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Abstract

There is a need for sharing and integrating patients’ self-collected health data with
electronic health records used by clinicians.

A cross-platform mobile application has been developed in order to meet this need.
It shares health data securely and is compatible with the Norwegian Centre for E-health
Research’s FullFlow architecture.

The application’s design and its components are studied in order to find out which
technologies are suited for this type of application to ensure usability, integration with
the Norwegian healthcare infrastructure, and confidentiality and integrity of health data.
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Chapter 1

Introduction

The use of mobile health applications and wearable monitoring devices is increasing [1].
Analyzing patients’ self-collected data such as blood sugar, pulse, and physical activity
can identify troublesome patterns such as elevated heart rate and blood sugar levels [94].

The Electronic health record (EHR) has become an important tool for clinicians,
and it is predicted that there will be a greater need for integration of patient collected
data and EHRs [80]. This can be beneficial for patients with chronic illnesses such as
diabetes. EHR based clinical support systems have been shown to improve glucose and
blood pressure control in diabetes patients [91]. By sharing self-collected data, patients
can provide valuable information to these systems, and health care providers can be
alerted if necessary. In addition, involving patients in their healthcare motivates them
to follow health care recommendations better, leading to improved health outcomes [94].

While the benefits of sharing patient gathered data are clear, there are security and
interoperability challenges that must be met. Due to the sensitive nature of health-
related data, it is vital to keep it secure so that the privacy of patients can be protected
[75]. Mobile applications that share health-related data must protect it in two areas [59]:

1. In storage

• On the mobile device

• In the cloud

2. Over the communication channel

• Between sensors and the app

• Between the app and the cloud
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In addition, there should be transparency. Patients should know which data is col-
lected and who it is shared with [61]. Most mobile health applications are exposing
patient gathered data by failing to address security and privacy guidelines and regula-
tion such as the General Data Protection Regulation (GDPR). An analysis of 20 popular
health apps revealed that only half of them always transmitted sensitive health-related
data over HTTPS [92]. Even when HTTPS was used, 30% had an insecure imple-
mentation of SSL. Static code analysis suggested that 85% of the apps may have stored
sensitive data unencrypted. In addition, many apps share patient data with third parties
without explicit consent.

Another issue is interoperability, which depends on the use of consistent standards
so that the syntactic and semantic information of health data can be understood by the
different systems involved in handling it. Unfortunately, widespread interoperability in
health care systems has not been achieved [57]. Although there are many applications for
managing health data, most are proprietary and follow different standards [55]. Because
of this, it can be difficult to integrate data with health care systems.

1.1 Background

This section starts with an introduction to cloud computing and mobile security. This
will give an overview of some of the challenges related to sharing self-collected health
data securely. Then, we provide some context by introducing concrete examples of
related systems that are planned to be or already are part of the Norwegian health care
infrastructure. Finally, the problem description and research questions are presented.

1.1.1 Mobile cloud computing

The primary goal of mobile cloud computing is to give a better experience to users
who have devices with limited computational power, storage, and battery capacity [96].
Although mobile devices have limited resources compared to desktop computers, they
have improved rapidly over the years [71]. While cloud computing may not be necessary
in all cases, it can certainly enhance the capabilities of apps on mobile devices.

For applications where mobile devices can handle computation and storage require-
ments, a more significant benefit is perhaps availability. Storing data in the cloud
improves availability across devices. If data is to be shared and synchronized between
various systems, they will not have to be directly linked to a mobile device that may not
be online at all times. As an added boon, data in the cloud can be used as a backup in
the event that a mobile device is stolen or broken.

That being said, the use of cloud computing can threaten security because data is
transmitted over the internet [78]. In addition, data stored in the cloud can be vulner-
able because of a greater attack surface. Despite this, there is research indicating that
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mobile cloud computing used in health care can be both secure and efficient [62] [82]
[83].

1.1.2 Risks in mobile security

Mobile devices are used for social networking, shopping, emailing, banking, healthcare
services and more [76]. While corporate devices may have restrictions that improve
security, the number of personal smartphones that handle critical and sensitive corporate
data has been increasing. Sensitive information can be found in SMS messages, photos,
and applications. This makes personal mobile devices prime targets for attackers.

Figure 1.1: Mobile threats [76]

Mobile devices and computers have many common threats like web browser exploita-
tion, OS vulnerability, and social engineering. Some of them, such as device loss or theft,
and compromised devices become more prominent on mobile devices.

• Loss/theft of devices: Owners of mobile devices carry them wherever they go.
While the portability is convenient, mobile devices are easily lost or stolen. A
third of consumers in Canada and the U.S have had their phone lost or stolen [99].
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• Data interception and tampering: Mobile devices typically communicate wire-
lessly, and many use public Wi-Fi hot spots that can be spoofed [67]. This makes
mobile devices especially susceptible to data interception and tampering of data
transmitted over the internet.

• Malware: Malicious software can be written for the purpose of collecting user
information, sending premium-rate SMS messages, credential theft, and ransom
[66]. The increasing amount of malware attacks makes this a serious threat.

• Compromised devices: Normally, iOS users cannot install 3rd party applications
[72]. Android users may want to remove vendor-installed software or enhance the
OS of their phones. Rooting an Android device or jailbreaking an iOS device
solves these issues by giving its owner superuser privileges, but the same also goes
for attackers. Compromised devices open for more powerful attacks by removing
standard security mechanisms or allowing attackers to bypass them.

• Web browser exploitation and OS vulnerability: Mobile applications may use web
technologies, thereby inheriting weaknesses such as cross-site scripting, SQL in-
jection, and session fixation. While mobile operating systems provide security
features, some of them have to be implemented by developers, which is something
that can lead to issues if done incorrectly.

• Social engineering: Attackers may impersonate a trusted party or assume a role of
authority in order to fool users into downloading malware or sharing sensitive in-
formation. For example, an attacker claiming to be working for the IT department
of a user’s organization can send an email asking for their passwords.

Another threat is vulnerable applications. It is closely related to some of the other
threats that are listed because they target applications with insufficient security. Devel-
opers must take care to secure their apps, but there are many pitfalls. The Open Web
Application Security Project (OWASP) lists the top 10 risks that mobile developers have
to handle [50].

1. Improper platform usage: Misuse of security features such as TouchID, the Key-
chain, platform permissions and general violation of best practices can be exploited.

2. Insecure data storage: When developers do not encrypt data and assume that the
file system is inaccessible to attackers, they expose data stored on the phone.

3. Insecure communication: Even if applications use HTTPS for secure communica-
tion, poor implementations can lead to leaked information.

4. Insecure authentication: Applications can fail to properly authenticate by using
backend APIs that accept anonymous requests, using weak password policies, or
by lacking other means of identifying users.
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5. Insufficient cryptography: Even when cryptography is used, improper implemen-
tation can make it easy to break. Hardcoding cryptographic keys, relying on
obfuscation and using custom algorithms are all examples of cryptography done
incorrectly.

6. Insecure authorization: It is often not enough to just authenticate. All access to
protected resources should be restricted unless users have been identified, and then
authorized by checking whether or not they have the permissions that are required.

7. Client code quality: Missing or insufficient input validation can lead to buffer
overflows and memory leaks.

8. Code tampering: Client-side applications such as mobile apps run in environments
that are not under control of the developers. Attackers can modify the code of an
application on their device in order to cheat in video games. They can also use
social engineering to trick others into installing modified apps with malicious code
that extracts sensitive information.

9. Reverse engineering: Bad practices such as hard coding secrets and relying on ob-
fuscation can be exploited by attackers who reverse engineer applications, allowing
them to inspect the code. It can also be used to find out what code to modify
with code tampering.

10. Extraneous functionality: Developers may write code that is not suited for pro-
duction, and only meant for assisting the development of an application. Exam-
ples include hidden administrator interfaces, backdoors that bypass authentication,
passwords in comments and debug configurations that output log files.

1.1.3 Helsenorge

Helsenorge is a web portal for health services in Norway. It is a public service run
by the Norwegian Directorate of eHealth (NDE), which is a subordinate institution of
the Norwegian Ministry of Health and Care Services. Helsenorge governs a patient’s
kjernejournal (core journal) which is in strict compliance with Norwegian health and
privacy regulations [27]. The kjernejournal gathers health data from several sources
such as hospitals and national registers. Patients can view and add information like
medical history and next of kin.
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Figure 1.2: Kjernejournal gathers health information from several sources

The kjernejournal functions as personal cloud storage that is independent of any
health care provider, and enables medical workers across different organizations to
quickly access patient data that is not stored in their EHR. The portal also provides
general health advice and information about patients’ rights.

1.1.4 Full Flow

Norwegian EHRs do not currently support integration of patient gathered data, and
while EHR suppliers are working on it [26], most of them lack semantic interoperability.
In order to remedy this situation, the Norwegian Centre for E-Health Research initiated
the project ”FullFlow of Health Data Between Patients and Health Care Systems”, or
FullFlow for short. Partners include universities such as UiT The Arctic University of
Norway and Aalborg University as well as EHR providers such as Infodoc and Dips.

The goal of the project is to increase the knowledge of how secure technological so-
lutions can contribute to better communication between patients and health services.
FullFlow is investigating the medical and financial impacts of full flow between patients,
primary health care EHRs and secondary health care EHRs [7].

6



Figure 1.3: Simplified data flow.

Figure 1.3 illustrates a simplified data flow that is part of FullFlow’s planned archi-
tecture. To gather health data, the patient uses a personal health device (PHD), such
as a glucose meter that measures the concentration of glucose in the blood. The data is
collected in application hosting devices (AHD) such as smartphones, tablets, or laptops.
The AHDs have an application that sends patient data to Helsenorge.

FullFlow pulls data from Helsenorge and processes it, creating visual representations
of health data that highlight important information, as seen in Figure 1.4. Medical
workers can then request to access the data from their EHR.

Figure 1.4: Visual report of glucose data
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Before a medical worker can access the data, the patient must grant permission by
logging into Helsenorge with ID-Porten, which is used for authentication against public
services in Norway.

FullFlow is using diabetes as a use case and cooperates with doctors and diabetes pa-
tients. The patients use Diabetes Diary, a proprietary Android application that collects
self-gathered health data. Diabetes Share Live is used to share the data with clinicians.

1.2 Problem Description

There is clearly a need for a way of sharing patient gathered health data with clinicians.
The FullFlow project already has the applications Diabetes Diary and Diabetes Share
Live, which can do this, but they are not secure. In addition, they are not interoperable
with clinical systems due to proprietary data models. Also, because they are Android
only, patients with iOS devices are missing out.

Therefore, we have addressed these issues by developing a cross-platform mobile
application with focus on security. The application will support FullFlow by sharing
self-collected health data from diabetes patients. In order to make it interoperable
with health care systems, we use Fast Healthcare Interoperability Resources (FHIR),
a standard format for sharing health data. We also conform to Norwegian health and
privacy regulations.

Preserving the confidentiality and integrity of health data is a priority, but the appli-
cation should also provide good user experience. Even if patients know that the app can
benefit their health, they are less likely to use it if they find it inefficient or unintuitive.
By focusing on usability in addition to privacy, the app secures not only patients’ data,
but their health as well.

1.3 Research questions

• Main question: Which technologies are suited for the development of a secure,
cross-platform mobile application for managing and sharing health data?

R1: How can the application preserve the confidentiality and integrity of health
data?

R2: How can one integrate this app into the Norwegian healthcare infrastructure?

R3: How can one ensure usability?

The three research questions are all related to the main question. To answer these
questions, we will review different technologies in order to assess their suitability. In
addition to supporting the functional requirements captured by various scenarios, the
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technologies should secure the application (R1) and facilitate integration with other
systems (R2) without discouraging patients from using the app (R3).

1.4 Thesis Outline

The Introduction provides context by introducing important concepts and systems. It
also presents the problem description and research questions. Theoretical Background
starts off by giving an overview of related work. Then, the methods used to gather re-
sults and answer the research questions are discussed. This will allow the one to evaluate
the validity and reliability of the work that is presented in the following chapters. In
Technologies we describe, compare, and evaluate technologies used in the application.
This will give the reader some insight into why certain technologies are suitable for the
application. In Design and Implementation, we explain how the application solves prob-
lems introduced in the first chapter. The high-level architecture, flow of the application,
and individual components are also described. In Analysis and Assessment, we evalu-
ate the application in line with the methodology described in the second chapter. The
Conclusion sums up the thesis and relates the analysis and assessment to the research
questions.
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Chapter 2

Theorethical Background

This chapter begins with a summary of related work that describes other attempts to
solve the problem of sharing and integrating self-collected health data. The methodology
section will then explain why certain methods have been used to gather and analyze
results.

2.1 Related Work

According to Kumar et al. [80], there are not many who have successfully integrated
patient gathered glucose data with EHRs, and the existing solutions require custom
interfaces, which limits replication. Their paper concludes that it is possible to integrate
patient gathered data with EHRs by using existing technologies.

A continuous glucose monitor from Dexcom gathers data and sends it to a smart-
phone application developed by the same company. An application that directly accesses
the database used by an EHR is also used on the mobile device. Both of these applica-
tions are compatible with Apple’s HealthKit, which enables health data interoperability.
The only new software developed was web-based visualization integrated into the EHR.

The authors found that the solution ”enabled secure communication, timely access
to information, and enhanced interpretation of large volumes of patient device data”. It
also resulted in better health outcomes for several patients as insulin doses were corrected
after analyzing health data.

A drawback of this solution is that the application that accesses the EHR database
is provided by that specific EHR. Because of this coupling, if one wants to share patient
data with different EHRs, the patient would need several such applications. Another
drawback is that the solution can only be used with iPhones, as HealthKit is not avail-
able for other smartphones.
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The Mobiguide project aims to develop a decision-support system that can be used
by patients through their smartphone [94]. The patients wear sensors that monitor and
transmit data to the system so that it can provide recommendations regarding actions
that should be taken. These recommendations are shared with medical workers.

The system integrates patient gathered data with a personal health record (PHR),
and EHR. However, rather than sending patient data to EHRs so that medical workers
can access it, data is sent from EHRs to the PHR so that the data can be used for
making recommendations.

A major challenge was interoperability. Mobiguide used openEHR, which aims to
provide universal interoperability between all forms of electronic health data. It was
found that ”the use of post-coordinated terms was necessary in order to capture detailed
semantics of concepts used (e.g., after lunch (postprandial) blood glucose measurement)
and in some cases, certain semantics could not be provided even by post-coordination”.
However, it seems like this was only an issue when dealing with data not usually found
in EHRs.

Infodoc Plenario is an EHR that can be customized to fit the needs of general prac-
titioners, health clinics, and specialists like eye doctors and dermatologists [49]. It relies
on an on-site server, but this is being phased out as modules are replaced by cloud
services.

Infodoc is a partner in the FullFlow project, and they have worked on integrating
FullFlow in Infodoc Plenario with the help of a master student [90]. A message queue
which is planned to come from Helsenorge is used to retrieve self-collected health data.
Because the data comes in the form of HTML files, the open source browser Chromium
is embedded in Infodoc Plenario and used to present the patient data.

2.2 Methodology

This thesis is a case study that investigates how one can develop a secure cross-platform
mobile application that shares self-collected health data that will be integrated with
EHRs. By building a prototype, we have gathered quantitative data from both the de-
velopment process and testing of the application, which has given a better understanding
of how such an application should be developed (RQ1, RQ2). Quantitative data consists
of results from performance tests, which answer RQ3.

Scenarios that capture the core requirements of the application are used for sev-
eral purposes. Overall, they serve as a focal point and provide structure to both the
thesis itself and the work it is based on. This unifies the development and analysis of
the application. The scenarios help us identify important elements and make the argu-
ments of the thesis more coherent. The result is a thesis in which background, design,
implementation, analysis, and assessment all complement each other.
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2.2.1 Functional Requirements

The requirements of the application were defined in cooperation with representatives
from the Norwegian Centre for E-Health Research, who is overseeing the FullFlow
project. It was decided that the application should have two main functional require-
ments. 1) collect patient data. 2) send patient data to a server. As the requirements
became more understood, they grew more fine-grained:

1. Collect patient data

2. Persist patient data

3. Authenticate patient

4. Share patient data

Because FullFlow is focusing on health data from diabetes patients at the moment,
the mobile application must be able to handle this type of data. Specifically, the app
handles blood glucose measurements in the FHIR format.

The collection of patient gathered health data was deemed out of scope because of
time constraints. The rest of the requirements were used as scenarios.

Situation

A patient has health data collected from a PHD such as a glucometer.
The patient is able to import the data into the application, either
automatically by integrating the app and PHD, or by entering it
manually.

Actors Patient

Goals

The patient wants to have access to his health data at all times, even
when offline. He also wants to minimize the risk of losing data that
has not yet been shared with the cloud. Therefore, the patient wants
the application to persist his health data after importing it. This
must be done securely.

Events
1. A patient imports health data.
2. The app stores encrypted health data.

Table 2.1: Persisting patient data scenario (S1)
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Situation

When the Helsenorge server receives patient data from the app, it
must store it in the correct kjernejournal. The data itself does not
contain enough information for Helsenorge to determine the identity
of the patient who sent it.

Actors Patient

Goals
The server has to find out which patient the data belongs to, and
verify that it was the patient in question who sent the data.

Events

1. Before data is shared, the app prompts authentication.
2. The patient enters credentials.
3. The app receives a patient identifier.
4. The app sends the identifier to the Helsenorge server.
5. The Helsenorge server verifies the authenticity of the identifier and
uses it to find out which kjernejournal to store the patient data in.

Table 2.2: Authentication scenario (S2)

Situation
A patient has health data on the app and wants to store it in the
cloud and share it with clinicians.

Actors Patient

Goals The patient uploads data securely to Helsenorge

Events

1. The app retrieves stored patient data that will be shared.
2. The patient authenticates.
3. The app encrypts data.
4. The app sends the patient data to Helsenorge.

Table 2.3: Sending patient data scenario (S3)

The scenarios assisted development in several ways. First off, they described the
functionalities clearly, so that all stakeholders were on the same page. Further, they
served as subjects of discussion, which aided the discovery of more detailed require-
ments, and helped us validate our understanding of the domain when in discussion with
representatives from the FullFlow project. In addition, they assisted in the development
of the architecture, as it was constructed by figuring out which components would be
needed to support the scenarios. By splitting the high-level requirements of the appli-
cation into distinct scenarios, we were able to build the app part by part. After each
component had been developed, we validated its design by assessing whether or not it
fulfilled the goals of the corresponding scenario.

An agile development process was used to develop the app. First, a high-level ar-
chitecture containing key components and data flow was sketched. Then, the main
technologies, the cross-platform framework, and the database were chosen to fit the
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architecture and requirements of the application. Each core component, such as per-
sistence, encryption, and authentication was then developed one by one with its own
development cycle consisting of analysis, design, implementation, and testing.

2.2.2 Security

In addition to the functional requirements, a key aspect of the application is security.
One can not be certain that a non-trivial system is completely secure, as one would have
to imagine and account for an infinite amount of possibilities for compromising it. It is,
however, possible to gain confidence by means of thorough testing and analysis. There
are several approaches that can be used.

Threat modeling is a structured approach that starts off by identifying threats. The
threats are then categorized and prioritized before countermeasures are determined. This
approach involves looking at the system from the point of view of an attacker as one
identifies entry points that can be used to gain access to assets. By doing so, one can
uncover architectural weaknesses such as missing authentication in parts of the system
accessible to unauthorized users. The threats and attackers described are based on a
threat model for mHealth apps [79].

Threats:

T1. Unauthorized learning of health data: Someone gets unauthorized access to health-
related data.

T2. Tampering with health data: Attacker modifies data that is stored or transmitted.

T3. Reporting invalid health data: App reports wrong information

Together, the three points cover threats to confidentiality (T1) and integrity (T2), and
by extension, privacy (T1) and safety (T2, T3). We will assume that T2 leads to T3.
T3 by itself can be influenced by bugs in the app or patients who do not want to report
their actual health data. This is out of scope for the thesis, so T3 will only be considered
in relation to T2.

Attackers :

A1. Eavesdropper: Captures unprotected network traffic.

A2. Active attacker on the network: Deletes, modifies and redirects data sent over
networks. Also attempts to authenticate by brute force.

A3. Man in the middle: Impersonates other actors on the network by taking advantage
of improper SSL implementations. The attacker will then be able to read data
encrypted with HTTPS in cleartext
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A4. Malware developer: Injects malware into the mobile device and uses it to gain
access to data from other apps and send it over the internet.

A5. Third parties: If a third party cloud service is used to store health data, it could
be exposed.

A6. Attacker with physical access to smartphone: Can extract unprotected data stored
on the mobile device.

A7. The user: Can unknowingly put his own health data at risk. The app can be used
in ways the developer did not foresee. The user could follow bad practices such
as using short common passwords. Powerful, but potentially dangerous features
available for advanced users can be misused without the user being aware of the
consequences.

The following attackers are not as relevant as the others, and will not be addressed:

1. App developer: May make mistakes that leak information or include malicious
code that violates the user’s privacy

2. App show owners: Users may not want others to know that they are using a health
app. App show owners could potentially expose users through public app reviews.

While mistakes done by the app developer is a concern, this is something that will
be addressed implicitly by testing the application. It does not need to be referenced like
the other attackers. Dealing with app show owners is outside the scope of this thesis.

The list of threats and attackers have been used to justify design choices throughout
the thesis. The threat model is also used in conjunction with the scenarios in order
create and classify test cases for penetration testing, which involves taking the role of an
attacker, and trying out different attacks on a running system. This gives an overview
of how well the app deals with different issues and makes it clear that potential threats
to the scenarios have been considered.

2.2.3 Performance

Performance testing has been used for assessing the user experience of the application.
Research suggests that it is important to gather quantitative data when measuring
the quality of experience [60]. User satisfaction can be assessed by recording it for
known levels of performance and comparing these levels to the performance of a concrete
application.

There are several things that can be measured when testing the performance of a
mobile application. Execution time, memory usage and battery usage are parameters
that often give useful values for performance assessment [64].
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All of these parameters are relevant, but we have focused on execution time. Com-
pared to the other factors, this will give a higher degree of validity because it directly
impacts response time. This is an aspect of performance for which research has given
concrete numbers that we can use in order to measure quality the of experience [86].
Based on this, we can set a response time limits for actions taken by a user, and find
out how much data the application can handle before reaching them. The results of the
performance tests can, therefore, be used to determine how often patient data should
be sent from the application for the user experience to be satisfactory. If the frequency
is high enough, the inconvenience of having to authenticate too often may outweigh
patients’ perceived health benefits.

The three scenarios that capture the core functionality of the app rely primarily on
database operations, cryptography, and authentication, so these tasks are performed
often and will have the most impact on the performance of the application.

The performance of relevant tasks was tested by isolating functions like database
insertion and encryption, and measuring their run times multiple times with different
amounts of blood glucose measurements in the FHIR format. Real devices were used,
and all other applications were closed during testing. Functions were executed with
amounts of health data varying from one day to one week’s worth of blood glucose
measurements. In order to estimate the amount of health data collected in a day, an
expert at the Norwegian Centre of E-Health Research was consulted. Real health data
collected from diabetes patients involved in the FullFlow project was used.
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Chapter 3

Technologies

This chapter describes the technologies that have been used for developing the app
as well as the motivation for using them. The technologies support the requirements
specified in previous chapters. Together, they enable cross-platform development with
authentication, as well as secure data storage and transmission of data in a standardized
format. A selection of databases for S1 are compared and evaluated. The authentica-
tion technologies OIDC, ID-Porten, and IdentityServer4 support S2. The encryption
standard OpenPGP is used in S3. Finally, we describe different cross-platform frame-
works that can potentially support all three scenarios and choose a suitable one. Basic
concepts related to the technologies, such as symmetric/asymmetric cryptography and
authentication schemes are also explained.

3.1 OpenID Connect

OpenID Connect (OIDC) is an authentication and authorization protocol [30]. We use it
because it is compatible with ID-Porten, which will be used for authentication (S2). An
alternative to OIDC is Security Assertion Markup Language (SAML), which is an XML
oriented framework for exchanging authentication and authorization information [31].
SAML is an older technology specifically designed for web browsers, and it has limited
support for mobile devices [87]. In contrast, OIDC was developed after smartphones
had become prevalent, and it is designed to work with mobile devices.

There are four parties in OIDC:

1. End User (U), a human participant who wishes to authenticate.

2. User Agent (UA), typically a web browser used by the end user to enter and
transmit credentials to the OP.

3. OpenID Connect Provider (OP), a server capable of authenticating the end user.
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4. Relaying Party (RP), a client application that requires authentication from the
end user.

Figure 3.1: OpenID Connect Protocol Overview [81]

In our case, the mobile application (RP) needs the patient (U) to authenticate with
ID-Porten (OP) using a web browser (UA).

OIDC specifies several ”authentication flows”, but they share the same main steps.
The RP sends a request to the OP (1). The end user then authenticates via the user
agent (2), and the RP is given an access token by the OP (3). With the access token,
the RP can request and receive information about the authenticated user (4, 5).

3.2 ID-Porten

ID-porten is an authentication solution operated by the Agency for Public Management
and eGovernment (Difi). It used for authentication with public services such as the
Norwegian Tax Administration and Helsenorge. ID-Porten allows users to log in with
two-factor authentication on mobile devices.

There are other alternatives for authentication, but the FullFlow architecture spec-
ifies that patients have to authenticate with ID-Porten. Therefore, our application has
to support it.

ID-Porten is useful for several reasons. It is user-friendly because most Norwegians
already have an electronic ID, which is essentially a user account for ID-Porten. A
consequence of this is that patients will not have to create new user accounts. This
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will cause them to suffer less from password fatigue, which can cause users to forget
passwords and resort to reusing them as a coping mechanism (A7) [56].

Users in our application can be mapped to patients in Helsenorge’s system by looking
at the electronic ID because we both use ID-Porten as our OIDC-Provider. If this had not
been the case, the patient would have to enter his social security number or something
equivalent in order to be identified as a Norwegian citizen. This would make the system
more vulnerable to identity theft, as Helsenorge would have to trust that the user entered
his own social security number. Lastly, because ID-Porten is used for important services
such as banking, it has high requirements for security and is thoroughly tested.

ID-Porten supports SAML and OIDC. For mobile applications, the authorization
code flow is used with Proof Key of Code Exchange (PKCE).

Figure 3.2: Code authorization flow with PKCE

In this scheme, the application generates a code verifier, and hashes it, creating a
code challenge which is sent with an authorization code request. When requesting a
token, the code verifier is sent so that the OpenID provider can hash it and verify that
the token request came from the same client that sent the authorization code request.
This prevents other applications on the mobile device from stealing tokens because only
the app that sent the initial request has the code verifier.
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3.3 IdentityServer4

IdentityServer4 is an open source OpenID Connect and OAuth 2.0 framework for ASP.NET
Core 2. It is used as a stand-in for ID-Porten. Integration with ID-Porten requires rela-
tively extensive planning in cooperation with Difi, and they did not want to do this for
just a prototype. Because ID-Porten and IdentityServer4 both use the OIDC protocol
one only has to do a few minor changes on the client in order to integrate with ID-Porten
when that time comes.

There are many OIDC implementations [28]. IdentityServer4 was used for an-
other part of the FullFlow project with success [90]. It also allowed development with
ASP.NET Core and deployment on Microsoft Azure, which was helpful for testing be-
cause it automatically set up HTTPS with a proper certificate. If we had used another
OIDC implementation, we would have to get a signed certificate from a certificate au-
thority. This requires ownership of a registered domain, which we did not have.

3.4 FHIR

Fast Healthcare Interoperability Resources (FHIR) is a standard for exchange of health-
care information. It is based on ”Resources”, which are representations of healthcare
entities such as patients, measurements, and appointments. Resources can be repre-
sented in JavaScript Object Notation (JSON) or Extensible Markup Language (XML).

FHIR’s intended scope is broad. It’s meant to be used globally in many different
architectures and scenarios. Because of this, it is infeasible to explicitly include every
thinkable property for each resource in the specification, so FHIR supports extensibility.
Extensions are optional properties of resources. The way they are structured has an
impact on how FHIR data is stored in a database.

FHIR is recommended by The Norwegian Directorate of eHealth [29]. The standard
is used in FullFlow, so the app must also use it in order to be compatible with the
FullFlow architecture.

3.5 OpenPGP

In order to defend against man in the middle attackers (A3), we use end-to-end encryp-
tion. OpenPGP is a non-proprietary encryption standard commonly used for emails
[51]. It based on the Pretty Good Privacy (PGP) software. OpenPGP provides authen-
tication, confidentiality, and integrity for messages with the help of digital signatures
and encryption [24]. The standard combines two forms of cryptography.

• Symmetric cryptography: A shared key is used for both encryption and decryption.
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• Asymmetric cryptography: Every participant has a key pair consisting of a public
key and a private key. A message encrypted with the private key can only be
decrypted with the public key. Messages encrypted with the public key can only
be decrypted with the private key. As the names suggest, private keys are kept
secret, while public keys are shared.

If Alice wants to send a message to Bob that only he can read, she can encrypt it
with Bob’s public key. Because only Bob has his private key, no one else can decrypt the
message. Symmetric encryption is more efficient than asymmetric encryption, so Alice
will actually encrypt the message with a symmetric key. The symmetric key is normally
much smaller than the message and will be encrypted with Alice’s private key. Both the
encrypted message and the symmetric key is sent to Bob. He can then use Alice’s public
key to decrypt the symmetric key, which in turn will be used to decrypt the message.

Figure 3.3: PGP encryption [52]
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If Bob wants to make sure that a message is sent from Alice, she can sign it by
hashing and encrypting it with her private key. She can then attach the signature to
the message and send it. Bob can then decrypt the signature with Alice’s public key
and compare it to the hash of the message. If an attacker modifies the message, the two
hashes will not match. An attacker will also not be able to forge a signature without
Alice’s private key.

3.6 Databases

A database is needed for persisting data securely (S1). This section starts with a de-
scription of requirements for the database, which will ensure that it is secure, compliant
with Norwegian regulations, and suitable for storing health data. Different databases
are then compared, and one of them is selected.

3.6.1 Requirements

1. Compatible with mobile applications

2. Document store

3. Local

4. Supports encryption

FHIR is a specification that has a lot of optional fields, which is something that needs
to be taken into consideration when choosing a database. The Observation resource, for
example, can have 21 fields, but only two of them are required [3]. The FHIR specifica-
tion also supports extensions, which allows anyone to extend FHIR with new resources
[2]. We essentially have objects of the same class with varying and unpredictable prop-
erties. In order to solve this in a relational database, one would have to use the entity
property value (EAV) model, which is an anti-pattern than can lower performance [77].

The solution is to use document stores, a class of non-relational databases (NoSQL)
that store data as documents encoded in JSON, XML, or BSON (Binary JSON) [95].
Encoding documents in JSON is convenient because it is one of the supported formats
of FHIR. A document is comparable to a row in a relational database where the number
of columns can vary. For example, two documents representing observations could be:

22



Figure 3.4: Observation example

Figure 3.5: Observation example with an extra field

The first observation contains only ”resourceType” and the two required ”status”
and ”code” fields, while the second also includes the optional ”issued” field. The first
observation would have a null value for the ”issued” field in a relational database, but in
a document database, the ”column” does not need to be present if there is no value for it
because the database is schema-less. There is no rule saying that you need an ”issued”
column, or conversely, that you cannot have one. Without a schema that constrains
what can be stored, one can simply add any JSON object to the database. Conse-
quently, document databases are useful for storing irregular data that would require a
lot of null values in a relational database [85] [88].
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Flexibility and scalability are the two biggest reasons people have started using
NoSQL databases in favor of the traditional RDBMS [85]. Relational databases scale
vertically by adding more processors, memory, and storage to a single server where the
database is located. NoSQL databases are typically cloud-based and scale horizontally
by adding more servers.

Because of this, we have to choose and use NoSQL databases carefully. There are
strict Norwegian regulations regarding the storage of health data outside of the country
[47]. If the database is cloud-based, one should make sure that the data does not cross
any borders. The safest option is to go for a database that only stores data locally on
the mobile device. This will protect against A5. In addition, it will enable one to know
exactly where the data is located at all times, and how it is secured.

The database also has to support encryption in order to protect its contents from
A4 and A6.

3.6.2 Comparison

There are many non-relational databases other than the ones presented here. Examples
are BerkeleyDB, Realm, and SQLite. However, this discussion is limited to document
stores for mobile applications. PouchDB has a plugin for encryption, but its depen-
dencies are only available in a browser/Node environment, so it is not compatible with
certain cross-platform mobile frameworks. MongoDB Mobile does not support encryp-
tion out of the box, but requires you to implement it yourself. Amazon DynamoDB and
Microsoft Azure Cosmos DB are cloud-based only.

Database Mobile Document store Local Encrypted

Couchbase Lite 3 3 3 3

PouchDB 3 3 3 3/ 71

MongoDB Mobile 3 3 3 7

Amazon DynamoDB 3 3 7 3

Microsoft Azure Cosmos DB 3 3 7 3

Table 3.1: Database comparison

Couchbase Lite was chosen because it is the only database that fulfills all the re-
quirements on React Native, the cross-platform mobile framework that was selected for
the application.

1PouchDB’s encryption is only compatible with web and hybrid applications
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3.7 Cross platform frameworks

It is desirable to make the application available to as many patients as possible. A
cross-platform approach was chosen because it allows one to create an application for
both Android and iOS without developing on two completely separate code bases, thus
reducing development time.

This section compares a selection of cross-platform mobile frameworks. The scenarios
in chapter 2 were used for identifying important requirements that the framework had
to support. Ease of use and was also considered because it allows one to spend more
time on constructive work, which should lead to better results.

There are four types of cross-platform applications: web, hybrid, interpreted and
cross-compiled [53]. Web applications run on a browser and hybrid applications run in
a web container, limiting native capabilities and performance. This is not the case for
interpreted and cross-compiled apps, which are rendered with native components. These
two approaches are more suitable for standalone applications where data is processed
on the mobile device rather than a server. While we have a client-server architecture,
the app may have to process large amounts of data, so interpreted or cross-compiled
frameworks are preferred.

3.7.1 Requirements

Primary

• Good support for cryptography and FHIR: Cryptography is used in all scenarios.
FHIR is handled in S1 and S3.

• Access to native APIs or option to write native code: If native features or libraries
are not available for the framework out of the box, one should be able to develop
native modules to ensure that the app will fulfill all requirements.

Secondary

• Good performance: It is important that the framework facilitates good perfor-
mance, and by extension, satisfactory usability. However, performance can be
sacrificed if necessary in order to fulfill the primary requirements.

• Good documentation and/or support from the developer community: Saves time
and reduces the risk of not being able to figure out how to solve problems.

• Ease of development: Less time spent fighting the framework leads to more time
for constructive work.
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3.7.2 Comparison

This section compares the most popular cross-platform frameworks [48] [46]. All of them
support native code to some extent. Popular does not necessarily mean good, but it is
desirable to have a large developer community. This will lead to more results when
searching for solutions to issues, as more people will be discussing it. This reduces the
time spent troubleshooting and minimizes the risk of not being able to solve problems.

Xamarin

Xamarin is owned by Microsoft. It uses a shared C# codebase and has two versions.
The first is Xamarin Native which includes Xamarin iOS and Xamarin Android, where
business logic, data access, and network communication are shared, but UI is coded
natively in different codebases. The second is Xamarin Forms, where UI is also shared.
Xamarin supports iOS, Android and Windows Phone.

Pros:

• Access to .NET libraries

• A good amount of code reuse with Xamarin Forms.

• Xamarin Native is cross-compiled and Xamarin Forms is interpreted.

Cons:

• Difficult to integrate custom native Android and iOS components.

• Rated as the second most dreaded cross-platform mobile framework in Stack Over-
flow’s 2019 survey.

React Native

React Native is developed by Facebook. It uses the React JavaScript library for building
native user interfaces. React Native supports iOS and Android.

Pros:

• React Native was rated the second most loved cross-platform mobile framework in
Stack Overflow’s 2019 survey.

• Hot reloading

• Interpreted

26



Cons:

• Certain components are specific to each platform, so some code must be written
twice

• Can be difficult to get started with if you are unfamiliar with the React ecosystem

Ionic

Ionic uses Javascript, HTML, and CSS. It is wrapped in a web browser and uses plugins
to connect to native APIs. Ionic is best suited for applications that do not use a lot of
native features. Supports iOS, Android, Windows Phone and BlackBerry.

Pros:

• A good amount of code reuse

• Supports more than just Android, iOS and Windows Phone.

Cons:

• Hybrid.

• Lacking libraries for secure storage

3.7.3 Comparison

We have not tested all of these frameworks, so parts of this comparison are based on
the general impression gained by browsing a variety of blogs, official documentation,
and discussion sites. Because some of the information about factors such as ease of
development is based on anecdotal evidence, the comparison may not be completely
accurate.

Xamarin Forms Xamarin Native React Native Ionic

Crytography support ? ? ? ? ? ? ?? ?
FHIR support ? ? ? ? ? ? ?? ??
Support for relevant databases ? ? ? ? ? ? ? ??
Code reuse ? ? ? ?? ?? ? ? ?
Performance ?? ? ? ? ? ? ? ?
Ease of development ? ? ? ? ? ? ? ?
Supported Platforms ? ? ? ? ? ? ?? ? ? ?

Both Xamarin and Ionic have clear weaknesses. Xamarin is difficult to work with,
and Ionic has bad performance as well as poor support for cryptographic libraries. A
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good reason to select Ionic would be that it is fully compatible with PouchDB but the
weaknesses of the framework are too great to overlook. The general consensus seems
to be that Xamarin is buggy and difficult to work with. The opposite is true for React
Native. In the end, React Native was chosen for its ease of development, which keeps
the development time short.

Initially, it was thought that React Native had equally good support for cryptographic
libraries as Xamarin. When we found out that the cross-platform OpenPGP libraries
for React Native were lacking, we were so far into development that it was too late to
reconsider frameworks. A drawback of using React Native with Couchbase Lite is that
JavaScript is not a supported language for the database, so it has to be implemented in
Swift for iOS and Java for Android. Xamarin has a C# library for Couchbase Lite, which
better facilitates cross-platform development. The application initially used Realm as
the database, so this was not considered when choosing the framework. It was later
discovered that Realm was unsuitable as the requirements of the application became
better understood. It is possible that Xamarin would have been chosen if this had been
known beforehand.
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Chapter 4

Design and Implementation

This chapter presents the design and implementation of the application. The main
components are described first. Libraries used by the components are named, and alter-
natives are discussed. This is followed by an overview of 12 steps, starting with patients
collecting data and ending with clinicians accessing it. Then a detailed sequence diagram
reveals more of the implementation. References to scenarios, threats, and attackers are
used to explain the reasoning behind the design.

4.1 Architecture

The architecture contains three main components: 1) a cross-platform mobile hosting
app, used for collecting and centralizing self-collected health data from multiple PHDs
and AHDs, 2) an OIDC provider (ID-Porten) for authenticating patients and 3) a server
application for analyzing and displaying the data.

Patients interact with the application by directly entering data or through external
PHDs or third-party apps, such as Diabetes Diary. In addition, patients use the app to
authenticate with ID-Porten. On the other side, clinicians interact with the Helsenorge
server in order to consult the data collected by the patients
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Figure 4.1: Architecture

The app contains multiple modules divided into two categories: cross-platform and
native. The cross-platform module contains the code shared between all platforms while
the native module consists of the custom implementation for each different platform.

The native module contains two sub-modules: Persistence and Encrypter. Persis-
tence focuses on securely storing and retrieving FHIR artifacts representing medical data
in the application (S1). We rely on Couchbase Lite for these actions. CouchBase Lite’s
encryption deals with attackers A4 and A6 who threaten T1 and T2. There is no cross-
platform Couchbase Lite library for React Native, so it was implemented natively in two
separate codebases. One for Android, and one for iOS. The password of the database
is encrypted in Keychain for iOS and Keystore for Android using react-native-keychain
[39]. There are other options such as rn-secure-storage[41], but react-native-keychain
has options for biometry, which could be useful in the future. react-native-securerandom
[40] is used for generating the password.

The Encrypter is an essential component for S3 that encrypts patient data using
OpenPGP, thereby preserving confidentiality and integrity by dealing with A1, A2, and
A3. A practical solution would be to use an existing OpenPGP library for React-Native.
React-Native-OpenPGP [25] was tested, but it has a bug which makes it impossible to use
a debugger on a React-Native application. It is also much slower than native encryption,
as one can see in the performance tests in chapter 5. We opted to implement encryption
natively because of this.

In Android, OpenPGP is implemented with Spongy Castle [17], a repackage of
Bouncy Castle [13] for Android. The alternative to Bouncy Castle is OpenKeychain
API [15], which works by connecting to a remote service. This is not ideal because
it requires significant changes to our architecture. In iOS, encryption is implemented
with ObjectivePGP, which has undergone a complete security audit from Cure53 [14].
Swift-PGP was considered, but it does not support encryption yet [18].
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PGP implementations may support different algorithms. We use RSA with 2048-bit
keys for asymmetric encryption, AES with 256-bit keys for symmetric encryption with
CFB mode, and SHA-1 for making Modification Detection Codes (MDC). ZLIB is used
for compression on iOS, while ZIP is utilized on Android.

The cross-platform module contains 3 sub-modules: receiver, sender, and authenti-
cator. The purpose of the Receiver is to import health data into the app.

The Sender is a central component that is responsible for all the events of S3. It
retrieves patient data from the database and utilizes the security features provided by
the Authenticator and Encrypter so that it can send data securely.

The Authenticator which uses the OIDC protocol to authenticate users takes care
of S2, which is needed for stopping A2 from threatening T2. It communicates with
ID-Porten, which allows the app and the Helsenorge server to verify the identity of a
user.

The Authenticator uses AppAuth, an SDK that implements the authorization code
flow with PKCE. Appauth is implemented natively, but we consider it cross-platform
because we do not have to write the native code ourselves in order to use it. This is
because we use a React-Native bridge, which maps cross-platform code to native code
that already exists.

Other alternatives are react-native-oidc-client [20] and react-native-oidc [19]. react-
native-oidc-client ’s documentation does not specify how to configure the library for iOS,
and it does not mention PKCE support. react-native-oidc lacks options that are useful
for development such as allowing/disallowing insecure HTTP requests and specifying
token and authorization endpoint separately.

The data sharing process contains 12 steps. The first steps involve S1 and start with
data collection. Our app provides two different ways for collecting the data: either by
1) manually registering the data using the application as an AHD directly, or by 2)
extracting/receiving data from third-party AHDs or apps. In Figure 4.1, we illustrate
the second possibility by collecting the data via the Diabetes Diary app (1-2). In the
third step, the collected data is stored in an encrypted database (3).

The next steps occur after sharing of patient data has been initiated, and cover S2
and parts of S3. First, the Sender module retrieves data from the encrypted database
(4). Then the patient must authenticate (5). The app opens a browser and a login
page provided by ID-Porten appears (6). When the patient has entered his credentials,
ID-Porten sends an access token to the app, which can be presented to the Helsenorge
server as evidence that the data it receives originates from the authenticated patient(7).

The final steps describe the remaining events of S3. Before data is sent, it must
be encrypted. The sender uses the Encrypter module to encrypt the patient data and
access token with OpenPGP (8). The data is sent over HTTPS, but with OpenPGP’s
end to end encryption, only the Helsenorge server can decrypt it even if the security
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provided by HTTPS is compromised.
The Helsenorge server has a simple REST API with two endpoints. Our imple-

mentation runs on a Java EE server. This enabled us to reuse the OpenPGP Java
code written for Android. The first endpoint is used by the app to get the information
necessary to encrypt data, while the other is used to deliver it (9). When the server
receives data, it is first decrypted (10). Then, as part of S2, the Helsenorge server asks
ID-Porten to determine whether or not the app’s access token is valid (11). If it is the
data is analyzed, and medical workers can access it through an EHR (12). HTTPS is
used in all steps that make use of the internet in order to protect against A1, A2 and A3.

When persisted locally, patient data is vulnerable to attackers A4 and A6. Even
though there are security mechanisms in place to protect the application’s database, it
is more secure to send data directly to the Helsenorge server without storing it locally.
It is recommended to not store sensitive data locally [93]. More traditional client server
architectures have been proposed [69] where data is not stored locally, but retrieved from
the server when needed.

there are evidently more secure designs than the one we are proposing, but they can
come at the cost of convenience and loss of data. When data is only stored on a server,
issues will occur when an internet connection is not available. Even though the patient
owns the data according to Norwegian health regulations, he will not be able to access
it.

Sending patient data can also be hindered. Data can be buffered in memory, but it
will be lost if the application somehow closes. If health data contains critical information
such as dangerously high blood sugar levels, health personnel will not be made aware
of this through the FullFlow system. This can have serious consequences for a patient’s
health.

Gejibo [68] makes use of the Android Keystore to protect the database key as we do,
but it is also protected by a password. The use of a password with sufficient entropy
will strengthen security in cases where an advanced attacker attempts to bypass security
mechanisms by rooting, but this is inconvenient for the user, [63]. Protecting data with
a strong password is no guarantee either, as an attacker can obtain the password with a
key logger or social engineering. The patient must already authenticate with ID-Porten.
Adding another barrier will make the application cumbersome to use. Patients may not
want to use the app at all if the user experience is lacking. Thus, they will not benefit
from the full flow of health data between patients and healthcare systems.

Although it is cumbersome for users to enter a password, other solutions could be
considered in the future. With biometrics, one can simply scan the user’s fingerprint or
eye. Not all devices support biometry, but the number is rising [65], so this will become
more relevant in the future. It is also possible for the patient to authenticate with ID-
Porten and derive a key with a secret from the Helsenorge server. One has to make
tradeoffs between security and other requirements such as performance, availability, and
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usability. The most secure system is not necessarily the best one.

4.1.1 Detailed communication

Figure 4.2: Sending data to Helsenorge

Figure 4.2 shows communication between the app, patient, ID-Porten, and Helsenorge
when health data is sent successfully. The app needs two things in order to send data
to the Helsenorge server. An access token and a public key for encrypting an OpenPGP
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message. The patient starts by authenticating with ID-Porten, and the app receives an
access token. The app will then ask Helsenorge for a public key and a signature that
is used to verify the key. When this has been done, the access token and patient data
is encrypted with the public key so that only Helsenorge, who has the corresponding
private key, can decrypt the message. Helsenorge decrypts the message and asks ID-
Porten whether or not the access token is valid. Then, the access token is used to
identify the patient so that the data can be stored in the correct kjernejournal. The
flow is interrupted if the patient enters incorrect credentials, signature verification fails,
decryption fails, or if the access token is invalid.
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Chapter 5

Analysis and Assessment

This chapter begins by examining potential security threats. Issues with technologies
and libraries are also discussed. The second part of the chapter presents the results and
interpretations of the performance tests. Finally, we go over a number of scenario tests
that have been used in attempts to find vulnerabilities.

5.1 Encryption of data on the device

The first time the application is opened, a 64 byte array is generated by a cryptograph-
ically secure random number generator. The array is converted to a string and used as
the database password. As with all other secrets on the device, the key itself must also
be encrypted. One can use a password to generate a key, but this is inconvenient for
the user. Fortunately. Android and iOS provide encrypted storage, Keychain for iOS
and Keystore for Android, that uses a key derived from hardware [22][21]. The security
of the database, and by extension, Keychain and Keystore, is essential for S1 because it
protects the app against A4 and A6.

An attack that requires root privileges has been found on the Android Keystore,
but is limited to software-based implementations [97]. This can be an issue for some
users, as not all Android devices support hardware binding. Keystores that are backed
hardware-backed are not affected.

Cooijmans T. et al. [63] found that Keystore provides device binding, but not app
binding on Android devices with versions 4.1.2 (Jelly Bean) - 4.4.2 (KitKat). This means
that keys cannot be exported from the device, but they can be used by A4 or A6 attack-
ers with root access. The latest Android version is 9 (Pie) [36]. Android’s Keystore has
received updates on every version starting from version 6 (Marshmallow) up until the
latest version [37]. react-native-keychain only supports Keystore on devices with version
6 or higher. This amounts to 75% of all Android devices [38]. The vulnerabilities were
reported to Google, so one can assume that the issues in version 4 were fixed in version
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6, but further research should be done in order to confirm this.

The security of iOS’s Keychain depends on its configuration. There are four main
”accessibility values” which specify when the data in the Keychain can be accessed [4].
In order from most to least restrictive they are:

• AccessibleWhenPasscodeSet: The data in the Keychain can only be accessed when
the device is unlocked. Only available if a passcode is set on the device

• AccessibleWhenUnlocked: The data in the Keychain item can be accessed only
while the device is unlocked by the user

• AccessibleAfterFirstUnlock: The data in the keychain item cannot be accessed
after a restart until the device has been unlocked once by the user

• AccessibleAlways: The data in the Keychain item can always be accessed regardless
of whether the device is locked

The three last accessibility values have ”ThisDeviceOnly” counterparts, which pre-
vent items in the Keystore from migrating to a new device. This means that data in the
Keystore will be lost when restoring from a backup of a different device. [5]

A weakness that can compromise Keychain-protected data has been found in the
Keychain on iOS 6 and lower [74]. It requires the device to be jailbroken, and the
minimum supported iOS version that React Native supports is iOS 9 [6], but it is still
useful to look at the recommendations for protecting against the attack [73]. In order
to ensure that the iOS keychain is secure, two requirements must be met:

• The items must be protected with an accessibility value that requires the device
to be unlocked for items in the Keychain to be made accessible.

• A passcode that consists of at least 6 alphanumeric symbols is used

In practice, this means that AccessibleAlways should not be chosen as the accessi-
bility value. For maximum security, AccessibleWhenPasscodeSetThisDeviceOnly should
be chosen, but this in itself is not good enough to ensure that data in the Keystore is
protected if the device is jailbroken because the user may not use a sufficiently strong
passcode. Whether or not the device is protected by a passcode is up to the user, but
AccessibleWhenPasscodeSetThisDeviceOnly was chosen in order to protect against A7.
If a passcode is not used, the application should inform the user that this must be done in
order to secure his data. An option to set the accessibility value to AccessibleWhenUn-
lockedThisDeviceOnly may be considered if patients are willing to take the risk. Even
though AccessibleWhenPasscodeSetThisDeviceOnly is the default value, the Keystore
has been configured to use this accessibility value explicitly in case the default value
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changes at some point in the future

Although Couchbase Lite is a NoSQL database, it is built on top of SQLite. The
data is encrypted using SQLite Encryption Extension (SEE). The extension encrypts all
database content on disk.

When decrypting the database, it is first opened the same way an unencrypted
database would be, and one gets a handle, which can be used to query the database.
Before any queries can be made, a decryption function must be called with the handle
and encryption key as parameters.[9]

If our application has decrypted a database, and an attacker manages to establish a
connection to the same database, then the attacker’s database connection will obviously
not be the same as ours, so it will also have to be decrypted.

In React-Native, the database module is loaded as a singleton object [11], and a
database connection remains open until the application shuts down. The application
is sandboxed, so its files are not accessible by other applications without root access.
[10][12]

All metadata is encrypted [8]. This stops attacks that recover plaintext using the
information found in log files and diagnostic tables. [70]

Many databases run on a virtual machine, which makes them vulnerable to virtual
machine (VM) image leak attacks, which enable attackers to read in-memory data[70].
SQLite runs bytecode in a virtual machine [23], but as long as the device is not rooted,
the VM is protected by the application sandbox.

It is possible to use the Android Debug Bridge, a command line tool, to read data in
memory after it has been decrypted [54]. However, this requires USB debugging to be
enabled. This is disabled by default and intended to be used by developers only. Because
of this, the option to enable it is hidden, and normal users are unlikely to activate USB
debugging by accident.

5.2 PGP

PGP is an essential component of S3 that protects patient data against man in the middle
attackers (A3), who threaten confidentiality and integrity (T1, T2). The reason for this
is that SSL relies on a trusted third party, while our OpenPGP implementation does not.
When the app uses SSL, it depends on certificate authorities (CA) to verify the identity
of the servers it is communicating with. When two parties are establishing a secure
connection with SSL, they exchange certificates, which are public keys that have been
signed with the public key of a CA either directly, or through a chain of certifications
originating from a CA. Devices have preinstalled root certificates that identify CAs. If
an attacker manages to get the private key of a CA, he will be able to impersonate any
server that has its certificate signed by that CA. Therefore, we have to trust that the
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root certificates have been configured properly on the device. We also require the CAs
to keep their private keys secure. In addition, CAs must only sign public keys after
confirming the identity of the owner. This is a real threat, seeing as there have been
several incidents where man-in-the-middle attacks have been possible because a trusted
third party could not be trusted [58]

We are protected against these types of attacks because we have a fallback with
OpenPGP signatures and encryption. Even if an attacker manages to decrypt data sent
over HTTPS, they still need the private key required to decrypt the OpenPGP message
in order to obtain the patient data plaintext. If an attacker attempts to impersonate the
Helsenorge server and have the app encrypt OpenPGP messages that he can decrypt with
his own key, it will fail. This is because we have our own OpenPGP ”root certificates”
hardcoded in the app. We elaborate on this in the key verification subsection.

We stress that OpenPGP is only used in S3, not S2. This means that a man in
the middle attack on S2 could allow an A3 attacker to obtain an access token and send
incorrect health data to Helsenorge.

When encrypting with OpenPGP, data is split into 64 or 128-bit blocks. A cipher
like AES is used repeatedly to encryp the blocks. This can be done in several ways,
specified by a block cipher mode of operation. OpenPGP uses a variation of cipher
feedback (CFB) mode that can allow an attacker to determine the first 16 bits of any
block [84]. It exploits that OpenPGPs variation of CFB includes an integrity check that
can leak information.

The attacker targets a specific block by modifying a ciphertext with a two-byte value
D. The attacker sends the modified ciphertext to the person or server that can decrypt
it. If the recipient attempts to decrypt the message, and the value D is equal to the two
first bytes of the targeted block, the integrity check succeeds. The check fails otherwise.
If an attacker can determine whether or not the integrity check fails, he can do a brute
force attack by checking a maximum of 216 combinations of D until the integrity check
succeeds. If the attacker can figure out that the integrity check succeeds for a value D,
he knows that it is equal to the 16 first bits of the targeted block. This means that an
attacker can obtain up to 25% of the plaintext depending on the block size. That being
said, we use compression, and 25% of compressed plaintext does not necessarily contain
enough information for an attacker to determine the uncompressed plaintext. However,
there are things we can and should do to fend off the attack.

The key to doing this is to prevent the attacker from knowing whether or not the
integrity check has succeeded. Certain implementations of OpenPGP will print an error
indicating that the integrity check failed. If the attacker gains access to this error
message, the attack will work. In our case, the Helsenorge server will only send a
general error message if the encryption fails, so an attacker will not know whether or
not the integrity check failed based on the contents of the response.

However, if the integrity check fails, decryption is aborted, and the attacker will get
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a quicker response from the server. This makes timing attacks possible. The attacker
could keep sending ciphertexts to the server with different values for D until one of the
responses take much longer than the others and conclude that the D value for the late
response corresponds to the first 16 plaintext bits of the targeted block. Whether or
not this will work in real life depends how much the internet latency varies, and how
long a response from a successful integrity check takes in comparison to a failed one.
Regardless, the Helsenorge server can add artificial random latency that is large enough
to make the attack infeasible in order to protect against this attack.

SHA-1 is the hashing algorithm that is used in OpenPGP. It is not collision resistant,
but it is sufficient for modification detection codes. This is because the plaintext of the
message is hashed, not the ciphertext [24]. Therefore, an attacker has no way of verifying
that a collision has been found before sending a modified message. In 2017, a collision
was found on two PDF files in 261.1 operations [98]. An attacker would have to send a
tremendous amount of modified messages for one of them to get past MDC. This adds a
significant overhead, which makes an attack impractical. In our case, since we also en-
crypt the access token together with the patient data, the modified message would also
have to be decrypted such that it happens to contain a valid token, which is very unlikely.

5.2.1 Key verification

In order to encrypt data with OpenPGP, a public key is needed. Although the applica-
tion gets the encryption key from a trusted endpoint, an A3 attacker can send his own
key. Therefore, the application has hardcoded public keys that can be used for verifi-
cation. Every public key used for encryption of patient data must be signed with one
of the hardcoded keys. Because the verification keys are hardcoded, one cannot modify
them in an attempt to inject a key that verifies an attacker’s encryption key.

Of course, an A6 attacker can reverse engineer and modify the application in order
to insert his own public keys. This would enable a server controlled by the attacker
to decrypt patient data sent from the app. However, if he can do this, it easier for
the attacker to simply skip the key verification and send data unencrypted to himself.
Even if the attacker manages to do this, modifying the code of the app would require
a reinstall. This wipes the data stored in the app, so patient data stored prior to the
attack cannot be retrieved. For such an attack to work, the patient would have to store
data in the modified app.

In the future, it may be possible for patients to download health data backed up in
Helsenorge on a new device. This would require authentication, but an attacker could
trick the patient into doing this on a modified app. In this case, the attacker would
be able to retrieve health data stored prior to app modification. This attack could be
handled by giving the patient a warning, stating that he should only download data
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from the cloud after a fresh reinstall done from the app store. Of course, the warning
cannot come from the app, since the attacker could remove the code for it. The warning
has to be presented in the browser when the patient is authenticating. Different scopes
should also be used for authentication when sharing and downloading data. A scope
is an attribute of an access token that states which resources one is allowed to access
with the token. If different scopes are not used, an attacker could store the access token
retrieved when the patient authenticates before sending data, and then use that token
to download data without triggering the warning for the user.

Objective-PGP, the library used for OpenPGP encryption and verification on iOS
does not support embedded public key signatures. However, it is possible to sign and
verify arbitrary data using a detached signature.

Data with line breaks are not verified correctly by the library. Because valid OpenPGP
keys must have line breaks, they have to be pre-processed before signing. This should be
done in a way such that different systems and people in working in various environments
produce the same output given the same input. If pre-processing is not done in exactly
the same way before both signing and verification, the verification fails. One could edit
the key manually, but this is prone to errors. Hashing is an easy to use method that
Windows, Mac and Linux have built-in. One could argue that this makes signature
verification less secure because it introduces the possibility of collisions, but this is not
the case, as the data is hashed in the verification algorithm anyways [24]. Therefore,
keys are hashed with SHA-256 before they are signed.

5.3 OIDC

It is possible to retrieve a refresh token when authenticating with ID-Porten. The refresh
token can be used to get new access tokens without user interaction. This is convenient
for the patient, but makes the application less secure. One may question why the app
does not store a refresh token in the same manner as the database password in order
to secure it. The answer is that having a database is important enough to warrant
the increased security risk of storing a secret on the device. The use of refresh tokens,
however, is not vital for the application. In the event that an A6 attacker manages
to steal a phone and extract data from the Keychain/Keystore, where the database
password is located, only T1 is endangered. An A4 attacker could possibly threaten T2
by modifying data in the database before it is sent to Helsenorge. If we store refresh
tokens, an A6 attacker would also be able to violate T2 by getting an access token and
sending arbitrary data to Helsenorge on behalf of a victim. Therefore, the app will not
ask for a refresh token, and the patient must always authenticate manually when sending
data.
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5.4 Performance

Android tests have been done on an LG K10 (2017). iOS tests were done on iPhone 6,
except for the one which compares different methods of measuring time. This was done
on an emulator (iPhone 6) running on iMac 17,1 (Intel Core i5, 3.2 GHz, 4 cores). Tests
were done on a release build, as recommended in the React-Native documentation [16].

Some tests have a number of observations as a parameter. We assume that the app
will collect 288 observations per day, corresponding to one measurement every 5 minutes.

In order to determine how many times the operations should be run, the number of
iterations was increased until the difference in median run time between tests consistently
deviated by less than 5%. Example: In order to determine the number of iterations
needed for measuring native encryption accurately, 2016 observations were encrypted
200, 400, 800, and 1600 times. The median run times were 113, 116, 113, and 112
milliseconds respectively. 400 iterations are good enough, but 800 was chosen for good
measure.

performance.now() is the preferred method of measuring time in JavaScript, but it
is only available with a debugger attached, which slows down the app. One can use the
Date object, but it is not made for the purpose of measuring time accurately.

Encrypting with Date results in an increase of about 5ms for small values when com-
pared to performance.now(). Even though the difference between performance.now()
and date.getTime() increases for large values, using Date will give us a more accurate
result because it can be used with a release build, which drastically reduces runtime.
This can be seen by comparing the run times of Figure 5.1 and 5.2
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Figure 5.1: Median encryption run time, debugger attached
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This performance.now() vs date.getTime test was done on an emulator for iOS be-
cause we did not have both a Mac and an iPhone available at the same time. A Mac is
required in order to use the debugger.

Native encryption is significantly faster than JavaScript encryption. Native encryp-
tion run time grows at a rate of around 40 milliseconds for every 288 observations on
LGK10, while JavaScript encryption run time on the same device grows faster by a
factor of over 30.
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Figure 5.2: Median run time, native encryption
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Figure 5.4: Median decryption run time

Decryption run time starts at 354ms for a single observation and does not increase
until 200 observations. This is likely due to padding, which makes encrypted messages
with 200 or fewer observations the same size. We ran the test with a large number
of observations in order to illustrate that decryption run time grows much slower than
other operations such as encryption and database queries. The difference between 200
and 2400 observations is only 11ms.
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Figure 5.5: Median run time, retrieve observation internals (iPhone 6)
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Figure 5.6: Median run time, retrieve observation internals (LG K10)

The ”Retrieve observation internals” graph shows the cumulative run time of the
operations that are used when observations are retrieved from the database. The first
three steps happen in native code. First, a query is made on the database. The results
are then extracted from a set of maps, before they are converted to JSON strings. The
JSON string is then sent to the cross-platform ”world”, where it is parsed into a JSON
object. The run time of a step includes the run time of previous steps.

A Couchbase Lite query returns a ResultSet which contains a collection of Results.
When we make a query so that we get all the fields of a result without specifying them
explicitly, each Result is contained in a map. For each Result we have to extract the
actual result object from this map. This is the map step. As one can see on the graph,
the majority of the run time comes from this step. If we had known which fields we
wanted from each object stored in the database prior to making the query, this step
would not be needed, reducing run time by around 50%. Although CouchBase Lite can
be used to store arbitrary data, it is not very efficient.
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Figure 5.7: Median run time, retrieve observation for different argument types

Couchbase Lite queries return ResultSet objects, which cannot be sent directly to
React-Native. Table 5.1 shows Java and Swift types that can be returned from native
modules, and their corresponding JavaScript types.

JavaScript Java Swift

Bool Boolean BOOL, NSNumber
Number Integer, Double, Float NSInteger, Float, Double, CGFloat,NSNumber
String String NSString
Function Callback RCTResponseSenderBlock
Object ReadableMap NSDictionary
Array ReadableArray NSArray

Table 5.1: React native type conversion

In order to get a ResultSet that represents a collection of objects from Java to
JavaScript, one must first convert it to an array of maps and then either convert it to a
JSON String, or a ReadableArray. Without a performance test, it is not obvious which
method is best, but as one can see on the graph, the String approach is the better option
as it is more than twice as fast.

In iOS, an array of maps can be sent to React-Native directly. You do not have
to convert it to a ReadableArray. This may be the reason why the difference between
the two methods is smaller for iOS. This illustrates how typing mismatches between
cross-platform and native languages can impact performance.
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Figure 5.8: Median run time, insert observations

Insertion of observations into the database is the most time-consuming process. In-
terestingly, the insertion of 576 observations on iPhone 6 does not have the run time one
would expect based on the graph. We did not find an explanation for this, but it seems
like there is a certain point between 576 and 864 observations where the run time has a
sudden jump.

Process Parameters Min Max Avg Median

Encryption Native 1 day of observations 49 944 56 52
Encryption JavaScript 1 day of observations 1948 3187 2056 1985
Retrieve from database 1 day of observations 179 249 188 185
Signature verification one signature 10 940 11 11
Signature verification 10 signatures 22 47 24 23
Get data from Keystore 26 85 29 28
Set data in Keystore 29 89 35 33

Table 5.2: LG K10 run time (ms)
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Process Parameters Min Max Avg Median

Encryption Native 1 day of observations 18 136 21 20
Encryption JavaScript 1 day of observations 1218 1487 1261 1249
Retrieve from database 1 day of observations 47 180 51 50
Signature verification one signature 2 131 4 3
Signature verification 10 signatures 10 35 13 12
Get data from Keychain 4 11 5 5
Set data in Keychain 10 178 17 11

Table 5.3: iPhone 6 run time (ms)

Because the tests were only performed on two devices, which had different processing
power, we cannot conclude that iOS performs better than Android in general. However,
we make a generalization and let the LG K10 represent low range devices and have the
iPhone 6 represent mid-range devices. The LG K10 has a single-core score of 588 [35],
while the iPhone is sitting at 2271 [34] on the Geekbench 4 benchmarking software. The
highest scores on mobile devices are around 5000, and the lowest are at about 300 [33][32].

The growth of the run times we have measured are linear, so for a set of time limits
representing acceptable run times in terms of usability, we can estimate how rarely a
patient can import and send data while tolerating the run time of the tasks. Nah F.
suggests that web users are willing to wait 2 seconds for information retrieval [86]. Of
course, the app is not a web application, and we are sending information, not retrieving
it. However, Nah states that her findings are consistent with most literature pertaining
to non-internet related computer response times. At response times below 1 second,
users’ flow of thought is uninterrupted, and they feel that they are navigating freely
[89]. Once notices a delay, but will not feel that the wait is unduly.

Based on this, we have two numbers to work with. For tasks that have run times
that are dependent on the amount of health data processed, we will find the maximum
amount of data that the app can handle without breaking the 2-second limit. Other
tasks also have a 2-second limit, but a response time of less than 1 second is ideal. A
task begins when the user interacts with the app by pressing a button. The user will
then wait for a response which indicates that the task has ended and that he can interact
with the app again. The user will interact with the app three times in total.

1. Store data

2. Initiate data sharing

3. Log in

The first task starts when the patient initiates the storing of data and ends when
the data has been persisted in the database. The second task starts when the patient
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initiates data sharing and ends when the log-in page is presented. Finally, the third task
starts when the patient has entered his credentials and pressed the log-in button. The
app will then send data and wait for a response from Helsenorge, which will end the
task.

We calculate the sum of the run time of all the main processes that are involved in
S1, S2, and S3 separately in order to figure out the response time of the tasks. This will
give a better understanding of how much different processes within each task affect the
response time.

Insertion of 2 days’ worth of observations takes 2 seconds on LG K10 (2017). On
iPhone 6, insertion of 5 days of observations takes an equal amount of time.

We have not been able to get accurate results by attempting to measure the authen-
tication response time in S2. In order to get a good understanding of the authentication
run time, we would have to measure how long it takes to open the browser, enter cre-
dentials, and receive an access token. We are no able to measure the time it takes to
open the browser accurately, as we cannot determine programmatically at which time
the browser opens because it is done outside of the application context. A large portion
of the time it takes to authenticate is spent by the patient as he manually enters cre-
dentials. The time taken by this step differs from user to user. In addition, the layout
of the login page and method of authentication depends on the authentication provider.
Like the first step, the last one is difficult to measure accurately. This is because it is
initiated by the browser, so we cannot determine the start time. We did attempt to
measure the response times with a stopwatch, which gave the following results.

Start event End event Response time (seconds)

Authentication initiated Login page opened < 1
Log in Access token received < 1

Table 5.4: Authentication response times

Each measurement was done 10 times, and the response time was less than one sec-
ond for all of them.

Retrieval of observations from the database can be done in the background at ap-
plication startup, or data can be cached when imported. We can therefore exclude this
when calculating the response time the user experiences when sending data. In the
worst case, the user starts sending data immediately after opening the application. This
should be okay because the retrieval of observations from the database will happen while
the user is authenticating. As long as retrieval from the database does not take longer
than authentication, it should be good enough.
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Table 5.5 lists run times of the operations in task 3 chronologically. The equations are
calculated with simple linear regression using the least squares method. For a number of
observations x, one can estimate the response time of a given operation. The first part of
task 3, ”Get access token”, starts when the user presses the login button in the browser.
It ends when the access token is received, and the user is taken back to the application.
As discussed earlier, we do not have accurate measurements for this, but it takes less
than one second. Due to this uncertainty, it is hard to say what the exact response time
of task 3 is. Therefore, we use two equations for calculating the total response time in
order to get a range of possible values for x. 0.16346X + 699.452 = 2000 is used for the
high end of the range, where ”Get access token” is instantaneous and we can send the
maximum amount of observations. 0.16346X + 1699.452 = 2000 is the equation for the
low end of the range, in which ”Get access token” takes a full second.

Response time
Operation 6 days of data 27 days of data Equation

Get access token 1000ms 0ms < 1000
Get encryption key 22ms 22

Verify encryption key 23ms 23
Encrypt observations 246ms 1066ms 0.13554X + 12.14286

Send data1 48ms 167ms 0.01959X + 14.64286
Decrypt data 359ms 409ms 0.00833X + 344.66667

Verify access token 283ms 283
Response from server See footnote 1

Total 1981ms 1970ms 0.16346X + (1)699.452

Table 5.5: LG K10 response time on sending data

The x value of each equation is put into the equation for observation retrieval from
database in order to find out how long it will take.

Response time
Operation 6 days 27 days Equation

Get database key from Keychain 28ms 28
Retrieve observations from database 978ms 4310ms 0.55097X + 26.14286

Total 1006ms 4338ms 0.55097X + 54.14286

Table 5.6: LG K10 response time on retrieving data

1In order to measure the response time of ”Response from server” individually, one must measure
the start time at the server, and the end time at the mobile device. The clocks of the two systems
were not synchronized, so the ”Response from server” response time is included in ”Send data”. This
enables one to measure both start and end time at the mobile device.
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On the LG K10 (2017), health data should be sent once every week to ensure ac-
ceptable response time. One can possibly send data less often, but not more rarely than
once every month. As long as the user is done authenticating within 4.3 seconds of
application startup, database retrieval will not affect the response time. It is not unre-
alistic to assume that this will be the case with ID-Porten’s two-factor authentication
in combination with the relatively slow speed of user input on mobile devices.

We could not do tests involving communication with the Helsenorge server on the
iPhone 6. At the time the iPhone tests were done, we only had a laptop with Windows
available for hosting the Helsenorge server. We had trouble getting Apple devices to
connect to the localhost of Windows machines, so the iPhone could not connect to
the Helsenorge server. The observations marked with a star (*) were measured on the
Android device.

Response time

Operation 13 days of data 56 days of data Equation
Get access token* 1000ms 0ms < 1000

Get encryption key* 22ms 22
Verify encryption key 12ms 12
Encrypt observations 204ms 868ms 0.05357X + 4.42857

Send data*1 88ms 331ms 0.01959X + 14.64286
Decrypt data 376ms 479ms 0.00833X + 344.66667

Verify access token 283ms 283
Response from server* See footnote 1

Total 1985ms 1995ms 0.08149X + (1)680.738

Table 5.7: iPhone 6 response time on sending data

Response time
Operation 13 days 56 days Equation

Get database key from Keychain 28ms 28
Retrieve observations from database 613ms 2608ms 0.16106X + 10.78593

Total 641ms 2636ms 0.16106X + 38.78593

Table 5.8: iPhone 6 response time on retrieving data

On the iPhone 6, health data should be sent once every two weeks to ensure accept-
able response time. One can possibly send data less often, but not more rarely than
once every two months. As long as the user is done authenticating within 2.6 seconds
of application startup, database retrieval will not affect the response time.
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5.5 Scenario tests

We only had an iPhone available for a limited time. Because of this, all scenario tests
for iOS were done on a simulator.

Test Expected behavior Threats Attackers

Persistence

Database decryption with wrong password Decryption fails T1,T2 A4,A6
Database decryption with no password Decryption fails T1,T2 A4,A6

App is reinstalled
Keychain/Keystore is
empty

T1,T2 A4,A6

App is installed
Unique database is key
generated

T1,T2 A4,A6

Authentication

Authentication over HTTPS with self-signed
certificate

Authentication fails T2 A3

Token verification over HTTPS with self-
signed certificate

Verification fails T2 A3

Authentication with wrong credentials Authentication fails T2 A2
Verify expired access token Verification fails T2 A2
Verify access token from other provider Verification fails T2 A2

Sending data

Connect to web site with invalid SSL certifi-
cate

Connection fails T1,T2 A3

Verify OpenPGP key with wrong signer key Verification fails T1,T2 A3
Encrypt message with OpenPGP Message is encrypted T1,T2 A3
Encrypt same message twice with OpenPGP Different ciphertexts T1,T2 A3
Decrypt OpenPGP message with wrong key Decryption fails T1,T2 A3
Decrypt OpenPGP message with wrong pass-
word

Decryption fails T1,T2 A3

Table 5.9: Scenario tests

Persistence

The function used to create the random database password was used in isolation multiple
times, and produced different outputs each time. This test could have been improved by
using statistical analysis to determine the randomness of the function. The application
was also installed several times. Each time a different key was produced. On re-install,
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a new encrypted database is created with a new key. Previously generated keys were
used in an attempt to open new databases, but this failed.

The default way of opening a database With Couchbase Lite does not require a
password. Attempts to open a password protected database this way failed. Opening an
unencrypted database with a password also failed. Multiple passwords were used in an
attempt to open an encrypted database, but only the correct password was successful.

A database key was stored in Keychain/Keystore and the app was reinstalled. Usu-
ally, a new database key is automatically generated if the Keychain/Keystore does not
contain one, but this feature was disabled. When attempting to retrieve a database key,
none could be found.

Authentication

The OIDC-Provider is hosted both in the cloud with Microsoft’s Azure, and locally on
the development machine. When hosted in Azure, an SSL certificate signed by a trusted
root certificate is used automatically. A self-signed certificate is used on the local server.

With AppAuth on Android, it is possible to specify whether or not requests over
HTTP or HTTPS with self-signed certificates should be allowed with the dangerouslyAl-
lowInsecureHttpRequests parameter. On iOS, insecure HTTP requests are disabled by
default, and the parameter does nothing.

The dangerouslyAllowInsecureHttpRequests parameter was set to false, and authen-
tication with the local server was initiated. In the browser window, a warning appeared,
saying that the connection was insecure. After ignoring the warning and logging in,
tokens were not received from the local server. Instead, the error message ”Error: Failed
exchange token” appeared. There were no issues when authenticating with the Azure
server, which had a valid certificate. When authenticating with the local server and inse-
cure HTTP requests were enabled, the warning in the browser still appeared. However,
the tokens were successfully retrieved from the authentication server after login.

The Helsenorge server should not trust an authentication server with a self-signed
SSL certificate when verifying tokens because this will allow anyone to state that any
token is valid. When attempting to verify a token with the local server certificate, the
Helsenorge server threw an error, and the response could not be read. Token verification
with the Azure server was successful.

The OIDC Provider has two users, Alice and Bob. We attempted to authenticate
with different combinations of Alice’s and Bob’s credentials as well as with random
strings. Authentication was only successful when both the user name and password of
either Alice or Bob was correct.

An attacker could try to create his own OIDC-Provider and have the patient au-
thenticate with that. When an authentication server creates a token, it signs it with a
a shared secret or a private asymmetric key. The only difference between the attacker’s
OIDC-Provider and the FullFlow OIDC-Provider would be the secret or the private key,
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assuming they are not compromised
When testing this scenario, two OIDC-Providers with different RSA keys were used.

Authentication was first done with the ”attacker’s” OIDC Provider. The received token
was sent along with patient data to the Helsenorge server, which attempted to use the
true FullFlow OIDC-Provider for validation. This failed. To account for false negatives,
the FullFlow OIDC-Provider was restarted with the attacker key and verified a token
signed by the attacker, as expected. This means that a token will only be verified as
valid by the same OIDC-Provider that created it. When verifying expired access tokens,
the response from the OIDC-Provider was ”invalid”

Sending data

So far, only self-signed SSL certificates have been discussed. There are other types of
certificates that should not be trusted. A certificate can be expired, revoked, or issued to
other domains. All of these have been tested with scenario S3 by making calls to known
insecure websites [42]. These sites will either respond with an HTML page, indicating
a bad SSL implementation, or there will be an error message saying that one could not
connect.

One test made HTTPS calls to a web site with a revoked ssl certificate. The calls
were successful on both Android and iOS. This means that an A3 attacker can do a
man-in-the-middle attack given that he has access to a revoked certificate from the
Helsenorge server. OpenPGP will deal with this when sending health data, but the
issue should still be fixed. It seems that both Android and iOS do not use Certificate
Revokation Lists (CRL) or the Online Certificate Status Protocol (OCSP) properly in
order to detect revoked certificates [44][43][45]. In order to test this, calls were also made
to the insecure web site from the chrome browser, completely separate from the app.
The browser also accepted the certificate, which indicates that the root of the issue lies
outside of the application. It seems that both Android and iOS do not use blacklists
properly in order to detect revoked certificates.

It is not certain that the OIDC-library used for authentication will accept a revoked
certificate. It may do a check internally, but this has not been tested because the
library only communicates with OIDC-Providers. The insecure website, which is meant
for testing SSL implementations, does not implement the OIDC protocol. It simply
presents an HTML page which says that it is insecure.

To summarize, a revoked certificate can threaten S3, and possibly S2 as well. One
should configure an OIDC-Provider with a revoked certificate in order to test whether
or not S2 is affected. A solution should be found so that the app will not accept revoked
certificates in either S3 or S2. This has not been done due to time limitations

Two new OpenPGP key pairs were created for a hypothetical attacker. One key
pair is used for encryption, the other for signing and verifying the public encryption
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key. When only the public encryption key of the Helsenorge server was substituted by
that of the attacker, key verification failed on the app. In order to make sure that the
attacker keys were created correctly, and will validate when they should, the Helsenorge
verification keys were replaced with the attacker verification key, which made the app
verify the attacker encryption key as expected. The Helsenorge encryption key was
signed by a Helsenorge signer key trusted by the app, while the attacker encryption key
was signed by an attacker signer key not trusted by the app.

Some of the tests are redundant, e.g. Helsenorge verification keys with Attacker
encryption keys and the opposite, Attacker verification keys with Helsenorge encryption
keys are testing the same thing. Verification should only succeed if the encryption key
is signed by one of the keys in the collection that is fed into the verification function.
The redundant tests are still included for completeness.

Table 5.10: Key verification test results on Android

Verification keys Key to be verified Verification Expected Verification Actual

Attacker Attacker Succeeded Succeeded
Helsenorge Helsenorge Succeeded Succeeded
Helsenorge Attacker Failed Failed
Attacker Helsenorge Failed Failed

Key verification on iOS has three parameters: A collection of verification keys, a key
to be verified, and a detached signature.

Table 5.11: Key verification test results on iOS

Verification keys Key to be verified Signature Verification Expected Verification Actual

Helsenorge Helsenorge Helsenorge Succeeded Succeeded
Helsenorge Attacker Attacker Failed Failed
Helsenorge Attacker Helsenorge Failed Failed
Helsenorge Helsenorge Attacker Failed Failed
Attacker Attacker Attacker Succeeded Succeeded
Attacker Helsenorge Helsenorge Failed Failed
Attacker Attacker Helsenorge Failed Failed
Attacker Helsenorge Attacker Failed Failed

A message was encrypted with the Helsenorge encryption key. Decryption was at-
tempted with the attacker decryption key, but failed. Decryption of the message was
then attempted with the Helsenorge decryption key, but an incorrect password. This
caused the decryption to fail. In order to account for false negatives, a message was
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encrypted and decrypted with the attacker encryption and decryption keys, which was
successful.

Figure 5.9: Same message encrypted twice

Even though the OpenPGP protocol itself has not been broken, there may be bad
implementations. A few tests have been done to make sure that basic properties
of secure encryption algorithms are included. The plaintext ”hehe” was encrypted
twice and produced two almost completely different ciphertexts. Both share the string
”hQEMA1YuTLt28lTEAQ” at the start, but this is just a header that contains public
information such as algorithms used for encryption and decryption [24].
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Chapter 6

Conclusion

We have shown how to use various technologies in order to build a secure cross-platform
mobile application for sharing self-collected health data in a clinical context. React-
Native lacks viable cross-platform libraries for OpenPGP and a secure database that
works well with health data in the FHIR format. The framework’s support for native
modules was therefore an important factor. The main reason for choosing a cross-
platform framework was the ability to have a single shared code base, which saves
development time. Some of this benefit was lost because of the native components.
Xamarin Forms can be considered if one wants to avoid writing any native code, but
we have not proven that it will support the three scenarios. Because React-Native uses
JavaScript, a dynamically typed language, it can handle FHIR data in the JSON format
without any issues. Couchbase Lite is the only database that fulfills all the requirements
out of the box on interpreted and cross-complied applications. However, its design makes
it inefficient when retrieving semi-structured data.

The application preserves confidentiality (T1) and integrity (T2) by using Couchbase
Lite for persisting encrypted patient data on the device (S1). Android devices must use
version 6 or higher in order to secure the database password in Keystore. A combination
of OpenPGP and HTTPS secures data sent over the internet (S3), and ID-Porten is used
for authentication (S2) in order to identify patients. Penetration tests were executed, and
one vulnerability was found. A revoked certificate can threaten S3 given that protection
provided by OpenPGP is bypassed. It is possible that S2 is affected as well.

In order to integrate the app with the Norwegian infrastructure, we use FHIR as the
data format for exchanging health data (S3). EHRs and other systems, such as those
operated by Helsenorge and FullFlow will be interoperable as they will use the same
format. For the sake of supporting the storage of data (S1) in the FHIR format, we
use a schema-less NoSQL database that is suitable for storing semi-structured data. By
authenticating with ID-Porten (S2) and having it manage the user accounts of both our
app and Helsenorge, we can ensure that self-collected health data will be stored in the
correct kjernejournal.
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In order to ensure acceptable performance on both low and mid-end devices, the app
should remind patients to send data at least once a week on low-end devices, and one
every two weeks on mid-end devices. If a patient sends data more rarely than this, the
application can be slow to respond, which will cause the user experience to diminish.
If a patient imports blood glucose data in bulk rather than continuously, this must be
done at least once every two days on a low-end device, or once every five days on a
mid-end device to ensure responsiveness. For the sake of usability, we do not require the
patient to enter a password in order to access the database when opening the app. We
rely on The Keychain and Keystore for encrypting a generated, cryptographically-secure
random database password when the app is installed.

To summarize, there are issues with some of the technologies, but they are still suit-
able for the development of a secure cross-platform mobile application for managing and
sharing health data with healthcare systems. There is some uncertainty due to an issue
with revoked SSL certificates. If this can be dealt with, the goals of all three scenarios
are achievable. The scenario tests, with one exception, indicate that the application
preserves the confidentiality and integrity of patient data. The technologies facilitate
integration with the Norwegian healthcare infrastructure. Performance tests show how
often health data should be imported and shared in order to ensure usability.
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Chapter 7

Further Work

Security mechanisms and modules for data sharing are in place, but there is no business
logic that imports health data or decides which data should be sent. For the app to
be usable by patients, these things have to be implemented. The primary goal for
further work should be to find suitable ways of importing data. On low-end devices,
the application can only store two days’ worth of blood glucose measurements at a time
before the response time becomes too slow. Because of this, integration with continuous
glucose monitors which automatically import small amounts of data at a time without
user interaction would be ideal. The security of such a solution should be assessed.
Users should also be able to manage their self-collected health data after it has been
imported. In addition, it would be beneficial to have the option of importing health
data from Helsenorge so that data sharing goes both ways.

The application should have a proper privacy policy that gives the patient informa-
tion about what his health data is used for, and who has access to it. The app must
also get explicit consent from users when needed.

It is also possible to reduce the complexity of key verification. Instead of having to
make both a detached and embedded signature, one can attempt to implement detached
signature verification on Android. Alternatively, one can try to find a C/C++ library
that supports embedded signature verification, and use it for iOS. This would make it
easier to maintain the Helsenorge server.

More thorough security testing should be done. One could for example get an SSL
certificate signed by a CA in order to test with HTTPS on the Helsenorge server. Addi-
tional tests can also be done if issues related to using plain HTTP with IdentityServer 4
are resolved. The issue with revoked SSL certificates should be investigated. Even more
comprehensive testing can be done if one has access to rooted or jailbroken devices.

More research should be done on Android’s Keystore in order to verify that issues
in old versions have been fixed. Lastly, one should look into how to implement artificial
delay on responses from the Helsenorge server in order to defend against OpenPGP
timing attacks.
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