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Abstract

This thesis generate trajectories of fish migrations by running

simulations of temperature and depth values from Digital Storage

Tags. The data is compared with data from ocean general circulation

models in order to find Global Positioning System (GPS) locations of

fish. Integrating this solution with a visual analytics tool allows the

user to analyse fish trajectories through visualisation and

manipulation.
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Chapter 1

Introduction

1.1 Thesis Outline

Introduction Chapter 1 provides a brief introduction to this thesis. The goal of

the thesis is given along with the research questions. An overview of work related

to the thesis is also presented.

Background Chapter 2 describes the background information needed for this

thesis. Information about the technologies and programming languages that are

used is provided.

Design & Solution Chapter 3 presents the design of the framework and de-

scribes the implemented solution.

Results Chapter 4 present the results and discuss the research method used in

this thesis.

Discussion & Conclusion Chapter 5 gives a more detailed discussion about the

results from the implemented framework and a conclusion on the research questions.

Further work Chapter 6 give a summary of improvements that can be imple-

mented in further work.

1.2 Motivation

In 1878, a cod was captured in the waters around Spitsbergen with a fishing hook

embedded into its flesh. This type of fishing hook was typically used for fishing

in Lofoten, which strengthened the marine biologist Georg Ossian Sars’ assump-

tion from 1876. He believed that cod larvae drifted all the way from Vestfjorden

1
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to Spitsbergen, but migrated back when it was time for spawning. Due to lack of

observations, it was difficult to claim this with certainty.

In 1902, Johan Hjort showed that the outer borders of cod larvae was spread out

according to their age, proving G.O. Sars’ migration pattern correct [1]. The outer

borders are shown in figure 1.1, where I) is the floating cod eggs, II) is the drifting of

cod larvae in June - July, and III) is the drifting of cod larvae in August - September.

Figure 1.1: Outer borders of cod larvae [1]

Hjort further performed a tagging program, tagging cod with silver buttons to the

gill covers in Vestfjord during spawning season. The tagging program found sea-

sonal migration patterns and differences between age groups and their geographical

regions [2]. Since Hjort’s program the Institute of Marine Research (IMR) have

carried out tagging programs to better understand migration patterns of fish [3],

and in 1996 they introduced Digital Storage Tags that store temperature and depth

values of fish in time intervals. This tag type takes measurements from the time the

fish is released until it is recaptured [4]. DSTs are still used and have gathered a lot

of important data from fish for the IMR.

A second type of data, are those from ocean general circulation models. OGCMs

were first developed in the 1970s. The model consist of latitude and longitude, and

2
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associated variables such as; temperature, depth, and ocean current[5].

The IMR want a solution that simulate possible fish trajectories to potentially

understand their migration patterns, but since data from DSTs does not include

Global Positioning System (GPS) coordinates of fish locations it is difficult to deter-

mine where fish have traversed. DSTs and OGCMs contain temperature and depth

in their data sets, and the IMR have both DSTs and OGCMs that correspond in

time, but not a solution that combines the available data to recreate fish trajectories.

An earlier solution [6] managed to derive GPS coordinates through DST data and

OGCMs. The current approach is to develop a more comprehensive framework that

can be used for scientific research and educational purposes. The framework should

build on the approach from the earlier solution, by including new parameters to gen-

erate trajectories that consists of GPS coordinates that accurately recreate where

fish have been. The framework should also visualise the trajectories in order for

experts to analyse them.

Data defining trajectories are GPS coordinates of locations between the release and

recapture points. The challenges are how trajectories can be visualised and anal-

ysed. Visual analytics is a solution that require cross-disciplinary communities to

work together to create user-friendly tools [7]. Creating a visual analytics tool for

the data problem requires combining expert knowledge from movement researchers,

ecologists, biologists, mathematicians and system developers. Understanding move-

ment of species is important in order to validate trajectories [8]. Ecologists provide

knowledge on fish ecosystems [9], biologists determine fish species and spawning

patterns, mathematicians can create algorithms to approximate fish movement, and

system developers create the application.

From a collection of trajectories, a visual analytics tool should be able to com-

pare trajectories and determine a representative Trajectory for ensemble of derived

trajectories. Calculating the representative from the collection of trajectories would

result in an averaged trajectory that have characteristics that none of the trajecto-

ries from the collection have. This average may lack important information on fish

migration patterns, since e.g., an averaged trajectory might choose locations that a

fish would not choose due to physical barriers to movement, e.g. ocean current [10].

3
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1.3 Available Data

The IMR provide necessary data to create a solution that generate fish trajectories.

The extracted variables are shown in table 1.1. The provided DSTs are text files

containing temperature and depth values in time intervals of 10 minutes from the

release location to the recapture location. The provided OGCMs are complex three-

dimensional (3D) models that store ocean variable values, e.g. temperature, depth,

ocean current, to observe and monitor changes in the ocean.

Digital storage tags

Variables Temperature

Depth

Time Interval 10 Minutes

Available Tags DST 742

DST 1664

Ocean General Circulation Models

Variables Temperature

Depth

η (x-coordinate)

ξ (y-coordinate)

σ (z-coordinate)

Latitude

Longitude

Ocean Current

Time Interval Daily

Available Models Nordic Seas, Incl. North Sea

Norwegian Sea

Table 1.1: Available data for simulating trajectories

4



CHAPTER 1. INTRODUCTION 1.4. GOAL

1.4 Goal

The main goal of this project is to create a framework that simulate and visualise

fish trajectories on a two-dimensional (2D) map. Trajectories are generated through

linking simulations that use temperature and depth data from DSTs to GPS loca-

tions derived from OGCMs. A second goal is to have a system that runs in real

time, which means that the user can alter parameters and instantly see the results

on a 2D map. A third goal is that the resulting framework can be used by ex-

perts to determine ecological characteristics from derived trajectories. This means

to understand where fish are spawning, feeding and their migration patterns.

1.5 Related Work

The paper “The dispersal pattern and behaviour of Atlantic cod (Gadus morhua)

in the northern Gulf of St. Lawrence: results from tagging experiments”[11] focus

on the release and recapture locations of Atlantic cod from 1995 to 2008. The goal

of the paper was to use data from DSTs to analyse the dispersal pattern of Atlantic

cod that inhabit the Northern gulf of St. Lawrence on the east coast of Canada.

By looking at the release and recapture locations from the DSTs, changes in the

migration and knowledge on their dispersal patterns were discovered by including

factors, e.g. temperature.

Another paper, “Consistency in the behaviour types of the Atlantic cod: repeata-

bility, timing of migration and geo-location”[12], use DSTs and tidal models to

geo-locate Atlantic cod in the waters around Iceland. From this data, they man-

aged to distinguish between frontal and coastal cod based on behaviour, as well as

geo-locate locations of cod. The time span between each location was four months.

The paper: “Introducing a method for extracting horizontal migration patterns from

data storage tags”[6] describes how the horizontal locations that forms a trajectory

are found.

5
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Figure 1.2: Illustration of the merge algorithm [6]

The approach in the paper is to start a number of trajectories that utilise a bi-

ased random walk algorithm. This is done in order to generate GPS locations that

move from release location towards recapture location. Trajectories that find lo-

cations in OGCMs that do not match the data from DSTs will be removed. This

means locations with DST depth lower than seabed or locations with temperature

not within an margin of error. Originally, trajectories were started in the release

location and traversed towards the recapture location using the biased random walk

algorithm. Within the algorithm there is a deterministic velocity that pulls new

locations towards the recapture location, and a random velocity. In the beginning

of the trajectory, the random velocity would dominate when selecting next the lo-

cations. However, the deterministic component would become more dominating as

the trajectory locations approached the recapture location. This led to trajectories

traversing increasingly in a straight line as the locations approached the recapture

location. For this reason, the application starts trajectories in both the release and

the recapture location and then move trajectories towards each other. When halfway

through DST data, trajectories within 5 kilometres (km) of each other are combined

into one trajectory, see figure 1.2.

1.6 Research Question

This thesis consists of two individual applications combined into one system. The

first application will simulate trajectories with GPS locations using data from DSTs

and OGCMs. This application will be based on the approach from paper [6], pre-

sented in chapter 1.5. The main challenge is that the only GPS locations known are
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the coordinates for the release and recapture locations. Data from DSTs only con-

tain temperature and depth observations in time intervals. GPS coordinates must

be approximated for each location between the release and recapture location by

combining the DSTs and OGCMs. This results in the first research question:

Q1. What parameters can be added to a solution that uses

temperature and depth observations from DSTs and OGCMs

to generate trajectories that are more realistic than the

earlier solution?

The sense of vision and the ability to visualise is essential for the brain to process

new information. It assists in the comprehension and portrayal of massive amounts

of data, it may lead to patterns present in the data to emerge that would otherwise

remain hidden, and corruption in the data can easily be detected [13]. The second

application will visualise trajectories generated by the first application on a 2D map.

The main challenge is to visualise trajectories in a way that provide experts with

knowledge on migration patterns and fish behaviour. This would require adding

functionality that lets the user analyse trajectories and their information. This re-

sults in the second research question:

Q2. How should generated trajectories be visualised for scientists

to find and analyse their ecological characteristics?

A framework for generating potential trajectories would have to handle big amounts

of data. OGCMs consist of several gigabytes of data for one day. Creating a frame-

work that can deliver trajectories in real time would require a way to process data

fast, but without exceeding the system memory. This results in the third research

question:

Q3. How can generating trajectories be optimised to reduce the

run time compared to the previous solution?

To create a framework with analytic tools, investigating what functionality that

can provide experts with knowledge on migration patterns and determine ecological

characteristics is important. This results in the last research question:

Q4. What functionality can be implemented into the framework

to provide scientists with information on migration patterns

and ecological characteristics?

7
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1.7 Research Method

In order to answer the research questions the thesis will mainly require a qualitative

methodology. The research will be conducted on experts, chosen by the external

supervisor. Since the office is located at the IMR, the experts are located close by.

This makes it easier to conduct interviews and to get answers on questions related

to their education. The external supervisor will be available through meetings and

emails, answering questions and putting us in contact with other experts.

Figure 1.3: The spiral development model (SDM) for the framework

The framework requires feedback on the usability. The feedback will be provided by

the selection of experts. In order to collect verbal and written data, the work in this

thesis will follow a spiral development model [14] in Figure 1.3. Spiral development

is a family of software development processes characterized by repeatedly iterating

a set of elemental development processes and managing risk so it is actively being

reduced. The framework uses the SDM in designing and stage-wise prototyping to

optimize the process of knowledge discovery and integration, and impact appraisal.

The first phase, knowledge appraisal and synthesis, gather knowledge on what to

create and what fields to study, e.g. behaviour of cod. The second phase, stakeholder

solicitation, is to talk to experts and get their opinion on what fields that needs more

knowledge, in order to understand what to create. The third phase, models and al-

gorithms, is to create algorithms based on the knowledge learned from the previous

8
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phases that solve challenges, e.g. how to create trajectories from data within DSTs

and OGCMs. The fourth phase, decision support framework, is to create prototypes

of the framework. The fifth phase, testing and validation of framework, is to test

the framework on experts in order to collect data regarding improvements and func-

tionality to be implemented in the next iterative process (spiral model).

The spiral model ensures that the decision support framework is adaptive to apply-

ing new functionality. It also eases the implementation and maintenance of existing

functionality in the framework, and allows for interactive involvement of the experts,

which is essential for the development of the system.

In order to iterate over each phase three times, 15 steps in the SDM is chosen. This

results in more than one prototype, which makes it easier to match expectations of

experts.
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Chapter 2

Background

2.1 Data and Models

2.1.1 Tag Data

The IMR carry out systematic annual tagging programs on fish to improve knowl-

edge on migration patterns and spawning grounds. Using various types of fish tags,

they gather information that can potentially tell them if fish migrate to same fjords

to spawn, time of spawning, temperature preferences, and more.

Conventional tags only contain an ID number and an address, which means that

they do not store any information. Using an unique ID number provide researchers

with knowledge on where the fish was released and where it was recaptured. Through

algorithms, the researchers can approximate the age of the fish as well as how many

times it has spawned.

Electronic tags, known as DSTs, store information in time intervals and contain

sensors that register depth, temperature, salinity and light intensity. Electronic tags

do not register GPS locations of fish, because this would increase the size of the tag

and the antenna must regularly be above sea level to transmit GPS signals [15].

Acoustic tags transmit sound signals every 1.5 second. The sound signals have

a strength of 158 decibels that are picked up by three positioning buoys on the

surface. When transmitting sound signals, each of the three positioning buoys must

receive the signals in order to accurately define the GPS location and depth of the

fish. The three positioning buoys receive sound signals from multiple fish at the

same time. In order to separate between the fish that transmit sound signals, each

tag transmit a unique sound signal that is at a different frequency than the other

tags [16].
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Satellite tags measure temperature, depth and light intensity every two minutes.

Satellite tags can remain attached to the fish for up to a year. At a given time, a

mechanism releases the tag from the fish and the tag floats up to the surface and

transmit the minimum and maximum values to a satellite. The data is then further

transmitted from the satellite to the IMR. In order to access all the recorded data,

the tag has to be found and returned to the IMR [17].

Passive Integrated Transformer (PIT) tags are internal tags that do not ac-

tively register data. They function as an electric coil that transmit the id number

of a fish, when it passes the magnetic field of an antenna. If the IMR set up an

antenna, they can see how many times a fish encounters it. This can determine how

often fish are in specific areas [18].

The data provided by the IMR for this thesis are data within electronic tags, DSTs.

They consist of depth and temperature values every 10 minutes, from the time the

fish is released until it is recaptured.

2.1.2 Ocean General Circulation Models

Ocean general circulation models (OGCMs) are three-dimensional (3D) models that

describe the climate in the ocean through measuring ocean variables, e.g. tempera-

ture, depth, ocean current. The models consist of GPS coordinates and a 3D grid.

The grid is built up by horizontal coordinates where η (x-axis) is the direction from

east to west and ξ (y-axis) is the direction from north to south, and vertical coordi-

nates where σ (z-axis) is the direction from sea surface to seabed.

Figure 2.1: Painted grid point where ocean variable values are measured in the

centre (blue circle)
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In the horizontal, the resolution of a model describes how accurate the data set

represent ocean variable values. The resolution is the size of a grid point, where

the geographical area within a grid point contains the variable values located in

the centre of the grid point. Figure 2.1 illustrates a painted geographical area that

contain the variable values from the blue circle in the middle of the grid point. This

means that all GPS coordinates within a grid point returns the same ocean variable

values.

The resolution is determined by the sizes of the x and y-axes, where small sizes

of x and y result in large grid points (low resolution), and vice versa. Figure 2.2

illustrate two models that cover the same geographical area, but with different sizes

on the x and y-axes. The figure on the right has four times the amount of grid

points than the figure on the left, and measures four times the amount of ocean

variable values. To represent ocean variables as accurate as possible, it is important

to have high resolution models (small grid points) to keep the geographical area the

variables cover small.

Figure 2.2: Horizontal representations with different sizes on η and ξ
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The vertical z-axis exist in a (x,y)-point if the depth at point (x,y) is larger than ten

meters. Grid points with depth values less than ten meters are likely to be close to

land and have a high probability for partially crossing land in the grid point. These

points are registered as grid points on land, and they do not contain the vertical

z-axis. Grid points with vertical z-axis always have the same number of vertical lay-

ers regardless of depth [19]. This is because the vertical layers use the σ-coordinate

model [20] shown in Figure 2.3. This model follows the underwater terrain; where

terrain is sloped, so are the vertical layers. This ensures that there is always the

same number of vertical layers regardless of depth.

Figure 2.3: Schematic of a σ-coordinate model [21]

Each grid point has ocean variable values, e.g. temperature and depth, measured in

the centre of the horizontal point at each vertical layer. OGCMs can measure ocean

variables at hourly, daily or monthly time intervals [22].

The IMR have OGCMs for the Nordic Seas including the North Sea, as well as

models for the Norwegian Sea. The Nordic Seas model is shown in Figure 2.4,

where the painted area displays the geographic area the grid covers. This model has

an x and y grid size of 580x1202 and to cover the geographic area with this grid

size, the resulting grid has a resolution of 4x4 km.
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Figure 2.4: Ocean general circulation model for the Nordic Seas, including the North

Sea

The model for the Norwegian Sea is shown in Figure 2.5, where the painted area

displays the geographic area the grid covers. This model has a x and y grid size of

902x2602. Compared to the model for the Nordic Seas, the Norwegian Sea model

covers a smaller geographical area, but the grid size is larger. This results in a grid

with resolution of 800x800 meters, which is higher than the resolution in the Nordic

Seas model. The ocean variable values in the Norwegian Sea model, represent ocean

variables more accurate than the values from the Nordic Seas model because each

grid point is 80% smaller than grid points in the Nordic Seas model. This means

that one grid point in the Nordic Seas model is represented as five grid points in the

Norwegian Seas model.

Figure 2.5: Ocean general circulation model for the Norwegian Sea
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2.1.3 NetCDF

NetCDF is a set of libraries that can be implemented in a program to allow it to

read and write NetCDF files. These files contain array-oriented scientific data [23],

such as the OGCMs explained in section 2.1.2. The data can be accessed through

a simple interface, while array values can be accessed directly without knowing

how data is stored. This means that the values can be fetched with the correct

parameters. Tools and application programs can access NetCDF data sets and

transform, combine, analyse or display specified fields of data [24].

2.2 Simulation Application

To create the simulation application that generate trajectories, a programming lan-

guage must be selected. This section will go through potential programming lan-

guages and conclude with the one that will be used in this project.

2.2.1 .NET Framework

.NET is a framework for building and running applications. The core features of

.NET are the Framework Class Library (FCL) and Common Language Runtime

(CLR). FCL is a collection of reusable classes, interfaces and value types. CLR man-

ages the execution of .NET applications and converts compiled code into machine

instructions for the central processing unit (CPU) regardless of what programming

language it is written in [25]. This means that different programming languages

can communicate with each other in the same system, which is advantageous since

different programming languages are optimised for specific tasks [26].

.NET allow developers to share code through NuGet packages. The NuGet packages

contain compiled code that expands the library of the application [27]. Scientific

DataSet Lite (SDSLite) 1.4.0 is a NuGet package that can read and write matri-

ces and multidimensional grids which are common in scientific modelling [28]. This

package makes it possible to manipulate NetCDF files from an application written

in C#.

C# is therefore a programming language that can be used to create the algorithm

that simulates possible trajectories for fish. An additional argument is that tech-

nologies for visualising the algorithm supports applications in C# [29].
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2.2.2 Python

Python is a high-level programming language created for general programming. The

design focuses on code readability achieved by using an abundance of whitespace [30].

It manages the memory automatically and has a dynamic type system which means

that variables are not bound to a type. In addition, there are several programming

paradigms that are supported, such as object-oriented, imperative, functional and

procedural [31].

Python offers several functions for handling NetCDF files and are therefore a vi-

able alternative for the simulation application. It can implement two libraries that

would be relevant, they are NetCDF4 [32] and NumPy [33]. NetCDF4 is an inter-

face to the NetCDF C library that allows the program to read and write to a given

NetCDF file. NumPy offers scientific computing as well as a powerful multidimen-

sional container for generic data. The container would be required to store data

from the NetCDF files that are read using the NetCDF4 library.

2.2.3 Choosing .NET Framework

The .NET Framework was chosen for this project because C# is a statically typed

language [34]. Meaning that the type of a variable is known when it is compiled.

This reduce the number of minor bugs because the compiler catches them early on.

This is not the case with Python since it is a dynamically typed language [34], it

will throw an existing exception at run time. C# also has a speed advantage over

Python because it is compiled [35].

16



CHAPTER 2. BACKGROUND 2.3. VISUALISATION APPLICATION

2.3 Visualisation Application

To create the application that visualise trajectories on a 2D map, a technology must

be selected. This section will go through potential technologies and conclude with

the one used in this project.

2.3.1 Game Engines

Game engines are a software development environment that has been made for the

purpose of developing video games [35]. It abstracts tasks common to games like

rendering and physics. This is to make it easier for developers to focus on important

features for their game instead of using time on physics, movement and light sources

[36].

2.3.2 Visualising Simulated Trajectories

Simulated trajectories can be visualised using a game engine, which would allow for

more optimisation and control over the representation. This approach will require

that the user has a powerful system, otherwise the software could be strained for

the resources it would need.

It is possible to visualise simulated trajectories in a web browser using a WebGL

API [37]. This would allow for easy sharing of the solution to anyone who want

to use it if they have the correct Uniform Resource Locator (URL). For visualising

trajectories on a 2D map, this should not be a problem. However, the problem is

that simulating fish trajectories will require a lot of computational power.

2.3.3 Unity3D

Unity is a game engine that can be used to create games in 2D and 3D. C# is used

as the primary scripting language, but also includes UnityScript [38]. There are 27

supported platforms allowing developers to publish their game to whatever platform

they want [39].

It provides standard assets for anyone to use free of charge. Letting developers

start creating their game without having to worry about designing characters and

other objects for the game [40].
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2.3.4 Mapbox API

Mapbox provides custom online maps for websites and other applications through

their API. This API provides a map of the world that the user can zoom in and out

on as well as move around using a mouse or the key arrows. It can be implemented

in both WebGL and Unity3D [41].

2.3.5 Choosing Unity3D

Unity3D was chosen for this project because it can run the simulation application.

Unity3D also supports exporting the software as a WebGL so the finished framework

can be accessed online, but this would require uploading the simulation application

to a server. Mapbox API can be used in Unity3D and provides maps of the earth

that trajectories can be visualised on.
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Chapter 3

Design & Solution

3.1 Application Design

The top level design of the framework is shown in figure 3.1. The user interacts with

the Unity3D application that presents tools for modifying trajectories and running

the simulation application. The goal of the simulation application is to find fish

trajectories based on parameters set by the user.

Figure 3.1: Top level design of the framework

The Unity application calls on the executable file (.exe) of the simulation application

that either find or not find trajectory results. Fish trajectories are found if the

simulation application manages to go through all DST data and find locations at
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each step that match parameters set by the user. Each of the found trajectories are

stored as a file, containing GPS coordinates of all locations in the trajectory, and

placed in a file directory. Based on the result from the simulation application, the

Unity application will either read the file directory and display the trajectory files

on a 2D map or specify that the application did not find any trajectory results with

the given parameters.

3.1.1 Simulation Design

The design of the simulation application is shown in figure 3.2. In step one, the

simulation receives parameters set by the user such as; which DST to simulate,

number of simulations, time step (see section 3.2.13), and allowed margin of error

on temperature. The next step is to read a text file containing the available DSTs

as well as the release and recapture locations of each fish. Then, the simulation will

load several NetCDF files containing static OGCM data (see section 3.2.11) needed

for finding GPS locations throughout the simulation.

Figure 3.2: Design of the simulation algorithm

In step four, all the parameters received from the user will be passed to the controller

class which will perform one of the implemented algorithms for generating fish tra-

jectories. Either the General algorithm (see section 3.2.2) or the Merge algorithm

(see section 3.2.4). The fifth step is to read all the data entries from the selected
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DST from a text file. It contains depth in meters, temperature degrees in Celsius

(◦C), and date and time of when the data was recorded. When this is done it moves

on to step six which will continue to loop until it has iterated through all the entries

in the DST data or there are no more simulations being run. Every iteration of the

loop starts with reading the date from the current entry of the DST data which

is then used to load the OGCM with ocean variables from the same date onto the

random-access memory (RAM). If it is the first iteration, the simulation will convert

the release location from latitude and longitude to x- and y-coordinates. Then it

will use the x- and y-coordinates to search for valid locations in the OGCM. Once

the search for valid locations is complete, a number of simulations is started in order

to find trajectories. Each simulation will select one of the valid locations randomly

and add it to their trajectory. If no valid locations are found in the first iteration,

no simulations will be started, and the simulation application will be terminated.

All of the simulations started in the first iteration will use the most recent (x,y)

grid location from its trajectory to try and find new valid locations based on the

data for the next entry in the DST. Then, any simulation that can generate one or

more new valid locations chooses a random one and adds it to its trajectory. If none

are found, the simulation is terminated. Once all the iterations are complete, the

simulation application starts step seven if there are one or more simulations that

were able to complete their trajectory. All the trajectories from the completed simu-

lations are saved to individual text files, containing latitude, longitude, temperature

and depth from DST, and temperature and bottom depth from OGCMs, for each

location.

21



CHAPTER 3. DESIGN & SOLUTION 3.1. APPLICATION DESIGN

3.1.2 Visualisation Design

The design of the user interface from the visualisation application is shown in Figure

3.3. When the application is started, it reads a text file that consists of all DSTs

available for running the simulation application. Without this file the application

will not allow the user to run the simulation application, since it means that either

DST data or OGCMs are missing. The application will then read a text file con-

taining the parameters used in the previous execution of the simulation algorithm.

If this text file does not exist, all parameters are set to zero.

Figure 3.3: Design of the visualisation application

After the user has set new parameters, the application will run the simulation al-

gorithm and wait for its completion. When completed, the application will fetch

trajectory files from a file directory and display them on a 2D map.
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3.2 Simulation Application

The simulation application of the framework consists of three algorithms that gen-

erate trajectories. When the simulation application is launched, it starts individual

simulations that try to generate their own trajectory from release location to recap-

ture location of fish. The approach of the simulation application and how the three

algorithms generate trajectories are explained in the sections below.

3.2.1 Simulation Overview

The goal of the simulation application is to run a number of simulations in order to

generate potential trajectories for a fish by using its DST data and OGCMs. Due

to large amounts of data, the data used needs to be limited. This is done in order

to keep the trajectories from being too complex and the execution from taking too

long time.

Time Step

A trajectory consists of GPS locations from the release location to the recapture

location, where the amount of GPS locations is determined by how often DST data

is read. DST data is measured every ten minutes, which results in large numbers of

GPS locations with short distance between each other. In order to limit the amount

of GPS locations, a parameter for determining the time step is necessary. This lets

the user decide how often the algorithm should read DST data, e.g. read one DST

data per day, read one DST data every second day, etc. An example of this is a fish

that has measured data for one year. If the simulation algorithm should calculate

GPS locations for the values measured every ten minutes, it would result in:

365 days× 24 hours× 60 minutes

10-minute step
= 52 560 GPS locations

If the simulation algorithm instead calculates GPS locations for one data value per

day, it would result in:

365 days× 1-day step = 365 GPS locations

The difference between the amount of GPS locations are huge, but their trajectory

results would look similar. The distance a fish can reach is scaled according to how

often DST data is read. Instead of keeping track of every little movement, a larger

movement would result in similar trajectories.

Finding GPS Locations

The first GPS location in a fish trajectory is the release location of the fish. This

location is converted into x- and y- coordinates in an OGCM. Depending on the
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time step, the maximum distance the fish can reach in each step is calculated. This

distance is used to find (x,y) grid points that are within range of the next location

in the DST data. Figure 3.4 display the current location (blue circle) and all grid

points (red) calculated within range of the next location. If the maximum distance

is larger than illustrated in Figure 3.4, the surrounding grid points would be further

away from the current grid point, as the fish would have potential of reaching a

greater distance.

Figure 3.4: Grid points (red) within reach of current grid point (blue circle)

Each of the (x,y) grid points within the range of the current location are possible

locations the fish could traverse to. In order to eliminate possible locations that do

not fit the recorded DST data, depth and temperature are used. To keep a possible

location, the depth in the grid point must be greater than the depth in the DST

data, and the difference between the temperature from the DST data and the grid

point must be within an margin of error set by the user, see section 3.2.8. The

next location in the trajectory is chosen from the remaining possible locations. This

routine is repeated for all the selected DST data in the time step. When one of

the possible locations is chosen as the next location in the trajectory, latitude and

longitude within the (x,y) grid point are stored.

3.2.2 General Algorithm

The main solution for generating trajectories is to run several simulations from the

release location of a DST and weighting each simulation towards the direction of

the recapture location. The weighting makes it more likely that the next location

within a simulation is closer to where the fish was recaptured. Figure 3.5 displays

24



CHAPTER 3. DESIGN & SOLUTION 3.2. SIMULATION APPLICATION

three simulations with different scenarios. The simulations went through sixteen

time steps, which results in sixteen locations in a completed trajectory.

Figure 3.5: Illustration of the General algorithm for three trajectory scenarios

Trajectory I) is a plausible trajectory since it has sixteen locations, where the last

location is within range of the recapture location. Trajectory II) also has sixteen

locations, but is less plausible since it is outside the range of the recapture location.

The range is equal to the maximum distance a fish can travel in one time step (see

section 3.2.10). Even if a trajectory is not within range of the recapture location, it

will still be stored in a separate file directory and shown to the user. The reason for

this is that the recapture location can be wrong due to fishermen catching tagged fish

at sea, but do not register the recapture coordinates until they reach the harbour.

Trajectory III) is a failed trajectory since the simulation did not find a location at

each step. This happens when a simulation travels in a direction that does not have

any locations that satisfies the temperature and depth requirements.

3.2.3 Release Continuously Algorithm

Rather than starting all the simulations in the release location of the DST like the

General algorithm does, simulations are only started when a given simulation finds

more than one new valid location. In each simulation, the current location is used to

find valid locations for the next time step. If no valid locations are found the given

simulation is terminated, if one valid location is found the simulation chooses the

valid location as its next location in the trajectory. However, if the number of valid

locations are between 2, ..., n, new simulations are started. If the given simulation

chooses one of the valid locations, n − 1 valid locations will remain unvisited. In
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order to visit n locations, the given simulation must be duplicated n times. This

means that there exist n simulations with the same previous locations as the given

simulation. Each simulation chooses one of the valid locations as the next location

in their trajectory, resulting in all valid locations being visited.

Figure 3.6: Illustration of how the Release Continuously algorithm works.

In Figure 3.6 the simulation application finds three valid locations within range of

the release location. This results in three simulations being started.

The general algorithm would have all the simulations randomly choose one of the

new locations and add it to its trajectory even if there are 10 000 simulations and

only three locations. However, this algorithm would instead start only three sim-

ulations and each simulation will choose one of the new locations that the others

did not. An example of this is shown in figure3.6 with three trajectories. This

will save the user a lot of time because there will be less calculations for the com-

puter to process. The second iteration of trajectory I) in figure 3.6 finds two new

valid locations. It will then randomly choose one of the new locations and add it

to its trajectory. Then a new simulation called Trajectory IV is created with the

same trajectory locations minus the location that Trajectory I just added. It then

adds the remaining location to its trajectory. The simulation application will con-

tinue to do this until it has fully completed every iteration. Then it will validate

the trajectories of all the completed simulations the same way that the general al-

gorithm does by checking if the last location of the trajectory is within range of

the recapture location. This was done to cut down the run time of the simulation

so that the user could either run it with more simulations or spend less time waiting.
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There are few new and valid locations in the beginning which means there are few

simulations and therefore the simulation application starts off quick. However, over

time it starts to slow down because for each iteration that the simulation application

goes through the number of simulations increases. If this simulation application was

left to run with no limitations it would take an extraordinary long time to complete.

Therefore, the user must set a maximum number of simulations that the algorithm

can start. Once this maximum is hit the algorithm will no longer start any new

simulations. With this limitation it will still slow down over time but will speed up

again after the maximum number of simulations has been reached. This is because

the number of simulations determines how many calculations must be performed.

Therefore, as the number of simulations increases so will the number of calculations,

which takes more time. On the other hand, when the number of simulations is re-

duced there are fewer calculations which means it will go through the remaining

steps faster.

Unfortunately, this algorithm has problems with producing trajectories. Since this

algorithm starts simulations for all valid locations, some of those may be in direc-

tions that would normally be prevented by the weighting. Furthermore, this can

cause the simulations to travel too far from the recapture location while starting

new simulations that will also travel too far from the recapture location. Because

of the high temperature halfway through the DST 742 most of the trajectories are

terminated.

3.2.4 Merge Algorithm

The idea is the same as the General algorithm, but it is run twice and from each

end for half the data in the DST. Meaning that half of the simulations are started in

the release location and moved towards the recapture location, but they go through

only half of the data in DST. These simulations generate the forward trajectories.

The other half of the simulations start in the recapture location and move towards

the release location by starting with the last entry in the DST and then iterating

backwards through the data. This generates the backwards trajectories. When the

simulations from both ends are finished the simulation application goes through all

the trajectories that were completed and the once that are close enough to each

other are combined. The distance between two locations must be less or equal to

the maximum distance that a fish can traverse in one time step for two trajectories

to be combined into one complete trajectory.
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Figure 3.7: Illustration of how the Merge algorithm works with the three possible

outcomes for a trajectory.

An example of this can be seen in figure 3.7 which illustrates the three scenarios that

can occur during a simulation. In this example a total of six simulations are run.

Three simulations are run from the release location and weighted towards recapture

location, and three simulations are run from the recapture location and weighted

towards the release location. The first scenario is two trajectories from completed

simulations that are combined because both have a location for every iteration and

are close enough to each other to be combined into one trajectory. The distance

between the two locations must be lower than the maximum distance that a sim-

ulation can cover in one iteration. Then the merged trajectory is stored in a text

file. However, there are not always other trajectories that are within range so even

trajectories from completed simulations will be discarded if there are no other tra-

jectories that it can be combined with. Lastly, there are simulations that cannot

find any new valid locations and that are terminated.

This algorithm was implemented for two reasons. The first reason is that the paper

the thesis is based on used an approach like this [6]. The paper did it because the

deterministic component in the random walk cycle would dominate towards the end

and force all the simulations to travel straight to the recapture location. Therefore,

having the simulations travel half the distance from each end would avoid the deter-

ministic component becoming too dominant which is why the merge algorithm was

used instead [6]. Secondly, most of the simulations are terminated about halfway

through the simulation application because of a significant increase in temperature

in the DST data. This increase causes most of simulations to terminate if they are

not close enough to Lofoten where the temperature is higher. Therefore, having the
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simulations travel only halfway from each end might lead to more of them making

it through.

The resulting trajectories have several locations that are clustered around the start

location for the first seventy days of the simulation. Afterwards all travel towards

the recapture location with one or two clusters on the way. Once the trajectories

reach the end it does not travel around much. Indicating that the fish did not

spend much time in Lofoten. However, it could be that the weighting in the merge

algorithm pulls the fish away too soon.

3.2.5 Comparison of Algorithms

Unfortunately, the release continuously algorithm is unable to generate any trajecto-

ries. The reason is unknown and there was not enough time left to fix it. Therefore,

only the merge and general algorithm will be compared. In terms of the number

of trajectories that are generated by the two algorithms, the merge algorithm is

significantly better when testing with the DST 742. Testing has shown that with

the same settings the merge algorithm, generates more than twice as many trajec-

tories as the general algorithm. Even though the merge algorithm generates more

trajectories, it also consistently takes almost twice as long to complete as the general

algorithm. This can be mitigated by reducing the margin of error on temperature.

This will reduce the number of trajectories that are generated by both algorithms

but could give trajectories that are more realistic. An additional advantage of the

merge algorithm is that it can produce trajectories with a lower margin of error on

temperature than the general algorithm. The testing discussed above used a margin

of error of 1.2 ◦C and when that was reduced to 1 ◦C the merge algorithm looked

even better. Instead of producing twice the number of trajectories it produced five

to ten times the number of trajectories. It still needed more time to complete, but

rather than taking twice as long the difference was reduced to roughly 40% instead.

Furthermore, reducing margin of error on temperatures down to 0.9 ◦C lead to the

general algorithm no longer being able to generate any trajectories at all. However,

the merge algorithm was still able to produce trajectories. The merge algorithm can

generate trajectories with a margin of error on temperatures as low as 0.76 ◦C.

3.2.6 Ending Simulated Trajectories

Once simulations of the DST 742 eventually reach Lofoten all of them go back

and forth within Lofoten. It is also difficult to see a pattern even after visualising

the resulting trajectory. Furthermore, the temperature data for Lofoten is not very

accurate according to experts at the IMR. Therefore, it may be pointless to have the

simulation go back and forth in Lofoten until the final day is reached. So, when the
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simulation is within a certain radius of the recapture location it can be considered

complete. This change could lead to the simulation being able to generate additional

trajectories. Also, the margin of error on temperatures could be lowered. This can

only be done when running the General algorithm on DST 742, and not on DST

1664. This is because the release and recapture locations on DST 1664 are so close

to each other that the simulation would be considered complete almost at once.

3.2.7 Grid Points Versus Latitude and Longitude

Initially this project attempted to determine where the fish could traverse by cal-

culating several latitude and longitude coordinates. These coordinates had to be

converted to x- and y-coordinates within the NetCDF4 files so that the tempera-

ture and depth for those given coordinates could be read and the viability of the

locations could be evaluated. However, converting latitude and longitude to x- and

y-coordinates was incredibly computing intensive, leading to the simulation appli-

cation taking far too long to complete. Each iteration needed over 1 minute to

complete when using this approach. Furthermore, one execution of the simulation

application can contain over 700 time steps which would approach a run time of 12

hours which is unacceptable since one of the goals of this project is to generate the

trajectories in real time. This is because each latitude and longitude location would

have to go through over two million different x- and y-coordinates in order to find

the x- and y-coordinates.

Therefore, x- and y-coordinates were used instead. The OGCMs have a grid in

which all the squares are either 800x800 meters or 4x4 km. Meaning it could be

used to calculate the distance from one (x,y) grid location to another. Furthermore,

each set of x- and y-coordinates contain lat-ρ and lon-ρ which are real world latitude

and longitude coordinates. This dramatically reduced the completion time for the

simulation. It was no longer necessary to use actual latitude and longitude, apart

from the conversion of the latitude and longitude of the release and recapture loca-

tions. For the first location of the simulation, where only latitude and longitude are

known, every set of x- and y-coordinates are checked and the one with the latitude

and longitude closest to the release location is chosen.

3.2.8 Validating Calculated Locations

When a simulation generates a new location in a trajectory, it must check whether

the new location is valid or not. First it will check if there is land between the cur-

rent location and the new location. If there is, it is removed as a potential location.

Afterwards the simulation will check if the new location is deep enough. This only
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requires the x- and y-coordinates, which are already known. The depth data for

all (x,y) grid locations for both the Nordic Seas and the Norwegian Sea models are

stored in two arrays that are loaded from a NetCDF file on the computer at the

start of the simulation. Once the depth is collected from the array it is compared

to the depth from the DST data. If the location is deep enough it goes on to check

the temperature.

To get this information it needs the x- and y-coordinates as well as the z-coordinate

which is an index for a given σ layer. The x- and y-coordinates are already known,

but the correct z-coordinate must be found using the depth from the DST. This is

done using a data set provided by an oceanographer employed at the IMR which

contains the depth for all (x,y,z) grid points. To find the correct z-coordinate, a for

loop goes through all the values within the z-coordinates in the known (x,y) grid

point, and picks the one with the depth that is the closest to the actual depth from

the DST. Then it is used to find the temperature of the location which is stored in

an array. Once the temperature is collected it is compared to the temperature from

the DST and if the difference between the two temperature values are less than a

margin of error, the location is considered valid.

3.2.9 Weighting

Once a simulation has generated a list of valid locations, it will pick a random one

from the list and then use weighting to determine whether it should be chosen. If it

does not choose that location it picks another random location from the list and tries

again until one is selected. There are two ways that the simulations will be weighted,

by the distance from the recapture location and the ocean current. Meaning, if the

randomly selected location is closer to the recapture location than the current one,

it is more likely to be chosen. If it is not, then it is less likely to be chosen. This

is done by first generating a random number which is between zero and the total

number of possible new locations that can be chosen minus one. Then another

random number is generated which is between zero and one. If the new location is

closer to the recapture location than the current location the simulation checks if the

random number is less than the threshold given by the user, which is also between

zero and one. If the location is not closer than the current location, it will check

if the random number is greater instead. As for the ocean current weighting the

simulation will check a value called “extraWeight” which is either true or false. If

it is true it means that the ocean current moves towards that location which means

that location is more likely to be chosen. This is done by increasing or decreasing

the threshold given by the user depending on whether the new location is closer to

the recapture location or not.
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3.2.10 Speed

It is important for the simulation that it has a reasonable speed for the trajectory.

After running the simulation several times, it is clear that the simulation is sensitive

to increases and decreases in speed. In early versions of the simulation application

the speed was static across every iteration and any change to the speed would have

a noticeable effect on how many trajectories that made it through. Later, this was

changed to a random speed within a set interval. This is the formula used:

(Fish Length× Random Value× 3.6)× (Time Step× 24)

The formula is from the paper “The Virtual Aquarium: Simulations of Fish Swim-

ming – M. Curatolo and L. Teresi” [42].

|Vsvim|
L

= 0.71f (3.1)

In this formula the velocity (|Vsvim|) of the fish is divided by its length (L) and

the result is multiplied by the frequency (f) of the tail’s movement in hertz. The

frequency of the tail movement is unknown since the DSTs do not record it. Tail

frequency is therefore replaced with a random value.

The length of the fish in meters is multiplied with a random value between 0.4

- 1 which gives the fish speed in meters per second (m/s). Having the random value

between 0.4 - 1 was suggested by the external supervisor and verified in testing.

These values were chosen based on results from running the simulation application

with different values. Moving on, the speed in m/s is then converted to km per

hour (km/h) by multiplying it with 3.6. A random value is generated for every eight

locations that are generated for the fish. However, according to the external super-

visor if the depth in the DST data for the current and next location has not changed

much then there is likely little horizontal movement. Therefore, the random value

is between 0.01 - 0.4 instead if the depth variation between the current location and

the next location is 30 m or less. The resulting value is then multiplied by 24 to

convert it from km/h into km per day and is then multiplied by the time step which

is in days. This gives the total distance that can be covered in one iteration in km.

That value is then divided by either 4 or 0.8 since the simulation uses two different

OGCMs that have squares of different sizes. One is 4x4 km and the other is 800x800

m which is why it must be divided by one of the two values. Last step is to convert

the final value into an integer since x- and y-coordinates are used to choose the next

location, and this is done by removing all the decimals from the value.

3.2.11 Static Data

The simulation application spends a significant amount of time loading OGCMs

from the system storage and on to the memory. This is because the DSTs used in
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this project cover 7 months or over 2 years and need temperature data for every day

in those periods. Therefore, data other than temperature has been removed from

the OGCMs to minimise how long this takes. The data that has been removed is

either not relevant for the simulation or static. For example, the OGCMs contain

a value that represents the salinity of the water and takes up the same amount of

space as temperature. This information is unnecessary since the DSTs does not

contain salinity which is why it was removed. However, there are values like lat-ρ

and lon-ρ, seabed depth and an array that contains the depth in meters of all the

vertical z-values for every (x, y) grid point. In addition, there is also an array called

mask rho which is either 0 which means the (x, y) grid point is on land and is 1

when it is not. All that data is required, but static which is why it is loaded onto

the memory before any of the simulations are started and remains there until the

simulation application is completed.

3.2.12 Depth

Due to vertical movement of the DSTs used in this project the depth of each location

must be checked to verify whether it is a valid location or not. This is done by

comparing depth of the seabed in an OGCM grid point with depth from the current

DST location. If the depth from the DST is deeper than the depth from the OGCM,

the simulation moves on to check a different location. Otherwise the simulation will

then iterate through all z-coordinates in the given (x, y) grid location and then

choose the z-coordinate with depth value closest to actual value in the DST. This is

done using a list which contains the depth of each (x,y,z) grid location (see section

3.2.11). Once the z-coordinate is chosen it stores the z-value which is an integer.

The index is then used to retrieve temperature from the OGCM.

3.2.13 Time step

The DST data is measured every ten minutes, and OGCMs have averaged temper-

atures over areas within grid points. Depending on the model, each grid point is

either 800x800 m or 4x4 km. It is unlikely that the simulation will be able to look at

DST data for every 10 minutes because it will not be able to traverse the distance of

a grid point in 10 minutes. Even if it can generate trajectories using temperature for

every 10 minutes it would be time consuming. The simulation can skip 144 entries

in the DST data. By doing this the simulation only looks at data for every 24 hours.

This cuts out unnecessary calculations and allows the fish to travel far enough to

reach a different grid point of the model.

The simulation receives a time step which is used to decide how many entries in

the DST data should be skipped. This value can be given any number above zero.

33



CHAPTER 3. DESIGN & SOLUTION 3.2. SIMULATION APPLICATION

Furthermore, the time step is multiplied by 144 which gives the number of entries

that should be skipped and is called the tag step. There are 144 data readings every

day for a DST and therefore that is the value used. Furthermore, the time step

is used to increment each iteration of the simulation. The lower the time step the

more complex resulting trajectories are. Unfortunately, it also reduces the number

of trajectories that are generated. This is likely caused by the fact that lower time

steps lead to the simulation having to check more locations before it reaches the

recapture location. Therefore, it has more opportunities to fail. Also, trajectories

will not be able to travel very far each iteration. This may allow the simulations to

travel into the fjords, but they may not be able to exit since a limited number of

directions are checked and most of them could be blocked by land.

3.2.14 Implementation of Ocean Current

At the suggestion of the external supervisor the ocean current will be used in the

simulation to determine where the fish is more likely to travel. This information is

extracted the same way as temperature and uses the same coordinates. The ocean

current is represented by two values called u and v. The value v represents the north

and south ocean current, a positive value means north and negative means south.

For u it is east and west, positive for west and negative for east. The value itself

also indicates the strength of the current. The question is, how should the current

influence the simulation? Should simulation follow or go against the current? It

is uncertain if either is the correct approach and therefore both will be evaluated.

Following the current means the simulation is more likely to choose locations that

the current is moving towards. Going against the current means it more likely to

choose location the current is coming from.

3.2.15 Choosing Optimal Ocean General Circulation Model

There are two OGCMs available, the Nordic Seas model and the Norwegian Sea

model. The Norwegian Sea model has a higher resolution which makes it the pre-

ferred option, but this model can only be used for locations in the waters around

Norway. Having the simulation switch between models when necessary could im-

prove the number of trajectories. Testing with DST 1664 made it clear that using

only the Nordic Seas model was not good enough because it was not able to produce

any complete trajectories. However, when the model of the Norwegian Sea was used

instead, it was able to complete but could not travel to the Barents Sea because the

model only cover the waters around Norway.

Switching between the Nordic Seas and Norwegian Sea models is not that sim-

ple. Currently the simulation uses the x- and y-coordinates of the Norwegian Sea
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model to decide where it is. The x- and y-coordinates in the Nordic Seas model are

not equivalent since both have different resolutions. Therefore, the latitude and lon-

gitude will have to be used instead. This means that simulations that switch from

the Norwegian Sea will have to go through and compare its current latitude and

longitude with all the latitude and longitude values in the Nordic Seas model. The

double list of latitude and longitude are sorted so a search algorithm, e.g. binary

search, could be used. In the worst case it will have to search through 2 347 004 x-

and y-coordinates to find the correct coordinates.

The data is static, so it would be less computing intensive to simply index them

to each other. Create two lists that take the x- and y-coordinates of one model and

returns the x- and y-coordinates for the other model. So, one list for the model of

the Norwegian coast and the other for the Nordic Seas. This is what was done in

this thesis. The two lists were stored as NetCDF files that the application loads into

the memory at the start of the simulation. Doing it this way means the simulation

only has to check one value when converting instead of over two million.

This implementation does have an issue. Every x- and y-coordinate in the Nordic

Sea model is indexed to a x- and y-coordinate Norwegian sea model. Even the coor-

dinates that are outside the area covered by the Norwegian Sea model. Therefore, a

(x,y) grid point could be wrong when converting to the Norwegian Sea model. The

solution to this is to take latitude and longitude in the (x, y) grid point that is to be

converted and compare to the latitude and longitude of the converted point. Then,

if the difference between the latitudes and longitude is less than 0.1 the conversion

was successful. Otherwise the trajectory is terminated.

Switching between the two models is not always necessary. The DSTs 742 would not

benefit from this because, according to the external supervisor, it moves along the

Norwegian coast. The model with the highest resolution already covers this area,

therefore the simulations of this DST will only use the Norwegian Sea model.

DST 1664 was released 02.04.2004 and recaptured 19.05.2006. It is unlikely that

it spent those two years in Lofoten where the release and recapture locations are.

Therefore, weighting the fish towards the recapture location will not work because

that will prevent it from leaving Lofoten. Being in the ocean for so long means

there is no way of knowing if it travelled to the Barents Sea or not. Therefore, the

simulations of this DST will use both the Nordic Seas and Norwegian Sea models.
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3.2.16 Reading NetCDF

Originally the SDSLite NuGet package would be used to read NetCDF files in the

program. Unfortunately, it was outdated and therefore unable to access the correct

dll files containing all the NetCDF functions that were needed. To solve this issue

the SDSLite project was cloned from its Github repository [43]. SDSLite use a

NuGet package called Dynamic interop to import all functions from the dll. The

package was created to import functions from a “unmanaged” dll. However, this

did not work and resulted in a PInvoke exception because the functions from the dll

were not called correctly. The solution was to not use Dynamic interop, but rather

import all the functions using the code below:

[ Dl lImport (@”\path{C:\Program F i l e s \netCDF 4 . 6 . 1\ bin\ netcd f .−
d l l }” , Cal l ingConvent ion = Cal l ingConvent ion . Cdecl ) ]

public stat ic extern int nc\ s e t \ chunk\ cache ( IntPtr s i z e ,

IntPtr nelems , f loat preemption ) ;

[ Dl lImport ( ” ne tcd f . d l l ” , Cal l ingConvent ion = Cal l ingConvent i−
on . Cdecl ) ]

public stat ic extern int nc\ open ( string path , CreateMode mo−
de , out int ncidp ) ;

The first line of code has the full address to the NetCDF.dll, but the other DllImport

lines simply write the dll name instead. This is because the other lines know where

it is because of the first. The two lines of code with DllImport are there to make

sure that the function, which is right below it, gets imported correctly.

3.2.17 DSTs used

Based on the recommendation from the external supervisor this paper will focus

on two DSTs. First is DST 742 which was chosen since the release and recapture

locations are far apart and it has been out for 195 days. It was released south east

of Svalbard and recaptured in Lofoten. It was released 26.08.2003 and recaptured

on the 13.03.2004. Based on this data it is likely that the fish travelled straight from

the release to recapture location which makes evaluating the trajectories easier. It

collected DST data for about seven months and will not be as time consuming as

other DSTs that have collected data for a longer time. The second is DST 1664 which

collected data for far longer time than DST 742. It was released on the 02.04.2004

and recaptured the 22.12.2006, meaning it collected data in the ocean for roughly

thirty-two months. Furthermore, the release and recapture locations are both in

Lofoten. This means that the weighting that was used for DST 742 will not work

for DST 1664. Therefore, simulating the trajectory for this DST will be far more

complicated and time consuming. There is also the possibility that this could reveal
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shortcomings of the simulation application that were not apparent in the trajectories

generated from DST 742. Moreover, since DST 1664 has data for over two years it

is difficult to evaluate the trajectories that will be generated from it. Trajectories

generated from this DST will prove whether the simulation is of any value. Also, the

DST only contains temperature and depth data from the release date to 19.05.2006.

Without those seven months of data the merge algorithm will not work since it runs

simulations from the release and recapture location. However, the general algorithm

should still work, since it only runs simulations from the release location.
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3.3 Visualisation Application

The visualisation application of the framework is created in Unity3D with a scene

for user interaction and background implementation for managing requests from the

user.

Unity3D Scene

The Unity3D scene contain the environment and menus of the application. The en-

vironment, “Map” is an imported satellite map provided by Mapbox API, and the

three displays; “FishTrajectoryDisplay”, “ChangeParameterDisplay” and “DataOn-

MarkerDisplay” are the interactable menus for the user.

Figure 3.8: The parent/child structure of the application

The application is created with the parent/child structure, where the parent causes

all children to move the way the parent does, but moving the children does not have

any effect on the parent. Each location in a fish trajectory is created as a child

of the scene. This means that the locations can be modified individually without

affecting the scene or other locations.

Mapbox

An imported satellite map from Mapbox API is the backbone of the visualisation

application. Along with providing maps, the Mapbox API consists of functionality

that allows customisation of maps, as well as adding elements to maps. Mapbox

also has a build in zoom and it updates the location of the coordinates as the user

navigates around the map.

To make the map suitable for visualising fish trajectories in the Nordic Seas, the

script “SpawnOnMap.cs” is modified. Since the fish trajectories are centred around

Norway and the Barents Sea, the initial displayed location of the map is altered to

the waters around Norway.
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Figure 3.9: Satellite map from Mapbox API in Unity.

The locations in a fish trajectory can be displayed through adding custom mark-

ers that appear on the map through transforming GPS coordinates into x- and

y-coordinates for the Unity3D scene. Mapbox API provide this functionality, along

with functionality to scale and add as many markers necessary.

The ”SpawnOnMap.cs” script initially drew locations on the map at run time, ask-

ing the user to manually decide their location. The simulation algorithm store fish

trajectories by writing latitude, longitude, temperature and depth in text files, where

each line represents a new location in the trajectory. The script is modified to read

the text file and add each line to a list. Instead of listening for user input, the script

will now draw each object in the list as locations in the fish trajectory. The user can

change which trajectory drawn by choosing a file from one of the two drop-down

menus in the Fish Trajectory Menu. The application will then remove the previous

trajectory from the view, and both read and draw the new file on map.
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Fish Trajectory Menu

The Fish Trajectory Menu read files and presents content to the user, as well as

allowing the user to modify how content is presented.

Figure 3.10: The Fish Trajectory Menu

Figure 3.10 shows the menu presented when the application is started. First, the ap-

plication read a file named “AvailableTags.txt” that contain all the available DSTs

the simulation application can execute. This file must exist to use the application

because a DST is only available if both the DST data and the OGCMs are available.

Each of the available DSTs are placed in a drop-down menu named “Choose fish

tag” that change the directory path to the path of the chosen DST.

When a DST is chosen, the two drop-down menus “Paths close to capture point”

and “Paths not close to capture point” are updated. They read two separate direc-

tory folders containing files of potential fish trajectories, where one folder contains

trajectories that end close to the recapture location of the fish and the other folder

contains trajectories that do not end close to the recapture location. The drop-down

menus contain all the fish trajectories and when a fish trajectory is chosen, the view

is updated to display the new trajectory.

Trajectory files from an execution of the simulation application will override previ-

ous results on a given DST. This ensures that all the available trajectories derive

from the same parameters, which makes the comparison of trajectories more accu-

rate in terms of finding common migration patterns.
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In order to let the user modify how trajectories are presented, toggle buttons are

created. This is done in order to visualise trajectories without crowding the view

with all the information at once. Toggles work as switches where behaviour are

programmed to their two conditions, checked and unchecked. The program listens

to changes on each toggle and respond based on their condition. Each of the four

toggles are described in table 3.1 - 3.4 below.

Draw whole

trajectory

Description Purpose

Checked
Draws every location in

trajectory

To see the full fish

trajectory

Unchecked
Draws release and

recapture locations

To see where the fish was

released and recaptured

Table 3.1: Toggle for drawing the whole trajectory

One by one location Description Purpose

Checked
Draws one location every

0.05 second

To see the movement

and direction between

each location

Unchecked
Draws every location in

fish trajectory at once

To more easily compare

similarity of fish

trajectories

Table 3.2: Toggle for drawing one by one location

Index on locations Description Purpose

Checked
Shows each location with

its index

To see the direction the

trajectory is moving

Unchecked
Shows each location

without its index

To make it easier to

distinguish between

individual locations

Table 3.3: Toggle for showing index of each location
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Draw lines Description Purpose

Checked
Draws lines between

each location

To see connection

between locations

Unchecked
Remove lines between

each location

To make it easier to

distinguish between

individual locations

Table 3.4: Toggle for drawing lines between locations

Change Parameters Menu

The Change Parameters Menu is created to let the user change parameters on the

simulation algorithm. The menu is reached through clicking the “Change param-

eters” button from the Fish Trajectory Menu. Since the menu covers most of the

available space on the screen, the button changes the state of the menu to either

display or hide it.

Figure 3.11: The Change Parameters Menu

When the application is started, it read a file named “Setup.txt” that contains the

parameter values from the previous execution of the simulation algorithm. These

parameters are used as placeholder values in the Change Parameters Menu to help

the user recall previously used parameter values. If the file does not exist, the place-

holder values are set to zero until the user runs the simulation algorithm that store

the parameter values in the “Setup.txt” file. Figure 3.11 display the menu with

values from an earlier execution of the simulation algorithm.
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The parameters are explained in table 3.5 below. Each of them affects the re-

sult from the simulation application, either by the number of trajectory results or

by increasing or decreasing the execution time of the simulation application.

Parameter Description

Fish length (meters)
Factor for determining swimming

speed

Days between each tag data
How often the simulation algorithm

should read DST data and calculate

locations

Number of simulations Amount of individual fish trajectories

Allowed margin of error on

temperature

Difference between temperature in

DST data and in OGCM for deciding a

potential location in the fish trajectory

Allowed margin of error on depth
Difference between depth in DST data

and in OGCM for deciding a potential

location in the fish trajectory

Weighting of trajectory towards

recapture point

Percentage of how much each location

should be weighted towards the

direction of where the fish was

recaptured

Number of new locations to check in

each location

How many potential locations that are

calculated for each location

Choose algorithm
Lets the user choose which simulation

algorithm to run

Table 3.5: Explanation of the parameters for running the simulation application

When the button “Run” is clicked, a terminal window is launched containing infor-

mation about the progression of the simulation application. When the simulation

application is completed, the terminal window will provide information about the re-

sults from the execute and then close itself. The “Setup.txt” has now been changed

to the new parameters, the new trajectories have replaced the old trajectories, and

the map is automatically updated to display one of the new trajectories.
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Data Menu

The trajectories resulting from the simulation application store latitude and lon-

gitude, as well as temperature and depth from the DST data and the OGCM in

each location. The Data Menu displays the temperature and depth information for

every location in a fish trajectory. Figure 3.12 display the information for marker

77, as well as the difference between the values. The Data Menu also display the

distance and average speed to a previous or next location in a trajectory. To easily

highlight the next or previous location, the buttons “Previous Marker” and “Next

Marker” change the current location and updates the temperature, depth and dis-

tance viewed.

Figure 3.12: The Data Menu
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Results

The results from the simulation application will be presented in this chapter. The

results derive from a computer with a Ryzen 5 1600 CPU, 16 GB of RAM, 1 TB

SSD and a 2 TB HDD. Results from simulations of DST 742 used the Norwegian

Sea model and results from DST 1664 used both the Norwegian Sea and Nordic Seas

models. The results shown will be the time it takes for the simulation application

to finish, and the number of trajectories generated. A high number of trajectories

is considered good since it means that the parameters, e.g. margin of error on

temperature can be lowered. Table 4.1 shows the parameters and the values used

in most of the test that were run. If a test uses different values for any of the

parameters, it is specified. Furthermore, fish length is unique to each DST and is

therefore different. Also, the weighting is different for the DSTs.

Parameter Values

Fish length (meters) 0.82 meters for DST 742

0.65 meters for DST 1664

Days between each tag data 1 day

Number of simulations 10 000

Allowed margin of error on

temperature

1.2 ◦C

Allowed margin of error on depth 30 m

Weighting of trajectory towards

recapture point (0 - 1)

0.75 on DST 742

no weighting on DST 1664

Number of new locations to check in

each location

30

Table 4.1: Parameter values used when testing the simulation application
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4.1 Research Method

In order to answer the research questions, data on performance and usability had

to be collected. The performance of the framework was tested by executing the

simulation application multiple times with the same parameters to see if the execu-

tion time or the number of trajectory results varied. To collect data on feedback,

the spiral development model explained in section 1.7 was used as the development

methodology. How the methodology was used is described below.

The project followed a 15-step spiral development model (SDM). In order to it-

erative over each phase three times, the number of steps was determined to be 15.

This resulted in more than one prototype, which made it easier to collect data and

match expectations of experts. Figure 4.1 display the SDM along with an explana-

tion of what was done in each step.

Figure 4.1: The spiral development model followed for creating the framework

Phase I: Knowledge Appraisal and Synthesis

In this phase, the goal was to review current knowledge base. In step 1), a problem

description was used to find unknown terms and fields of studies required to solve

the problem, e.g. DST, OGCMs, migration patterns. Step 6) and 11), identified

knowledge gaps based on feedback and tests from a selection of experts. Knowl-

edge acquired in this phase were discussed at the end of each step to decide if the

knowledge could be used to further improve the solution. Instead of only acquiring

knowledge on topics that would expand the functionality, knowledge for improv-

ing resulting fish trajectories was often prioritised. Ocean current is an example

of knowledge investigated in order to potentially improve resulting fish trajectories
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(see chapter 3.2.14).

Phase II: Stakeholder Solicitation

In Phase II the goal was to elicit knowledge from the external supervisor that could

improve understanding of topics and fields of studies. This could be links to articles

in order to gain a deeper understanding of knowledge acquired in Phase I, access to

internal servers to download data, e.g. OGCMs, or connecting us with experts with

deeper knowledge on topics, e.g. oceanographer to understand data within OGCMs.

Phase III: Models and Algorithms

Based on knowledge acquired from Phase I and II, the design and algorithms for

the solution is created in this phase. In step 3), the design for the simulation

application and the visualisation application was created, along with algorithms for

reading NetCDF files and generating trajectories. In step 8) and 13), the previous

algorithms were updated based on new knowledge acquired and algorithms for new

functionality were implemented.

Phase IV: Decision Support Framework

This phase integrates knowledge and algorithms into a prototype that can be tested

by experts. This phase also eliminates potential functionality and improvements

found in phase I and II, that do not improve the current solution. Turbulent ocean

current affecting where fish traverse was knowledge learned late in the project (see

chapter 3.2.14). A solution with an algorithm that found locations within ocean

currents did not affect resulting trajectories, but it did result in longer execution

time of the simulation algorithms (see chapter 4.4.1). This resulted in assembling a

prototype without the algorithm for finding turbulent ocean current.

Phase V: Testing and Validation of Prototype

In Phase V, the prototype created in Phase IV is tested and validated on a selection

of experts chosen by the external supervisor. They are all employees at the IMR, and

they are experts in different fields of studies, e.g. biology, mathematics, oceanog-

raphy. In step 5), the first prototype was presented to the experts, including the

external supervisor, at a meeting where they received a presentation and a demon-

stration of how the framework was created. They gave comments on improvements

and functionality that they found necessary in a solution for generating and visualis-

ing fish trajectories. In step 10), a survey was performed on the experts where they

used the prototype without guidance, and then answered questions on its usability

and functionality. The approach and the results from this survey are explained in

chapter 4.2 below. In step 15, the final prototype was updated with functionality
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and variable names from the expert survey and presented to the external supervisor,

where the future of the framework was discussed.

4.2 Expert Survey

The expert survey was performed in step 10 of the spiral development model. This

made it possible to add functionality and improve usability before submitting a

final prototype. This section explains how the expert survey was performed and the

collected results.

4.2.1 Approach

Selecting the Experts

The external supervisor has chosen a group of experts suited for reviewing and

providing feedback for this project. The experts are employed at the IMR, and

have experience related to geo-location of fish. They have investigated geo-location

of fish in different fields of studies, e.g. mathematics, biology, oceanography and

ecosystems. The experts were available for questions on topics related to their field

of study and provided feedback on two prototypes.

Setup for Testing the Framework

Three domain experts tested the prototype from step 10 in the SDM. The domain

experts consisted of a biologists who is responsible for the DST used, an oceanog-

rapher who created the merge algorithm [6], and a researcher of ecosystems and

migration patterns.
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Parameter Recommended values

Fish length (meters) 0.6 - 0.8 m

Days between each tag data 1 - 4 days

Number of simulations 5 000 - 15 000

Allowed margin of error on

temperature

1.2 - 1.5 ◦C

Allowed margin of error on depth 10 - 30 m

Weighting of trajectory towards

recapture point (0 - 1)

0.65 - 0.90

Number of new positions to check in

each position

8 - 14

Choose algorithm General / Merge

Table 4.2: Recommended parameter values for running simulation algorithm

To perform a test without guidance from developers, a summary of what the frame-

work aims to accomplish was created along with a brief introduction to different

functionality in the visualisation application. A step-by-step guide on how to run

the simulation application from the visualisation application was also created, to-

gether with table 4.2 containing recommended value ranges for the parameters.

A survey was created in order to gather information regarding available function-

ality, variable names, usability, and improvements. The results from the survey is

presented in chapter 4.2.2, and discussed in both chapter 5.1.3 and 5.1.4.

4.2.2 Results

The experts used the framework for 30 minutes and answered the survey afterwards.

In order to make the experts understand the ongoing process behind the visualisation

application, it was explained to them how the simulation algorithms find trajectory

results. This was done while the experts were waiting for trajectory results from

an execution that they had launched with the help from the step-by-step guide and

the parameter values from chapter 4.2.1 and table 4.2. Since the user interacted

with the visualisation application of the framework, the questions and feedback in

the survey was mostly concerning the front end of the framework and not back end

improvements on how fish trajectories are generated.

The results from the survey can be found in Appendix A, and they provide feedback
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on the usability of the application. Question 1), 3) and 5) go through all the func-

tionality and parameters in order to determine how well functionality are explained

by their names. The results from these questions were positive, and the experts

suggested improvements to some of the names, see question 2), 4) and 6). Question

7) discover how well information is presented in the execute window that is launched

when the user starts a simulation from the visualisation application. This execute

window display information on progression of the simulation application, and it did

receive suggestions on how to improve it. Question 10, ”how well does the appli-

cation present fish trajectory results?”, received top score from the experts. The

next question, ”considering the parameters used and the approach for simulating

fish trajectories, how likely is it that the trajectories are realistic?”, received mixed

answers since the experts cannot with certainty decide if the results are realistic.

The last question, ”would you use a framework, like the one tested, to simulate and

visualise DST data?”, showed that two out of three would use a framework like this.

4.3 Visualisation Application

The results from the expert survey gave ideas on how to improve the visualisation

application. A discussion on the suggestions that were made and how they were

prioritised, is presented in chapter 5.1.3. New functionality was included, as well as

more precise description of variables.

Figure 4.2: Final prototype of the visualisation application
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Figure 4.2 display the final prototype presented to the external supervisor in step

15 of the spiral development model. Based on the feedback from the experts, the

Data Menu now display total amount of locations as well as the date for each loca-

tion in the trajectory. The headline ”Distance” was adjusted to ”Distance between

positions” to make it more understandable.

In the Fish Trajectory Menu, new functionality was added. A toggle button named

”Several paths”, allow the user to display several trajectories at the same time.

This makes it easier to see how much trajectories vary from each other. A button

named ”Save path”, and a drop-down menu with saved paths was also included.

The possibility of saving trajectories allow the user to analyse trajectories with dif-

ferent parameters. The user can click the ”Save path”-button and access all saved

trajectories in the drop-down menu ”Saved paths”.

Figure 4.3: Final prototype of the visualisation application, including Change Pa-

rameters Menu

In the Change Parameters Menu, Figure 4.3, several fields were renamed to make it

easier to understand the purpose of the parameters. The previous prototype ran out

of space in the field ”Number of simulations” when the number exceeded 10 000.

All the fields were therefore increased in size.
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4.4 Simulation Application

4.4.1 Ocean Current

After checking the results of implementing ocean current, the resulting trajectories

are not noticeably different. It made no difference whether the simulations followed

the ocean currents or went against them. The number of trajectories was unaf-

fected and same for the locations in them. However, the run time was significantly

increased since adding ocean current data to the NetCDF files with OGCM tem-

perature data, tripled the size of each file. This led to increased run times and a

storage constraint. Figure 4.4 show the increased run time after adding ocean cur-

rent. Using an HDD more than doubled the run time while with an SSD increased

with a little more than two minutes.

Running the simulation without implementing the ocean current data on an SSD

the CPU utilisation was well over 80% for the first half of the simulation application.

On the second half the utilisation was between 30-50%. This is a result of simula-

tions being terminated as the simulation application runs, which leads to less work

for the CPU. However, with the ocean current implemented the CPU utilisation was

consistently lower and would often drop and then spike, especially when using an

HDD. This was likely because it had to wait for the NetCDF files to be loaded from

the system storage and onto the RAM.

Figure 4.4: Comparison of the run time of both the algorithms with and without

the ocean current implemented.

In conclusion, the fact that the ocean current implementation had no effect on the

trajectories and increased the run time, it was removed from the solution.

52



CHAPTER 4. RESULTS 4.4. SIMULATION APPLICATION

4.4.2 DST 742

There are certain patterns that appear when looking at trajectories generated by

simulating of DST 742. In the beginning, all trajectories are within the same area

for roughly 70 days before any of them start to travel towards Lofoten regardless of

weighting. According to “Migratory behaviour of north-east Arctic cod, studied by

use of data storage tags” [44], tagged fish behave differently the first fourteen days

after release, and return to “normal” behaviour afterwards. The article states that

the reason for this is that the fish have ruptured their swim bladder, which regulates

its pressure. This could mean that the fish stays within one area because it needs

to recover before it can traverse towards Lofoten.

General Algorithm

When generating trajectories using the general algorithm there is not much varia-

tion when looking at the locations in the trajectories. This is likely because all the

trajectories must get far enough south before the temperature in the DST reaches

8.0 ◦C. Afterwards, all the successful trajectories spend the remaining steps within

Lofoten because of the high level of weighting that must be applied for the trajec-

tories to able to complete. Therefore, it is likely that the temperature is so high

because the fish has entered or is close to Lofoten.

Merge Algorithm

Similar to the general algorithm, the merge algorithm also does not show much in

terms of variation between each trajectory at first glance. However, it does generate

some trajectories that are different from the general algorithm. This is likely be-

cause trajectories are created by combining two trajectories where one started in the

release location and the other in the recapture location. Then both were weighted

towards the location it did not start in. Nevertheless, most of the trajectories are

very similar to the once produced by the general algorithm, but there are trajec-

tories that travel further west and do not follow the Norwegian coast as closely. It

could be caused by the weighting of the backwards trajectories towards the release

location.

4.4.3 DST 1664

The trajectories generated from the DST 1664 have significantly more variations

than DST 742. This is because both the release and recapture locations are so

close together and it has been out for over two years. This means that the current

weighting towards the recapture location will not work. Therefore, the simulation
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was run with no weighting at all, however there were no apparent and consistent

patterns that emerged from the trajectories.

General Algorithm

The trajectories generated through simulations of the general algorithm are concen-

trated around Lofoten and do not travel far into the Barents Sea. Comparing the

locations in the trajectories with the area covered by the Norwegian Sea model indi-

cates that few trajectories ever switch over to the Nordic Seas model. Furthermore,

this also means that it is likely that most of the trajectories that do switch to the

Nordic Seas model are terminated. Alternatively, it may be that the trajectories

rarely change from using the model of the Norwegian Sea to the one of the Nordic

Seas. For a trajectory to switch there must be no possible location found using the

current model. It could be that none of the trajectories that are able to complete

ever switch to the Nordic Seas model because it always finds at least one valid loca-

tion. However, the trajectories that do switch might actually travel into the Barents

Sea, but are unable to find their way back to Lofoten before the temperature rises

too high. The solution to this would be dynamic weighting that changes based on

the time of year. It was determined that none of the completed trajectories travelled

to the Barents Sea because it will not switch unless it is unable to find any valid

locations. Therefore, a check was implemented that would switch the models that

was being used if the trajectory was far enough north. This was done by checking if

the latitude was greater than 71◦ and if the longitude was greater than 25◦. Then it

would switch to the Nordic Seas model and the opposite is true for the Norwegian

Sea model. This did lead to some trajectories visiting the Barents Sea, but none

stayed for more than six days and the locations were barely within the Barents Sea.

Merge Algorithm

Unfortunately, this algorithm did not initially work since the last recorded data with

depth and temperature in this DST is from 19.05.2006 while the recorded recapture

location is from 22.12.2006. This leaves a gap of seven months with no data. There-

fore, to continue the work on this DST it was decided that the last registered date

in the actual DST should be used instead of the recapture date.

With the time step to 2 days and the error margin on temperature at 1.2 ◦C the

merge algorithm is unable to find any new valid locations. Furthermore, increasing

or decreasing the time step had no effect. This is only an issue for the backwards

trajectories while the forwards trajectories can complete without any issue. A part

of the reason for this is that none of the locations it checks are valid since there is

land in between the new and the current location.
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Figure 4.5: Map of where DST 1664 was released (1), recaptured (2) and where the

recapture locations was moved to (3).

This is caused by the recapture location of this DST being on land, deep within Lo-

foten as illustrated in figure 4.5 where the recapture location is marked with number

2 and the release location is marked with the number 1. Because of this there is

plenty of land that can block the directions that the simulation checks. Therefore,

the simulation of the backwards trajectories cannot get any further than the first

iteration. Taking a closer look revealed that the simulation found two locations that

were not blocked by land and met all other requirements except the temperature

margin of error of 1.2 ◦C. As a result, the locations where discarded because the

margin of error on temperature was too low. Once the margin of error on the tem-

perature was raised to 2.2 ◦C it was able to go beyond the first iteration. With this

change the simulation was able to generate roughly 4,500 backward trajectories that

were ready to be combined. Unfortunately, using such a high margin of error on

temperature meant that generating the backward trajectories had an execution time

of 15.52 minutes. Without a high margin of error on temperature for the backward

trajectories the simulation application is unable to run this DST using the merge

algorithm. However, the forward trajectories can be generated using a lower margin

of error on temperature.

The recapture location is less accurate than the release location according to the

external supervisor and that is why the general algorithm has a radius around the

recapture location. If the trajectory ends close enough to the recapture location it

is considered acceptable. Based on this, moving the recapture location of DST 1664
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from location 2 in figure 4.5 to location 3 should still give valid trajectories and avoid

issues such as land blocking most of the directions. Doing so lead to the algorithm

being able to run the backwards trajectories of the algorithm without any issues and

using the same margin of error on temperature as the forward trajectories.

Limitations of the Ocean General Circulation Model

After reviewing the visual representation of the trajectories generated from DST

1664 it appears that all the trajectories are being prevented from travelling further

west. This is seen by comparing the area covered by the Norwegian Sea model and

the generated trajectories. The red line in figure 4.6 shows roughly were the area

covered by the Norwegian Sea model ends and this makes it clear that there are

several locations in all the trajectories that travel close to the western border (red

line) of the model, but never cross it.

Figure 4.6: An example trajectory generated from the DST 1664 using the merge

algorithm. The red line represents the western border of the area covered by the

Norwegian Sea model.

This is likely caused by the fact that the simulation will not switch to the Nordic

Seas model unless it is unable to find any new valid location using the Norwegian

Sea model or far enough north. To counter this, the simulation could implement a
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similar condition as the one implemented for trajectories that are far enough north

to decide which model to use.

Figure 4.7: An example trajectory generated from the DST 1664 using the general

algorithm. The red line represents the western border of the area covered by the

Norwegian Sea model.

Figure 4.7 shows one of the trajectories that did switch which model it was using

when close to the red line so that the trajectory could travel further west. However,

there were extremely few trajectories that ever did cross the red line and the ones

that did were categorised as unacceptable since they did not end close to the recap-

ture location. The other completed trajectories never crossed the red line and that

could be because the Nordic Seas model did not have temperatures that were valid

and therefore many of the trajectories that did switch were not able to complete.

Dynamic Weighting

The DST 1664 has its release and recapture locations next to each other as seen in

figure 4.5. Therefore, weighting the trajectory towards the recapture location will

not work and a different approach is required. This is dynamic weighting which

means that the trajectory will be weighted away from the recapture location in Lo-

foten when the simulation is reading the DST data from May. Then, when reading

the DST data from November the trajectory will be weighted towards the recapture
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location. These months were selected based on the recommendation of a biologist

employed at the IMR. Unfortunately, this weighting reduced the number of tra-

jectories produced and none of the trajectories that were generated were close to

the recapture location. Furthermore, none of the trajectories displayed any unique

characteristics compared to other trajectories generated without any weighting.

4.4.4 Switching Between Ocean General Circulation Models

Figure 4.8 and 4.9 compare the results of the simulation application with and with-

out switching OGCMs. All the results are derived from running half of the data

within DST 1664 through the general algorithm. The time step was set to four,

meaning the simulation only looked at DST data for every four days. The algorithm

with switching (see section 3.2.15) uses both the models for the Nordic Seas and

the Norwegian Sea. The algorithm that did not switch, used the Nordic Seas model

which has a significantly lower resolution compared the model of the Norwegian

Sea. All settings were the same and the simulation was run three times and then

an average was taken of the number of trajectories results and time from all three

runs.

Figure 4.8: These simulations were run with only half of the data in DST 1664.

Figure 4.8 shows how many trajectories created by both methods with different

margin of errors on temperature ranging from 0.4 - 1.0 ◦C. A low margin of error

on temperature is considered good since it increases the likelihood of the selected

location being the actual location of the fish. However, a low margin of error on
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temperature means that simulations will find fewer valid locations since the tem-

perature difference must be lower. Consequently, this makes it is more likely that

a simulation will find zero valid locations, which means that fewer trajectories are

generated. Regardless of what the margin of error on temperature is set to, the

switching method shows a significant improvement over using only one model in the

number of trajectories that are generated. The difference in number of trajectories

between the two methods only increases as the margin of error on temperature is re-

duced. For example, with a margin of error on temperature set to 1 ◦C the switching

method produces over 2.5 times the number of trajectories that the method pro-

duces without switching. Furthermore, with the margin set to 0.4 ◦C gives over 13

times the number trajectories.

Figure 4.9: Illustration of the time reduction over time

Unfortunately, this does lead to an increase in the run time of the simulation ap-

plication. This can be seen in figure 4.9. However, the number of trajectories that

are generated also increases with run time. As the margin of error on temperature

is reduced, so is the difference between the run times of both the methods. Fur-

thermore, when the margin of error on temperature reaches 0.7 ◦C, the run time

difference is not as significant.
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4.5 Performance

4.5.1 Time Consumption

Early in the development of the framework, OGCMs were not loaded directly into

the simulation application. Instead it called an external Python script that would

return the temperature from it. Each call needed about 100 ms to complete, and

it was done eight times for every simulation in every iteration of the simulation

application. For example, if the simulation application is run with 100 simulations,

48 iterations and the number of new locations to check in each location is 8 this is

the result:

48 iterations× 100 simulations× 8 locations to check× 100 ms

60000
= 64 minutes

Assuming none of the simulations are terminated this is the minimum run time that

is required since only the time that is required to extract temperature values from

the OGCMs is considered. This was done because the OGCMs could not be loaded

into the C# project since SDSLite cannot read files that are that large.

Later on in the development, the models were loaded into the simulation appli-

cation. The problem was that they were too big. Therefore, they were divided

into smaller NetCDF files that contained data for one day. The size of the resulting

NetCDF files were about 640 megabytes (MB). Looking at the date from the current

DST, the NetCDF file with the same date was loaded into the project containing

the necessary temperature and depth values from OGCM.

Running the new solution gave an improvement of 89.33% in the run time. In-

stead of calling an external Python script, the OGCMs were loaded directly into

the C# project. This meant it no longer took 100 ms every time any of simulations

tried to retrieve a temperature value. However, this led to every simulation having

its own copy of the OGCM which led to the system running out of memory. There-

fore, this was changed so that all the simulations shared one version of the OGCM.

This caused problems when simulations tried to read data from OGCM at the same

time, which led to simulations getting the wrong values. To solve this a lock was

implemented. The lock made sure that only one simulation was reading the OGCM

at a time.

The number of trajectories generated by the simulation application increased notice-

ably as well. With these improvements running the simulation application with 200

simulations and a margin of error on temperature set to 1.0 ◦C gave two complete

trajectories. To get two trajectories before these changes, using the same settings,

required the simulation application to be run with 800 simulations. It is likely that
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some of the returned values from the external calls to python were overwritten and

that could be the reason the results improved.

Dividing the model into smaller 640 MB files helped, but the files were still much

larger than expected. The original file was 48 GB and the smaller files that were

generated totalled almost 40 GB. However, the new files only cover 63 days while

the original file contained data for 274 days. It turned out that the smaller files

did not compress the data like the original file. The data was stored as float64,

which takes up a significant amount of space compared to using int16 which is what

the original file did. Doing this reduced the size from 640 MB to 160 MB. Because

of this compression any data retrieved from the OGCM must be converted using

a formula. In Python it is done automatically, but not with SDSLite. This is the

formula:

Original Temperature = Compressed Temperature × scale factor + add offset

When the temperature value is extracted from the OGCM the “Compressed Tem-

perature” is returned and then it is put into the formula. Both the scale factor

and add offset are set when the NetCDF file is created and the files created in this

project used the same scale factor and add offset as the original files provided by

the IMR. The values are determined using these two formulas when the values are

unsigned:

scale factor =
dataMax - dataMin)

(2n − 1)

add offset = dataMin + (2n − 1)× scale factor

DataMin and dataMax are the minimum and maximum values that any of the

temperature values have and the n is the number of bits in the packed data type

which is 16 since int16 is used [45].

4.5.2 Parallel Computing

The simulation application started off as a program that only ran on a single CPU

core and it used a considerable amount of time to be completed. Therefore, one of

the supervisors suggested that the program should be run in parallel. This means

executing the program on multiple CPU cores. To achieve this a parallel for loop

[46] was implemented in the program and it led to a decrease in the run time.
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Figure 4.10: Illustration of the time reduction over time

Figure 4.10 shows how long the second iteration takes in seconds with and without

running in parallel. Running the program in parallel lead to a 74.4% decrease in

the run time, but it introduced new challenges. Variables and data sets that are

shared across all the threads were constantly being overwritten. Threads that tried

to get a value from an array would get the wrong one back because a different thread

also tried to get it at the same time. Furthermore, the random variable that selects

which valid location to choose was being overwritten. This led to the simulation

application throwing an exception since not all the simulations had the same num-

ber of valid locations. Therefore, a BlockingCollection [47] was used instead of a

regular array, since it is thread safe. After implementing a BlockingCollection in

the simulation application, no data in those collections was overwritten.

Data extracted from NetCDF files could not be easily converted into Blocking-

Collections and had to remain as arrays. Therefore, a Lock [48] was put around

code that called any function that retrieved data from an array. This was done to

prevent threads from overwriting other threads when both were trying to retrieve

data from the same array at the same time.

To implement the random selection of one of the valid locations a simple random

variable was implemented. The variable could be any value between zero and the

number of valid locations. This variable was being overwritten by other threads and

caused the simulation to crash about halfway through. To solve this issue a static

class called ThreadSafeRandom was created that would generate a random variable

between 0 and the total number of valid locations.
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4.6 System Recommendations

After running the simulation on multiple systems, it was clear that the system

requirements depended on where the OGCMs are stored. If an HDD is used, a

powerful processor is not required because the system is not able to retrieve the data

fast enough. Therefore, the system requirements are lower for systems that us an

HDD. Only the processor requirement is affected since the number of files that go into

the memory does not change. A system with the minimum requirements should be

able to run the simulation application, but might slow down the computer to a degree

that the user cannot do much until the simulation application is completed. With

the recommended configuration the user will be able to run the simulation without

noticeably slowing down the system. Furthermore, the recommended amount of

storage is the amount of space the OGCMs for DST 742 and DST 1664 use.

Minimum Recommended

Operating System Windows 10 Windows 10

Processor Quad-core with

SMT

Hexa-core with

SMT

Memory 8 GB RAM 16 GB RAM

Storage SSD (180 GB) SSD (180 GB)

Table 4.3: Recommendations for executing the simulation application with an SSD

Minimum Recommended

Operating System Windows 10 Windows 10

Processor Quad-core Quad-core with

SMT

Memory 8 GB RAM 16 GB RAM

Storage HDD (180 GB) HDD (180 GB)

Table 4.4: Recommendations for executing the simulation application with an HDD
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Chapter 5

Discussion & Conclusion

5.1 Discussion

This thesis has produced a framework consisting of a C# application and a Unity3D

project that work together to simulate, and display trajectories generated from data

within DSTs and OGCMs. One part of the discussion will look at the objective

aspect of the solution. This implies the run time and the number of trajectories

generated by the simulation application. Second part of the discussion rely on the

feedback provided by the experts from the IMR who tested the solution.

5.1.1 Algorithms

This project has attempted to implement three algorithms of generating trajectories

from the DST data. However, only two of them were successful and both have their

strength and weaknesses. The general algorithm has a clear advantage in run time,

but is only able to generate half the number of trajectories.

Results from testing DST 742 shows that the merge algorithm generates more trajec-

tories than the general algorithm, but at twice the run time. Furthermore, running

the merge algorithm on DST 1664 generates more than twice the number of trajec-

tories compared to running the general algorithm, but at twice the run time.

Initially, the length of DST 742 was set to 65 cm when running the simulation

application. This length was incorrect, as the actual length was 82 cm. When the

mistake was discovered, the number of generated trajectories tripled for the general

algorithm and doubled for the merge algorithm. This gives a good indication that

the calculated speed for fish is correct.
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5.1.2 Time Consumption of the Algorithms

One of the goals of this thesis was for the run time to be so low that the simulation

was in real time. This means that the user could make changes in the parame-

ters and instantly see the effect it had on the generated trajectories. However, the

massive amount of data required for running the simulation application, made it

difficult to reduce run time. Excluding unnecessary OGCM data from the NetCDF

files did decrease the run time, but it was still not close to real time. Figure 5.1

shows the total run time of the final prototype of the simulation application, using

either DST 1664 or DST 742. The time was recorded from running the application

with 10 000 trajectories. Reducing the number of trajectories would also reduce

run time. Although, that would mean increasing the margin of error on temper-

ature as well. For example, running the general algorithm on DST 742 with 100

simulations and a 2◦C margin of error on temperature gives a run time of less than

2 minutes and 6 trajectories. Examining the CPU and SSD utilisation while the

simulation was running revealed that the CPU spent most of run time waiting for

files. Furthermore, reducing the number of simulation to 1 and and increasing the

margin of error on temperature to 100 ◦ did not change the utilisation at all. Also,

the run time was unchanged. This shows that the framework is not able to run the

simulation application in real time without further reducing the size of the NetCDF

files containing OGCM data. Otherwise, faster storage would be required.

Figure 5.1: Comparison of run time from running the simulation application of DST

742 and DST 1664 using the General and Merge algorithms.
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5.1.3 Visualisation Application

The prototype of the framework was tested twice, where feedback from the selec-

tion of experts mainly improved the usability and functionality of the visualisation

application. The expert survey was the most important source of information since

it revealed how much functionality the experts discovered and understood without

help. Besides from studying the question sheet answered by the experts after com-

pleting the test (see Appendix A), an observation on how they interacted with the

framework enlightened faults and errors. Testing on experts that have not been

involved in the implementation of the framework revealed problems with the re-

sponsiveness of input fields. When testing, developers tend to click on the same

place every time to make input fields react. By observing the experts click within

the application, problems were discovered on when the input fields react to user

interaction.

The results from the expert survey gave new ideas on functionality that improve

the ability to analyse fish trajectories. The suggestions had to be discussed to de-

termine if they were possible and then prioritised based on their importance.

A1. Display date for each location in a fish trajectory

A2. Calculate average depth and temperature for locations

within an area highlighted by the mouse

A3. Display several trajectories at the same time

to see their similarities and differences

A4. Display the ”best” trajectory, and sort trajectories

from best to worst

A5. Ability to save trajectories and load them back

onto the map

All the suggestions except A4, were considered as possible to implement within

the time span that remained. Suggestion A4 was not considered. Defining one tra-

jectory as better than other trajectories require guidelines that determine positive

and negative characteristics of trajectories. The trajectories from a simulation exe-

cution are within the limits of the parameters given, and they have found a trajectory

from release location to recapture location. All the trajectories are therefore possi-

ble solutions to where the fish has travelled, so they are all potentially the ”best”

trajectory. The remaining suggestions were discussed with the external supervisor
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to determine which to prioritise for the implementation of the final prototype.

In agreement with the external supervisor, A2 was removed as a potential func-

tionality. Averaging values in a fish trajectory can remove scientific data since the

resulting values can represent depths or temperatures that the fish would not prefer

to be in. The remaining functionality is listed below in prioritised order.

P1. Display date for each location in a fish trajectory

P2. Ability to save trajectories and load them back

onto the map

P3. Display several trajectories at the same time

to see their similarities and differences

P1 was prioritised since it was quick to implement, and it lets the user see where

fish are at given dates. Experts on migration patterns have knowledge on where fish

are during different seasons, e.g. located in Lofoten during spawning season. Seeing

the date and the location of the fish can help them determine whether they believe

that the trajectory display reasonable locations. P2 gives the user the opportunity

to save interesting trajectories or easily compare trajectories that have different pa-

rameter values. In the first prototype, all trajectories were replaced by the results

from the latest execution of a simulation algorithm. This prevented the user from

analysing trajectories with results from different simulations. P3 was prioritised

last due to its complexity and long implementation time compared to P1 and P2.

In the final prototype, P3 partially works. It displays as many trajectories as the

user wants but deciding which trajectory the locations belong to is difficult, see fig-

ure 5.2. This is mainly because changing colour on each trajectory was harder than

expected, so all trajectories are drawn with the same colour in the Unity3D scene.

Figure 5.2 display the differences between displaying one trajectory (left picture)

and two trajectories (right picture). When looking at the picture on the right, it is

impossible to determine which trajectory each location belongs to. Improvements

for this functionality would have been to colour code trajectories to see the differ-

ences between them, as well as being able to toggle which of the chosen trajectories

to display at the same time.
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Figure 5.2: Display of one trajectory versus display of two trajectories

5.1.4 Simulation Application

The expert survey also resulted in a few suggestions on how to improve the sim-

ulation application of the framework. One of the experts suggested that always

choosing the locations with the temperature closest to the temperature from the

DST might give better results. To validate if it would be better, the simulation

application has been run with this approach three times for each algorithm and the

same has been done with the current approach. Furthermore, this was done to the

DST 742 and DST 1664. Figure 5.3 and 5.4 show the average number of trajectories

generated from all the simulations.
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Figure 5.3: Comparison of how many trajectories are generated from the DST 742

when selecting a random valid location and the location with the temperature closest

to the temperature in the DST.

Figure 5.3 shows that DST 742 can barely generate any trajectories regardless of

which algorithm was used when selecting the next location with the temperature

closest to the DST. Furthermore, the trajectories that were generated with that im-

plementation travelled far past Lofoten where the recapture location is. Whereas,

the merge algorithm generated trajectories that did not travel past Lofoten. How-

ever, it was still unable to generate the same number of trajectories generated when

choosing the next location randomly and applying the weighting.
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Figure 5.4: Comparison of how many trajectories are generated from the DST 1664

when selecting a random valid location and the location with the temperature closest

to the temperature in the DST.

Testing this approach with the DST 1664 lead to significantly improved results,

shown in figure 5.4. By choosing location with temperature closest to DST the

merge algorithm increased the number of trajectories it generates with almost 1.7

times. Furthermore, the general algorithm saw an even larger increase of 3 times

the trajectories. There is no weighting applied to DST 1664 unlike DST 742, which

might be the reason why the results improved with this approach. Furthermore,

the trajectories that were generated were not noticeable different with the new ap-

proach. However, since the number of trajectories increased, the margin of error on

temperature and the number of simulations can be reduced.
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It was also suggested by one of the experts that the simulation application should

select the vertical z-coordinate with the temperature closest to the temperature in

the DST data. This is because the measured depth in the DST data could have

a margin of error of 30 meters. In order to test this approach, the temperature is

found by looking at depth data from DST and OGCMs. Going through each vertical

z-value in a (x,y) grid point in the OGCM, we select the temperature values from

(x,y,z) grid points that has depth within 30 meters of the depth from the DST. For

example, if the DST data has a depth of 100 meters, the simulation would store

the temperature for all (x,y,z) grid points with depth between 70 - 130 meters. The

temperature values are then compared to the temperature from the DST data, and

the closest value is chosen. The idea is that more trajectories should be able to

complete since it has several temperatures to choose from. However, as seen in

figure 5.5 this was not the case. Testing this approach and comparing the number

of trajectories that were generated with the previous approach, shows a significant

reduction in trajectories. Also, the trajectories did not have any new variations that

had not been seen before, and the run time did not increase or decrease. Therefore,

it was decided that this approach would not be used.

Figure 5.5: Comparison between choosing the z-value with depth closest to the DST

depth and choosing the z-value with temperature closest to DST temperature
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Figure 5.5 compares the results from running the simulation application using both

the merge and general algorithm with and without choosing the temperature closest

to DST temperature. Furthermore, the figure shows the average number of trajec-

tories generated from multiple executions of the simulation application. This was

done since there is some variation between each run because of the random speed.

Question 8 in the survey asks if the run time of the simulation application is too

long. Two of the experts answered no, while the third one was not certain. They

wanted the ability to visualise multiple trajectories at the same time. This makes

sense since it is a well-known ecological problem that a median trajectory of all the

trajectories would not be able to represent the movements of the individual animals

[49].

When asked if they would use the software to simulate and visualise DST data

in the future, two of the experts said yes and one said no. Two reason were given for

saying no. First, this expert does not have easy access to a computer with Microsoft

Windows installed. Second, the expert enjoys having full control over the analysis

through own scripts since any graphical user interface can never provide the user

with the same flexibility.

5.1.5 Switching Between Ocean General Circulation Models

Switching between OGCMs have led to an increased number of trajectories being

produced compared to using only one of the available models. However, reviewing

the results showed that few trajectories ever left the area covered by the Norwegian

Sea model. Therefore, new conditions for switching to the Nordic Sea model were

added to allow the trajectories to travel into the Barents Sea. This resulted in some

trajectories within the Barents Sea. However, the number of completed trajectories

were reduced and there were only a few trajectories that did cross into the Nordic

Seas model. Also, the few trajectories that crossed into the Nordic Seas model did

not travel far before returning to the area covered by the Norwegian Sea. Therefore,

it is likely that the lower resolution of the Barents Sea model does not allow for low

error margins on temperature and a low time step. Alternatively, it could be that

the fish simply never did visit the Barents Sea.
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5.2 Conclusion

The result from this thesis is a framework that transform data within OGCMs

and DSTs to trajectories. The trajectories are visualised on a 2D map that contain

analytic tools for modifying how trajectories are presented, and the information they

display. The framework can run the simulation algorithms from the visualisation

application and it makes sure to update the map when new trajectories are available.

The thesis has four research questions that will be summarised in the sections below.

5.2.1 Simulation Application

Q1. What parameters can be added to a solution that uses

temperature and depth observations from DSTs and OGCMs

to generate trajectories that are more realistic than the

earlier solution?

This thesis has presented a solution that generate trajectories using temperature

and depth observations from DSTs and OGCMs. Several parameters have been

implemented that were not presented in the earlier solution from [6]. The earlier

solution only looks at surface temperature of the ocean and can generate trajectories

that go through landmasses like islands. This solution looks at the temperature at

the depth of the DST data and checks for land between the current location of a

simulation and a potential new location before adding it to its trajectory. Addition-

ally, this solution can simulate DSTs that cover more than two years with a time

step of 1-day. The earlier solution [6] has a lower time step but does not show an

example of a trajectory that covers more than 255 days. Ocean currents were also

tested as a potential parameter for deciding where fish could travel by either having

the simulation follow or go against the current. Unfortunately, it did not change the

locations in the trajectories, and it increased the run time. Therefore, this parame-

ter was removed from the solution. However, ocean current could still be used as a

parameter in future solutions, but not the way it was implemented in this project.

Additionally, dynamic weighting that weighted either towards or away from the re-

capture location depending on the time of year was tested on the DST 1664, but

did not show any improvements. For that reason, it was not implemented. Moving

on, whether the simulation should decide its next location based on weighting or the

best temperature was also evaluated. It has shown improved results for DST 1664,

but not DST 742. Therefore, it was implemented, but whether it should be used will

depend on the DST used. Furthermore, this thesis also explored different ways of

selecting temperature from the correct depth. First was looking at the z-coordinate

closest to the depth of the DST. Second was selecting the z-coordinate with the

temperature closest to the DST. Once both had been evaluated it was determined

73



CHAPTER 5. DISCUSSION & CONCLUSION 5.2. CONCLUSION

that selecting the z-coordinate with the depth closest to DST depth was superior

and was therefore implemented.

To answer Q1, this thesis has explored multiple new parameters that can be used

when generating trajectories from DSTs and OGCMs. Such as how to select the

temperature from depth layer and if the next location should be chosen at random

or based on temperature. Also, an implementation of ocean currents was evalu-

ated along with dynamic weighting. How these parameters affected the simulation

application has been documented throughout the thesis.

5.2.2 Visualisation Application

Q2. How should generated trajectories be visualised for scientists

to find and analyse their ecological characteristics?

The visualisation application is the controller of the framework. Allowing the user to

visualise, analyse and generate trajectories, it aims to answer Q2 in the best possible

way. Starting with a 2D map and presenting it to the selection of experts located

at the IMR, early feedback on their opinions was essential to visualise trajectories

properly. Adding toggle buttons to change how trajectories are presented, allows

the user to display trajectories as they want. Having more than one option on how

to present them, makes it easier to satisfy all users. The user can either; display

trajectories at once, display one-by-one location, draw lines between locations and

only display release and recapture locations. Functionality that lets the user; choose

which trajectory to display, run simulation algorithms and display information on

trajectory locations, separates the application from an application that only visu-

alise GPS locations on a map.

Feedback from question 12 in the expert survey (see Appendix A) was very positive.

Two of the experts meant that the functionality improved their understanding of

trajectories very much, while one of the experts meant that it did improve under-

standing.

To answer Q2, for scientists to find and analyse ecological characteristics, trajecto-

ries should be visualised by providing several options that modify how trajectories

are presented on the 2D map. The user should also be able to extract necessary

information, e.g. temperature, depth and date.

74



CHAPTER 5. DISCUSSION & CONCLUSION 5.2. CONCLUSION

5.2.3 Performance

Q3. How can generating trajectories be optimised to reduce the

run time compared to the previous solution?

The run time of the simulation has been recorded every time the simulation ap-

plication has been run and reviewing the results shows that the goal of real time has

not been achieved. Although the run time has been significantly reduced throughout

the development of the simulation application, it is still not close to running in real

time (see figure 5.1 in section 5.1.2). Even reducing the number of simulations to 1

could not get the run under 1 minute. This is because there are a lot of calculations

being executed during the simulation application, but even if all the calculations

took less than a second it would still not be in real time. This comes from the fact

that the OGCMs are too large to be stored on the system memory and must be

swapped back and forth to the storage every iteration of the simulation application.

Therefore, running in real time is not possible using this solution with the hardware

used in this thesis. It will require faster storage as well as greater computational

power. This could be achieved by running the simulation application on a Graphics

Processing Unit (GPU), but it would need enough memory to store all the OGCMs

that the DST needs. DST 742 requires 30.8 GB and DST 1664 requires 141.2 GB.

Furthermore, the amount of data made it extremely time consuming to use latitude

and longitude while generating trajectories like previous solutions have. Therefore,

the x- and y- coordinates in the OGCM were used instead and showed a significant

improvement in run time. This is likely the reason why two of three experts answered

no to the question on the framework being too time consuming (see Appendix A).

It appears that the run time will not be an issue for the scientist who would use this

framework.

To answer Q3, this thesis has presented a solution with an improved run time

compared to the previous solution [6]. This was done by approximating the location

of the fish by using the x- and y-coordinates in the OGCMs, removing unneces-

sary data and limiting the directions the simulations check to eight predetermined

directions.
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5.2.4 Expert Opinions

Q4. What functionality can be implemented into the framework

to provide scientists with information on migration patterns

and ecological characteristics?

Through the project, feedback from the external supervisor and the selection of

experts has been prioritised. The framework is created for their usage, so it is im-

portant to create a result close to their expectations. The spiral development model

created for this project, intentionally had two phases for collecting feedback. Phase

II and V assisted in how to present trajectories, what functionality to implement,

and in what order to implement the suggested functionality.

Question 12 in the expert survey (see Appendix A) shows that two of three experts

are very satisfied with the available functionality, while the last expert is satisfied

with functionality. Even though the overall results were positive, the selection of

experts suggested additional functionality to improve the framework, see section

5.1.3. Based on their feedback the final prototype was implemented to match their

expectations.

To answer Q4, required functionality that needs to be included in this framework

are collected from the experts. Their suggestions are summarised in the following;

1) the ability to run simulation algorithms from the visualisation application, 2)

change how trajectories are displayed, 3) selecting which trajectory to display, 4)

save trajectories and load them back onto the map, 5) display several trajectories at

the same time, and 6) present information about data within trajectories. Combin-

ing this functionality into a framework, allow researchers to investigate migration

patterns and ecological characteristics of fish.
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Chapter 6

Further Work

6.1 Simulation Application

To improve trajectories generated from the simulation application, changes can be

implemented to discover if they have any effect on the trajectory results. Dynamic

weighting can provide better results on DSTs such as DST 1664, where release and

recapture locations are close to each other. Weighting a trajectory towards known

locations based on seasonal migration patterns, e.g. weight towards Lofoten during

spawning season, can result in more accurate trajectories.

The attempt to use ocean currents in addition to the other parameters were not

successful. An algorithm that could potentially limit areas the trajectories can tra-

verse to by identifying turbulent ocean currents should be explored [50][51].

Brute force is used for finding locations in trajectories. Future work should focus

more on analysing areas around locations, to decrease the run time of the framework.

6.2 Visualisation application

Presenting several trajectories at once is a functionality that can be further imple-

mented. Altering the structure on how to draw several trajectories at once, can

make it easier to draw them in separate colours. This would also make it easy to

further implement that the user can toggle which of the chosen trajectories that

should be visualised at the same time.

Expanding the visualisation application to a 3D world can provide deeper knowledge

on migration patterns and behaviour within fish trajectories. Allowing the user to

dive into the view of a fish would require recreating the topology, model the ocean

with textures, and populating the ocean with species.
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Appendix A

Expert Survey

Question 1:

Question 2: Har du noen forslag til andre navn som gjør funksjonaliteten

enklere å forst̊a? (Svarformat: gammelt navn - nytt navn)

1. Show index of each position - Show each position consecutively

Paths close to capture point - Paths ending close to capture point

2. Close to capture point, litt vanskelig å forst̊a, OK n̊ar det ble forklart

3. navnene var ok, men jeg foresl̊ar at dere ogs̊a oppgir dato for de ulike punktene,

samt åpner for muligheten til å velge flere merker samtidig slik at man kan

vise en poetsiell ”vandringskanal”
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Question 3:

Question 4: Har du noen forslag til andre navn som gjør funksjonaliteten

enklere å forst̊a? (Svarformat: gammelt navn - nytt navn)

1. Distance = Distance between positions

2. Marker → Time step,

3. Navnene er ok, men foresl̊ar at dere gir mulighet for å beregne gj.sn. verdier

for et valg omr̊ade/utsnitt av punkter

Question 5:
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Question 6: Har du noen forslag til andre navn som gjør parametrene

enklere å forst̊a? (Svarformat: gammelt navn - nytt navn)

1. -Weighting of path towards capture point (0.0 - 1.0): kanskje forklare at 0-0.5

er bort fra homing position, 0.5-1 er mot homing, og at 1.0 er det strengeste

kravet.

-Enheter p̊a error on depth/temperature

2. Days ... tag data → Time step length in days,

Alternativt dersom holder p̊a marker over → Days between markers

Litt forvirrende at det heter marker over og tag data her

3. ser ok ut

Question 7:
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Question 8:

Question 9: Var det noe informasjon som manglet? (Hvis ja, spesifiser)

1. -hvordan avslutte (trykke return)

-Forklaring p̊a at baren viser antall trajectoreier som n̊ar frem. Det er jo

gøy informasjon.

2. Algorithm 0 er litt lite forklarende. Bedre å skrive ”forward” eller ”merge”

Increment = Fiskelengde?, I s̊a fall er fish length mer beskrivende

3. dato per punkt for å se hvor fisken er til ulike datoer, samt mulighet til å vise

vandringsrute for flere merker samtidig

Question 10:
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Question 11:

Question 12:
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Question 13: Kommer du p̊a noe funksjonalitet eller informasjon som

mangler?

1. - Valg av ”beste” trajectorie, evt sortere treff etter dette

- Kort info om algoritmen som er brukt

2. Save/Load knapper lagre simuleringene til en separat katalog med metadata

om parametervalg, og kunne laste dette inn igjen uten å kjøre p̊a nytt.

Bare 8 retninger er begrensende p̊a realismen. Likte ikke lengre trekk langs

rett linje.

3. se tidligere svar

Question 14:

Question 15: Hvis nei, hvorfor ikke?
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1. To grunner, 1: Jeg har ikke lett tilgang til MS Windows,

2: Jeg er litt nerd som liker å ha full kontroll p̊a analysen via egne skript,

en GUI kan aldri gi samme fleksibilitet til brukeren.

Hadde vaert greit å bruke for å gjøre simuleringene, stiligere alternativ enn

å redigere konfigurasjon av skript.
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