
University of Bergen
Department of informatics

Western Norway University of Applied Sciences
Department of Computing, Mathematics and Physics

Decision support framework for
choosing treatment

Author: André Dyrstad

Supervisor: Adrian Rutle

Co-supervisor: Tori Smedal

May, 2019

Abstract

With the release of ”Fritt behandlingsvalg” in 2015, Norwegian patients got the right to

select where they want to attend special treatment. As of now, there is no easy way to

compare treatment centers, as the information about their treatments can only be found at

their respective websites.

During this study, we are going to look at the current problems with ”Fritt behan-

dlingsvalg” and try to develop a recommender system that helps patients select a treatment

center that suits their needs. First, we implement a prototype based on input from the

Norwegian Multiple Sclerosis Competence Centre. Then, we conduct a set of surveys and

experiments to test our prototype and improve it through several iterations.

Based on experience and feedback, we present a proposal to a general framework that

can collect data from treatment centers and recommend centers based on patient preferences

and needs.

i

Acknowledgements

First and foremost, I want to thank my supervisor Adrian Rutle for helping me over the

course of the master thesis.

I would also like to thank my co-supervisor Tori Smedal as well as Anne Britt Rundhovde

Sk̊ar and Lars Bø from Norwegian Multiple Sclerosis Competence Centre for helping me test

and develop my application as well as providing useful information about Multiple Sclerosis

and ”Fritt behandlingsvalg”.

André Dyrstad

03 June, 2019

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research questions . 2

1.3 Chapter outline . 3

2 Motivation 4

2.1 Multiple sclerosis . 4

2.2 Digitalization . 5

2.2.1 What is digitalization? . 5

2.2.2 Why digitalization? . 6

2.2.3 Digitalization within healthcare . 6

2.2.4 Digitalization within treatment selection 7

2.3 Information access . 7

2.4 A general framework for recommendation systems 7

3 Method 9

3.1 Iterative design . 9

3.2 Kanban . 10

3.3 Systematic literature review . 12

3.3.1 Planning the review . 12

3.3.2 Conducting the review . 14

3.4 Empirical research . 16

3.4.1 Quantitative and qualitative research 16

3.4.2 Empirical research methods . 17

3.4.3 Iterative design with empirical research 17

3.5 Experiments and surveys . 18

iii

3.5.1 Experiment: Jaccard index vs Numerical rating scale scale 18

3.5.2 Experiment: Binary vs Numerical rating scale 18

3.5.3 Survey: Patient questionnaire . 19

3.5.4 Survey: Exploratory treatment center questionnaire 19

3.5.5 Survey: Treatment center questionnaire 20

3.5.6 Survey: Admin page questionnaire 20

3.6 Communication with experts . 20

4 Design 22

4.1 Modules . 22

4.1.1 Center module . 23

4.1.2 Patient module . 23

4.1.3 Admin module . 24

4.2 Decision support framework architecture . 25

4.2.1 Two-tier client-server architecture . 25

4.3 Cloud Computing . 27

4.4 Recommender system . 27

4.4.1 Rule-based Systems . 28

4.4.2 Machine learning . 28

4.4.3 Rule-based systems vs. Machine learning 29

4.5 Representational State Transfer . 32

4.5.1 Benefits with RESTful . 33

4.5.2 REST vs SOAP . 33

4.5.3 JavaScript Object Notation . 33

4.6 Picking the right questions . 34

4.7 A brief history of the project . 35

5 Implementation 37

5.1 Presentation layer . 37

5.1.1 React . 37

5.1.2 Libraries . 38

5.1.3 Center component . 40

5.1.4 Patient component . 41

5.1.5 Feedback . 42

5.1.6 Admin sites . 43

iv

5.1.7 Other components . 46

5.2 Data handling layer . 47

5.2.1 Flask restful . 48

5.2.2 Flask cors . 48

5.2.3 Pipeline . 48

5.3 Application processing layer . 50

5.3.1 Python . 50

5.3.2 Feedback system . 50

5.3.3 Recommender system . 51

5.3.4 Utilities . 53

5.4 Database layer . 54

5.4.1 SQLAlchemy and Object-relational mapping 55

5.4.2 Configuration files . 56

6 Results 58

6.1 Results from patient testing . 58

6.2 Results from treatment center testing . 59

6.3 Results from admin testing . 60

6.4 Meeting with the Department of Rheumatology 61

6.4.1 Testing our application with Rheumatology 62

7 Discussion 63

7.1 Tested frameworks and languages . 63

7.1.1 Angular 4 . 63

7.1.2 Node.js API . 64

7.1.3 NoSQL database . 64

7.2 Answering research questions . 65

7.3 Related Work . 67

7.3.1 HealthNet . 67

7.3.2 A Patient-Centric Healthcare Model 68

7.3.3 A Novel Model for Hospital Recommender System Using Hybrid Fil-

tering and Big Data Techniques . 69

7.3.4 A Hybrid Recommender System for Patient-Doctor Matchmaking in

Primary Care . 69

7.3.5 Summary . 69

v

7.4 Conclusion . 70

8 Future work 71

8.1 HelseNorge . 71

8.2 Further testing and more iterations . 72

8.3 Language support . 72

8.4 Postcodes, distances and wait times . 73

List of Acronyms and Abbreviations 75

Bibliography 77

Appendices 81

A User testing patient survey 82

B First draft of patient questions 86

C Questions given to students during admin testing 89

D Questions given to treatment centers during center testing 90

E First treatment center form 92

F Statement from Norwegian Multiple Sclerosis Competence centre 94

G Sunnaas suggestions 95

H JSON example 95

I Readme 97

vi

List of Figures

3.1 Kanban board . 11

4.1 Server-client structure . 23

4.2 Domain model . 24

4.3 Application architecture . 26

5.1 Screenshot of the center component . 41

5.2 Screenshot of the patient component . 42

5.3 Screenshot of the manage questions component 44

5.4 Screenshot of the manage questions component 45

5.5 System sequence diagram of the patient pipeline 49

5.6 Entity-relationship model . 55

6.1 A figure showing the results of our rheumatology test 62

8.1 Questions that support different languages 72

vii

List of Tables

3.1 Table of SLR findings . 15

4.1 Result from Binary vs Scale experiment . 31

4.2 Result from Jaccard vs Scale experiment . 32

6.1 Results from patient testing based on response from 9 patients 59

6.2 Results from second center testing based on response from 15 treatment centers 60

viii

Listings

4.1 Json file example . 34

5.1 POST and GET methods in Flask RESTful 48

5.2 Flask cors setup . 48

5.3 Dictionary of Scores . 52

5.4 Pseudocode of a converter . 52

5.5 Pseudocode of a converter . 53

5.6 Implementation of a question object . 56

5.7 Query to get all the treatment center and their scores with SQLAlchemy . . 56

5.8 Query to get all the treatment center and their scores with Structured Query

Language (SQL) . 56

5.9 Configuration file example . 57

H.1 Translated JSON file sent during a GET request(with template) 96

ix

Chapter 1

Introduction

In 2015, Norway introduced an arrangement called ”Fritt behandlingsvalg”. This suggests

that people are allowed to choose where they want to attend medical treatment. Then,

in 2017, the government introduced ”Fritt rehabiliteringsvalg” where patients could select

treatment centers within the specialist health service. Previously, patients could only choose

among the treatment centers that were located within their region. Now, patients can choose

between all public institutions as well as private centers that have been approved by Helfo.

The goal with this arrangement was to shorten the wait times by distributing patients more

evenly across all centers, as well as giving the patient the possibility to adjust the outcome

when selecting a treatment center.

1.1 Background

As mentioned above, Norwegian patients have the right to choose their place of treatment.

All rehabilitation centers within the specialist health service are listed on the website of

helsenorge.no [11]. The problem is, that the list only contains the wait times for the treatment

and does not say anything about what the treatment center has to offer. This kind of

information can be crucial when selecting a treatment center and the patients should be able

to access this information.

1

As of now, there is no easy way to determine which treatment center to choose. The

choice is often made by a doctor and is based on his or her knowledge about the different

treatment centers. While this might work to some extent, it is not ideal in the long run.

We can not expect every doctor to know everything about all available treatment centers in

Norway, nor keep the knowledge up to date.

1.2 Research questions

The goal of this research is to improve the current system for selecting treatment centers.

Our approach is to make a website that can recommend treatment centers based on patients

needs. In order to achieve this goal, we attempt to answer the following research questions:

• Is it possible to make a digital solution for recommending treatment centers?

• Is it possible to make a general framework that can be applied to a variety of different

treatments and diseases?

To answer the first research question, we have decided to focus on making a recom-

mendation system that works for Multiple sclerosis (MS). Then, we will try to adapt our

recommendation system to work for different diseases. After completing these two steps, we

should be able to answer our research questions.

In addition to our research questions, we want our application to follow a set of criteria.

These criteria are used as a guideline to see if we actually improved the current solution for

selecting a treatment center:

• The application should be easy to use for everyone involved.

• The recommender system should be fair. Treatment centers should not be recom-

mended at random or based on the alphabetical order.

• The given recommendation should be easy to understand and should provide useful

information when selecting a treatment center.

2

1.3 Chapter outline

Chapter 2: Motivation - This chapter describes the motivation behind the research. We

are also going to look at MS and why we should improve the system currently in use.

Chapter 3: Related work - Provides information about other applications and systems

that tries to improve treatment center selection. These systems are then compared with our

own application

Chapter 4: Method - In this chapter, we first give a description of our design methodology

and our software development methods. Later, we look at our research methodology.

Chapter 5: Design - Here, we describe all the modules in the application and how they

communicate with each other. The chapter does also provide information about our client-

server relationship, as well as a short introduction to Machine Learning, Rule-based Systems,

and Representational State Transfer.

Chapter 6: Implementation - This chapter describes how the application is implemented

and which tools and frameworks we used.

Chapter 7: Results - Here, we present the results from our surveys.

Chapter 8: Discussion - In this chapter, we discuss previously used frameworks, related

work, and come with a conclusion for our project.

Chapter 9: Future work - In the final chapter, we look at some features we did not

have the time or resources to complete.

3

Chapter 2

Motivation

This chapter describes the motivation behind the research. We are also going to look at MS

and why we should improve the system currently in use.

2.1 Multiple sclerosis

MS is a chronic disease that can impact all areas of the brain and spinal cord. These

structures make up the Central nervous system (CNS). The CNS is the source of all our

thinking, feelings and actions. It controls most physical functions and is the receiving end of

all our perceptions of our surroundings. MS can, therefore, disrupt a large variety of physical

functions, from normal functions, like walking, to solving complicated cognitive tasks. Other

common symptoms include pain, numbness, visual disturbances, bladder control problems,

and fatigue, just to mention a few[41].

The Norwegian Directorate for e-health [35] states that everyone has a different experience

with MS. MS-symptoms are highly individually variable, and the disease course is very

unpredictable. Symptoms may initially be vague and are not specific for MS. Some symptoms

are long-lasting, some last only for a short amount of time. This variability sometimes

makes MS difficult to diagnose early. When the diagnosis is set, it is often possible to get a

treatment that can slow down or stop the disease progression. Early treatment can prevent

4

future MS-attacks. As a result, early diagnosis and treatment are important when it comes

to MS.

Because of the diversity of symptoms, it is important to give the correct recommendations

and treatment to each patient. Some patients might need rehabilitation for bladder problems,

while others may need rehabilitation for work –related problems and cognitive dysfunction.

So far, an unsolved question has been: How do we ensure that each patient is recommended

to the optimal treatment center? This is where our application comes in. By matching each

patient needs to the services offered by the treatment centers, we should be able to help

patients select the right treatment center to attend treatment[41].

2.2 Digitalization

Before the computer was commonly used, all tasks were done by hand. While these methods

worked back then, it was a slow process and there where a lot of people involved. Then

the computer came. A lot of tasks were moved to a digital platform and everything became

more efficient. Instead of doing all the work yourself, you could just ask the computer to do

it for you. While many companies adapted to these kinds of methods, some were left behind

and stuck with the old methods.

2.2.1 What is digitalization?

Digitalization is the process of moving information from a physical form to a digital form.

Paper documents can be scanned or rewritten to a Portable Document Format (PDF) file.

Frequency modulation broadcasting is slowly being replaced by Digital Audio Broadcasting.

Information and messages can be sent over the internet instead of using old fashion mail

services. You don’t even need to visit the bank to manage your account anymore. All these

things are examples of digitalization and are affecting your life more than you can imagine.

5

2.2.2 Why digitalization?

Let’s look a bit deeper into the ”paper to PDF” scenario. When dealing with a lot of papers,

you need a lot of storage. If you want to store one million pages in physical form, you will

need about 24m2 of space to store all your documents[7]. If you want to store these pages

electronically, you could fit the same amount of pages on a 64GB memory stick. The cost

makes a huge difference as well. You can get a memory stick for 100 Norwegian Kroner,

while a storage facility is a bit more costly.

Another benefit of digitalization is the ability to search and update documents. It is a

lot quicker to search among files on a computer than a storage facility. Updates can be done

by simply removing the old text and replace it with new information.

2.2.3 Digitalization within healthcare

Digitalization can also improve healthcare and help in increasing physical activity. Wearable

technology can help people monitor their own health and give warnings if something is out

of the ordinary. Virtual reality can help old people do basic exercises and give surgeons

the possibility to practice before an important surgery. Artificial intelligence can guess

the disease based on symptoms. Last but not least, digitalization can help people access

information that otherwise would be difficult to obtain. The possibilities are endless.

Another great example of how digitalization can improve healthcare can be found at

helsenorge.no [11]. This website has a module called ”My health” where people can access

their personal records, book a meeting with their general practitioner and ask questions

about their health. Previously, all of these interactions would require you to call your general

practitioner or the local hospital. Now you can access it through your own computer. Not

only does this shorten the time it takes to find information, but health professionals spend

more time helping people with critical problems rather than answering phone calls.

6

2.2.4 Digitalization within treatment selection

Given what we know, is it possible to use digitalization to implement an application for

selecting treatment centers? The biggest step into digitalization is the gathering of treatment

center data. Without a digital solution, we would have to collect data with a form. This

would result in a manual process for both the sender and the receiver.

The new and improved system solves this problem by moving the form to a website.

This website is always available, easy to access and the information is automatically up-

dated whenever a treatment center submits a change. When submitted, the answers are

automatically moved to a database and instantly used by the other modules. Norwegian

Multiple Sclerosis Competence Centre is still able to access the answers and manage them if

needed. The benefit of automating this pipeline is that updates can happen more frequently.

Frequent updates give patients better, and more up-to-date information about each center.

2.3 Information access

As of now, the information gathered by the treatment centers who offers MS is not easily

accessible. It is difficult to find, and not always up to date. And even if the patient finds

it, it is a lot of information to process. With around 50 centers to choose from and a lot

of treatments, you have to spend some time to find the best treatment center for you. The

website improves this struggle by displaying the information as a survey. The patients are

able to answer a few questions about their needs and preferences, and in return, they get

a few recommendations about where they should attend treatment. The recommendations

should then be discussed with the medical doctor, nurse or other health care professionals

aiming to find the best solution for the patient. Not only does this shorten the time spent

looking for information, but it also represents the information in an impartial manner.

2.4 A general framework for recommendation systems

If we manage to do something about the current system for selecting treatment centers

for MS patients, what is stopping us from applying the same logic to other treatments

7

and diagnoses? By giving the admins the possibility to add, remove and edit questions,

the application could (in theory) work on anything. By answering some questions, the

user could get a recommendation on e.g. which restaurant they should visit based on food

preferences, where you should live based on economy and family or maybe which type of dog

you should buy. All you need is an expert to define some rules which are used when giving

recommendations.

8

Chapter 3

Method

To carry out our research, we have selected a few methods that can help us develop and

review our application. These methods include iterative design, kanban, systematic literature

reviews, and empirical research. Afterwards, we describe our communication with different

experts in healthcare and IT.

3.1 Iterative design

Iterative design is a methodology used to design user interfaces. The method involves making

effective and user-friendly interfaces through several iterations. First, we start off by making

a prototype with a design we would like to use. This can either be a functional program,

or wireframe that shows the basics of the interface. Since we are not testing the system as

a whole, we can use fake, hard-coded data to test the interface. When we have a working

prototype, we do some user testing to get feedback on our interface. According to J. Nielsen

[31] it is common to use around ten people during testing. He also says that is it important

to test the interface on people who are actually going to use it, to get the best feedback

possible. This includes both novice and expert users. When the testing is complete, we

analyze the results and do it all over again until we are happy with our result.

To measure usability, Nielsen mentions five different quality attributes:

9

• Easy to learn - A user can quickly learn the basics of the system.

• Efficient to use - Once learned, the user can work in an effective manner.

• Easy to remember - You remember how the system works after not using it for a

few months.

• Few errors - The user can complete their tasks without too many errors. They can

also recover easily if an error occurs

• Pleasant to use - The user enjoy using your system

While these attributes are important to make a good interface, we do not have to focus

equally on all five attributes. Which attribute we should focus on, depends on the project.

In our decision support framework, we focused on a system that is easy to learn, has few

errors and is pleasant to use. Since this is a system you use once (or rarely), it is less

important to make it efficient to use and easy to remember. The first impression is the most

important factor in our case. If the website is not appealing or easy to use, people will leave

the website and find another alternative. The same goes with few errors. If they find it

difficult to complete the survey or have to start over again because of errors, they won’t

bother doing it at all.

When it comes to the iterative part, we decided to split the process into three parts, one

for each module. The reason why is that each module has a different target audience. The

patient module is used by patients, the center module by people who work at the treatment

centers and the admin module by Norwegian Multiple Sclerosis Competence Centre. In

addition, we used employees at Haukeland University Hospital as our experts to help us

improve the design. These experts where our main feedback source during the first iterations.

When we had a working pipeline, we moved on to the novice users and used their feedback

to improve the interface. More information about our user testing can be found in chapter

6.

3.2 Kanban

Kanban is a lean approach to software development. It is mostly used as a tool to manage

and improve workflow when doing agile programming. While there is a lot of different ways

to apply kanban, there are a few key elements that you should follow.

10

• Visualize workflow.

• Limit work in progress

• Focus on the flow

It is common to use a kanban board to visualize the workflow. The board contains

columns that each represents a stage in the workflow. Tasks are added to the first column

and then moved right for every completed stage. The board used in this project can be seen

in figure 3.1

Figure 3.1: Kanban board

Kanban board used under development

Stop starting, start finishing is a common phrase used when working with kanban. By

limiting the number of tasks in the Doing column, you can focus on your current task

without thinking about anything else. A lot of ongoing tasks can also affect each other and

you might end up having to redo a task because it does not fit in with the new additions.

Finally, if you complete tasks before starting a new one, you can deploy the application after

each completed task. This method made a huge difference when we had to deploy a working

prototype before each meeting with the Norwegian Multiple Sclerosis Competence Centre.

Focus on the flow is more relevant when doing kanban in a group. What it means, is that

you should have an even flow and prevent tasks from being blocked by other tasks. This

is not a huge problem when doing kanban alone since you do not have to wait for anyone

11

else to complete their task before you can continue your own. A well-planned development

process will prevent blocked tasks and help in generating a good workflow for your project.

3.3 Systematic literature review

To get a better overview of already existing research, we have decided to use Systematic lit-

erature review (SLR) to gather more information about our topic. In the paper: Procedures

for Performing Systematic Reviews[25], Kitchenham describes SLR as:

A systematic literature review is a means of identifying, evaluating and inter-

preting all available research relevant to a particular research question, or topic

area, or phenomenon of interest.

Knowing this, why should we do a SLR? Well, some common use cases are to identify

gaps in the current research, compare your hypothesis with other papers, and summarise

previous research [5]. In our case, we want to find systems similar to ours and compare them

with our own application. While we might not find systems that are identical, we might get

an indication of how we should approach when making our application.

As described by Kitchenham [25], SLR is split into three parts: identifying, evaluating

and interpreting. In this section, we are going to focus on identifying related work and later

in section 7.3, we are going to evaluate and interpret our findings.

3.3.1 Planning the review

The first phase of a SLR is the planning phase. In this phase, we start off by specifying the

research questions that we want to answer during the review. In our case, we want to test

our research questions stated in our introductory chapter. After making the questions, we

want to make a review protocol that contains all the information needed in order to perform

our review. This protocol should contain:

• Background

12

• Research question(s)

• Search strategy

• Criteria

• Quality assessment

• Data extraction strategy

• Synthesis of the extracted data

Review protocol

Research questions

Is it possible to make a digital solution for recommending treatment centers?

Is it possible to make a general framework that can be applied to a variety of different treat-

ments and diseases?

Search sources

Scopus, Google Scholar

Search words

Recommender system OR Recommendation system

Rule-based

Doctor

Health

Treatment center

Treatment facility

Physician

Hospital

Search applied on

Title, abstract, keywords

Search period

2000-2019

13

Searched items

Conferences, papers, journals

Criteria - Include

All documents must be in English.

To be considered, the document must contain a description of a recommendation system

that is related to recommending doctors, hospitals or treatment centers.

Criteria - Exclude

Papers about health tracking systems are not interesting when it comes to treatment center

selection.

Since our recommender system is all about recommending where you should attend treat-

ment, we do not include papers about recommending medication or type of treatment. This

information is already known by the patient before using our application.

We want to prevent duplicates in our list of selected documents. This includes documents

published by the same authors on the same topic.

3.3.2 Conducting the review

After the planning phase, we move on to conducting our review. In this phase, we use our

protocol to find studies that might be relevant. Then we select relevant studies and finally

extract and present the data.

As described in our review protocol, we used Google Scholar and Scopus to find doc-

uments. A list of our findings and search strategies are provided below. Since some of

our strategies provided 60+ results, we have decided to only include documents that had

a promising title or abstract. The documents not included contained information about

recommendation systems that give you a diagnose based on symptoms and health tracking

systems.

14

Table 3.1: Table of SLR findings

Title Search Selected Reason
A Hybrid Recommender System for Patient-
Doctor Matchmaking in Primary Care [19]

2 Yes

Power to the patients: The HealthNet Social
Network [12]

2 Yes

A Patient-Centric Healthcare Model Based
on Health Recommender Systems [4]

3 Yes

A Novel Model for Hospital Recommender
System Using Hybrid Filtering and Big Data
Techniques [8]

1 Yes

A Decision Support System for Prescription
of Non-Medication-Based Rehabilitation [15]

4 No Set diagnosis and rec-
ommends treatment

A Collaborative Filtering Recommender Sys-
tem in Primary Care: Towards a Trusting
Patient-Doctor Relationship[18]

2 No Duplicate

Building a Classification Model for Physician
Recommender Service Based on Needs for
Physician Information[27]

2 No Does not recommend
centers

Which Doctor to Trust: A Recommender
System for Identifying the Right Doctors[17]

2 No Only for finding Key
opinion leaders

Recommending doctors and health facilities
in the HealthNet Social Network[29]

2 No Duplicate

How to find your appropriate doctor: An in-
tegrated recommendation framework in big
data context[23]

2 No

A Hospital Recommendation System Based
on Patient Satisfaction Survey[24]

1 No Mostly focused on an-
alyzing feedback

During our search, we used a combination of our search words to reduce the number of

irrelevant documents. All our documents were found with these search strings:

1. (Recommender system OR Recommendation system) AND Hospital

2. (Recommender system OR Recommendation system) AND Doctor

3. (Recommender system OR Recommendation system) AND Health AND Rule-based

systems

15

4. (Recommender system OR Recommendation system) AND Treatment center

We did try some other combinations as well, but they either resulted in duplicates or

nothing at all.

• (Recommender system OR Recommendation system) AND Treatment facility

• (Recommender system OR Recommendation system) AND Physician

All the relevant findings can be found in table 3.1

Further discussion about our finding can be found in section 7.3

3.4 Empirical research

As a part of our research methodology, we have decided to use Empirical research. In

Empirical research, we want to gain knowledge with the help of observation and experience.

This is a commonly used method in scientific research.

3.4.1 Quantitative and qualitative research

There are two well-known paradigms to carry out empirical research, Quantitative research

and Qualitative research. Quantitative research is research concerning numbers and statistics.

The data collected can later be displayed as a graph or a table to give a better overview.

Common ways to collect such data is to run experiments as well as questionnaires with

closed-ended questions. To produce quantitative data with questionnaires, you need to

display questions as a scale (high, medium, low), categories (yes, no) or a numeric value

(0-10). The numeric values and categories are given, can be used to find similarities or

differences in the data. This is useful when you want to test already constructed hypotheses.

[28]

Qualitative research is research without numbers. Rather than observing if something

occurs, we are asking why or how something occurs. Common methods for collecting such

data is reading old papers, records, images, etc., as well as using open-ended questionnaires.

Qualitative data are useful if you want to know the reasoning behind a phenomenon. You

can find out if there are any difficulties completing a task, with the help of quantitative

research, but you need qualitative data to find out why it is difficult. [28]

16

3.4.2 Empirical research methods

In the book Empirical Research Methods in Software Engineering [6], Wohlin, Höst and

Henningsson describe four different methods when doing empirical research: experiment,

case study, survey and post-mortem analysis. To run our research, we have decided to use

experiments and surveys in our research.

An experiment is a method where you test a small part of the project. While a case study

positions the researcher as an observer, experiments are controlled by the researcher. The

goal is to get a result on a specific problem by only controlling a few variables. Wohlin et

al. mention two different types of variables: independent and dependent. The independent

variables are what you want to test. Is solution A better than solution B? The dependent

variables are variables that might be affected by solution A and B. The result is the dependent

variables and how they are affected by the independent variables. This method can be applied

quantitative research [6].

A survey is a method where you ask questions in the form of a questionnaire or an

interview. This method is usually used after the project is completed. The goal of a survey

is to gather a lot of data that can later be evaluated. To get the best possible data, the

population should contain people who are involved with the application. In our case, our

population consists of patients and treatment centers. It is also possible to use surveys early

in the development process to get an overview of the population. This method can be applied

to both qualitative and quantitative research.

3.4.3 Iterative design with empirical research

Iterative design and empirical research have a lot in common. You can run empirical research

to gather more data, analyze the data and then use the result to improve your application

with iterative design. You could, of course, apply empirical research without any iterations

as we did with our Binary vs Number scale experiment (section 3.5.2). In our case, we

use iterative design to implement, test and evaluate through many iterations, and empirical

research to gain domain knowledge, evaluate prototypes and compare different methods.

Iterative design is our design methodology, while empirical research is our research method.

17

3.5 Experiments and surveys

To test and evaluate our application, we made a few experiments and surveys. The experi-

ments are used to compare two methods to find the best solution for our application, while

the surveys are used to gather feedback from the target users.

3.5.1 Experiment: Jaccard index vs Numerical rating scale scale

One method of finding similarities between two sets is the mathematical formula called

Jaccard Index. This formula compares the two sets by taking the number of values they have

in common, and divide it by the total amount of unique elements in both sets. To prevent

decimals, we multiplied the answer with 100. To test this method, we ran an experiment

and compared Jaccard with a numeric scale. To get a more accurate result, we gave the

same questions a score of 1 or higher in both tests.

3.5.2 Experiment: Binary vs Numerical rating scale

At the beginning of the project, the patient could only answer their questions as yes or no.

While this binary method got the job done, we wanted to test another approach where the

patients were given the possibility to give their answers on a scale from 0 to 10.

To run this test, we did an experiment where we first gave each question a score of 0 or

1, and then ran a few tests where we gave questions a score between 0 and 10. To make the

test more accurate, if a question got a score of 0 in the binary test, the same question was

given the score of 0 in the number scale test. The questions that got a score of 1 on the

binary test, got a score of 1 or higher on the number scale. To remove some variables, we

did not use the feedback scores when running this experiment. Since the test data consists

of numeric data, we can classify this as quantitative research.

18

3.5.3 Survey: Patient questionnaire

To test if our recommender system worked as intended, we first gave MS patients access to

our website and asked them to use the recommender system. Then, we gave the patients a

questionnaire for them to answer. The questionnaire contained both open- and closed-ended

questions to gather both qualitative and quantitative data. The quantitative data gave us

an overview of the overall completion rate and satisfaction, while the qualitative questions

gave us the reasoning of why an occurring problem existed. In addition, we had an observer

from Haukeland University Hospital who helped the patients through the process, as well as

taking notes. The goal with the research was to put our first research question to the test, see

if patients found the application useful and find out if they would use it in a post-prototype

scenario. The results of the survey were also used to improve the website.

To make the right product for the right customers, we did some anonymous user testing

with real MS patients. To deal with privacy, we held the tests at Haukeland University

Hospital on a local computer. Since we were not allowed to attend the user testing, we

completed the questionnaire with the help of the Norwegian Multiple Sclerosis Competence

Centre. Nine participants completed the test.

The test was split into two parts. First, the patients answered questions from the patient

module and looked at the recommendations given. Then, they were given a short, anonymous

survey with questions about their user experience and technological background. The survey

can be found in appendix A.

3.5.4 Survey: Exploratory treatment center questionnaire

To gain more domain knowledge before going all-in on the development phase, we completed

a short test where we gave 10 treatment centers the possibility to test our center module and

then give feedback on it through a survey. This is known as an exploratory survey, where

you gather data to improve further research. This research is qualitative research since our

questionnaire only contained open-ended questions. Only 4 treatment centers submitted an

answer due to connection problems.

19

3.5.5 Survey: Treatment center questionnaire

To test our first research question, 33 treatment centers in Norway were given the possibility

to test our center component. After they completed the questions on the website, they were

redirected to a Google Forms (See appendix D) questionnaire where they were told to answer

some questions about their experience with the website. The questionnaire contained both

open- and closed-ended questions. The goal with this survey, was much like the patient

survey, to check if our application seemed to catch the treatment centers interest, as well as

improving the website. Out of the 33 treatment centers, 15 answered.

3.5.6 Survey: Admin page questionnaire

To test our admin module, we first completed a survey where we interviewed fellow students.

During the interview, they were given a small set of tasks shown in appendix C . The

experience was later discussed and possible problems were uncovered. The goal of this test

was to fix the big and obvious problems before running a bigger test on target users.

In the second test, we asked the Norwegian Multiple Sclerosis Competence Centre to play

around with the admin module and report on any problems found during the testing. We

consider this a more thorough test since we test it on users with a lesser technical background.

Much like the other surveys, we wanted to find any problems with the website, as well as

trying to get to a conclusion if our application is useful or not.

3.6 Communication with experts

In the course of this project, we have tried to communicate with people who work with MS

and ”Fritt behandlingsvalg”. The Norwegian Directorate of Health has helped us under-

stand the reasoning behind the idea of giving patients the possibility to choose a treatment

center. They have also provided us with some statistics about wait times and how ”Fritt

behandlingsvalg” has affected the wait times.

Haukeland University Hospital and Norwegian Multiple Sclerosis Competence Centre

have been our main companions in this project. They helped us:

20

• formulate questions

• follow the strict rules within healthcare

• use the correct medical terms

• communicate with treatment centers and other healthcare related people

• test the application on patients and treatment centers

• improve the application through many iterations

Issues were mostly discussed through email, but we also had a meeting every once in a

while to discuss bigger changes and make a plan for the upcoming month. The application

was deployed frequently to give Haukeland the possibility to test the application and provide

feedback.

To get some feedback on the idea itself, we spoke with people from the Norwegian Di-

rectorate for e-health who is responsible for creating digital solutions within healthcare and

Sunnaas which is the largest special hospital within rehabilitation in Norway. Both found

the project interesting and gave some suggestions on how we could improve our application.

Sunnaas gave us the idea to give patients additional information about questions that were

difficult to understand. They also suggested the idea to rate questions based on importance,

rather than giving patients the possibility to select as many answers as they want. The email

with suggestions can be found in appendix G.

21

Chapter 4

Design

In this chapter, we will explain our architecture and recommendation system, as well as our

road to a complete application.

4.1 Modules

To come up with our design, we made a domain model (figure 4.2) showing how our domain

is connected together. As shown in the model, we have three clusters of boxes: things

concerning patients on the left, treatment centers on the bottom, and admins on top and to

the right. Everything is connected in the center, where we find our questions. Because of this

distribution, we have decided to split our application into three different modules. By doing

this, we can give each module its own client. This is beneficial, since each module/client has

a different target user. An example is shown in figure 4.1

22

Figure 4.1: Server-client structure

A structure example using three different clients

4.1.1 Center module

The first module is a digital version of the survey initially developed, but not used, by the

Norwegian Multiple Sclerosis Competence Centre to gather information about the different

treatment centers. This survey involves questions about what kind of treatments the differ-

ent centers have, information about the facility, and some basic contact information. The

information is sent to the database, where it is used to whatever purpose needed.

4.1.2 Patient module

The second module is based on the patient. The patient can answer some questions about

their needs and preferences about the facility. In return, they get a recommendation on

which treatment centers seem to fulfill their needs. The recommendation is given by a Rule-

based system (RBS) that calculates a score based on its rules. To make the RBS learn, we

made a feedback system where patients can give feedback on their treatment.

23

4.1.3 Admin module

The last module consists of a set of pages where the administrators can customize the

application. The idea behind this is to give admins the possibility to change the content

of the application without having to write code or hire developers to make the change for

them. The module gives them the possibility to:

• add new questions to the database

• select which questions that should be asked to the patients and treatment centers

• make connections between similar questions

• look at the feedback given by the patients

• look at the answers given by the treatment centers.

The admin module is key when building a generic recommendation system described in

section 2.4.

Figure 4.2: Domain model

An overview of our domain

24

4.2 Decision support framework architecture

To make the system easy to build and maintain, we have decided to use a Two-tier client-

server architecture. In addition, we are going to talk about Software-as-a-Service (SaaS) and

how we combined Two-tier architecture with SaaS to make our application.

4.2.1 Two-tier client-server architecture

The two-tier client-server architecture is an architecture where you split the application into

two tiers, client and server. A tier is a process boundary where each tier can run on a different

machine. A tier consists of one or more layers. The most common layers are presentation,

data-handling, application processing, and database layer [38]. An image of our application

structure can be found at 4.3

Client tier

The first tier is known as the Client tier. This is where you find all the clients that are used

to communicate with the Server tier. This is the most common way for users to access web-

based applications. It is usually made with HTML, JavaScript, and CSS or any framework

supporting these languages. The Client tier communicates with the Server tier with the help

of an Application Programming Interface (API).

In our case, we use a React web-client as our frontend. This client takes part in the

presentation layer and contains modules for gathering data from the treatment centers,

recommend centers to patients, and managing the application as an admin. Each module

works separately and could be split into three different clients if preferred.

The client described above is known as a thin client. A thin client has the presentation

layer implemented on the client tier and the other three layers on the server tier. The benefit

of using a thin client is that it can run on a normal web browser. There is also no need to

reinstall the client whenever there is a new update. On the other hand, a thick client (which

contains both presentation and application processing layer) can use the computational power

of the client machine, whereas the thin client can only use the server for processing. Since

our application has to work in a browser, we have decided to use a thin client.

25

Server tier

The last three layers are found in the server tier. The data-handling layer consists of an

API that handles all communication to and from the client tier. Our API is made in Python

with a library called flask. This API has all the methods necessary to move data from the

presentation layer to the application processing layer, and back again.

The application processing layer is a separate file from the data-handling layer and con-

tains all the application’s logic. Most of the logic lies within the recommendation part of the

application but does also involve methods for converting data to JavaScript Object Notation

(JSON) and generating random strings.

Last but not least, the database layer holds methods for communicating with an SQLite

database. These methods are made as queries with the help of SQLAlchemy and its Object-

relational mapping (ORM). This layer also contains a few configuration files that hold infor-

mation about how questions should be displayed.

Figure 4.3: Application architecture

A model showing the current architecture

26

4.3 Cloud Computing

Cloud computing is a new method for delivering services and applications over the internet.

These services are offered by many large companies like Google(Google Could Platform),

Amazon(Amazon Web Services) and Microsoft(Azure). The motivation for cloud computing

is to give companies and the general public the possibility to host an application in the cloud.

There are four main service models used in cloud computing:

Infrastructure-as-a-Service (IaaS) - A service where you can rent and manage a

virtual machine from the provider e.g. Google Compute Engine

Platform-as-a-Service (PaaS) - A service where users can develop, deploy and manage

their application e.g. Heroku or Google App Engine. Everything else is managed by the

provider.

Function-as-a-Service (FaaS) - A service where users can deploy single functions

instead of a full application e.g. Google Cloud Functions.

Software-as-a-Service (SaaS) - A service where you give the user access to a complete

application or a client. Everything else is managed by the provider.

Our application is deployed as a SaaS. The benefits of using SaaS is that we can give the

users access to the service without them knowing anything about the server. It also gives us

the possibility to use the thin client we mentioned earlier. A thin client opens the possibility

to access the application from any device, anywhere in the world. [1]

4.4 Recommender system

A recommender system is an information filtering system that tries to remove unnecessary

information by filtering data based on user preferences. They have many use cases. Net-

flix, Youtube, and Spotify use recommender systems to suggest movies/songs based on what

you watch or listen to. Facebook and Twitter use it to show relevant ads and other types

of content. Online stores use it to suggest items you might want to buy, based on previ-

ous purchases or browser history. Knowing this, can this method be applied to treatment

selection?

27

4.4.1 Rule-based Systems

RBS is a method mentioned in the topic of artificial intelligence. The goal of RBS’s, is to

transform human knowledge into digital media. This is accomplished by making a set of

if-then statements known as rules. These rules are based on human expertise and should

simulate a real-life scenario by picking the best answer based on the input given. The more

statements you give the system, the more accurate it becomes. [20]

An example of a RBS could be a system that decides if you should play football or not.

One rule could check if it is a sunny day and return ”true” if it is. Another may check if the

football field is full and return ”false” if it is. If you have enough of these statements, you

should get a good indication whereas you are going to play football or not.

4.4.2 Machine learning

Machine learning (ML) is a more modern approach to artificial intelligence. Instead of giving

your system a set of rules, a ML algorithm uses data from known scenarios to create a black

box. This black box can be used in the same way as the RBS, to predict an outcome based

on the input data. The big difference is that ML has the possibility to learn by itself, while

in RBS, you have to add new rules manually. The problem is, that ML needs a lot of data to

be accurate and it can be difficult to find enough training data. Since most ML algorithms

works like a black box, it is also difficult to know which choices were made to produce the

given result.

While there are a few different approaches when making a recommendation system with

ML, collaborative filtering might be the most commonly used technique. It is used by

companies to recommend movies based on user preferences. In short, this algorithm uses

movie ratings given by the user and generates two matrices with numbers. These numbers

are then used to fill the gaps in the user rating matrix. By doing this, the algorithm can

guess what rating you would give unseen movies.

Another common method is called content-based filtering. This method tries to recom-

mend items based on your previously collected data and is commonly used by online stores

when recommending items that are similar to what the customer has bought before. In other

28

words, collaborative filtering suggests that similar people like the same movies/songs, etc.,

while content-based filtering suggests that people like items that are similar to what they

already bought.

Finally, there is a method calledTerm frequency–inverse document frequency (tf–idf). A

tf–idf score is calculated by the frequency of the word, down-weighted by the number of

entities that contain this word. In other words, if a lot of treatment centers offer treatment

A, it becomes less weighted than treatment B, which is only offered by a few centers. This

would be a good way to find the differences between treatment centers.

4.4.3 Rule-based systems vs. Machine learning

Our first approach was to test the possibility of using ML. After some research, we found that

neither collaborative nor content-based filtering would work. Collaborative based filtering

would be difficult without any data, as it recommends treatment centers based on previous

recommendations of similar patients. This is known as the cold start problem and is a

common problem when it comes to recommender systems. Our other approach, content-

based filtering, would recommend treatment centers that are similar to other centers that

you found helpful. This is not very useful, as this recommender system has to work without

any previously collected data from the patient.

tf–idf on the other hand, worked a bit better. It managed to find some differences,

but because the treatment centers have a lot in common (and some almost identical), the

algorithm had problems separating them from each other. Almost every tf–idf score had a

difference less than 5 and there where no way to tell why a center got the score they got.

We then moved on to some testing with mathematical formulas and found the Jaccard

index. This is a formula defined as the intersection divided by the union of the two sets:
|A ∩B|
|A ∪B|

This formula would give the score of 1 if the sets are identical and the score of 0

if they have nothing in common. To make the results a bit more accurate, we removed all

the data from the center set, that was not in the patient set. By removing these elements,

we get an answer that only takes to consider what the patients ask for. We do not care if a

center offers treatment A if the patient only asks for treatment B and C.

29

While Jaccard seemed pretty basic, it actually worked pretty well. The system recom-

mended centers based on the patient’s answers and we got an explanation on why the centers

where recommended. Progress! But there was still a small problem. With this formula, pa-

tients could not grade the treatments based on their importance. The system was binary

and a specific treatment would either be very important or not important at all. Back to

the drawing board.

In the end, we ended up with a RBS, that gave patients the possibility to rate each

question from 0 to 10, where 0 is not important and 10 is very important. If a center

preforms treatment X and the patient gave X a score of 1 or better, then we have a match.

For each treatment center, we use the formula to calculate our recommendation score:

n∑
match

center score on current question

100
∗ patient score on current question

The list of treatment centers is then sorted based on their recommendation score. The

three best centers are then given to the user, as well as the reasoning behind the recommen-

dation.

Some questions cannot be mapped as a one-to-one relation. As a result, we made it

possible to connect questions with a one-to-many relation. For example, question X from

the patient form might be connected to question Y and Z on the center side.

Why does this RBS work? Well, we solved the problem concerning binary rating by giving

the patients the possibility to rate each question using a Numeric Rate Scale (NRS)[21],

rating questions from 0 to 10. We removed the need for training data and we can give an

explanation of why a specific treatment center was recommended. With this combination,

we are able to offer a pretty good recommendation system that can recommend treatment

centers and justify why each center fits the patient’s needs or not.

To test if our numeric scale improved our RBS, we performed the experiments described

in section 3.5.2. The results of this experiment endorse our solution. As shown in table

4.1, the numeric scale made a pretty big difference. The table on the left contains data

gathered with binary patient input. As you can see, the scores are pretty similar. Six out

of ten treatment centers share a score of three. This becomes a problem when we have to

30

recommend the top three treatment centers. As of now, the recommender would select the

second and third place according to alphabetical order. We could randomize the treatment

centers, but this would not be a fair solution.

On the right side of table 4.1, you find the results from the numeric scale tests. In this

table, the scores are a bit more spread out. Now, we can recommend three treatment centers

without having to pick them randomly as a tiebreaker. Since similar treatment centers can

exist, we can not guarantee that a tie will not occur with a numeric scale, but it is at least a

less common occurrence. Another benefit is that patients can change the recommendations

by making small adjustments to their answers. These adjustments do not exist with binary

input.

Given these arguments, it is, without a doubt, a better solution to use a numeric scale as

our patient input. This is beneficial for both patients and treatment centers. The patients

can affect the results by making minor changes and rate the importance of symptoms more

accurately. In addition, there is a smaller chance that a treatment center loses the lottery

by being unlucky with the tiebreaker.

The same problem occurred when we ran our Jaccard experiment described in section

3.5.1. Treatment centers with a lot in common tend to get the same score. The results can

be found in table 4.2

Table 4.1: Result from Binary vs Scale experiment

Treatment center score
Treatment center 8 4
Treatment center 1 3
Treatment center 2 3
Treatment center 3 3
Treatment center 4 3
Treatment center 5 3
Treatment center 7 3
Treatment center 6 2
Treatment center 9 2
Treatment center 10 2

Treatment center score
Treatment center 8 28
Treatment center 3 27
Treatment center 7 27
Treatment center 5 25
Treatment center 2 22
Treatment center 4 22
Treatment center 1 18
Treatment center 9 14
Treatment center 10 13
Treatment center 6 12

The table on the left shows the score with a binary input data, while the left shows the scores with a scale from 0-10

31

Table 4.2: Result from Jaccard vs Scale experiment

Treatment center Score
Treatment center 4 71
Treatment center 5 71
Treatment center 6 71
Treatment center 8 71
Treatment center 1 57
Treatment center 3 57
Treatment center 7 57
Treatment center 2 43

Treatment center Score
Treatment center 5 34
Treatment center 4 29
Treatment center 6 29
Treatment center 8 26
Treatment center 1 25
Treatment center 3 24
Treatment center 7 24
Treatment center 2 22

The table on the left shows the score with Jaccard Index, while the left shows the scores with a scale from 0-10

4.5 Representational State Transfer

Representational State Transfer (REST) is a software architectural style that use the already

existing Hypertext Transfer Protocol (HTTP). Everything is build around these four HTTP

methods:

• GET - Retrieve data from API.

• POST - Used to send data to the API.

• PUT - Update or add an item to the given URI.

• DELETE - Remove an item from the given URI.

A web service that follows this style is called a RESTful web service. This kind of web

service is often used to make connections between web clients and servers. It is also common

to use RESTful as a way to distribute information by making an open API. Everyone can

send requests to these API’s and you can find information about everything between weather

forecast’s [32] and data from NASA [30].

To make APIs as user-friendly as possible, there are a lot of rules describing how you

should design your API. This includes everything from URI format, response status codes

and HTTP request methods. A full overview of these rules and other design methods can

be found in O’Reilly’s REST API - Design rulebook [26].

32

4.5.1 Benefits with RESTful

The biggest benefit of RESTful is the possibility to make systems with loose coupling.

Loosely coupled systems have little to no knowledge about the other components and you

can easily develop one component without having to think about the other ones. This also

gives you the possibility to write the frontend in one language and the backend in another

language. Another benefit is that there are a bunch of libraries and frameworks to make

RESTful services. Almost every known language has some way to create or communicate

with a RESTful API. Python has flask[37], Java has JAX-RS[33] and Node.js has express[3]

and axios, just to mention a few.

4.5.2 REST vs SOAP

But, why did we select REST over Simple Object Access Protocol (SOAP)? While SOAP

works great on huge industrial systems, REST is a much simpler approach. You only need

HTTP for it to work, you can send files with different formats and you can easily update

the API without having to change the client. SOAP is difficult to learn, can only send XML

and has a WSDL file that needs to be updated whenever there is a new endpoint.

4.5.3 JavaScript Object Notation

To transfer data between our server and client, we use some specific file formats. We have

decided to use JSON. JSON is a text-based file format that can be used to transfer object

and other data structures over the internet. Since JSON and JavaScript Objects have a lot

in common, it is common to use JSON in combination with JavaScript. In addition, the file

structure is also very similar to Python’s dictionaries which is convenient when we want to

communicate with our server.

JSON has a basic syntax where the object starts and ends with a curly brace. Each

object consists of key/value pairs that represent our data. This structure can be compared

with the file structure on your computer. Each key is a folder and the value is the files within

the folder. Each key can be easily accessed by traversing through the tree: key1.key2. An

example of a JSON file can be found in listing 4.5.3

33

Listing 4.1: Json file example

1 {
2 "key1": [

3 {
4 "key2": "value"

5 },
6 {
7 "key3": "value"

8 }
9]

10 }

Our other alternative would be Extensible Markup Language (XML). While XML works

great when dealing with metadata, JSON is more compact and can be transferred at a higher

speed. JSON can also do the same amount of work with fewer words.[22]

4.6 Picking the right questions

At the beginning of the project, the plan was to mirror the questions from the word document

found in appendix D . We found out rather quickly that this approach would not work. Some

of the questions where open-ended and the treatment centers were required to give a few short

text answers. While this works great when the answers are read by a human, it is difficult

for a computer to understand the context of the answers. Because of this, we decided to

remove or replace all open-ended questions with a binary yes-no question.

After our first user test, we found another problem concerning wait times and patient

capacity of the treatment centers. The questions about wait times were mostly left empty

and followed by a comment explaining why it was difficult to answer these questions accu-

rately. The same goes for patient capacity. Because of this, we decided to remove these

questions as well. In addition, we added a link to our patient module. This link redirects to

helsenorge.no’s list of wait times and can be used by the patients when selecting a treatment

center.

34

We then moved on to the questions on the patient module. To start off, the Norwegian

Multiple Sclerosis Competence Centre gave us a suggestion on which questions should be

given to the patients. These questions where based on the questions asked in the center

module. The first problem we found, was a large amount of redundancy. We basically asked

the same questions three times by asking the patients to first pick the two most important

symptoms, then the next three, and finally less important symptoms if needed. These

questions are useful on a nondigital media but can be simplified on a computer.

A possible solution to this problem was to change the questions from binary yes-no

questions to a numeric scale. After the numeric scale change, came the discussion about

professions. While we asked treatment centers which professions they had, we did not use

the data when recommending treatment centers to the patients. To solve this problem, we

came up with the idea of connecting questions together. A center that had a psychologist

and offered help with mental health, would be given a higher score than a center that offered

mental health without a psychologist. While we did not use this technique with professions,

in the end, we still implemented the feature so that it can be used if the problem should

occur again. The questions about professions can still be found in the center module to

collect data for later use.

4.7 A brief history of the project

Rome wasn’t built in a day and the same goes for software. Making a good application takes

time and there is a lot of decisions to be made. In this section, we are going to look at the

project’s history and how we ended up with the application we have today.

The first step was to make a pilot for gathering information about treatment centers.

The only resource we had to start with, was the document proposed to collect data from

centers. The document can be found in appendix E. We used this document to make our

earliest prototype. This was a static website written in Angular 4, connected to a basic

Node.js API and a NoSQL database. Everything was hosted on IBM Cloud as a SaaS. The

website was then sent to 10 treatment centers for testing and data collecting.

With the data analyzed and the bugs fixed, we moved on to the patient module. We used

the questions from the center module as a reference to make the questions for the patient

35

module. The first proposal can be found in appendix B. With the questions made, we tried

to make the website more dynamic by reading the questions from a JSON file rather than

adding them directly in the HTML. The JSON files were added to the backend and passed

through the API to the frontend. Because of all the trouble discussed in chapter 7.1, we

decided to change our stack from Angular 4 and Node.js to React and Python. The server

we had at IBM was also shut down, hence we moved the frontend to Heroku, and the API

and backend to a local server at the Western Norway University of Applied Sciences (HVL).

After many iterations of reworking questions and making the frontend more dynamic,

we ended up with a pretty good pipeline. It was time to take a look at the recommender

system. The process is written in detail in section 4.4.3, but in short, we ended up with a

RBS. Since RBSs uses predefined rules, we made a feedback function to give the RBS the

possibility to learn.

With all the new data generated from patients and centers, it became difficult to keep the

data organized. We decided to change the database from a Not only SQL (NoSql) database

to SQL database in order to make relations between the data. The technique of ORM was

used to improve communication with the database, and we made a file full of useful SQL

queries. All the questions where moved to the database and we made configuration files that

told the client how to display each question. Meanwhile, the client got an overhaul where

users were given the possibility to rate questions from 0 to 10 (NRS) with the help of a

slider. The RBS was updated to work with the new sliders.

We now had a working website that could collect data, recommend treatment centers,

and give feedback, but there where no way to manage the website. It was time to start

working on the admin module. The backend got some functions for editing configuration files.

Meanwhile, the client was given the possibility to make new questions, edit configuration

files, make connections between questions and look at patient feedback.

36

Chapter 5

Implementation

In this chapter, we introduce all the frameworks and languages we used to make our appli-

cation, as well as give a thorough description of our implementation.

5.1 Presentation layer

Our presentation layer holds our user interface. The interface is made with the help of a

React and contains all the methods necessary to communicate with our server. This section

describes the frameworks and libraries we used, followed by our implementation.

5.1.1 React

React[39] is a JavaScript library used to make frontend applications. With the help of

Cascading Style Sheets (CSS) and JavaScript XML (JSX) we can use React to make advanced

user interfaces. The library is component-based, which means that we can make many

separate components and connect them together to make a complete application. Each

component can maintain its own state and will rerender each time the state is updated. A

state update can be as simple as moving a slider value from four to five or removing the

loading icon when the page is done loading.

37

JSX is an extension to JavaScript, used as a replacement for HyperText Markup Lan-

guage (HTML). While JSX has a lot in common with HTML, it has some extra fea-

tures that makes it a lot easier to use. The biggest change, is the possibility to use

JavaScript inside the HTML tags. As an example, <p>{1+8}</p> would render as <p>9</p>.

It can also be used with methods (<div>{this.unpackList()}</div>) and variables

(<p>{this.state.introduction}</p>).[13]

5.1.2 Libraries

To simplify our development process a bit, we used some libraries containing different com-

ponents and methods. These libraries are easily accessible through Node’s packet manager,

npm.

React-router-dom

React-router-dom gives us the possibility to move between the different pages. Each page

is given a route that defines where you need to go on the site to access this page. <Route

path="/patient" component={Patient}/>. will redirect you to the patient page, if you

end your URL with ”/patient”.

React-bootstrap

React-bootstrap is a library that contains a lot of components. Some of the components

are just an improved version of an already existing component, while others are completely

new. The benefit with bootstrap is that the components have a set of predefined styles you

can use when developing. This saves you a lot of time when it comes to styling and making

components.

38

React-final-form

React-final-form (RFF) is a library that improves the already existing HTML forms. While

the input components are pretty similar, RFF has improved the output when you submit the

form. HTML gives you a form object, while RFF gives you a JavaScript object. JavaScript

objects can be directly translated into JSON, which gives us the opportunity to send the

data through the API without converting it first.

React-rangeslider

React-rangeslider is a library that contains a slider component. Each slider has a state which

tells us the value of the slider. Since a slider component is difficult to make from scratch, we

decided to use this library to shorten the development process.

React-table

React-table contains a table object that works a lot better than the original HTML table.

Instead of iterating through the data and place every element manually, react-table takes a

JSON file as input, and does all the work for you. All you need to do is to define the column

headers and tell which JSON key it should put beneath each header. React-table does also

come with a pre-styled table with the possibility to sort the table based on columns.

Axios

Axios is a library made to simplify requests. When using axios, you can make a API call

with only one line of code, axios.post("example.com/api/url",jsonFile). Axios does

also support promises.

Fuse

Fuse is a library that can be used to filter a JSON file. To make it work, you need to provide

it with two JSON files. One that contains the data you want to filter and one that contains

the configuration of the search. Fuse will then return a new JSON file that only contains

the key-value pairs which passed the filter.

39

5.1.3 Center component

The Center component is where we gather our data from the treatment centers. This compo-

nent fetches data from the API and displays them as a web form. An introduction is found

on the top of the page, followed by a set of questions. To make it easier to use, we split each

category into a separate page. A forward and backward button is given to move between the

different categories. When the user reaches the final page, a submit button becomes visible.

The forward or backward button is disabled when you are on the first or last page to prevent

confusion when filling the form. When the user submits the form, they get a message that

says if the task was successful or not. A screenshot of the described component can be found

in figure 5.1

The questions are fetched from the API with the help of Axios and then saved as a state.

Loading is then set to false, and the questions are displayed on the page with the help of

the showIntro, showFullPage and showPage functions. The showFullPage function will

first use showIntro to display the introduction part of the JSON file. Then, it iterates

through each category and sends the data to the showPage function. This function will

iterate through all the questions in the category and display them with the help of RFF.

In the end, we add the buttons to navigate the page. A submit function given to submit

the answers with the help of Axios. Any response given by the API is displayed with our

Response component mentioned later.

To make it possible to switch between categories, we made a help function called

changeDisplayedPage. This function will change the displayValue each time the user

hits the forward or backward buttons.

40

Figure 5.1: Screenshot of the center component

An image showing the user interface of the center component

5.1.4 Patient component

The Patient component works much like the Center component, but there are a few dif-

ferences. In addition to the RFF library, we use react-rangeslider to give the patients the

possibility to rate their answers from 0 to 10. Since react-rangeslider is not a part of the

RFF library, we had to make a minor modification to the submit function. This modification

would merge the slider data into the RFF JSON file. To keep the slider states updated, we

added a function that updates the states whenever a slider is used. We also made a method

for initializing the sliders after the first API call.

The second change does also take place in our submit function. Whenever the patient

submits their answers, instead of giving a success/fail response, the data is moved to the

RBS. The recommendation is then displayed on the page with the help of our Place and

Recommendation components. If the patients are not happy with their recommendation,

they have the possibility to return to the Patient component and change their answers.

When the recommendation is given, the patients also get a unique id, which is later used in

the Feedback component. A screenshot of our patient component can be found in figure 5.2

41

Figure 5.2: Screenshot of the patient component

An image showing the user interface of the patient component

5.1.5 Feedback

The Feedback component is used by the patients to give feedback to a treatment center. By

using the unique id given in the Patient component, the patient will get access to all the

questions that were given the score of 1 or higher. Much like the Patient component, each

question has a slider where the patient can rate the question from 0 to 10. Since we do not

know which treatment center the patient attends, we asked them about this information as

well. This is done by giving the patients access to a dropdown menu, which contains every

treatment center in the database. A submit button is given to submit the answers.

42

This component works much like the Patient and Center components. We get the question

from the API, display them as sliders (without RFF) and submits the answers with Axios.

A response is given to tell the user if the task was successful or not. The only addition is the

submitPatientId function that is used to submit the unique id. Instead of adding a submit

button, the function will wait until the input field has a string of length twenty. When this

requirement is fulfilled, the application will automatically send a request to the API and ask

for the questions corresponding to the unique id.

5.1.6 Admin sites

The admin sites are where the administrators can manage questions and look at the data

in the database. To make it a bit more user-friendly, we have decided to split it into five

different components:

Add question

Add question is a simple component for adding a new question to the database. The questions

will not be added directly into the patient/center pages but will appear in the ”Manage

questions” component. The component consists of three <input type="text"/> elements:

question, id and extra information.

Manage questions

This is where the admins can decide which questions should be displayed in the patient and

center components. This is done by first selecting which component you want to manage,

then selecting the category as shown in figure 5.3. The component will then display all

questions in the database, as well as the questions already existing on the patient/center

component. You can now choose to add a question to the patient/center component by

selecting the question you want to add, as well as how you want to display it. You can

also remove a question by clicking on it and then click the remove button. If you want, you

can add or remove multiple questions by shift- or ctrl-clicking on multiple questions. The

submitted changes will be sent to the backend where they will be added to the configuration

43

file. You can also manage categories on this page. You can add a category by simply entering

a name in the text field and click add. If a category becomes empty, it will automatically

be removed. An image of these features can be found in figure 5.4

First, the component makes an API call to the server, asking for all questions in the

database and the patient configuration file. The categories and questions found in the

configuration file, are added to two different lists. The categories are displayed in a dropdown

menu, while the questions are shown is a RFF multi-select component. The list of all

questions is added to another multi-select component. The rest of the page is static and is

generated without any help from the backend.

In addition to the render methods, we have some functions for managing the selected

question and categories, addToList, removeFromList and addCategory. These functions

will update the lists mention earlier. If we add a new question or category, the function

will update its corresponding list. If we remove a question, the removeFromList function

will find the question in the list and remove it. If there are no questions left in the given

category, the application removes the category as well. The updates will not be added to

the configuration files until the user clicks the update button.

Figure 5.3: Screenshot of the manage questions component

An image showing the user interface of the manage question component

44

Figure 5.4: Screenshot of the manage questions component

An image showing the user interface of the manage question component

Add connection

In this component, we are able to add connections between two questions. The page contains

two dropdown menus with all available questions as well as a table from react-table showing

all current connections. To add a connection, simply select the questions we want to connect,

and submit. The table will be updated immediately to show the user that the task is

complete.

Review feedback

To prevent our recommender system from becoming a black box, we added a Review feedback

component, where the admins can access all feedback given by patients. The data is displayed

in a react-table, showing a treatment center’s score on a specific question. This component

also gives us the possibility to change these scores. By using the table, admins can decide if

a score should be increased or decreased based on patient feedback.

45

Center information

This component contains a table that shows all the data given by the treatment centers.

This is where we get the benefit of react-table’s sorting function. If we want to find all

the information about a specific treatment center, we can sort the treatment center column.

If we want to see how the different centers scored on a specific question, we can first sort

according to question and then according to score. This will give us a table showing which

centers that have the highest score on a specific question.

With the help of Fuse, we made a search function, where the users can enter a keyword,

a question or a treatment center. In return, the search function will try to find all the rows

this fulfills the query. This feature was one of the suggestions given during survey 3.5.6

5.1.7 Other components

In addition to the large components that make up a web page on their own, we have a few

smaller components and features. These components are used in some or all of the larger

components.

Header

The header works as a menu and is used to navigate the site. It is made with the help of

bootstrap’s Navbar component. Each button in the header is connected to a route and will

redirect to the specified page when clicked. The header does also have a dropdown menu for

all the different admin pages.

Information boxes

The information boxes are also made with the help of bootstrap. It is displayed in the client

as a Glyphicon (i). An OverlayTrigger is used to show the message when the user hovers

over the boxes, and the Popover component contains the information displayed on hover.

The information icon component is used in the patient- and center forms to give the user

more information about the question asked. When used, the component requires a header

and a message, <InformationBox header={"header"} text={"Some text"}/>.

46

Place and recommendation

The Place component is a template on how a treatment center should be displayed. It

displays information like name, score, link to the treatment center and a list containing all

treatments/symptoms that the patient and center have in common. A Place is displayed

in the Recommendation component. This component will place X amount of Places on the

screen. The X is decided by the number of treatment centers given by the backend.

Response

When the user clicks a button, they expect some kind of feedback from the application.

This is where the Response component comes in. Whenever a user clicks a button and no

other response is given, we display a Response component to show the user that the task

was successful or failed. To display this message, we use the Alert bootstrap component.

The Response component is red if something went wrong, or green if the task was a success.

Loading and printing

The last two components are not really components but are still a small part of the program.

The loading bar is just a <div/> with some CSS that makes the loading bar spin in circles.

It is displayed when a component is loading. The final feature is a button on the header

that prints the page currently showing.

5.2 Data handling layer

The data handling layer contains our API that we use to send data between our presentation

layer and application processing layer. Our API is written in Flask[37], a framework for

making web applications in Python. While Flask has a lot of features, we are only going to

focus on two extensions: flask restful and flask cors.

47

5.2.1 Flask restful

Flask restful is an extension that can be used to make REST API’s in Python. It is a

lightweight library that is easy to learn and can make API’s with only a few lines of code.

A debugging mode is available when developing the API. This mode compiles and restarts

your API every time you save your code and provides improved error messages if something

goes wrong. Flask restful supports all the basic HTTP methods: GET, POST, PUT and

DELETE.

Listing 5.1: POST and GET methods in Flask RESTful
1 class Centers(Resource):
2 def get(self):
3 return sql.get_questions_by_id("center")
4
5 def post(self):
6 json_data = request.get_json(force=True)
7 sql.add_new_center(json_data)
8 return {"status": "success"}

5.2.2 Flask cors

Flask cors help us deal with Cross-Origin Resource Sharing (CORS). CORS is a mechanism

that makes it possible to share resources across two domains. Because of security reasons,

our client which is at Heroku is not allowed to request resources from our API because it

is on a different domain (HVL). To solve this problem, we can either make a whitelist and

add Heroku as a valid domain, or we could tell the API to accept requests from any source.

Flask cors gives us the possibility to accept requests from any source with only three lines

of code.

Listing 5.2: Flask cors setup
1 from flask_cors import CORS
2 cors = CORS(app)
3 app.config[’CORS_HEADERS ’] = ’Content -Type’

5.2.3 Pipeline

When receiving a request from the client, the API uses methods found in our database layer

to query our database. The result is then moved to the application processing layer where

48

it is converted into JSON. Finally, the JSON file is moved to the API, which sends the data

back to the client. If the given request is a POST request, the API will move the data to

a method that inserts the given data into the database. POST request that does not have

a return statement, returns a status message instead. A system sequence diagram showing

our pipeline can be found in figure 5.5

Figure 5.5: System sequence diagram of the patient pipeline

A system sequence diagram showing the data flow during a treatment center recommendation

49

5.3 Application processing layer

The application processing layer contains methods for giving recommendations, converting

data to JSON and generating random strings. Everything in this layer is written in Python.

5.3.1 Python

Python[14] is an object-oriented language that is easy to learn and read. It has a large

standard library and a huge amount of easily accessible, nonstandard libraries that can solve

a lot of issues with a few lines of code. With libraries like Scikit-learn and TensorFlow, it is

known to be the best language when it comes to machine learning.

We have chosen to use Python in this application because of its simplicity and easy setup.

The application is small and there is no need to split the code into many files and classes

like you would with Java. While Python works on small projects, Java might be better when

making a large project with many users and requests. Since we do not need this kind of

large scale project, we prefer a fast and effective language like Python.

As mentioned above, Python works great when doing machine learning. Since our initial

plan was to use machine learning to recommend treatment centers, Python was the preferred

language. While we did not use machine learning in our final product, it is possible to use

a machine learning approach when we have collected more data. Changing from Python

would remove this possibility and it would be time-consuming to rewrite the entire backend

in another language. [16]

5.3.2 Feedback system

To give our system the possibility to learn, we added a feedback functionality where the

patients could give feedback on the treatment centers they have visited. When a treatment

center submits their information for the first time, every question is given the score of 50.

The score will then increase or decrease based on the patient feedback, where the minimum

score is zero and the maximum score one. This score is not connected to the treatment center

50

as a whole but is supposed to rate a specific treatment that the center has to offer. If the

patients are happy with treatment A, they will give A a good score, which would increase

the center’s score and reputation on treatment A.

There are two ways to update the feedback score. The first one happens automatically

when a patient gives feedback on a treatment center. The score is calculated with the formula

current score +
score given by patient− 5

10

. In other words, a perfect score of 10 from a patient, would increase the feedback score with

0.5 and the lowest score of 0, would decrease the feedback score by 0.5. The other methods

are used by the admins, where they can manually update the score to whatever they want.

This is mostly used if the admins find the score unfair.

5.3.3 Recommender system

To give a good recommendation, we use the collected data from the treatment centers and

the patients to find similarities between the two. We start off by removing all the questions

where the patient gave the score of zero. By removing the questions early, we can shorten

the time it takes to run the algorithm by a large amount. If the patient gave five questions

a score of one or higher, we would run the inner loop about 67500 times with 50 treatment

centers. If we use all 38 questions, we would run the inner loop about 513000 times.

After removing the questions, we start iterating through the center scores variable. This

variable is a list of Score objects containing:

• A Question object Q

• A Center object C

• A Score given to a Center C on a specific Question Q.

To make the code a bit easier to read, we made a function that separates the Score

objects into dictionaries according to which Center they belong to (5.3.3). In other words,

each treatment center has a key in the dictionary, where the value is a list of Scores connected

to the given Center. Now, instead of looping through the Scores and checking which Center

51

the Score belongs to, we can simply loop over each Center, and then loop over each Score.

The same result could be achieved by doing one query to the database for each treatment

center. However, this approach would move more workload to the database.

Listing 5.3: Dictionary of Scores

1 {
2 centerA:[scoreObject1, scoreObject2, ...],

3 centerB:[scoreObject1, scoreObject2, ...],

4 ...,

5 }

We now have a specific Score object. The next step is to check if the Question Q is

answered by the Patient. This is done by looping through all the patient answers and

comparing them to Q. If the patient has given Q a score of 1 or more, we add the patient

score ∗ center score to the result score (result score+ = 4 ∗ 0.5). Finally, if the patient has

answered Question Q, we check if Q has a connection to any other questions. If a connection

exists, we use the same formula as above. Whenever we find a match or connection, we add

Question Q to a list. This list is used to show the reasoning behind the recommendation

given.

After each iteration of the outer loop, we save the result score and reasoning list and

wipe all variables. The resulting score for each center is then sorted and the three treatment

centers with the highest score are selected. All known information about these centers is

then added to a JSON file, together with the reasoning and returned to the client.

Listing 5.4: Pseudocode of a converter
1 remove_all_patient_scores_bellow_threshold ()
2 split_all_center_scores_to_their_correct_list ()
3
4 for all centers:
5 reset all variables
6
7 for all scores given to a center
8
9 for all patient scores

10 if both patient and center has answered the same question
11 add score given by the patient to the result score
12 add the question to the relevant questions list
13
14 for all connections in the database
15 if the current patient score has a connection
16 add score given by the patient to the result score
17 add the question to the relevant questions list
18
19 return convert_result_to_json ()

52

5.3.4 Utilities

The remaining methods can be found in our utilities-file. This file contains methods for

converting database files to JSON, generating random strings and communicating with the

configuration files.

Converters

The converters are used to convert database objects to JSON. This is done by iterating

through the list of database objects and convert them into a JSON object. We use these

converters when we want to transfer the given data to the client with the API.

Listing 5.5: Pseudocode of a converter
1 for object in listOfObjects
2 json.add ({" element1 ": object.element1 , "element2 ": object.element2 , ..})
3 return json

Random string generator

When patients have completed the survey, they get a random id which they can use to give

feedback on their treatment. Since this id hides personal information about the patient’s

symptoms, we need to make this id as safe as possible. To generate this random id, we use a

method that picks a random character from a list of size 64. As of now, the generated string

is 20 characters long. With some quick math, this gives us

6420 = 1329227995784915872903807060280344576 ≈ 1.33 ∗ 1036

different combinations.

According to PWDtools [36] and other similar calculators, it would take a stupid amount

of years to brute force an id. Even if you manage to find the id, there is no indication on

whom this id belongs to. To be on the safe side, we run a check to see if the id is already

assigned to a patient before assigning it to a new patient.

53

Configuration files

The last method is used to update and read the configuration files used to display questions

on the client. When an admin updates the questions through the client, this method will

transform the data into a specific syntax and overwrite the old configuration file with the

new data.

5.4 Database layer

Now that we have a client and some application logic, we need a way to store the collected

data. While there are a few different ways to store data, we have decided to use a relational

database. Our Relational Database Management System (RDBMS) is called SQLite and is

a more lightweight RDBMS embedded in the program itself. It is commonly used as storage

in clients and mobile apps, but it also works in a two-tier architecture where the database is

part of the server-tier. SQLite has the same functionality as any other SQL database, with

the exception of domain integrity. In other words, SQLite cannot guarantee that the correct

element type is stored in the database.

Our database consists of eight tables:

• Entity - Is either a center or a patient

• Address - Contains information about an entity’s address

• Center - Contains information about a specific treatment center

• Patient - Contains information about a specific patient

• Question - A question that can be answered by patients and/or treatment centers

• Score - A score that rates an entity on a specific question

• Feedback - A feedback given by a patient after completed treatment

• Connection - A connection between two questions that is used when recommending a

treatment center.

The motivation behind this structure is to follow the rules of database normalization.

Database normalization is a way to structure your database to improve data integrity and

54

reduce redundancy. There are a total of 11 normal forms that describe how you can improve

your database structure. While you can achieve all 11 normal forms, it is common to stop

at Boyce–Codd normal form (BCNF) or 3NF. Most BCNF tables are free of insertions,

deletions and update abnormalities, which is what we need for our project. A more detailed

view of the structure can be seen in figure 5.6. [34]

Figure 5.6: Entity-relationship model

Entity-relationship model of the database

5.4.1 SQLAlchemy and Object-relational mapping

To simplify the communication between the application processing layer and database layer,

we use a technique called ORM. What ORM does, is making objects from data, much like

object-oriented programming. By giving every table in the database its own object, we can

easily read and write to the database by making new objects. For example, for every new

submission from a patient, we make an entity, address and patient object as well as a score

object for each question answered by the patient. The ORM is written in a library called

55

SQLAlchemy [40]. The library contains methods for working with SQL and makes it easy

to add data to the database with the help of ORM.

Listing 5.6: Implementation of a question object
1 class Question(Base):
2 __tablename__ = ’question ’
3 id = Column(Integer , primary_key=True)
4 label = Column(String , nullable=False)
5 value = Column(String , nullable=False , unique=True)
6 info = Column(String)

As mentioned above, SQLAlchemy is a great tool when making queries to the database.

Instead of using the traditional SQL syntax, SQLAlchemy gives you the possibility to write

queries with python syntax. While this does not make a huge difference, it is a bit more

convenient to write python code rather than a large query.

Listing 5.7: Query to get all the treatment center and their scores with SQLAlchemy
1 session.query(Entity , Question , Score)
2 .join(Score)
3 .join(Question)
4 .filter(Entity.type == "center")
5 .all()

Listing 5.8: Query to get all the treatment center and their scores with SQL
1 SELECT * FROM Entity
2 INNER JOIN Score ON Entity.id == Score.entity_id
3 INNER JOIN Question ON question.id == Score.question_id
4 WHERE Entity.type == "center"

5.4.2 Configuration files

The project contains a few configuration files that decide which questions should be displayed

in the patient and center module. These files are simple JSON files that contain information

about categories, question id’s and how we should show each question on the client. The

displayAs key, supports all the different input types that can be found in the web client:

• text - Text input

• slider - Sliders used in the patient module

• radio - Radio buttons

• checkbox - Check boxes

56

• textarea - Text areas

Listing 5.9: Configuration file example

1 {
2 "What is important for you?":[

3 {
4 "id": 1,

5 "displayAs": "slider"

6 }
7]

8 }

57

Chapter 6

Results

In this chapter, we present the results of our surveys.

6.1 Results from patient testing

The feedback from the user testing was overwhelmingly positive. Everyone managed to com-

plete the survey and almost everyone got some useful information from the recommendation

given. There were a few people who had some trouble when answering the questions, but

these were mostly related to how the questions where asked, not the system itself. Our effort

to reduce the number of questions asked has paid off as well. No one had any problems with

the length of the survey.

While the information icon is explained in the introduction, there were a few patients

who said they did not find it during the survey. This suggests that we have to do something

about it. Either make it bigger or move it somewhere else to make it more visible to the

user. Some also found it difficult to use the sliders with a touchpad. While it is possible to

click on the slider, we forgot to mention this in the introduction. An update to the intro

would solve this problem.

When we asked the patients if they found the tool useful, eight out of nine said yes.

We got some positive comments as well, where the participants said that it was a good

58

measure. This indicates that the tool is working and can give patients useful information

about treatment centers in the future. A table of the quantitative data can be found below.

Table 6.1: Results from patient testing based on response from 9 patients

Question Yes/Good No/Bad
Were the motivation explained in an understandable manner? 7 2
Were the survey self explanatory? 8 1
What do you think about the length of the survey? 9 0
Was the questions self explanatory? 7 2
Did you use the information icon? 7 2
Did you manage to complete the survey? 9 0
Was the results presented in an understandable manner? 8 1
Is there a need for this kind of application? 8 1

6.2 Results from treatment center testing

The feedback from the first test described in section 3.5.4 was a bit mixed. The biggest

concern was the difficulty of estimating wait times. To keep this information up to date,

they would have to update it weekly. Because of this, we decided to remove all questions

about wait times. We also got some feedback on missing professions and treatments. These

were later added to the website.

Another problem we noticed during testing, was that we didn’t have access to the person

who filled the form. Any questions we had about their submission was left unanswered

because we did not know whom to contact. As a result, we added a text field where people

could enter their personal email addresses.

Our second test described in section 3.5.5 was a lot more successful. In the quantitative,

closed-ended part of our questionnaire, we only got positive answers. There where a couple

of cases where no answer was given, but the reason behind it, is unknown. So, if we only

look at the quantitative data from the people who answered, we have 100% approval rate.

During the test, we discovered a problem we had encountered before when running the

website within Haukeland University Hospital. People could not access the website on the

secure hospital networks. We got a few emails about this problem, but we did not find a

59

solution to it. Luckily, the treatment centers were able to access the website through phones

and tables connected to a guest network.

We got a few comments concerning the lack of short text answers when some alternatives

are missing or an answer would only apply in a specific scenario. Such fields were available in

a previous iteration, but we removed them because they were not used when recommending

treatment centers. We could add text fields for writing missing symptoms and professions,

and then use the information to manually add them to the website later.

But, when it comes to specific scenarios, it is difficult to find every corner case where

something only applies given something else. As an example, someone mentioned that they

did not offer cognitive therapy by itself, but could offer it to patients with other needs as

well. If we found all these scenarios, the list of questions would be ridiculously long and

there would be a chance that the treatment centers would not take the time to answer the

questions.

Another comment we got when it comes to the survey length, was redundant questions.

We found out that questions concerning accessibility within the treatment centers are re-

dundant since every treatment center must offer full accessibility to everyone, including

wheelchair users etc. Information like this can help us reduce our list of questions.

Table 6.2: Results from second center testing based on response from 15 treatment centers

Question Yes No
Was the motivation explained in an understandable manner? 13 0
Was the survey self explanatory? 14 0
Was the questions self explanatory? 13 0

6.3 Results from admin testing

During the first set of admin tests, we got a few suggestions on how we could improve our

application. The biggest concern was the lack of feedback from the application itself. Some

buttons did not give any response when clicked and our users were not sure if they actually

clicked the button or not. Another suggestion was to sort the list of questions shown in the

60

Manage Questions component. This would reduce the time it took to find the question you

were looking for.

The final suggestion was to make a search function to our treatment center table in the

admin module. This would reduce the time needed to find the information you need. It

would also give the users the possibility to do simple queries for statistical use.

During the test with Norwegian Multiple Sclerosis Competence centers, we discovered

more problems concerning feedback from the application. This problem was solved immedi-

ately. We also got a request to do something about the creation of new categories. This was

resolved by moving everything that concerns categories to step 2.

6.4 Meeting with the Department of Rheumatology

To answer our second research question, we arranged a meeting with a doctor from the

Department of Rheumatology. In this meeting, we discussed the similarities between MS

and rheumatology when it comes to ”Fritt behandlingsvalg”, symptoms, treatment centers

and wait times. The goal was to determine if our application would work with rheumatology

as well as MS.

During our meeting, we talked about rheumatology and ”Fritt behandlingsvalg”. Both

MS and rheumatology patients can attend treatment wherever they want and they can find

available treatment centers and their wait times at helsenorge.no. They also share the same

problems when it comes to a lack of information. The list of wait times is rather sparse, and

no one really knows which treatments the different centers offer.

While a lot of patients from Hordaland attended treatment at Haukeland University

Hospital, the doctor from the Department of Rheumatology did not deny the possibility that

some treatment centers might offer better treatment on some symptoms. Our application

solves this problem with the help of our feedback feature by recommending treatment centers

with a good reputation for a specific problem (e.g. fatigue, pain, etc).

To summarize the information gathered during the meeting, the doctor from the De-

partment of Rheumatology found our application useful and thought it could solve some of

their problems. The main problem concerning information access can be solved with our

application and may split patients between different centers rather than sending everyone to

the large hospitals in Norway.

61

6.4.1 Testing our application with Rheumatology

To test if our application would work with Rheumatology, we ask the doctor from the

Department of Rheumatology if she could provide us with questions related to Rheumatology.

With the questions given, we modified our website to work with the new set of questions.

All modifications were made with the help of our admin module. No change of code nor

configuration files. The result from our test can be seen in figure 6.1.

(a) Rheumatology questions 1 (b) Rheumatology questions 2

Figure 6.1: A figure showing the results of our rheumatology test

62

Chapter 7

Discussion

In this chapter, we first present previously attempted frameworks and languages. Then we

discuss our research questions and come to a conclusion.

7.1 Tested frameworks and languages

During the course of this project, we have done some testing with different frameworks and

languages. Some did not make the cut and were replaced by other languages and frameworks

later in the project. This section describes the reasoning behind our choices by comparing

the currently used frameworks and languages with the old ones.

7.1.1 Angular 4

Our first attempt at making a front-end client was written in Angular 4. While Angular

did what it was supposed to, it was incredibly difficult to learn and everything seemed a

bit clunky. In order to make an API call with Angular, you had to import a bunch of

libraries, make an HTTP-service, edit some configuration files and then write the API call.

In React, you can simply install one library and everything works with a simple one-liner.

Since Angular uses Typescript, it is a bit more difficult to find libraries that work with an

63

Angular application. In React, you can find libraries for just about anything. Finally, writing

code and debugging was a slow process with Angular and it was difficult to find answers on

the internet. React had a lot of easily accessible information and was well known by fellow

students.

On the technical side of things, React use a virtual DOM, which only renders the needed

components each time something changes, while Angular uses a real DOM where everything

is re-rendered on change. This means, that each time we move a slider in the patient

module, we only render that specific element in React, but in Angular, we have to re-render

everything. Because of this, React is a bit faster when rendering[2].

7.1.2 Node.js API

Our first goal was to get a working pipeline we could use to collect information about

treatment centers. Because of our knowledge with Node.js, we could quickly set up a working

API from scratch. When we later decided to explore machine learning, we switched both

the API and back-end to Python to make to make it easier to exchange data between the

data handling layer and the application processing layer. Most machine learning libraries

are found in Python, which is why decided to write the backend in Python and not Node.js.

7.1.3 NoSQL database

We started off with a MongoDB database and used it to save the data we collected from

the treatment centers. We did not have a specific database structure in mind at this point,

which is why we went with a NoSql database. In the later stages of the development, we

made a new data structure where the different tables had a lot of connections to each other.

Since SQLite is a relational database management system, we decided to switch to SQLite

to make it easier to connect our data together.

64

7.2 Answering research questions

To put our research question to the test, it would be beneficial if we had some old data to

compare our recommendation system with. There are no data that tells us if the patients are

satisfied with the treatment center or not. This becomes a problem when we want to compare

the currently used system with our application. To compensate, we added a question to our

survey asking the patients if there is a need for a decision support application like ours. This

question would give us an indication of whether there is a need for our application or not.

Is it possible to make a digital solution for recommending treatment centers?

Since most of the feedback is positive and 8 out of 9 patients found the need for this appli-

cation, we could conclude that it is possible to make an application for selecting treatment

centers. On the other hand, there are still a few problems concerning wait times and data

gathering. Without a proper way to gather wait times, we can not recommend centers based

on availability. If needed, patients can find this information by themselves by looking at the

overview at helsenorge.no, but as of now, we can not add these wait times to our application.

Because of this, we might recommend a treatment center with a large queue when there are

centers with available space.

The other problem occurs in the center module. The problem is that there are so many

different ways to name and describe a symptom or treatment. To satisfy all treatment

centers, we would need to have a text field after each category to gather information about

all the different corner cases that exist. This becomes a problem when we want to keep the

survey short and simple. If it is too long, people will not bother updating their information

frequently. If it is too short, we miss valuable information. To find the perfect amount of

questions is key, but very challenging.

A large amount of similarities between centers does also become a huge problem. After

looking through the data from our second treatment center survey, we found that many

centers have a lot in common and some centers were completely identical. As of now, the

only way we can differentiate two identical treatment centers, is through our feedback system.

A center with positive feedback would get a better score than the rest. Other tiebreakers

include wait times or to recommend centers based on location preferences. Both of these

solutions are discussed in section 8.4

65

As of now, there is no way to tell the frontend that a field is required. Another missing

feature is the possibility to show/hide some fields if the user answers yes or no on a specific

question. An example is our questions concerning age restrictions. Some treatment centers

might only offer treatment to people who are younger or older than a specific age. As of

now, there is no way of hiding the input fields if a treatment center answered no when asked

if they have an upper or lower age restriction. In this case, it would be nice if we could

show the ”Enter upper/lower age restriction” field, only if the center had answered yes on

the previous question. While these features are not mandatory, it would be a good way to

improve our application.

On a positive note, everything else seems to work as intended. The positive feedback

from the patients, treatment centers, Norwegian Directorate for e-health and the Norwegian

Directorate of Health shows us, that with a bit of tuning and access to more information

about wait times, we could make an application that can recommend treatment centers

pretty accurately.

Is it possible to make a general framework that can be applied to a variety of

different treatments and diseases?

To say that our application could be applied to different treatments and diseases, we need

an application that is easy to use and that can be managed by people without a technical

background. While we have been successful in most of these requirements, there are still a

few problems that occur.

For everything to work properly, each disease needs to have its own instance of our

application. In other words, we would have to deploy a new version of our application for

every disease. This is easily achievable by deploying the application in the cloud and make

a new instance for each disease. The problem is, that this process can be a bit difficult for

people without any technical background. Because of this, it would be beneficial to have

some sort of IT department that could help to initialize new instances.

After the application is deployed, it can be customized with the help of our admin module.

Ideally, an expert on the given disease should take the place as admin. They know which

questions should be asked to give a good recommendation. From this module, admins

66

can manage both the patient and the center module by making questions, categories, and

connections. Everything else is sorted out by the application itself by either matching two

identical questions or by matching connections defined by the admins.

The results from our rheumatology test (section 6.4.1) show that our application may

work well with other diseases. Within 15 minutes, we managed to modify the website to

work with rheumatology without manually interacting with the backend. While this indicates

that it is possible to modify our questions to work with different diseases, the rheumatology

example was not tested as thoroughly as MS since we did not go through the process of

asking treatment centers and patients for feedback, etc. In addition, it would be beneficial

to test the application on more than two diseases, but that is something for the future.

7.3 Related Work

Recommender systems are quite common when it comes to personal health and healthcare.

There is a lot of examples online where people use recommender systems to suggest a disease

based on symptoms. There are also papers that describe applications for monitoring your

own health, and that would recommend you to go to the doctor if there is something out of

the ordinary. Finally, we found a few papers describing a recommender system that could

recommend doctors and treatment centers based on symptoms.

7.3.1 HealthNet

HealthNet (HN) is a social network where patients can store personal health data, and

share conditions and experiences with each other [12]. The data stored, is used to make

a recommender system much like ours. By connecting people with the same conditions,

the HN recommender system can recommend doctors and hospitals based on other people’s

experiences. HN is only available in Arizona, California, Oregon, and Washington.

In the article, HN talk about their experience when testing four different algorithms. The

algorithms where:

• Collaborative filtering

67

• Cosine Similarity

• HN’s homemade algorithm

• A hybrid between HN’s algorithm and cosine similarity

Just like us, HN did not have success with Collaborative filtering despite having access

to more data. Their homemade algorithm, on the other hand, worked pretty well. The

algorithm combines Jaccard Index, Inverse Document Frequency and Cosine Similarity. We

tested these algorithms separately with a decent result but did not combine them, in the

same way, HN did. The problem with their algorithm, much like our previous attempts, is

that the algorithm is binary. The symptoms are either really important or not important

at all. While the HN algorithm might work with our recommendation system, it has to be

changed to work with symptoms rated from 0-10.

Another big difference is that they try to find patients similarly to you, and then recom-

mend doctors and hospitals based on their experience. Our approach is to find similarities

between the patient’s symptoms and what the treatment centers have to offer. To compare

two patients, we would need a huge amount of data. We do not have access to this kind of

data, which makes it difficult to use their methods. It is possible to change the algorithm

when we have collected enough data, but this could take a while. Instead, we have given the

patients the possibility to give feedback after ended treatment. This gives us the possibility

to train the model based on user experience.

7.3.2 A Patient-Centric Healthcare Model

The model described in this paper is a bit similar to HN [4]. The biggest difference, it that

they removed the social network part and replaced it with personal health records, electronic

health records, and electronic medical records. This model does also compares patients but

combines this information with the doctor’s expertise. The model is only a suggested model

by the authors and is not tested before the paper was written.

The method described in this paper would be an ideal solution to the problem. If we

could access health records, we could use these records along with the information given by

the patient to recommend a treatment center. The problem is, as mentioned in the paper,

privacy, and security. A possible solution to this problem is discussed in section 8.1. As of

now, there is no way we could access the health records or guarantee safe communication

when accessing the records.

68

7.3.3 A Novel Model for Hospital Recommender System Using

Hybrid Filtering and Big Data Techniques

This paper [8] describes a recommender system much like ours. Their goal is to recommend

a hospital based on user preferences. To solve this problem, they have used a combination

of collaborative filtering and content-based filtering, called hybrid filtering. The idea behind

it, it that they make one vector based on user preferences and add them to a matrix. This

matrix is then used to recommend hospitals based on cosine similarity. A feedback system

is also available after the recommendation is given. They also suggest a method to give

recommendations based on the hospital’s position according to the patient.

While the other papers describe methods for recommending doctors based on other pa-

tients experience, this system recommends hospitals based on the similarity between the

hospital and the patient. This is the same approach we took when making our application.

They also describe the problems with a cold start and sparse data and claim to solve it with

hybrid filtering.

7.3.4 A Hybrid Recommender System for Patient-Doctor Match-

making in Primary Care

This paper [19] describes a method for recommending family doctors based on previous

interactions between patients and doctors. Much like the other papers, they suggest a

hybrid method that is based on previously collected data. This paper differs from the others

by applying different techniques based on the amount of data they have about each patient.

If the data is sparse, they compare the recommendations based on demographic similarity.

If the patient has visited hospitals but never had a family doctor, the system recommends

based on hospital visits. Finally, if the patient has a lot of data, they give recommendations

based on hybrid filtering.

7.3.5 Summary

All the methods described in this section take to account that you already have or can collect

a large amount of data. Because of privacy reasons, we can not apply these methods, as we

69

do not have the possibility to store or access personal data. If we could move our application

to helsenorge.no [11], we could apply the method of hybrid filtering when recommending

treatment centers.

7.4 Conclusion

Then comes the conclusion. We have a working pipeline, we are able to recommend treatment

centers and most importantly, the users seem happy with our product. Feedback indicates

that patients would use this application to find a place to attend treatment, and many

treatment centers find this application useful. While there are a few problems with our

application, it still works as intended. Because of these arguments, we would like to declare

this project a success!

70

Chapter 8

Future work

While most of our planned features were implemented, there are still a few additions we

would like to add to our application. There where also a few tests we would like to carry out

but did not have the time nor resources to complete. These tests and features are discussed

in this chapter.

8.1 HelseNorge

To make our application more secure, we would like to deploy it to helsenorge.no[11]. This

website is the main source of information when it comes to Norwegian healthcare. There is

also a section where Norwegian citizens can access and manage personal data. If we could

deploy our application behind the same, secure wall, we could:

• add the patient data to the journal,

• save the result(s) given by the recommender system to be accessed later,

• remove the unique id given to the patients and let them give feedback through their

helsenorge identity instead,

• guarantee encrypted communication with the website,

• and guarantee the safety of their data. [10]

71

Since some treatment centers have an upper and/or lower age limit, we could use the

patient data to access their date of birth. With this information, we could remove all the

possibilities that do not match your current age. As of now, we have chosen to avoid asking

for such information for safety and privacy reasons.

8.2 Further testing and more iterations

As mentioned in section 2.4, we made a framework that should (in theory) work on any

kind of treatment. While we did not have the time or resources to test this hypothesis, it

would be interesting to test the system on other diseases and see if it worked as intended.

This would include more user testing and new iterations to find out if the application works

properly in every scenario.

8.3 Language support

During user testing, we discovered a language barrier that we had not expected. Some of

the patients had difficulties understanding some Norwegian words and phrases used in the

application. To solve this problem, we should give the application the possibility to use other

languages as well as Norwegian. We could solve this problem by using our current connection

functionality, but it is not an ideal solution. A better idea would be to give each question

the possibility to contain a lot of variations as shown in figure 8.1. To make this work, we

would also need a configuration file for each language as it contains categories written in

Norwegian.

Figure 8.1: Questions that support different languages

An edited model showing how to solve the problem with different languages

72

8.4 Postcodes, distances and wait times

To make treatment center selection a bit more convenient, we had an idea to implement a

way to calculate distances between the patient and the treatment center. If the patient said

it was important to stay close to home, we could find centers within a specific radius and

give these centers a higher score. The plan was to use postcodes to mark their positions and

then use an API to find the distance between the two. We found a free API that managed to

find the distances between some locations, but a lot of suggestions were completely wrong[9].

While there are some APIs that can do the work, they cost a lot of money. If someone wants

to implement this feature, they can subscribe to one of these APIs, and give the patients

recommendations based on location.

Another improvement we talked about, was to add the wait times as a variable. By

looking at the wait times, we could recommend centers that have a short wait time over

centers with a long wait time. To make this happen, we need a way to find the current wait

times of all the centers in Norway. As mentioned before, helsenorge.no [11] has a list of wait

times, but they are incomplete and rarely updated. If they managed to fix and maintain

this list, we could use it to recommend relevant centers with the shortest wait time.

73

74

List of Acronyms and Abbreviations

API Application Programming Interface.

BCNF Boyce–Codd normal form.

CNS Central nervous system.

CORS Cross-Origin Resource Sharing.

CSS Cascading Style Sheets.

FaaS Function-as-a-Service.

HN HealthNet.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HVL Western Norway University of Applied Sciences.

IaaS Infrastructure-as-a-Service.

JSON JavaScript Object Notation.

JSX JavaScript XML.

ML Machine learning.

MS Multiple sclerosis.

NoSql Not only SQL.

NRS Numeric Rate Scale.

ORM Object-relational mapping.

PaaS Platform-as-a-Service.

PDF Portable Document Format.

RBS Rule-based system.

RDBMS Relational Database Management System.

REST Representational State Transfer.

RFF React-final-form.

SaaS Software-as-a-Service.

SLR Systematic literature review.

SOAP Simple Object Access Protocol.

SQL Structured Query Language.

tf–idf Term frequency–inverse document frequency.

XML Extensible Markup Language.

75

76

Bibliography

[1] V. Madisetti A. Bahga. “Cloud Computing”. In: A. Bahga and V. Madisetti, 2014,

pp. 22–24.

[2] Altexsoft. React vs. Angular Compared: Which One Suits Your Project Better? 2018.

url: https : / / www . altexsoft . com / blog / engineering / react - vs - angular -

compared-which-one-suits-your-project-better/ (visited on 02/14/2019).

[3] API. url: https://expressjs.com/en/4x/api.html (visited on 05/22/2019).

[4] R. Bateja, S.K. Dubey, and A. Bhatt. “A Patient-Centric Healthcare Model Based on

Health Recommender Systems”. In: Recent Findings in Intelligent Computing Tech-

niques. Springer, Singapore, 2018, pp. 269–276.

[5] D. Budgen and P. Brereton. “Preforming Systematic Literature Reviews in Software

Engineering”. In: ICSE ’06 Proceedings of the 28th international conference on Soft-

ware engineering. 2006, pp. 1051–1052.

[6] K. Henningsson C. Wohlin M. Höst. “Empirical Research Methods in Software Engi-

neering”. In: Empirical Methods and Studies in Software Engineering. Lecture Notes

in Computer Science, vol 2765. Springer, Berlin, Heidelberg, 2003, pp. 7–23.

[7] ILM Corp. Digital Storage Calculator. 2018. url: https://www.ilmcorp.com/tools-

and-resources/digital-storage-calculator/ (visited on 01/25/2019).

[8] R. Devika and V. Subramaniyaswamy. “A novel model for hospital recommender sys-

tem using hybrid filtering and big data techniques”. In: 2018 2nd International Con-

ference on I-SMAC. IEEE, 2018, pp. 267–271.

[9] DISTANCE API. url: https : / / no . avstand . org / api . xhtml (visited on

01/22/2019).

77

https://www.altexsoft.com/blog/engineering/react-vs-angular-compared-which-one-suits-your-project-better/
https://www.altexsoft.com/blog/engineering/react-vs-angular-compared-which-one-suits-your-project-better/
https://expressjs.com/en/4x/api.html
https://www.ilmcorp.com/tools-and-resources/digital-storage-calculator/
https://www.ilmcorp.com/tools-and-resources/digital-storage-calculator/
https://no.avstand.org/api.xhtml

[10] Helsedirektoratet for E-Helse. Bruksvilk̊ar for tjenester p̊a helsenorge.no – behandling

av personopplysninger. 2018. url: https://helsenorge.no/bruksvilkar-for-min-

helse (visited on 02/05/2019).

[11] Helsedirektoratet for E-Helse. Ventetider for Rehabilitering: Nevrologiske og nevro-

muskulære sykdommer, MS. 2018. url: https://helsenorge.no/velg-behandlingssted/

ventetider-for-behandling?bid=347 (visited on 01/31/2019).

[12] G. Semeraro F. Narducci P. Lops. “Power to the patients: The HealthNet social net-

work”. In: Information Systems. Elsevier Ltd., 2017, pp. 111–122.

[13] A. Fedosejev. “React.js Essentials”. In: Packt Publishing, 2015.

[14] Python Software Foundation. Python. 2019. url: https://www.python.org/ (visited

on 05/03/2019).

[15] I. V. Gorbunov et al. “A Decision Support System for Prescription of Non-Medication-

Based Rehabilitation”. In: Biomedical Engineering. 2017, pp. 393–397.

[16] P. Gries, J. Campbell, and J. Montojo. “Practical Programming, Third Edition – An

Introduction to Computer Science Using Python 3.6”. In: The Pragmatic Bookshelf,

2017.

[17] L. Guo et al. “Which Doctor to Trust: A Recommender System for Identifying the

Right Doctors”. In: Journal of Medical Internet Research, Vol 18, No 7. 2016, pp. 28–

38.

[18] Q. Han et al. “A Collaborative Filtering Recommender System in Primary Care: To-

wards a Trusting Patient-Doctor Relationship”. In: 2018 IEEE International Confer-

ence on Healthcare Informatics. 2018, pp. 377–379.

[19] Q. Han et al. “A Hybrid Recommender System for Patient-Doctor Matchmaking in

Primary Care”. In: 2018 IEEE 5th International Conference on Data Science and

Advanced Analytics (DSAA). IEEE, 2018, pp. 481–490.

[20] F. Hayes-Roth. “Rule-based systems”. In: Communications of the ACM. Volume 28,

Issue 9. 1985, pp. 921–932.

[21] M. J. Hjermstad et al. “Studies Comparing Numerical Rating Scales, Verbal Rating

Scales, and Visual Analogue Scales for Assessment of Pain Intensity in Adults: A Sys-

tematic Literature Review”. In: Journal of Pain and Symptom Management. Volume

41, Issue 6. 2011, pp. 1073–1093.

78

https://helsenorge.no/bruksvilkar-for-min-helse
https://helsenorge.no/bruksvilkar-for-min-helse
https://helsenorge.no/velg-behandlingssted/ventetider-for-behandling?bid=347
https://helsenorge.no/velg-behandlingssted/ventetider-for-behandling?bid=347
https://www.python.org/

[22] C.J. Ihrig. “Pro Node.js for Developers”. In: Apress, Berkeley, CA, 2013, pp. 263–270.

[23] H. Jiang and W.Xu. “How to find your appropriate doctor: An integrated recommen-

dation framework in big data context”. In: 2014 IEEE Symposium on Computational

Intelligence in Healthcare and e-health (CICARE). IEEE, 2014.

[24] M. R. Khoie et al. “A Hospital Recommendation System Based on Patient Satisfaction

Survey”. In: (2017).

[25] B. Kitchenham. “Procedures for Performing Systematic Reviews”. In: (2004).

[26] M. Massé. “REST API – Design rulebook”. In: O’Reilly, 2012.

[27] M.Chiu and W. Cheng. “Building a Classification Model for Physician Recommender

Service Based on Needs for Physician Information”. In: HCI in Business, Government,

and Organizations: Information Systems. 2018, pp. 28–38.

[28] S. A. McLeod. What’s the difference between qualitative and quantitative research?

2017. url: https://www.simplypsychology.org/qualitative-quantitative.html

(visited on 03/18/2019).

[29] F. Narducci et al. “Recommending doctors and health facilities in the HealthNet Social

Network”. In: (2017).

[30] NASA. NASA APIs. 2018. url: https://api.nasa.gov/index.html (visited on

01/29/2019).

[31] J. Nielsen. “Iterative user-interface design”. In: Computer (Volume: 26 , Issue: 11 ,

Nov. 1993). 11. IEEE, 1993, pp. 32–41.

[32] NRK. Weather API. 2018. url: https://api.met.no/ (visited on 01/29/2019).

[33] Oracle. Building RESTful Web Services with JAX-RS. url: https://docs.oracle.

com/javaee/6/tutorial/doc/giepu.html (visited on 05/22/2019).

[34] M. Owens. “The Definitive Guide to SQLite”. In: Apress, Berkeley, CA, 2006.

[35] Helsebiblioteket/BMJ Best practice. Multippel sklerose (MS). 2017. url: https://

helsenorge.no/sykdom/hjerne-og-nerver/multippel-sklerose-(ms) (visited on

04/22/2019).

[36] PWDTools. Brute-force password recovery time calculator. url: https://pwd.tools/

(visited on 02/26/2019).

[37] A. Ronacher. Flask - Web development one drop at a time. 2019. url: http://flask.

pocoo.org/ (visited on 05/03/2019).

79

https://www.simplypsychology.org/qualitative-quantitative.html
https://api.nasa.gov/index.html
https://api.met.no/
https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
https://helsenorge.no/sykdom/hjerne-og-nerver/multippel-sklerose-(ms)
https://helsenorge.no/sykdom/hjerne-og-nerver/multippel-sklerose-(ms)
https://pwd.tools/
http://flask.pocoo.org/
http://flask.pocoo.org/

[38] I. Sommerville. “Software Engineering”. In: Pearson Education, 2016, pp. 490–516.

[39] Facebook open source. React - A JavaScript library for building user interfaces. 2019.

url: https://reactjs.org/ (visited on 05/02/2019).

[40] SQLAlchemy. SQLAlchemy - The Python SQL Toolkit and Object Relational Mapper.

2019. url: https://www.sqlalchemy.org/ (visited on 05/03/2019).

[41] A. J. Thompson et al. “Multiple sclerosis”. In: Lancet 2018; Volume 391. 2018,

pp. 1622–1636.

80

https://reactjs.org/
https://www.sqlalchemy.org/

Appendices

Valgomat for personer med MS
http://valgomat.herokuapp.com/

(Åpne i Chrome)

Det er viktig at personer med MS skal få et så godt tilpasset rehabiliteringstilbud som mulig. Som del
av et mastergradsprosjekt utvikler Nasjonal kompetansetjeneste for MS i samarbeid med Høgskolen
på Vestlandet et verktøy som skal gjøre det lettere å velge rett rehabiliteringssted; en såkalt
«rehabiliteringsvalgomat». Ut fra svar på et elektronisk skjema der vi spør om behovet for
rehabilitering, skal det fremkomme hvilket behandlingssted som synes best egnet ut fra den enkeltes
behov. Resultatet er ikke en fasit på hva en bør velge, men kan gi en indikasjon på hvilke
behandlingssteder som tilbyr behandlingen den enkelte trenger. Vi har nå utviklet en nettside med
en foreløpig testversjon. Denne inneholder kun fiktive behandlingssteder, og den som svarer,
trenger ikke å gi opplysninger i tråd med virkeligheten. I denne testversjonen ønsker vi kun å vite om
spørsmålene er forståelige og om verktøyet virker greit å bruke.

Dersom du ønsker å delta i utprøving av denne testversjonen, vil vi be deg om to ting:

1. Først vil du bli bedt om å fylle ut skjemaet på en nettside. Dette skjemaet inneholder
spørsmål om hvilke type opphold du trenger, hvilke problemstillinger du trenger behandling
for, og hva som er viktig for deg under behandlingen. Til slutt vil du få en anbefaling på
hvilke(t) behandlingssted som passer dine behov. Som tidligere nevnt, trenger du ikke å
svare i tråd med det som passer for deg; du kan gjerne dikte svaret.

Dine svar til bli lagret, men vi har ikke mulighet til å koble svarene opp mot deg. Undersøkelsen er
helt anonym.

2. Den andre delen er en kort spørreundersøkelse hvor vi stiller noen spørsmål om nettsiden
du besøkte i del 1. Resultatet av undersøkelsen vil bli brukt som forskningsmateriale til
masteroppgaven og bli brukt til å forbedre nettsiden.

A User testing patient survey

Del 2
For å forbedre nettsiden, ønsker vi å stille deg noen spørsmål om din brukeropplevelse.

Hvis det er noen spørsmål du ikke ønsker å svare på, kan du la feltet stå tomt.

Undersøkelsen er anonym og vi ber deg derfor om å IKKE skrive noen andre personopplysninger på
dette arket.

Sett ring rundt det svaret som passer best med din opplevelse.

Angående beskrivelsen øverst på siden:

Ble hensikten med undersøkelsen beskrevet på en god måte?

Ja

Nei

Var det tydelig hvordan du skulle fylle ut spørsmålene på nettsiden?

Ja

Nei

Var det noe du savnet?

Tekst

Selve undersøkelsen:

Hva synes du om lengden på undersøkelsen i del 1?

Kort

Lang

Passelig

Var spørsmålene lett å forstå/selvforklarende?

Ja

Nei

Var det noen spesifikke spørsmål/kategorier som var vanskelig å forstå?

Tekst

Brukte du informasjonsikonet?

Ja

Ja, men spørsmålet var fortsatt uklart

Nei, hadde ikke brukt for ikonet

Nei, la ikke merke til ikonet

Resultat

Klarte du å gjennomføre undersøkelsen i del 1?

Ja

Nei

Hvis nei, hva var problemet?

Tekst

Var resultatet presentert på en forståelig måte?

Ja

Nei

Synes du det er behov for et slikt hjelpemiddel?

Ja

Nei

Annet

Har du noen andre kommentarer til nettsiden i sin helhet?

Tekst

Velg din aldersgruppe aldersgruppe:

Under 45

Over 45

Dine IT-kunnskaper

Hvor ofte bruker du smarttelefon/nettbrett?

Aldri

En gang i uken

Flere ganger i uken

Daglig

Hvor ofte bruker du PC/Mac?

Aldri

En gang i uken

Flere ganger i uken

Daglig

Rehab-Valgomat; Spm til Pasient/kliniker-skjema

Dersom du har behov for rehabilitering i ​spesialisthelsetjenesten​, kan denne «valgomaten»
hjelpe deg til å finne det tilbudet som passer best med dine behov.

Din alder:

Hva er viktig for deg:
Nærhet til hjemmet
Døgnopphold
Dagopphold
Poliklinikk
Individuell rehabilitering
Rehabilitering i gruppe
Tilbud om basseng
At rehabiliteringsstedet er tilrettelagt for bevegelseshemmede ute?
At rehabiliteringsstedet er tilrettelagt for bevegelseshemmede inne?
Er det viktig at du er sammen med andre med samme diagnose?
Er du selvhjulpen i daglige aktiviteter?

Behov for type opphold:
Informasjonsopphold
Vurderingsopphold
Rehabilitering
Rehabilitering etter raskt funksjonstap
Rehabilitering etter gradvis funksjonstap
Tilbud til voksne pårørende i tilknytning til rehabiliteringsoppholdet
Tilbud til barn pårørende i tilknytning til rehabiliteringsoppholdet

Hva er de to viktigste problemstillingen du ønsker rehabilitering for?
 Arm-/håndfunksjon
 Gange-/balansefunksjon
 Spastisitet
 Smerte
 Fatigue
 Blærefunksjon
 Tarmfunksjon
 Depresjon/angst
 Kognitiv funksjon
 Søvn
 Tale/språk/svelg
 Lungefunksjon
 Seksualfunksjon

B First draft of patient questions

 Arbeidsrettet rehabilitering
 Behov for hjelpemidler
 Daglige aktiviteter
 Utforskning av nye former for fysisk aktivitet
 Kost/ernæring
 Stressmestring/"Å leve med MS"
 Røykeslutt
 Annet

Nevn 3 andre problemstillinger du har behov rehabilitering for?
 Arm-/håndfunksjon
 Gange-/balansefunksjon
 Spastisitet
 Smerte
 Fatigue
 Blærefunksjon
 Tarmfunksjon
 Depresjon/angst
 Kognitiv funksjon
 Søvn
 Tale/språk/svelg
 Lungefunksjon
 Seksualfunksjon
 Arbeidsrettet rehabilitering
 Behov for hjelpemidler
 Daglige aktiviteter
 Utforskning av nye former for fysisk aktivitet
 Kost/ernæring
 Stressmestring/"Å leve med MS"
 Røykeslutt
 Annet

Har du flere rehabiliteringsbehov?
 Arm-/håndfunksjon
 Gange-/balansefunksjon
 Spastisitet
 Smerte
 Fatigue
 Blærefunksjon
 Tarmfunksjon
 Depresjon/angst
 Kognitiv funksjon
 Søvn
 Tale/språk/svelg
 Lungefunksjon
 Seksualfunksjon
 Arbeidsrettet rehabilitering
 Behov for hjelpemidler
 Daglige aktiviteter

 Utforskning av nye former for fysisk aktivitet
 Kost/ernæring
 Stressmestring/"Å leve med MS"
 Røykeslutt
 Annet

Etter at du har klikket på send, vil du få ut et forslag til valg basert på dine svar. Dette kan tas
med til din behandler, slik at dere sammen kan diskutere beste sted for deg. For informasjon
om ventetid, anbefaler vi at du tar kontakt med det aktuelle rehabiliteringsstedet fordi ventetid
varierer og avhenger blant annet av type opphold bosted i landet.

Test av adminmodul

http://valgomat.herokuapp.com/

Alle verktøyene du trenger, kan du finne i menyen øverst på nettsiden.
Du kan finne flere sider ved å trykke på “Administrer nettsiden”

Bruk oversikten over behandlingsstedene til å svare på følgende
spørsmål:
Ligger ​Åstveit Helsesenter​ i listen over behandlingssteder?
Har CatoSenteret Helsefagarbeider?
Hvor mange behandlingssteder tilbyr behandling for lungefunksjon?

Legg til og administrer spørsmål
Legg til et nytt spørsmål:
Spørsmålet skal være “Testspørsmål {klokkelsett}”. Eks: “Testspørsmål 1245” hvis klokken
er 1245. ID-en skal være klokkeslettet (1245) og tilleggsinformasjon kan være hva du vil.
Husk navnet på spørsmålet du la til! Du skal bruke det senere.

Administrer spørsmål:
Du skal nå legge inn spørsmålet ditt (fra forrige punkt) inn på ​pasientsiden​. Spørsmålet skal
legges inn i kategorien ​“Hva er viktig for deg?”​ som allerede eksisterer på nettsiden. Du
trenger ikke lage ny kategori. Spørsmålet skal være et ​Slider​ spørsmål. ​Oppdater
spørsmålslisten​ og bruk menyen på toppen for å se om spørsmålet ditt er kommet inn på
pasientsiden.

Deretter skal du fjerne spørsmålet fra pasientsiden. Se om spørsmålet er fjernet.

Administrer koblinger:
Til slutt, vil jeg at du skal lage en ​kobling​ mellom ditt spørsmål og spørsmålet ​“Er du
selvhjulpen til daglige aktiviteter?”​.

C Questions given to students during admin testing

16/05/2019 Spørreundersøkelse til behandlingssteder

https://docs.google.com/forms/d/e/1FAIpQLSejA1agmxVhvC6iYvSxURlsVORxinIOU1u6SURy-I8SNCC8Ug/formResponse 1/1

Spørreundersøkelse til
behandlingssteder

Angående beskrivelsen øverst på nettsiden

Ja

Nei

Ja

Nei

Send aldri passord via Google Skjemaer.

Dette innholdet er ikke laget eller godkjent av Google. Rapportér misbruk - Vilkår for bruk

Ble hensikten med kartleggingen beskrevet på en god måte?

Var det tydelig hvordan du skulle fylle ut spørsmålene på
nettsiden

Var det noe du savnet i introduksjonen?

Svaret ditt

NESTE

 Skjemaer

D Questions given to treatment centers during center testing

16/05/2019 Spørreundersøkelse til behandlingssteder

https://docs.google.com/forms/d/e/1FAIpQLSejA1agmxVhvC6iYvSxURlsVORxinIOU1u6SURy-I8SNCC8Ug/formResponse 1/1

Spørreundersøkelse til
behandlingssteder

Selve kartleggingen

Ja

Nei

Send aldri passord via Google Skjemaer.

Dette innholdet er ikke laget eller godkjent av Google. Rapportér misbruk - Vilkår for bruk

Var spørsmålene lett å forstå/selvforklarende?

Var det noen spesi�kke spørsmål/kategorier som var vanskelig å
forstå?

Svaret ditt

Har du noen andre kommentarer til nettsiden i sin helhet?

Svaret ditt

TILBAKE SEND

 Skjemaer

KARTLEGGING AV REHABILITERINGSTILBUD I SPESIALISTHELSETJENESTEN
FOR PERSONER MED

MULTIPPEL SKLEROSE (MS)

Navn på institusjon/rehabiliteringsavdeling:
Nettadresse:
Telefonnummer:

Generelt om tilbud og innhold

Helseregion
For private institusjoner: Hvilke(n) helseregion(er) er det
gjort avtale med?
Hvilke(n) annen/andre region(er) får dere pasienter fra?

Lag bokser her

Individuell rehabilitering? Ja/nei
Rehabilitering i grupper? Ja/nei
Vanlig varighet for opphold
Tilbud om basseng? Ja/nei
Tilrettelagt for rullestolbrukere? Ja/nei
Beskrivelse av inntakskriterier:
 Selvhjulpen i daglige aktiviteter
 Alder Ja/nei (noen gir kun rehab under 35 år)
 Spesifiser for henholdsvis heldøgnsplasser og dagplasser

Ja/nei

Tilbud til personer med MS:

Inntak gruppevis for personer med MS Ja/nei
Type opphold
Informasjon
Vurdering
Rehabilitering etter raskt funksjonstap
Rehabilitering etter gradvis funksjonstap
Egne tilbud til voksne pårørende
 Egne tilbud til barn som pårørende

Angi antall heldøgnsplasser og antall dagplasser, og
angi hver for seg hvor mange av disse som er
tiltenkt MS

Bokser for:
- Antall heldøgn / antall av disse MS

Antall dag/antall av disse
Vanlig ventetid for MS-rehabilitering Uker
Faggruppene/profesjonene som er tilknyttet
MS-rehabiliteringen (kryss av)
 ​☐​ Lege
 ​☐​ Sykepleier
 ​☐​ Hjelpepleier/ helsefagarbeider
 ​☐​ Klinisk psykolog

05.02.18Side 1

E First treatment center form

 ​☐​ Nevropsykolog
 ​☐​ Sosionom
 ​☐​ Ergoterapeut
 ​☐​ Fysioterapeut
 ​☐​ Ernæringsfysiolog
 ​☐​ Uroterapeut
 ​☐​ Logoped
 ​☐​ Idrettspedagog/idrettsfysiolog el. lignende
Problemstillinger dere har rehabiliteringstilbud for
Kryss av i boksene på listen under for de punktene der dere har et tilbud
Ved generelle behov for: Ja/nei

● Skole/utdanning/arbeidsrettet rehabilitering
● Daglige funksjoner

o Vurdering av hjelpemidler
o Vurdering av daglige aktiviteter
o Samhandling med primærhelsetjenesten

● Livsstil
o Utforsking av muligheter for nye former for

fysisk aktivitet
o Kost/ernæringsveiledning
o Stressmestring / «Å leve med MS»
o Røykeslutt

Tilbud ved problemstillinger knyttet til: Ja/nei

Arm-/håndfunksjon
Gangfunksjon

● Utredning av indikasjon for /tilpasning av
fotløftsystem (elektrisk nervestimulering)

● Utprøving/tilpasning av ortoser
● Utprøving av medikamentell behandling

Spastisitet
Smerte
Fatigue
Blærefunksjonen
Tarmfunksjon
Depresjon/angst
Kognitiv funksjon
Søvn
Tale/språk/svelg
Lungefunksjon
Seksualfunksjon
Generelle kommentarer/merknader/tilleggs-opplysninger:

Dato for utfylling:

05.02.18Side 2

F Statement from Norwegian Multiple Sclerosis Competence

centre

G Sunnaas suggestions

Hei!

Veldig bra at dere jobber videre med dette.

Jeg var jo inne p̊a forsøk med www.decidetreatment.org plattformen samvalgsløsningen fra

Helse sørøst. Den er midlertidig p̊a vent mens de store linjene ordnes opp i, s̊a alle alternativ

er interessante.

Synes dere har et veldig bra utgangspunkt.

Det jeg har av innspill har dere helt sikkert i tankene allerede:

1. Behov for å gjøre noe med spr̊akbruk som kan være fremmed for mange pasienter

– kanskje særlig nydiagnostiserte. G̊ar an å teste p̊a pasienter og justere ordlyden.

Legge til en knapp med forklaring p̊a hva det er, for hver kategori (f eks kognitiv

rehabilitering).

2. Interessant hvor mye som er mulig å f̊a til av dynamikk i valgomat– at utseendet

forandrer seg basert p̊a hva man svarer – at ting ommøbleres eller blir mer tydelig.

3. Litt opptatt av indre vekting mellom de ulike omr̊adene, siden det er s̊a mange. Hvis

man f eks huker av Inkontinens sammen med 10 andre problemer drukner det lett hvis

alt er vektet likt.Er det mulig å huke av max 2-3 valg som viktigst, s̊a de f̊ar større

betydning for hva som anbefales?

Følger gjerne med videre p̊a dette.

H JSON example

95

Listing H.1: Translated JSON file sent during a GET request(with template)

1 {
2 "questions": {
3 "Category": [

4 {
5 "id": "Unique id",

6 "label": "Question shown",

7 "value": "ID to easily access special questions",

8 "info": "Short description of the question",

9 "displayAs": "How to display this question"

10 }
11],

12 "What is important for you?": [

13 {
14 "id": 1,

15 "label": "Close to home",

16 "value": "closeToHome",

17 "info": "You want treatment close to where you live",

18 "displayAs": "slider"

19 },
20 {
21 "id": 2,

22 "label": "24 hour stay",

23 "value": "24HourStay",

24 "info": null,

25 "displayAs": "slider"

26 }
27]

28 }}

96

I Readme

Valgomat frontend

Link: https://github.com/AndreDyrstad/react-valgomat

This application is used to give patients the possibility to answer a few questions, and in

return, get a recommendation on which treatment center they should pick.

Get started

To run the application, you need to have npm and node installed. You can install them by:

• installing them through their website

• running sudo apt-get install nodejs on linux

• running brew install node on mac.

To check if they are properly installed, type node -v and npm -v

Running the program

Now that you have npm up and running, you have to install all packages needed to run the

application. This can be done by typing npm install in the terminal when you are in the

root folder of the project. After all the packages are downloaded, simply type npm start to

run the application. The application can be accessed in localhost:3000

If you want to change the API URI, simply change the return statement of the function

found in global.js.

97

File overview

The components folder contains all JavaScript files used to make the website. The files are

then split into small and large components, where the large components are full pages, and

the small components are building blocks to make the large components.

The second main folder is the CSS folder. This folder contains (almost) all the CSS files

used in the project. Finally, in our root folder, we have App.js and App.css which is the root

of our application. Everything has to branch from these files.

Valgomat backend

Link: https://github.com/AndreDyrstad/api-valgomat

This application is used to give patients the possibility to answer a few questions, and in

return, get a recommendation on which treatment center they should pick.

Get started

To run the application, you need to install Python 3. You can install it by:

• downloading it from their website

• typing brew install python3 on mac.

• typing sudo apt install python3.X on linux where X is version number.

To check if it works, type python --version. If you want to run the application in

a virtual environment, type pip install virtualenv in the terminal to install a virtual

environment library.

Running the program

First, you need to move to the root folder of the project. Then follow the path according to

your operating system:

98

Windows

To run the application without a virtual environment, simply type pip install -r

requirements.py to install the packages, then python api.py to run the application.

If you want to run the application in a virtual environment, make a new environ-

ment by typing virtualenv -p python venv. To run the environment, type source

vent/Scripts/activate. Finally, type pip install -r requirements.txt to install

packages and python api.pyto run the application. The API runs at localhost:8020 by

default. To exit the environment, type deactivate.

Mac and linux

To run the application without a virtual environment, simply type pip3 install -r

requirements.py to install the packages, then python3 api.py to run the application. If

you want to run the application in a virtual environment, make a new environment by typing

virtualenv -p python3 venv. To run the environment, type source venv/bin/activate.

Finally, type pip install -r requirements.txt to install packages and python api.py

to run the application.To exit the environment, type deactivate.

File overview

• config files folder contains all our configuration files. These files have a strict setup

and contain all the information needed to display questions to the frontend.

• storage folder contains a backup list of all questions.

• api.py file contains our API and everything needed to communicate with our frontend.

• database.py file has an overview of all our tables.

• sql queries file contains all the SQL queries we use when we communicate with the

database.

• rbs.py file contains our rule-based system and is used to recommend treatment centers.

• utilities.py contains a few converters and generator functions.

99

	Introduction
	Background
	Research questions
	Chapter outline

	Motivation
	Multiple sclerosis
	Digitalization
	What is digitalization?
	Why digitalization?
	Digitalization within healthcare
	Digitalization within treatment selection

	Information access
	A general framework for recommendation systems

	Method
	Iterative design
	Kanban
	Systematic literature review
	Planning the review
	Conducting the review

	Empirical research
	Quantitative and qualitative research
	Empirical research methods
	Iterative design with empirical research

	Experiments and surveys
	Experiment: Jaccard index vs Numerical rating scale scale
	Experiment: Binary vs Numerical rating scale
	Survey: Patient questionnaire
	Survey: Exploratory treatment center questionnaire
	Survey: Treatment center questionnaire
	Survey: Admin page questionnaire

	Communication with experts

	Design
	Modules
	Center module
	Patient module
	Admin module

	Decision support framework architecture
	Two-tier client-server architecture

	Cloud Computing
	Recommender system
	Rule-based Systems
	Machine learning
	Rule-based systems vs. Machine learning

	Representational State Transfer
	Benefits with RESTful
	REST vs SOAP
	JavaScript Object Notation

	Picking the right questions
	A brief history of the project

	Implementation
	Presentation layer
	React
	Libraries
	Center component
	Patient component
	Feedback
	Admin sites
	Other components

	Data handling layer
	Flask_restful
	Flask_cors
	Pipeline

	Application processing layer
	Python
	Feedback system
	Recommender system
	Utilities

	Database layer
	SQLAlchemy and Object-relational mapping
	Configuration files

	Results
	Results from patient testing
	Results from treatment center testing
	Results from admin testing
	Meeting with the Department of Rheumatology
	Testing our application with Rheumatology

	Discussion
	Tested frameworks and languages
	Angular 4
	Node.js API
	NoSQL database

	Answering research questions
	Related Work
	HealthNet
	A Patient-Centric Healthcare Model
	A Novel Model for Hospital Recommender System Using Hybrid Filtering and Big Data Techniques
	A Hybrid Recommender System for Patient-Doctor Matchmaking in Primary Care
	Summary

	Conclusion

	Future work
	HelseNorge
	Further testing and more iterations
	Language support
	Postcodes, distances and wait times

	List of Acronyms and Abbreviations
	Bibliography
	Appendices
	User testing patient survey
	First draft of patient questions
	Questions given to students during admin testing
	Questions given to treatment centers during center testing
	First treatment center form
	Statement from Norwegian Multiple Sclerosis Competence centre
	Sunnaas suggestions
	JSON example
	Readme

