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Abstract

In this thesis we show how one can decode self-dual additive codes over F4

using belief propagation. We then develop an extension to the algorithm with
steps of local complementation. We show empirical evidence that the exten-
sion using local complementation achieves lower error rates for the same soft
information compared with the algorithm without the extension. We discuss
how the algorithmic parameters impact runtime and decoding performance.
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1 Introduction

1.1 Background

Digital communication has become an increasingly important concept for
today’s society. Data needs to be transmitted over a vast number of channels,
and stored in various formats such as hard drives or flash memory. In all these
scenarios the data is susceptible to corruption due to environmental noise.
For most high-speed wired networking where errors can occur, the cost of
transmission is low, and any corrupted message can simply be re-transmitted.
However, the higher the cost of transmission, the more important it is to get
it right the first time. This is especially the case in space technology where
transmissions can be costly both in travel time of the signals, and in the
electrical cost of running the transmitters. Most media used for storing data
are susceptible to component failures which can result in data corruption.

In scenarios like these, the use of error correcting codes [16] can be nec-
essary as it provides a defence layer against bit errors, that is more efficient
than simply repeating the same information over and over again. In error
correcting codes, the idea is to add some redundancy so that messages with
some errors can still be decoded and interpreted as the original message.

Low-density parity check (LDPC) codes [11], and turbo codes [4] are
examples of such error correcting codes. These codes can be decoded using
graph structures, where each node takes care of a bit of received information,
assigns to it the likelihood that it is correct, and communicates it to its
neighbouring nodes, which do the same. The goal is for the algorithm to
converge towards what is believed to be the most likely codeword to have been
transmitted. This is known as belief propagation, or sum-product message-
passing [14].

1.2 Decoding in F4

In their manuscript ”Dynamic Message-Passing Decoding on Simple Graphs
for the Quaternary Symmetric Channel”[18], Matthew G. Parker et al. present
ideas for applying practices from error correcting codes on to a non-binary
system, the Galois Field F4 = {0, 1, w, w2}, with the assumption that the
codewords in F4 are transmitted over a quaternary symmetric channel. Just
as in binary channels, any b ∈ F4 transmitted will have a probability of being
received as a ∈ F4, where a 6= b, a ”bit” error. Parker et al. suggests that
the belief propagation in self-dual F4-additive codes (graph codes) could be
structured using the simple graphs associated to this type of codes [9]. These
graphs are not necessarily bipartite (as those used in LDPC codes), and the
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idea is that all nodes play a similar role instead of using distinct variable and
check nodes. In the master thesis ”Message-Passing decoding on Self-Dual
F4-additive codes” by Hannah Hansen [12], decoding in F4 is explored and
the decoding method discriminative decoding is introduced. The algorithm
computes products, messages and marginals based on whether the nodes are
leaves or internal nodes. The discriminative decoder is shown to compute ex-
act marginals for trees and to be an instance of the sum-product algorithm.
Though capable of decoding the marginals of trees exactly, the algorithm
was shown to run into problems when performed on graphs containing short
cycles. Since the graph codes that form trees have a small minimum edit
distance d ≤ 2, they are not optimal for decoding purposes. It is therefore
desirable to improve the decoding performance on graphs containing cycles,
as it has been shown that many self-dual F4-additive codes of higher dis-
tance have short cycles as in the case of nested-cliques [6][8]. In the future
work section of [12], it is suggested to try decoding in a non-discriminate way
where one does not differentiate between leaves and internal nodes, and some
algorithms are suggested as to how it might be done. One of the goals of this
thesis is to elaborate on how one can decode self-dual F4-additive codes in a
non-discriminate way. In addition to this, in the previous work on message-
passing in F4, it has been suggested to use local complementation in order
to deal with decoding problems with regard to short-cycled graphs [18][12].
It is the goal of this thesis to outline a belief propagation algorithm for sim-
ple graphs, and extend it with steps of local complementation. With this,
we can gather empirical data on the decoding performance with regards to
short cycles, and general self-dual F4-additive codes. The study of self-dual
F4-additive codes has been motivated by their interpretation as quantum
stabilizer codes [6]. As the definitions of quantum codes is not necessary for
the strict purpose of decoding in F4, we do not go into detail about them in
this thesis.

1.3 Thesis Outline

Section 2 outlines some concepts of error correcting codes central to this
thesis. In Section 3, we first develop algorithms for Belief Propagation for
Simple Graphs (BPSG), based on previous work presented in [12]. Due to the
problems this algorithm runs into when dealing with cycles, we develop the
algorithm Iterative Local Complementation (ILC), that utilizes other graphs
in the LC-orbit of the code. In Section 4, we compare the performance of
BPSG and ILC, look at how their parameters impacts performance, and see
how a single LC operation impacts decoding in specific graph-structures. We
end the thesis by concluding and showing some prospects for future work.
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2 Theorethical Background

In this section we give a brief summary of concepts from algebra and coding
theory that are central to this thesis. Though our descriptions of these con-
cepts are brief, there exists plenty of books and papers that can elaborate on
the topics at hand. We begin by introducing groups and fields and continue
with general coding-theory, graph-theory, and related decoding-algorithms.
Self-dual F4-additive codes and their properties relating to local complemen-
tation are of particular interest in this thesis, and are presented in Sections
2.4 and 2.6.

2.1 Groups and fields

We will develop decoding algorithms for self-dual additive codes over the
Galois Field F4. It is therefore necessary that the reader has a basic un-
derstanding of the the concepts of groups and fields. We provide a brief
description of groups and rings based on their definition in [10].

Definition 2.1. A group 〈G, ∗〉 is a set G closed under the binary operation
∗, such that the following three axioms are satisfied:

g1 : ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c). ( ∗ is associative).

g2 : There is an element e ∈ G such that e ∗ x = x ∗ e = x for all x ∈ G.
(identity element e).

g3 : For all elements a ∈ G, there exists an element a′ ∈ G such that a∗a′ =
a′ ∗ a = e (inverse a′ of a)

An abelian group is a group where a ∗ b = b ∗ a, i.e. ∗ is commutative.

Definition 2.2. A ring 〈R,+, ·〉 is a set R with addition and multiplication
defined on R such that the following axioms are satisfied:

r1: 〈R,+〉 is an abelian group.

r2 : Multiplication is associative.

r3 : For all a, b, c ∈ R, a ·(b+c) = (a ·b)+(a ·c) and (a+b) ·c = (a ·c)+(b ·c),
the left and right distributive laws.

A ring R with multiplicative identity element e = 1, and where all non-
zero elements have a multiplicative inverse in R is called a division ring. A
division ring where multiplication is commutative is called a field. A Finite
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field, or Galois field is a field with a finite set of elements. GF (n) or Fn
denotes a Galois field with n elements. For any prime integer p, GF (p) is the
field of integers Zp with operations modulo p. We can construct the Galois
field GF (pm) given that we have a irreducible polynomial π(x) of degree m
over GF (p). [16]

Theorem 2.1. Let π(x) be an irreducible polynomial over GF (p) that has
degree m. The set of all polynomials in x of degree < m and coefficients from
GF (p), with calculations performed modulo π(x), forms a field of order pm

[16].

In this thesis we will primarily focus on codes in the Galois field F4=
{0, 1, ω, ω2}. This finite field is defined to consist of all polynomials in x with
binary coefficients and degree at most 1, with calculations performed modulo
the irreducible polynomial π(x) = x2 +x+ 1 [16]. We use ω to denote a root
of x2 + x+ 1 in F4. Then, ω2 = ω + 1 and all elements in F4 can be written
as a+ bω, where a, b ∈ F2 and addition is binary (XOR).

2.2 Linear codes

A code C is a set of strings over a certain alphabet A. A codeword c is any
one of the strings c ∈ C. A block code is a code where all codewords have the
same length n. We denote the set of all n-length touples c = (c0, c1, ..., cn−1),
with ci ∈ A, to be An. A block code C with n-length words is then a subset
of An. The edit distance or distance between two codewords c and c′ is the
minimum amount of characters you have to change in c in order to get c′.
The minimum edit distance of a code C is the minimum distance between
any codewords c, c′ ∈ C. A linear code C of dimension k is a linear subspace
of Fnq . These codes can be described by a generator matrix G ∈ Fk×nq whose
rows span C. These codes can also be described by a parity check matrix H
such that C = {c ∈ Fnq | Hc> = 0} [16], where c> denotes the transpose
of c such that c> is a single column matrix of size n × 1. We can therefore
use the parity check matrix H to check whether a given string c is in C by
checking if Hc> = 0. A dual code C⊥ of C is a code consisting of all words
orthogonal to the words in C. So C⊥ = {ĉ|ĉ · c = 0, ∀c ∈ C}, where · is
the dot product for vectors. A self-dual code C is then a code where all
codewords are orthogonal to each other. An additive code C is a code where
any sum of codewords is a codeword. We are particularly interested in self
dual additive codes over F4, due to how they can be represented by graph
structures [9]. This is outlined in Section 2.4
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2.3 Graphs

A graph G = (V,E) is a set V of n vertices (also called nodes) vi for i ∈
{0 ... n−1} together with a set E ∈ V ×V of edges (vi, vj) representing that
there is an edge between the vertices vi and vj. If there is an edge between
two nodes vi and vj, they are connected and we call them neighbours. We
call the set of all nodes having an edge with vi the neighbourhood Nvi of vi.
A graph with n vertices can be represented by an adjacency matrix Γ of size
n× n, where entry Γij = 1 if there is an edge between vi and vj [7]. We can
illustrate the graphs with circles representing vertices, and lines between the
circles representing edges. The graph G = (V,E) where V = {v0, v1, v2, v3}
and E = {(v0, v1), (v0, v2), (v1, v2), (v2, v3)} is visualized in Figure 1.

v0

v1 v2

v3

Figure 1: A simple graph

A cycle is a set of vertices and edges such that {(vi, vj), (vj, vh), ..., (vx, vi)} ∈
E. v0, v1 and v2 forms a cycle in Figure 1. A graph that contains no cycles
is called a tree. We refer to nodes that only have a single neighbour as
leaves, while we refer to nodes that have more than a single neighbour as
internal nodes. Figure 2 shows a tree with {v0, v1, v2} as internal nodes and
{v3, v4, v5, v6} as leaf nodes. Other graph structures of interest in this thesis

v0

v1 v2

v3 v4 v5 v6

Figure 2: A tree containing 3 internal nodes and 4 leaves

are cliques and nested-cliques. A clique is a graph where all vertices connect
to all other vertices. A triangle or a square with edges across the two di-
agonals are simple examples of cliques. Nested-cliques are graph-structures
comprised of x cliques where each clique has y vertices, and each vertex
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neighbours all other nodes in its local clique as well as one node in all other
cliques. Figures 3 and 4 show a clique and a nested-clique respectively. The
nested-clique of six vertices has two cliques forming a triangle, where each
vertex also neighbours one vertex in the opposite triangle.

v0

v1 v2

v3

v4 v5

Figure 3: Six vertices with edges forming a clique

v0 v1

v2
v3 v4

v5

Figure 4: Six vertices with edges forming a nested-clique

2.4 Graph Codes

This thesis studies the decoding of graph codes using belief propagation. The
study of these codes have been motivated by their interpretation as quantum
stabilizer codes [6]. This thesis focuses strictly on the decoding of graph
codes, and we leave out descriptions of their relation to quantum codes.

Definition 2.3. The hermitian inner product [12] is defined as ?(~u,~v) :
Fn4 × Fn4 → F2:

~u ? ~v =
n−1∑
i=0

uiv
2
i + u2i vi (mod 2)
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x0

x1 x2

Figure 5: Graph corresponding to Γ

A code C generated by adding the rows of a generator matrix G : Fn×n4

is an additive code over F4. The dual code is C⊥ = {~u ∈ C⊥ | ~u ?~c = 0 ∀c ∈
C}. If C = C⊥, then C is a self-dual F4-additive code with respect to the
hermitian inner product.

Definition 2.4. A graph code is a self-dual additive code over F4 that has
a generator matrix of the form C = Γ + ωI, where I is the identity matrix,
and Γ is the adjacency matrix of a simple undirected graph [6].

It has been shown that all graph codes are self-dual, and that every self-
dual additive code over F4 is equivalent to a graph code [9]. Another feature
of these self-dual F4-additive codes is that their generator matrix is equal to
their parity check matrix.

Exmple. For the self-dual F4-additive code C with parity check matrix H,
it can be represented on the form Γ + ωI by:

H =

ω 1 1
1 ω 0
1 0 ω

 =

0 1 1
1 0 0
1 0 0

+

ω 0 0
0 ω 0
0 0 ω


We can construct the corresponding graph from the adjacency-matrix Γ, which
can be seen in Figure 5.

2.5 Sum-Product Algorithm

The sum-product algorithm (SPA) is used to solve problems that deal with
large functions of many variables by factorizing the ”global”-function into
the product of smaller functions that are easier to use in computations. Al-
gorithms such as Markov random fields, Bayesian network, and iterative
decoding of LDPC and turbo codes can be shown to be instances of the sum-
product algorithm.[14].
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The SPA takes advantage of factorization of a global function on many
variables. For the variables x0, x1, ..., xn−1, where each xi is in some alphabet
Ai, the global function g : A0 ×A1 × ...×An → R is a function that takes a
configuration of the values of the variables, and outputs a value in R. For each
global function g(x0, x1, ..., xn), we can associate n marginal functions gi(xi),
where for a ∈ A, gi(a) is a the sum of all configurations of g(x0, x1, ..., xn)
that has xi = a. We call gi(xi) the marginal for xi. As an example, for
g : A0 × A1 × A2, the marginal g1(x1) for x1 can be calculated by∑

∼x1

g(x0, x1, x2) :=
∑
x0∈A0

∑
x2∈A2

g(x0, x1, x2)

Where we use the notation ∼ x to symbolize summarizing over everything
that is not x. In general, the summary over a variable xi can be defined as:

g(xi) :=
∑
∼xi

g(x0, x1, ..., xn) [15]

2.5.1 Global function marginal computation

Let C be a code with n codewords of length k in some alphabet A. Let
each xi contain a probability vector pi of length |A| corresponding to the
probabilities of xi being each of the characters in A. We can then calculate
the probability of any xi being aj ∈ A to be the sum of all configurations of
g(x0, ..., xk−1) that has xi = aj.

As an example, consider the self-dual additive code over F4 represented
by the generator and parity check matrix H:

H =

ω 1 1
1 ω 0
1 0 ω


This code has 8 codewords of length 3, which we can generate from the

matrix H: C = {000, ω11, 1ω0, 10ω, ω2ω21, ω21ω2, 0ωω, ωω2ω2}
Let p0, p1, p2 be the probability vectors we associate with each variable

xi:

pi =


P (xi = 0) = ci
P (xi = 1) = di
P (xi = ω) = ei
P (xi = ω2) = fi


ci corresponds to the probability that xi is 0, and di, ei, fi corresponds to

the probabilities of xi being 1, ω, ω2 respectively. We can find the most likely
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codeword from the global function by multiplying together the probabilities
of the variables being the arrangements of the codewords. For example, the
probability of the codeword being 000 will be c0c1c2, and the probability
that it is 0ωω is c0e1e2. If we want the probability of a single node xi being
0 we can take the sum of all arrangements where xi = 0. P (x0 = 0) is
then the sum of two products as there are only two codewords with x0 = 0.
In these codewords, x0 = 0 ⇒ x1 = x2 = 0 OR x1 = x2 = ω. We get
P (x0 = 0) = c0c1c2 + c0e1e2. Using the same logic for P (x0 = 1), P (x0 = ω)
and P (x0 = ω2) we get the entire marginal m0 for x0:

m0 =


c0c1c2 + c0e1e2
d0e1c2 + d0c1e2
e0d1d2 + e0f1f2
f0f1d2 + f0d1f2

 =


c0(c1c2 + e1e2)
d0(e1c2 + c1e2)
e0(d1d2 + f1f2)
f0(f1d2 + d1f2)


Computing marginals directly from the global function can be done for

small codes such as in this example, but the amount of computations needed
in order to get the marginals of the nodes gets out of hand quickly as the
codes get larger. Self-dual F4-additive codes with generator matrix of size
n× n consists of 2n codewords. This means that solving the marginals for a
code with generator matrix of size (n+1)×(n+1) is twice as computationally
heavy as for a code with generator matrix of size n× n.

2.5.2 Factor graph decoding

A factor graph is a representation of the factorization of a global function
in graph form. The factor graphs are structures that consists of variable
nodes, and factor nodes forming a bipartite graph with connections only
between a factor node and a variable node. Let’s say we have a function
g(x0, x1, x2, x3, x4) that can be factorized to:

f0(x0, x1)f1(x1, x2, x3)f2(x3, x4)

We can then construct a factor graph from the factorization, where each
factor node is connected to its corresponding variable node. A factor graph
corresponding to the factorization of g can be seen in Figure 6.
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f0 f1 f2

x0 x1 x2 x3 x4

Figure 6: A factor graph with 3 factor nodes, and 5 variable nodes

One can use factor graphs for decoding codewords in a binary linear code
C based on the parity check matrix H of C. This can be done by having
the rows H represent factor nodes, and having the columns represent the
variables, where having 1 in position hij means that there is an edge between
factor node fi and variable node xj. The graph in Figure 6 corresponds to
the parity check matrix:

H =

1 1 0 0 0
0 1 1 1 0
0 0 0 1 1


Error correction can be done in the factor graph by having the variable

nodes contain the probabilities or soft information P (xj = 0) and P (xj = 1),
and the factor nodes contain logic for which arrangements of the variable
nodes constitute a codeword. The decoding process can then be done by
means of message-passing, also called belief propagation. Message-passing
is done by having the nodes pass messages regarding the soft information
to their neighbours, which propagate it throughout the graph. Factor nodes
pass messages to the variable nodes containing their belief about the variable,
and the variable nodes pass messages regarding what they believe about
themselves. A key property in belief propagation is that, when nodes create
a message for one of their neighbours, they do not take into consideration
any message from that neighbour. This is done so that the neighbour in
question does not get their original beliefs falsely amplified by confirmation
from their neighbour. In Figure 6, if f1 is to send a message to x3, it will
calculate it by using the messages from x1 and x2 together with the logic for
what constitutes a codeword. If x3 is to send a message to f1 it will be the
dot-product of its original soft information, and the probabilities from f2.
The message-passing can be done in different ways depending on whether
the factor-graph is a tree. If it is a tree, we can simply select a node as root,
propagate messages from the leaves and up to the root, and then propagate
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messages back from the root to the leaves. This will calculate exact marginals
for the variable nodes based on the soft information. However, for codes that
contain cycles, we can not propagate messages in a simple forward-backward
manner. Instead a flooding scheme can be applied to graphs with cycles.
The flooding scheme uses some amount of flooding iterations where for each
iteration, one message is passed in each direction for every edge in the graph.
Decoding in this manner has been shown to be quite successful, but it can
not be guaranteed that the scheme will converge towards the exact marginals
[15].

2.6 Local Complementation

Local complementation (LC) is a graph-operation that alters the structure of
the graph. Experiments of decoding binary linear codes using a combination
of LC operations was conducted in the PhD thesis ”On iterative decoding of
high-density parity check codes using edge-local complementation.” by Joakim
G. Knudsen[13]. The thesis showed that one could use LC to aid decoding by
introducing diversity in the graph. In this section we describe LC in relation
to self-dual F4-additive codes.

Given a node v with the set of neighbours Nv, performing LC on v, is
for every pair of neighbours (xi, xj) ∈ Nv, checking whether the edge (xi, xj)
exists. If the edge exists, it is removed, and if it does not, it is added to the
graph. An illustration of an LC operation can be seen in Figure 7. There,
x0 neighbours the nodes x1, x2, x3. Performing LC on x0 has the effect that,
since there is no edge (x1, x2), it is added. The edges (x1, x3) and (x2, x3)
exist and are therefore removed. The corresponding parity check matrix H
for the graph code corresponding to G looks as follows:

H =


ω 1 1 1
1 ω 0 1
1 0 ω 1
1 1 1 ω


We can perform LC directly on these parity check matrices by performing

a series of matrix-operations. Doing LCv(H) can be done by three operations.
(i): add row v to all rows i ∈ Nv. (ii): swap ω2 with 1 in column v. (iii):
swap ω2 with ω in all columns i ∈ Nv. We can see that by doing LC0(H) we
get H ′, representing a graph code corresponding to G′ in Figure 7.
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H =


ω 1 1 1
1 ω 0 1
1 0 ω 1
1 1 1 ω

 (i)→


ω 1 1 1
ω2 ω2 1 0
ω2 1 ω2 0
ω2 0 0 ω2

 (ii)→


ω 1 1 1
1 ω2 1 0
1 1 ω2 0
1 0 0 ω2



(iii)→


ω 1 1 1
1 ω 1 0
1 1 ω 0
1 0 0 ω

 = LC0(H) = H ′

It has been shown that any graph codes C and C ′ are equivalent given that
C ′ has been obtained by a series of LC operations on C [9]. We refer to
the set of all graphs obtainable by a series of LC operations on G including
G itself, as the LC-orbit of G. All graphs in an LC-orbit are considered
to be LC-equivalent. Another property of LC is that applying LC twice
on node v in the graph G results in the original graph G. In other words,
LCv(LCv(G)) = G.

x2

x0 x1

x3 x2

x0 x1

x3

G G′

LC0(G)

Figure 7: Performing LC0(G), resulting in G′

2.7 Additive white gaussian noise

In order to sample data of the performance of our decoding algorithms, we
need to simulate a noisy channel. For this we use an additive white gaussian
noise (AWGN) channel to act as noise on our code-bits. Using binary shift
key modulation [3], each bit is transformed into a signal ti = (2ci − 1)

√
Eb

where Eb is the bit energy. This means that 0 has the signal −
√
Eb and 1

has signal −
√
Eb. We can add to this signal some noise n form a normal

distribution N (0, σ2) , with σ2 = N0/2 where N0 represents noise. The
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final received signal for bit i would be the bit-signal with the added noise
ri = ti + ni. Assuming P (ci = 0) = P (ci = 1) = 1

2
, we get the probability

function:

P (ci = 1|ri) =
1

1 + e−2
√
Ebri/σ2

[17]

Which of course gives:

P (ci = 0|ri) = 1− P (ci = 1|ri)

For any given noise N0 and bit-energy Eb we can then calculate the two
probabilities by getting ni from a corresponding normal distributionN (0, σ2).
A normal way to sample ni from a normal distribution in software is to use
the Box-Muller method [5].

3 Design and Implementation

For developing a decoding algorithm for self-dual F4-additive codes or graph
codes, we extend on the previous work of Hansen in the thesis ”Dynamic
message-passing decoding on simple graphs for the quarternary symmetric
channel”[12]. Her thesis explores two different decoding algorithms, and finds
that a discriminative decoding scheme is successful for computing marginals
exactly for trees. The algorithm computes messages and marginals differently
based on whether the nodes are leaves or internal nodes, hence the name dis-
criminative. Though successful at decoding in graphs that are trees, and
graphs that have few cycles, the algorithm struggles to correct errors when
there are cycles, particularly short cycles such as local cliques in the graph.
In the future work section of Hansen’s thesis, it is suggested to try decoding
using a general procedure that does not discriminate between internal nodes
and leaf nodes. In this section we define belief propagation for simple graphs
(BPSG) based on the algorithms from the future work section of [12]. We
begin by reducing the marginals of nodes to a series of vector products, and
show how we can get those marginals by means of mesage-passing (BPSG).
Due to BPSG having the same issues as discriminative decoding, in that it
struggles to correct errors in graphs containing cycles, we develop an exten-
sion to BPSG using iterative local complementation (ILC). We then show an
example where we go though each step of the belief propagation using ILC.

3.1 Marginal computation in graph codes

For the decoding of graph codes using BPSG, we use three vector products.
The normal dot product as well as two other products that were introduced
in Hansen’s thesis [12]. These products are defined as follows:
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Definition 3.1. The dot product is defined as ·(u, v) : Rn × Rn → Rn:

·(u, v) =


u0v0
u1v1

...
un−1vn−1


Definition 3.2. We define the divided-straight-straight product as dSS(u, v) :
R4 × R4 → R4 to be the following product:

dSS(u, v) =


u0v0 + u1v1
u2v2 + u3v3
u0v1 + u1v0
u2v3 + u3v2


Definition 3.3. We define the divided-straight-cross product as dSX(u, v) :
R4 × R4 → R4 to be the following product:

dSX(u, v) =


u0v0 + u1v1
u1v0 + u0v1
u2v2 + u3v3
u3v2 + u2v3


These vector products comes from the method used to reduce the marginals

of a graph code to chains of those products. Some important properties of
these vector products that we will use is how they are affected by the vector
(1010)>.

let u =


1
0
1
0

 , v =


a
b
c
d



dSX(u, v) = dSX(v, u) =


1a+ 0b
0a+ 1b
1c+ 0d
0c+ 1d

 =


a
b
c
d



dSS(u, v) = dSS(v, u) =


1a+ 0b
1c+ 0d
1b+ 0a
1d+ 0c

 =


a
c
b
d
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This means that u is the identity element for 〈R4, dSX〉, and dSS(u, v)
swaps the two middle elements b and c of v. As an example of how one can
compute marginals, take the graph code generated by the matrix:

H =


ω 1 1 1
1 ω 0 0
1 0 ω 0
1 0 0 ω


From this matrix we find the codewords:

C = {0000, 100ω, 10ω0, 00ωω, 1ω00, 0ω0ω, 0ωω0, 1ωωω, ω111, ω211

ω2, ω21ω21, ω1ω2ω2, ω2ω211, ωω21ω2, ωω2ω21, ω2ω2ω2ω2}

The adjacency matrix Γ from H = Γ + ωI gives the graph seen in
Figure 8.

x0

x1 x2 x3 x4

Figure 8: Graph G corresponding to parity check matrix H

Let the soft information in the nodes be denoted pi = (ci, di, ei, fi)
> The

marginals for x0 can be calculated directly from the code words C and will
be:

m0 =


c0(c1(c2c3 + e2e3) + e1(c2e3 + e2c3))
d0(c1(c2e3 + e2e3) + e1(c2c3 + e2e3))
e0(d1(d2d3 + f2f3) + f1(d2f3 + f2d3))
f0(d1(d2f3 + f2d3) + f1(d2d3 + f2f3))


Let q = c2c3 + e2e3, r = e2c3 + c2e3, s = d2d3 + f2f3, and t = f2d3 + d2f3.

Let gj = dSS((1010)>, pj) = (cj, ej, dj, fj)
>. We have that (q, r, s, t)> =

dSX(g2, g3). We can then reduce the expression to:

m0 =


c0(c1q + e1r)
d0(c1r + e1q)
e0(d1s+ f1t)
f0(d1t+ f1s)
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Let A = c1q + e1r, B = c1r + e1q, C = d1s + f1t, and D = d1t + f1s.
(A,B,C,D)> = dSX(g1, (q, r, s, t)

>). We can again reduce the expression
to:

m0 =


c0A
d0B
e0C
f0D

 = p0 · (A,B,C,D)>

We can then express the entire marginal as a product using the dot prod-
uct, and dSX:

m0 = p0 · dSX(g1, dSX(g2, g3))

Expanding gj using its definition as dSS((1010)>, pj), we have:

m0 = p0 · dSX(dSS((1010)>, p1), dSX(dSS((1010)>, p2), dSS((1010)>, p3)))

The marginals for x1 using the global function will look like this:

m1 =


c1(c0(c2c3 + e2e3) + d0(c2e3 + e2c3))
d1(e0(d2d3 + ffe3) + f0(d2f3 + f2d3))
e1(c0(d2d3 + f2f3) + d0(d2f3 + f2d3))
f1(e0(d2f3 + f2d3) + f0(d2d3 + f2f3))


Using the same q, r, s, t as in the marginal for x0, we can reduce the

marginal to:

m1 =


c1(c0q + d0r)
d1(e0s+ f0t)
e1(c0r + d0q)
f1(e0t+ f0s)


Using E = c0q+d0r, F = e0s+f0t, G = c0r+d0q, H = e0t+f0s, we have

that (E,F,G,H)> = dSS(x0, (q, r, s, t)
>). We can then reduce the marginal

to:

m1 =


c1E
d1F
e1G
f1H

 = p1 · (E,F,G,H)>

Again, we can express m1 as a product of ·, dSS, and dSX:

m1 = p1 · dSS(p0, dSX(g2, g3))
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= p1 · dSS(p0, dSX(dSS((1010)>, p2), dSS((1010)>, p3)))

BPSG is based on this reduction of the marginals into products using ·,
dSS, and dSX. In order to compute the marginals from the example, x2
and x3 can send g2 = (c2, e2, d2, f2) and g3 = (c3, e3, d3, f3) respectively to x0.
After x0 receives these messages, it can combine them into a message-product
mp using dSX. It can then combine it with its own information by doing
dSS(p0,mp), which it can send to x1. x1 can then compute its marginals
by taking the dot product of its own soft information and the message from
x0. Similarly, x0 computes its marginal by creating a message product mp
by applying dSX to all its received messages and then compute p0 ·mp.

In general, any node xi can compute its marginals by having the message
product mp = (1010)> and then apply dSX(mp,m) for all its received mes-
sages m. The node can then take the dot-product of its own soft information
and the message product in order to get its final marginal. When any node
xi is selected to send a message to a neighbour xj, it can create the message
by having mp = (1010)> and apply dSX(mp,m) to all messages m excluding
any message from the recipient xj. It can then finalize the message by taking
the dSS-product of its own soft information and the message products.

When using this reduction of marginals to a product of ·, dSX and dSS,
unlike in the discriminative decoder in [12], nodes do not need to compute
different products based on whether the messages are from leaves or internal
nodes.

3.2 Belief propagation for simple graphs

Belief propagation for simple graphs (BPSG) operates on the simple graph
generated by the adjacency matrix Γ from a given graph codes parity check
matrix H = Γ + ωI. In this graph, the nodes representing characters in
the code are able to receive and store soft information p ∈ R4 from a noise
channel representing the probabilities of a character being 0, 1, ω or ω2. The
nodes are also able to receive messages m ∈ R4 from its neighbouring nodes.
The nodes also need to be able to compute its own marginals and create
messages for its neighbours based on their own soft information, and their
own received messages. Just as in general factor graph decoding in F2, we
want the message for a given recipient r to be calculated without taking into
account any message from r itself, as to avoid false amplification of its own
belief, therefore the nodes needs to be able to keep track of which message
comes from which node.

When a node is selected to create a message to one of its neighbours,
it computes a message-product by taking the dSX-product of its received
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messages and then takes the dSS-product of its own soft information and
this message-product. This can be seen in Algorithm 1. Note that we define
these algorithms differently than those found in the future work section of
[12], such that they more closely resemble the reduction of marginals in
Section 3.1.

Algorithm 1: Computing a message

Let M \ r be the set of all received messages excluding any message r
from the recipient. Let p be the soft information of the computing
node.

Function createMessage(Node recipient)
messageProduct← (1010)>

for each m ∈M \ r do
messageProduct← dSX(m,messageProduct)

end
messageProduct← dSS(p,messageProduct)
return messageProduct

We initiate the messageProduct with the vector (1010)> as it is the iden-
tity element for 〈R4, dSX〉. In the example from Section 3.1, we saw that leaf
nodes should send their soft information with the values for 1 and ω swapped.
Since leaf nodes can only receive and send messages with its parent, no mes-
sage will be taken into account in the message product and it will remain
(1010)>. They will therefore send the message dSS((a, b, c, d)>, (1010)>) =
(a, c, b, d)>. As seen in the edge-case for leaves, unlike the discriminative
decoder in [12], nodes do not need to know whether themselves or their
neighbours are leaves.

When a node is selected to compute its marginals after y amount of
flooding iterations, it runs Algorithm 2. All received messages are taken into
account in the dSX-product and the result is then multiplied with the vari-
ables’ soft information using the dot-product. Again the messageProduct
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can be initialized with (1010)>.

Algorithm 2: Computing a marginal

Let p be the soft information of the computing node. Let M be the set
of all received messages.

Function marginal()
messageProduct← (1010)>

for each m ∈M do
messageProduct← dSX(m,messageProduct)

end
marginal← ·(p,messageProduct)
return marginal

With the two algorithms described we can perform decoding on simple
graphs with a flooding scheme where for each flooding iteration one message
is passed in each direction for each edge in the graph as seen in Algorithm 3.

Algorithm 3: Flooding the graph y times

Let n be the number of nodes in the graph, y be the amount of
flooding iterations, and E be the set of edges in the graph.

Function flood(y)
for i in {0 ... y } do

for each (xa, xb) ∈ E do
xa.giveMessage(xb.createMessage(xa))
xb.giveMessag(xa.createMessage(xb))

end

end

A complete decoding using BPSG can be performed by selecting y flood-
ing iterations and running flood(y). The resulting marginals can then be
obtained by running xi.marginal() for all nodes in the graph. We refer to
flooding the graph y times, and then computing the marginals as BPSG(y).

3.3 Marginals in trees and general graphs using BPSG

Due to BPSG being directly based on marginal computation in trees, it is
able to compute the exact marginals of graph codes that form trees. Take
the graph code generated by the matrix H:
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H =


ω 1 1 0 0 0
1 ω 0 1 1 0
1 0 ω 0 0 1
0 1 0 ω 0 0
0 1 0 0 ω 0
0 0 1 0 0 ω


We can associate to the graph code generated by H the tree in Figure 9

x0

x1 x2

x3 x4 x5

Figure 9: Graph G corresponding to parity check matrix H

Suppose the codeword w11000 is transmitted and the decoder has the
following soft information to work with:

p0 =


0.2
0.2
0.5
0.1

 , p1 =


0.2
0.2
0.1
0.5

 , p2 =


0.2
0.5
0.2
0.1

 ,

p3 =


0.5
0.2
0.2
0.1

 , p4 =


0.5
0.2
0.2
0.1

 , p5 =


0.5
0.2
0.2
0.1


In this example there is a ”bit” error in x1, where p1 has ”ω2” as the most

likely character instead of ”1”. Using implementation of the global function
and BPSG in java to decode this soft information, we get the results in Table
1.
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Marginal Global function BPSG(50)

m0


0.18806656744689498
0.08929779461507242
0.6670274658368284
0.05560817210120418




0.1880665674468949
0.08929779461507238
0.6670274658368286
0.05560817210120415


m1


0.3995850809543138
0.47995309610787895
0.020114553736526403
0.10034726920128086




0.3995850809543138
0.479953096107879

0.02011455373652641
0.10034726920128086


m2


0.20457312948180226
0.6961168989311324
0.06629684751725072
0.033013124069814645




0.2045731294818022
0.6961168989311325
0.06629684751725072
0.03301312406981464


m3


0.6282415550444232
0.08018761556848418
0.2512966220177694
0.04027420736932306




0.6282415550444235
0.0801876155684842
0.2512966220177694
0.04027420736932306


m4


0.6282415550444232
0.08018761556848418
0.2512966220177694
0.04027420736932306




0.6282415550444235
0.0801876155684842
0.2512966220177694
0.04027420736932306


m5


0.6961168989311325
0.06629684751725072
0.20457312948180228
0.03301312406981465




0.6961168989311325
0.0662968475172507
0.2045731294818022
0.03301312406981464


Table 1: Marginal computation comparison between the global function and
BPSG(50)

Just as Hansen found in her thesis for the discriminate decoder [12], we
find that BPSG calculates the exact marginals for trees, with minor differ-
ences in some of the last digits, which we attribute to the fact that floating
point operations in java are not associative [2][1]. We now look at how BPSG
perform in some graphs that contain cycles such as circles and nested-cliques.
In binary factor graph decoding, one can not expect to compute the exact
marginals in factor graphs that contain cycles [15], and we expect the same
to be the case for BPSG. Consider the two graphs G0 and G2 in Figures 10
and 11. Since the neighbourhood of x0 is the same in both G0 and G2, ω1001
is a codeword in both these graph codes.
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x4

x0

x1

x2x3

Figure 10: Graph G0: 5 nodes in a circle

x4

x0

x1

x2x3

Figure 11: Graph G2: 5 nodes in a circle, with two short-cuts

We initiate the soft information to correspond to the codeword ω1001
with an error in node x1:

p0 =


0.133
0.133
0.6

0.133

 , p1 =


0.133
0.133
0.133
0.6

 , p2 =


0.6

0.133
0.133
0.133

 ,

p3 =


0.6

0.133
0.133
0.133

 , p4 =


0.133
0.6

0.133
0.133

 ,

Applying the global function and BPSG on G0 using this soft information
we get the results in Table 2:
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Marginal Global function BPSG(50)

m0


0.07312178213933611
0.07312178213933611
0.6988456499765301
0.15491078574479755




0.07695303937884447
0.07375303814479427
0.6478579206045338
0.20143600187182745


m1


0.07312178213933611
0.5238837343408642
0.07312178213933611
0.3298727013804636




0.1366037895821299
0.46631764496518324
0.05206313350300684
0.34501543194968004


m2


0.6988456499765303
0.15491078574479755
0.0731217821393361
0.0731217821393361




0.6478579206045341
0.20143600187182728
0.07695303937884451
0.07375303814479423


m3


0.6988456499765302
0.07312178213933611
0.07312178213933611
0.15491078574479758




0.7069528644035826
0.0931845251948374
0.11126770459942226
0.08859490580215763


m4


0.07312178213933611
0.6988456499765302
0.15491078574479755
0.07312178213933611




0.09318452519483739
0.7069528644035826
0.08859490580215763
0.11126770459942228


Table 2: Marginal computation comparison between the global function and
BPSG(50) on G0

As can be seen in Table 2, most marginals are similar to the global func-
tion, and in x1 where the error was, BPSG is able to correct it. If we introduce
more cycles to the graph by using G2, x1 where the error is present is con-
nected to all the other nodes. As such, x1’s beliefs will be propagated at a
higher rate than the soft information in the other nodes. We can see the
marginals from G2 using the same soft information in Table 3.
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Marginal Global function BPSG(50)

m0


0.07312178213933612
0.15491078574479758
0.6988456499765303
0.07312178213933612




0.12694561638057028
0.13658841348661804
0.5912766965854168
0.1451892735473949


m1


0.07312178213933611
0.5238837343408642
0.07312178213933611
0.3298727013804636




0.262446458057229
0.3054431901693206
0.07657578303948656
0.3555345687339639


m2


0.6988456499765303
0.07312178213933608
0.07312178213933608
0.15491078574479752




0.591276696740994
0.14518927354089334
0.12694561633285587
0.1365884133852568


m3


0.6988456499765302
0.0731217821393361
0.15491078574479758
0.07312178213933611




0.593182879773234
0.12952668383538146
0.14051630039121693
0.1367741360001676


m4


0.07312178213933611
0.6988456499765302
0.07312178213933611
0.15491078574479755




0.12952668380198096
0.5931828797181119
0.1367741360289675
0.14051630045093963


Table 3: Marginal computation comparison between the global function and
BPSG(50) on G2

As can be seen in Table 3, BPSG is not able to correct the error in x1 using
G2. Whether we use G1 or G2 makes a difference as to whether we will be able
to decode the received message using BPSG. Since G2 = LC0(LC2(G0)), G2

and G0 are LC-equivalent. In the marginals from the global function, one can
verify that the probabilities has been augmented according to the rules of LC.
When applying LC0(G0) = G1, we swap 1 and ω2 in x0, and swap ω and ω2

in the neighbours of x0, namely x1 and x4. Then, by applying LC2(G1) = G2,
we permute the same probabilities for LC on x2 and its neighbours, x1 and
x3. The differences of the marginals from the global function on G1 and G2

can be attributed to these exact permutations.
As has been showcased in this example, using different graphs in the

same LC-orbit can improve the performance of BPSG. In the example of G0

and G2, G0 contains less cycles than G2 and so x1 had its own information
propagated back to itself at a lower rate. However, if the soft information
in x1 was correct, it would have propagated correct information through the
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graph at a higher rate.

3.4 Extending BPSG with LC operations

Due to the problems short cycles cause when decoding using the BPSG as
showcased in the previous section, we turn to Local Complementation (LC)
whose properties were described in Section 2.6. The goal is to improve BPSG
by using the many different codes in the LC-orbit of the graph code. We want
to utilize these different graph-representations in order to avoid passing soft
information through the same short cycles. We propose an LC-extension that
provides logic for converting graphs and soft information based on the prop-
erties of LC, and that applies BPSG on each graph-instance in the LC-orbit.
When dealing with these different graph-representations, it is needed to keep
track of the permutations the soft information has gone through in order to
convert it back to the original graph code selected for error correction.

3.4.1 LC algorithms

We want an algorithm that, given the node v and Graph G containing asso-
ciated soft information and messages in each node, computes G′ = LCv(G).
The graph needs to be changed according to the LC-rules, and the soft infor-
mation in the nodes needs to be changed accordingly. The soft information
needs to be swapped with regards to how the code C relates to the equivalent
code C ′ in its LC-orbit. In the code C ′ generated by LCv(G), ω2 and 1 will
be swapped in position v, and ω2 and ω will be swapped in position i ∈ Nv.
We outline an algorithm for this in Algorithm 4, where the graph along with
soft information is changed.

Algorithm 4: Performing LCv(G)

Function LC(v)
marginalToSoftInformation()
clearMessages()
softChange(v)
graphChange(v)

The way we combine the information from BPSG applied to the differ-
ent graph-representations, is by replacing the soft information of all nodes
v ∈ V of G with the marginals of that node. This means that after y
flooding iterations using BPSG, the information is propagated to the next
graph-representation. In order to make sure that the nodes do not take into
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Algorithm 5: Replacing soft information with current marginals

Let P be the set of i vectors where pi ∈ R4 corresponds to the soft
information of node xi.

Function marginalsToSoftInformation()
for each i ∈ {0 ... n− 1 } do

pi = xi.marginal()
end

Algorithm 6: Clearing messages

Function clearMessages()
for each i ∈ {0 ... n− 1 } do

xi.clearMessages()
end

Algorithm 7: Swapping soft information according to LCv
Let P be the set of i vectors where pi ∈ R4 corresponds to the soft
information of node xi. Let Nv be the set of indices neighbouring v.

Function softChange(v)
swap1ω2(pv)
for each i ∈ Nv do

swapωω2(pi)
end

consideration messages from nodes that they may no longer be connected to,
we also clear all their messages when performing LC. We can then use this
function LC(v) in a sequence where after each LC operation, we perform y
flooding iterations with BPSG. One way to setup a sequence of LC operations
in order to go through many graph-representations is to apply LC iteratively
to all nodes nodes x0 to xn−1, and then loop around by applying LC to x0
again. When using this decoding scheme, we can convert the code back to
the original by applying LC to the same nodes in reverse order. After we
have gone through many flooding iterations on many graph-forms and when
the graph has been returned to its original form, we can find the resulting
marginals by checking the soft information in each node. We call this process
iterative local complementation (ILC).
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Algorithm 8: Adjusting graph according to LCv
Let G = (V,E) be the current graph representation. Let Nv be the set
of nodes neighbouring v.

Function graphChange(v)
for each (n,m) ∈ {(n,m) | n,m ∈ Nv, n 6= m} do

if (n,m) ∈ E then
E ← E \ (n,m)

end
else

E ← E ∪ (n,m)
end

end

Algorithm 9: Complete decoding process applying LC iterativeley

Let n be the number of nodes in the graph, let y be the amount of
flooding iterations per graph-representation, and let z be total the
amount of graph-representations we want to use.

Function iterativeLC(y, z)
flood(y)
for i in {0 ... z} do

LC(i mod n)
flood(y)

end
for i in {z ... 0} do

LC(i mod n)
end

The algorithm iterativeLC(y, z) shows the whole decoding process using
ILC. First, y flooding iterations is applied to the initial graph G representing
the code. Then LCi(G) is applied z times for i ∈ {0 ... z (mod n)} doing
y flooding iterations for each of the graph representations. In the end, the
graph is returned to its original form, and the nodes contain their marginals
in their soft information.
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3.5 Step-by-step belief propagation using ILC

In order to get a closer look at the effects of ILC, we can do a running example
on the graph code with generator and parity check matrix:

H =

ω 1 1
1 ω 1
1 1 ω


x0

x1 x2

Figure 12: Small graph

From this matrix we can construct the graph G in Figure 12. In order to
run ILC on this graph, we first need to chose the amount of LC iterations
and flooding iterations we want to use. One LC iteration with two flooding
iterations each should suffice empirically for the purpose of going through the
different steps of the algorithm. We can use the generator matrix in order to
obtain the codewords:

C = {000, ω11, 1ω1, 11ω, ω2ω20, ω20ω2, 0ω2ω2, ωωω}.

Assume the codeword 1ω1 is transmitted over a noisy channel, and the
resulting soft information at the recipient is:


P (x0 = 0) = 0.05
P (x0 = 1) = 0.7
P (x0 = ω) = 0.1
P (x0 = ω2) = 0.15

 ,


P (x1 = 0) = 0.05
P (x1 = 1) = 0.1
P (x1 = ω) = 0.7
P (x1 = ω2) = 0.15

 ,


P (x2 = 0) = 0.25
P (x2 = 1) = 0.25
P (x2 = ω) = 0.25
P (x2 = ω2) = 0.25


These probabilities are given to the respective nodes x0, x1 and x2. Fol-

lowing from the beginning of Algorithm 9 iterativeLC(y, z), we first flood
the graph y = 2 times. In the first flooding iteration, 6 messages is com-
puted: mx0→x1 , mx1→x0 , mx0→x2 , mx2→x0 , mx1→x2 , and mx2→x1 . Let pi be the
vector containing the soft information for node xi. Since the nodes have not
yet received messages from their neighbours, the messages will be calculated
by dSS(pi, (1010)>). Since dSS((abcd)>), (1010)>) = (acbd)>, the messages
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will be the senders’ soft information with the probabilities for P (xi = 1) and
P (xi = ω) swapped. These messages in the first flooding iteration can be
seen in Table 4.

Message Vector

mx0→x1 ,mx0→x2


0.05
0.1
0.7
0.15


mx1→x0 ,mx1→x2


0.05
0.7
0.1
0.15


mx2→x0 ,mx2→x1


0.25
0.25
0.25
0.25


Table 4: Messages in the first flooding iteration

In the second flooding iteration, the messages can be computed based
on the messages from the previous iteration. For example, the message
mx0→x1 will be computed by dSS(p0, dSX(mx2→x1 , (1010)>). We know that
(1010)> is the identity element for dSX, so the message will simply be
dSS(p0,mx2→x1). Since x1 is the recipient, the message from x1 to x0 is
not used, as to not send back the original beliefs of x1. The messages for this
second iteration can be seen in Table 5.
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Message Vector

mx0→x1 dSS(p0,mx2→x0) =


0.1875
0.0625
0.1875
0.0625


mx1→x0 dSS(p1,mx2→x1) =


0.0375
0.2125
0.0375
0.2125


mx0→x2 dSS(p0,mx1→x0) =


0.4925
0.0325
0.07
0.03


mx2→x0 dSS(p2,mx1→x2) =


0.1875
0.0625
0.1875
0.625


mx1→x2 dSS(p1,mx0→x1) =


0.0125
0.5125
0.01
0.21


mx2→x1 dSS(p2,mx0→x2) =


0.0375
0.2125
0.0375
0.02125


Table 5: Messages in the second flooding iteration

After this final flooding iteration, we now start with the steps of local
complementation. LC(0) is performed, and we follow the corresponding steps
of Algorithm 4. First, the marginals of the nodes are computed using the
messages from the final flooding iteration. The marginals are computed
according to Algorithm 2, where first a message-product is computed from
the messages, and then the final marginal is the dot-product of the nodes
original beliefs and the message-product. For example, x0.marginal() will
be computed by ·(p0, dSX(mx2→x0 ,mx1→x0)). These marginals can be seen
in Table 6. The marginals in this table are normalized and rounded in order
to make them more readable.
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marginal Vector

x0.marginal()


0.03
0.76
0.05
0.16


x1.marginal()


0.04
0.16
0.55
0.25


x2.marginal()


0.08
0.85
0.2
0.05


Table 6: Marginals after 2 flooding iterations on the first graph

In order to keep the information gathered from these flooding iterations
in the next graph-representation, the soft information in the three nodes are
replaced with these marginals. The graph can then be changed according
to the rules of LC. Since x1, and x2 are the only neighbours of x0 and they
have an edge between them, it is removed. The new graph-representation G′

of this code can be seen in Figure 13, and its corresponding generator and
parity check matrix will be:

H ′ =

ω 1 1
1 ω 0
1 0 ω


By swapping 1 and ω2 in position 0, and swapping ω and ω2 in positions

1 and 2 in C, we obtain the codewords C ′ corresponding to the matrix H ′:.

C = {000, ω11, 1ω1, 11ω, ω2ω20, ω20ω2, 0ω2ω2, ωωω}.
C ′ = {000, ω11, ω2ω21, ω21ω2, 1ω0, 10ω, 0ωω, ωω2ω2}.

This means that sending the codeword 1ω1 using the code C, is equivalent
to sending the codeword ω2ω21 using the code C ′ in terms of re-labeling. Due
to this, the soft information in the nodes has to be changed according to the
same rules as seen in softChange(0). x0 swaps the probabilities for 1 and
ω2, while x1 and x2 swaps the probabilities for ω and ω2. The new soft
infromation in the nodes of G′ is shown in Table 7.
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Soft information Vector

p0


0.03
0.16
0.05
0.76


p1


0.04
0.16
0.25
0.55


p2


0.08
0.85
0.05
0.2


Table 7: New soft information in second graph-representation

After these changes, the flooding iterations for the new graph can begin.
Just as in the previous graph, the message calculations in the first flooding
iteration will be the soft information of the sender, with the probabilities for
xi = 1 and xi = ω swapped. The messages for the first flooding iteration in
the second graph can be seen in Table 8

Message Vector

mx0→x1 ,mx0→x2


0.03
0.05
0.16
0.76


mx1→x0


0.04
0.25
0.16
0.55


mx2→x0


0.08
0.05
0.85
0.2


Table 8: Messages in the first flooding iteration of the second graph

In the second flooding iteration of the second graph, since both x1 and x2
have not received a message from any other node than x0, they will not be
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x0

x1 x2

Figure 13: Small graph G′ after LC(0) in G

able to compute an updated message. They will therefore again only be able
to compute a message based on their own soft information. x0 can create
new messages for x1 and x2 based on the message from the opposite node.
The message mx0→x1 will be calculated by dSS(p0,mx2→x0), and similarly
mx0→x2 = dSS(p0,mx1→x0). The updated messages calculated by x0 can be
seen in Table 9

Message Vector

mx0→x1


0.0104
0.1945
0.0143
0.656


mx0→x2


0.0412
0.426
0.0139
0.1491


Table 9: New messages from x0 in the second flooding iteration of the second
graph

After this, the code C ′ can be reverted back to the original C by re-
applying LC(0). The progress gathered from the final flooding iterations
needs to be kept, and we replace the nodes’ soft information with the marginals
of the nodes. Similarly to in the first graph, the marginal for x0 will be
x0.marginal() = ·(p0, dSX(mx2→x0 ,mx1→x0)). Since x1 and x2 only has a
single neighbour, their marginals will be calculated by:
x1.marginal() = ·(p1,mx0→x1), and x2.marginal() = ·(p2,mx0→x2). They
can be seen in Table 10.
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marginal Vector

x0.marginal()


0.001
0.009
0.031
0.959


x1.marginal()


0.001
0.079
0.009
0.911


x2.marginal()


0.008
0.915
0.002
0.075


Table 10: Marginals after 2 flooding iterations on the second graph

These marginals correspond to the codewords in C ′, and indicates that
the codeword ω2ω21 was sent. Since we are interested in the results for
the original code C, we can re-apply LC(0). The soft information will be
swapped according to the same rules and can be seen in Table 11.

marginal Vector

x0.marginal()


0.001
0.959
0.031
0.009


x1.marginal()


0.001
0.079
0.911
0.009


x2.marginal()


0.008
0.915
0.075
0.002


Table 11: Final results of the decoding using 1 LC with 2 flooding iterations
per graph

Now that the soft information has been converted so that it corresponds
to the original code, the algorithm is finished and the the soft information
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contains the final results. The algorithm concludes correctly that the most
likely codeword sent was 1ω1.

3.6 Marginal convergence in ILC

Though BPSG computes exact marginals for trees, this is not the case for
ILC. This is due to ILC introducing cycles to the graph through a series of LC
operations. An important property of ILC is how the soft information in the
nodes are updated after the set amount of flooding iterations in the particular
graph-instance. Due to the soft information being continuously updated in
in every graph of the LC-orbit, the marginals tends to continue to converge
to what is believed to be the correct character. Suppose you have a node
xi with probability vector pi = (0.5, 0.2, 0.2, 0.2)>, and that after the given
amount of flooding iterations, the marginal is mi = (0.7, 0.1, 0.1, 0.1)>. The
soft information is then updated to be the marginal, and after permuting the
graph according to the rules of LC, new flooding iterations are performed.
Suppose the new marginals is then (0.8, 0.66, 0.66, 0.66)>. If every graph
instance continues to agree on the correctness of xi, the marginal will converge
towards (1, 0, 0, 0)>. As an example, consider the decoding of the 12-node
nested-clique where we have the starting soft information corresponding to
the codeword ω11110001000, where there are errors in the last two characters:

p0 =


0.2
0.2
0.7
0.1

 , p1 =


0.2
0.7
0.2
0.1

 , p2 =


0.2
0.7
0.2
0.1

 ,

p3 =


0.2
0.7
0.2
0.1

 , p4 =


0.2
0.7
0.2
0.1

 , p5 =


0.7
0.2
0.2
0.1



p6 =


0.7
0.2
0.2
0.1

 , p7 =


0.7
0.2
0.2
0.1

 , p8 =


0.2
0.7
0.2
0.1

 ,

p9 =


0.7
0.2
0.2
0.1

 , p10 =


0.2
0.7
0.2
0.1

 , p11 =


0.2
0.7
0.2
0.1
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For sake of simplicity, we will focus on the marginals in the nodes where
there are errors, namely x10 and x11. We will compare the marginals of
ILC to the marginals of BPSG using the same amount of flooding iterations.
Suppose we use 2 flooding iterations per graph encountered through LC.
After the first two flooding iterations, before doing any LC, the marginals
will be:

Marginal BPSG(2) ILC(2,0)

m10


0.1922199455682555
0.585615013777599

0.15423322671412748
0.06793181394001813




0.1922199455682555
0.585615013777599

0.15423322671412748
0.06793181394001813


m11


0.1904239742615757
0.586887996166403

0.15411987473794236
0.06856815483407909




0.1904239742615757
0.586887996166403

0.15411987473794236
0.06856815483407909


Table 12: Marginal comparison between BPSG(2) and ILC(2,0)

Naturally, the marginals are exactly the same, as both algorithms have
gone through the same amount of flooding iterations. Continuing with one
LC operation, we have:

Marginal BPSG(4) ILC(2,1)

m10


0.2002982132016834
0.589572709063172
0.1470194139671689
0.06310966376797568




0.27398765594694685
0.5726650817495365
0.1170500735861681

0.036297188717348584


m11


0.20011886896497225
0.5894657668392841
0.1471500425203516
0.06326532167539196




0.26379294272939935
0.5873303293171007
0.11230223346682447
0.03657449448667541


Table 13: Marginal comparison between BPSG(4) and ILC(2,1)

After an additional 2 flooding iterations on a new graph, ILC has be-
gun increasing the probability that x10 and x11 were ”0” considerably more
than doing 2 additional iterations on the same original graph. Flowing with
another LC iteration:
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Marginal BPSG(6) ILC(2,2)

m10


0.20405829722336438
0.5901281541724192
0.14458347809574534
0.061230070508471145




0.7391668163793695
0.21729674216928524
0.03963708454249967
0.003899356908845561


m11


0.2040551707252924
0.5895653657082193
0.14496994891242299
0.06140951465406544




0.6838777042735805
0.2885051043997645

0.024061219895666768
0.0035559714309880983


Table 14: Marginal comparison between BPSG(6) and ILC(2,2)

After applying 2 flooding iterations to 3 different graphs, ILC already
finds x10 and x11 to most likely be ”0”. By continuing with many more LC
iterations, we get the results in Table 15. The marginals taken directly from
the global function can be seen in Table 16.

Marginal BPSG(100) ILC(2,50)

m10


0.20549182235723512
0.5903403022080188
0.1436441746066074
0.06052370082813874




1.0
0.0
0.0
0.0


m11


0.20563136749259817
0.589454971077216

0.14420116502324684
0.06071249640693915




1.0
0.0
0.0
0.0


Table 15: Marginal comparison between BPSG(100) and ILC(2,50)

In the scenario presented, ILC was able to decode the soft information
into the correct codeword, where as BPSG did not. In the example, both
errors were located in the same clique, propagating wrong information in
short cycles between them. By using different graphs in the LC-orbit, we
get rid of cycles that may prohibit the nodes from converging towards a
codeword.
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Marginal Global Function

m10


0.4573283016391904
0.3923735235945031
0.1027593263498699
0.04753884841643655


m11


0.4573283016391904
0.39237352359450334
0.10275932634986977

0.0475388484164364845


Table 16: Marginals from the global function

4 Analysis and Assessment

In this section we show the results of decoding using ILC on larger graphs
using more LC and flooding iterations. We primarily compare the two meth-
ods, BPSG and ILC. We generate soft information by passing words through
our channel model described in Section 4.1, and feeding the same soft in-
formation to our two decoding methods. We are particularly interested in
checking the performance of these algorithms on the strong graph codes with
high minimum edit distance, which usually forms nested-clique structures
[6]. We adress the runtimes of ILC, BPSG and compare them to the runtime
of the global function. Though single-clique graph codes are not good codes
(being LC-equivalent to a tree with distance d = 2), we end the section by
looking at how performing LC on a clique, thereby turning it into a tree,
affects the decoding performance.

4.1 Channel model

In order to be able to analyze the performance of BPSG and its extension
ILC, we need to be able to simulate a noisy quadratic channel. For the
binary symmetric channel, one can use the method described in Section 2.7.
In order to apply the properties of AWGN to the quarternary channel, we
replace {0, 1, ω, ω2} with {00, 01, 10, 11} respectively. Each character in F4

is then defined as two bits b0, b1 ∈ F2. These two bits is then simulated
to be sent through a noisy channel using the AWGN channel as described
in Section 2.7. For the given noise N0 and bit energy Eb, the bits b0, b1 is
then encoded to to r0, r1 respectively. We then get for any F4-character two
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probability vectors:

b0 =

(
P (b0 = 0|r0)
P (b0 = 1|r0)

)
b1 =

(
P (b1 = 0|r1)
P (r1 = 1|r1)

)
From this, we construct a length 4 probability-vector representing any char-
acter x ∈ F4 as

x =


P (x = 0)
P (x = 1)
P (x = ω)
P (x = ω2)

 =


P (b0 = 0|r0) + P (b1 = 0)|r1)
P (b0 = 0|r0) + P (b1 = 1)|r1)
P (b0 = 1|r0) + P (b1 = 0)|r1)
P (b0 = 1|r0) + P (b1 = 1)|r1)


The error rates gathered from simulating transmission and decoding of

codewords in F4 is plotted with 10·log10(Eb

N0
) along the x-axis, and log10(error rate)

along the y-axis. The error rates we sample are the ”bit” error rate and the
word error rate.

4.2 Comparing methods

The following sections show comparisons between BPSG and the extension
ILC using varying amounts of flooding and LC iterations. In order to make
the comparison of different decoding methods as fair as possible, we make
sure that all methods operate based on the same instances of soft information
sampled from our channel model. We sample 2000 instances of soft infor-
mation from our channel model per value of Eb

N0
, usually such that each data

point 10 · log10(Eb/N0) ∈ {−0.5,−0.45, ..., 1.45, 1.5}. This same soft informa-
tion is then fed to the different decoders and we sample log10(bit error rates)
and log10(word error rates) showing how successful the 2000 decoding were.
The more decoding we do per level of noise, the more the results are averaged
out, and the smoother the resulting curves will be. We primarily use 2000
decodings per level of noise due to computational limitations. Due to how
similar the charts for bit error rates and word error rates are, we usually only
show the word error rates as to avoid seemingly duplicate charts.

4.3 Impact of flooding iterations for BPSG

When measuring the performance of BPSG, we need to select a set number
of flooding iterations. In order to compare BPSG fairly with ILC, we should
select y amount of flooding iterations such that BPSG performs as good
as possible. The codes we will primarily focus on is nested-clique structures,
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where BPSG struggles due to the many short cycles. In these graphs, without
doing any LC, the nodes quickly confirm their original beliefs due to their
soft information being amplified through short cycles. In other words, doing
more flooding iterations may not particularly improve the results for BPSG,
but only reaffirm the original information. Figures 14 and 15 shows how
flooding iterations impact the decoding performance of BPSG. For the 6-
node nested-clique, the resulting decoded words does not improve after 10
flooding iterations. For the 20-node nested-clique, the performance does not
improve past 5 flooding iterations, likely due to the many short cycles in this
larger graph. Since there is no indication that using more flooding iterations
decreases the performance, it is better to do too many iterations than too
few.

Figure 14: Word error rates for the 6-node nested-clique using BPSG
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Figure 15: Word error rates for the 20-node nested-clique using BPSG

4.4 Decoding using ILC

When testing the performance of ILC and comparing it to BPSG, we need to
decide how many LC iterations and flooding iterations should be performed.
Due to dealing with graphs containing cycles, there is no clear indicator as
to when decoding is complete. With the results from the previous section, 50
flooding iterations should be more than enough for BPSG. For ILC, we need
to select both z LC iterations and y flooding iterations, such that the total
amount of floodings across all graph-representations is y · z. For the initial
runs of ILC, we selected 50 LC operations with 10 floodings each. We later
do an analysis of how the number of floodings and LC operations impact
the decoding performance of ILC. Decoding on the 6-node nested-clique as
seen in Figure 4 using BPSG(50) and iterativeLC(50, 10) gave the results
in Figures 16 and 17.
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Figure 16: Bit error rates for the 6-node nested-clique, comparting BPSG(50)
and ILC(10,50)

Figure 17: Word error rates for the 6-node nested-clique, comparting
BPSG(50) and ILC(10,50)
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One can clearly see the improvement for ILC for all signal-to-noise ratios < 1.2.
The LC-decoder reaches zero error rate for all 10 · log10(Eb

N0
) ≥ 0.85, where

as BPSG does not achieve zero error rates until 10 · log10(Eb

N0
) ≥ 1.25. The

results show that local complementation can be used in order to improve the
decoding of nested-clique structures.

4.5 Performance impact of LC iterations

In addition to the 6-node nested-clique, ILC have been tested on larger graphs
such as a 12-node nested-clique and a 20-node nested-clique. The word error
rates of ILC compared to BPSG for these graphs can be seen in Figures 18
and 19. The data has been sampled using the same 50 LC iterations with 10
flooding each.

Figure 18: Word error rates for the 12-node nested-clique, comparting
BPSG(50) and ILC(10,50)

Though the 12-node nested-clique shows great improvements for ILC, the
improvements seems to diminish on the 20-node nested-clique. We would ar-
gue that the 50 LC operations does not utilize enough graphs in the LC-orbit
of the 20-node graph. Figure 20 shows how the error correcting performance
of the 20-node graph is increased as the amount of LC iterations increases.
A particular point of interest in Figure 20, is where the version doing 150
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Figure 19: Word error rates for the 20-node nested-clique, comparting
BPSG(50) and ILC(10,50)

LC performs better than the version that does 200. This might tie into how
we indiscriminately use every graph encountered when iteratively applying
LC. One way it could be explained, is if the 50 extra graphs utilized has the
problematic nodes more heavily connected in short cycles. In Section 4.8 we
look into how the different graphs in the LC-orbit of nested-cliques performs
and how one can potentially avoid using graphs that has more cycles than the
original nested-clique. Doing an increased number of LC iterations naturally
comes at an increased computational cost. The computation times of the dif-
ferent methods on the 20-node nested-clique can be seen in Figure 21. Each
data-point represents the average computation time of a single decoding in
seconds. These results indicate that the computation cost increases linearly
with the amount of LC iterations. In Section 4.7 we show the runtime upper
bounds for BPSG and ILC.

We have seen that the performance of ILC depends on the size of the graph
and the corresponding number of LC iterations. Though the error rates can
be improved using more LC iterations, it also increases the computational
cost.
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Figure 20: Word error rates for the 20-node nested-clique, comparing LC
iterations

4.6 Performance impact of flooding iterations

In order to get a better understanding of ILC, it is interesting to look at
how the amount of floodings per LC iteration impacts the error correction
performance. In the early stages of development, several numbers of flooding
iterations were selected in the 5-50 range. Since the different values for flood-
ing iterations seemed to have little impact on the performance, 10 flooding
iterations was used in order to sample the early results. Due to the nature
of how the amount of floodings per LC iteration impacts runtimes, we now
measure its impact more accurately. Figure 22 has been created by doing
50 LC operations with 1-16 flooding iterations on the 12-node nested-clique.
Again, the BPSG performs 50 flooding iterations on a single graph.

We see in Figure 22 that even though 1 flooding iteration does not im-
prove the decoding performance, only doing 2 flooding iterations shows to
perform almost as good as doing 4 and more. Performing 8 and 16 flood-
ing iterations per LC operation yields almost the exact same error rates as
doing 4, only with some almost indistinguishable variations. Doing more
than 4 flooding iterations shows to be redundant, and only having to do 2-4
flooding iterations can significantly improve the runtime. Keep in mind that
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Figure 21: Average runtimes for a single decoding on the 20-node nested-
clique in seconds.

Figure 22: Word error rates for the 12-node nested-clique, comparing flooding
iterations

52



these results are for the 12 node nested-clique, though similar results can be
observed for the 6 and 20 node nested-clique, graph structures other than
nested-cliques may require higher amounts of flooding iterations based on
how far messages has to be propagated in order for all nodes to have received
data from the entire graph. For the nested-clique structures, all nodes are
a maximum of 2 edges away from all other nodes in the graph. Nodes have
distance d = 1 to the nodes in its own clique, and has distance d = 1 to one of
the nodes in all other cliques. As such, the distance between any two nodes
in a nested-clique is d ≤ 2. This means that after two flooding iterations, all
nodes will have received soft information from all other nodes. This could
be the reason using two flooding iterations per graph in ILC shows great
improvements over BPSG.

Figure 23: Average runtimes for a single decoding on a 12-node nested-clique
in seconds

The runtimes from this experiment can be seen in Figure 23. Again, each
number is the average runtime for a single decoding in seconds. We see that
one can save quite a bit of computation time by selecting a smaller amount
of flooding iterations without having to sacrifice decoding performance.

4.7 Runtime analysis

Let G = (V,E) be the graph representing the self-dual F4-additive code. The
runtime of ILC and BPSG is dependent on the methods they use. Both uses
the same functionality for computing messages, marginals and flooding the
graph. In the worst case scenario, computeMessage() will have to consider
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messages from all other |V | nodes and the run time is O(|V |). marginal()
has to consider the maximum of |V | messages and therefore has the same
upper bound. The runtime of flood(y) depends on whether we consider
the amount of flooding iterations y constant or non-constant. The flooding
computes two messages per edge in the graph and has the runtime O(y2|V | ·
|E|) = O(y|V ||E|)). BPSG does y flooding iterations and then samples the
marginals of all the nodes in order to get the most likely codeword. The full
runtime of BPSG is therefore O(y|V ||E|+ |V |2). ILC extends BPSG utilizing
several additional algorithms. A complete list of all the runtimes can be seen
in Table 17. The runtime of ILC again depends on whether we consider
the amount of LC and flooding iterations constant or non-constant. Figure
22 shows why one might consider the amount of flooding iterations a small
constant, however it is shown in Section 4.5 that the amount of LC iterations
needs to increase for larger graphs, which makes the amount of LC operations
an important factor. iterativeLC(y, z) performs one flood(y) and one LC(v)
per z LC iterations. A single iteration of LC(v) look through a maximum
of |V |2 pairs of nodes and check whether they have an edge between them.
It also needs to compute the marginals for all |V | nodes. LC(v) therefore
has an upper bound of O(|V |2 + |V |2) = O(|V |2). Since iterativeLC(x, y)
does one LC(v) and one flood(y) each of the z LC iterations, the total upper
bound for iterativeLC(y, z) is O(z(|V |2 + y|V ||E|)).

Algorithm Runtime complexity
createMessage(recipient) O(|V |)

marginal() O(|V |)
flood(y) O(|V ||E|), O(y|V ||E|)
BPSG(y) O(|V ||E|+ |V |2), O(y|V ||E|+ |V |2)

marginalToSoftInformation() O(|V |2)
clearMessages() O(|V |)
softChange(v) O(|V |)
graphChange() O(|V |2)

LC(v) O(|V |2)
iterativeLC(y, z) O(|V |2 + |V ||E|), O(z(|V |2 + y|V ||E|))

Table 17: Algorithm runtimes. Black text: y,z assumed constant. Blue text:
y,z assumed non-constant.

Overall, ILC is slightly more computationally expensive than the BPSG,
the difference in runtime is heavily dependent on the amount of z LC itera-
tions. From Section 4.5 we know that one can expect to do many more LC
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iterations than there are nodes or edges in the graph. It could in theory be
possible to identify the optimal amount of z LC iterations as a function of V
and E, which again stresses the importance of z in iterativeLC(y, z). The
notion of whether the iterative-LC decoder is worth the additional computa-
tion time will be based on how much noise there is on the quadratic channel
and whether the additional computation time is problematic for the precise
use-case. One of the main reasons we decode using belief propagation is
that it is far less expensive then decoding directly from the global function.
Using the global function, variables needs to calculate their marginals based
on every codeword. Since a graph code of size |V | has 2|V | codewords, the
total computation time decoding directly from the global function would be
|V |2|V |. Though ILC is more computationally expensive than BPSG, it is
still far less expensive than to decode directly from the global function.

4.8 Decoding using one LC

In order to get a better understanding of how LC iterations impact decoding
performance, we now take a look at decoding using just one LC iteration.
Given a graph G, we apply LC0(G) = G′ and do flooding iterations only on
G′ before converting it back to the original code. Using this scheme, we can
look at the performance difference between decoding on trees and decoding
on cliques. Consider the graph of six nodes with edges forming a clique. We
know that performing LC on any node of this graph will turn it into a tree
as seen in Figure 24.

x0

x1 x2

x3

x4 x5

x0

x1 x2

x3

x4 x5

LC0(G)

Figure 24: Performing LC on a 6-node clique

Due to the problems BPSG scheme runs into when dealing with cycles,
we are interested in seeing if the error correction can be improved by using
LC and decode in the corresponding tree. Using the graph code forming
a 6-node clique we can compare doing 50 flooding iterations directly on the
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clique to doing 50 floodings on the tree acquired by doing LC. Figure 25 shows
the results of comparing the two methods for different signal-to-noise ratios.
The direct use of BPSG achieves zero error rate for signal-to-noise ratios
10 · log10(Eb

N0
) ≥ 1.2, where as using LC and operating on the corresponding

tree structure achieves zero error rate at 10 · log10(Eb

N0
) ≥ 0.95. We can again

see that the decoding performance can be improved by operating on different
graphs in the LC-orbit of the graph code.

Figure 25: Word error rates for the 6-node clique, comparing decoding di-
rectly on the clique, to decoding on the tree acquired through LC.

When decoding on nested-clique graph codes we do not have the property
that a single LC operation turns the graph into a tree. Instead, most LC op-
erations on nested-cliques changes where the cycles are located on the graph.
As expected, when decoding on a graph one LC operation away from the
original nested-clique, we do not necessarily see better error rates. In some
cases the LC operation may result in a graph containing more cycles than the
original nested-clique, resulting in a decrease in the decoding performance.
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x0 x1

x2
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x5

Figure 26: 6 Node Nested-clique

x0 x1

x2
x3 x4

x5

Figure 27: LC0(G) where G is the 6-node nested-clique

Consider the 6 node nested-clique G as seen in Figure 26. Performing
LC0(G) on this graph creates the graph G′ in Figure 27. It can be observed
that G′ contains one more edge than G and that the node x3 has become
connected to every other node in the graph. When we compare the decoding
on G and G′ using the same method as for the clique, the word error rates
seen in Figure 28 show that G′ has worse error rates than that of the original
G.
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Figure 28: Word error rates for the 6-node nested-clique, comparing decoding
directly on the nested-clique, to decoding on G′ from LC0(G).

This means that using a single LC operation and decoding solely on that
graph does not solve the problems with cycles for stronger nested-clique
graph codes. An idea for potential improvement of the ILC is to find a
method that does not indiscriminately use every graph that is encountered,
but only operates on graphs containing the same amount of edges or less
than the original graph.
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5 Conclusion

We have shown how one can perform belief propagation in simple graphs
(BPSG) directly on the graphs relating to self-dual F4-additive codes, with-
out having to discriminate between leaves and internal nodes. In graphs con-
taining many cycles, BPSG’s ability to correct errors is shown to be poor.
As a means to improve on the decoding on strong codes containing many
short cycles, we have developed the extension iterative local complementa-
tion (ILC). Instead of performing all message-passing on the single graph
related to the selected code, ILC uses many graphs in the LC-orbit of the
code. By applying message-passing in many different graphs, ILC avoids
passing messages through the same cycles. We have shown that ILC can
successfully correct errors where BPSG can not. By sampling soft infor-
mation from our channel model, and decoding it using BPSG and ILC, we
have gathered empirical evidence that the decoding can be improved by per-
forming belief propagation on several different graphs in the LC-orbit of the
original graph. When it comes to the parameters for flooding iterations and
LC iterations in ILC, the empirical evidence suggests that the amount of LC
iterations needs to increase as the graphs gets larger. We do not find evidence
for needing to increase flooding iterations in ILC for larger nested-cliques.
Though ILC is shown to give better error rates than BPSG over a significant
range of signal-to-noise ratios, it also comes at an increased computational
cost. Though ILC is more computationally heavy then BPSG, it is still far
less expensive than to decode directly from the global function. In conclu-
sion, we have improved the decoding performance of belief propagation in
F4, while still having lower runtime complexity than the global function.

6 Future Work

6.1 Selective LC

The decoding of graph codes using LC in this thesis is performed using an
iterative decoding scheme where every graph that is encountered is used
for belief propagation. In Section 4.8 it is shown that performing belief
propagation on some graphs of an LC-orbit is less effective than others. It
remains to be seen whether one can further improve the error rates by being
more selective as to what graphs are utilized with belief propagation.
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6.2 Estimate optimal LC iterations based on size of
graph

In Section 4.5 we saw that the amount of LC iterations needed for good
performance improvements over BPSG increased as the graphs grew larger.
We saw that the amount of LC iterations providing satisfying improvements
over BPSG could get larger than |V |. In order to be able to use ILC for
any nested-clique G, it would be beneficial to have a function calculating an
optimal amount of LC iterations based on |V | and |E|.

6.3 Codes over F9

It would be interesting to see how one might perform belief propagation
for codes over other finite fields than F4. It has been shown that every
self-dual additive code over GF (p2) is equivalent to a graph code [7]. A
natural continuation would be to study F32 . This field is defined to consist
of all polynomials in x with ternary coefficients and degree at most 1, with
calculations performed modulo the irreducible polynomial p(x) = x2 + 1
[16]. For self-dual F9-additive codes, we can not use the same definitions of
dSX and dSS as they are only defined for R4. Instead, if decoding is to be
performed similarly to the decoding of the graph codes in this thesis, new
vector-products for vectors u, v ∈ R9 should be devised based on how one
can reduce the marginals of these codes. The goal of studying other fields
such as F9 would be to find similarities to F4 and see if one can generalize
decoding for any field Fp2

6.4 Non self-dual codes

An interesting topic not looked into in this thesis is additive codes over F4

that are not self-dual. These codes are different in that their parity check
matrix will differ from their generator matrix, and that the graphs associated
to the parity check matrix will be directed. It would be interesting to see
how one might perform belief propagation for such graphs.
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