ Uh.(8e)313314
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This algorithm in continued until a fixed tolerance is reached. Clearly, in the above315

algorithm, the L-scheme acts only as a linearization procedure, where we approximate316

the convective transport term by M(wn,k−1) ·Θ−1M(rn,k). Note that, one can also317

approximate this term byM(wn,k) ·Θ−1M(rn,k−1), and the analysis presented next318

remains true and follows exactly the same lines. The complexity in this algorithm is319

that it requires solving a large system generated by (8), which combines equations320

varied in type, and this is at each iteration k ≥ 1. This encourages the development321

of efficient techniques for the resolution of these coupled systems.322

3.2. The partially decoupled schemes. In the second set of iterative schemes,323

we only decouple the flow (F), mechanics (M) or heat (H) from the remaining two324

processes, which are being solved monolithically. Thus, we transform the monolithic325

solver (HFM) into a two-level iterative approach in which two simpler subproblems326

are solved sequentially. We note that for the partially and fully decoupled schemes,327

we do not consider a cyclical permutation of the order in which the subproblems328

are solved to yield a different algorithm. In practice, however, such a permutation329

might yield a slightly different algorithm. The partially decoupled setting delivers the330

following three iterative approaches:331

3.2.1. (HF-M): Coupled heat and flow. Decoupling the mechanics calcu-332

lation from the coupled flow and heat flow calculation, the first two-level iterative333

scheme reads as follows: At the iteration k ≥ 1, do:334

• Step 1: Given (Tn,k−1, pn,k−1,wn,k−1,un,k−1), find (Tn,k, rn,k, pn,k,wn,k)335

such that336

(ψLT
(Tn,k, pn,k,un,k−1), S)337

+ τcf (M(wn,k−1) ·Θ−1M(rn,k), S) + τ(∇ · rn,k, S)338

= τ(zn, S) + (ψ(Tn−1, pn−1,un−1), S)339

+ LT (Tn,k−1, S), ∀S ∈ Th,(9a)340

(Θ−1rn,k,y)− (Tn,k,∇ · y) = 0, ∀y ∈ Rh,(9b)341

(ϕLp(Tn,k, pn,k,un,k−1), q) + τ(∇ ·wn,k, q)342

= τ(gn, q) + (ϕ(Tn−1, pn−1,un−1), q)343

+ Lp(p
n,k−1, q), ∀q ∈ Ph,(9c)344

(K−1wn,k, z)− (pn,k,∇ · z) = 0, ∀z ∈ Wh.(9d)345346

• Step 2: Given (pn,k, Tn,k), find the displacement un,k such that347

2µ(ε(un,k), ε(v))348

+ λ(∇ · un,k,∇ · v)349

= (fn,v) + (βTn,k + αpn,k,∇ · v), ∀v ∈ Uh.(9e)350351

3.2.2. (HM-F): Coupled heat and mechanics. The second scheme in this352

subsection is obtained by decoupling the flow calculation from the remaining coupled353

thermo-elasticity calculation. This iterative scheme reads: At the iteration k ≥ 1, do:354

• Step 1: Given (Tn,k−1, pn,k−1,wn,k−1,un,k−1), find (Tn,k, rn,k,un,k) such355
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that356

(ψLT
(Tn,k, pn,k−1,un,k), S)357

+ τcf (M(wn,k−1) ·Θ−1M(rn,k), S) + τ(∇ · rn,k, S)358

= τ(zn, S) + (ψ(Tn−1, pn−1,un−1), S)359

+ LT (Tn,k−1, S), ∀S ∈ Th,(10a)360

(Θ−1rn,k,y)− (Tn,k,∇ · y) = 0, ∀y ∈ Rh,(10b)361

2µ(ε(un,k), ε(v))362

+ λ(∇ · un,k,∇ · v)363

− β(Tn,k,∇ · v) = (fn,v) + α(pn,k−1,∇ · v), ∀v ∈ Uh.(10c)364365

• Step 2: Given (Tn,k,un,k, pn,k−1), find (pn,k,wn,k) such that366

(c0 + Lp)(p
n,k, q) + τ(∇ ·wn,k, q)367

= τ(gn, q) + (ϕ(Tn−1, pn−1,un−1), q)368

+ Lp(p
n,k−1, q) + b0(Tn,k, q)− α(∇ · un,k, q), ∀q ∈ Ph,(10d)369

(K−1wn,k, z)− (pn,k,∇ · z) = 0, ∀z ∈ Wh.(10e)370371

3.2.3. (FM-H): Coupled flow and mechanics. The last two-level scheme is372

obtained by decoupling the poro-elasticity (solved monolithically) calculation from373

the heat flow. Note that a similar scheme was proposed in [19] for two-phase flow.374

This iterative scheme reads: At the iteration k ≥ 1, do:375

• Step 1: Given (pn,k−1,un,k−1, Tn,k−1), find (pn,k,wn,k,un,k) such that376

(ϕLp(Tn,k−1, pn,k,un,k), q) + τ(∇ ·wn,k, q)377

= τ(gn, q) + (ϕ(Tn−1, pn−1,un−1), q)378

+ Lp(p
n,k−1, q), ∀q ∈ Ph,(11a)379

(K−1wn,k, z)− (pn,k,∇ · z) = 0, ∀z ∈ Wh,(11b)380

2µ(ε(un,k), ε(v))381

+ λ(∇ · un,k,∇ · v)− α(pn,k,∇ · v)382

= (fn,v) + β(Tn,k−1,∇ · v), ∀v ∈ Uh.(11c)383384

• Step 2: Given (pn,k,wn,k,un,k, Tn,k−1), find (Tn,k, rn,k) such that385

(a0 + LT )(Tn,k, S)386

+ τcf (M(wn,k) ·Θ−1M(rn,k), S) + τ(∇ · rn,k, S)387

= τ(zn, S) + (ψ(Tn−1, pn−1,un−1), S)388

+ LT (Tn,k−1, S) + b0(pn,k, S)− β(∇ · un,k, S), ∀S ∈ Th,(11d)389

(Θ−1rn,k,y)− (Tn,k,∇ · y) = 0, ∀y ∈ Rh.(11e)390391

3.3. The fully decoupled schemes. In this set of iterative coupling schemes,392

we simply split the three processes, providing three sub-problems to be solved se-393

quentially. Fixing the mechanics calculation in the third level, two approaches are394

then derived in which either the problem of flow or the heat is solved first followed395
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by solving the other system and then the mechanics using the already calculated in-396

formation, leading to recover the original solution. These schemes enjoy the solving397

of much simpler subsystems through the algorithm, as well as the facility to reuse398

existing codes for each component of the problem.399

3.3.1. (H-F-M): Decoupled heat - flow - mechanics. At each iteration400

all three subproblems are decoupled, and are solved in the order heat → flow →401

mechanics. This iterative scheme reads: At the iteration k ≥ 1, do:402

• Step 1: Given (pn,k−1,wn,k−1, Tn,k−1,un,k−1) find (Tn,k, rn,k) such that403

(ψLT
(Tn,k, pn,k−1,un,k−1), S)404

+ τcf (M(wn,k) ·Θ−1M(rn,k), S) + τ(∇ · rn,k, S)405

= τ(zn, S) + (ψ(Tn−1, pn−1,un−1), S)406

+ LT (Tn,k−1, S), ∀S ∈ Th,(12a)407

(Θ−1rn,k,y)− (Tn,k,∇ · y) = 0, ∀y ∈ Rh.(12b)408409

• Step 2: Given (pn,k−1, Tn,k,un,k−1) find (pn,k,wn,k) such that410

(ϕLp
(Tn,k, pn,k,un,k), q) + τ(∇ ·wn,k, q)411

= τ(g, q) + (ϕ(Tn−1, pn−1,un−1), q)412

+ Lp(p
n,k−1, q) + b0(Tn,k, q)− α(∇ · un,k−1, q), ∀q ∈ Ph,(12c)413

(K−1wn,k, z)− (pn,k,∇ · z) = 0, ∀z ∈ Wh.(12d)414415

• Step 3: Given (pn,k, Tn,k) find un,k such that416

2µ(ε(un,k), ε(v)) + λ(∇ · un,k,∇ · v)417

= (f ,v) + (βTn,k + αpn,k,∇ · v), ∀v ∈ Uh.(12e)418419

3.3.2. (F-H-M): Decoupled flow - heat - mechanics. At each iteration420

all three subproblems are decoupled, and are solved in the order flow → heat →421

mechanics. This iterative scheme reads: At iteration k ≥ 1, do:422

• Step 1: Given (pn,k−1, Tn,k−1,un,k−1) find (pn,k,wn,k) such that423

(ϕLp(Tn,k−1, pn,k,un,k−1), q) + τ(∇ ·wn,k, q)424

= τ(g, q) + (ϕ(Tn−1, pn−1,un−1), q)425

+ Lp(p
n,k−1, q), ∀q ∈ Ph,(13a)426

(K−1wn,k, z)− (pn,k,∇ · z) = 0, ∀z ∈ Wh.(13b)427428

• Step 2: Given (pn,k,wn,k, Tn,k−1,un,k−1), find (Tn,k, rn,k) such that429

(ψLT
(Tn,k, pn,k,un,k−1), S)430

+ τcf (M(wn,k) ·Θ−1M(rn,k), S) + τ(∇ · rn,k, S)431

= τ(h, S) + (ψ(Tn−1, pn−1,un−1), S)432

+ LT (Tn,k−1, S) + b0(pn,k, S)− β(∇un,k−1, S), ∀S ∈ Th,(13c)433

(Θ−1rn,k,y)− (Tn,k,∇ · y) = 0, ∀y ∈ Rh.(13d)434435

• Step 3: Given (pn,k, Tn,k), find un,k such that436

2µ(ε(un,k), ε(v)) + λ(∇ · un,k,∇ · v)437

= (fn,v) + (βTn,k + αpn,k,∇ · v), ∀v ∈ Uh.(13e)438439
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4. Convergence analysis. The starting point for our analysis is the existence440

and uniqueness of a solution to (4). To this aim, we will make use of the following441

Lemma (cf. [41]), stating the Lipschitz property of the cut-off operator M:442

Lemma 4.1 (Property of M). The “cut-off” operator M defined as in equa-443

tion (7) is uniformly Lipschitz continuous, i.e.444

(14) ‖M(z1)−M(z2)‖(L∞(Ω))d ≤ ‖z1 − z2‖(L∞(Ω))d .445

Thus, we have446 ∥∥M(wn)−M(wn,k)
∥∥

(L∞(Ω))d
≤
∥∥wn −wn,k

∥∥
(L∞(Ω))d

,(15a)447
448

and449

‖M(wn)‖(L∞(Ω))d ≤M.(15b)450
451

The proof of the next Theorem is based on showing that the scheme (8) is a contrac-452

tion, and then by applying the Banach fixed-point theorem [15], to deduce convergence453

of the scheme. In what follows we will frequently use the following polarization and454

binomial identities,455

(16) 4(u, v) = ‖u+ v‖2 − ‖u− v‖2 , and 2(u− v, u) = ‖u‖2 + ‖u− v‖2 − ‖v‖2 .456

Finally, we define the difference functions between the solutions at the iteration k and457

k − 1 of problem (8), respectively as458

(ekT , e
k
r , e

k
p, e

k
w, e

k
u)459

:= (Tn,k − Tn,k−1, rn,k − rn,k−1,460

pn,k − pn,k−1,wn,k −wn,k−1,un,k − un,k−1).(17)461462

With this, we state the first of our main results:463

Theorem 4.2 (Convergence of the monolithic L-scheme HFM). Assuming464

(A1)–(A6) holds true, and the time step is small enough, i.e.465

(18) τ <
2(a0 − b0)

c2fM
2

(
kM
θm

+ 1

)
− θm

4cΩ,d

,466

then, the monolithic L-scheme HFM (Algorithm 3.1) defines a contraction satisfying467 (
a0 − b0 +

LT
2

+
τθm
4cΩ,d

−
τc2fM

2

2

(
kM
θm

+ 1

))∥∥ekT∥∥2
+
τ

2

∥∥ekr∥∥2

Θ−1468

+

(
c0 − b0 +

Lp
2

)∥∥ekp∥∥2
+ τ

∥∥ekw∥∥2

K−1469

+ 2µ
∥∥ε(eku)

∥∥2
+ λ

∥∥∇ · eku∥∥2
470

≤ LT
2

∥∥ek−1
T

∥∥2
+
Lp
2

∥∥ek−1
p

∥∥2
+
τ

2

∥∥ek−1
w

∥∥2

K−1 .(19)471
472

Therefrom, the limit is the unique solution of the problem (4).473
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Remark 4.1 (Bound on time step). Note that a0 − b0 > 0 due to the Assump-474

tion (A4), and475

(20) c2fM
2

(
kM
θm

+ 1

)
− θm

4cΩ,d
> 0,476

by the choice of M sufficiently large (thus, the right hand side of (18) is a positive477

number). Note also that if a priori bounds on the fluxes are available, and these are478

small enough such that M can be chosen to yield equality in (20), then there would be479

no constraint on the time step.480

Proof. We begin by deriving the error equations satisfied by (ekT , e
k
r , e

k
p, e

k
w, e

k
u),481

i.e. subtract the equations (8) for k from the ones for k − 1, and obtain482

(ψLT
(ekT , e

k
p, e

k
u), S) + τ(∇ · enr , S)483

+ τcf (M(wn,k−1) ·Θ−1[M(rn,k)−M(rn,k−1)], S)484

+ τcf ([M(wn,k−1)−M(wn,i−2)] ·Θ−1M(rn,k), S)485

= LT (ek−1
T , S), ∀S ∈ Th,(21a)486

(Θ−1ekr ,y)− (ekT ,∇ · y) = 0, ∀y ∈ Rh,(21b)487

(ϕLp
(ekT , e

k
p, e

k
u), q) + τ(∇ · ekw, q) = Lp(e

k−1
p , q), ∀q ∈ Ph,(21c)488

(K−1ekw, z)− (ekp,∇ · z) = 0, ∀z ∈ Wh,(21d)489

2µ(ε(eku), ε(v)) + λ(∇ · eku,∇ · v)490

− (βekT + αekp,∇ · v) = 0, ∀v ∈ Uh.(21e)491492

We choose now S = ekT , y = τekr , q = ekp, z = τekw, and v = eku as test functions493

in equations (21a)– (21e), respectively. Then, summing the resulting equations and494

using the identity (16) together with applying Cauchy-Schwarz and Young inequalities495

and some algebraic manipulations, we get, for any ε1, ε2 > 0,496 (
a0 − b0 +

LT
2

)∥∥ekT∥∥2
+ τ

∥∥ekr∥∥2

Θ−1 +

(
c0 − b0 +

Lp
2

)∥∥ekp∥∥2
497

+ τ
∥∥ekw∥∥2

K−1 + 2µ
∥∥ε(eku)

∥∥2
+ λ

∥∥∇ · eku∥∥2
498

≤ LT
2

∥∥ek−1
T

∥∥2
+
Lp
2

∥∥ek−1
p

∥∥2
499

+ τcf
∥∥M(wk−1) ·Θ−1ekr

∥∥ ∥∥ekT∥∥+ τcf
∥∥ek−1

w ·Θ−1M(rk−1)
∥∥ ∥∥ekT∥∥ ,500

≤ LT
2

∥∥ek−1
T

∥∥2
+
Lp
2

∥∥ek−1
p

∥∥2
+ τcfM

(ε1
2

+
ε2
2

)∥∥ekT∥∥2
501

+ τcfM
1

2ε1

∥∥ekr∥∥2

Θ−1 + τcfM
kM
θm

1

2ε2

∥∥ek−1
w

∥∥2

K−1 .(22)502
503

From equation (21b), and by Thomas’ lemma [44], there exists ŷ ∈ Rh and a constant504

cΩ,d > 0 depending only on the domain and spatial dimension such that ∇ · ŷ = ekT505

with ‖ŷ‖ ≤ cΩ,d
∥∥ekT∥∥. Thus, taking ŷ as a test function in (30d) we deduce506 ∥∥ekT∥∥2

= (ekT ,∇ · ŷ) = (Θ−1ekr , ŷ)507

≤
∥∥ekr∥∥Θ−1 ·

1√
θm
‖ŷ‖508

≤
∥∥ekr∥∥Θ−1 ·

cΩ,d√
θm

∥∥ekT∥∥ ,(23)509
510
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which leads to511

(24)
θm
cΩ,d

∥∥ekT∥∥2 ≤
∥∥ekr∥∥2

Θ−1 .512

Replacing (24) in (22) while choosing ε1 = cfM and ε2 = cfMkM/θm, we obtain513 (
a0 − b0 +

LT
2

+
τθm
4cΩ,d

−
τc2fM

2

2

(
kM
θm

+ 1

))∥∥ekT∥∥2
+
τ

4

∥∥ekr∥∥2

Θ−1514

+

(
c0 − b0 +

Lp
2

)∥∥ekp∥∥2
+ τ

∥∥ekw∥∥2

K−1515

+ 2µ
∥∥ε(eku)

∥∥2
+ λ

∥∥∇ · eku∥∥2
516

≤ LT
2

∥∥ek−1
T

∥∥2
+
Lp
2

∥∥ek−1
p

∥∥2
+
τ

2

∥∥ek−1
w

∥∥2

K−1 .(25)517
518

The contraction of the residuals follows if the time step τ satisfies (18). This proves519

the convergence of the monolithic L-scheme. The limit is then the unique solution520

of (4).521

The well-posedness of the discrete variational problem (4) is established by the The-522

orem 4.2, where the solution at time tn, n ≤ 0, is denoted by (Tn, rn, pn,wn,un).523

Thus, we can now prove the convergence of the decoupled schemes to this solution. We524

begin with analyzing the partially decoupled schemes, introduced in Subsection 3.2.525

To this end, we let the difference functions defined in (17) now be the differences526

between the solutions at the iteration k of problem (9), and the solutions to (4), i.e.527

(ekT , e
k
r , e

k
p, e

k
w, e

k
u) := (Tn,k − Tn, rn,k − rn, pn,k − pn,wn,k −wn,un,k − un).(26)528529

The second of our main results is given through530

Theorem 4.3 (Convergence of the partially decoupled schemes). Assuming531

(A1)–(A6) holds true, the stabilization parameters are such that532

(27) Lp ≥
4α2

3( 2µ
d + λ)

and LT ≥
4β2

3( 2µ
d + λ)

,533

and the time step satisfies (18), then the partially decoupled L-scheme HF-M (Algo-534

rithm 3.2.1) is a contraction given by535 (
a0 − b0 +

LT
2

+
τθm
4cΩ,d

−
τc2fM

2

2

(
kM
θm

+ 1

))∥∥ekT∥∥2
536

+
τ

4

∥∥ekr∥∥2

Θ−1 +

(
c0 − b0 +

Lp
2

)∥∥ekp∥∥2
+ τ

∥∥ekw∥∥2

K−1537

≤ LT
2

∥∥ek−1
T

∥∥2
+
Lp
2

∥∥ek−1
p

∥∥2
+
τ

2

∥∥ek−1
w

∥∥2

K−1 .(28)538
539

Furthemore, there holds,540

µ

2

∥∥ε(eku)
∥∥2

+
λ

4

∥∥∇ · eku∥∥2 ≤ 2α2

3( 2µ
d + λ)

∥∥ekp∥∥2
+

2β2

3( 2µ
d + λ)

∥∥ekT∥∥2
.(29)541

542
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Proof. We start by taking the difference of equations (9a) – (9e) at iteration k543

with the corresponding equations solved by (Tn, rn, pn,wn,un). This leads to the544

following set of difference equations545

(ψLT
(ekT , e

k
p, e

k−1
u ), S) + τ(∇ · ekr , S)546

+ τcf ([M(wn,k−1)−M(wn)] ·Θ−1rn, S)547

+ τcf (M(wn,k−1) ·Θ−1[M(rn,k)−M(rn)], S)548

= LT (ek−1
T , S), ∀S ∈ Th,(30a)549

(Θ−1ekr ,y)− (ekT ,∇ · y) = 0, ∀y ∈ Rh(30b)550

(ϕLp
(ekT , e

k
p, e

k−1
u ), q) + τ(∇ · ekw, q) = Lp(e

k−1
p , q), ∀q ∈ Ph,(30c)551

(K−1ekw, z)− (ekp,∇ · z) = 0, ∀z ∈ Wh,(30d)552

2µ(ε(eku), ε(v)) + λ(∇ · eku,∇ · v)553

− (αekp + βekT ,∇ · v) = 0, ∀v ∈ Uh.(30e)554555

The aim now is to show a contraction of successive error functions, thereby implying556

convergence of the sequences (Tn,k, rn,k, pn,k,wn,k,un,k) as k →∞ for n ≥ 1, by the557

Banach Fixed Point Theorem [15]. Taking as test functions q = ekp, z = τekw, S =558

ekT ,y = τekr , and v = ek−1
u in (30a) – (30e), respectively, and adding the resulting559

equations together, we obtain560 (
a0 +

LT
2

)∥∥ekT∥∥2
+
LT
2

∥∥ekT − ek−1
T

∥∥2
+ τ

∥∥ekr∥∥2

Θ−1561

+

(
c0 +

Lp
2

)∥∥ekp∥∥2
+
Lp
2

∥∥ekp − ek−1
p

∥∥2
+ τ

∥∥ekw∥∥2

K−1562

+ 2µ
1

4

∥∥ε(eku + ek−1
u )

∥∥2
+ λ

1

4

∥∥∇ · (eku + ek−1
u )

∥∥2
563

=
LT
2

∥∥ek−1
T

∥∥2
+
Lp
2

∥∥ek−1
p

∥∥2
+ 2b0(ekT , e

k
p)564

+ 2µ
1

4

∥∥ε(eku − ek−1
u )

∥∥2
+ λ

1

4

∥∥∇ · (eku − ek−1
u )

∥∥2
565

− τcf ([M(wn,k−1)−M(wn)] ·Θ−1M(rn), ekT )566

− τcf (M(wn,k−1) ·Θ−1[M(rn,k)−M(rn)], ekT ),(31)567568

where we used the identities (16). On the other hand, by taking the difference of eq.569

(30e) at iteration k and k− 1, testing with eku− ek−1
u , and using the Cauchy-Schwarz570

inequality we get571

2µ
∥∥ε(eku − ek−1

u )
∥∥2

+ λ
∥∥∇ · (eku − ek−1

u )
∥∥2

572

= α(ekp − ek−1
p ,∇ · (eku − ek−1

u )) + β(ekT − ek−1
T ,∇ · (eku − ek−1

u ))573

≤
(
α
∥∥ekp − ek−1

p

∥∥+ β
∥∥ekT − ek−1

T

∥∥) ∥∥∇ · (eku − ek−1
u )

∥∥ .(32)574575

Let now ξ ∈ (0, 1) and rewrite the above estimate as576

2µ
∥∥ε(eku − ek−1

u )
∥∥2

+ λ
∥∥∇ · (eku − ek−1

u )
∥∥2

577

≤
(
α
∥∥ekp − ek−1

p

∥∥+ β
∥∥ekT − ek−1

T

∥∥) (ξ√d ∥∥ε(eku − ek−1
u )

∥∥578

+ (1− ξ)
∥∥∇ · (eku − ek−1

u )
∥∥).(33)579

580
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We now follow [8] and choose ξ =
2µ

2µ+ dλ
, which together with the Young inequality581

yields582

µ

2

∥∥ε(eku − ek−1
u )

∥∥2
+
λ

4

∥∥∇ · (eku − ek−1
u )

∥∥2
583

≤ 2α2

3( 2µ
d + λ)

∥∥ekp − ek−1
p

∥∥2
+

2β2

3( 2µ
d + λ)

∥∥ekT − ek−1
T

∥∥2
.(34)584

585

Combining this with eq. (31) leads to586

(a0 +
LT
2

)
∥∥ekT∥∥2

+

(
LT
2
− 2β2

3( 2µ
d + λ)

)∥∥ekT − ek−1
T

∥∥2
+ τ

∥∥ekr∥∥2

Θ−1587

+ (c0 +
Lp
2

)
∥∥ekp∥∥2

+

(
Lp
2
− 2α2

3( 2µ
d + λ)

)∥∥ekp − ek−1
p

∥∥2
+ τ

∥∥ekw∥∥2

K−1588

+
µ

2

∥∥ε(eku + ek−1
u )

∥∥2
+
λ

4

∥∥∇ · (eku + ek−1
u )

∥∥2
589

≤ Lp
2

∥∥ek−1
p

∥∥2
+
LT
2

∥∥ek−1
T

∥∥2
+ 2b0(ekT , e

k
p)590

− τcf ([M(wn,k−1)−M(wn)] ·Θ−1M(rn), ekT )591

− τcf (M(wn,k−1) ·Θ−1[M(rn,k)−M(rn)], ekT ).(35)592593

We thus need to impose some constraints on the stabilization parameters, i.e. Lp ≥594

4α2

3( 2µ
d + λ)

and LT ≥
4β2

3( 2µ
d + λ)

. With this, we can discard some positive terms on the595

left hand side of (35), and use the Cauchy-Schwarz and Young inequalities, together596

with the Lipschitz property of M to obtain597 (
a0 − b0 +

LT
2
− τcfM(

ε1
2

+
ε2
2

)

)∥∥ekT∥∥2
+ τ

∥∥ekr∥∥2

Θ−1598

+

(
c0 − b0 +

Lp
2

)∥∥ekp∥∥2
+ τ

∥∥ekw∥∥2

K−1599

≤ Lp
2

∥∥ek−1
p

∥∥2
+
LT
2

∥∥ek−1
T

∥∥2
600

+ τcfM
kM
θm

1

2ε1

∥∥ek−1
w

∥∥2

K−1 + τcfM
1

2ε2

∥∥ekr∥∥2

Θ−1 ,(36)601
602

for some ε1, ε2 > 0, and where kM and θm are given by (A1) – (A2). From (30d), we603

obtain in the same way as in (24)604

(37)
θm
cΩ,d

∥∥ekT∥∥2 ≤
∥∥ekr∥∥2

Θ−1 .605

Replacing (37) in (36) while choosing ε1 = cfMkM/θm and ε2 = cfM , we get606 (
a0 − b0 +

LT
2

+
τθm
4cΩ,d

−
τc2fM

2

2

(
kM
θm

+ 1

))∥∥ekT∥∥2
+
τ

4

∥∥ekr∥∥2

Θ−1607

+

(
c0 − b0 +

Lp
2

)∥∥ekp∥∥2
+ τ

∥∥ekw∥∥2

K−1608

≤ Lp
2

∥∥ek−1
p

∥∥2
+
LT
2

∥∥ek−1
T

∥∥2
+
τ

2

∥∥ek−1
w

∥∥2

K−1 .(38)609
610
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Thus, if the time step τ satisfies (18), we can write (38) as611

(39) F k ≤ 1

1 + δ
F k−1,612

where613

(40) F k :=
Lp
2

∥∥ekp∥∥2
+
LT
2

∥∥ekT∥∥+
τ

4

∥∥ekw∥∥2

K−1 ,614

and615

(41) δ := min

{
2

Lp
(c0 − b0),

2

LT

(
a0 − b0 +

τθm
4cΩ,d

−
τc2fM

2

2

(
kM
θm

+ 1

))
,

1

2

}
> 0.616

Going back to eq. (30e), we choose v = eku as test function which leads to617

2µ
∥∥ε(eku)

∥∥2
+ λ

∥∥∇ · eku∥∥2
= α(ekp,∇ · eku) + β(ekT ,∇ · eku)618

≤ (α
∥∥ekp∥∥+ β

∥∥ekT∥∥)
∥∥∇ · eku∥∥619

≤ (α
∥∥ekp∥∥+ β

∥∥ekT∥∥)
(
ξ
√
d
∥∥ε(eku)

∥∥+ (1− ξ)
∥∥∇ · eku∥∥) ,(42)620

621

for some ξ ∈ (0, 1). Following the same steps which led to (34), and choosing as before622

ξ =
2µ

2µ+ dλ
, we get by the Young inequality623

(43)
µ

2

∥∥ε(eku)
∥∥2

+
λ

4

∥∥∇ · eku∥∥2 ≤ 2α2

3( 2µ
d + λ)

∥∥ekp∥∥2
+

2β2

3( 2µ
d + λ)

∥∥ekT∥∥2
.624

This shows a contraction of the residuals and therefore completes the proof.625

Remark 4.2 (The other partially decoupled schemes). For the partially decoupled626

schemes HM-F and FM-H (Algorithms 3.2.2 and 3.2.3 respectively) the contractions627

can obtained similarly to the scheme HF-M with minor changes in the coefficients.628

Before we state the last of our main results, we let the difference functions defined629

in (26) now be the difference between the solutions at the iteration k of problem (13)630

and the solutions to (4). The last of our main results then reads:631

Corollary 4.4 (Convergence of the fully decoupled algorithms). Under the as-632

sumptions of Theorem 4.3, the fully decoupled L-scheme F-H-M (Algorithm 3.3.2)633

defines a contraction634 (
a0 −

b0
2

+
LT
2

+
τθm
4cΩ,d

−
τc2fM

2

2

(
kM
θm

+ 1

))∥∥ekT∥∥2
635

+

(
c0 − b0 +

Lp
2

)∥∥ekp∥∥2
+
τ

2

∥∥ekw∥∥2

K−1 +
τ

4

∥∥ekr∥∥2

Θ−1636

≤
(
LT
2

+
b0
2

)∥∥ek−1
T

∥∥2
+
Lp
2

∥∥ek−1
p

∥∥2
.(44)637

638

Furthermore, the estimate (29) holds true.639
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Proof. We follow the same lines as in the proof of Theorem 4.3, and take the differ-640

ence of equations (13a) – (13d) with the same equations solved by (Tn, rn, pn,wn,un),641

and obtain the difference equations for the fully decoupled scheme F-H-M. We then642

promptly obtain estimate (44), from which the contraction is inferred by choosing the643

stabilization parameters and the time step. That of the second estimate follows in644

exactly the same way.645

Remark 4.3 (The fully decoupled scheme H-F-M). The contraction 44 holds646

true for Algorithm 3.3.1 by exchanging in there the coefficients in the right-hand side,647

i.e.,
Lp
2

becomes
Lp
2

+
b0
2

and
LT
2

+
b0
2

becomes
Lp
2

.648

Remark 4.4 (Other schemes). The results os Section 4 are valid also for other649

choices of temporal discretizations, as well as different (i.e., non-mixed) formulations650

for the heat and flow problems. Different spatial discretizations can even be chosen651

for each of the three subproblems.652

5. Numerical experiments. In the following we present three numerical test653

cases using the algorithms from Section 3. The first is a constructed problem, posed654

on the unit square domain, with prescribed solutions for the temperature, pressure655

and displacements. Here, we consider five different parameter regimes, exhausting all656

possibilities of weak/strong coupling between the subproblems, and compare the num-657

ber of iterations needed for convergence with decreasing mesh sizes for both stabilized658

and non-stabilized algorithms. Since analytical solutions are available, we present also659

discretization errors.660

Next, we present two implementations of Mandel’s problem, which is originally661

a benchmark problem in linear poroelasticity, extended here to nonlinear thermo-662

poroelasticity. For the original Mandel problem, analytical solutions for the pressure663

and displacement field are known. Due to the similarity of the thermo-poroelastic664

equations we consider with the linear Biot’s equations, and due to the lack of bench-665

mark problems for thermo-poroelasticity, we choose to use this problem for our second666

and third numerical test cases. Even though the analytical solutions are no longer667

valid when including temperature, we have sufficiently weak temperature effects in the668

first implementation of Mandel’s problem that the computed pressure and displace-669

ment field matches the (isothermal) analytical solutions. The second implementation670

of Mandel’s problem includes a heat source, which has a significant effect on both671

the pressure and displacement. Regarding the spatial discretization, we choose the672

following finite element spaces:673

Rh,Wh := {ψ ∈ H(div; Ω) : ∀K ∈ Xh, ψ|K ∈ RT0(K)},(45a)674

Th,Ph := {ϕ ∈ L2(Ω) : ∀K ∈ Xh, ϕ|K ∈ P0(K)},(45b)675

Uh := {η ∈ (H1(Ω))d : ∀K ∈ Xh, η|K ∈ [P1(K)]d},(45c)676677

where RT0(K) denotes the lowest-order Raviart–Thomas finite-dimensional subspace678

associated with the element K ∈ Xh, and Pl(K) is the space of polynomials on K ∈ Xh679

of total degree less than or equal to l. Thus, the spaces (Th,Rh) and (Ph,Wh) are the680

lowest order Raviart-Thomas mixed finite element spaces for the mixed flow and heat681

flow subproblems, respectively. Note that both spaces satisfy the condition (3), see682

e.g. [22] for more details on (mixed) finite elements. The vector valued space Uh is the683

first order Lagrange finite element space for the mechanics problem. We employ the684

following stopping criterion for the iterative algorithms, given in terms of the relative685
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and absolute tolerances, aTOL and rTOL, i.e.686 ∥∥(T k, rk, pk,wk,uk)− (T k−1, rk−1, pk−1,wk−1,uk−1)
∥∥687

≤ aTOL + rTOL
∥∥(T k, rk, pk,wk,uk)

∥∥ ,(46)688689

where we set aTOL = rTOL = 1e − 6 for all the computations. For the solution of690

the linear subproblems, we make use of a direct sparse linear solver from the Python691

library SciPy [36], i.e., scipy.sparse.linalg.spsolve. The present approaches can692

also be combined with iterative solvers adapted to the various subproblems. All nu-693

merical tests are implemented in a finite element code written in Python, the complete694

source code is accessible at https://github.com/matkbrun/FEM.695

5.1. Test case 1: Example with manufactured solution. As a first test696

case, we let the domain be a regular triangularization of the unit square, i.e., Ω =697

[0, 1]× [0, 1] ⊂ R2, and prescribe the following smooth solutions for the temperature,698

pressure and displacement699

T (x, t) = tx1(1− x1)x2(1− x2),(47a)700

p(x, t) = tx1(1− x1)x2(1− x2),(47b)701

u(x, t) = tx1(1− x1)x2(1− x2)[1, 1]>,(47c)702703

where x := (x1, x2) ∈ R2, t ≥ 0. The flux fields are then computed by704

(47d) r = −Θ∇T, and w = −K∇p,705

while right hand sides, i.e., z, g and f , can be calculated explicitly using equations706

(1a)–(1c). We prescribe homogenous initial conditions and homogenous Dirichlet707

boundary conditions, for the temperature, pressure and displacement. All computa-708

tions are done on a fixed time step, i.e., τ = 1.0, and continued until criterion (46) is709

satisfied.710

For the analysis and comparison of our algorithms, we consider dimensionless711

equations, i.e. all parameters are set to 1.0e− 1, except for the three coupling coeffi-712

cients {α, β, b0}, which we vary in order to weaken/strengthen the coupling between713

the three subproblems. In particular, we consider five different parameter regimes,714

PR1 – PR5, specified in Table 1:715

PR1 PR2 PR3 PR4 PR5

α 1.0 0.1 0.1 1.0 0.1
β 1.0 0.1 1.0 0.1 0.1
b0 1.0 1.0 0.1 0.1 0.1

Table 1: Smooth solution: Parameter regimes for varying strong/weak coupling be-
tween subproblems.

We also set a0 = c0 = 2b0, thus satisfying (A4). Table 2 shows number of716

iterations needed for convergence using the six algorithms from Subsections 3.1, 3.2717

and 3.3, for a single time step with decreasing mesh sizes, and stabilization according718

to equality in (27).719

We see that for parameter regimes 1, 3 and 4 we have higher iterations numbers720

than for parameter regimes 2 and 5, for all six algorithms. This is because LT ∼ β2 and721
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PR1 PR2 PR3 PR4 PR5 PR1 PR2 PR3 PR4 PR5

h HFM HF-M

1/4 7 3 8 8 3 31 4 11 11 4
1/8 7 3 7 7 3 35 4 13 13 4
1/16 6 3 7 7 3 40 4 13 13 4
1/32 6 3 7 7 3 41 4 13 13 4
1/64 6 3 7 7 3 41 4 13 13 4

h HM-F FM-H

1/4 9 6 8 11 4 9 6 11 8 4
1/8 9 6 7 11 4 9 6 11 7 4
1/16 9 6 7 11 4 9 6 11 7 4
1/32 9 6 7 11 4 9 6 11 7 4
1/64 9 6 7 11 4 9 6 11 7 4

h H-F-M F-H-M

1/4 20 6 11 11 4 20 6 11 11 4
1/8 22 6 12 12 4 22 6 12 12 4
1/16 24 6 13 13 4 24 6 13 13 4
1/32 24 6 13 13 4 24 6 13 13 4
1/64 24 6 13 13 4 24 6 13 13 4

Table 2: Smooth solution: Number of iteration with decreasing mesh sizes for param-
eter regimes PR1 – PR5. Stabilization from theory.

Lp ∼ α2, and larger stabilization results in higher iteration numbers. Furthermore, as722

expected, the strongly coupled parameter regime (PR1) yields the highest iteration723

numbers, in particular for the algorithms HF-M, H-F-M and F-H-M. Apart from724

this, the algorithms are performing robustly both with respect to different coupling725

regimes. All algorithms are performing robustly with respect to decreasing mesh726

sizes. For comparison we also provide in Table 3, the results without stabilization,727

i.e., LT = Lp = 0.728

We see here that the fully monolithic algorithm (HFM) has low iteration counts729

for all parameter regimes since this is only a linearization scheme, and does not re-730

quire stabilization (cf. Theorem 4.2). For the two-level (Section 3.2) and three-level731

(Section 3.3) algorithms, which involves some splitting as well as linearization, we732

see that iteration counts for different parameter regimes corresponds to the vari-733

ous coupling/decoupling of the subproblems present in the algorithms (splitting of734

subproblems which are strongly coupled yields high iteration numbers, compared to735

solving the strongly coupled subproblems together). This is in contrast to employing736

stabilization, which greatly improves the robustness of the algorithms with respect to737

variations in parameters. For the strongly coupled parameter regime (PR1), we even738

have no convergence for algorithm HF-M, when no stabilization is applied.739

Furthermore, in order to check the robustness of the proposed schemes with re-740

spect to the nonlinearity, we adjust the coefficient of the nonlinear term, cf , in order741

to make this term dominate. Table 4 shows number of iterations needed for conver-742

gence when cf = 1.0e1, for both the strongly coupled parameter regime (PR1) and743

the weakly coupled parameter regime (PR5). We also compare the results when no744

stabilization is applied. Note that we here only use a single mesh with h = 1/16.745

For the weakly coupled parameter regime (PR5), there is no difference in it-746
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PR1 PR2 PR3 PR4 PR5 PR1 PR2 PR3 PR4 PR5

h HFM HF-M

1/4 3 3 3 3 3 - 4 16 16 4
1/8 3 3 3 3 3 - 4 19 19 4
1/16 3 3 3 3 3 - 4 20 20 4
1/32 3 3 3 3 3 - 4 20 20 4
1/64 3 3 3 3 3 - 4 20 21 4

h HM-F FM-H

1/4 11 6 4 22 4 11 6 21 4 4
1/8 11 6 4 23 4 11 6 23 4 4
1/16 12 6 4 24 4 11 6 24 4 4
1/32 12 6 4 24 4 12 6 24 4 4
1/64 12 6 4 25 4 12 6 24 4 4

h H-F-M F-H-M

1/4 34 6 17 16 4 34 6 16 17 4
1/8 38 5 19 19 4 38 5 19 19 4
1/16 44 5 20 20 4 44 5 20 20 4
1/32 46 5 20 20 4 46 5 20 21 4
1/64 46 5 21 20 4 46 5 20 21 4

Table 3: Smooth solution: Number of iterations with decreasing mesh sizes for pa-
rameter regimes PR1 – PR5. LT = Lp = 0.

Parameters PR1 PR5 PR1 PR5

# HFM HF-M

Non-stabilized 4 4 - 5
Stabilized 7 4 41 5

# HM-F FM-H

Non-stabilized 11 4 10 4
Stabilized 9 4 8 4

# H-F-M F-H-M

Non-stabilized 48 5 36 4
Stabilized 25 5 22 4

Table 4: Smooth solution: Number of iterations with strong nonlinear effects, i.e.
cf = 10, and mesh size h = 1/16.

eration numbers between the stabilized and non-stabilized algorithms, even with a747

dominating nonlinearity. For the strongly coupled parameter regime (PR1), how-748

ever, the stabilized algorithms has a significantly lower iteration count. This might749

be due to the fact that the nonlinearity appears as a coupling term.750

Since analytical solutions are available for this problem, we provide also the dis-751

cretization errors, denoted by (eh,T , eh,r, eh,p, eh,w, eh,u), measured in the L2-norm.752

Due to almost no variation in discretization errors between the six algorithms and753

between the different parameter regimes (less than 5%), we provide in Table 5 the754
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discretization errors using algorithm H-F-M applied on the weakly coupled parameter755

regime (PR5). We also include the convergence rates, defined by rT := ehj ,T /ehj+1,T ,756

and similarly for the other variables.

h eh,T rT eh,r rr eh,p rp eh,w rw eh,u ru

1/4 8.5e-3 - 3.5e-3 - 8.5e-3 - 3.5e-3 - 5.6e-3 -
1/8 4.4e-3 1.93 1.8e-3 1.94 4.4e-3 1.93 1.8e-3 1.94 1.4e-3 4.0
1/16 2.2e-3 2.0 9.3e-4 1.94 2.2e-3 2.0 9.3e-4 1.94 3.6e-4 3.89
1/32 1.1e-3 2.0 4.7e-4 1.98 1.1e-3 2.0 4.7e-4 1.98 9.1e-5 3.96
1/64 5.5e-4 2.0 2.3e-4 2.04 5.5e-4 2.0 2.3e-4 2.04 2.3e-5 3.96

Table 5: Smooth solution: Discretization errors using algorithm H-F-M applied on
the weakly coupled parameter regime (PR5), and with cf = 0.1. Stabilization from
theory. Convergence rate is of first order for all variables, except for that of the
displacement which is of second order. We note that these rates are optimal.

757

5.2. Test case 2: Mandel’s problem. We refer to [16] for a detailed descrip-758

tion of Mandel’s problem. Formulas for the analytical pressure and displacements can759

be found in [37]. We provide here only a brief description. Mandel’s problem is posed760

on a rectangular domain representing a poroelastic slab of extent 2a in the horizon-761

tal direction, 2b in the vertical direction, and infinitely long in the third direction.762

The poroelastic slab is contained between two rigid plates, where at the initial time763

a downward force of magnitude 2F is applied to the top plate, with an equal but764

opposite force applied to the bottom plate. The top and bottom boundary is treated765

as impermeable, while zero pressure (and temperature) is prescribed at the right and766

left boundary. Due to the nature of Mandel’s problem, the pressure, temperature and767

horizontal component of the displacement varies only in the horizontal direction, while768

the vertical component of the displacement varies only in the vertical direction. From769

symmetry considerations, it suffices to consider only the top right quarter rectangle,770

i.e. the computational domain is [0, a]× [0, b] (see Figure 1).771

Fig. 1: Setting of Mandel’s problem quarter domain (figure from [32]).

We perform now all computations with realistic choices of physical parameters.772
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In particular, we take mechanics and flow parameters identical to [32], and heat773

parameters identical to [26]. However, in [26] the flow-heat coupling coefficient b0 is774

taken to be identically zero, so in order to preserve this coupling we instead choose a775

suitably small number (that satisfies (A4)). All parameters are listed in Table 6.776

Symbol Quantity Value Unit

E Bulk modulus 5.94e9 Pa
ν Poisson’s ratio 0.2 -
c0 Storage coefficient 6.06e-11 Pa−1

α Biot’s coefficient 1.0 -
µf Fluid viscosity 1.0e-3 Pa s

K̂ Permeability 9.87e-14 I m2

Θ Effective thermal conductivity 1.7 I W m−1 K−1

b0 Thermal dilation coefficient 3.03e-11 K−1

β Thermal stress coefficient 9.9e6 Pa K−1

a0 Effective heat capacity 0.92e3 J kg−1 K−1

Tref Reference temperature 298.15 K
cf Volumetric heat capacity fluid 4.18e6 J m−3 K−1

τ Time step 10 s

Table 6: Mandel’s problem: Physical parameters, taken from [32, 26].

In terms of our previous notation, we now have K = µ−1
f K̂, and µ =

E

2(1 + ν)
777

and λ =
Eν

(1 + ν)(1 + 2ν)
. Note also that we will now employ the dimensional version778

of the heat equation (1a), which reads (in primal form)779

(48) ∂t

(
a0

T

Tref
− b0p+ β∇ · u

)
+ cf (K∇p) · ∇ T

Tref
−∇ ·

(
Θ∇ T

Tref

)
= z.780

The magnitude of the compressive force is F = 2× 108 Pa m, and the physical di-781

mensions of the quarter rectangle is given by a = 100 m and b = 10 m, of which we782

make a regular triangularization. We impose the compressive force as a Dirichlet783

boundary condition on the top boundary (x2 = b) for the vertical component of the784

displacement. We denote by n1 and n2 the number of subdivisions of the domain785

in the x1 and x2 directions, respectively. For the first implementation of Mandel’s786

problem we prescribe homogenous boundary conditions and zero source term and787

initial condition for the heat problem. Figure 2 shows the solution profiles for the788

pressure, temperature and displacements for selected time steps, with the analytical789

(isothermal) solutions for the pressure and displacement included for comparison.790

The computed solutions for pressure and displacement matches the analytical791

ones, even though the analytical solutions are only valid for the linear isothermal792

problem. This is because the induced temperature effect in the system is small enough793

that the heat decouples from the flow and mechanics. For the second implementation794

of Mandel’s problem we prescribe a constant source term for the heat problem, i.e.,795

z = 2× 10−4 W m−3 K−1 and zero initial condition. Figure 3 shows the solution796

profiles for the pressure, temperature and displacements at selected time steps.797

The temperature source now interacts with the other processes and thus has an798

effect on the pressure and horizontal component of the displacement. Furthermore,799

This manuscript is for review purposes only.



ITERATIVE SCHEMES FOR NONLINEAR COUPLED THERMO-POROELASTICITY 23

(a) Pressure profile. (b) Temperature profile.

(c) Displacement profile, 1st component. (d) Displacement profile, 2nd component.

Fig. 2: Mandel’s problem: Solution profiles for Mandel’s problem at t ∈
{100 s, 500 s, 1000 s}, with z = 0 W m−3 K−1, and n1 = n2 = 40.

the temperature change in the system is now increasing with increasing time. Table 7800

shows the number of iterations for Mandel’s problem using the derived algorithms.801

6. Conclusions. Based on developments on iterative splitting schemes from802

linear poroelasticity, we have proposed six novel iterative procedures for nonlinear803

thermo-poroelasticity. These algorithms are using stabilization and linearization tech-804

niques similar to [8, 31], which is known in the literature as the ‘L-scheme’. The805

thermo-poroelastic problem we consider can be viewed as a coupling of three physical806

processes (or subproblems): Flow, geomechanics and heat. Solving this system ei-807

ther monolithically (all three subproblems simultaneously), partially decoupled (two808

subproblems simultaneously), or fully decoupled (each subproblem separately), yields809

six possible combinations of coupling/decoupling, which we have used to design our810

six algorithms. All of these involve a linearization of the convective term and added811

stabilization terms to both the flow and heat subproblems. In this sense, our use of812

the L-scheme is both as a stabilization for iterative splitting and a linearization of813

nonlinear problems.814
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(a) Pressure profile. (b) Temperature profile.

(c) Displacement profile, 1st component. (d) Displacement profile, 2nd component.

Fig. 3: Mandel’s problem: Solution profiles at t ∈ {100 s, 500 s, 1000 s}, with z =
2× 10−4 W m−3 K−1, and n1 = n2 = 40.

Heat source z = 0 z = 2e-4 z = 0 z = 2e-4 z = 0 z = 2e-4

n1 = n2 HFM HF–M HM–F

10 18 18 14 14 14 14
20 18 18 13 12 13 12
40 18 18 13 12 13 12

n1 = n2 FM–H H–F–M F–H–M

10 18 18 14 13 14 14
20 18 18 13 13 13 12
40 18 18 13 13 13 12

Table 7: Mandel’s problem: Number of iterations with decreasing mesh sizes for
Mandel’s problem. Stabilization from theory.
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For any given situation the coupling strength between the three subproblems815

may vary. A-priori, the expectation is that solving together subproblems that are816

strongly coupled yields better efficiency properties than does splitting. On the other817

hand, if the coupling between two or more subproblems is weak, a splitting procedure818

might be beneficial. For this reason, and due to the fact that splitting the three-way819

coupled multi-physics problem into smaller subproblems allows for combining existing820

codes that separately can handle any of the three processes involved (or two of them821

combined), six different algorithms are presented. These six algorithms covers all822

possibilities of strong/weak coupling between the three subproblems. Using the well-823

posedness of the continuous problem, we obtained lower bounds on the stabilization824

parameters, and proved the convergence of our proposed algorithms under a constraint825

on the time step. In practice, however, we find that this bound is not tight; as long826

as the fluxes are not becoming unbounded (e.g. due to a singularity), a ‘reasonable’827

time step can safely be chosen.828

Our algorithms are tested in detail with several numerical examples. In partic-829

ular, we find that all six algorithms are performing robustly with respect to both830

mesh refinement and different parameter regimes (i.e. strong/weak coupling between831

the subproblems and strong/weak nonlinear effects), using the stabilization revealed832

by our analysis. We also find that using no stabilization results in the algorithms833

being more sensitive to the parameter regimes, i.e. splitting subproblems that are834

strongly coupled yields high iteration numbers compared to solving these subprob-835

lems together. This phenomena is also observed in the stabilized algorithms, but to a836

significantly lesser extent. In particular, our conclusion is that with no stabilization,837

each of the algorithms is suitable only for a certain parameter regime (i.e. one that838

corresponds to the coupling/decoupling structure present in the algorithm), in con-839

trast to the stabilized algorithms, which can handle a much wider range of different840

parameter regimes.841
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Abstract

This paper concerns the analysis and implementation of a novel iterative staggered scheme for quasi-static
brittle fracture propagation models, where the fracture evolution is tracked by a phase field variable. The
model we consider is a two-field variational inequality system, with the phase field function and the elastic
displacements of the solid material as independent variables. Using a penalization strategy, this variational
inequality system is transformed into a variational equality system, which is the formulation we take as the
starting point for our algorithmic developments. The proposed scheme involves a partitioning of this model into
two subproblems; phase field and mechanics, with added stabilization terms to both subproblems for improved
efficiency and robustness. We analyze the convergence of the proposed scheme using a fixed point argument, and
find that under a natural condition, the elastic mechanical energy remains bounded, and, if the diffusive zone
around crack surfaces is sufficiently thick, monotonic convergence is achieved. Finally, the proposed scheme is
validated numerically with several bench-mark problems.

Key words: phase field; quasi-static; brittle fracture; fracture propagation; L-scheme; fixed stress; iterative
algorithm; linearization; convergence analysis; fixed point; finite element;

1 Introduction

Fracture propagation is currently an important topic with many applications in various engineering fields. Specifi-
cally, phase-field descriptions are intensively investigated. The theory of brittle fracture mechanics goes back to the
works of A. Griffith [23], wherein a criterion for crack propagation is formulated. Despite a foundational treatment
on the subject of brittle fracture, Griffith’s theory fails to predict crack initiation. This deficiency can however be
overcome by a variational approach, which was first proposed in [10, 20]. Using such a variational approach, dis-
continuities in the displacement field u across the lower-dimensional crack surface are approximated by an auxiliary
phase-field function ϕ. The latter can be viewed as an indicator function, which introduces a diffusive transition
zone between the broken and the unbroken material. The enforcement of irreversibility of crack growth finally
yields a variational inequality system, of which we seek the solution {u, ϕ}.

In this work, we concentrate on improvements of the nonlinear solution algorithm, which is still a large bottleneck
of phase-field fracture evolution problems. Specifically, high iteration numbers when the crack initiates or is further
growing are reported in many works [21, 29, 44, 45]. However, in most studies iteration numbers are omitted.
Both staggered (splitting) schemes and monolithic schemes are frequently employed. Important developments
include alternating minimization/staggered schemes [9, 11, 12, 29, 30], quasi-monolithic scheme with a partial
linearization [25], and fully monolithic schemes [21, 44, 45].

The goal of this work is to propose a linearized staggered scheme with stabilizing parameters. In particular, the
proposed scheme is based on recent developments on iterative splitting schemes coming from poroelasticity [13,
26, 32, 33]. Iterative splitting schemes are widely applied to problems of coupled flow and mechanics, where
at each iteration step either of the subproblems (i.e., flow or mechanics) is solved first, keeping some physical
quantity constant (e.g., fixed stress or fixed strain), followed by solving the next subproblem with updated solution
information. This procedure is then repeated until an accepted tolerance is reached. Further extensions of this
technique involves tuning some artificial stabilization terms according to a derived contraction estimate in energy
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norms. Here, the quantity held constant during solving of the subproblems need not represent any physical quantity
present in the model. This is the central idea in the so-called ‘L-scheme’, which has proven to perform robustly for
Richards equation [28, 38], for linear and nonlinear poroelasticity [7, 8], and for nonlinear thermo-poroelasticity [27].

We propose here a variant of the L-scheme, adapted to phase field brittle fracture propagation models. This
scheme is based on a partitioning of the model into two subproblems; phase field and mechanics. Here, the L-
scheme acts both as a stabilization and as a linearization (as a linearization scheme, the stabilization parameters
mimics the Jacobian from Newton iteration). Assuming that the mechanical elastic energy remains bounded during
the iterations, and that the diffusive zone around crack surfaces is sufficiently thick, we give a proof of monotonic
convergence of the proposed scheme by employing a fixed point argument.

The efficiency and robustness of the proposed scheme is demonstrated numerically with several bench-mark
problems. Moreover, we compare the number of iterations needed for convergence with ‘standard’ staggered
schemes (i.e., without stabilizing terms), and monolithic schemes in which the fully-coupled system is solved all-at-
once. Furthermore, it is well known that when reaching the critical loading steps during the computation of brittle
fracture phase field problems (i.e., when the crack is propagating), spikes in iteration numbers appear. For this
reason, and thanks to the monotonic convergence property of the proposed scheme, we show that a (low) upper
bound on the number of iterations may be enforced, while the computed results are still in very good agreement
with the non-truncated solutions. Thus, using this ‘truncated L-scheme’, we effectively avoid the iteration spikes
at the critical loading steps at the cost of negligible loss of accuracy. We mention that this strategy is not available
with e.g. Newton iteration, as the iterate solutions may behave erratically for any number of iterations before finally
converging. Moreover, the assumption that the mechanical elastic energy remains bounded during the iterations is
verified numerically for all tests cases.

The main aims of this work are three-fold: Under a natural assumption, we prove the convergence of a novel
iterative staggered scheme, optimized for phase field brittle fracture propagation problems. Based on these the-
oretical findings, we design a robust solution algorithm with monotonic convergence properties. Finally, several
numerical tests are presented in which our variants of the L-scheme are tested in detail.

The outline of this paper is as follows: In Section 2 we present the model equations and coefficients, in Section 3
we introduce the partitioned scheme and derive a convergence proof, in Section 4 we describe in detail our numerical
algorithm in pseudo-code, and in Section 5 we provide several numerical experiments, in particular the single edge
notched tension test, the single edge notched shear test, and the L-shaped panel test. Finally, in Section 6 we provide
some conclusions and summary of the work.

1.1 Preliminaries

In this section we explain the notation used throughout this article, see e.g. [18, 47] for more details. Given an
open and bounded set B ⊂ Rd, d ∈ {2, 3}, and 1 ≤ p < ∞, let Lp(B) = {f : B → R :

∫
B
|f(x)|pdx < ∞}. For

p = ∞, let L∞(B) = {f : B → R : ess supx∈B |f(x)| < ∞}. In particular, L2(B) is the Hilbert space of square

integrable functions with inner product (·, ·) and norm ‖f‖ := (f, f)
1
2 . For k ∈ N, k ≥ 0, we denote by W k,p(B)

the space of functions in Lp(B) admitting weak derivatives up to k’th order. In particular, H1(B) := W 1,2(B) and
we denote by H1

0 (B) its zero trace subspace.
Note that we reserve the use of bold fonts for second order tensors. Hence, if u, v ∈ L2(B), their inner

product is (u, v) :=
∫
B
u(x)v(x)dx, and similarly, if u, v ∈ (L2(B))d then we take their inner product to be

(u, v) :=
∫
B
u(x) · v(x)dx. Finally, if u,v ∈ (L2(B))d×d then their inner product is (u,v) :=

∫
B

u(x) : v(x)dx.
We will also frequently apply several classical inequalities, in particular: Cauchy-Schwarz, Young, Poincaré,

and Korn. See e.g. [15, 24] for a detailed description of these.

2 Governing equations

What follows is a brief description of the phase field approach for quasi-static brittle fracture propagation, see
e.g. [20, 30] for more details. Consider a (bounded open) polygonal domain B ⊂ Rd, wherein C ⊂ Rd−1 denotes the
fracture, and Ω ⊂ Rd is the intact domain, and a time interval (0, T ) is given with final time T > 0. By introducing
the phase field variable ϕ : B × (0, T )→ [0, 1], which takes the value 0 in the fracture, 1 in the intact domain, and
varies smoothly from 0 to 1 in a transition zone of (half-)thickness ε > 0 around C, the evolution of the fracture
can be tracked in space and time. Using the phase field approach, the fracture C is approximated by ΩF ⊂ Rd,
where ΩF := {x ∈ Rd : ϕ(x) < 1}.

Introducing the displacement vector u : B×(0, T )→ Rd, the model problem we consider arises as a minimization
problem: An energy functional E(u, ϕ) is defined according to Griffith’s criterion for brittle fracture [23], which
is then sought to be minimized over all admissible {u, ϕ}. From this minimization problem, the Euler-Lagrange
equations are obtained by differentiation with respect to the arguments, yielding a variational equality system.
Finally, a crack irreversibility condition must be enforced (the crack is not allowed to heal), which takes the form
∂tϕ ≤ 0. Thus, the variational equality system, which is the previously mentioned Euler-Lagrange equations, is
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transformed into a variational inequality system, which reads as follows: Find (u(t), ϕ(t)) ∈ V ×W := (H1
0 (B))d×

W 1,∞(B) such that for t ∈ (0, T ] there holds

(g(ϕ)Ce(u), e(v)) = (b, v), ∀v ∈ V, (2.1a)

Gcε(∇ϕ,∇ψ)− Gc

ε
(1− ϕ,ψ) + (1− κ)(ϕ|Ce(u)|2, ψ) ≥ 0, ∀ψ ∈W, (2.1b)

where Gc > 0 is the critical elastic energy restitution rate, 0 < κ << 1 is a regularization parameter, the purpose
of which is to avoid degeneracy of the elastic energy (equivalent with replacing the fracture with a softer material),
and g(ϕ) := (1− κ)ϕ2 + κ is a standard choice for the degradation function (see e.g. [39, 45]. Note that g(ϕ)→ κ
when approaching the fracture zone). The body force acting on the domain B is b : B × (0, T ) → Rd, and
|Ce(u)|2 := Ce(u) : e(u) is the elastic mechanical energy, where e(·) := (∇(·)+∇(·)>)/2 is the symmetric gradient,
and C = [Cijkl]ijkl is the fourth order tensor containing the elastic material coefficients, where each Cijkl ∈ L∞(B).
We assume that C satisfies the usual symmetry and positive definiteness properties, i.e., (Cu,v) = (u,Cv), and

(Cu,u)
1
2 defines an L2-equivalent norm, i.e., there exists constants λm, λM > 0 such that

λm‖u‖ ≤ (Cu,u)
1
2 ≤ λM‖u‖, for u,v ∈ (L2(B))d×d, u,v 6= 0. (2.2)

In order to facilitate the following developments we assume continuity in time for {u, ϕ, b}. Let now 0 = t0 <
t1 < · · · < tN = T be a partition of the time interval (0, T ), with time step δt := tn − tn−1, and denote the time
discrete solutions by

un := u(·, tn), (2.3)

ϕn := ϕ(·, tn). (2.4)

The irreversibility condition now becomes ϕn ≤ ϕn−1 (using a backward Euler method), and the time-discrete
version of the problem (2.1a)–(2.1b) reads as follows: Find (un, ϕn) ∈ V ×W such that

(g(ϕn)Ce(un), e(v)) = (bn, v), ∀v ∈ V, (2.5a)

Gcε(∇ϕn,∇ψ)− Gc

ε
(1− ϕn, ψ) + (1− κ)(ϕn|Ce(un)|2, ψ)

+ ([Ξ + γ(ϕn − ϕn−1)]+, ψ) = 0, ∀ψ ∈W, (2.5b)

where bn := b(·, tn). The last term in the phase field equation (2.5b) is a penalization to enforce the irreversibility
condition, thus transforming the variational inequality (2.1b) into a variational equality, with penalization param-
eter γ > 0, and where Ξ ∈ L2(B) is given (in practice Ξ will be obtained by iteration, cf. Section 4). Note that
we also used the notation [x]+ := max(x, 0). From here on, we shall refer to (2.5a) as the mechanics subproblem,
and to (2.5b) as the phase field subproblem. Regarding the degradation function g, it is easily seen to satisfy the
following Lipschitz condition:

‖g(ψ)− g(η)‖ ≤ 2(1− κ)‖ψ − η‖, ∀ψ, η ∈W. (2.6)

The time-discrete system (2.5a)-(2.5b) was analyzed in [36], and there it was shown that at least one global
minimizer (un, ϕn) ∈ V ×W exists, provided bn ∈ (L2(B))d, for each n. We mention also that the analysis of a
pressurized phase field brittle fracture model can be found in [34, 35].

3 Iterative scheme

In this section we introduce the iterative staggered solution procedure for the fully discrete formulation of (2.5a)-
(2.5b). To this end, let Th be a simplicial mesh of B, such that for any two distinct elements of Th their intersection
is either an empty set or their common vertex or edge. We denote by h the largest diameter of all the elements
in Th, i.e., h := maxK∈Th diam(K), and let Vh ×Wh ⊂ V ×W be appropriate (conforming) discrete spaces. We
continue now with the same notation for the variables and test functions as before (omitting the usual h-subscript),
since we will from here on mostly deal with the discrete solutions.

For each n, the iterative algorithm we propose defines a sequence {un,i, ϕn,i}, for i ≥ 0, initialized by
{un−1, ϕn−1}. The iteration is then done in two steps: First, the mechanics subproblem is solved, with the
degradation function held constant. Then, the phase field subproblem is solved, with the elastic energy held
constant. Note that there are also artificial stabilizing terms which are held constant during solving of the sub-
problems. Introducing the stabilization parameters Lu, Lϕ > 0 (to be determined later), the iterative algorithm
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reads as follows:

• Step 1: Given (un,i−1, ϕn,i−1, bn) find un,i such that

au(un,i, v) := Lu(un,i − un,i−1, v) +
(
g(ϕn,i−1)Ce(un,i), e(v)

)
= (bn, v), ∀v ∈ Vh. (3.1a)

• Step 2: Given (ϕn,i−1, un,i, ϕn−1) find ϕn,i such that

aϕ(ϕn,i, ψ) := Lϕ(ϕn,i − ϕn,i−1, ψ) +Gcε(∇ϕn,i,∇ψ)− Gc

ε
(1− ϕn,i, ψ)

+ (1− κ)(ϕn,i|Ce(un,i)|2, ψ) + (ηi(Ξ + γ(ϕn,i − ϕn−1)), ψ) = 0, ∀ψ ∈Wh, (3.1b)

where, in order to avoid the [·]+-bracket, we also introduced the function ηi ∈ L∞(B) defined for a.e. x ∈ B by

ηi(x) =

{
1, if Ξ(x) + γ(ϕn,i(x)− ϕn−1(x)) ≥ 0,

0, if Ξ(x) + γ(ϕn,i(x)− ϕn−1(x)) < 0.
(3.2)

3.1 Convergence analysis

We now proceed to analyze the convergence of the scheme (3.1a)-(3.1b). Our aim is to show a contraction of
successive difference functions in energy norms, which implies convergence by the Banach Fixed Point Theorem
(see e.g. [14]). To this end we define the following difference functions

eiu := un,i − un, (3.3)

eiϕ := ϕn,i − ϕn, (3.4)

where {un, ϕn} denotes the (exact) solutions to (2.1a)-(2.1b) at time tn. Using the symmetry properties of C, the
following set of difference equations are then obtained by subtracting (3.1a)-(3.1b) solved by {un, ϕn} from the
same equations solved by the iterate solutions:

Lu(eiu − ei−1
u , v) + (g(ϕn)Ce(eiu), e(v)) + ((g(ϕn,i−1)− g(ϕn))Ce(un,i), e(v)) = 0, ∀v ∈ Vh. (3.5a)

Lϕ(eiϕ − ei−1
ϕ , ψ) +Gcε(∇eiϕ,∇ψ) +

Gc

ε
(eiϕ, ψ) + γ(ηieiϕ, ψ) + (1− κ)(eiϕ|Ce(un,i)|2, ψ)

+ (1− κ)
(
ϕnCe(eiu) : e(un,i + un), ψ

)
= 0, ∀ψ ∈Wh. (3.5b)

Furthermore, we introduce the following assumption related to the elastic mechanical strain.

Assumption 1 (Boundedness of elastic strain). We assume there exists a constant M > 0 such that

ess sup
x∈B
|e(un(x))| ≤M, ∀n. (3.6)

Moreover, we assume that M is large enough such that the above bound holds also for the iterate elastic strain, i.e.,

ess sup
x∈B
|e(un,i(x))| ≤M, ∀(n, i). (3.7)

Note that M is nothing else than an upper bound for the elastic strain in the system for the converged solution,
which is arguably finite for any reasonable problem. Note also that with sufficient regularity of the domain,
coefficients, source terms, and initial data, the above assumption is satisfied, i.e., the problem (2.5a)-(2.5b) admits
a solution un ∈ (W 1,∞(B))d, thus implying the existence of M . Alternatively to introducing the constant M , we
could introduce instead a so-called ‘cut-off operator’ in the iterate equations (3.1a)-(3.1b), as seen in e.g. [40, 41].
Note that in all numerical tests to be done in the next sections, we provide figures validating the second part of
this assumption (cf. Section 5.4). With the above definitions, we state our main theoretical result.

Theorem 3.1 (Convergence of the scheme). The scheme (3.1b)–(3.1a) defines a contraction satisfying(
Lϕ

2
+
Gc

ε
+
Gcε

cP
− 8ξ

(1− κ)2

κ

)
‖eiϕ‖2 +

(
Lu

2
+
κλ2

min

2cP cK

)
‖eiu‖2

≤
(
Lϕ

2
+ 8ξ

(1− κ)2

κ

)
‖ei−1

ϕ ‖2 +
Lu

2
‖ei−1

u ‖2, (3.8)

if Lu, Lϕ > 0, and if the model parameter ε > 0 is sufficiently large such that

ε2 − 16ξ
(1− κ)2

κ

cP
Gc

ε+ cP > 0, (3.9)

where ξ := (Mλmax/λmin)2 > 0, and where cP , cK > 0 are the Poincaré and Korn constants, respectively, depending
only on the domain B and spatial dimension d.
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Proof. We begin by taking v = eiu and ψ = eiϕ in (3.5a) and (3.5b), respectively, add the resulting equations
together and obtain(

Lϕ

2
+
Gc

ε

)
‖eiϕ‖2 +

Lϕ

2
‖eiϕ − ei−1

ϕ ‖2 +Gcε‖∇eiϕ‖2 + γ(ηieiϕ, e
i
ϕ)

+ (1− κ)(eiϕ|Ce(un,i)|2, eiϕ) +
Lu

2
‖eiu‖2 +

Lu

2
‖eiu − ei−1

u ‖2 + (g(ϕn)Ce(eiu), e(eiu))

=
Lϕ

2
‖ei−1

ϕ ‖2 +
Lu

2
‖ei−1

u ‖2 − (1− κ)(ϕnCe(eiu) : e(un,i + un), eiϕ)

− ((g(ϕn,i−1)− g(ϕn))Ce(un,i), e(eiu)), (3.10)

where we used the following inner product identity

2(x− y, x) = ‖x‖2 + ‖x− y‖2 − ‖y‖2. (3.11)

Discarding some non-negative terms from the left hand side of (3.10), using the fact that ess supx∈B ϕ
n(x) ≤ 1, in

addition to the Lipschitz property of the degradation function g (2.6), yields(
Lϕ

2
+
Gc

ε

)
‖eiϕ‖2 +Gcε‖∇eiϕ‖2 +

Lu

2
‖eiu‖2 + κ(Ce(eiu), e(eiu))

≤ Lϕ

2
‖ei−1

ϕ ‖2 +
Lu

2
‖ei−1

u ‖2 + (1− κ)

∫
B

|Ce(eiu) : e(un,i + un)eiϕ|dx

+

∫
B

|(g(ϕn,i−1)− g(ϕn))Ce(un,i) : e(eiu)|dx

≤ Lϕ

2
‖ei−1

ϕ ‖2 +
Lu

2
‖ei−1

u ‖2 + 2(1− κ)λmaxM
(
‖eiϕ‖+ ‖ei−1

ϕ ‖
)
‖e(eiu)‖, (3.12)

where we also invoked the Assumption 1 in the last line, and applied the Cauchy-Schwarz inequality. Using the
Young inequality, the properties of elastic tensor (2.2), and rearranging, leads to(

Lϕ

2
+
Gc

ε
− 2(1− κ)λmaxM

1

2δ1

)
‖eiϕ‖2 +Gcε‖∇eiϕ‖2

+
Lu

2
‖eiu‖2 +

(
κλ2

min − 2(1− κ)λmaxM(δ1 + δ2)
)
‖e(eiu)‖2

≤
(
Lϕ

2
+ 2(1− κ)λmaxM

1

2δ2

)
‖ei−1

ϕ ‖2 +
Lu

2
‖ei−1

u ‖2, (3.13)

for some constants δ1, δ2 > 0. Choosing δ1 = δ2 = κλ2
min/8(1− κ)λmaxM yields (3.13) as(

Lϕ

2
+
Gc

ε
− 8ξ

(1− κ)2

κ

)
‖eiϕ‖2 +Gcε‖∇eiϕ‖2 +

Lu

2
‖eiu‖2 +

κλ2
min

2
‖e(eiu)‖2

≤
(
Lϕ

2
+ 8ξ

(1− κ)2

κ

)
‖ei−1

ϕ ‖2 +
Lu

2
‖ei−1

u ‖2. (3.14)

Next, by applying the Poincaré inequality on ‖eiϕ‖, and by applying successively the Poincaré and Korn inequalities

on ‖eiu‖, we obtain
‖eiϕ‖2 ≤ cP ‖∇eiϕ‖2 and ‖eiu‖2 ≤ cP cK‖e(eiu)‖2, (3.15)

where cP , cK are the (squares of the) Poincaré and Korn constants, respectively (depending only on the domain B
and spatial dimension d). Finally, employing these bounds on the left hand side of (3.14) yields(

Lϕ

2
+
Gc

ε
+
Gcε

cP
− 8ξ

(1− κ)2

κ

)
‖eiϕ‖2 +

(
Lu

2
+
κλ2

min

2cP cK

)
‖eiu‖2

≤
(
Lϕ

2
+ 8ξ

(1− κ)2

κ

)
‖ei−1

ϕ ‖2 +
Lu

2
‖ei−1

u ‖2. (3.16)

Thus, for (3.16) to be a contraction estimate, ε must satisfy the following second order inequality

P (ε) := ε2 − 16ξ
cP
Gc

(1− κ)2

κ
ε+ cP > 0. (3.17)

Setting the left hand side of (3.17) equal to zero yields a second order polynomial, the discriminant of which must
satisfy one of the following three statements:
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1. If

64ξ2 (1− κ)4

κ2
>
G2

c

cP
,

then P (ε) = 0 has two distinct positive real roots ε1, ε2 > 0, in which case (3.16) is a contraction for
ε ∈ (0, ε1) ∪ (ε2,∞).

2. If

64ξ2 (1− κ)4

κ2
=
G2

c

cP
,

then P (ε) = 0 has one positive real root, ε0 > 0, of multiplicity two, in which case (3.16) is a contraction for
all ε 6= ε0, ε > 0.

3. If

64ξ2 (1− κ)4

κ2
<
G2

c

cP
,

then P (ε) = 0 has two complex roots, in which case (3.16) is a contraction for all ε > 0.

Remark 3.1 (Convergence rate). According to the above proof, if the scheme is not converging for a given value
of ε, then a larger or a smaller value may be chosen to rectify the situation. However, since crack surfaces become
singular as ε→ 0 (thus necessitating finer meshing, i.e., h→ 0), we choose to state Theorem 3.1 with the condition
that ε be large enough. We note also that due to some unknown constants in the convergence rate (3.8), it is not
known whether this rate is optimal. Furthermore, working with a large ε is substantiated by the theory of phase field
fracture being based on Γ convergence [2, 3]. Applying this to phase field fracture was first done in [10]. Specifically,
the setting is suitable when h = o(ε); namely when ε is sufficiently large.

4 Algorithm

In practice, we apply the stabilizations and penalizations proposed in the previous sections as outlined below. It
is well-known (e.g., [37]) that the choice of γ is critical. If γ is too low, crack irreversibility will not be enforced.
On the other hand, if γ is too large, the linear equation system is ill-conditioned and influences the performance
of the nonlinear solver. For this reason, γ is updated in at each iteration step. Better, in terms of robustness, is
the augmention in such an iteration by an additional L2 function Ξ, yielding a so-called augmented Lagrangian
iteration going back to [19, 22]. For phase-field fracture this idea was first applied in [42]. Thus, combining the
staggered iteration for the solid and phase-field systems with the update of the penalization parameter Ξ yields
the following algorithm:

Algorithm 1. At the loading step tn.
Choose initial Ξ0. Set γ > 0.
repeat

Iterate on i (augmented Lagrangian loop)
Solve two-field problem, namely

Solve elasticity in Problem (3.1a)
Solve the nonlinear phase-field in Problem (3.1b)

Update
Ξi+1 = [Ξi + γ(ϕn,i+1 − ϕn−1)]+

until
max(‖au(un,i, vk)− (bn, vk)‖, ‖aϕ(ϕn,i, ψl)‖) ≤ TOL, (4.1)

for k = 1, . . . , dim(Vh), l = 1, . . . , dim(Wh).

Set: (un, ϕn) := (un,i, ϕn,i).
Increment tn → tn+1.

For the stabilization parameters Lu, Lϕ, we have the following requirements (somewhat similar to γ): If the sta-
bilization is too small, the stabilization effects vanish. If the stabilization is too large, we revert to an unacceptably
slow convergence, and potentially, may converge to a solution corresponding to an undesirable local minimum of
the original problem. In order to deal with these issues, we employ here a simple, yet effective strategy: We draw
L := Lu = Lϕ from a range of suitable values and compare the results, i.e., L ∈ {1.0e−6, 1.0e−3, 1.0e−2, 1.0e−1}.
Moreover, we include also the configurations Lu = 0, Lϕ > 0 and Lu = Lϕ = 0 in all the numerical tests to be
done in the following.

Remark 4.1. In this paper we use TOL = 10−6.
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4.1 Nonlinear solution, linear subsolvers and programming code

Both subproblems (phase field and mechanics) may be nonlinear. In our theory presented above, we assumed a
standard elasticity tensor. However, the model (3.1a)–(3.1b) is too simple for most mechanical applications. More
realistic phase-field fracture applications require a splitting of the stress tensor (based on an energy split) in order
to account for fracture development only under tension, but not under compressive forces. Consequently, we follow
here [31] and split σ into tensile σ+ and compressive parts σ− :

σ+ := 2µse
+ + λs < tr(e) > I,

σ− := 2µs(e− e+) + λs
(
tr(e)− < tr(e) >

)
I,

and
e+ = PΛ+PT ,

where the elasticity tensor C has been replaced by the Lamé parameters, µs and λs. Moreover, I is the d × d
identity matrix, and < · > is the positive part of a function. In particular, for d = 2, we have

Λ+ := Λ+(u) :=

(
< λ1(u) > 0

0 < λ2(u) >

)
,

where λ1(u) and λ2(u) are the eigenvalues of the strain tensor e := e(u), and v1(u) and v2(u) the corresponding
(normalized) eigenvectors. Finally, the matrix P is defined as P := P(u) := [v1|v2]; namely, it consists of the
column vectors vi, i = 1, 2. We notice that another frequently employed stress-splitting law was proposed in [4].

The modified scheme reads:

• Step 1: given (un,i−1, ϕn,i−1, bn) find un,i such that

Lu(un,i − un,i−1, v) +
(
g(ϕn,i−1)σ+(un,i), e(v)

)
+
(
σ−(un,i), e(v)

)
= (bn, v), ∀v ∈ Vh, (4.2a)

• Step 2: given (ϕn,i−1, un,i, ϕn−1) find ϕn,i such that

Lϕ(ϕn,i − ϕn,i−1, ψ) +Gcε(∇ϕn,i,∇ψ)− Gc

ε
(1− ϕn,i, ψ)

+ (1− κ)(ϕn,iσ+(un,i) : e(un,i), ψ) + (ηi(Ξ + γ(ϕn,i − ϕn−1)), ψ) = 0, ∀ψ ∈Wh. (4.2b)

These modifications render the displacement system (4.2a) nonlinear, for which we use a Newton-type solver.
The phase field equation is also nonlinear due to the penalization term and the stress splitting. Our version of
Newton’s method is based on a residual-based monotonicity criterion (e.g., [17]) outlined in [45][Section 3.2]. Inside
Newton’s method, the linear subsystems are solved with a direct solver; namely UMFPACK [16]. All numerical
tests presented in Section 5 are implemented in the open-source finite element library deal.II [5, 6]. Specifically,
the code is based on a simple adaptation of the multiphysics template [43] in which specifically the previously
mentioned Newton solver is implemented.

5 Numerical experiments

In this section, we present several numerical tests to substantiate our algorithmic developments. The goals of all
three numerical examples are comparisons between an unlimited number of staggered iterations (although bounded
by 500) denoted by ‘L’, and a low, fixed number, denoted by ‘LFI’, where we use 30 (Ex. 1 and Ex. 2), and 20
(Ex. 3) staggered iterations, respectively. These comparisons are performed in terms of the number of iterations
and the correctness of the solutions in terms of the so-called load-displacement curve, measuring the stresses of the
top boundary versus the number of loading steps.

5.1 Single edge notched tension test

This test was applied for instance in [31]. The configuration is displayed in Figure 1. We use the system (3.1a)-
(3.1b). Specifically, we study our proposed iterative schemes on different mesh levels, denoted as refinement (Ref.)
levels 4, 5, 6 (uniformly refined), with 1024 elements (2210 Dofs for the displacements, 1 105 Dofs for the phase-field,
h = 0.044), 4 096 elements (8 514 Dofs for the displacements, 4257 Dofs for the phase-field, h = 0.022), and 16 384
elements (33 410 Dofs for the displacements, 16 705 Dofs for the phase-field, h = 0.011).
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Figure 1: Examples 1,2,3: Configurations. Left: single edge notched tension test. In detail, the boundary conditions
are: uy = 0 mm (homogeneous Dirichlet) and traction free (homogeneous Neumann conditions) in x-direction on
the bottom. On the top boundary Γtop, we prescribe ux = 0 mm and uy as provided in (5.3). All other boundaries
including the slit are traction free (homogeneous Neumann conditions). Single edge notched shear test (middle)
and L-shaped panel test (right). We prescribe the following conditions: On the left and right boundaries, uy =
0 mm and traction-free in x-direction. On the bottom part, we use ux = uy = 0 mm and on Γtop, we prescribe uy
= 0 mm and ux as stated in (5.3). Finally, the lower part of the slit is fixed in y-direction, i.e., uy = 0 mm. For the
L-shaped panel test (at right), the lower left boundary is fixed: ux = uy = 0 mm. A displacement condition for uy
is prescribed by (5.4) in the right corner on a section Γu that has 30 mm length.

Specifically, we use µs = 80.77 kN/mm2, λs = 121.15 kN/mm2, and Gc = 2.7 N/mm. The crack growth is driven
by a non-homogeneous Dirichlet condition for the displacement field on Γtop, the top boundary of B . We increase
the displacement on Γtop over time, namely we apply non-homogeneous Dirichlet conditions:

uy = tū, ū = 1 mm/s, (5.1)

where t denotes the current loading time. Furthermore, we set κ = 10−10 [mm] and ε = 2h [mm]. We evaluate the
surface load vector on the Γtop as

τ = (Fx, Fy) :=

∫
Γtop

σ(u)ν ds, (5.2)

with normal vector ν, and we are particularly interested in Fy for Example 1 and Fx for Example 2 (Section 5.2).
Graphical solutions are displayed in the Figures 2 and 3 showing the phase-field variable and the discontinuous
displacement field. Our findings of using different stabilization parameters L are compared in the Figures 4, 5,
6, 7, and 8. Different mesh refinement studies are shown in the Figures 7 and 8. Here, the number of staggered
iterations does not increase with finer mesh levels, which shows the robustness of our proposed methodology.
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Figure 2: Example 1: Single edge notched tension test: crack path at loading step 59 (left) and 60 (right). We see
brutal crack growth in which the domain is cracked within one loading step.

Figure 3: Example 1: Single edge notched tension test: 3D plot of the displacement variable ux at the loading
steps 59 and 60. At right, the domain is totally fractured. In particular, we see the initial crack build in the
geometry in the right part where the domain has a true discontinuity. In the left part, the domain is cracked using
the phase-field variable. Here, the displacement variable is still continuous since we are using C0 finite elements
for the spatial discretization.
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Figure 4: Example 1: Comparison of different L. At left, the stresses are shown. At right, the number of staggered
iterations is displayed.
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Figure 5: Example 1: Comparison of different L. In this example, possibly due to brutal crack growth, stabilizing
only phase field subproblem does not work.
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Figure 6: Example 1: Comparison of different L for an open number of iterations and a fixed number of iterations
(LFI) with a maximum of 30 iterations. At left, the stresses are shown. At right, the number of staggered iterations
is displayed.
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Figure 7: Example 1: Using L = 1e− 6 comparing different mesh refinement levels 4, 5, 6. At left, the stresses are
shown. At right, the number of staggered iterations is displayed.
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Figure 8: Example 1: Using L = 1e− 2 comparing different mesh refinement levels 4, 5, 6. At left, the stresses are
shown. At right, the number of staggered iterations is displayed.
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5.2 Single edge notched shear test

The configuration of this second setting is very similar to Example 1 and was first proposed in a phase-field context
in [31]. We now use the model with strain-energy split (4.2a)–(4.2b). The parameters and the geometry (see Figure
1) are the same as in the previous test case. The boundary condition is changed from tensile forces to a shear
condition (see also again Figure 1):

ux = tū, ū = 1 mm/s, (5.3)

As quanitity of interest we evaluate Fx in (5.2). Our findings are shown in the Figures 9, 10, 11, 12, 13, 14, and 15.
The major difference to Example 1 is that the scheme is converging even with Lu = 0, as computationally justified
in Figure 11. As in Example 1, the load-displacement curves are close to the published literature and, again, the
proposed L scheme is robust under mesh refinement (see Figures 12 - 15).

Figure 9: Example 2: Single edge notched shear test: Crack path at loading step 110 (left) and 135 (right).

 0

 100

 200

 300

 400

 500

 600

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014

F
x
[N

]

Loading time

L = 0.0
L = 1e-6
L = 1e-2
LFI = 0.0

LFI = 1e-6
LFI = 1e-2

 0

 100

 200

 300

 400

 500

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014

N
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

Loading time

L = 0.0
L = 1e-6
L = 1e-2
LFI = 0.0

LFI = 1e-6
LFI = 1e-2

Figure 10: Example 2: Comparison of different L with an open number of staggered iterations (fixed by 500) and
a fixed number (LFI) with 30 iterations per loading step. At left, the load-displacement curves displaying the
evolution of Fx versus the loading time. At right, the number of iterations is displayed.
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Figure 11: Example 2: Comparison of different L. Observe that stabilizing the mechanics subproblem in this
example has no or little effect. At left, the load-displacement curves displaying the evolution of Fx versus uy are
shown. At right, the number of staggered iterations is displayed.
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Figure 12: Example 2: Using L = 1e − 6, comparing different mesh refinement levels 4, 5, 6. At left, the load-
displacement curves displaying the evolution of Fx versus the loading time. At right, the number of iterations is
displayed.
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Figure 13: Example 2: Using L = 1e − 6 and fixing the number of iterations by 30, we compare different mesh
refinement levels 4, 5, 6. At left, the load-displacement curves displaying the evolution of Fx versus the loading
time. At right, the number of iterations is displayed.
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Figure 14: Example 2: Using L = 1e − 2, we compare different mesh refinement levels 4, 5, 6. At left, the load-
displacement curves displaying the evolution of Fx versus the loading time. At right, the number of iterations is
displayed.
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Figure 15: Example 2: Using L = 1e − 2 and fixing the number of iterations by 30, we compare different mesh
refinement levels 4, 5, 6. At left, the load-displacement curves displaying the evolution of Fx versus the loading
time. At right, the number of iterations is displayed.

The results are very comparable to the published literature. In particular, it is nowadays known that the
proposed Miehe et al. stress splitting does not release all stresses once the specimen is broken (see [1]) and it is
also known that we do not see convergence of the curves when both h and ε are refined (see [25]).

5.3 L-shaped panel

For the configuration of this third example we refer to [1, 29, 44], which are based on an experimental setup [46].
We use again the model with strain-energy split; namely (4.2a)-(4.2b). Moreover, in this test a carefully imposed
irreversibility constraint is important since the specimen is pushed, pulled, and again pushed (see Figure 16 for the
loading history on the small boundary part Γu). In the pulling phase the fracture vanishes if the penalization is
not strong enough.

The geometry and boundary conditions are displayed in Figure 1. In contrast to the previous examples, no
initial crack prescribed. The initial mesh is 1, 2 and 3 times uniformly refined, leading to 300, 1200, 4800 mesh
elements, with h = 29.1548 mm, 14.577 mm, 7.289 mm, respectively.

We increase the displacement uD := uy = uy(t) on Γu := {(x, y) ∈ B| 470 mm ≤ x ≤ 500 mm, y = 250 mm} over
time, where Γu is a section of 30 mm length on the right corner of the specimen. We apply a loading-dependent,
non-homogeneous Dirichlet condition (see also Figure 16):

uy = t · ū, ū = 1 mm/s, 0.0 s ≤ t < 0.3 s,

uy = (0.6− t) · ū, ū = 1 mm/s, 0.3 s ≤ t < 0.8 s,

uy = (−1 + t) · ū, ū = 1 mm/s, 0.8 s ≤ t ≤ 2.0 s,

(5.4)

where t denotes the total loading time. Due to this cyclic loading the total displacement at the end time T = 2 s
is 1 mm.
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Figure 16: Example 3: Loading history on Γu for the L-shaped panel test.

Figure 17: Example 3: crack path of the L-shaped panel test at the loading steps 220, 300, 1450, 2000.
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We use µs = 10.95 kN/mm2, λs = 6.16 kN/mm2, and Gc = 8.9× 10−5 kN/mm. The time (loading) step size
is δt =10−3 s. Furthermore, we set k = 10−10h[mm] and ε = 2h. As before, we observe the number of Newton
iterations and we evaluate the surface load vector

τ = (Fx, Fy) :=

∫
Γu

σ(u)ν ds,

with normal vector ν, and now we are particularly interested in Fy. The crack path at the chosen time step
snapshots in Figure 17 corresponds to the published literature [44, 29, 1]. The load-displacement curves and the
number of iterations for different L and corresponding mesh refinement studies are displayed in the Figures 18, 19,
20, 21 and 22.
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Figure 18: Example 3: Comparison of different L. Observe that stabilizing the mechanics subproblem has no effect
in this example. At left, the load-displacement curves displaying the evolution of Fy versus uy are shown. At right,
the number of staggered iterations is displayed.
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Figure 19: Example 3: Comparison of different L with an open number of staggered iterations (fixed by 500
though). At left, the load-displacement curves displaying the evolution of Fy versus uy are shown. At right, the
number of staggered iterations is displayed.
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Figure 20: Example 3: Comparison of different L with a fixed number of 20 staggered iterations. At left, the
load-displacement curves displaying the evolution of Fy versus uy are shown. At right, the number of staggered
iterations is displayed.
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Figure 21: Example 3: Using L = 1e− 6 and a fixed number of 20 staggered iterations, we compare the results on
different refinement levels 1, 2, 3. At left, the load-displacement curves displaying the evolution of Fy versus uy are
shown. At right, the number of staggered iterations is displayed.
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Figure 22: Example 3: Using L = 1e− 2 and a fixed number of 20 staggered iterations, we compare the results on
different refinement levels 1, 2, 3. At left, the load-displacement curves displaying the evolution of Fy versus uy are
shown. At right, the number of staggered iterations is displayed.
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5.4 Verification of Assumption 1

In this last set of computations, we verify whether Assumption 1 holds true in our computations. We choose some
prototype settings, namely on the coarest mesh level Ref. 4 and Lu = Lϕ = 1e− 6. In Figure 23, we observe that
ess supx∈B |e(un(x))| varies, but always can be bounded from above with M > 0. The value of ess supx∈B |e(un(x))|
is the final strain when the L-scheme terminates. The minimum and maximum values shows that there are no
significant variations in ess supx∈B |e(un(x))| during the L-scheme iterations with respect to the finally obtained
value.
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Figure 23: Comparison of ess supx∈B |e(un(x))| and the minimal/maximal ess supx∈B |e(un(x))| per loading time
step.

6 Conclusions

We have proposed a novel staggered iterative algorithm for brittle fracture phase field models. This algorithm
is employing stabilization and linearization techniques known in the literature as the ‘L-scheme’, which is a gen-
eralization of the Fixed Stress Splitting algorithm coming from poroelasticity. Through theory and numerical
examples we have investigated the performance of our proposed variants of the L-scheme for brittle fracture phase
field problems.

Under natural constraints that the elastic mechanical energy remains bounded, and that the model parameter
ε is sufficiently large (i.e., that the diffusive zone around crack surfaces must be sufficiently thick), we have shown
that a contraction of successive difference functions in energy norms can be obtained from the proposed scheme.
This result implies the algorithm is converging monotonically with a linear convergence rate. However, in the
convergence analysis there appears some unknown constants which makes the precise convergence rate, as well as
the precise lower bound on ε unknown.

We provide detailed numerical tests where our proposed scheme is employed on several phase field brittle frac-
ture bench-mark problems. For each numerical example we provide findings for different values of stabilization
parameters. For most cases we let Lu = Lϕ > 0, but for comparison we include also for the stabilization con-
figurations Lu = 0 with Lϕ > 0, and Lu = Lϕ = 0. For the test cases presented here, there is only Example 1
where Lu = 0 does not work. This might be due to the very rapid crack growth, which sets Example 1 apart from
Examples 2 and 3. In this regard, we conclude that further work is needed to find an optimal configuration of Lu

and Lϕ. For all numerical test we also provide computational justification for the assumption of bounded elastic
mechanical energy. Furthermore, a slight dependency on h in the iteration counts is observed in the numerical
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tests, but this is expected since we use ε = 2h, and as our analysis demonstrates, the convergence rate is dependent
on ε. The variation in iteration numbers with mesh refinement is in any case sufficiently small enough that we
conclude our algorithm is robust with respect to mesh refinement.

Moreover, due to the iteration spikes at the critical loading steps, we have included, for comparison, several
results in which the iteration has been truncated (labeled LFI in Examples 1-3). Due to the monotonic convergence
of the scheme, this strategy still produces acceptable results, while effectively avoiding the iteration spikes. We
therefore conclude, at least for the particular examples presented here, that a truncation of the L-scheme can be
employed for greatly improved efficiency with only negligible (depending on the situation at hand, of course) loss
of accuracy.
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[32] A. Mikelić, B. Wang, and M. F. Wheeler, Numerical convergence study of iterative coupling for coupled
flow and geomechanics, Comput. Geosci., 18 (2014), pp. 325–341, doi:10.1007/s10596-013-9393-8, https:
//doi.org/10.1007/s10596-013-9393-8.
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