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ABSTRACT 

In this study we synthesise sedimentological, fault, and Amplitude Versus Angle (AVA) analysis 

and propose that the Fruholmen and Tubåen formations (Realgrunnen Subgroup) are syn-kinematic 

deposits that record a previously undocumented early phase of Mesozoic rifting on the Troms-

Finnmark fault Complex and within the Hammerfest Basin. The Realgrunnen Subgroup hosts one of 

two Triassic reservoirs currently being produced in the Goliat field. Here, the subgroup sits 

unconformably on top of the Storfjorden Subgroup (Carnian Snadd Formation). Away from the 

Goliat field, which is characterised by a periclinal anticline, the Realgrunnen Subgroup also 

comprises the Lower–Middle Jurassic Nordmela and Stø formations.   

Sedimentological analysis of six exploration wells reveals that the Fruholmen Formation was 

deposited in a prodelta to delta plain environment where tide-influenced and fluvial-dominated 

distributary channels are represented by clay/siltstones and very fine grained sandstones. The 

overlying Tubåen Formation is characterised by medium to very coarse-grained deposits (locally 

conglomeratic) and represents a widespread braid plain with localised alluvial fans.  

Displacement profiles of faults and along-fault thickness variations demonstrate that an 

immature fault system was active during deposition of the Realgrunnen Subgroup. A series of 
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unconnected fault segments hosted isolated sub-basins and erosional catchment areas in their 

hanging and foot walls, respectively. An AVA attribute map generated from a 10 ms interval of the 

uppermost part of the subgroup reveals the geometries of gross sand prone depositional bodies, i.e., 

individual and amalgamated channels, (some of which show meandering geometries), ox-bow lakes 

and alluvial fans. Sand bodies frequently show elongate geometries parallel to faults indicative of 

syn-depositional fault-related subsidence.  

Driving mechanisms responsible for the Norian to Rhaetian event may relate to 

contemporaneous rejuvenation of the Fennoscandian hinterland, development of the Novaya 

Zemlya fold-and-thrust belt and/or the early Cimmerian tectonic phase in northern Europe. 

 

1. INTRODUCTON 

The surface expression of faulting, i.e., tectonic geomorphology, in a rift basin has a strong 

local effect on sedimentation. Tectonically induced slopes, i.e., tilting, becomes a primary control on 

drainage and erosional patterns, flood distribution, as well as the location, geometry, and style of 

deposition. The sedimentary response (Fig. 1) to these vertical movements varies with regard to the 

stage of rift development, depositional setting, i.e., continental vs. marine, and climatic conditions 

(Alexander & Leeder, 1987; Leeder & Gawthorpe, 1987; Gawthorpe & Colella, 1990; Prosser, 1993; 

Gupta et al., 1999; Gawthorpe and Leeder, 2000). 

Extensional faults form geometrically coherent systems of discontinuous segments which 

grow incrementally over time amounting displacement during earth quake rupture events. These 

fault segments show systematic displacement to length scaling. As faults grow, relay zones form 

between neighbouring segments that allow transfer of displacement (i.e., soft linkage). Subsequent 

growth results in relay zone breach and the establishment of through-going faults. (Watterson, 

1986; Walsh & Watterson, 1988; Marrett & Allmendinger, 1991; Peacock, 1991; Peacock and 

Sanderson, 1991; Walsh and Watterson, 1991; Cowie & Scholz, 1992; Dawers et al., 1993; Trudgill & 

Cartwright, 1994; Cartwright et al., 1995, 1996; Dawers & Anders, 1995; Childs et al., 1995, 1996; 

Willemse et al., 1996; Meyer et al., 2002; Wilkins and Gross, 2002; Childs et al., 2002; Soliva & 

Benedicto, 2004; Walsh et al., 2003; Kim et al., 2005; Bull et al., 2006; Kristensen et., al 2008; Nicol 

et al., 2010; Childs et al., 2016).  

Undulations in the geometry of a mature, through-going fault can reflect its linkage history 

 (e.g., Peacock and Sanderson, 1991; Mansfield & Cartwright, 1996, 2001; Walsh et al., 2003; Lohr et 

al., 2008). For example, displacement minima and kinks in fault strike/dip occur at sites of segment 

linkage. Moreover, the rock volume surrounding faults is geometrically and coherently linked to fault 

movement. As displacement accrues, the footwall and hanging wall experience uplift and 
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subsidence, respectively (Barr, 1987; Wernicke & Axen, 1988; Yielding, 1991; Long & Imber, 2010) 

which can be described in terms of longitudinal (sub-parallel to fault) and transverse (orientated at 

high angles to faults) folding as depicted in Fig. 1.  

Transverse hanging wall synclines form individual isolated basins associated within hanging 

walls of individual fault segments. These basins coalesce over time in response to fault linkage. 

Contemporary to increase in hanging wall accommodation space, the corresponding upwards 

movement in the footwall prompts erosion and the establishment of semi-circular drainage 

catchments characterised by erosional linear channels fed by larger dendritic channel systems 

(Leeder, 1991; Leeder & Jackson, 1993; Eliet & Gawthorpe, 1995; Densmore et al., 2003, 2004; 

Foster et al., 2010; Elliott et al., 2011). Relay zones and erosional fault scarps act as loci for drainage 

entering rift basins. Typical early stage rift deposits include continental alluvial fans (Hooke, 1967; 

Nemec & Postma, 1993; Blair & McPherson, 1994; Harvey et al., 2005; Longhitano et al., 2015) or fan 

deltas (Holmes, 1965, Rust, 1979; Friedman & Sanders, 1978; Ethridge & Wescott, 1984; Nemec & 

Steel, 1988; Postma, 1990; Longhitano, 2008; Longhitano et al., 2015). Both deposits consist of 

coarse siliciclastics that are usually immature to submature, both texturally and mineralogically. 

Fault related subsidence and uplift (along with climate change and eustatic sea-level), can 

modify the dynamic equilibrium profile of a depositonal system tract  (Mackin, 1948; Schumm, 1993; 

Blum & Törnqvist, 2000; Holbrook et al., 2006). In fluvial and deltaic environments, axial through-

flowing river channels and delta lobes tend to migrate or avulse towards the axis of maximum 

subsidence, i.e., parallel to the structural strike (Bridge and Leeder, 1979; Miall et al., 1981).  

Preferential flooding of the down-tilted side of the floodplain also occurs. Channels become more 

confined due to tilting, leading to a dominance of stacked channel geometries. (Gupta et al., 1999; 

Young et al., 2002; Garcia-Garcia et al., 2006). Individually, tilting can cause sand bodies to become 

abnormally wide and asymmetric (Alexander & Leeder, 1987).  

In this contribution, we use sedimentological, fault, and Amplitude Versus Angle (AVA) 

analysis from the Goliat field to consider the depositional environments of late Norian to Rhaetian 

deposits of the Realgrunnen Subgroup and to establish the time from which Mesozoic rifting 

initiated in the Hammerfest Basin. 

2. GEOLOGICAL BACKGROUND 

The Hammerfest Basin (Rønnevik & Jacobsen, 1984; Berglund et al., 1986; Gabrielsen et al., 

1990; Knutsen & Vorren, 1991; Ostanin et al., 2012; Indrevær et al., 2017; Mulrooney et al., 2017) is 

a relatively shallow Mesozoic basin with a depth to basement of approximately 5 to 6 km compared 

to the deeper Tromsø and Nordkapp basins where this depth can exceed 10 km (Øvrebø & Talleraas, 

1977; Henriksen et al., 2011). The basin (Fig. 2B) ranges between 50–75km wide, is elongate in the 
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ENE-WSW direction and is situated on the south-western flank of the Barents Shelf (Rønnevik, 1981; 

Rønnevik et al., 1982; Faleide et al., 1984, 1993; Rønnevik and Jacobsen, 1984; Dengo and Røssland, 

1992; Gudlaugsson et al., 1998; Stemmerik, 2000).  

 The Hammerfest Basin is separated from the Finnmark Platform to the southeast by the 

Troms-Finnmark Fault Complex (TFFC). Separation from the Tromsø Basin in the west is defined by 

the approximately N–S striking Ringvassøy-Loppa Fault Complex (RLFC) whereas the eastern border 

has the nature of a flexure against the Bjarmeland Platform (Gabrielsen et al., 1990). The basin is 

asymmetric with the deepest part in the north adjacent to the Asterias Fault Complex which 

delineates the basin from the Loppa High. The basin can be subdivided into east and west sub-basins 

(Ziegler et al., 1986) which may correlate with the offshore prolongation of the Trollfjord-Komagelva 

Fault Zone (Gabrielsen & Færseth, 1989; Gabrielsen et al., 1990; Roberts and Lippard, 2005; 

Gernigon et al., 2014). At the margins, the basin exhibits deep-seated, high-angle faults in addition 

to shallower normal faults that detach within the Permo-Carboniferous strata (Gabrielsen and 

Færseth, 1989; Mulrooney et al., 2017).  

Internally, the fault populations strike parallel to the basin delineating faults i.e., the north–

south striking RLFC, the E–W to ESE–WNW striking Hammerfest Basin Regional fault system and the 

variably orientated segments of the TFFC (Gabrielsen, 1984; Mulrooney et al., 2017). The TFFC 

parallels the shoreline of the Troms and Finnmark counties and delineates the Finnmark Platform in 

the south from basins to the north including the Harstad, Tromsø and Hammerfest basins (Fig. 2B). 

The complex, or fault system, consists of several hard-linked segments which exhibit orientations of 

NNE-SSW to NE-SW in the south, ENE-WSW (informally, the Alke-Goliat segment) in the centre (Fig. 

3), and NNE-SSW (informally, the Goliat-Tornerose segment) towards the northeast (Fig. 3).  

The central part of the Hammerfest Basin is characterised by a gentle domal structure, which 

strikes parallel to the basin axis and is underpinned by the Hammerfest Basin Regional fault system, 

genesis of the feature has been tentatively linked to the Cimmerian tectonic phase (Øvrebø & 

Talleraas, 1977).  The structural grain of the Hammerfest basin, especially the basin–platform 

delineating TFFC (Øvrebø & Talleraas, 1977; Rønnevik et al., 1982; Gabrielsen, 1984; Gabrielsen et 

al.,2011; Gabrielsen & Færseth, 1988, 1989; Indrevær et al., 2013) is suggested to reflect a 

Caledonian lineament. Separation of the Hammerfest Basin from the Finnmark Platform is envisaged 

to have taken place in the Late Carboniferous. 

The Triassic in the Barents Shelf is described generally as a period of tectonic quiescence 

(Riis et al., 2008; Worsley et al., 2008; Glørstad-Clark et al., 2011; Høy & Lundschien, 2011) with 

ongoing regional subsidence, however, local zones of fault activity persisted, e.g., the southern 

Loppa High Fault System (Gabrielsen, 1984; Indræver et al., 2016), the Hoop Graben (Mahajan et al., 
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2014), eastern Svalbard (Anell et al., 2013; Osmundsen et al., 2014), and segments of the TFFC (this 

contribution). During this time, the Hammerfest Basin likely formed part of a larger epeirogenic 

depositional regime, although Berglund et al. (1986) identify it as a separate depocentre from the 

Early Triassic onwards. The latest Permian to Middle Triassic is dominated by deltaic sequences 

which prograded across the entire Barents Shelf (Glørstad-Clark et al., 2010, 2011; Anell et al., 2014). 

The Ingøydjupet Subgroup was primarily sourced from the uplifted Uralides, but the Baltic Shield 

also contributed and is likely a more prominent source for the southern Hammerfest Basin including 

the Goliat field (Riis et al., 2008; Mørk, 2009). The Middle to Late Triassic (comprising the 

Ingøydjupet and Storfjorden Subgroups) saw the shelf edge prograde north-westwards as far as 

Svalbard (Anell et al., 2014). The Realgrunnen Subgroup is most completely developed in the south-

western Barents Sea where it consists of mature sandstones deposited in coastal plain and deltaic to 

shallow marine environments (Olaussen et al., 1984; Berglund et al., 1986; Worsley et al., 2008; 

Henriksen et al., 2011). Dominant lithologies comprise sandstones and shales with subordinate 

conglomerates, carbonates and coals. Deposition ranged from the Late Triassic to Middle Jurassic. 

The Realgrunnen and Ingøydjupet subgroups host the target reservoirs in the Goliat field. Only the 

lower part of the Realgrunnen Subgroup is preserved in the Goliat field, the Fruholmen Formation 

and lower part of the Tubåen Formation. Together these formations define a 67–118 m thick unit 

and form the upper Goliat reservoir. Palaeodrainage during the Rhaetian to Hettangian, i.e., during 

deposition of the Tubåen Formation (Fig. 4) is envisaged to have flown from east to west within the 

central axis of the Hammerfest Basin, while in the Goliat field, a more northwest to west-northwest 

palaeo-direction is evident (Fig. 4).  

The main phase of Mesozoic rifting took place in the Middle Jurassic to Early Cretaceous 

(Gabrielsen et al., 1990; Faleide et al., 2008). Primary fault complexes such as the TFFC developed 

large accommodation zones adjacent to active segments. A large domal structure formed 

contemporaneously to this fault’s activity in the hanging wall of the TFFC which Gabrielsen et al. 

(1990) describe as a roll-over structure. Mulrooney et al. (2017), however, credit this structure to 

differential subsidence on two vertical segments of the TFFC. The central dome in the Hammerfest 

Basin is also believed to have developed at this time (Gabrielsen et al., 1990). The precise timing of 

the initiation of this stage of rifting is ambiguous. In the south-western Barents Shelf, the top 

Realgrunnen Subgroup is defined by a Middle Jurassic regional unconformity (Henriksen et al., 2011).  

 

3. STRUCTURAL ARCHITECTURE OF THE GOLIAT FIELD 

The Goliat field consists of Middle to Late Triassic reservoirs which exploit an elongate 

anticline (the Goliat anticline) in the hanging wall of the TFFC (Mulrooney et al., 2017). The field is 
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situated within a complex zone of deformation associated with a major bend in the TFFC. Key 

structural elements affecting the field are summarised here and within Fig. 3. The Goliat anticline is 

affected by three primary fault populations, two of which exhibit trends parallel to TFFC segments, 

i.e., the Goliat–Tornerose (GT) segment (030–210 o) and the Alke–Goliat (AG) segment (085–265 o). A 

third 102–282 o trending fault population represents the Hammerfest Regional fault system 

(Gabrielsen et al., 1984). A local NW–SE trending fault population, the Goliat Central (GC), is seen to 

only affect the Goliat anticline. Subsidiary faults to the west of the Goliat exhibit curvilinear traces 

where they show an Alke–Goliat trend to the south and a Goliat–Tornerose trend to the north 

(Mulrooney et al., 2017). The Goliat field is dominated by 5 large segments of the Troms-Finnmark 

Fault Complex, the GT1 fault (the largest fault in the area), the AG1, AG2, AG3 and AG4. The HR1 

fault is not considered a TFFC segment, and instead is suggested to represent an offshore extension 

of the Trollfjord-Komagelva Fault Zone (Gabrielsen & Færseth, 1989; Gabrielsen et al., 1990; Roberts 

and Lippard, 2005; Gernigon et al., 2014). 

 The Goliat anticline is underlain by a 10 km wide, basement fault block (Mulrooney et al., 

2017) which is bound by two vertical segments of the TFFC. Mulrooney et al. (2017) suggested the 

western limb of the Goliat anticline formed by differential subsidence across the TFFC segments. The 

eastern limb, in contrast has been credited to hanging wall roll-over related to ramp-flat-ramp to 

listric geometries on the TFFC.  

The Goliat crest forms a culmination in the Goliat anticline. The structure has a complex 

history and formed as a transverse fold at the site of linkage between two former segments of the 

GT1 fault. Moreover, the transverse fold is superimposed on the Goliat anticline. The Goliat crest 

forms a displacement minimum on the GT1 fault and divided depocentres during the intial stages of 

Mesozoic rifting on the GT1. Former segmentation of the GT1 is also evident from sharp jogs in the 

fault trace and dip.  Mulrooney et al. (2017) suggest the fault existed as at least three segments prior 

to amalgamation during the Late Triassic to Early Jurassic. The AG1 exists as a series of left-stepping 

partially breached en-echelon segments at the level of the Realgrunnen Subgroup. Down-section, 

the structure becomes through-going. 

Mesozoic syn-kinematic geometries in the hanging wall of the GT1 fault are consistent with 

deposition during up-section propagation of a blind fault, over which, a monocline was established 

and later breached. Rifting took place in the Palaeozoic (Carboniferous to Permian?), and in the 

Mesozoic, possibly as early as the Late Triassic, with a major event in the Late Jurassic to Early 

Cretaceous. Minor reactivations continued into the Late Cretaceous, and possibly the Early Cenozoic.  

A phase of Barremian inversion created local compression structures above blind 

extensional faults as well as deeper seated buttressing against large faults (Indrevær et al., 2017; 
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Mulrooney et al., 2017). A non-tectonic polygonal fault system affects the Late Cretaceous to Early 

Cenozoic succession and is comparable to the Campanian succession of the Western Hammerfest 

Basin (Mulrooney et al., 2017). 

4. DATA AND METHODS 

The dataset for the sedimentological study comprises wireline logs and 235 m of slabbed 

core from six exploration wells (Table 1) in the Goliat field (PL229 and PL229B). The seismic study 

was conducted using the EN0901 multi-azimuth (MAZ) three-dimensional seismic survey. Both core 

and seismic data were provided by Eni Norge. The seismic survey is a pre-stack, depth migrated 3D 

dataset and covers an area of approximately 207 km2 and provides imagery down to 4000 m depth. 

The EN0901 MAZ consisted of a single source with a dense streamer configuration. The seismic data 

were acquired using a shot point interval of 12.5 m and a streamer length of 4000m. Survey 

azimuths of 7o, 67o and 127o were chosen to best illuminate the multiple fault trends.  

 Observations and measurements from the cores included lithology, colour, thicknesses, 

grain size, sorting, sedimentary structures, bed boundaries, fossils and bioturbation. The degree of 

bioturbation follows the Bioturbation Index (BI) of Taylor & Goldring (1993). The observed 

sedimentary features were used to group the deposits into facies reflecting discrete depositional 

elements or environments. Composite wireline log suites, which included gamma ray (GR), neutron-

porosity (NP) and bulk density (BD) logs, were used for a more simplistic recognition and 

interpretation of lithologies, boundaries and relating non-cored intervals to the sedimentary facies 

framework. A well-to-well correlation was subsequently performed using facies architecture and 

stacking patterns, and guided by in-house (Eni Norge) palynological data. 

The seismic interpretation workflow focused on identifying depositional geometries of the 

Realgrunnen Subgroup and high resolution mapping of faults. The workflow was conducted using 

the Petrel E&P Software Platform. The well ties for the Late Triassic and Jurassic successions are 

shown in Fig. 5. A more in depth seismic work flow is described in Mulrooney et al. (2017). Fault 

polygons and seismic horizons were imported into Badley’s T7 software where hanging and footwall 

cut-offs where computed for four master faults, AG1, AG2, AG3 and HR1 and seven subsidiary faults 

AG5, AG6, AG7, GT2, GT3, GT4 and GT5, locations of which are shown in Fig. 3. Displacement 

analysis was conducted using a sampling interval of 100 m and produced a series of Alan diagrams. 

In addition, footwall and hanging wall packages were projected onto the fault plane in order to 

determine near-fault thickness variations. Hanging wall thickness maxima and foot wall minima were 

correlated in order to identify isolated depocentres and sites of erosion.  

AVA (Amplitude Versus Angle) attribute analysis was conducted on a time-depth cube of the 

EN0901 multi-azimuth (MAZ) survey. Analysis was conducted over a 10 ms window below the top 
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Realgrunnen Subgroup using HampsonRussel AVO analysis & Modelling software. The method was 

used to highlight the gross sand prone areas and depositional geometries of the Realgrunnen 

Subgroup. Insights from the sedimentological, fault and seismic attribute analyses were synthesized 

and used to develop palaeogeographic reconstructions for the upper Fruholmen Formation and the 

Tubåen Formation in the Goliat area. 

5. SEDIMENTOLOGICAL FACIES ANALYSIS  

Eight sedimentary facies were defined from the analysis of core and wireline log data. One 

of the facies (facies 3) was subdivided into subfacies based on subtle sedimentological differences 

observed in core, which could otherwise not be distinguished from wireline log signatures alone. 

Facies characteristics are summarised in Table 2 and key sedimentary structures and interpretations 

for each facies are given below. A log key is displayed in Fig. 6.  

5.1 FACIES 1 – DISTAL ALLUVIAL FAN  

Description. Facies 1 comprises a 7.5 m thick sandstone body in 7122/7-3 (Fig. 7) which 

consists of poorly sorted, coarse- to very coarse-grained sandstones with rare, scattered gravel and 

pebbles. The sandstones are pale yellow in colour with occasional cm-thick reddish-stained horizons, 

and show no clear internal grain size trends. Extraformational subangular fine gravel (maximum 

particle size; MPS  5 mm) and subangular to subrounded mudstone and siltstone pebbles (MPS 5 cm, 

long axis, Fig. 7A) are randomly dispersed throughout facies 1 and show no preferred orientation. 

Boundaries between individual beds are generally indistinct with no apparent erosional relief, 

although crudely stratified cm- to dm-thick sandstone beds are locally observed. The sandstones are 

mostly massive and structureless (Fig. 7A) except for rare dm-thick horizons with diffuse low-angle 

cross-stratification (Fig. 7B). No bioturbation is present. The lower boundary of facies 1 is not 

observed in core, but wireline log signatures suggest it abruptly overlies deposits of facies 4. Facies 1 

is replaced upward by facies 2. Facies 1 is characterised by a box-shaped GR log response and a large 

negative separation between NP and BD curves. 

Interpretation. The massive, structureless appearance of the sandstones, the coarse 

sediment fraction and texturally immature character of the deposits of facies 1 is interpreted to be 

the result of rapid deposition in areas proximal to an active sediment source. The scarcity of cross-

stratification and scour surfaces is taken to indicate a non-channelized depositional setting, and the 

massive sandstones of facies 1 are suggested to represent the deposits of unconfined cohesionless 

debris flows (e.g. Nemec and Steel, 1984; Postma, 1986) in a distal alluvial fan setting. The reddish 

colouration is taken to indicate well-drained oxidising conditions which further point towards a fully 

terrestrial environment. The absence of bioturbation supports this interpretation. Rare diffusely 

cross-stratified sandstone horizons likely reflect periodic tractional transport within shallow 
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channels. The scarcity of pebbles is taken to indicate a distal position on the alluvial fan, although 

clast composition and size are largely controlled by the lithology in the drainage basin (e.g., Blair, 

1999).  

5.2 FACIES 2 – FLUVIAL BRAIDPLAIN  

Description. Facies 2 consists of 0.1 to 1.2 m thick beds of poorly to moderately sorted, fine- 

to very coarse- (locally gravelly) sandstones organised in 1-5 m thick sharp-based fining-upward (FU) 

units (Fig. 7). Together, the FU units stack to form composite sandstone bodies up to 10 m thick. 

Gravel, mudstone rip-up clasts and, more rarely, coal fragments are concentrated at the base of FU 

units, on internal scour (bedding) surfaces and on cross-strata foresets (Fig. 7C,F,I). The sandstones 

are trough and planar cross-stratified (Fig. 7C,D,G-I), locally passing up into current ripple- and plane-

parallel lamination (Fig. 7H). No bioturbation is observed. At the top of facies 2, a 40-50 cm thick 

mottled and multi-coloured (yellow, orange and red) carbonate cemented sandstone bed with 

possible root casts is present (Fig. 7E). Facies 2 sharply overlies deposits of facies 3a and facies 4. The 

lower boundary in well 7122/7-3 is less distinct and may be gradational with facies 1. Facies 2 is 

characterised by cylindrical GR log responses and negative separation between NP and BD curves. 

Interpretation. Facies 2 is interpreted as fluvial braidplain deposits. This is based on the 

sharp bases, the vertical stacking of FU units, and the dominance of cross-stratification which 

suggest sustained flow in a channelised setting (Collinson, 1996). The abundance of internal scour 

surfaces and the lack of intervening fine-grained floodplain deposits is probably related to 

juxtaposition of channel units within mobile channel belts. The presence of mudstone rip-up clasts 

suggests that fine-grained material was deposited between individual channels, but were not 

preserved in situ. The mottled, carbonate cemented bed developed at the top of Facies 2 is 

tentatively interpreted as a palaeosol level formed under a period of prolonged subaerial exposure 

and oxidising conditions. 

5.3 FACIES 3 – FLUVIAL CHANNEL 

Facies 3 is characterised by cylindrical to bell-shaped GR curves and either no or a large 

negative separation between NP and BD curves. Based on subtle sedimentological differences 

observed in core, facies 3 has been subdivided into two subfacies (3a and 3b). 

5.4 SUBFACIES 3A – FLUVIAL CHANNEL 

Description. This facies consists of 0.1 to 1.0 m thick beds of very fine- to very coarse-grained 

moderately to well-sorted sandstones forming 3.0 to 10.0 m thick sharp-based single or stacked 

units with upward fining grain-size motifs. Structureless, trough- and planar cross-stratified fine- to 

very coarse-grained sandstones (Fig. 8A, F) dominate in the lower part of facies 3a, passing upward 
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into very fine- to fine-grained sandstones with current-ripple and plane-parallel lamination (Fig. 8D). 

Rootlets may be present at the top. Plant material is abundant throughout and rip-up mudstone 

clasts occur as lags on basal and internal scour surfaces. Up to 1 m thick heterolithic intervals 

consisting of thin-bedded mudstones and very fine-grained sandstones with synaeresis cracks, 

flaser-, wavy- and current ripple-lamination are locally present at the top of individual units.  

Interpretation. Based on the sharp bases, the FU trend, the dominance of tractional and 

current generated sedimentary structures, and the abundance of plant material, facies 3a is 

interpreted as fluvial channel deposits. Thicker successions of faces 3a (e.g. 1154-1137 m MD 

7122/7-6) are interpreted to reflect accumulation within trunk rivers (e.g. Olariu & Bhattacharya, 

2006), whereas FU units only a few meters thick may represent deposits of relatively shallow 

distributary channels mostly unaffected by basinal processes in the upper delta plain. The vertical 

arrangement of sedimentary structures and the FU trend is taken to record progressive waning of 

energy during channel filling (Bridge, 2006). Heterolithic intervals developed at the top of some FU 

units are interpreted as passive channel fills (i.e., abandonment fills) accumulated from overbank 

sedimentation following abrupt abandonment of channels through upstream channel plugging or 

avulsion.  

5.5 SUBFACIES 3B – TIDE-INFLUENCED DISTRIBUTARY CHANNELS  

Description. Facies 3b consists of 0.1 to 2.0 m thick beds of very fine- to coarse-grained 

sandstones forming 1-9 m thick sand bodies with FU trends and sharp bases. Heterolithic intervals 

up to 1 m thick with alternating thin-bedded wavy to lenticular laminated silty mudstones and very 

fine-grained sandstones may be present within and at the top of individual units. The sandstones are 

moderately to well sorted and characterised by trough and planar cross-stratification locally with 

tangential set bases (Fig. 8A-C,E), which passes upward into current ripple- (2D and 3D ripples), 

plane-parallel- and flaser lamination. Mm- to cm-thick single and paired drapes of mud and organic 

debris are abundant throughout facies 3b and accentuate cross-strata and ripple foresets (Fig. 8A-

C,E). Mudstone rip-up clasts and coal fragments are present at bed bases and internal scour 

surfaces, and plant material is scattered throughout. Rootlets may be present at the top of individual 

FU units. The degree of bioturbation is low (BI 0-2), consisting of undifferentiated simple vertical and 

horizontal burrows (Fig. 8B,E) mainly confined to beds and laminae composed of silty mudstone and 

very fine-grained sandstone.  

Interpretation. Facies 3b is interpreted as tide-influenced distributary channel deposits. This 

is based on the sharp and erosive bases, the FU grain size trends, the dominance of tractional and 

current generated sedimentary structures, which as for facies 3a point toward deposition in a fluvial 

channelised setting. The abundance of single and paired mud drapes is interpreted to reflect 
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variations in flow stages as a result of tidal influence (e.g., Gastaldo et al., 1995; Visser, 1980; 

Martinius & Gowland, 2011; Longhitano et al., 2012; Longhitano et al., 2017; Mellere et al., 2017), 

and suggests the distributary channels were located within the reach of tidal incursions of sea water. 

This is supported by the higher degree of bioturbation in facies 3b compared to facies 3a, which may 

suggest some influence of marine waters.  

5.6 FACIES 4 – FLOODPLAIN/DELTA PLAIN 

Description. This subfacies comprises 1.0 to 24.0 m thick heterolithic successions of 

mudstone, siltstone, thin coals and fine- to very fine-grained sandstone (Fig. 9). Mudstones and 

siltstones are massive or finely laminated, and brownish, grey and dark grey in colour. Sandstones 

range in thickness from a few millimetres to 2.0 m (commonly <0.5 m thick), have sharp or 

gradational bed boundaries and may fine or coarsen slightly upward. Current ripple lamination (2D 

and 3D-ripples) dominates in the sandstones (Fig. 9B, C) with climbing current ripple-lamination, 

plane-parallel lamination and small-scale planar cross-stratification occurring less frequently. Plant 

material, coal fragments and rootlets (Fig. 9D,H) are ubiquitous. Bioturbation intensity is variable (BI 

0-4) and characterised by relatively simple undifferentiated vertical and horizontal burrows, 

occasionally sand-filled. Escape traces and soft-sediment deformation structures are locally observed 

(Fig. 9B). Facies 4 is characterised by relatively high GR values but with highly irregular and serrated 

wireline log patterns.  

Interpretation. Based on the heterolithic, mudstone-dominated character of facies 4, the 

abundance of rootlets and plant material, and the vertical association with facies 3, this facies is 

interpreted as floodplain/delta plain deposits. The mudstones and siltstones are related to 

deposition from suspension on the floodplain and within shallow delta plain lakes or bays during 

floods. The sandstones were probably deposited as a variety of crevasse channel, crevasse splay, 

levee and overbank lobe deposits sourced from adjacent rivers. Rooted horizons reflect soil 

formation, and the presence of thin carbonaceous mudstones and coals reflect periodic 

accumulation of peats, suggesting water-saturated and stagnant conditions. Small-scale upward 

coarsening-units with rooted tops are interpreted as bay-fills and were formed by progradation of 

crevasse splays or minor mouth bars (Elliot, 1974). 

5.7 FACIES 5 – DELTA FRONT 

Description. Facies 5 includes up to 5-6 m thick sandstone dominated heterolithic 

successions composed of 1-4 m thick single or stacked upward-coarsening units (Fig. 10) which 

locally alternate vertically with deposits of facies 6. Facies 5 has transitional lower boundaries 

towards deposits of facies 6, whereas upper boundaries may be both conformable (towards facies 4 
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and 6; Fig. 10) and erosional (towards facies 3). Internal bed boundaries are commonly conformable. 

The upward coarsening units have heterolithic bases composed of interbedded mudstone, siltstone 

and very fine-grained sandstone, and grade upward into very fine- to fine-grained sandstone 

characterised by plane-parallel and low-angle cross-lamination, planar cross-stratification, current 

ripples (locally climbing), wave ripples and combined flow ripples. Rootlets and root casts are 

common towards the top of individual upward coarsening units (Fig. 10D, E), whereas synaeresis 

cracks and dish structures are locally observed. Bioturbation is generally moderate but highly 

variable (BI 1-5), and includes Lockeia, Planolites, Teichichnus, Diplocraterion, Palaeophycus, 

Rosselia, Skolithos and rare fugichnia. In wireline logs facies 5 is characterised by funnel-shaped and 

slightly irregular GR log responses and weak positive or no separation between the NP and BD 

curves. 

Interpretation. Facies 5 is interpreted to comprise distributary mouth bars deposited in a 

delta front setting. This is based on the presence of sandstone-dominated upward-coarsening units 

with rooted tops, and the mix of sedimentary structures, which reflect deposition in relatively high 

energy environments under the action of both unidirectional and oscillatory traction currents. 

Common wave and combined flow ripples reflect modification of the mouth bar deposits by 

fairweather waves. Relatively high sedimentation rates and rapid deposition can be inferred based 

on the presence of climbing current ripples, fugichnia and dish structures, whereas synaeresis cracks 

and the variable bioturbation intensity may reflect fluctuating salinity levels. The ichnological 

assemblage, which is attributed to a distal expression of the Skolithos ichnofacies (MacEachern et al., 

2007) is consistent with a relatively high energy marginal marine depositional setting. The limited 

thickness of individual upward-coarsening units is taken to suggest relatively shallow water depths, 

and the vertical alternation with prodelta deposits (facies 6) is interpreted to reflect autocyclic delta 

lobe switching due to upstream avulsion of the feeding distributaries (e.g., Bhattacharya, 2006). 

5.8 FACIES 6 – PRODELTA 

Description. This facies is present in the lower 23-33 m of the Fruholmen Formation (Fig. 

10A-D,G), and comprises dark grey laminated mudstone with sporadically distributed carbonaceous 

detritus, and more heterolithic intervals consisting of mm- to cm-thick, locally siderite-cemented, 

interbedded grey mudstone, siltstone and mm to cm-thick sandstone (Fig. 10B, C, G). Normal graded 

beds up to a few centimetres in thickness are relatively common in the heterolithic intervals (Fig. 

10A-C, G), and fine upward from very fine-grained sandstone at the base to siltstone and mudstone. 

Synaeresis cracks (Fig. 10B,C) are relatively abundant in facies 6 and soft-sediment deformation 

structures are locally observed. Sedimentary structures observed within sandstones include 
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horizontal (plane-parallel) lamination, wave ripples, current ripples, and combined flow ripples (Fig. 

10C, G). The degree of bioturbation is generally low but variable (BI 0-4), with a few intensely 

bioturbated levels. A monospecific trace fossil suite consisting of Chondrites is observed in the dark 

grey laminated mudstones, whereas sporadic diminutive forms of Palaeophycus, Planolites (Fig. 

10B,C), Lockeia, Teichichnus  (Fig. 10B), Rhizocorallium and Rosselia are present in heterolithic 

intervals. In wireline logs, facies 6 is characterised by consistently high and relatively irregular GR log 

responses and a large positive separation between the NP and BD curves. The base is marked by an 

abrupt increase in GR log response. Facies 6 is replaced upward by facies 5 and the transition is 

marked by the start of a gradual, but relatively rapid upward decrease in the separation between the 

NP and BD curves, accompanied by a gradual decrease in GR response. 

Interpretation. The fine-grained sediments and the sedimentary structures of facies 6 

suggests a depositional environment characterised by relatively low energy levels, with deposition 

both from suspension and weak unidirectional and oscillatory traction currents. The upwards vertical 

stratigraphic association with delta front (facies 5), floodplain/delta plain (facies 4), and fluvial 

channel (facies 3) deposits point to a deltaic setting with active fluvial input, and facies 6 is 

accordingly interpreted as prodelta deposits. The low-abundance and low-diversity trace fossil suite, 

which compares with a highly impoverished expression of the Cruziana ichnofacies (MacEachern et 

al., 2007), is consistent with this interpretation, and reflect physio-chemical stresses caused by 

relatively high sedimentation rates and salinity fluctuations due to high freshwater input (Coates and 

Maceachern, 2007). Salinity fluctuations are also indicated by the common presence of synaeresis 

cracks. The dark grey colour and the monospecific Chondrites-assemblage observed in some of the 

mudstones indicate periods of slightly depleted oxygen levels in the bottom sediment (Bromley and 

Ekdale, 1984). The preservation of normal-graded beds is taken to indicate deposition from 

sustained hyperpycnal density underflows generated during river floods (Mulder et al., 2003; 

Bhattacharya & MacEachern, 2009), and hence mark proximity to the river mouth.  

5.9 FACIES 7 – OFFSHORE  

Description. This facies consists of grey, dark grey and brownish silty mudstones (Fig. 11), 

locally sideritic and pyritic, observed in the Fuglen Formation. The mudstones are intensely 

bioturbated (BI 4-6) with a trace fossil assemblage including Asterosoma, Chondrites, Helminthopsis, 

Phycosiphon, Terebellina and Zoophycos. Rare belemnites are also observed. The base of facies 7 is 

erosional towards facies 8, and is marked by an abrupt change in petrophysical log signatures 

including a distinct increase in GR response. 

Interpretation. Based on the dominance of mudstones, the high degree of bioturbation and 

the presence of marine body fossils, facies 7 is interpreted to have accumulated from suspension 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

below storm wave base in a well-oxygenated offshore marine environment. The trace fossil 

assemblage compares with a distal expression of the Cruziana ichnofacies (MacEachern et al., 2007) 

commonly associated with soft and cohesive muddy substrates under quiescent marine conditions. 

5.10 FACIES 8 – TRANSGRESSIVE SHELF 

Description. This facies comprises a 15-20 cm thick interval observed at the junction 

between the Realgrunnen Subgroup and the Fuglen Formation in wells 7122/7-2 and 7122/7-3 (Fig. 

11A) where it abruptly overlies deposits of facies 2. The base of facies 8 consists of a thin (<10 cm) 

lag of polymictic matrix-supported conglomerates with rounded phosphate and quartz pebbles in a 

medium-grained sandstone matrix. These are replaced upward by white and light brown carbonates 

with undulating sub-horizontal lamination. Relatively small, sharp-walled, unlined, vertical to sub-

vertical burrows or borings are present within the carbonates in 7122/7-2, immediately below the 

erosive upper contact with facies 7 and the Fuglen Formation. The burrow fills consist of mudstones 

comparable to those of the overlying facies. 

Interpretation. The deposits of facies 8 are interpreted to have accumulated on a sediment-

starved marine shelf during overall transgression. The conglomerate at the base is interpreted as a 

transgressive lag, and the laminated carbonates at the top of facies 8 may represent early diagenetic 

hardgrounds characteristic of omission surfaces (Bromley, 1975).  The interpreted transgressive 

nature is consistent with the stratigraphic position between fully terrestrial fluvial braidplain 

deposits (facies 2) below and offshore marine deposits (facies 7) above. The burrows at the top of 

facies 8 appear to be passively filled, suggesting the substrate was at least partly lithified at the time 

of excavation. It therefore probably represents one of the substrate controlled suites Glossifungites 

or Trypanites ichnofacies (MacEachern et al., 2007). These suites commonly delineate erosion and 

omission surfaces that may have major sequence stratigraphic significance (MacEachern et al., 1992; 

Pemberton et al., 2004).  

5.11 ALLUVIAL ARCHITECTURE  

Within the Fruholmen Formation, two distinct intervals are distinguished based on lateral 

and vertical channel deposit proportions (CDP). The intervals are informally referred to as the ‘lower’ 

(24-54 m thick) and ‘upper’ (9-37 m thick) intervals and both are characterised by channel density 

maxima at their bases where fluvial sandstones appear to be laterally interconnected (i.e., 

multilateral) and locally include amalgamated, multi-storey channel complexes. Upwards, channel 

deposits become finer-grained and single storey, increasingly isolated in floodplain/delta plain fines 

and locally show evidence of tidal influence. With reference to sequence stratigraphic models 

developed for non-marine strata (e.g., Shanley & Mccabe, 1991, 1993, 1994; Wright & Marriott, 
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1993; Olsen et al., 1995), both intervals are interpreted as lower rank (i.e., high frequency) 

sequences. The amount of erosion at the base of the two sequences appears to be limited. However, 

incision on a width and depth scale greater than that of the associated channels is suggested at the 

base of the ‘upper’ interval in well 7122/7-6. Here, the ‘lower’ interval is only 24 m thick and is 

lacking the mud-rich upper part observed in the remaining wells.  

Superimposed on the internal architectural trends of the two intervals, is a consistent 

upward increase in CDP observed in all investigated wells (Table 3), from an average of 0.29 in the 

‘lower’ interval to 0.53 in the ‘upper’ interval. Although CDP values may be considered artificially 

high where the Tubåen Formation has eroded into the ‘upper’ interval (e.g. well 7122/7-3, 

CDP=0.72), the general trend is apparent in the well-to-well correlation (Fig. 12). Within the ‘upper’ 

interval a second conspicuous trend is also evident. Here, maximum abundance of channel deposits 

and high stacking densities are seen in the two central wells (7122/7-6, CDP=0.81; 7122/7-5A, 

CDP=0.45) where two potential multistorey channel belts, each up to 10 m thick, are distinguished at 

the base of the sequence. When traced laterally into adjacent wells, the number of individual 

channel units and channel stacking density decreases. This points toward a tendency for rivers to be 

funnelled through the central part of the Goliat field during deposition of the ‘upper’ interval. The 

upward increase in CDP is interpreted as the results of an overall temporal reduction in 

accommodation rates during deposition of the Fruholmen Formation (e.g., Bridge and Leeder, 1979) 

which could be attributed to reduced subsidence rates and/or progradation of the system. Lateral 

variations in abundance and channel stacking density seen within the ‘upper’ interval, may indicate 

that also spatial variations in accommodation that lead to partial confinement of channels within 

restricted parts of the floodplain were notable in the Goliat Field area at this stage. 

The braided fluvial deposits of the overlying Tubåen Formation are characterised by multiple 

internal scour surfaces, a lack of intervening mudstones and siltstones, and overall coarser grained 

sandstones than observed in the Fruholmen Formation. Equivalent changes in alluvial architecture 

were also noted at the Fruholmen-Tubåen boundary by Ryseth (2014) who credited this change to a 

regional decrease in subsidence rates coupled with rejuvenation of sediment sources to the south 

and increased fluvial discharge due to a transition into more humid climates around the Triassic–

Jurassic boundary. 

5.12 FACIES DISTRIBUTION AND KEY SEQUENCE STRATIGRAPHIC SURFACES 

A well-to-well correlation and fence diagram showing the spatial distribution of facies and 

sequence stratigraphic surfaces recognised within the Realgrunnen Subgroup in the Goliat Field area 

is presented in Fig. 12. The facies interpretations and sequence stratigraphic surfaces (SB 1.1, SB 2.1 

and SB 3.1; Fig. 12) outlined in this study are generally consistent with previous studies of the 
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Realgrunnen Subgroup in the southwestern Barents Sea (Berglund et al., 1986; Bugge et al., 2002; 

Gjelberg et al., 1987; Henriksen et al., 2011; Johannessen and Embry, 1989; Mørk et al., 1989; 

Nøttvedt et al., 1993; Ryseth, 2014; Van Veen et al., 1993; Worsley et al., 1988). The contact with 

the underlying Snadd Formation in the Goliat field represents a major marine incursion (i.e., the 

early Norian transgression; Worsley et al., 2008; Henriksen et al., 2011) and is recorded in the 

wireline logs by an abrupt increase in gamma ray response and a large positive separation between 

bulk-density and neutron-porosity curves. The surface is indicated as a maximum flooding surface 

(MFS) in Fig. 12 (e.g. Glørstad-Clark et al., 2010). An underlying sequence boundary (SB 1.1) is 

indicated in Fig. 12 to be somewhere within the uppermost Snadd Formation (e.g. Johannessen & 

Embry, 1989; Van Veen et al., 1993). Within the Fruholmen Formation, a succession of prodelta 

deposits (facies 6; 23-33 m thick) is developed above the MFS, which grade into and alternate with 

delta front deposits (facies 5). Above the delta front deposits, a characteristic delta-top succession 

(36-69 m thick) composed of floodplain/delta plain deposits (facies 4) is developed and is intersected 

by a network of fluvial channels (facies 3a) and tide-influenced distributary channels (facies 3b). 

Accordingly, the Fruholmen Formation in the Goliat field is interpreted to record widespread delta 

progradation and re-establishment of fluvial dominated delta plains following the early Norian 

transgression. Based on the internal variations in channel deposit proportions noted in section 5.11, 

two low rank (high-frequency) sequences bounded below by SB 1.2 and SB 1.3, respectively, are 

here defined within the delta-top succession (Fig. 12). 

The transition into the overlying Tubåen Formation (4-18 m thick) is abrupt and clearly 

erosional. The Tubåen Formation, which comprises fluvial braidplain deposits (facies 2) locally 

overlying distal alluvial fan deposits (facies 1), record a notable shift in sediment calibre (e.g., grain 

size and sorting), alluvial style and architecture, and a significant basinward shift in facies compared 

to the Fruholmen Formation and the boundary between the two defines SB 2.1. The braidplain 

deposits of the Tubåen Formation are capped by a thin, calcareous horizon, interpreted as a mature 

palaeosol, indicative of prolonged subaerial exposure and non-deposition. These are in turn 

unconformably overlain, locally by a thin interval of transgressive shelf deposits (facies 8), and 

offshore mudstones (facies 7) of the Fuglen Formation. The upper boundary of the Tubåen 

Formation defines SB 3.1, and the sequence boundary is suggested to have formed by a subaerial 

unconformity which has subsequently been modified during transgression (i.e., ravinement). The age 

and stratigraphic affiliation of transgressive shelf deposits above the Tubåen Formation are 

uncertain due to a lack of unambiguous biostratigraphic data. The abrupt lower and upper contacts 

and the marked change in facies between these and both under- and overlying deposits, however, 

may suggest that both boundaries record appreciable sedimentary breaks. Similar phosphate-
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bearing conglomerates and condensed horizons have been reported both from Toarcian–

Bajocian/Bathonian strata of the Stø Formation (Berglund et al., 1986; Bugge et al., 2002; Gjelberg et 

al., 1987; Olaussen et al., 1984) and correlative deposits in Svalbard (Bäckström and Nagy, 1985; 

Rismyhr et al., in review). The transgressive shelf deposits may therefore either be interpreted as an 

extremely condensed expression of the Stø Formation, or more plainly as transgressive deposits 

developed at the base of the overlying Fuglen Formation. Regardless of their stratigraphic affiliation, 

the transition from the Tubåen Formation into the Fuglen Formation overall reflects a major lacuna 

spanning the ?late Rhaetian–early Callovian, and a significant transgression with a return to open 

marine sedimentation in the late Middle Jurassic. 

 

6. SEISMIC EXPRESSION OF FAULTING 

The seismic expression of the Late Triassic and Jurassic successions in the Goliat area are 

presented in Fig. 5 where the seismic–well tie is based on well 7122/7-3 (location shown in Fig. 3). 

6.1 Seismic observations 

The contact between the base Fruholmen Formation of the Realgrunnen Subgroup and the 

underlying Snadd Formation of the Storfjorden Subgroup is marked by a zero-crossing between two 

prominent reflectors (Fig. 13). Within the Realgrunnen Subgroup the contact between the 

Fruholmen Formation and the overlying Tubåen Formation, while easily discernible in the core 

analysis (section 5), is not sharply defined in seismic. The Triassic succession as a whole is shown by 

Mulrooney et al. (2017) to thin towards the GT1 segment of the TFFC. In the Realgrunnen Subgroup, 

minor package thickening is observed within depo-centres north and south of the Goliat crest (Fig. 

13B) which shows thinner strata up to and including the Lower Cretaceous Kolje Formation. The 

Realgrunnen Subgroup also shows some minor thickening adjacent to subsidiary faults affecting the 

Goliat anticline (Fig. 13C to F). These minor wedges also exhibit sharp up-dragged geometries similar 

to those described on the GT1 master fault by Mulrooney et al. (2017). A zero-crossing marked by an 

additional strong seismic reflector delineates the boundary between the Realgrunnen Subgroup and 

the Jurassic Package (Fig. 5 and Fig. 13C to F). The Jurassic and Lower Cretaceous package shows the 

most developed thickening of packages towards faults whereas the above-lying Cretaceous Kolmule 

and Kolje formations (undifferentiated) show sag geometries.   

 

6.2 Seismic interpretation 

The thinning of the Triassic succession towards the TFFC can be credited to two factors, 1) 

the Goliat field overlies a basement block (Mulrooney et al., 2017) which has experienced less 

subsidence than the greater Hammerfest Basin area, and as such did not generate the same volume 
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of accommodation space, and 2) the Nordmela and Stø formations (Realgrunnen Subgroup) are 

missing across the Goliat anticline. The nature of this missing strata, i.e., erosion, non-deposition or 

condensed is hard to determine due to uncertainty regarding the age of the Realgrunnen Subgroup 

in the SW Barents Sea (Olaussen et al., 2010). The identification of facies 8 herein (section 5), 

however, may favour a condensed sequence scenario, although this interpretation is ambiguous. 

The minor wedge geometries adjacent to faults in the Realgrunnen Subgroup are consistent 

with an initial small-scale rift event in the Late Norian?–Rhaetian, although the possibly condensed 

nature of the upper Tubåen Formation would mask clear seismic signatures of fault activity. The up-

dragged geometries in the hanging walls of these faults are consistent with fault propagation 

monoclines, which were subsequently breached.  

Given the missing Nordmela and Stø formations, the top Realgrunnen Subgroup is 

interpreted as a mid-Jurassic regional unconformity (e.g., Faleide et al., 1993; Worsley, 2008; 

Henriksen et al., 2011) and marks the onset of the main Mesozoic phase of rifting, which continued 

into the lower Cretaceous Knurr Formation. The more sag-shaped thick Kolmule and Kolje 

formations are interpreted as post rift deposits, although Mulrooney et al. (2007) suggest minor 

reactivations continued into the Palaeogene. 

The Goliat crest (Fig. 13B) is interpreted to have formed a structural high during deposition 

of the Realgrunnen Subgroup through to the Lower Cretaceous (early Barremian to Aptian) although 

minor variations in subsidence persist up to the Late Palaeocene to Oligocene Torsk formation.  

 

7. FAULT ANALYSIS 

Four master faults, AG1, AG2, AG3 and HR1 and seven subsidiary faults AG5, AG6, AG7, GT2, 

GT3, GT4 and GT5 (locations shown in Fig. 3) were subject to displacement analysis. Alan diagrams 

(Fig. 14) measuring fault displacement at the level of the top Realgrunnen Subgroup were produced 

by projecting the interpreted seismic horizons onto the fault polygons. In the EN0901 MAZ, the lack 

of a clear seismic reflector representing the boundary between the two formations has resulted in 

the subgroup being treated as a single stratigraphic unit. Due to this, fault displacement profiles and 

fault parallel stratigraphic thickness variations (Fig. 14) are derived from the subgroup as a whole. 

Displacement measurements were taken at 100 m intervals along the fault trace. The resultant Alan 

diagrams show displacement dissipates towards the tip points of fault traces, however the line plots 

produced show “saw tooth” profiles, i.e., at least two orders of displacement maxima are 

superimposed on the overall trend. The higher order maxima have typical, but non-systematic 

separation of approximately 1km, the separation of lower order maxima are more typically in the 

100 to 200 m range. 
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Variations in the thickness of the Realgrunnen Subgroup immediately adjacent the faults are 

also displayed in Fig. 14. The seismic horizons that represent the top and bottom of the subgroup 

were projected onto the fault polygons allowing fine interval measurement (every 20 m) of the 

package’s vertical thickness. Undulating thickness profiles are characteristic of all the analysed 

faults. A notable correlation between sites of increased hanging wall thickness and reduced foot wall 

thickness is observed.  

The distribution of displacement and the variation in the thickness profiles along faults are 

used to identify the segment history of the faults during their early phases of growth. The 

occurrence of displacement maxima along through-going faults have previously been shown to 

represent the centres of former segments (e.g., Peacock and Sanderson, 1991; Mansfield & 

Cartwright, 1996; Mansfield & Cartwright, 2001; Walsh et al., 2003; Lohr et al., 2008). Thinning of 

the footwall profile is credited to either reduced deposition or the development of erosional 

catchments at the sites of footwall uplift, i.e., at the centre of fault segments (e.g., Leeder, 1991; 

Leeder & Jackson, 1993; Eliet & Gawthorpe, 1995; Densmore et al., 2003, 2004; Foster et al., 2010; 

Elliott et al., 2011). Correspondingly, thickness increases in the hanging wall are envisaged to record 

individual isolated basins that formed adjacent to fault segments, which is characteristic of the initial 

stages of rift basin development (Prosser, 1993; Childs et al., 1995; Schlische, 1995; Gawthorpe and 

Leeder, 2000).  Sites that display displacement maxima, footwall thickness minima and hanging wall 

thickness maxima are highlighted in Fig. 14. Sites where all three observations coincide are 

confidently interpreted to mark the centres of active segments during deposition of the Realgrunnen 

Subgroup (yellow dashes in Fig. 14). The locations of these active segments are mapped in Fig. 15B 

and inform the tectonic morphology in palaeogeographic reconstructions (Fig. 16 and 17).  

 

8. AMPLITUDE VERSUS ANGLE ATTRIBUTE ANALYSIS 

Amplitude Versus Angle (AVA) attribute analysis was conducted over a 10 ms window below 

the top Realgrunnen Subgroup, the results of which are displayed in Fig. 15A. AVA attribute analysis 

has the potential to reveal subtle spatial lithology and fluid trends not readily seen from post stack 

amplitude analysis. The Zoeppritz (1919) equation is mathematically complex and provides limited 

physical insight into the variation of the reflection coefficient as a function of the incident angle. 

Several authors have proposed linearised approximations (Aki and Richards, 1980; Shuey, 1985; Fatti 

et al., 1994) to the Zoeppritz equation. Partial angle stacks with a near to far angle coverage of 10°-

59° have been used as inputs to generate AVO Intercept (A) and AVO Gradient (B) using the two 

term Aki Richards equation (Equation 1). 
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Rpp (θ)=A + BSin2θ……………………………………………………………………………………………………………………..….(1) 

 

Where Rpp (θ) represents a P-wave reflection coefficient at a given an angle (θ). The Intercept and 

Gradient attributes usually provide more information when combined together, then when used 

independently. One of such combinations is the scaled S-wave reflectivity attribute which is 

proportional to the scaled difference between A and B. This attribute is less sensitive to fluid effects 

in reservoirs and can be used to highlight the gross depositional trends. Shales usually show a lower 

resistance to shearing due to inherent microfabric alignment and as a result will generally show a 

lower shear wave reflectivity compared to sands.  

The strong positive amplitudes imaged in Fig. 15A are mapped in Fig. 15B and form 

expansive lobe-shaped clusters in the hanging walls of faults. These are most developed in the 

central part of Goliat field within the hanging wall of the AG1 fault where they form a fingered lobe 

(Fig. 15 B: blue box delineating Fig. 16A), adjacent to a relay zone between the central and southern 

GT1 fault segment (Fig. 15B: blue box delineating Fig. 16B), and in the hanging wall of the northern 

GT1 segment (Fig. 15B: blue box delineating Fig. 16C). Smaller less expansive areas of positive 

amplitudes show elongate geometries parallel to and within the hanging walls of subsidiary faults. 

Furthermore, discrete, ribbon-shaped areas of positive amplitudes have been interpreted, and are 

most developed in the hanging wall of the AG1 fault where they show sinuous and U-shaped 

geometries.  

Based on the principals of the AVA analysis, the strong positive amplitudes in Fig. 15A 

represent gross sand prone areas, the geometries of which provide insight into the depositional 

elements of the Realgrunnen Subgroup as outlined in Fig. 15B. Palaeogeographic interpretations of 

key sand bodies (highlighted by blue boxes in Fig. 15B) are given in Fig. 16. Due to the erosional 

nature of the base Tubåen Formation, and its absence in wells 7122/7-4S, 7122/7-1 and 7122/7-5A, 

the AVA attribute map (Fig. 15A) likely images sedimentary features from both the Tubåen 

Formation and the underlying Fruholmen Formation (created from a 10 ms window). Consequently, 

the interpretation of gross sand prone areas and channelised features in Fig. 15 is an amalgamation 

of both formations. 

 The large lobe-shaped clusters of positive amplitudes, e.g., in the hang walls of GT1 (a) and 

GT1 (b) are envisaged to represent alluvial fans (Fig. 16C) as encountered in well 7122/7-3. The 

fingered lobe in the center of Fig. 15B appears to fan from a relay zone between the eastern tip-

point of AG1 and GT2 (Fig. 16A) and is consistent with the observation of increased channel density 

from well logs (section 5.11). The more elongate lobes or ribbons of positive amplitudes, e.g., within 

the hanging walls of AG1, AG2 and some GT subsidiary faults, are interpreted as stacked or 
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amalgamated channel facies (Fig. 16B). Their occurrence within hanging walls and their elongate 

geometries parallel to faults suggests they have been influenced by tectonic topography, i.e., they 

display axial drainage. The more patchy positive amplitudes adjacent to faults may represent small 

alluvial fans whereas the discrete sinuous bodies likely represent channels and associated ox-bow 

lakes. The curvilinear subsidiary faults, north of AG1 (Fig. 15B), appear to have no influence on 

channel orientation. 

 

9. DISCUSSION 

9.1 TECTONIC CONTROL ON SEDIMENTATION IN THE GOLIAT FIELD 

The synthesis of sedimentological, fault and AVA analysis herein has allowed informed 

palaeogeographic reconstructions to be generated for the Realgrunnen Subgroup in the Goliat field. 

We propose depositional models for both formations in the EN0901 MAZ area (Fig. 17). We argue 

that fault activity influenced the deposition of the Realgrunnen Subgroup, modifying the equilibrium 

profiles of continental to coastal plain environments, and is especially notable during the deposition 

of the Tubåen Formation. The faults shown in Fig. 17 are interpreted to have been active during 

deposition as deduced from fault analysis (section 7; Fig. 14), and had an influence on sedimentary 

architecture (Fig. 15 and Fig. 16). 

Facies identified within the Fruholmen Formation indicate an overall regressive unit 

deposited in shallow marine, deltaic and fluvial environments, with floodplains established 

throughout the study area by the Norian–Rhaetian. Despite the fact that no sedimentary features 

diagnostic of lateral accretion or point bar deposits were observed in the fluvial deposits (facies 3), 

the overall depositional environment (and particularly the ‘upper interval’) is consistent with the ox-

bow shaped and meandering channel features observed in the AVA map (Fig. 15A). As such, these 

features are inconsistent with the braidplain/alluvial fan environments interpreted for the overlying 

Tubåen Formation.  

The strong spatial association of individual channel features and ribbons of gross sand prone 

areas identified in the AVA analysis map (Fig. 15), especially within the hanging walls of the AG1 and 

AG2 fault systems, suggests fault-related subsidence, and uplift, influenced drainage systems. In this 

scenario we suggest that river/distributary channels migrated or avulsed towards the axis of 

maximum subsidence, i.e., parallel to the structural strike (e.g., Bridge and Leeder, 1979; Miall et al., 

1981).  We interpret the more ribbon-like features as channel deposits where drainage became 

increasingly confined by continued tilting as addressed by Alexander & Leeder (1987), Gupta et al. 

(1999), Young et al. (2002) and Garcia-Garcia et al. (2006). This interpretation is supported by a 
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lateral variation in channel deposit densities in the upper part of the Fruholmen Formation (Table 3; 

section 5.12) which may reflect some differential movements already at this time. Discernment of 

channel affinity in Fig. 15 to either the Fruholmen Formations or the Tubåen Formation is difficult 

(AVA interval samples both formations; section 8), however, the patchy distribution of the Tubåen 

Formation (only present in some wells) suggests, at least some of these features are affiliated to the 

former.  

More robust evidence of fault activity is discernible from the Tubåen Formation, which is 

preserved in three out of the six investigated wells and represents braidplain deposits (facies 2). In 

addition, texturally immature sandstones with scattered gravel and pebbles in well 7122/7-3, are 

interpreted as distal alluvial fan deposits. Both facies suggest fully terrestrial environments. This 

change in depositional environments from the underlying Fruholmen Formation suggests a 

regressive event caused by a fall in relative sea level, but also likely reflects  increase in sediment 

supply due to rejuvenation of more proximal hinterlands or increasingly humid climates (e.g. Ryseth, 

2014), discussed below (section 9.2).  

The occurrence of alluvial fan deposits in well 7122/7-3 coincide with the large sand prone 

bodies identified in the AVA attribute map (Fig. 15). We interpret these sand bodies to represent 

texturally immature alluvial fans that were sourced locally from uplifted foot walls of active faults 

(Fig. 16). This interpretation is supported by the variations in the Realgrunnen Subgroup hanging 

wall and footwall thickness profiles immediately adjacent to the faults (section 7; Fig. 14). We 

interpret the general correlation of fault displacement maxima, footwall thickness minima and 

hanging wall thickness maxima to represent syn-kinematic footwall erosion, and preferential 

deposition in isolated sub-basins along a segmented, immature fault system (e.g., Peacock and 

Sanderson, 1991; Schlische, 1995; Mansfield & Cartwright, 1996, 2001; Walsh et al., 2003; Lohr et 

al., 2008). This interpretation is consistent with the initial stages of rifting in a continental setting as 

described by Gawthorpe & Leeder (2000).  In this scenario, the texturally immature nature of the 

alluvial fan deposits is explained by short transport distances of material derived from semi-circular 

drainage catchments that develop in the footwalls of active fault segments (Leeder, 1991; Leeder & 

Jackson, 1993; Eliet & Gawthorpe, 1995; Densmore et al., 2003, 2004; Foster et al., 2010; Elliott et al. 

2011). The catchments develop due to foot wall uplift that takes place contemporaneously, and in 

equilibrium to hanging wall subsidence (Barr, 1987; Wernicke & Axen, 1988; Yielding, 1991; Long & 

Imber, 2010).  

The aforementioned spatial association of the alluvial fans with the major faults in the Goliat 

area, i.e., GT1 (a) and (b) as depicted in Fig. 16C and Fig. 17, suggests that during the late Norian to 

Rhaetian, sediment entered the Hammerfest Basin via point sources, i.e., escarpments in faults and 
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at relay zones between adjacent fault segments (e.g., Gupta et al., 1999; Gawthorpe & Leeder, 

2000). A relay zone point source is also proposed for the alluvial fan within the hanging wall of the 

AG1 and the GT2 faults.  In our model, (Figs. 16 and 17) we also suggest fluvial systems entered the 

Hammerfest Basin at relay zones between active GT1 fault segments and that axial drainage was a 

feature of the Tubåen Formation.  

The Realgrunnen Subgroup comprises the upper producing reservoir unit in the Goliat field, 

while the Kobbe Formation forms the lower. More recently, the Snadd Formation has been 

investigated as a reservoir unit. Furthermore, hydrocarbons have also been discovered in the 

Klappmyss Formation. The determination of axial drainage, stacked channel geometries and alluvial 

facies herein can give insight into reservoir extent, connectivity and properties  (Bridge and Leeder, 

1979; Miall et al., 1981; Gupta et al., 1999; Leeder, 1993; Young et al., 2002; Garcia-Garcia et al., 

2006; Longhitano et al., 2015). In addition, the identification of gross sand prone areas by AVA in 

combination with detailed knowledge of the reservoir attitude and fault architecture (Leutscher, 

2013; Mulrooney et al., 2017) may allow identification of smaller reservoir compartments within the 

formation.           

 

9.2 DRIVING MECHANISMS AND REGIONAL CONTEXT 

To date, three major post-Caledonian tectonic phases have been identified in the 

Hammerfest Basin, i.e., in the Late Devonian to Middle Permian, Middle Jurassic to Early Cretaceous 

times and during the Cenozoic (Rønnevik et al., 1982; Gabrielsen, 1984; Faleide et al.,1984, 1993; 

2008; Dengo & Røssland, 1992; Riis et al., 1986; Gudlaugsson et al.,1998; Worsley, 2008). The 

identification of a phase of extension during the Rhaetian is somewhat anomalous as the late 

Triassic in the SW Barents shelf is usually characterised by regional subsidence, tectonic quiescence, 

and deposition of large siliciclastic sediment volumes (Nøttvedt et al., 1993; Faleide et al., 2008; Riis 

et al., 2008; Worsley, 2008; Glørstad-Clark et al., 2011; Høy & Lundschien, 2011). Local zones of 

Triassic  fault activity, however, have been identified on and near the Loppa High Fault System 

(Gabrielsen, 1984; Dengo & Røssland, 1992; Gudlaugsson et al., 1998; Bjøkesett, 2010), in the Hoop 

Graben (Mahajan et al., 2014), and on eastern Svalbard (Anell et al., 2013; Osmundsen et al., 2014). 

We discuss  two synchronous tectonic  episodes possibly responsible for the Late Triassic 

faulting described herein; 1) Rejuvenation of Fennoscandia to the south and/or vertical movements 

related to the early Cimmerian tectonic phase in northern Europe (Ziegler, 1982; Mayall, 1983; 

Zonenshain et al., 1990; Golonka, 2004), and; 2) a tectonic episode which could correlate to 

movement on the Novaya Zemlya Segment of the Pai-Khoi–Novaya Zemlya–South Taimyr fold belt 

(Scott et al., 2010; Drachev, 2016; Klausen et al., 2016) to the east. Furthermore, we consider 
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whether sediment loading from the aforementioned rejuvenation of Fennoscandia could have 

driven, or contributed to the fault event described herein. 

Mørk & Smelror (2001) have credited a strong correlation of Triassic sequence boundaries in 

the circum-Arctic to the fact that during this time, these areas were located along the northern 

palaeo-margin of the Pangaean supercontinent. The regional correlations may reflect eustatic 

changes along the palaeo-margin or simultaneous tectonic events affecting an amalgamated 

lithospheric plate. The Late Triassic coincided with onset of systematic changes in the continental 

configuration in northern Pangea, i.e., Greenland-Europe rotated counterclockwise relative to North 

America (Torsvik et al., 2002). The diminishing correlation throughout the remainder of the 

Mesozoic is expected as the Pangaean supercontinent underwent break-up.   

Relevant to this study, Embry (1997, 2011) and Mørk & Smelror (2001) identified base and 

near base Rhaetian sequence boundaries which can be correlated throughout Arctic regions (i.e., 

Sverdrup Basin, onshore Svalbard, the Barents Sea area and eastern Siberia). The boundaries are 

indicative of changes in depositional and tectonic regimes. In the case of the near base Rhaetian 

sequence boundary (Mørk & Smelror, 2001), a period of subaerial exposure and ravinement is 

recorded. This boundary likely correlates to the intra-Rhaetian unconformity described herein 

(SB2.1; Fig. 12) that marks the transition between the Fruholmen and Tubåen formation. This 

boundary has been traced by Ryseth et al. (2014) between the Hammerfest Basin in the SW Barents 

Sea, the Halten Terrace on the mid-Norwegian margin and the Viking Graben in the northern North 

Sea. In addition to this, the transition from the Snadd Formation to the Realgrunnen Subgroup (MFS 

in Fig. 12) in the southernmost Barents Sea is marked by a mineralogical change (Bergan & Knarud, 

1993) and an increase in grain size. Mørk (1999), Riis et al. (2008) and Klausen et al. (2016) suggested 

that the increased quartz and k-feldspar content in the Realgrunnen Subgroup is likely derived from 

erosional products of Baltic Shield rocks to the south. Smelror et al. (2009) and Klausen et al. (2016) 

have argued that the western Barents Shelf became shielded from sediment input from the Uralides 

and Novaya Zemlya due to a major marine embayment in the Late Triassic to Early Jurassic. 

Alternatively, or complimentary to this, Ryseth (2014) credit the source change to an episode of Late 

Triassic to Early Jurassic rejuvenation of the Fennoscandian hinterlands, south of the Barents shelf, a 

concurrent reduction in subsidence rates in basin areas, and potentially a change to more humid 

climates around the Triassic–Jurassic boundary. This phase of rejuvenation is consistent with 

Hendriks & Andriessen (2002) and Hendriks (2003) who used fission track data to infer Late Triassic 

to Early Jurassic uplift along the onshore Atlantic rift margin of Northern Norway, and the Kola 

Peninsula, respectively. Furthermore, Paul et al., (2009) have credited provenance variation in the 

Keuper sandstones in Germany to rapid late Triassic uplift of the Caledonides in southern Norway.   
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Far field stresses related to movement on the Novaya Zemlya segment of the Pai-Khoi–

Novaya Zemlya–South Taimyr fold belt (PNZST) is an additional potential tectonic driving mechanism 

for the Late Triassic faulting described herein. Drachev (2016) have reported that recent unpublished 

MCS data acquired by TGS Seismic Company in the vicinity of the western coast of Novaya Zemlya 

show a sharp angular unconformity at, or near the Triassic–Jurassic boundary. The author related 

this break to the main deformation phase of the Novaya Zemlya segment of the PNZST, as 

underlying this boundary, the entire sedimentary section is severely deformed. This evidence for 

Late Triassic to Early Jurassic tectonism in Novaya Zemlya may be consistent with Klausen et al. 

(2016) who proposed a young, Late Triassic to Early Jurassic magmatic provenance area to the east 

of the Barents Sea. Furthermore, this is in concurrence with Torsvik and Anderson (2002) who using 

thermal remagnetisation ages (220–230 Ma; prefolding), constrained timing of Taimyr deformation 

to post-Mid Triassic to Late Triassic times, therefore showing that whilst thrusting terminated in the 

Urals during the Permian, crustal shortening continued in Taimyr, Novaya–Zemlya and the South 

Barents Sea, well into the Mesozoic and took place at took place at brittle/high-crustal conditions. 

These observations are further bolstered by Otto and Bailey (1995) and Nikishin et al. (1996).  

Finally, the SB2.1 intra-Rhaetian sequence boundary may partly reflect the early Cimmerian 

orogeny (Zonenshain et al., 1990; Golonka, 2004), where in the western Tethys area, several blocks 

of the Cimmerian provenance (Sengör, 1984; Sengör and Natalin, 1996) collided with the Eurasian 

margin. Golonka (2004) suggest this tectonic phase may have influenced the extinction of biota at 

the Triassic-Jurassic boundary. Evidence for this event affecting the northern Pangaean margin is 

limited, although Mayall (1983) have credited this event for late Triassic (Rhaetian) syn-sedimentary 

deformation in shallow, dominantly freshwater lagoonal sediments in southwest Britain. In this 

scenario, the author credits earthquake activity related to the tectonic event and associated uplift in 

the north Somerset-South Wales area as the driving mechanisms for faulting and slump-folding in 

the section. 

Whether the faulting event described herein was driven purely by tectonic forces, i.e., far 

field stresses from the aforementioned events or a more secondary force, i.e., loading of sediments 

albeit derived from vertical movements, has not been resolved. In the absence of tectonic stresses, 

vertical loading, along with increases in fluid pressure are the main factors in increasing fault activity 

in extensional systems, where the maximum compressive stress component is vertical (Lahr et al., 

1976). Dengo & Røssland (1992) described the Triassic reactivation of some basement-involved 

normal faults in the Dia graben, east of the Loppa High. In this case, the reactivation was tentatively 

credited to the Uralian Orogeny and loading by westward prograding clastic sediments. Similarly, 

Anell et al. (2013) speculated that Late Triassic faults on Edgeøya, east Svalbard, were driven by 
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reactivation of deeper seated faults, and again credit the activity to far field stresses of the Uralian 

Orogeny. It is uncertain if sediment loading will provide sufficient vertical stresses in order to 

reactivate basement structures. Such mechanisms are usually responsible for thin-skinned 

deformation, i.e., in deltaic environments (Hooper et al., 2002; Imber et al., 2003; Morely et al., 

2011). Brandes et al. (2011), however, credit reactivation of Jurassic basement faults of the Central 

European Basin System to far field extension caused by (in this case) an advancing ice-sheet, water 

and deltaic sediment loading. 

In the Goliat area, a sediment loading scenario for late Norian?–Rhaetian faulting 

could be consistent with the aforementioned Fennoscandian rejuvenation and an increased influx of 

more proximal sediments to the Barents Sea. In this scenario, the shift to higher sedimentation rates 

and lower rates of subsidence offshore (as evident across the boundary between the Fruholmen and 

Tubåen formations; Ryseth, 2014) may have significantly increased the vertical load and reactivated 

underlying basement lineaments. SB3.1, identified in wells 7122/7-2 and 7122/7-3 at the top of the 

Tubåen Formation, likely marks a shift from thick regional deposition of deltaic sediments to a 

sediment-starved marine shelf, and possibly a mild erosional event. Cessation of this Late Triassic to 

Early Jurassic phase of faulting would likely have followed the waning in sedimentation, and faults 

would remain in stasis until renewed tectonism in the Middle Jurassic. 

 

10. CONCLUSIONS 

The synthesis of sedimentological, fault and AVA analysis herein has allowed informed 

palaeogeographic reconstructions to be generated for the Realgrunnen Subgroup in the Goliat field. 

• The Fruholmen Formation forms an overall regressive succession composed of siliciclastic 

sediments deposited in pro-deltaic, delta front, floodplain/delta plain and fluvial 

environments, with marked vertical and lateral variations in channel stacking densities. 

• The Tubåen Formation, which erosively overlies the Fruholmen Formation, includes coarse-

to very coarse-grained sandstones deposited in fluvial braidplain and distal alluvial fan 

environments. 

• The transition from the Tubåen Formation to the Fuglen Formation is marked by 

transgressive shelf deposits that record a major lacuna spanning the ?late Rhaetian–early 

Callovian and may represent an extremely condensed expression of the Stø Formation.  

 

We present evidence that minor fault activity influenced the deposition of the Realgrunnen 

Subgroup. 
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• Subtle thickening of the Realgrunnen Subgroup is observed adjacent to subsidiary GT faults. 

• Displacement analysis on faults reveals 2 orders of displacement maxima that correlate with 

footwall thickness minima and hanging wall thickness maxima. These undulations in 

thickness are interpreted to represent syn-kinematic footwall erosion, and preferential 

deposition in isolated sub-basins, respectively, along a segmented, immature fault system. 

• AVA (Amplitude versus Angle) attribute maps reveal the positions and geometries of gross 

sand prone areas. These features are identified as individual meandering channels, ox-bow 

lakes, stacked/amalgamated channel bodies and alluvial fans. A tendency towards axial 

drainage suggests syn-depositional fault-related subsidence. We interpret large lobe-shaped 

sand bodies as texturally immature alluvial fans (supported by well log observations) that 

were sourced locally from uplifted footwalls of active faults.  

• The spatial association of alluvial fans with major faults in the Goliat area suggests that 

sediment entered the Hammerfest Basin via point sources, e.g., escarpments in faults and at 

un-breached relay zones between adjacent fault segments. 

• The main phase of fault activity is suggested to have occurred during deposition of the 

Tubåen Formation, although a lateral variation in channel deposit densities in the upper part 

of the Fruholmen Formation could be the result of weak differential movements already at 

this time. 

The identification of a phase of extension during the Rhaetian is somewhat anomalous. We 

postulate a high flux of sediment entered the Hammerfest Basin and possibly relates to a phase of 

Fennoscandian hinterland rejuvenation, coupled with decreases in subsidence rates and shifts 

towards a more humid climate. Vertical loading may have reactivated basement lineaments. 

Alternatively or complimentary, faulting may relate to the movements on the Novaya Zemlya 

segment of the Pai-Khoi–Novaya Zemlya–South Taimyr fold belt and/or to the early Cimmerian 

tectonic phase in northern Europe. 
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13. FIGURE CAPTIONS                

Table 1. Stratigraphic picks and formation thicknesses in the studied wells. 

Table 2. Summary of facies in the Realgrunnen Subgroup. BI – Bioturbation index, GR – Gamma ray, 

NP – neutron-porosity, BD – bulk density 

Table 3. Alluvial architecture parameters of the Fruholmen Formation. Channel deposit proportion 

(CDP), measured as the thickness of channel deposits (TC) relative to the total thickness of alluvial 

succession for a given interval (T), is found to increase consistently upward in all investigated wells 

from the ‘lower’ to the ‘upper’ interval (Fig. 12). Note that CDP values for the ‘upper’ interval may be 

artificially high where significant erosion has occurred, thereby preserving only the lower part of the 

sequence where the abundance and stacking density of distributary channels are the greatest. 
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Figure 1. Deformation of the rock volume surrounding fault segments influences the spatial and 

geometric nature of both deposition and erosion and can give insight into fault activity. Individual 

fault segments are elliptical in shape and accrue the greatest displacement towards the centre. This 

displacement gradient is accommodated by transverse folding, i.e., a subsiding hanging wall syncline 

and an uplifting footwall anticline. Accordingly, the centres of theses transverse folds offer the 

largest accommodation space and topographic highs prone to erosion in hanging walls and 

footwalls, respectively. Within the hanging wall, thickening of sediment towards the fault suggests 

syn-kinematic deposition. Channels migrate towards the zone of maximum subsidence and adopt 

axial drainage. Displacement minima and hanging wall syn-rift thickness minima are characteristic of 

the tip points of faults or sites of linkage between formerly individual fault segments. In addition, 

sites of fault linkage often exhibit jogs in the fault trace. Continental rift settings are characterised by 

large relay zone fans and small, but numerous cross-fault fans. Fold axis concept is based on 

Schlische (1995). Depositional concepts are based on Gawthorpe and Leeder (2000). 

Figure 2. (A)  Bathymetric map of the Arctic Ocean showing the location of the western Barents 

Shelf. Sourced from Jakobsson et al. (2012).  (B) Main structural elements of the south western 

Barents Shelf and adjacent areas modified from Faleide et al. (2010). Abbreviations: BB = Bjørnøya 

Basin, FSB = Fingerdjupet Sub-basin, HB = Harstad Basin, HfB-W = Hammerfest Basin West, HfB-E = 

Hammerfest Basin East, LH = Loppa High, MB = Maud Basin, MH = Mercurius High, NB = Nordkapp 

Basin, NH = Nordsel High, OB = Ottar Basin, PSP = Polheim Sub-platform, RLFC = Ringvassøy-Loppa 

Fault Complex, SB = Sørvestsnaget Basin, SFZ = Senja Fracture Zone, SH = Stappen High, SR = Senja 

Ridge, TB = Tromsø Basin, TFFC = Troms-Finnmark Faul complex, VH = Veslemøy High, VVP = 

Vestbakken Volcanic Province. 

Figure 3. Depth structure map of the top Realgrunnen Formation with interpreted structural 

elements including the prominent Goliat anticline and basement involved master faults affecting the 

area. Faults are divided into four identifiable populations i) the Hammerfest Regional (HR) 

interpreted as the offshore Trollfjord-Komagelv Fault Zone trend, ii) the Goliat-Tornerose (GT), 

parallel to the northern TFFC segment, iii) the Alke-Goliat (AG), parallel to the southern TFFC 

segment and iv) the Goliat Central (GC) population, a series of small faults that truncate the Goliat 

crest. The master faults AG1, AG2, AG3 and GT1 form segments of the Troms-Finnmark Fault 

Complex. Locations of wells used in this study are also shown. 

Figure 4. Generalised drainage of the Hammerfest Basin during the Rhaetian – Hettangian when the 

Tubåen Fm (198 – 209 Ma) was deposited showing fluvial systems draining towards the west within 

an east–west orientated embayment. Present day structural lineaments delineating the Hammerfest 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Basin are shown in black. Also shown, the Goliat field (red and green) and the EN0901 survey outline 

(red). The paleo-reconstruction is based on unpublished Hammerfest Basin well data made available 

by ENI Norge. 

Figure 5. Late Triassic and Jurassic seismic stratigraphy of the EN0901 MAZ survey established from 

the well completion log for 7122/7-3. The late Triassic is punctuated by an unconformity prior to 

deposition of the Realgrunnen Subgroup (Fruholmen and Tubåen formations). An additional 

regionally significant unconformity is located at the top of the Realgrunnen Subgroup. The Nordmela 

and Stø formations which are present throughout the southern Hammerfest basin are missing across 

the Goliat rollover structure.  

Figure 6. Key to sedimentary logs. 

Figure 7. Core photos and sedimentary logs of facies 1 (distal alluvial fan) and facies 2 (braided fluvial 

channels) in the Tubåen Formation. The stratigraphic position of the core photos is indicated in the 

logs. A) Structureless very coarse-grained, poorly sorted sandstone with siltstone clast in facies 1, 

7122/7-3. B) Diffuse low-angle cross-stratification in coarse-grained sandstone of facies 1, 7122/7-3. 

C) Mudstone rip-up clasts accentuating low-angle cross-stratification in medium-grained sandstone 

of facies 2, 7122/7-3. D) Well-defined planar cross-stratification in fine- to medium grained 

sandstone of facies 2, 7122/7-3. E) Mottled, carbonate cemented bed with possible root casts in the 

upper part of facies 2, 7122/7-3. F) Very coarse-grained sandstone with large mudstone rip-up clast 

interpreted as channel base deposit of facies 2, 7122/7-2. G) Planar cross-stratified, medium-grained 

sandstone, 7122/7-2. H) Planar cross-stratified and current ripple laminated fine- to medium-grained 

sandstone at the top of a fining-upward unit, 7122/7-2. I) Gravel lag and cross-stratified coarse-

grained sandstone at the base of the Tubåen Formation in 7122/7-6. 

Figure 8. Representative core photos and sedimentary logs of facies 3 in the Fruholmen Formation. 

A) Core section showing fluvial channel deposits (facies 3b) with abandonment fill overlain by tide-

influenced distributary channel deposits (facies 3b). The base and top of the cored section is at the 

lower right and upper left respectively. B) Details of tide-influence distributary channel deposits 

(facies 3b) with well-defined single and paired drapes of mud and organic debris on cross-strata 

foresets, 7122/7-1. C) Fine-grained planar cross-stratified sandstone with mud-drapes in facies 3b, 

7122/7-2. D) Heterolithic interval with climbing current ripples, interpreted as the abandonment fill 

of a fluvial channel (facies 3a), 7122/7-2. E) Fine-grained planar cross-stratified sandstone with mud 

drapes and interbedded mud-laminae (facies 3b), 7122/7-2. F) Medium-grained cross-stratified 

sandstones of facies 3a, 7122/7-6. G) Fine- to medium-grained planar cross-stratified sandstone of 
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facies 3b with well-defined cm-thick mud drapes accentuating tangential cross-strata set bases, 

7122/7-4S. 

Figure 9. Representative core photos and log sections of facies 4 in the Fruholmen Formation. A) 

Brownish mudstones overlain by carbonaceous dark grey mudstones in 7122/7-6. B) Current-ripple 

laminated fine-grained sandstone with escape traces (fu-fugichnia) in 7122/7-2. C) Current ripple 

and plane parallel laminated very fine-grained sandstone in 7122/7-2. D) Massive grey mudstone 

with coal/plant fragments, 7122/7-2. E) Massive brown mudstone with coal fragments and possible 

rootlets, 7122/7-4S. F) Sharp, erosively based fine-grained sandstone, interpreted as crevasse 

channel deposit, 7122/7-4S. G) Upward-coarsening, bioturbated very fine- to fine-grained sandstone 

in 7122/7-2. H) Very fine-grained sandstone with rootlets, overlain by coal in 7122/7-4S. 

Figure 10. Delta front (facies 5) and prodelta deposits (facies 6) in the Fruholmen Formation. A) Core 

section showing heterolithic deposits of facies 6 in 7122/7-1. Base and top of the cored section is to 

the lower right and upper left, respectively. B) and C) Details of prodelta deposits (facies 6) in 

7122/7-1 showing interbedded mudstone, siltstone, and very fine-grained sandstone, with common 

synaeresis cracks, rare bioturbation and occasional wave ripples. D) Core section from 7122/7-2 

showing alternating deposits of facies 5 and 6. E) Root casts in fine-grained sandstone at the top of a 

distributary mouth bar of facies 5 in 7122/7-1. F) Plane-parallel and low angle cross-lamination in 

very fine-grained sandstone of facies 5 in 7122/7-2. G) Sand-rich heterolithic deposits of facies 6 in 

7122/7-1 displaying thin sandstones with wave ripples and combined-flow ripples separated thin, 

weakly bioturbated mudstones. H) Combined flow ripples in very fine-grained sandstone of facies 5 

in 7122/7-2. I) Plane-parallel and low-angle cross-laminated very fine-grained sandstone of facies 5 

with rare wave ripples in 7122/7-1. sy-synaeresis cracks, Pa-Palaeophycus, Pl-Planolites, Te-

Teichichnus 

Figure 11. Core photographs and sedimentary logs illustrating offshore (facies 7) and transgressive 

shelf (facies 8) deposits observed at the boundary between the Realgrunnen Subgroup and the 

Fuglen Formation. A) Matrix supported conglomerate with phosphate (Ph) and quartz-pebbles (Qz) 

overlain by carbonate with wavy lamination at the top of the Realgrunnen Subgroup, facies 8 in 

7122/7-2. Note passively filled burrows attributed to the Glossifungites/Trypanites ichnofacies 

protruding down from the sharp boundary towards the Fuglen Formation. B) Intensely bioturbated 

silty mudstones of facies 7 in the Fuglen Formation, 7122/7-3. As-Asterosoma, He-Helminthopsis, Ph-

Phycosiphon 
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Figure 12. Well-to-well and fence diagram correlation of the investigated Goliat Field wells. SB – 

sequence boundary, MFS – maximum flooding surface 

Figure 13. (A) Composite seismic transect of the GT1 hanging wall. Interpreted in (B).  The transect 

parallels the fault trace and shows the geometry of packages immediately adjacent to the fault. The 

Goliat crest is clearly imaged and acts as a divide between two Mesozoic fault controlled depo-

centres. Package thickening, indicative of fault controlled subsidence, develops in the Realgrunnen 

Subgroup and becomes more pronounced up section. (C,E) Key seismic profiles transecting the 

EN0901 MAZ survey, X – X’ trends perpendicular to AG faults, Y – Y’ trends perpendicular to GT 

faults. (D,F) Expanded view of seismic interpretations showing fault architecture affecting the 

Realgrunnen Subgroup, with minor growth wedging and hanging wall drag geometries highlighted. 

Note high population of minor faults contained within and just below the Realgrunnen Subgroup, 

consistent with early stages of rifting.  

Figure 14. Realgrunnen Subgroup displacement profiles for four master faults, AG1, AG2, AG3 and 

HR1 and seven subsidiary faults AG5, AG6, AG7, GT2, GT3, GT4 and GT5, locations shown in figure 3. 

Two orders of displacement peaks, or maxima are recognised. Also shown: hanging wall and footwall 

thickness profiles for the Realgrunnen Subgroup. Hanging wall thickness maxima and foot wall 

minima are highlighted and likely mark sites of syn-depositonal segment activity where they 

correlate.   

Figure 15. A) Scaled S-wave reflectivity attribute map produced from a 10 ms amplitude extraction 

window below the top of the Realgrunnen Subgroup (Tubåen Fm).  Individual sinuous channelised 

features and ox-bow lakes are imaged by strong positive amplitudes. More clustered strong positive 

amplitudes represent gross sand-prone areas i.e., stacked or amalgamated channel bodies, deltaic 

lobes or alluvial fans.  Weaker positive and negative amplitudes represent increasingly mud prone 

facies, i.e., floodplain/delta plain deposits.  B) Interpretation of sand-prone facies distribution in 

relation to active faults during the Rhaetian. Sediment point sources and routing directions 

highlighted by black and white arrows, respectively. Blue rectangles highlight areas subject to 

paleogeographic reconstructions in figure 17.       

Figure 16. Paleogeographic reconstructions of key zones where fault-related geomorphology 

interacts with and routes sediments during the Rhaetian. Locations highlighted by blue rectangles in 

figure 15.   

Figure 17. Summary of depositional environments and fault interaction during deposition of the 

Fruholmen Formation (bottom) and the Tubåen Formation (top). The Fruholmen Formation is 
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interpreted to include deltaic and fluvial deposits. Minor fault activity and axial drainage is envisaged 

at this stage. Relay ramps between unlinked segments of the GT1 fault provide point sources for 

regional fluvial systems to enter the Hammerfest Basin. The Tubåen Formation includes braidplain 

deposits with alluvial fans derived locally from uplifted footwalls.  
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 Formation tops (m MD) Thickness (m) 

Well Snadd Fruholmen Tubåen Fruholmen Tubåen 
Realgrunnen 

Subgroup 

7122/7-1 1202 1102* - 100 0 100 

7122/7-2 1198 1083 1077* 115 6 121 

7122/7-3 1180 1105 1087* 75 18 93 

7122/7-4S 1244 1177* - 67 0 67 

7122/7-5A 1280 1181* - 99 0 99 

7122/7-6 1206 1131 1122* 75 9 84 

*Top Realgrunnen Subgroup 
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Facies Interpretation Lithology Sedimentary structures and 

facies architecture 

Thickness BI Trace fossils and biota Petrophysical log 

signatures 

1 Distal alluvial 

fan 

Coarse to very coarse-

grained sandstone. Poorly 

sorted. Scattered fine 

gravel and rare mudstone 

and siltstone clasts 

Sharp-based. Massive 

(structureless), diffuse low-

angle cross-stratification 

Bed boundaries 

indistinct; total 

thickness 7.5 m 

0 None observed GR: Cylindrical; 

NP-BD crossplot: 

Large negative 

separation (gas 

effect) 

2 Braidplain Sharp-based, stacked fining 

upward units. Fine- to very 

coarse-grained sandstone. 

Rare silty interbeds and 

laminae. Poorly to 

moderately sorted. Rare 

mudstone rip-up clasts. 

Multiple internal scour 

surfaces. Planar and trough 

cross-stratification. Rare 

current ripples in finer-grained 

intervals 

0.1-1.2 m  

thick beds; stacked 

1-5 m thick fining-

upward units 

forming 4.7-10 m 

thick sandstone 

bodies 

0 Rare coal fragments GR: Cylindrical; 

NP-BD crossplot: 

Small negative 

separation. Large 

negative separation 

where gas-filled 

3 Fluvial channels       

3a Fluvial channels Sharp-based, fining upward 

units. Very fine- to very 

coarse-grained sandstone. 

Moderately to well-sorted. 

Mudstone rip-up clasts 

Structureless, planar and 

trough cross-stratification, 

current ripple lamination, 

plane-parallel lamination 

0.1-1.0 m  

thick beds; 3-10 m 

thick fining-upward 

units 

0 Abundant coal fragments and 

plant material. Locally rooted 

tops 

GR: Cylindrical, bell-

shaped, symmetrical;  

NP-BD crossplot: 

Weak negative or no 

separation. Large 

negative separation 

where gas-filled 

3b Tide-influenced 

distributary 

channels 

Very fine- to coarse-grained 

sandstone. Moderately to 

well-sorted. Abundant mm-

Sharp-based, fining-upward 

units. Planar and trough cross-

stratification, locally with 

0.1-2.0 m  

thick beds; 1-9 m 

thick fining-upward 

0-2 Undifferentiated vertical 

sand-filled burrows, and 

small horizontal burrows. 

Similar wireline log 

signatures as facies 

3a 
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thick single and paired 

drapes of mudstone 

organic debris 

tangential set bases, current 

ripples, flaser lamination, soft-

sediment deformation  

units Abundant coal fragments and 

plant material. Locally rooted 

tops 

4 Floodplain/ 

delta plain 

Grey to brownish grey 

mudstone, siltstone and 

very fine- to fine-grained 

sandstone. Thin coals and 

carbonaceous mudstone 

Mostly massive. Occasional 

fining and coarsening upward 

grain-size motifs. Current ripple 

lamination (2D and 3D ripples, 

locally climbing), plane-parallel 

lamination, low-angle planar 

cross-stratification, rare soft-

sediment deformation 

structures 

mm-scale to >1 m 

thick sandstone 

beds; total 

thickness: 1-24 m 

0-4 Lockeia, undifferentiated 

horizontal and vertical 

burrows. Rootlets, coal 

fragments and plant material 

GR: irregular, 

serrated;  

NP-BD crossplot: 

irregular 

5 Delta front Mainly very fine- to fine 

grained sandstone. 

Interbedded grey 

mudstone and siltstone 

Single or stacked coarsening-

upward units. Current- and 

wave-ripple lamination, locally 

climbing ripples, combined flow 

ripples, low-angle planar cross-

lamination, plane-parallel 

lamination, dish structures, 

rare synaeresis cracks 

cm-scale to 2.5 m 

thick sandstone 

beds in 1-4 m thick 

coarsening-upward 

units; total 

thickness to 5-6 m  

1-5 Lockeia, Planolites, 

Teichichnus, Diplocraterion, 

Palaeophycus, Rosselia and 

Skolithos. Rare fugichnia. 

Impoverished, distal 

expression of the Skolithos 

ichnofacies. Rooted tops 

common. Coal fragments and 

plant material. Rare shell 

fragments 

GR: locally funnel-

shaped, slightly 

irregular.  

NP-BD crossplot: 

weak positive or no 

separation 

6 Prodelta Grey to dark grey 

mudstone, interbedded 

mudstone, siltstone, and 

Massive (structureless) to 

normal-graded beds and 

laminae. Horizontal lamination, 

soft-sediment deformation. 

mm-scale up dm-

thick sandstone 

beds; total 

thickness  

0-4 Chondrites, Lockeia, 

Planolites, Rhizocorallium, 

Rosselia and Teichichnus. 

Impoverished Cruziana 

GR: high response, 

slightly serrated; 

NP-BD crossplot: 

Large positive 
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very fine-grained sandstone Synaeresis cracks. Wave-, 

current- and combined-flow 

ripples observed in sandstone 

beds 

23-33 m including 

non-cored interval 

ichnofacies. Rare shell 

fragments. 

separation, slightly 

decreasing upward 

7 Offshore Grey, dark grey and 
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Fruholmen Fm,  

‘lower’ interval 

Fruholmen Fm,  

‘upper’ interval 

Fruholmen Fm,  

‘lower’ and ‘upper’ intervals 

combined 

Well TC(m) T(m) CDP TC(m) T(m) CDP TC(m) T(m) CDP 

7122/7-1 13.1 50.5 0.26 5.8 14.4 0.40 64.9 19.1 0.29 

7122/7-2 9.6 55.2 0.17 6.5 20.8 0.31 15.1 76 0.20 

7122/7-3 14.7 36.3 0.41 5.8 8.1 0.72 20.5 44.3 0.46 

7122/7-4S 4.0 24.5 0.16 4.8 10.5 0.46 9.1 35 0.26 

7122/7-5A 10.3 34.4 0.30 16.5 36.8 0.45 26.8 71.2 0.38 

7122/7-6 10.8 24.5 0.44 19.2 23.6 0.81 29.9 48.1 0.62 

Mean  0.29   0.53   0.37 
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• The Realgrunnen Subgroup contains the upper reservoir interval in the Goliat field located 

offshore northern Norway. 

• We present a sedimentological, fault, and Amplitude versus Angle (AVA) analysis of the 

Subgroup. 

• A minor Norian to Rhaetian tectonic event is recognised affecting the southern Hammerfest 

Basin during deposition of the Realgrunnen Subgroup. 

• Displacement profiles of faults and along-fault thickness variations highlight the early history 

of fault activity which influenced depositional geometries.  

• AVA attribute maps reveal the geometries of gross sand prone depositional bodies, i.e., 

individual and amalgamated channels, ox-bow lakes and alluvial fans. 

• Palaeogeographic reconstructions for the Fruholmen and Tubåen Formations comprising the 

Realgrunnen Subgroup are presented. 


