
New methods clear the dust off
old biopsies
RNA sequencing of FFPE kidney biopsies

Øystein Solberg Eikrem

University of Bergen, Norway
2019

Thesis for the Degree of Philosophiae Doctor (PhD)



at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d )

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

New methods clear the dust
off old biopsies

RNA sequencing of FFPE kidney biopsies

Øystein Solberg Eikrem

Date of defence: 07.06.2019

Thesis for the Degree of Philosophiae Doctor (PhD)



The material in this publication is covered by the provisions of the Copyright Act.

Print:	     Skipnes Kommunikasjon / University of Bergen

Title: New methods clear the dust off old biopsies

© Copyright Øystein Solberg Eikrem

Name:        Øystein Solberg Eikrem

Year:        2019



 3 

Contents 

 

Contents ........................................................................................................................................................ 3 

List of abbreviations ..................................................................................................................................... 6 

Scientific environment .................................................................................................................................. 8 

Acknowledgements ....................................................................................................................................... 9 

Abstract ...................................................................................................................................................... 12 

List of Publications ..................................................................................................................................... 14 

Related papers (not included in the Thesis presentation) .......................................................................... 15 

1. Introduction ....................................................................................................................................... 16 

1.1 Archival formalin-fixed paraffin-embedded biopsies .......................................................................... 16 

1.2 Historical aspects and background of the molecular biology field ...................................................... 17 

1.3 Norwegian Kidney Biopsy Registry and Norwegian Renal Registry ..................................................... 18 

1.4 Next generation sequencing ................................................................................................................ 21 

1.5 Clear cell Renal Cell Carcinoma ........................................................................................................... 21 

1.6 Biomarkers .......................................................................................................................................... 22 

1.6.1 Predictive biomarkers ............................................................................................................... 23 

1.6.2 Prognostic biomarkers .............................................................................................................. 23 

1.7 Laser-capture microdissection ............................................................................................................. 24 

2. Hypothesis and aims of the thesis ...................................................................................................... 25 

2.1 Hypothesis ........................................................................................................................................... 25 

2.2 Rationale ............................................................................................................................................. 25 

2.3 Aims ..................................................................................................................................................... 25 

2.3.1 Main aims .................................................................................................................................. 25 

2.3.2 Secondary aims ......................................................................................................................... 26 

3. Materials and methods ...................................................................................................................... 27 



 4 

3.1 Subjects ............................................................................................................................................... 27 

3.1.1 Paper I ....................................................................................................................................... 27 

3.1.2 Paper II ...................................................................................................................................... 27 

3.1.3 Paper III ..................................................................................................................................... 27 

3.2 Ethical permissions .............................................................................................................................. 28 

3.3 Kidney biopsies .................................................................................................................................... 28 

3.4 RNA extraction .................................................................................................................................... 28 

3.5 RNA concentration and quality ........................................................................................................... 29 

3.6 cDNA library preparation and sequencing performed at the Norwegian Genomics Consortium, NTNU

 30 

3.7 Statistics and NGS Data Processing (In collaboration with A. Flatberg and A. Scherer)...................... 30 

3.8 Histology and Immunohistochemistry ................................................................................................. 31 

3.9 ELISA for CA9 Serum Levels (Paper I) ................................................................................................... 31 

3.10 LaserCapture Microdissection (LCM) of glomerular cross-sections ................................................ 31 

4. Summary of main results ................................................................................................................... 33 

4.1 Results paper I ..................................................................................................................................... 33 

4.2 Results paper II .................................................................................................................................... 34 

4.3 Results paper III ................................................................................................................................... 35 

5. Discussion .......................................................................................................................................... 37 

5.1 Methodological considerations ........................................................................................................... 37 

5.2 Discussion of the main results ............................................................................................................. 38 

5.2.1 Discussion paper I ..................................................................................................................... 38 

5.2.2 Discussion paper II .................................................................................................................... 41 

5.2.3 Discussion paper III ................................................................................................................... 42 

6. Conclusions ........................................................................................................................................ 46 

7. Future perspectives ............................................................................................................................ 47 

8. References ......................................................................................................................................... 48 

9. Appendix ............................................................................................................................................ 56 

9.1 Tissue sectioning protocol for LCM slides ............................................................................................ 56 



 5 

 



 6 

List of abbreviations 

CA9 Carbonic anhydrase 9 

ccRCC clear cell renal cell carcinoma 

CKD Chronic kidney disease 

DNA Deoxyribonucleic acid 

DV200 Percentage of nucleotides being 200 nucleotides or longer 

ELISA Enzyme linked immunosorbent assay 

FDA Food and Drug Administration 

FFPE Formalin-fixed, paraffin-embedded 

IHC Immunohistochemistry 

IPA Ingenuity pathway analysis 

LCM Laser-capture microdissection 

MDS Multiple dimensional scaling 

NPTX2 Neuronal pentraxin 2 

NGS Next generation sequencing 

NKBR Norwegian Kidney Biopsy Registry 

NRR Norwegian Renal Registry 

NTNU Norwegian University of Science and Technology 

PCA Principal component analysis 

PNCK Pregnancy up-regulated nonubiquitous Calmodulin kinase 



 7 

RIN RNA integrity number 

RNA Ribonucleic acid 

RRT Renal replacement therapy 

TNM Tumor Node Metastasis staging system 

UMOD Uromodulin 



 8 

Scientific environment 

This work was carried out within the Renal Research Group, Department of Clinical 

Medicine (Klinisk Institutt 1), Faculty of Medicine, University of Bergen, Bergen, 

Norway.  

 

Collaboration partners were the: 

Department of Urology, Haukeland University Hospital, Bergen, Norway. 

Department of Pathology, Haukeland University Hospital, Bergen, Norway. 

Department of Medicine, Haukeland University Hospital, Bergen, Norway.  

 

Research funding was secured through the University of Bergen, the Regional Health 

Authorities of Western Norway and from international competitive research grants 

from Sanofi Genzyme and Shire. 

 

 



 9 

Acknowledgements 

Looking back at my years as a PhD student, I am very grateful for the opportunity to 

immerse myself in scientific work, do research, go to conferences, and to meet gifted 

colleagues. I am really impressed by many of my fellow students and colleagues. 

Their dedication and skill are extraordinary. Many of them deserve my warm thanks 

for their contribution and support. I cannot possibly mention them all, but some 

persons deserve to be named.  

At first, I want to express my gratitude to the best main supervisor I could possibly 

have. It is still a little bit odd that someone of Professor Hans-Peter Marti merits 

should come to rainy little Bergen, Norway. He has always been available and very 

helpful. His door has always been open. He excused himself for the late reply of 

revisions when he replied to emails sent during night that was answered the 

next/”same” day. I am impressed by his working capacity and by his devotion to his 

field of study. His high demands for scientific work have been challenging, and his 

curiosity has been a great source of inspiration.  Co-supervisor Cand. Scient. Trude 

Skogstrand PhD trained me well in the lab skills needed to perform the work in this 

thesis. Her instructions, support and encouragement have been very much 

appreciated. She really deserves warm thanks for her guidance, her interest and 

supportive comments! I have passed on the detailed and careful precision needed 

when handling RNA. 

I owe a great thanks to esteemed researchers and clinicians in the Renal Research 

Group. Professor Emeritus Einar Svarstad is a great mentor and has meant a lot to me 

and was the colleague that recruited me to the nephrology field. Also, several other 

great researchers in our group like Professor Bjørn Egil Vikse, Assoc. Professor 

Sabine Leh, Consultant Nephrological pediatrician Camilla Tøndel and Professor 

Rune Bjørneklett have paved the way and set the standard!    

I would like to express gratitude to some of the co-authors Andreas Scherer PhD, 

Vidar Beisvåg PhD and MSc Arnar Flatberg. 



 10 

 

I am very grateful for the highly skilled performance of MSc Sten-Even Erlandsen in 

the NTNU sequencing facility in Trondheim. Many thanks also to the local genomics 

core facility at Haukeland with MSc Rita Holdhus as manager.  

I am very grateful for the skilled and dedicated help of supreme technicians from the 

hospital’s kidney pathology lab; Bendik Nordanger, Brynhild Johanna Haugen, Nina 

Holmelid and Tina Dahl. Also from the University technicians I have received a lot 

of help. Thank you very much Dagny Ann Sandnes and Gry Hilde Nilsen. Without 

the highly skilled help of Bendik and Sabine to help me in the development of the 

LCM sectioning protocol the LCM work would have been much harder to achieve.   

The Department of Clinical Medicine, Medical Faculty, University of Bergen has 

been very helpful in providing me with the best possible working environments and 

administrative help for making all of this possible. Thanks a lot to Jorunn Skei, Nils 

Erik Gilhus and Kjell Morten Myhr and co-workers for your kind help. 

I owe a great thanks to all of the members of the research group. Lea Landolt, 

Rannveig Skrunes, Thomas Knoop, Ingegjerd Sekse, Rolf Christiansen. The 

cooperation with Lea Landolt has been excellent and very helpful ever since she also 

joined the lab. 

I am very grateful for being part of a group where so many new and aspiring 

researchers are educated. The medical students and more recent PhD fellows I have 

had the pleasure of tutoring throughout the course of my PhD-fellowship have really 

kept me at my toes! I would like to thank Philipp Strauss, Even Koch, Bjørnar 

Lillefosse, Sigrid Nakken, Hassan Elsaid, August Hoel, Ole Petter Nordbø, Magnus 

Farstad, Magnus Granly, Tedd Walther and Tonje Myklebust. 

Many thanks to the industrial sponsors Sanofi Genzyme and Shire for your financial 

support making it possible to set the methods developed in this thesis into motion 

with many groundbreaking projects to come in the future.  



 11 

Thanks to Silje Solberg at Dermatology for, after hearing about my project in one of 

the joint research courses, basically handed me the title of my thesis.  

Thanks to all my office colleagues situated in a luxurious suite on top of the 

laboratory building containing no more than 12 people in one room for making every 

day a little easier.  

I am privileged to have a loving and supportive family. My parents have always 

encouraged me to study, set an aim and work hard to achieve it. Their understanding 

and support have been most important. Without their repeated help with 

understanding the importance of studying hard I might not have been able to study 

Medicine at all. My mother as well as my sister have taken their PhD’s and 

discussions with them have been very useful.   

Most of all I want to thank my wife for her important contributions to my PhD and 

life in general. She has been managing director and chairman of the board in the 

family and done much more than her fair share when it comes to all that has to be 

done in a family of four. I love you and both of our adorable children Nora and 

Emma!  



 12 

Abstract 

Background and aims: Formalin-fixed, paraffin-embedded (FFPE) tissues are an 

underused resource for molecular analyses. We wanted to exploit renal biopsies also 

on the mRNA level to elucidate pathophysiological mechanisms and to ultimately 

define novel therapies of kidney diseases. The work in this thesis aimed to assess the 

technical feasibility of RNA sequencing per se and the quality of the respective 

mRNA data derived from extracted RNA of whole FFPE tissue sections. In the first 

paper the main aim was to test whether lower quality, partially degraded RNA 

obtained from archival formalin-fixed and paraffin-embedded (FFPE) renal tissues 

could serve as appropriate source of material for RNA sequencing. This was 

approached by testing transcriptome sequencing of RNA from concurrently harvested 

FFPE and fresh stored kidney biopsies. In the second paper we aimed to validate and 

expand the first analysis by investigating a second cohort of FFPE kidney biopsies 

from local ccRCC patients. The secondary aim of this thesis was to assess the 

technical feasibility and the quality of mRNA data obtained from LCM renal tissues. 

Further, the aim of the third paper was to evaluate the most appropriate method to 

extract RNA from FFPE renal tissues and to compare yield and quality of extracted 

RNA between the different methods with the target of conducting RNA sequencing, 

especially from LCM glomerular cross-sections. 

Methods: Kidney biopsies from resected tissues belonging to patients undergoing 

nephrectomy were obtained with a 16g core biopsy needle. In paper I, tumor samples 

and adjacent normal tissue specimens were FFPE or RNAlater
® 

stored. In paper II, 

only FFPE kidney biopsies were used. In the third paper, FFPE biopsies from rat and 

human tissues were utilized. In all papers RNA sequencing libraries were built with 

the newly released Illumina’s TruSeq
®

 Access library preparation kit (recently re-

named RNA exome kit). Comparative analyses were done using voom/Limma 

package in R.  

Main results: In the first paper we demonstrated that the FFPE and RNAlater
® 

datasets gave comparable numbers of detected genes, differentially expressed 

transcripts and affected pathways. The average expression and the differentially 
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expressed genes had very high correlation between the FFPE and RNAlater
® 

stored 

samples. In paper I and II the detected genes relevant for ccRCC were in accordance 

with the current literature. The number of detected transcripts in the “discovery/paper 

I” and “confirmation/paper II” data set gave 8957 and 11,047 detected transcripts, 

respectively. These data sets shared 1193 of differentially expressed genes.  The 

average expression and the differentially expressed transcripts in both data sets 

correlated, with R
2 

of 0,95 and R
2 

of 0,94, respectively.  

In the third paper, several kits were eligible for RNA extraction from FFPE tissues 

from both whole kidney biopsy sections and from LCM samples.  

Conclusions: Gene expression data obtained from FFPE kidney biopsies are 

comparable to data obtained from freshly stored material, thus expanding the utility 

of archival tissue specimens. Next-generation sequencing expands the clinical 

application of tissue analyses from FFPE biopsies and gives results well in line with 

the current literature. RNA can be extracted from archival renal biopsies in sufficient 

quality and quantity from a single human kidney biopsy section and from around 100 

LCM glomerular cross-sections to enable successful RNA library preparation and 

sequencing using commercially available RNA extraction kits. 
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1. Introduction 

1.1 Archival formalin-fixed paraffin-embedded biopsies 

For several decades tissue biopsies have been fixed in formalin and embedded in 

paraffin for long time storage in the archives of the pathology departments and tissue 

biobanks throughout the world. It is well appreciated that this way of fixing and 

preserving tissues for downstream analyses is far from optimal. Previously, full 

transcriptome RNA sequencing from FFPE materials has been considered impossible 

because of RNA degradation. Liquid nitrogen snap-frozen and further fresh-frozen in 

minus 80 °C is the gold standard tissue storage method for subsequent sequencing of 

extracted RNA or DNA. The overall performance and acquired information from an 

experiment is mainly reliant on the quality of the sample itself, which tissue 

preservation method used, what kind of nucleotide extraction protocol was applied, 

and of the chosen sequencing setup. RNA derived from FFPE tissue blocks are more 

degraded and yields less RNA once extracted. The RNA from FFPE blocks can also 

be molecularly modified based on cross-linkage of nucleotides to formalin and 

proteins. Also, other molecular changes like addition of mono-methylol (–CH2OH) 

especially to the adenin bases can occur (1, 2). Potential differences in the formalin 

fixation duration time and fixation method as well as the age of the archival tissue 

samples further add to the variation of RNA quality. The first time DNA was 

extracted and Sanger sequenced from FFPE tissues was in 1985 in a study of 

oncogenes (3). After this, many other studies have demonstrated the feasibility of 

DNA extraction from tissue specimens up to 40 years old (4, 5). Already in 1988 

RNA was isolated from tissues by Rupp and Locker (6). They acknowledged the fact 

that RNA was more difficult to handle because of its fast degradation compared to 

DNA, yet not impossible as RNA has been isolated from tissues as old as 20 years 

(7). In the context of getting best possible RNA quality, many factors contribute. 

Warm ischemia time, autolysis, time before the sample is put in formalin and the time 

it takes for the formalin to thoroughly fixate the sample. Formalin penetrates the 

tissues during fixation at a rate of 1mm per hour, which implies that the size of the 
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specimen is indirectly associated with the yield and quality of extracted RNA (1). 

Lastly, other issues regarding RNA quality can come from contamination from 

ubiquitous RNAses that can derive from hardware, skin and surroundings. The 

automated process of embedding into paraffin together with other samples is not 

completely sterile, nor is it RNAse-free either (8, 9). Tissue preservation and light-

microscopical investigation is the main purpose of the FFPE tissue preservation 

method. While there are many drawbacks of FFPE tissues for molecular analyses, the 

distinctive advantage is that the material designated for RNA sequencing can be 

concurrently investigated by light microscopy. Thus, allowing for excellent 

specificity for what entity to be further examined with molecular methods.  Although 

of greatest potential, FFPE tissues are an underused resource for molecular analyses. 

New methods hold great promise and the Illumina TruSeq RNA Access Kit
® 

(recently changed name to RNA Exome kit) 
 
released in 2014 is designed to 

overcome these challenges for RNA sequencing applications by isolating mRNA 

through a sequence-specific capture protocol resulting in reduced ribosomal RNA and 

enriched exonic RNA sequences.  

1.2 Historical aspects and background of the molecular 
biology field  

Already in 1871, Friedrich Miescher from Basel published the first evidence of a 

substance that fundamentally differed from proteins. Because of its occurrence within 

the cells nuclei; he termed the novel substance “nuclein” (10). Almost a century later, 

work also from others eventually led to the landmark paper, “the structure of DNA”, 

of much more known Watson and Crick in 1953 (11). Later, the invention of DNA 

sequencing by Frederick Sanger in the 1970s represented a paradigm shift in the era 

of modern medicine (12). With this technique it was possible to determine the 

sequence of nucleotides much faster and more accurate than with previous methods. 

This method was improved in the decades to follow with the addition of fluorescently 

stained nucleotides rather than radioactively labelled gels. In 2004, after 14 years of 

intense work, the Human Genome Project on Sanger sequencing of the entire 

compiled human genome was published (13). Altogether, paralleled by a revolution 
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in computer science, this led to several new projects, and finally to the introduction of 

the contemporary commercial sequencing platforms, which we know as next 

generation sequencing (NGS) (14-17). With Sanger’s DNA chain termination method 

it was possible to sequence one gene at a time. Contrarily, with NGS it is achievable 

to sequence the whole epigenome, genome, exome or transcriptome within a few 

days of work.  

 

Concurrent with the development of DNA sequencing technologies, the evolution of 

methods to study gene expression took place. Quantitative real-time PCR, micro-

array technologies and RNA sequencing are powerful tools for characterization of 

mRNA abundances. The foundation of this field of research was pioneered by Kjell 

Kleppe and co-workers who first described the method of replicating a short DNA 

template with primers in vitro (18). However, the invention of polymerase chain 

reaction (PCR) is generally accredited to the Nobel Prize in Chemistry awardee, Kary 

Mullis (19). To date RNA sequencing has largely replaced microarray technologies 

for elucidating gene expression patterns. Compared with other approaches, like 

microarray, NGS offers the possibility of detecting novel transcripts that are not 

based on a priori assumptions. This has led, and will continue to lead to the discovery 

of potential biomarkers or targets for novel therapies (14, 20).  

 

1.3 Norwegian Kidney Biopsy Registry and Norwegian 
Renal Registry 

The Norwegian Kidney Biopsy Registry (NKBR) was founded in 1988. It holds 

information about clinical and histopathological parameters of non-neoplastic kidney 

biopies at the time of the biopsy. Until 2013, there was a designated 

nephropathologist in Bergen that reanalyzed all biopsies with a second opinion for all 

biopsies registered. In the last five years however, the diagnosis from the respective 

pathology departments have been communicated to the registry without a second 

opinion examination. In 2012 NKBR became a national quality registry. Since 2013 

the registry is building a digital slide archive of all registered non-neoplastic kidney 
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biopsies in Norway. To date the registry contains information of more than 14000 

non-neoplastic kidney biopsies. In 2016 the NKBR fused with the Norwegian ESRD 

and transplant registry and became part of The Norwegian Renal Registry (NRR). 

The NNR now consists of two sections: Section for dialysis and transplantation and 

Section for kidney biopsy. 

The NRR based in Oslo has been operative since 1980 and contains information 

about all patients from the time they reach chronic kidney disease (CKD) stage 5, or 

from all patients at the time they start renal replacement therapy (RRT). Data are 

reported annually on a standardized form with information about etiology, 

comorbidities, laboratory findings and treatment and treatment response. In the 2017 

annual report from the NRR, the reported number of patients starting RRT was 579 

(21).   

In Norway all habitants have their own unique 11-digit personal identification 

number and this number is used in all health-related registries. This makes it possible 

to link data from the NRR to other registries like the Norwegian National Cause of 

Death Registry, or the Norwegian Population Registry. Several high-impact 

publications have arisen from the NRR (22-25).  

Altogether the NKBR holds a unique opportunity for research based on the long time 

period of biopsy inclusion and for the high number of included biopsies. Previous 

works from the NRR/NKBR have been more clinically-, epidemiologically-, and 

transplant- oriented (22-25). The work in this thesis expands on the recent 

developments in the tissue-based research already performed on biopsies from the 

NKBR. Professor Bjørn Egil Vikse and Kenneth Finne PhD, recently established 

methods for studying the proteome with proteomics from these biopsies (26-30). 

With my PhD thesis work we aim to establish methods to study the transcriptome 

with transcriptomics. 

Figure 1 shows the principle workflows of non-neoplastic kidney biopsies at 

pathology departments in Norway. 
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Figure 1 Overview of principle processing steps of kidney biopsies in respective 

pathology departments.  

A) The largest part of the core gets fixed in formalin and embedded in paraffin. (B) 

shows a typical example of a section from a paraffin blokk with the standard periodic 

acid Schiff stain (PAS). Sections from paraffin embedded and formalin fixed material 

can also be used for immunohistochemistry (C). 

D) Some of the pathology departments also freeze a part for immunofluorescence. 

Morphology from frozen sections shows reduced detail (E), but is well suited for 

immunofluorescense (F) (Reproduced from Koivuviita, N. with permission (31).)  

A smaller part of the biopsy is fixed in a special medium and embedded into an epoxy 

resin. As fixation medium McDowell solution is used, a mixture of formalin and 

glutaraldehyde. The semithin section from this material is shown in (H, toluidine blue 

stain) and the ultrathin sectionin (I). 

Sections can be made from all types of processed material and can be digitalized for 

permanent storage (B, C, E, F, H, I).  

Reproduced from S. Leh with permission (32).  
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1.4 Next generation sequencing 

In the mid-2000s the Human Genome Project was completed (13). Approximately ten 

years after its completion the first of many high-throughput sequencing platforms 

were established. These various platforms are all known as next generation 

sequencing (NGS), massively parallel sequencing or high-throughput sequencing 

(33). The key advantage of the NGS technology is the massive parallelization of 

millions of reactions simultaneously (33). Thousands of clonally amplified DNA 

fragments in a defined area ensures a strong base-calling signal (33). Continuous 

advancements of the NGS technology over the last decade have led to an additional 

100-1000 fold increased capacity since its release (34). The release of NGS heralded 

a 50 000 fold drop in the cost of a human genome since the Human Genome Project 

(35). Prices have continued to drop and in the late 2015 the 1000 $ barrier for a whole 

human genome was breached (33).  

 

1.5 Clear cell Renal Cell Carcinoma 

We chose clear cell renal cell carcinoma primarily because of tissue availability to set 

up the RNAseq method in FFPE tissues. However, there is concurrently a lack of 

stringent diagnostic and prognostic blood-based panels in clear cell renal cell 

carcinoma (ccRCC) and novel therapies for advanced stages are urgently needed. In 

addition, we received extensive local expertise and collaborative help from our 

Deptartment of Urology. Therefore, ccRCC was a good model disease to develop 

RNAseq from FFPE tissues, as described in more detail below. Due to our later 

success, we have continued the ccRCC research until this date.  

Specifically, ccRCC is the most frequent primary renal neoplasm with both 

increasing incidence and considerable morbidity and mortality (36, 37). Renal cell 

cancer ranks among the ten most frequent cancers in women and men (38). In 2017 

there were approximately 64 000 new cases and 14 400 deaths attributed to kidney 
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cancer in the United States (39). In Norway 869 patients have been diagnosed with 

renal cell cancer during 2017 causing a total of 245 deaths (40).  

ccRCC only has a favorable prognosis if it is diagnosed once the disease is still 

localized (41, 42). At this stage it is curable with early surgical intervention alone. 

However, up to 20% with initially localized disease develop metastases after five 

years (41). Only half of the patients with locally advanced disease are alive after five 

years of follow-up (43). Long term survival rate of metastatic disease is extremely 

poor (44). Even small tumors (1–2 cm) have metastatic potential (45, 46). Currently, 

no established biomarker for renal cell carcinoma is in use in clinical practice, despite 

intensive efforts (47, 48). Therefore, elucidation of the molecular mechanisms of this 

disease is important. We need to unravel prognostic and predictive markers as well as 

potential novel drug targets.  

 

1.6 Biomarkers 

To test the deliverables from the ccRCC RNAseq data we investigated the diagnostic 

properties of some of the known biomarkers in this field. Some of these biomarkers 

might also be linked to prognostic or predictive markers as well as potential novel 

drug targets. The “Biomarkers Definitions Working Group” put the following 

definition into words: “A characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, patho-genic processes, or pharmacologic 

responses to a therapeutic intervention” (49). Biomarkers can be utilized as a 

diagnostic tool, as a tool for staging of disease, as an indicator of prognosis and as a 

tool with the capacity of predicting treatment response following an intervention. Yet, 

the bench to bedside translation takes a long time and there are only a very limited 

number of biomarkers that have been incorporated into clinical practice (50, 51). This 

is also the case for renal cancer, where there are no FDA-approved biomarkers for 

renal cancer (52). Still, both vast resources and intense efforts are invested in this 

field of research and with better bioinformatics approaches, careful selection of study 
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inclusion and external validation of potential markers, better markers will come in the 

future (53). 

 

1.6.1 Predictive biomarkers 

Predictive biomarkers hold the capacity to anticipate the response to a therapeutic 

intervention. The addition of a monoclonal antibody targeting HER2 in patients with 

HER2 overexpressed breast cancer serves as a classical example of a marker that can 

predict treatment response (54).  

 

1.6.2 Prognostic biomarkers 

Prognostic biomarkers have the capacity to forecast the natural disease course. 

Prognostic biomarkers are unable to predict the response to a specific therapy, yet 

they might be helpful in guiding treatment so that high-risk patients will get 

aggressive treatment and reduce overtreatment in low-risk patients (55). There are 

several examples of prognostic biomarkers like CA 125 levels in ovarian cancer and 

PSA levels in prostate cancer (56, 57). 
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Figure 2. The upper section displays the application of next generation sequencing 

(NGS). The lower section illustrates the general workflow of NGS. Reproduced from 

EMJ Reviews with permission (58). 

 

Although there are no established blood sample prognostic biomarkers in clinical use 

in renal cancer, there are several good clinical and histopathological scoring 

algorithms that perform well (42, 59-63). The TNM staging system gives prognostic 

information based on the anatomical characteristics and distribution of the disease 

(64). Lower stage disease has much more favorable prognosis than higher stage, at 

least compared to nodal positive and systemic metastatic disease.  

 

1.7 Laser-capture microdissection 

Laser-capture microdissection (LCM) is a method that can be used to cut out specific 

cells or tissue compartments under direct visualization for further molecular analyses 

(65). Previous attempts to capture specific cells or tissues were performed by 

protection of  areas of interest by covering with pigments and deactivating all 

unprotected DNA through application of short wave ultraviolet light (66). Instead of 

studying the gene expression from a whole kidney biopsy section, where differences 

in specific nephron compartments might go under the radar, with LCM you can study 

precisely and specifically the desired tissue area (e.g. glomeruli). Since FFPE tissues 

are so easily available, development of a method to perform RNA extraction from 

FFPE LCM tissues will be highly valuable. This will have the capacity of enabling 

downstream molecular analyses independent of fresh tissues and therefore unlocking 

pathological archival tissues for these kinds of molecular analyses. 
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2. Hypothesis and aims of the thesis 

2.1 Hypothesis 

Our prime hypothesis was that RNAseq of whole tissue sections and microdissected 

nephron compartments from archival FFPE kidney biopsies is feasible. Furthermore, 

we also hypothesized that RNAseq of FFPE tissues leads to the delivery of quality 

data allowing in-depth data mining for biomarker and drug target programs. 

2.2 Rationale 

Our rationale for performing this project is the high potential of FFPE kidney 

biopsies for the detection of pathophysiological mechanisms and ultimately of the 

definition of novel therapies of kidney diseases using omics-based technologies. Due 

to very recent technical advances in the field (most notably RNA Exome kit, Illumina), 

the feasibility of RNAseq suddenly appeared to be very likely. Furthermore, for our 

studies we can exploit the local ccRCC biobank and later the NKBR. We are in a 

strong position to both test this and make high-impact, sub-sequent studies based on the 

NKBR that can be connected with a spectrum of outcome registries, e.g. comprising 

long follow-up periods. 

2.3 Aims 

2.3.1 Main aims 

The overall primary aim of this thesis was to assess the technical feasibility of RNA 

sequencing per se and the quality of the respective mRNA data derived from 

extracted RNA of whole tissue FFPE sections. 

In the first paper, the main aim was to test whether lower quality, partially degraded 

RNA obtained from archival formalin-fixed and paraffin-embedded renal tissues 

could serve as appropriate source of material for RNA sequencing. This was 

approached by testing transcriptome sequencing of RNA from concurrently harvested 
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FFPE and freshly stored kidney biopsies (RNAlater
®

-fixed prior to -80°C). In the 

second paper we aimed to validate and expand the first analysis by investigating a 

second cohort of FFPE kidney biopsies from local ccRCC patients. These additional 

samples served two purposes: to provide evidence for the reproducibility of RNAseq 

data from FFPE samples, and to serve as a validation set for biomarker development. 

 

2.3.2 Secondary aims 

The secondary aim of this thesis was to assess the technical feasibility and the quality 

of mRNA data obtained from LCM renal glomeruli. Accordingly, the aim of the third 

paper was to evaluate the most appropriate method to extract RNA from FFPE renal 

glomeruli tissues and to compare yield and quality of extracted RNA between the 

different methods.  Furthermore, we wanted to demonstrate if the extracted 

glomerular RNA is of sufficient quality and quantity for potential subsequent 

RNAseq.  
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3. Materials and methods 

3.1 Subjects 

3.1.1 Paper I 

Patients (n=16) from Haukeland University Hospital diagnosed with ccRCC which 

underwent partial (n = 10) or full (n = 6) nephrectomy were included chronologically. 

I have harvested perioperative biopsies directly after the specimens have been 

surgically removed. Patients had a mean age of 58.2±6.8 years (3 females and 13 

males). Patients had pT tumor stages T1a (n = 10), T2a or b (n = 2) and T3a or b (n = 

4).  

 

3.1.2 Paper II 

Patients (n=12) from Haukeland University Hospital with ccRCC undergoing full 

(n=8) or partial (n=4) nephrectomy were included. Similarly, perioperative biopsies 

were harvested directly after the specimens were operated out. Patients had a mean 

age of 56.9 ± 6.8 years (seven females and five males). Patients had pT tumor stages 

T1a or b (n=7), T2a or b (n=2) and T3a or b (n=3). 

 

3.1.3 Paper III 

Biopsies with non-tumorous, ‘normal’ tissue adjacent to the tumor from two human 

patients (one male and one female) undergoing nephrectomy due to ccRCC were 

obtained in the operating room in June 2015.  

Healthy, normal FFPE renal tissue was collected from two male Wistar Hannover rats 

from Taconic (Ry, Denmark), used in a prior study (67). The FFPE tissue blocks 

were approximately 3.5 years old.  
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3.2 Ethical permissions 

The regional ethics committee of Western Norway/ Institutional review board (IRB) 

has approved all of our studies (REC West no. 78/05). All participants provided 

written informed consent before enrollment. The studies were performed in 

compliance with the Declaration of Helsinki (2002) and Good Clinical Practice 

guidelines. Concerning paper III; the experiments were performed also under the 

approval of the Norwegian State Board for Biological Experiments with living 

animals. 

 

3.3 Kidney biopsies 

All human biopsies were obtained by me with a 16G core biopsy needle for all 

studies. Biopsies were collected perioperatively just after the specimen was operated 

out. The 16 G core biopsies were put directly into formalin or RNAlater
®

(Qiagen, 

Germay). The formalin biopsies were embedded in paraffin the next day. The 

RNAlater
®

 stored biopsies were transported to the -80°C freezer and stored upon 

usage. For paper I; a total of four biopsies from each patient were stored and utilized. 

Each individual pair of histologically-confirmed clear cell renal cell carcinoma 

(ccRCC) and adjacent non-tumorous (“normal”) tissue were either stored as FFPE 

tissue or fresh-frozen in an RNA-stabilizing agent (RNAlater
®

). For paper II and III, 

only the formalin-fixed biopsies were utilized. For paper III rat whole kidney sections 

were also used.  

 

3.4 RNA extraction 

The FFPE tissues were cut into 5 µm and 10 µm sections for rat and human tissue, 

respectively. Kidney biopsy sections were cut by Bendik Nordanger on an ordinary 

rotary microtome (Leica RM 2155, Leica Microsystems, Wetzlar, Germany). All 

sections were directly inserted into RNAse-free Eppendorf tubes prior to 
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deparaffinization and RNA extraction (Eppendorf, Hamburg-Eppendorf, Germany). I 

extracted Total RNA with the miRNeasy FFPE kit (Qiagen) for the formalin-fixed 

samples (paper I and II) and with the miRNeasy micro kit (Qiagen) for the fresh-

frozen samples (paper I). In paper III, numerous different FFPE RNA extraction kits 

were utilized, including the above mentioned. First, seven different RNA extraction 

kits were tested on rat tissue. Later, the four kits with the highest amount of RNA 

extracted from rat whole kidney sections were used to extract RNA from human renal 

tissues from both whole sections and laser-microdissected tissues. 

 

3.5 RNA concentration and quality 

Total RNA concentration was measured using Qubit RNA HS Assay Kit on a Qubit 

2.0 Fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) and with the 

NanoDrop spectrophotometer (NanoDrop ND-1000, NanoDrop Technologies, 

Wilmington, NC, USA). The NanoDrop also reports the absorbance ratios at 260/280 

nm and 260/230 nm which reflects the purity of the nucleic acids measured. 

RNA quality was assessed using Agilent RNA 6000 Nano Kit on a 2100 Bioanalyzer 

instrument (Agilent Technologies, Santa Clara, CA, USA) and the percentages of 

RNA fragments larger than 200 nucleotides were calculated. Illumina’s guidelines 

state that samples with DV200 below 30 % are too degraded for further processing. 

Samples with DV200 of 30-50 % are of low quality and samples with 50-70 % are of 

medium quality. Lastly, samples with DV200 of over 70% are of high quality. The 

Bioanalyzer also computes the RNA integrity numbers (RIN). A RIN of above 7 is 

usually considered to be of high quality when considering fresh-frozen samples.  
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3.6 cDNA library preparation and sequencing performed at 
the Norwegian Genomics Consortium, NTNU 

cDNA libraries were prepared utilizing the TruSeq RNA Access library kit (Illumina, 

Inc., San Diego, CA, USA) according to the manufacturer`s instructions. This was 

performed at the Norwegian Genomics Consortium (Oslo, Trondheim and Bergen) at 

NTNU by Vidar Beisvåg, Arnar Flatberg and Sten Even Erlandsen based on their 

previous experience with FFPE tissues. Libraries were validated using the Agilent 

DNA 1000 kit on a 2100 Bioanalyzer instrument. Specific exome capture probes 

were used for the first hybridization step. With 200 ng of each DNA library, a 4-plex 

pool of libraries was made. Probes hybridized to the target regions were captured 

with streptavidin coated magnetic beads. Afterwards a second round of hybridization 

and capture were performed to ensure high specificity of the capture regions. 

Thereafter a thorough wash procedure to remove non-specific binding from the beads 

was carried out. Finally, AMPure XP beads were used to clean up the libraries prior 

to PCR amplification. The libraries were quantitated by qPCR using the KAPA 

Library Quantification Kit—Illumina/ABI Prism1 (Kapa Biosystems, Inc., 

Wilmington, MA, USA) and validated using Agilent High Sensitivity DNA Kit on a 

Bioanalyzer. Library were normalization to 22 pM and single read sequencing was 

performed for 50 cycles on a HiSeq2500 instrument (Illumina, Inc. San Diego, CA, 

USA). Base calling was done on the HiSeq instrument by RTA 1.17.21.3. FASTQ 

files were generated using CASAVA 1.8.2 (Illumina, Inc. San Diego, CA, USA). 

 

3.7 Statistics and NGS Data Processing (In collaboration 
with A. Flatberg and A. Scherer) 

Sequencing reads were aligned to the Human genome assembly GRCh38 guided by 

Tophat and Bowtie. Genes with more than 15 counts per million (cpm) in more than 8 

samples per dataset were set as an empirical expression filter. Differentially 

expressed genes were defined as Benjamini-Hochberg adjusted p-value <0.05 with an 

absolute fold change of >2 using the voom/Limma R-package (R Bioconductor v 3.4; 
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available online: www.bioconductor.org). Pathway analysis was performed with 

Ingenuity Pathway Analysis (Qiagen, USA; version 24718999). The Ingenuity 

Knowledge Base information was used as reference set. Canonical pathways were 

sorted by smallest Benjamini-Hochberg-adjusted p-values.  

 

3.8 Histology and Immunohistochemistry 

Immunohistochemistry was performed on 4 μm thick FFPE sections from the tumor 

and adjacent non-tumorous tissue. For positive controls, tissues with known positive 

reactivity were used, for negative controls the primary antibody was omitted. Stained 

slides were scanned with the Aperio ScanScope
®

 XT system (Leica Biosystems 

Imaging, Wetzlar, Germany) at ×40 objective magnification and viewed in 

ImageScope 12 (Leica Biosystems Imaging, Wetzlar, Germany).  

 

3.9 ELISA for CA9 Serum Levels (Paper I) 

CA9 serum concentrations of 38 patients were measured using the Quantikine Human 

Carbonic Anhydrase IX Immunoassay (R&D Systems, Minneapolis, USA, catalogue 

number DCA900) according to instructions of the manufacturer, but with an 

overnight incubation at 4°C after having added the serum. Results were assessed with 

the Kruskal-Wallis and Dunn’s test.  

 

 

3.10 LaserCapture Microdissection (LCM) of glomerular 
cross-sections 

A new protocol for Laser Capture Microdissecion (LCM) from tissue block to 

samples ready for RNA extraction was designed. Tissue sections (5-10 µm thick) 

were mounted on nuclease-free Membrane Slides NF 1.0 PEN (Zeiss, Oberkochen, 
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Germany). Following deparaffinization with xylene and standard alcohol series, 

staining was performed with Hematoxylin and Eosin (HE) according to a shortened 

procedure under RNAse-free conditions. Please confer appendix for complete 

overview of the tissue sectioning and preparation protocol.  

The glomeruli were microdissected using a PALM Laser-Microbeam System 

(PALMVR Robo software V 2.2.2, P.A.L.M, Bernried, Germany). 

Microdissected glomeruli were captured into the lid of RNAse-free Safe-Lock 

Eppendorf tubes (Eppendorf, Hamburg-Eppendorf, Germany). Several different 

volumes within the lid was tested before it was decided that 65µl of the lysis buffer 

from the High Pure RNA extraction kit worked optimally for capture of the material 

without risking the droplet in the lid to fall out. The remaining 35 µl of lysis buffer 

was added upon RNA extraction.  
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4. Summary of main results 

4.1 Results paper I 

Each of the 16 patients donated four core biopsies, which included two with ccRCC 

and two from adjacent non-affected “normal” tissue. Each individual pair of ccRCC 

and “normal” tissue was stored either as FFPE or put in RNAlater
® 

and fresh-frozen. 

This paired design facilitated the evaluation of the impact of storage condition on 

expression profiles using RNAseq.  

The mean RNA integrity number (RIN) and mean DV200 values (95% CI) were 5.7 

(5.10–6.30) and 61% (58–64) for RNAlater
®

 samples and 2.53 (2.33–2.73) and 75% 

(72–79) for FFPE samples, respectively.  

We detected a similar number of genes, which passed the expression filter in the 

FFPE (n=9164) and the RNAlater
® 

(n= 9205)
 
dataset.  Around 94% of these genes  

(n = 8893) were common to both datasets and the correlation of the logarithmic fold 

change was R
2
 = 0.93, and correlation of the average expression R

2
 = 0.97 (As shown 

in Fig. S1, paper I). These two datasets shared 1106 differentially expressed genes, 

which correlated with an R
2 

of 0,96 (Fig.2, paper I). In a multidimensional scaling 

(MDS) plot (Fig.1, paper I) it was clear that the samples segregated by diagnosis, 

rather than by storage condition (FFPE or RNAlater
®

).  

The genes with the highest fold change in both formalin-fixed paraffin-embedded and 

RNAlater
®

 dataset were Uromodulin (UMOD, -183.2 fold change in tumor versus 

normal in FFPE dataset, -158.7 fold change in tumor versus normal in RNAlater
®

 

dataset), neuronal pentraxin-2 (NPTX2, 140.9 fold change in tumor versus normal in 

FFPE data set and 220 fold change in tumor versus normal in the RNAlater
®

 dataset) 

and carbonic anhydrase 9 (CA9, 121.2 fold change in tumor versus normal in FFPE 

and 304 fold change in tumor versus normal in RNAlater
®

 dataset). Immunohisto-

chemistry was used to confirm protein presence of UMOD, NPTX2 and CA9.  

Later, pathway analysis revealed TGFB1 as an important expression regulator of 237 

genes (17% of differentially expressed genes) in the datasets. Thus, epithelial-to-

mesenchymal transition was linked to clear cell renal cancer as markers such as 
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Vimentin (Vim), Endothelin 1 (EDN1) and Fibronectin (FN1) were up-regulated, 

whereas epithelial markers such as E-Cadherin (CDH1), epithelial-cell adhesion 

molecule (EPCAM) and inhibitors of epithelial-to-mesenchymal transition like 

Grainyhead-like 2 (GRHL2) were down-regulated.  

RNA sequencing results from formalin-fixed paraffin-embedded biopsies could also 

be used for tumor classifier analysis. Using the example of the known clear cell renal 

cancer biomarker CA9, our samples could be classified in tumorous and normal 

tissues with a sensitivity and specificity of 93.8%. 

 

4.2 Results paper II 

The main aim of this paper was to study the reproducibility of the previously 

published gene expression analysis from FFPE ccRCC and normal biopsies. 

This paper included 12 adult patients and each of the patients donated two core FFPE 

biopsies, one from tumor and one from adjacent non-affected “normal” tissue.  

The mean DV200 value for the samples in this study was 54% (95% CI of 48–61%). 

In this investigation 11047 mRNAs passed the expression filter. Around 98% of the 

8957 detected genes in the discovery data set (paper I) were common to both FFPE 

the discovery and confirmation (paper II) data set. The correlation of the average 

expression was R
2
=0,96 and the correlation of the logarithmic fold change was  

R
2
= 0.89. The discovery data detected 1367 differentially expressed genes. The 

confirmation data set had 2176. These two data sets shared 1193 differentially 

expressed genes. The correlation of the average expression of these 

1193 genes was R
2
=0,95. The log2-fold changes of these differentially expressed 

genes correlated by R
2 

=0,94.  In a principal component analysis (PCA) comparing 

the common differentially regulated genes in paper I vs paper II, the samples 

segregated by biological condition and not by group affiliation; discovery or 

confirmation set. Comparing the 20 most up- or downregulated genes the results from 

paper I and paper II were highly concordant.  
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Again IPA revealed TGFB1 as an important regulator of gene expression in the 

confirmation data set. TGFB1 itself was overrepresented 3.1-fold (2.8-fold in the 

FFPE discovery data set).  Also, high concordance with regards to the detected 

pathways were found between paper I and paper II.  

The classification with the K nearest neighbor algorithm was used as the training set 

and the confirmation data set as the test set. In this scenario, the 24 confirmation 

samples were stratified with 100% accuracy into tumor or normal samples. When the 

data sets were swapped and the confirmation data were used as the training set to 

stratify the discovery samples, 30 out of 32 samples were assigned correctly. Two 

samples in the discovery study that were misclassified, had either admixture of tumor 

tissue in a normal sample, or a tumor sample with some adjacent tissue that had been 

judged to be normal. The KNN algorithm with leave-one-out internal cross-validation 

and unsupervised feature selection showed that TNFAIP6 classified almost all 

samples correctly in both the confirmation and discovery set. TNFAIP6 was 

overrepresented in the tumor samples compared to normal samples in both mRNA 

and also in the immunohistochemical stainings. 

 

4.3 Results paper III 

At first, seven different FFPE RNA extraction kits were tested on kidney rat tissue 

with both quantitative and qualitative analyses. All kits extracted sufficient amounts 

of RNA, above the required minimum of 30–100 ng RNA for RNA sequencing with 

the Illumin RNA Access library preparation kit, from a single rat whole-kidney 

section. From LCM tissues, we found that around 100 LCM glomerular cross-

sections were sufficient for RNA sequencing according to the requirements of the 

Illumina Access library preparation protocol. The four kits that gave the best results 

regarding RNA yield and RNA quality were selected to be tested also on human 

tissues. These four kits were the High Pure kit, miRNeasy, RNeasy and the 

ExpressArt kit. Both whole kidney sections and laser microdissected samples were 

tested. All of these four kits yielded enough RNA from a single human kidney biopsy 

section measured by both NanoDrop and Qubit to enable RNA sequencing.  
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The High Pure FFPE kit and the ExpressArt kit extracted RNA of high quality from 

LCM glomerular cross-sections and human kidney biopsy sections.  

Further on, we tested RNA extracted from six LCM human glomerular cross-sections 

samples using the High Pure, ExpressArt and the miRNeasy FFPE kit for the library 

preparation according to the TruSeq
® 

RNA Access Library Preparation Kit protocol. 

The Access libraries were sequenced on an Illumina NS500 flowcell with 75 basepair 

single read. Both library preparation and sequencing were evaluated as successful for 

all of the samples, based on the quality control of the libraries and the sequencing 

reaction. The High Pure kit had an average amount of reads per sample of 24.1M. 

This was twice the amount of the two other kits which had 12.3M for the miRNeasy 

kit and 10.6M for the ExpressArt kit. The number of reads mapped to the genome and 

the transcriptome were in average 20.8M for the High Pure kit, 10.1M for the 

miRNeasy kit and 9.1M for the ExpressArt kit. Percentages of duplicate reads were 

similar in all samples. 
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5. Discussion 

5.1 Methodological considerations 

To adequately test the new methods of cDNA library preparation for FFPE archival 

biopsies, we needed a gold standard to compare with. We therefore chose RNAlater
®

-

fixation and storage in -80°C as the comparator. RNAlater
®

 is considered a good 

RNA stabiliser and studies show that RNA yields and gene expression results with 

RNAlater
®

 are comparable to those obtained using fresh-frozen tissues (68, 69). In 

addition, in paper I of this thesis we collected all samples prospectively in a pairwise 

fashion of which each individual pair of tumor and normal samples were both FFPE-

stored and RNAlater
® 

fixed and frozen.  By the time we planned these studies, there 

were no in-depth report yet comparing matched RNAlater
® 

and FFPE stored samples 

for RNA sequencing.  Another study have demonstrated success with the use of RNA 

sequencing in FFPE compared to fresh-frozen material from a ribosomal depletion 

cDNA library protocol (70). Although this method works well, also on FFPE tissues, 

it requires approximately four times as much sequencing effort compared to mRNA 

sequencing to achieve the same amount of gene detection (71). When it is sufficient 

to study the coding regions opposed to intergenic or non-coding regions, the RNA 

exome kit (Illumina) (formerly TruSeq RNA access kit) provides a highly reliable 

and cost-effective method. Others have also investigated the effect of storage time in 

up to 10 year old biopsies in FFPE and the feasibility in mRNA expression 

experiments. Both microarrays and RNAseq investigations have been demonstrated 

(72-74). We have also evaluated some of our own kidney biopsies from the NKBR 

that are up to 30 years old. Based on the RNA quantity and quality measured by 

DV200 in some of our still unpublished data, their suitability for RNAseq have been 

demonstrated. The use of a capture-specific protocol for the coding regions is further 

supported by a high impact publication in Genome Research, where accurate 

estimates of RNA abundance, uniform transcript coverage and broad dynamic range 

were found investigating FFPE and flash frozen cancer tissues (75).  But for genome-
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wide detection of novel transcripts, whole exome enrichment of RNA could be 

necessary in addition (76).  

 

In this work, there are of course also some limitations. We tested only the same 

library preparation kit in all comparisons. We could have used a more standard  

poly-A capture kit (e.g. the TruSeq Stranded mRNA kit from Illumina) for the fresh 

frozen samples. This could have rendered even more sequencing reads in this group.  

The number of samples could have been much higher, although at a higher cost. The 

power calculations performed in paper I, did however claim that the number of 

included samples were sufficient to achieve a power of 0,85 with an alpha of 0,05.   

Another limitation was the use of RNAlater
®

 fixation and storage at -80°C. I believe 

that we might have had an even better gold-standard comparator with the use of snap-

freezing instantaneously in liquid nitrogen before long time storage in -80°C.  

Also, the issue of warm ischemia time and the impact of RNA degradation prior to 

the tissues being biopsied were not systematically assessed in this work. Still, the 

perioperatively collected biopsies in these studies are more controlled than biopsies in 

the archives of the pathology departments based on the varying delay before the 

samples are put in formalin. 

Further methodological considerations are also discussed in each of the following 

paragraphs related to each of the papers. 

 

 

5.2 Discussion of the main results 

5.2.1 Discussion paper I 

These proof-of-concept studies have shown that it is possible to sequence RNA from 

previously considered useless RNA. Still, the RNA quality and its implications 

together with the verification of biological findings will be discussed here. The 

quality of the RNA samples was determined with the Agilent RNA integrity number 

(RIN) and the DV200 number (77). RIN is widely accepted as a good RNA quality 
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measure for gene expression analysis (77). When it comes to FFPE samples, RIN is 

not a sensitive measure of RNA quality nor a reliable predictor of successful library 

preparation (78). This is probably because most FFPE samples have a RIN-value of 

only 1-3 out of a scale from 1-10. Thus, RIN is not a sensitive measure for 

distinguishing between “poor” or “good” RNA quality between different FFPE 

samples. Therefore, previous investigations have used mean RNA fragment size as a 

determinant of RNA quality when working with RNA obtained from FFPE tissues 

(79-81). It has been demonstrated that high-quality libraries can be prepared from 

low-quality FFPE samples with a DV200 value as low as 30% (79).  

The DV200 numbers achieved in our three studies were therefore of adequate quality 

to be tested with the newly relased RNA Access library preaparation kit. Although 

the FFPE biopsies’ quality was of sufficient quality, we had to verify that we could 

attain similar biological results from the FFPE and the RNAlater dataset. In the first 

paper, we achieved high similarity of the two datasets indicating that archival FFPE-

samples can be used in coming studies. We had 94% overlap of the transcripts that 

passed passing the expression filter in the FFPE and RNAlater
®

 sample groups, 80% 

of differentially regulated genes were in common, and 75% of the differentially 

affected pathways were present in both datasets. We could have got even higher 

numbers of similarity, but the differences in gene expression can probably be 

explained by the cell-composition of the respective biopsies. There is a well-

described intra-tumor heterogeneity in renal cancer (82). The remainder of the 

difference could be explained by difference in the RNA quality between the FFPE 

and the RNAlater
® 

dataset.  

Importantly, beyond the numerical values of the similarities, biologically relevant 

information well in line with the literature between normal and tumor biopsies have 

been found. Three of the highest differentially expressed genes in tumor vs. normal in 

both data sets were upregulation of CA9 and NPTX2 and downregulation of UMOD. 

CA9 has been extensively investigated for its capacities as a diagnostic biomarker in 

ccRCC (83-87). It has a very high diagnostic accuracy in solid tumors (83). Also in 

preoperative biopsies <4 cm, a recent publication has demonstrated that, 25/25 tumor 

biopsies were CA9 positive on RT-PCR and 31/34 on immunohistochemistry (IHC) 
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(84). This has also been confirmed with IHC positivity from all of our stained cancer 

samples. CA9 is also in some settings a good predictive biomarker of outcome (87, 

88). Following anti-VEGF therapy, increasing levels of CA9 after treatment are 

associated with a better prognosis (87). Several studies have also evaluated other 

biomarkers for predictive measures, especially in metastatic RCC, although some 

positive results have been demonstrated, further validation is needed (89-92). We 

have also demonstrated good concordance with microarray gene expression studies of 

ccRCC, where upregulation of one of our top regulated molecules were found; 

NPTX2 is also well in line with the current literature (93). We found that 17 of the 20 

genes with the biggest absolute fold-change in the microarray meta-analysis also 

were differentially regulated in the NGS datasets. One limitation and uncertainty in 

this comparison is still the large discrepancy in the fold changes detected in the 

microarray studies (Table 4, paper I), and from the fact that all genes in the Table 4 

were differentially expressed in just two or three of five of these microarray studies. 

It has been discussed earlier that NGS has a wider dynamic range, giving more 

accuracy of the abundance of reads either lowly or highly expressed. Microarrays can 

reach a certain threshold of the highly expressed genes (94). Regardless, our data 

more or less verify most of the gene expression changes found in microarray studies 

of ccRCC.    

To further strengthen the evidence of the similarities between the RNAlater
®

 stored 

and the FFPE stored biospies, we carefully reviewed an important and specific 

signaling pathway (Figure 4, paper I) and reported the fold changes of the different 

datasets for each of the different molecules of the VEGF/NOTCH/DLL4 signaling 

cascades (95, 96). There is a striking similarity in the fold changes of the different 

signaling molecules important for some of the molecules in this pathway in the FFPE 

vs. the RNAlater
® 

datasets.  

TGFB1 was the most significant gene regulator in our study (Figure 5, paper I). By 

the time the first paper of the thesis was written, targeted therapy against TGFB1 was 

still not in clinical use. There are now a growing body of evidence supporting the use 

of  TGFβ intervention in phase I-III clinical trials(97). There are many important 

mechanisms by which TGFβ can play a role TGFβ has been involved in 
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angiogenesis, cell proliferation, metastases dissemination, epithelial-to-mesenchymal 

transition, immune infiltration and drug resistance (98). Several recent high-impact 

papers also point to the immune evasion mechanisms as being very important for the 

role of targeting TGFβ in cancer (97, 99-101). 

 

5.2.2 Discussion paper II 

In the second paper of the thesis, we expand on the number of included renal cancer 

tissue samples. This aids the biomarker development to be able to confirm initial 

exploratory data in a second cohort of patients. There are several methods by which 

one can evaluate biomarkers in data sets with a low sample number. Internal cross-

validation, iteratively leaving one sample out and predicting its endpoint based on the 

other samples is one example. It is also possible to split data sets in two and use one 

half as a training set and the other half for validation. The problem with this method 

is that it relies on samples being unbiased. In a clinical setting there are many sources 

for variation including differences in patient populations, recruitment differences, 

change in clinical practice as well as batch effects in the handling of tissue samples 

over the course of time. The way samples are included in this thesis (paper I and 

paper II) reflect the way samples are being handled in a real life clinical setting. We 

used the findings in paper I as training or exploratory data and the findings in paper II 

as a second cohort of patients for validation.  Then, to reflect the Microarray Quality 

Control-II (MAQC-II) project analysis strategy we swapped the discovery and 

confirmation data set for a more complete evaluation of the diagnostic biomarker 

performance of some of our best classifiers (102). The classification accuracy of the 

discovery data set (paper I) is not as good as it could have been because of a tissue 

contamination of two samples. We had a normal sample classified as tumor and this 

specimen contained admixture of tumor tissue detected at a second evaluation of the 

light microscopy. We also had a tumor sample with some admixture of normal tissue. 

The classifiers tested revealed that these samples were grouped incorrectly and 

pointed to experimental inconsistencies. But at the same time this strengthens the 

belief in the diagnostic capacities of the biomarkers tested. In both data sets CA9 

expression as well as a clinical microarray data set from another publication clearly 
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categorize ccRCC biopsies from normal renal biopsies (93). The second paper of this 

thesis also shows that a more novel potential biomarker for ccRCC, TNFAIP6, has 

very high diagnostic qualities. TNFAIP6 is a hyaluronan-binding secreted protein that 

drives epithelial–mesenchymal transition (EMT), which is an important factor in 

renal cancer pathophysiological mechanisms (103, 104). In paper I we also pointed to 

TGFB1 and DLL4 further supporting the EMT involvement in ccRCC. These 

findings were confirmed in the second paper. TNFAIP6, also very highly upregulated 

in both papers, is thought to be an important regulator of von Hippel-Lindau signaling 

(105). In addition to these molecules, most up-regulated genes were common in the 

validation study and the first discovery study. When comparing the results to a recent 

publication with a high number of subjects, our findings are well in line with the 

literature (48). Some genes, however are not detected in a microarray study like the 

one performed by Schrodter et al (48). This might be because the panel did not 

include an interesting gene like PNCK. We found this conspicuously interesting 

because PNCK was first linked to ccRCC carcinogenesis in 2010 and overexpression 

is linked to poor prognosis (106, 107). Also, a 2015 publication in breast cancer 

mentions PNCK as a novel calmodulin kinase, important for epidermal growth factor 

receptor stability and function, and as a marker for Trastuzumab resistance and a 

novel therapeutic target (108). Thus, PNCK could be a diagnostic, prognostic and 

predictive biomarker in ccRCC. The fact that this result was found in a series of RNA 

sequencing experiments from FFPE biopsies and not found in a large series of 

microarray patient series demonstrates the clinical biomarker development potential 

utilizing FFPE biopsies. Markers like CA9, TNFAIP6 or even PNCK could be used 

in larger series to evaluate the prognostic biomarker potential.  

 

5.2.3 Discussion paper III 

In the first and second paper in this thesis we used a well-known RNA extraction kit, 

namely the miRNeasy FFPE RNA extraction kit by Qiagen. In the third paper of this 

thesis we expanded on the technicalities of RNA extraction testing which kit gave the 

best yield and quality of RNA as well as developing a protocol for performing LCM 

and subsequent RNA extraction and RNAseq from these minutes amount of tissue. At 
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first we needed to establish which method was the most appropriate in quantifying 

low concentrations of RNA. In the Illumina TruSeq® RNA Access (now; RNA 

exome) Library Preparation Kit suggest the use of NanoDrop as a reference for RNA 

input requirements (78). 

 

Spectrophotometry has been in use for decades to quantify the amount of nucleotides 

and proteins. NanoDrop
®

 is one of the commercial spectrophotometric UV 

absorbance analysis platforms (109). UV spectrophotometry are not as specific in 

distinguishing RNA fragments from other nucleotides, phenols or proteins as 

compared to other methods (110, 111). Contaminants can generate false high results 

and altered 260/280 and 230/260 ratios. For general lab work spectrophotometric 

methods are reproducible and convenient, also no addition of reagents is needed. 

With the Qubit measurement system, a fluorescent dye selectively stains RNA and 

this is more accurate and specific than spectrophotometric methods (110, 111). In the 

third paper of this thesis, we got consistently higher RNA measurements in the 

NanoDrop compared to the Qubit method. It is imperative to have accurate 

information about RNA of low amounts, especially for our FFPE LCM tissues, also 

considering the low average 260/280 and 260/230 ratios of these samples. Repeated 

Qubit measurements should be performed when more precise numbers regarding the 

amount of RNA is needed. Nevertheless, the trends were similar in differentiating 

between the different kits in terms of RNA yield for both rat- and human tissue. The 

High Pure, miRNeasy, RNeasy and ExpressArt kit gave the highest amounts by both 

NanoDrop and Qubit measurements. 

It is natural that the RNA yield from extracted LCM glomerular cross-sections is 

lower because of less tissue input quantity, but there is also evidence that supports the 

loss of RNA during Hematoxylin-staining (112). Shortened staining protocols as well 

as the addition of RNA-inhibitors into the staining solutions can decrease RNA 

degradation (112, 113). In the tissue sectioning protocol we developed for the 

preparation of slides for LCM we made sure all steps were carried out with 

precautions to prevent contaminations. All solutions used were RNAse free and we 

used RNAse free slides and cleaned all surfaces with RNAse-away. We also 
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shortened down all steps for the staining process to an absolute minimum. The 

highest risk for contamination took place when the tissues were harvested originally 

for the sole purpose of light microscopy. There can be cross-over from other samples 

and the paraffin itself is not “molecular grade/PCR clean”.   

Together with the issue of getting the correct measurements in terms of RNA 

quantity. What is probably even more imperative is the RNA quality. We found the 

BioAnalyzer smear analyses and DV200 calculations very helpful for this task. There 

exist however different methods RNA quality assessments. The 28s/18s ribosomal 

ratio from an agarose gel electrophoresis can be used. The more up to date RNA 

Integrity number (RIN), calculated by the BioAnalyzer software, depicts the quality 

of extracted RNA by an algorithm, which takes the same 28s/18s ratio into 

consideration (114). The RIN number from 1 to 10 gives high quality information 

about fresh frozen samples and can differentiate what samples to use and not for a 

microarray experiment or a standard poly-A capture RNAseq experiment. When 

assessing FFPE tissues, all samples are usually between 1 (lowest) and 3. Since the 

FFPE samples are in the far lowest end of the scale it is appreciable that this is a poor 

predictor of cDNA yield from an RNA source (78). Regardless of low or even 

unmeasureable RIN values, RNA can be input for library preparation and RNA 

sequencing considering the requirements of the Illumina TruSeq
®

 RNA Access 

Library Preparation Kit. According to the kit guidelines, the DV200 value of the 

extracted RNA determines the necessary quantity sufficient to obtain RNA suitable 

for RNA sequencing (78). One drawback for the DV200 evaluation is that one has to 

consider the size selection of RNA species for the RNA extraction kit applied. For 

instance the miRNeasy FFPE kit gave lower DV200 values than the other kits. This 

does not come as a surprise because it also extracts miRNA. The BioAnalyzer smears 

clearly shows an “early peak” representing the pool of miRNA. This gets calculated 

into the RNA fragments below 200 nucleotides. RNA extracted from LCM human 

glomerular cross-sections using the High Pure kit, ExpressArt and miRNeasy kit were 

successfully sequenced using the Illumina TruSeq
®

 RNA Access Library 
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Preparation Kit. Despite lower DV200 values the miRNeasy kit gave acceptable 

number of sequencing reads. The High Pure kit had the most reads and we concluded 

this is therefore probably better than the other kits for mRNA seq from FFPE tissues. 
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6. Conclusions  

We have demonstrated the technical feasibility of RNA sequencing from FFPE tissue 

per se and shown that the quality of the respective mRNA data derived from extracted 

RNA of whole FFPE tissue sections are sufficient and comparable to matched 

RNAlater
®

 data. We have also provided evidence for the reproducibility of RNAseq 

data from two separate FFPE sample cohorts with a test and validation set for 

biomarker development. Lastly, we have also demonstrated the technical feasibility 

of RNA sequencing obtained from LCM renal tissues. 

We used the proof of concept data to explore and to confirm published biological 

findings, and findings which may be worth following up in larger ccRCC patient 

cohorts, leading to possible novel therapeutic strategies, e.g. based on TGFB1-

regulated genes, the NOTCH signaling cascade, and EMT.  

Our studies open the door to transcriptome analyses of the archival, FFPE stored 

tissues from patients with ccRCC and supports CA9 as a potential marker for ccRCC. 

This work enables researchers to investigate archival tissue blocks from 

retrospectively defined clinical patient cohorts with long follow-up time and already 

available endpoint data, on a molecular level that previously has been considered 

very hard to achieve. Classifier models consisting of features such as gene expression 

data in combination with a decision algorithm are powerful tools to support 

diagnostic and prognostic evaluation of patient data. Further, RNA can be extracted 

from both a single human kidney biopsy section and from around 100 LCM 

glomerular cross-sections from human archival renal biopsies to successfully perform 

RNA sequencing using commercially available kits. 
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7. Future perspectives 

We would like to use the novel methods established in this thesis on other projects 

targeting neoplastic and non-neoplasic kidney diseases. In the renal cancer field we 

would like to target our local archival tissue biobanks and address important clincal 

issues related to patient stratification based on correct estimation of prognosis where 

we have the necessary follow-up data already at hand. In this respect, an ongoing 

project is a cohort of low risk patients that still progress to metastatic disease. From 

443 patients we have characterized 8 patients with initially low risk of disease 

progression that still progress to metastatic disease. Together with these eight primary 

tumors, we have 16 stable matched controls, and a total of 10 metastatic lesions. Full 

mRNAseq and MiR-seq will be performed from tissue biopsies with accompanying 

MiR-seq from serum samples at baseline. In another project in final revision at AJP-

RP, we are completing a “cross-omics” approach fusing data from Mir-seq, 

mRNAseq and proteomics in ccRCC.  

In general nephrology, we are already on our way with several ground-breaking 

projects including LCM from four different tissue compartments of three serial 

biopsies per patient in Fabry disease  presented as a poster at the annual meeting of 

the American Society of Nephrology (ASN) 2018 (115).  

In primary membranous nephropathy we have also performed LCM on the 

glomerular compartment to better characterize the gene expression pattern in PLA2R 

positive-, PLA2R negative- cases and controls presented as an oral abstract at the 

ASN 2018 (116). With state-of-the-art bioinformatics’ we are displaying a 

transcriptomic landscape linking Drugbank
®

-listed compounds to relevant up- or 

down-regulated mRNA products/proteins within relevant clusters of gene sets (117).  
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9. Appendix 

9.1 Tissue sectioning protocol for LCM slides 

 All steps are carried out with precautions to prevent contamination with keratin.  
Gloves and a cap are used during handling the blocks and the glass slides. It is 
important that the time the sections are in room temperature is kept to a 
minimum. Careful handling of the slides in the deparaffinization and staining 
procedure to avoid that the sections might fall off the membrane. 

Preparation Nuclease-free PEN (polyethylene naphthalate) slides are used. 
Slides are irradiated by UV light for 30 min. to make the membrane more 
hydrophilic and so achieve a better adherence. This is done in 5327A (lab. for 
molecular pathology) under the fume hood. 

Sectioning The microtome should be cleaned before start as well as the tools for handling 
the sections with RNAse away solution by simply wiping with a paper towel 
soaked in RNAse away. Afterwards wash with sterile gauze soaked in 
autoclaved distilled water. 

 Use a new cutting knife and move the knife over for every sample to avoid 
sample cross-over. 

 Wipe the water bath container once with a paper-towel with RNAse away 
solution. Rinse once with autoclaved distilled water. Fill the water bath with 
autoclaved distilled water. If needed Øystein can supply the autoclaved distilled 
water. 

 Use only autoclaved distilled water throughout. Should any of the 
reagents used need dilution in water, autoclaved distilled water should 
also be used then (exception PAS and Sirius red). 

 Discard the first section 

 Section thickness: 10 µm for PEN slides, otherwise 2-3 µm. 

 After expanding in the water bath sections are mounted on PEN membrane 
slides 

 Make sections for the PEN slides and parallel sections on normal slides for 
microscopy as shown below in the table with sectioning numbers  

Drying Dry for 20 min at 60 ºC in a drying oven, take out and look carefully at all slides. 
Pinch out any big water bubbles with a sterile gauze from the outside of the 
membrane. Do not swipe across the membrane and risk damaging the 
membrane or slide. Dry for another 10 minutes in the 60 ºC drying oven. Total 
60 ºC drying time 30 mins. Let air dry for some minutes.  

Deparaffinization Freshly prepared molecular grade Xylene and ethanol solutions and autoclaved 
containers. 

 Xylene                    2 x 2 minutes each 

 Ethanol absolute                  1 minute 

 Ethanol 96%                   1 minute 

 Ethanol 70%                   1 minute 

 Autoclaved distilled  water     1 minute 

Staining Under the fume hood. Clean jars (autoclaved) and clean solutions. Filter the 
staining solutions. 

HE for microdissection (PEN-slides) 

 1 min Shandon hematoxylin solution (The “strong one”=powder solution - mixed 
with autoclaved water) 

 5 min total rinsing in autoclaved distilled water. 2,5 minutes in one container, 
and 2,5 minutes in a new container. Use caution not to loosen the tissue from 
the slides. 

 30 sec Eosin 

 Increasing ethanol series 

 Let air-dry for approximately 15-20 mins before storage in freezer. 

Storage Immediately for -20 ºC storage. 
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For PAS and Sirius red stained sections, water does not need to be destilled and autoclaved  

PAS for intermittent control sections for accurate diagnostics and tissue selection 
(PAS staining is performed together with routine nephrology samples) 

 10 min perjodic acid 1 % 

 10 min rinsing in running tap water (lukewarm) 

 10 – 15 min Schiff’s reagent 

 10 min rinsing in running tap water (lukewarm) 

 5 min hematoxylin 

 Rinsing in running tap water 

 Increasing ethanol series 

 Xylene 

 Coverslip 

 Scan at 40x and notify Sabine, glass slides in renal biopsy archive 

Sirius red procedure including a nuclear stain has to be developed, for example: 

 8 min Weigert’s hematoxylin 

 10 min rinsing in running tap water 

 60 min Sirius red 

 Increasing ethanol series 

 Xylene 

 Coverslip 

 Scan 
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Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues are an underused resource for molecular

analyses. This proof of concept study aimed to compare RNAseq results from FFPE biop-

sies with the corresponding RNAlater1 (Qiagen, Germany) stored samples from clear cell

renal cell carcinoma (ccRCC) patients to investigate feasibility of RNAseq in archival tissue.

From each of 16 patients undergoing partial or full nephrectomy, four core biopsies, such as

two specimens with ccRCC and two specimens of adjacent normal tissue, were obtained

with a 16g needle. One normal and one ccRCC tissue specimen per patient was stored

either in FFPE or RNAlater1. RNA sequencing libraries were generated applying the new

Illumina TruSeq1 Access library preparation protocol. Comparative analysis was done

using voom/Limma R-package. The analysis of the FFPE and RNAlater1 datasets yielded

similar numbers of detected genes, differentially expressed transcripts and affected path-

ways. The FFPE and RNAlater datasets shared 80% (n = 1106) differentially expressed

genes. The average expression and the log2 fold changes of these transcripts correlated

with R2 = 0.97, and R2 = 0.96, respectively. Among transcripts with the highest fold changes

in both datasets were carbonic anhydrase 9 (CA9), neuronal pentraxin-2 (NPTX2) and uro-

modulin (UMOD) that were confirmed by immunohistochemistry. IPA revealed the presence

of gene signatures of cancer and nephrotoxicity, renal damage and immune response. To

simulate the feasibility of clinical biomarker studies with FFPE samples, a classifier model

was developed for the FFPE dataset: expression data for CA9 alone had an accuracy,

specificity and sensitivity of 94%, respectively, and achieved similar performance in the

RNAlater dataset. Transforming growth factor-ß1 (TGFB1)-regulated genes, epithelial to

mesenchymal transition (EMT) and NOTCH signaling cascade may support novel
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therapeutic strategies. In conclusion, in this proof of concept study, RNAseq data obtained

from FFPE kidney biopsies are comparable to data obtained from fresh stored material,

thereby expanding the utility of archival tissue specimens.

Introduction
Clear cell renal cell carcinoma (ccRCC) makes up the majority of primary renal neoplasms
with increasing incidence and considerable morbidity and mortality. Metastasis reflects a
major cause of patient death [1, 2]. Renal cell cancer ranks among the ten most frequent can-
cers in women and men accounting for up to 2–3% of all adult cancers or malignancies [2–6].

The ccRCC is only curable by early surgical tumor removal. Thus, efforts to unravel molecu-
lar mechanisms of this disease for the search of prognostic markers and novel drug targets are
important, e.g. by applying gene expression detection technologies to develop molecular signa-
tures of disease progression.

In this study, we applied RNA sequencing (RNAseq), a method for measuring mRNA abun-
dance based on next generation sequencing (NGS) technology. NGS can identify transcripts
even at a low expression level and provides an increased dynamic range for gene expression
measurements compared to microarrays [7, 8].

Current technologies for whole genome gene expression analyses are largely dependent on
“high quality” RNA with low level of degradation. We wanted to test whether lower quality,
partially degraded RNA obtained from archival formalin-fixed and paraffin-embedded (FFPE)
renal tissues could serve as appropriate source of information.

The quality of RNA extracted from FFPE samples can vary widely among different speci-
mens, or within different samples from the same specimen. RNA undergoes substantial chemi-
cal modification during formalin fixation, nucleic acids are cross-linked to proteins and RNA
transcripts are degraded to smaller fragments [9]. Differences in formalin fixation methods
and age of archival tissue samples add further variation to RNA quality. The Illumina TruSeq
RNA Access Kit1 holds promise to overcome these challenges for RNA sequencing applica-
tions by isolating mRNA through a sequence-specific capture protocol resulting in reduced
ribosomal RNA and enriched exonic RNA sequences. The TruSeq RNA Access library prepa-
ration kit was designed to ensure high quality RNA sequencing data from degraded FFPE sam-
ples and to allow comparison across samples that vary in quality.

Transcriptome sequencing of RNA from concurrently harvested FFPE and fresh stored kid-
ney biopsies with subsequent analysis of transcripts and pathways underlying ccRCC in our
patient group served as indication of the comparability of the two sources of RNA. The compar-
ison to published data helped to estimate the biological and clinical plausibility of our results.

Results

Study design
This study includes 16 adult patients from Haukeland University Hospital with ccRCC under-
going partial (n = 10) or full (n = 6) nephrectomy between November 2013 and August 2014
(Table 1). Each patient donated four core biopsies, including two with ccRCC and two from
adjacent non-affected tissue (“normal”). One pair of ccRCC and normal tissue per patient was
then stored in FFPE, the other pair in RNAlater1. This paired design allows comparison of
mRNA abundance level differences between ccRCC and normal in FFPE and in RNAlater1,
and to evaluate the impact of storage condition on expression profiles using RNAseq.
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Quality of Extracted RNA
To assess the quality of the 64 samples of extracted RNA we determined the Agilent RNA
integrity number (RIN). Currently, the RIN is the most commonly used measure to determine
RNA quality for gene expression analysis [10]. However, RIN values from FFPE samples are
not a sensitive measure of RNA quality nor are they a reliable predictor of successful library
preparation. Accordingly, previous investigators have used mean RNA fragment size as a deter-
minant of RNA quality for the RNA sequencing library preparation (Illumina TruSeq RNA
Access Kit1) when working with RNA obtained from FFPE tissues [11–13].

We have therefore also used the DV200 metric, the percentage of RNA fragments>200
nucleotides to evaluate the RNA quality according to the recommendation of the manufacturer
and as described [11–13]. Using DV200 to accurately assess FFPE RNA quality, and by adjust-
ing RNA input amounts, high-quality libraries can be prepared from poor-quality FFPE sam-
ples. In this respect, a sufficient DV200 value of as low as 30% was reported [13].

The mean Agilent RNA integrity number (RIN) and mean DV200 values (95% CI) were 5.7
(5.10–6.30) and 61% (58–64) for RNAlater1 samples and 2.53 (2.33–2.73) and 75% (72–79)
for FFPE samples, respectively.

Gene Expression (mRNA Abundance)
The number of detected genes, which passed an expression filter of more than 15 cpm in at
least 8 samples per dataset, for FFPE was n = 9164 and for RNAlater1 n = 9205. Notably,
about 94% of the genes in each dataset (n = 8893) were common to both FFPE and RNAlater1

datasets; correlation of the logarithmic fold change was R2 = 0.93, and correlation of the aver-
age expression R2 = 0.97, as shown in S1 Fig.

To find sources of similarity in the dataset consisting of all 64 samples and the expression
values of expression-filtered 8893 genes, we applied multidimensional scaling (MDS). Samples
segregate into two large groups along the leading log-fold change in the dimension 1 of the
MDS plot. The leading log-fold change is the average (root-mean-square) of the largest

Table 1. Characteristic patient features at the time of surgery. eGFR was calculated with the MDRD formula. The staging was performed based on the
EAU Guidelines on renal cell carcinoma: 2014 update [43].

Patient number Age, yr Gender BMI Nephrectomy type eGFR (ml/min/1.73m2) TNM-stage Size (mm) Fuhrmann grade Stage

9 70 Male 24 Partial >60 pT1AcN0cM0 18 2 I

10 69 Male 34 Partial >60 pT3AcN0cM0 15 2 III

11 37 Male 27 Partial >60 pT1AcN0cM0 19 2 I

13 63 Male 24 Full 40 pT3AcN0cM0 69 4 III

15 68 Male 28 Partial >60 pT1AcN0cM0 21 2 I

16 53 Male 33 Full 56 pT3bN0M1 100 2 IV

18 78 Male 27 Full 47 T3AcN0cM0 60 2 III

19 71 Female 22 Full >60 pT2aN0cM0 90 1 II

21 53 Female 25 Full 55 pT1BcN0cM0 65 2 I

22 49 Male 25 Partial >60 pT1BcN0cM0 50 2 I

24 69 Male 27 Partial >60 pT1AcN0cM0 25 2 I

27 46 Male 31 Full >60 pT2BcN0cM0 117 3 II

29 54 Female 29 Partial >60 pT1AcN0cM0 15 2 I

31 67 Male 25 Partial >60 pT1AcN0cM0 18 1 I

32 36 Male 23 Partial >60 pT1AcN0cM0 18 3 I

33 48 Male 28 Partial >60 pT1AcN0cM0 38 1 I

doi:10.1371/journal.pone.0149743.t001
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absolute log-fold change between each pair of samples. As deducible from sample annotation
in Fig 1A, the major known factor explaining the similarity of biopsy samples was attributed to
“Diagnosis” (i.e. tumor and normal). Storage condition (FFPE or RNAlater1) did not appear
to cause sample segregation (Fig 1B).

In a next step, we identified for each dataset the genes with differential expression changes
between ccRCC and normal, and compared the two sets. The FFPE dataset demonstrated 1367
differentially regulated genes and the RNAlater1 dataset 1418 genes (Benjamini-Hochberg
adjusted p value�0.05, and abs FC�2); comparison of the non-tumorous, normal FFPE tis-
sues versus the corresponding normal tissues from the RNAlater1 group revealed a very high
concordance with only 37 differentially expressed genes (data not shown).

In the MDS analysis, plotting values for differentially expressed genes indicates less within-
group variance compared to the analysis of all detected genes, and the shrinkage of log-fold

Fig 1. Multidimensional scaling (MDS) analysis of gene expression data.MDS analysis based on all commonly detected genes shows that samples
segregate by diagnosis (A) and not by storage condition (B). Distances correspond to leading log-fold-changes between each pair of samples. MDS based
on differentially expressed genes demonstrates less within-group variance compared to MDS with all detected genes in the RNAlater1 (C) and FFPE (D)
datasets.NF: Normal, FFPE; NR: Normal, RNAlater1; TF: Tumor, FFPE; TR: Tumor, RNAlater1. NO = Normal; TU = Tumor.

doi:10.1371/journal.pone.0149743.g001
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changes indicates that some non-differentially expressed genes can have quite large fold
changes (Fig 1C and 1D).

Each of these two datasets shared 1106 (about 80%) of differentially expressed genes with
each other. The correlation of the average expression of these 1106 genes was R2 = 0.97 (Fig
2A). The log2 fold changes of these differentially expressed genes correlated by R2 = 0.96 (Fig
2B). All those genes in both datasets had the same direction of change. Table 2 shows the 20
most significantly affected genes with largest absolute fold changes in the FFPE dataset and the
corresponding values of the RNAlater1 dataset; 17 of these 20 genes were differentially
expressed in both datasets, 3 did not pass the expression filter in the RNAlater1 dataset.
Amongst the 17 genes, 14 were among the top 20 ranking differentially expressed genes in the
RNAlater1 dataset. Vice versa, all top 20 differentially expressed genes of the RNAlater1 data-
set were differentially expressed in the FFPE dataset, 14 of which ranking among the top 20 in
both datasets (not shown).

Immunohistochemistry
Immunohistochemistry of the three most regulated genes according to Table 2 confirmed
strong overrepresentation of neuronal pentraxin-2 (NPTX2) and carbonic anhydrase 9 (CA9)
as well as the underrepresentation of uromodulin (UMOD) in ccRCC [14–16]. The results are
depicted in Fig 3, which also presents respective mRNA abundance plots.

Pathway Analyses
To test whether disease-relevant pathways have been captured in our experiment, we per-
formed Ingenuity Pathway Analyses (IPA) of differentially expressed genes. 91 canonical path-
ways in the FFPE dataset and 109 pathways in the RNAlater1 dataset were affected (adjusted
p-value�0.05) with an overlap of 75%. The most affected pathways to a good extent reflect
humoral and adaptive immune responses (Table 3). Sorting the pathways by smallest adjusted

Fig 2. Correlation of gene expression data. The correlation of commonly differentially expressed genes is given with respect to (A) average expression
and (B) log2 fold changes.

doi:10.1371/journal.pone.0149743.g002
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Table 2. Gene expression analyses. The 20 most up- or down-regulated genes in the FFPE data set with corresponding RNAlater1 values (upper panel),
and the 20 most up- or down regulated genes in the RNAlater1 dataset with corresponding FFPE values (lower panel), filtered by adjusted p-value�0.05.
Rank indicates the rank of the gene within the list of differentially genes sorted by largest to smallest absolute fold change. 14 genes are shared between the
two lists. TU: tumour, NO: normal, FC: fold change, ND: not detected, did not pass the expression filter.

FFPE TU vs NO

FFPE RNAlater1 rank

Ensembl Gene ID HGNC symbol FC (TU vs NO) adj. p-val. FC (TU vs NO) adj. p-val. FFPE RNAlater1

ENSG00000169344 UMOD -183,2 2,40E-07 -158,7 8,06E-08 1 3

ENSG00000106236 NPTX2 140,9 6,67E-07 220,1 2,29E-08 2 2

ENSG00000107159 CA9 121,2 5,50E-06 304,4 3,65E-09 3 1

ENSG00000074803 SLC12A1 -91,9 1,59E-07 -78,5 1,15E-07 4 7

ENSG00000169550 MUC15 -82,1 3,20E-07 -66,6 1,27E-06 5 8

ENSG00000142319 SLC6A3 76,6 2,17E-06 101,7 6,53E-07 6 4

ENSG00000169347 GP2 -57,2 1,13E-06 -52,7 4,52E-07 7 10

ENSG00000107165 TYRP1 -56,1 5,91E-06 ND ND 8 ND

ENSG00000088836 SLC4A11 -54,2 1,14E-07 -62,7 2,16E-05 9 9

ENSG00000130822 PNCK 53,3 1,42E-06 92,0 1,89E-07 10 5

ENSG00000198691 ABCA4 -52,4 3,12E-07 ND ND 11 30

ENSG00000165973 NELL1 -51,4 2,72E-07 -35,8 8,78E-07 12 16

ENSG00000186510 CLCNKA -50,3 1,61E-08 -39,7 9,73E-08 13 13

ENSG00000215644 GCGR -49,7 1,52E-07 -33,9 2,68E-06 14 18

ENSG00000164893 SLC7A13 -49,3 3,87E-04 -43,6 9,14E-06 15 11

ENSG00000138798 EGF -47,9 1,43E-07 -37,3 2,26E-07 16 15

ENSG00000150201 FXYD4 -47,8 1,89E-05 -8,1 1,51E-02 17 134

ENSG00000184956 MUC6 -47,1 1,14E-05 ND ND 18 ND

ENSG00000100362 PVALB -45,7 5,83E-07 ND ND 19 ND

ENSG00000130829 DUSP9 -45,0 7,90E-07 -24,4 1,56E-06 20 36

RNAlater1 TU vs NO

RNAlater1 FFPE rank

Ensembl Gene ID HGNC symbol FC (TU vs NO) adj. p-val. FC (TU vs NO) adj. p-val. RNAlater1 FFPE

ENSG00000107159 CA9 304,4 3,65E-09 121,2 5,50E-06 1 3

ENSG00000106236 NPTX2 220,1 2,29E-08 140,9 6,67E-07 2 2

ENSG00000169344 UMOD -158,7 8,06E-08 -183,2 2,40E-07 3 1

ENSG00000142319 SLC6A3 101,7 6,53E-07 76,6 2,17E-06 4 6

ENSG00000130822 PNCK 92,0 1,89E-07 53,3 1,42E-06 5 10

ENSG00000185633 NDUFA4L2 87,6 6,30E-10 20,9 5,88E-06 6 50

ENSG00000074803 SLC12A1 -78,5 1,15E-07 -91,9 1,59E-07 7 4

ENSG00000169550 MUC15 -66,6 1,27E-06 -82,1 3,20E-07 8 5

ENSG00000088836 SLC4A11 -62,7 2,16E-05 -54,2 1,14E-07 9 9

ENSG00000169347 GP2 -52,7 4,52E-07 -57,2 1,13E-06 10 7

ENSG00000164893 SLC7A13 -43,6 9,14E-06 -49,3 3,87E-04 11 15

ENSG00000130208 APOC1 40,0 7,15E-09 9,1 6,01E-05 12 136

ENSG00000186510 CLCNKA -39,7 9,73E-08 -50,3 1,61E-08 13 13

ENSG00000123610 TNFAIP6 37,8 2,98E-08 33,6 1,68E-07 14 26

ENSG00000138798 EGF -37,3 2,26E-07 -47,9 1,43E-07 15 16

ENSG00000165973 NELL1 -35,8 8,78E-07 -51,4 2,72E-07 16 12

ENSG00000113889 KNG1 -34,9 7,04E-07 -35,6 5,31E-07 17 25

ENSG00000215644 GCGR -33,9 2,68E-06 -49,7 1,52E-07 18 14

ENSG00000008196 TFAP2B -32,5 4,04E-06 -29,9 7,56E-06 19 31

ENSG00000184661 CDCA2 32,4 1,77E-07 28,9 1,13E-06 20 33

doi:10.1371/journal.pone.0149743.t002
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p-values, 12 of the top 20 in the FFPE dataset rank among the top 20 pathways in the RNAla-
ter1 dataset.

Comparison with Published Data
We compared our ccRCC gene expression changes with findings described in a recently pub-
lished meta-analysis of ccRCC datasets [17]. All 10 most up-regulated genes and 7 of the 10
most down-regulated genes from Zaravinos et al. [17] were found in the present study and are
differentially expressed in FFPE and RNAlater1 datasets (Table 4). The remaining genes did
not pass our expression filter. The direction of fold changes was identical for all listed genes.

We further compared the findings from the FFPE and the RNAlater1 datasets in relation to
the known involvement of vascular endothelial growth factor (VEGF) in ccRCC [18, 19]. As
demonstrated in Fig 4, many genes of the VEGF and NOTCH signaling cascades were retrieved
in the FFPE and the RNAlater1 datasets with very similar fold changes and agreement in
direction of changes. We can also confirm a link to epithelial to mesenchymal transition
(EMT) by the overrepresentation of mesenchymal markers, e.g. vimentin (VIM), endothelin 1
(EDN1), fibronectin 1 (FN1), or transforming growth factor-β (TGFB1), and

Fig 3. Immunohistochemistry andmRNA plots. (A) Immunohistochemistry of UMOD, NTPX2 and CA9.Magnification x20, scale bar 50 μm. (B)
Respective mRNA abundance plots in the FFPE and in the RNAlater1 datasets.

doi:10.1371/journal.pone.0149743.g003
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Table 3. Pathway analysis. The 20 most affected canonical pathways in each NGS dataset with the corresponding values and ranks. Rank indicates the
place of the pathway within the list of pathways sorted by largest to smallest –log(adjusted p-value). 12 of 20 pathways are shared between both datasets.
TU: tumour, NO: normal, FC: fold change, ND: not detected, did not pass the expression filter.

FFPE -log(adj. p-value) rank

FFPE RNAlater1 FFPE RNAlater1

Antigen Presentation Pathway 13,90 9,13 1 3

Hepatic Fibrosis / Hepatic Stellate Cell Activation 13,90 14,60 2 2

LXR/RXR Activation 7,53 6,67 3 4

Leukocyte Extravasation Signaling 7,13 4,55 4 9

Coagulation System 6,78 6,59 5 5

Communication between Innate and Adaptive Immune Cells 6,60 3,58 6 17

Caveolar-mediated Endocytosis Signaling 6,54 3,69 7 12

Atherosclerosis Signaling 6,50 6,04 8 6

Dendritic Cell Maturation 6,50 4,18 9 10

Crosstalk between Dendritic Cells and Natural Killer Cells 6,31 3,62 10 14

Graft-versus-Host Disease Signaling 5,80 3,02 11 35

Complement System 5,78 4,55 12 8

Autoimmune Thyroid Disease Signaling 5,78 3,49 13 23

Virus Entry via Endocytic Pathways 5,78 2,92 14 38

OX40 Signaling Pathway 5,78 3,34 15 28

Intrinsic Prothrombin Activation Pathway 5,44 4,15 16 11

Allograft Rejection Signaling 5,44 3,49 17 25

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes 4,85 3,52 18 22

Granulocyte Adhesion and Diapedesis 4,36 2,74 19 47

iCOS-iCOSL Signaling in T Helper Cells 4,35 2,86 20 41

RNAlater1 -log(adj. p-value) rank

RNAlater1 FFPE RNAlater1 FFPE

EIF2 Signaling 14,60 ND 1 ND

Hepatic Fibrosis / Hepatic Stellate Cell Activation 14,60 13,90 2 2

Antigen Presentation Pathway 9,13 13,90 3 1

LXR/RXR Activation 6,67 7,53 4 3

Coagulation System 6,59 6,78 5 5

Atherosclerosis Signaling 6,04 6,50 6 8

LPS/IL-1 Mediated Inhibition of RXR Function 5,23 3,87 7 27

Complement System 4,55 5,78 8 12

Leukocyte Extravasation Signaling 4,55 7,13 9 4

Dendritic Cell Maturation 4,18 6,50 10 9

Intrinsic Prothrombin Activation Pathway 4,15 5,44 11 16

Caveolar-mediated Endocytosis Signaling 3,69 6,54 12 7

Ethanol Degradation II 3,62 1,49 13 77

Crosstalk between Dendritic Cells and Natural Killer Cells 3,62 6,31 14 10

Histamine Degradation 3,58 0,41 15 267

B Cell Development 3,58 3,15 16 32

Communication between Innate and Adaptive I Immune Cells 3,58 6,60 17 6

eNOS Signaling 3,58 2,78 18 41

Valine Degradation I 3,57 1,48 19 78

mTOR Signaling 3,57 ND 20 ND

doi:10.1371/journal.pone.0149743.t003
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underrepresentation of epithelial markers such as epithelial cell adhesion molecule (EPCAM)
or E-cadherin (CDH1). The transcription factor grainyhead-like 2 (GRHL2), which inhibits
EMT, is about 10 fold underrepresented [20].

IPA revealed TGFB1 as one the most important regulator of gene expression in our ccRCC
datasets, as shown in Fig 5. Of the 1367 differentially expressed genes in the FFPE dataset, the
expression levels of 237 genes (17%) are influenced by TGFB1 in the FFPE dataset (Fig 5A),
and 253 of the 1418 (18%) differentially affected genes in the RNAlater dataset (Fig 5B).
TGFB1 itself was overrepresented 2.3 fold and 2.8 fold in the FFPE and the RNAlater dataset,
respectively (Fig 4).

Classifier Analysis
We further wanted to test whether the RNAseq data from the FFPE dataset could be used to
develop a molecular classifier for ccRCC. Hence, in a proof of concept approach, we first
selected 100 genes with the largest absolute fold change and smallest adjusted p-value among
the group of differentially expressed genes in the FFPE dataset. To avoid overfitting, we initially
tested the performance of classifier models with 15 or fewer genes, where we preferred those

Table 4. Comparison of our gene expression data with data from literature [17]. Twenty genes with smallest p-values and largest absolute fold changes
in a meta-analysis of five microarray studies are compared to the corresponding genes and their fold changes and p-values of the NGS datasets. The median
fold changes and standard deviations for the meta-analysis are presented. All shown genes were differentially expressed in only 2 or 3 microarray datasets.
Large standard deviations indicate a large spread of values in the individual microarray studies. 17 of the 20 genes were found differentially expressed in both
NGS datasets, 13 of these with fold changes within the fold change range of the microarray meta-analysis. ND: not detected, did not pass initial expression
filter.

Zaravinos et al. [17] Eikrem et al. (present study)

Ten most significantly up-regulated genes FFPE RNAlater1

HGNC
symbol

Median fold change ± SD
(TU vs NO)

p-
value

Fold change (TU
vs NO)

p-value Fold change (TU
vs NO)

p-value Fold change within
range of [17]

NDUFA4L2 53,94±58,53 <0.01 20,9 4,09E-07 87,6 6.85E-14 yes

PLIN2 27,86±27,89 <0.01 4,6 2,82E-05 4,7 1,03E-04 yes

NNMT 20,86±9,84 <0.01 9,0 2,25E-07 15,8 5,47E-10 yes

ENO2 19,97±9,82 <0.01 6,3 7,10E-08 7,3 1,39E-10 no

AHNAK2 16,62±2,23 <0.01 12,2 8,66E-09 16,0 1,96E-08 yes

NETO2 15,8±13,8 <0.01 10,6 5,10E-10 11,7 5,06E-13 yes

CA9 14,48±4,40 <0.01 121,2 3,72E-07 304,4 3,17E-12 no

VWF 13,06±2,61 <0.01 4,9 3,84E-08 13,7 1,06E-09 yes

COL23A1 12,75±5,10 <0.01 22,1 6,99E-09 20,9 5,05E-09 no

EHD2 12,70±13,94 <0.01 3,9 2,26E-10 4,0 2,96E-08 yes

Ten most significantly down-regulated genes FFPE RNAlater1

HGNC
symbol

Median fold change ± SD
(TU vs NO)

p-
value

Fold change (TU
vs NO)

p-value Fold change (TU
vs NO)

p-value Fold change within
range of [17]

ATP6V0A4 -19,70±32,54 <0.01 -10,4 5,39E-08 -7,4 2,28E-05 yes

CA10 -21,45±8,80 <0.01 ND ND

SLC12A3 -23,67±31,69 <0.01 -10,5 6,59E-05 -18,9 1,39E-06 yes

CLDN8 -27,11±95,38 <0.01 ND ND

SERPINA5 -35,45±32,90 <0.01 -13,7 3,34E-05 -16,4 9,39E-07 yes

KNG1 -38,45±51,67 <0.01 -35,6 1,15E-08 -34,9 9,64E-09 yes

KCNJ1 -50,79±59,09 <0.01 -2,4 1,48E-09 -2,1 1,48E-04 yes

RALYL -53,58±11,02 <0.01 ND ND

CALB1 -103,68±156,0 <0.01 -12,00 1,45E-03 -8,4 7,88E-05 yes

NPHS2 -159,10±155,4 <0.01 -3,8 4,63E-03 -4,4 1,76E-03 no

doi:10.1371/journal.pone.0149743.t004
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with few genes, as they would allow simpler testing in a clinical setting. CA9 alone correctly
classified 30 of 32 samples in the FFPE according to our annotation with an accuracy of 93.8%
and area under the ROC curve (ROC AUC) of 0.96. Results of CA9 from our patients are
shown in Fig 6A–6C. One misclassified sample was a normal sample classified as tumor. How-
ever, importantly, this specimen contained some admixture of tumor tissue detected at a sec-
ond look. The other misclassified sample from a different patient was a tumor sample with
some adjacent tissue that was judged to be normal.

In the RNAlater1 dataset, the single gene classifier model assigned one sample with the his-
tological classification “normal” to the group of tumor samples, yielding an accuracy
ACC = 96.8%, AUC = 1.0, and a specificity of 93.8% and a sensitivity of 100%.

Fig 4. Pathway signature of VEGF and NOTCHmediated EMT in ccRCC. Comparison of gene expression data from the FFPE and from the RNAlater1

dataset with published results [20] and between themselves. F = FFPE samples, R = RNAlater1 samples, Numbers = fold change of up-regulation (red) or
down-regulation (blue).

doi:10.1371/journal.pone.0149743.g004
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We then tested the single gene classifier model in an external dataset on a different technol-
ogy platform. The publically available Gene Expression Omnibus (www.ncbi.nlm.gov/geo/)
dataset GSE53757 contains Affymetrix HG-U133 microarray gene expression data from 72
human renal biopsies with four stages of ccRCC, and 72 matched normal samples [14]. The
CA9-model correctly classified 139 of 144 samples independent of cancer stage (ACC = 96.5%,
ROC AUC = 0.98). Results of this CA9 validation are shown in Fig 6D and 6E.

Serum Analyses of CA9 Levels
Optimally, biomarkers such as the gene panel classifiers are further developed into clinically
applicable tests. In our simulation study, we wanted to examine, whether CA9-assisted detec-
tion of ccRCC could be translated into a less-invasive clinical application going beyond the
information obtainable from tissue samples. To that end, we measured CA9 protein in the
serum of our patients with early T1a tumor stage and compared the results of these subjects
with patient groups suffering from a more advanced disease, because a strong association
between serum levels of CA9 with tumor stage has recently been reported [15].

Accordingly, ELISA analyses of serum samples from patients from our institution showed
the following values: Increased CA9 levels (95% CI) of 237 (31–443) pg/ml in metastatic
patients (n = 9), and of 112 (74–151) pg/ml in non-metastatic patients with high tumor load
(tumors larger than 9 cm; n = 15), as compared to a concentration of 54 (26–83) pg/ml in sub-
jects with T1a stage tumors (n = 14); p = 0.0069.

The between group analyses showed significant differences between patients with T1a
tumor stage and either with high tumor load (p = 0.0031) or with metastases (p = 0.0158). The
comparison between the latter two groups showed no significant difference.

Additional potential novel classifiers have been found, but await further examination and
validation. For example, expression values of the highly up-regulated TNFAIP6 (tumor necro-
sis factor, alpha-induced protein 6; Fig 4) showed similar performance as CA9 in the FFPE,
RNAlater1, and the microarray dataset (ACC = 96.9%, 96.7%, 94.4%, respectively). We are
presently collecting more material and data to expand and confirm these findings.

Fig 5. Gene network. The most differentially affected network with the central role of TGFB1 in (A) FFPE samples and B) RNAlater data sets. Proteins with
cancer involvement are marked with purple outline. Red fill indicates overrepresentation of the gene in ccRCC, green indicates under-representation. Color
intensity reflects range of fold change.

doi:10.1371/journal.pone.0149743.g005
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Discussion
Our proof of concept study compares transcriptome sequencing of RNA extracted from
human renal biopsies of ccRCC and matched adjacent non-tumorous tissue; samples were pre-
served in two different storage conditions (FFPE and RNAlater1). High similarity of the two
datasets indicates that archival FFPE-samples can be utilized in respective studies.

Fig 6. Development of a candidate marker for ccRCC. (A) Expression values of CA9 correctly classified 30 of 32 samples in our FFPE dataset. (B)
Whisker plot of expression value distribution in our FFPE dataset for CA9. (C) Scatterplot for the expression values of CA9 in our FFPE and in our RNAlater
dataset. (D) CA9 expression values correctly classify 139 out of 144 samples in a microarray dataset of ccRCC (GSE53757). (E) Distribution of CA9
expression values for normal (NO) and ccRCC tumor samples (TU) in the GSE53757 dataset. (F) Stratification of the expression values of overexpressed
CA9 into all four stages of ccRCC [14].

doi:10.1371/journal.pone.0149743.g006
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We chose RNAlater1 storage as the comparator. RNAlater1 is considered to be an excellent
RNA stabiliser [21] and many studies show that RNA yields and gene RNA abundance with
RNAlater1 are comparable to those obtained using frozen tissues [22]. Furthermore, the utili-
zation of RNAlater1 is more practical allowing also decentralized tissue harvesting without
special equipment [22, 23].

To the best of our knowledge, there has been no in depth report yet comparing matched
RNAlater1 and FFPE storage conditions for parallel RNA sequencing and we are among the
first to demonstrate the usability of the new Access kit (Illumina) also allowing low FFPE RNA
amounts to generate RNA sequencing libraries. A related study has also demonstrated good
concordance of RNA sequencing between the two storage conditions but has used different
technology for only two renal cancers [24]. Obviously, the TruSeq Access kit is focused on
studying mature mRNA levels in biological samples. A recent study has shown that other
approaches, such as DSN (Duplex-specific nuclease)-seq and Ribo-zero-Seq can be used to
investigate intergenic and intronic RNA species, reportedly giving information on slightly
more mRNA species than polyA-enrichment methods, but at the expense of requiring more
sequencing effort [25]. Where it is sufficient to study the human transcriptome coding regions,
the TruSeq Access kit provides a cost-effective, highly reliable method, as our study shows.

Recent publications have studied the effect of storage time (up to 10 years) in FFPE on RNA
quality and quantity, and the usability in mRNA expression experiments, both microarrays
and RNAseq [26–28]. In concordance with our own unpublished data where we measured
RNA quality and quantity from up to 30 year-old FFPE samples indicating their suitability for
RNA sequencing, the publications agree that, RNA is still usable for RNAseq transcriptome
studies although the RNA quality suffers with increasing time of FFPE-preservation.

Our approach is further supported by a recent publication showing that a newly developed
exon capture RNAseq library preparation protocol for highly degraded RNA provided accurate
estimates of RNA abundance, uniform transcript coverage and broad dynamic range investi-
gating FFPE and flash frozen cancer tissues [29].

However, for the genome-wide detection of novel transcripts, whole exome enrichment of
RNA might be a necessary additional step [30].

We detected a high degree of similarity between the gene expression results for the two data-
sets: 94% of the transcripts passing the initial expression filter were shared between the FFPE
and RNAlater1 sample groups, 80% of differentially expressed genes were in common, and
75% of the differentially affected pathways were found in both datasets. The differences in gene
expression can probably be mostly explained by the cell-composition variation of the respective
biopsies. This well described intra-tumor heterogeneity precluded the detection of an even
higher number of common, differentially regulated genes and pathways [31]. Also, the capture
process during library preparation could be different depending on the RNA quality. However,
the very high concordance between FFPE non-tumor, normal tissue vs. normal tissue stored in
RNAlater1 further emphasizes the high similarity of the two data sets.

Despite some limitations, we have shown a striking similarity between the FFPE and the
RNAlater1 datasets, maintaining biologically relevant information at large. Immunohis-
tochemistry confirmed the three most regulated genes of both data sets. CA9 is essentially not
expressed in the normal nephron but specifically in ccRCC [5]. Thus, CA9 is an extensively
investigated biomarker of ccRCC and also a predictor of outcome following anti-VEGF therapy
[19, 32]. In a microarray study with nine patients, UMOD was the gene with the strongest
under-representation in RCC [16]. The over-representation of NPTX2 is in accordance with
the literature [14].

We also show good concordance with microarray gene expression profiling studies of
ccRCC (Table 4). Directions of gene expression changes between ccRCC and normal samples
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were identical for a set of differentially expressed genes in the microarray studies (14) and in
the NGS studies. 17 of the 20 genes with largest absolute fold changes in the microarray meta-
analysis were also differentially expressed in the NGS datasets (Table 4), and most fold changes
were within the same range across the studies.

However, limitations and uncertainties in this comparison come from the large discrepancy
in the fold changes detected in the microarray studies, and from the fact that all genes in the
Table 4 were differentially expressed in only 2 or 3 of five microarray studies used in the meta-
analysis. Different amplitudes in fold changes between the microarray dataset and the NGS
dataset have been reported before [33]. The authors believe, one reason is that microarray
probes might hit some, but not all, isoforms of a gene, and as a result the reported fold change
of the probe set does not necessarily represent the expression change of the entire gene [33].
Furthermore, NGS is more sensitive in measurement of abundance differences of lowly or
highly expressed genes. Microarrays reach a saturation level in the case of highly expressed
genes, but NGS technology with its wider dynamic range of detection is more likely to detect
fold changes. This may explain some of the fold change differences observed in the comparison
of microarray and NGS data. Nevertheless, our dataset confirmed the trend of expression
changes observed in microarray studies.

Our data also support and in part confirm novel therapeutic avenues, such as targeted at acti-
vated VEGF /NOTCH /DLL4 signaling cascades [18, 34–37]. The up-regulated NOTCH ligand
Delta 4 (DLL4) is stimulated by VEGF and plays a role in tumor progression also predicting bad
outcome [36, 38, 39]. EMT is augmented in our cancer data and is known to be a relevant feature
in ccRCC [40]. Up-regulated TGFB1 was the most significantly affected gene regulator in our
study. Accordingly, TGFB1 inhibition was shown to attenuate the invasive capacity of ccRCC
cells [34]. However, potential cancer therapy targeted at TGFB1 remains to be developed.

Classifier models consisting of features such as gene expression data in combination with a
decision algorithm are powerful tools to support diagnostic and prognostic evaluation of
patient data. Gene expression data for CA9—supplemented by CA9 serum protein data—
showed an excellent performance both in our datasets and in an independent ccRCC microar-
ray dataset. Thus, our data expand previous reports, which promote CA9 as a diagnostic tool in
ccRCC [5, 19, 41, 42].

Taken together, we show that in our hands RNAseq FFPE data are comparable to matched
RNAlater1 data. We used the proof of concept data to explore and to confirm published bio-
logical findings, and findings which may be worth following up in larger cohorts, leading to
possible novel therapeutic strategies, e.g. based on TGFB1-regulated genes, the NOTCH signal-
ing cascade, and EMT. Also of note, FFPE tissues have the distinctive advantage that material
designated for RNA sequencing can be concurrently investigated by light microscopy.

Conclusions:Our study opens the door to transcriptome analyses of the archival, FFPE
stored tissues from patients with ccRCC and supports CA9 as a potential marker for ccRCC.

Materials and Methods

Patients
Adult patients (n = 16) from Haukeland University Hospital with ccRCC undergoing partial
(n = 10) or full (n = 6) nephrectomy and with the possibility to undergo biopsies for this project
were included consecutively from November 2013 until August 2014. Patients had a mean age
of 58.2±6.8 years (3 females and 13 males). Patients had pT tumor stages T1a (n = 10), T2a or
b (n = 2) and T3a or b (n = 4) [43]; additional patient characteristics can be found in Table 1.
The regional ethics committee of Western Norway has approved our studies (RECWest no.
78/05). All participants provided written consent as requested by our ethics committee.
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Kidney Biopsies
Core biopsies have been obtained by O.E., L.L. and T.S. with a 16g needle from 16 patients
undergoing (partial) nephrectomy in the operating room itself exactly at the time of surgery.
Four paired biopsies from each patient with histologically-confirmed clear cell renal cell carci-
noma (ccRCC) and adjacent non-tumorous (“normal”) tissue were either stored as FFPE tissue
or in an RNA-stabilizing agent (RNAlater1, Qiagen, Germany). Total RNA was extracted with
miRNeasy FFPE kit or miRNeasy micro kit (Qiagen), respectively.

RNA Library Preparation and Sequencing
RNA sequencing libraries were prepared using TruSeq RNA Access library kit (Illumina, Inc.,
San Diego, CA, USA) according to the manufacturer`s protocol.

Initially total RNA concentration was measured using Qubit1 RNA HS Assay Kit on a
Qubit1 2.0 Fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Integrity was
assessed using Agilent RNA 6000 Nano Kit on a 2100 Bioanalyzer instrument (Agilent Tech-
nologies, Santa Clara, CA, USA) and the percentages of fragments larger than 200 nucleotides
were calculated.

Thereafter, RNA samples (100 ng total RNA) were fragmented at 94°C for 8 minutes on a
thermal cycler. First strand cDNA syntheses were performed at 25°C for 10 minutes, 42°C for
15 minutes and 70°C for 15 minutes, using random hexameres and SuperScript II Reverse
Transcriptase (Thermo Fisher Scientific Inc., Waltham, MA, USA). In a second strand cDNA
synthesis the RNA templates were removed and a second replacement strand was generated by
incorporation dUTP (in place of dTTP, to keep strand information) to generate ds cDNA.
AMPure XP beads (Beckman Coulter, Inc., Indianapolis, IN, USA) were used to clean up the
blunt-ended cDNA from the second strand reaction mix. The 3`ends of the cDNA were then
adenylated to facilitate adaptor ligation in the next step. After ligation of indexing adaptors,
AMPure XP beads were used to clean up the libraries. In a first PCR amplification step, PCR
(15 cycles of 98°C for 10 seconds, 60°C for 30 seconds and 72°C for 30 seconds) were used to
selectively enrich those DNA fragments that have adapter molecules on both ends and to
amplify the amount of DNA in the library. After validation of the libraries, using Agilent DNA
1000 kit on a 2100 Bioanalyzer instrument, the first hybridization step were performed using
exome capture probes. Before hybridization a 4-plex pool of libraries were made, by combining
200 ng of each DNA library. The hybridization was performed by 18 cycles of 1 minute incuba-
tion, starting at 94°C, and then decreasing 2°C per cycle. Then streptavidin coated magnetic
beads were used to capture probes hybridized to the target regions. The enriched libraries were
then eluted from the beads and prepared for a second round of hybridization. This second
hybridization (18 cycles of 1 minute incubation, starting at 94°C, and then decreasing 2°C per
cycle) were required to ensure high specificity of the capture regions. A second capture with
streptavidin coated beads were performed, followed by two heated wash procedures to remove
non-specific binding form the beads. The enriched libraries where then eluted from the beads
and cleaned up by AMPure XP beads prior to a second PCR amplification. The amplification
step were performed by 10 cycles (98°C for 10 seconds, 60°C for 30 seconds and 72°C for 30
seconds) followed by a second PCR clean up using AMPure XP beads. Finally, the libraries
were quantitated by qPCR using KAPA Library Quantification Kit—Illumina/ABI Prism1

(Kapa Biosystems, Inc., Wilmington, MA, USA) and validated using Agilent High Sensitivity
DNA Kit on a Bioanalyzer. The size range of the DNA fragments were measured to be in the
range of 200–650 bp and peaked around 270 bp.

Libraries were normalized to 22 pM and subjected to cluster and single read sequencing was
performed for 50 cycles on a HiSeq2500 instrument (Illumina, Inc. San Diego, CA, USA),
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according to the manufacturer's instructions. Base calling were done on the HiSeq instrument
by RTA 1.17.21.3. FASTQ files were generated using CASAVA 1.8.2 (Illumina, Inc. San Diego,
CA, USA). Data are available in the repository Gene Expression Omnibus, http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE76207.

Statistics and NGS Data Processing
We have a sample size of 64 samples, which is equivalent to 32 paired samples (tumor samples
vs. normal samples). Within both the FFPE and in the RNAlater dataset, we have 16 sample
pairs (tumors vs. normals). This sample size is sufficient to achieve a power of 0.85, where we
apply a standard deviation of 0.7 of the expressed genes, an effect size of 2, and an alpha of 0.05
(R package RNASeqPower in https://www.bioconductor.org).

Assembly of reads and alignment of the contigs to the Human genome assembly GRCh38
was guided by Tophat and Bowtie. An empirical expression filter was applied, which left genes
with more than 15 counts per million (cpm) in more than 8 samples per dataset. Comparative
analysis was done using voom/Limma R-package. Differential gene expression was defined as
Benjamini-Hochberg adjusted p-value�0.05, and an absolute fold change of�2. Pathway
analysis was performed with Ingenuity Pathway Analysis (Qiagen, USA; version 24718999).
The Ingenuity Knowledge Base information was used as reference set. Canonical pathways
were sorted by smallest Benjamini-Hochberg-adjusted p-value.

Classifier analysis was performed with the KNNX Validation package in GenePattern
(http://www.broadinstitute.org/cancer/software/genepattern). Leave-one-out method was used
as internal cross validation method. Euclidean distance was used as distance measure, where
three neighbors were considered. Data visualization was performed with JMP Pro 11 (www.sas.
com), and Graphpad (www.graphpad.com).

Histology and Immunohistochemistry
Immunohistochemistry was performed on 4 μm thick FFPE sections from the tumor and adja-
cent non-tumorous tissue. The following primary antibodies were used: Carbonic anhydrase
IX (CA9, polyclonal, rabbit, NB100-417, Novus Biologicals), neuronal pentraxin 2 (NPTX2,
polyclonal, rabbit, NBP1-50275, Novus Biologicals) and uromodulin (UMOD, polyclonal, rab-
bit, sc-20631, Santa Cruz Biotechnology). For positive controls, tissues with known positive
reactivity were used, for negative controls the primary antibody was omitted. Slides were
scanned with ScanScope1 XT (Aperio) at ×40 and viewed in ImageScope 12.

ELISA for CA9 Serum Levels
CA9 serum concentrations of 38 patients was measured using the Quantikine Human Car-
bonic Anhydrase IX Immunoassay (R&D Systems, Minneapolis, USA, catalogue number
DCA900) according to instructions of the manufacturer, but with an overnight incubation at
4°C after having added the serum. Results were assessed with the Kruskal-Wallis and Dunn’s
test [44].

Supporting Information
S1 Fig. Correlation of the average expression of the commonly expressed genes in both
FFPE and RNAlater datasets. Genes with an average expression of counts per million (cpm)
>8 in at least 15 samples per dataset were considered.
(TIF)
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